1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 /* 53 * For bio-based dm. 54 * One of these is allocated per bio. 55 */ 56 struct dm_io { 57 struct mapped_device *md; 58 int error; 59 atomic_t io_count; 60 struct bio *bio; 61 unsigned long start_time; 62 spinlock_t endio_lock; 63 }; 64 65 /* 66 * For request-based dm. 67 * One of these is allocated per request. 68 */ 69 struct dm_rq_target_io { 70 struct mapped_device *md; 71 struct dm_target *ti; 72 struct request *orig, clone; 73 int error; 74 union map_info info; 75 }; 76 77 /* 78 * For request-based dm - the bio clones we allocate are embedded in these 79 * structs. 80 * 81 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 82 * the bioset is created - this means the bio has to come at the end of the 83 * struct. 84 */ 85 struct dm_rq_clone_bio_info { 86 struct bio *orig; 87 struct dm_rq_target_io *tio; 88 struct bio clone; 89 }; 90 91 union map_info *dm_get_mapinfo(struct bio *bio) 92 { 93 if (bio && bio->bi_private) 94 return &((struct dm_target_io *)bio->bi_private)->info; 95 return NULL; 96 } 97 98 union map_info *dm_get_rq_mapinfo(struct request *rq) 99 { 100 if (rq && rq->end_io_data) 101 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 102 return NULL; 103 } 104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 105 106 #define MINOR_ALLOCED ((void *)-1) 107 108 /* 109 * Bits for the md->flags field. 110 */ 111 #define DMF_BLOCK_IO_FOR_SUSPEND 0 112 #define DMF_SUSPENDED 1 113 #define DMF_FROZEN 2 114 #define DMF_FREEING 3 115 #define DMF_DELETING 4 116 #define DMF_NOFLUSH_SUSPENDING 5 117 #define DMF_MERGE_IS_OPTIONAL 6 118 119 /* 120 * Work processed by per-device workqueue. 121 */ 122 struct mapped_device { 123 struct rw_semaphore io_lock; 124 struct mutex suspend_lock; 125 rwlock_t map_lock; 126 atomic_t holders; 127 atomic_t open_count; 128 129 unsigned long flags; 130 131 struct request_queue *queue; 132 unsigned type; 133 /* Protect queue and type against concurrent access. */ 134 struct mutex type_lock; 135 136 struct target_type *immutable_target_type; 137 138 struct gendisk *disk; 139 char name[16]; 140 141 void *interface_ptr; 142 143 /* 144 * A list of ios that arrived while we were suspended. 145 */ 146 atomic_t pending[2]; 147 wait_queue_head_t wait; 148 struct work_struct work; 149 struct bio_list deferred; 150 spinlock_t deferred_lock; 151 152 /* 153 * Processing queue (flush) 154 */ 155 struct workqueue_struct *wq; 156 157 /* 158 * The current mapping. 159 */ 160 struct dm_table *map; 161 162 /* 163 * io objects are allocated from here. 164 */ 165 mempool_t *io_pool; 166 mempool_t *tio_pool; 167 168 struct bio_set *bs; 169 170 /* 171 * Event handling. 172 */ 173 atomic_t event_nr; 174 wait_queue_head_t eventq; 175 atomic_t uevent_seq; 176 struct list_head uevent_list; 177 spinlock_t uevent_lock; /* Protect access to uevent_list */ 178 179 /* 180 * freeze/thaw support require holding onto a super block 181 */ 182 struct super_block *frozen_sb; 183 struct block_device *bdev; 184 185 /* forced geometry settings */ 186 struct hd_geometry geometry; 187 188 /* sysfs handle */ 189 struct kobject kobj; 190 191 /* zero-length flush that will be cloned and submitted to targets */ 192 struct bio flush_bio; 193 }; 194 195 /* 196 * For mempools pre-allocation at the table loading time. 197 */ 198 struct dm_md_mempools { 199 mempool_t *io_pool; 200 mempool_t *tio_pool; 201 struct bio_set *bs; 202 }; 203 204 #define MIN_IOS 256 205 static struct kmem_cache *_io_cache; 206 static struct kmem_cache *_rq_tio_cache; 207 208 /* 209 * Unused now, and needs to be deleted. But since io_pool is overloaded and it's 210 * still used for _io_cache, I'm leaving this for a later cleanup 211 */ 212 static struct kmem_cache *_rq_bio_info_cache; 213 214 static int __init local_init(void) 215 { 216 int r = -ENOMEM; 217 218 /* allocate a slab for the dm_ios */ 219 _io_cache = KMEM_CACHE(dm_io, 0); 220 if (!_io_cache) 221 return r; 222 223 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 224 if (!_rq_tio_cache) 225 goto out_free_io_cache; 226 227 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0); 228 if (!_rq_bio_info_cache) 229 goto out_free_rq_tio_cache; 230 231 r = dm_uevent_init(); 232 if (r) 233 goto out_free_rq_bio_info_cache; 234 235 _major = major; 236 r = register_blkdev(_major, _name); 237 if (r < 0) 238 goto out_uevent_exit; 239 240 if (!_major) 241 _major = r; 242 243 return 0; 244 245 out_uevent_exit: 246 dm_uevent_exit(); 247 out_free_rq_bio_info_cache: 248 kmem_cache_destroy(_rq_bio_info_cache); 249 out_free_rq_tio_cache: 250 kmem_cache_destroy(_rq_tio_cache); 251 out_free_io_cache: 252 kmem_cache_destroy(_io_cache); 253 254 return r; 255 } 256 257 static void local_exit(void) 258 { 259 kmem_cache_destroy(_rq_bio_info_cache); 260 kmem_cache_destroy(_rq_tio_cache); 261 kmem_cache_destroy(_io_cache); 262 unregister_blkdev(_major, _name); 263 dm_uevent_exit(); 264 265 _major = 0; 266 267 DMINFO("cleaned up"); 268 } 269 270 static int (*_inits[])(void) __initdata = { 271 local_init, 272 dm_target_init, 273 dm_linear_init, 274 dm_stripe_init, 275 dm_io_init, 276 dm_kcopyd_init, 277 dm_interface_init, 278 }; 279 280 static void (*_exits[])(void) = { 281 local_exit, 282 dm_target_exit, 283 dm_linear_exit, 284 dm_stripe_exit, 285 dm_io_exit, 286 dm_kcopyd_exit, 287 dm_interface_exit, 288 }; 289 290 static int __init dm_init(void) 291 { 292 const int count = ARRAY_SIZE(_inits); 293 294 int r, i; 295 296 for (i = 0; i < count; i++) { 297 r = _inits[i](); 298 if (r) 299 goto bad; 300 } 301 302 return 0; 303 304 bad: 305 while (i--) 306 _exits[i](); 307 308 return r; 309 } 310 311 static void __exit dm_exit(void) 312 { 313 int i = ARRAY_SIZE(_exits); 314 315 while (i--) 316 _exits[i](); 317 318 /* 319 * Should be empty by this point. 320 */ 321 idr_destroy(&_minor_idr); 322 } 323 324 /* 325 * Block device functions 326 */ 327 int dm_deleting_md(struct mapped_device *md) 328 { 329 return test_bit(DMF_DELETING, &md->flags); 330 } 331 332 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 333 { 334 struct mapped_device *md; 335 336 spin_lock(&_minor_lock); 337 338 md = bdev->bd_disk->private_data; 339 if (!md) 340 goto out; 341 342 if (test_bit(DMF_FREEING, &md->flags) || 343 dm_deleting_md(md)) { 344 md = NULL; 345 goto out; 346 } 347 348 dm_get(md); 349 atomic_inc(&md->open_count); 350 351 out: 352 spin_unlock(&_minor_lock); 353 354 return md ? 0 : -ENXIO; 355 } 356 357 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 358 { 359 struct mapped_device *md = disk->private_data; 360 361 spin_lock(&_minor_lock); 362 363 atomic_dec(&md->open_count); 364 dm_put(md); 365 366 spin_unlock(&_minor_lock); 367 368 return 0; 369 } 370 371 int dm_open_count(struct mapped_device *md) 372 { 373 return atomic_read(&md->open_count); 374 } 375 376 /* 377 * Guarantees nothing is using the device before it's deleted. 378 */ 379 int dm_lock_for_deletion(struct mapped_device *md) 380 { 381 int r = 0; 382 383 spin_lock(&_minor_lock); 384 385 if (dm_open_count(md)) 386 r = -EBUSY; 387 else 388 set_bit(DMF_DELETING, &md->flags); 389 390 spin_unlock(&_minor_lock); 391 392 return r; 393 } 394 395 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 396 { 397 struct mapped_device *md = bdev->bd_disk->private_data; 398 399 return dm_get_geometry(md, geo); 400 } 401 402 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 403 unsigned int cmd, unsigned long arg) 404 { 405 struct mapped_device *md = bdev->bd_disk->private_data; 406 struct dm_table *map = dm_get_live_table(md); 407 struct dm_target *tgt; 408 int r = -ENOTTY; 409 410 if (!map || !dm_table_get_size(map)) 411 goto out; 412 413 /* We only support devices that have a single target */ 414 if (dm_table_get_num_targets(map) != 1) 415 goto out; 416 417 tgt = dm_table_get_target(map, 0); 418 419 if (dm_suspended_md(md)) { 420 r = -EAGAIN; 421 goto out; 422 } 423 424 if (tgt->type->ioctl) 425 r = tgt->type->ioctl(tgt, cmd, arg); 426 427 out: 428 dm_table_put(map); 429 430 return r; 431 } 432 433 static struct dm_io *alloc_io(struct mapped_device *md) 434 { 435 return mempool_alloc(md->io_pool, GFP_NOIO); 436 } 437 438 static void free_io(struct mapped_device *md, struct dm_io *io) 439 { 440 mempool_free(io, md->io_pool); 441 } 442 443 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 444 { 445 bio_put(&tio->clone); 446 } 447 448 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 449 gfp_t gfp_mask) 450 { 451 return mempool_alloc(md->tio_pool, gfp_mask); 452 } 453 454 static void free_rq_tio(struct dm_rq_target_io *tio) 455 { 456 mempool_free(tio, tio->md->tio_pool); 457 } 458 459 static int md_in_flight(struct mapped_device *md) 460 { 461 return atomic_read(&md->pending[READ]) + 462 atomic_read(&md->pending[WRITE]); 463 } 464 465 static void start_io_acct(struct dm_io *io) 466 { 467 struct mapped_device *md = io->md; 468 int cpu; 469 int rw = bio_data_dir(io->bio); 470 471 io->start_time = jiffies; 472 473 cpu = part_stat_lock(); 474 part_round_stats(cpu, &dm_disk(md)->part0); 475 part_stat_unlock(); 476 atomic_set(&dm_disk(md)->part0.in_flight[rw], 477 atomic_inc_return(&md->pending[rw])); 478 } 479 480 static void end_io_acct(struct dm_io *io) 481 { 482 struct mapped_device *md = io->md; 483 struct bio *bio = io->bio; 484 unsigned long duration = jiffies - io->start_time; 485 int pending, cpu; 486 int rw = bio_data_dir(bio); 487 488 cpu = part_stat_lock(); 489 part_round_stats(cpu, &dm_disk(md)->part0); 490 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 491 part_stat_unlock(); 492 493 /* 494 * After this is decremented the bio must not be touched if it is 495 * a flush. 496 */ 497 pending = atomic_dec_return(&md->pending[rw]); 498 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 499 pending += atomic_read(&md->pending[rw^0x1]); 500 501 /* nudge anyone waiting on suspend queue */ 502 if (!pending) 503 wake_up(&md->wait); 504 } 505 506 /* 507 * Add the bio to the list of deferred io. 508 */ 509 static void queue_io(struct mapped_device *md, struct bio *bio) 510 { 511 unsigned long flags; 512 513 spin_lock_irqsave(&md->deferred_lock, flags); 514 bio_list_add(&md->deferred, bio); 515 spin_unlock_irqrestore(&md->deferred_lock, flags); 516 queue_work(md->wq, &md->work); 517 } 518 519 /* 520 * Everyone (including functions in this file), should use this 521 * function to access the md->map field, and make sure they call 522 * dm_table_put() when finished. 523 */ 524 struct dm_table *dm_get_live_table(struct mapped_device *md) 525 { 526 struct dm_table *t; 527 unsigned long flags; 528 529 read_lock_irqsave(&md->map_lock, flags); 530 t = md->map; 531 if (t) 532 dm_table_get(t); 533 read_unlock_irqrestore(&md->map_lock, flags); 534 535 return t; 536 } 537 538 /* 539 * Get the geometry associated with a dm device 540 */ 541 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 542 { 543 *geo = md->geometry; 544 545 return 0; 546 } 547 548 /* 549 * Set the geometry of a device. 550 */ 551 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 552 { 553 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 554 555 if (geo->start > sz) { 556 DMWARN("Start sector is beyond the geometry limits."); 557 return -EINVAL; 558 } 559 560 md->geometry = *geo; 561 562 return 0; 563 } 564 565 /*----------------------------------------------------------------- 566 * CRUD START: 567 * A more elegant soln is in the works that uses the queue 568 * merge fn, unfortunately there are a couple of changes to 569 * the block layer that I want to make for this. So in the 570 * interests of getting something for people to use I give 571 * you this clearly demarcated crap. 572 *---------------------------------------------------------------*/ 573 574 static int __noflush_suspending(struct mapped_device *md) 575 { 576 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 577 } 578 579 /* 580 * Decrements the number of outstanding ios that a bio has been 581 * cloned into, completing the original io if necc. 582 */ 583 static void dec_pending(struct dm_io *io, int error) 584 { 585 unsigned long flags; 586 int io_error; 587 struct bio *bio; 588 struct mapped_device *md = io->md; 589 590 /* Push-back supersedes any I/O errors */ 591 if (unlikely(error)) { 592 spin_lock_irqsave(&io->endio_lock, flags); 593 if (!(io->error > 0 && __noflush_suspending(md))) 594 io->error = error; 595 spin_unlock_irqrestore(&io->endio_lock, flags); 596 } 597 598 if (atomic_dec_and_test(&io->io_count)) { 599 if (io->error == DM_ENDIO_REQUEUE) { 600 /* 601 * Target requested pushing back the I/O. 602 */ 603 spin_lock_irqsave(&md->deferred_lock, flags); 604 if (__noflush_suspending(md)) 605 bio_list_add_head(&md->deferred, io->bio); 606 else 607 /* noflush suspend was interrupted. */ 608 io->error = -EIO; 609 spin_unlock_irqrestore(&md->deferred_lock, flags); 610 } 611 612 io_error = io->error; 613 bio = io->bio; 614 end_io_acct(io); 615 free_io(md, io); 616 617 if (io_error == DM_ENDIO_REQUEUE) 618 return; 619 620 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) { 621 /* 622 * Preflush done for flush with data, reissue 623 * without REQ_FLUSH. 624 */ 625 bio->bi_rw &= ~REQ_FLUSH; 626 queue_io(md, bio); 627 } else { 628 /* done with normal IO or empty flush */ 629 bio_endio(bio, io_error); 630 } 631 } 632 } 633 634 static void clone_endio(struct bio *bio, int error) 635 { 636 int r = 0; 637 struct dm_target_io *tio = bio->bi_private; 638 struct dm_io *io = tio->io; 639 struct mapped_device *md = tio->io->md; 640 dm_endio_fn endio = tio->ti->type->end_io; 641 642 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 643 error = -EIO; 644 645 if (endio) { 646 r = endio(tio->ti, bio, error); 647 if (r < 0 || r == DM_ENDIO_REQUEUE) 648 /* 649 * error and requeue request are handled 650 * in dec_pending(). 651 */ 652 error = r; 653 else if (r == DM_ENDIO_INCOMPLETE) 654 /* The target will handle the io */ 655 return; 656 else if (r) { 657 DMWARN("unimplemented target endio return value: %d", r); 658 BUG(); 659 } 660 } 661 662 free_tio(md, tio); 663 dec_pending(io, error); 664 } 665 666 /* 667 * Partial completion handling for request-based dm 668 */ 669 static void end_clone_bio(struct bio *clone, int error) 670 { 671 struct dm_rq_clone_bio_info *info = clone->bi_private; 672 struct dm_rq_target_io *tio = info->tio; 673 struct bio *bio = info->orig; 674 unsigned int nr_bytes = info->orig->bi_size; 675 676 bio_put(clone); 677 678 if (tio->error) 679 /* 680 * An error has already been detected on the request. 681 * Once error occurred, just let clone->end_io() handle 682 * the remainder. 683 */ 684 return; 685 else if (error) { 686 /* 687 * Don't notice the error to the upper layer yet. 688 * The error handling decision is made by the target driver, 689 * when the request is completed. 690 */ 691 tio->error = error; 692 return; 693 } 694 695 /* 696 * I/O for the bio successfully completed. 697 * Notice the data completion to the upper layer. 698 */ 699 700 /* 701 * bios are processed from the head of the list. 702 * So the completing bio should always be rq->bio. 703 * If it's not, something wrong is happening. 704 */ 705 if (tio->orig->bio != bio) 706 DMERR("bio completion is going in the middle of the request"); 707 708 /* 709 * Update the original request. 710 * Do not use blk_end_request() here, because it may complete 711 * the original request before the clone, and break the ordering. 712 */ 713 blk_update_request(tio->orig, 0, nr_bytes); 714 } 715 716 /* 717 * Don't touch any member of the md after calling this function because 718 * the md may be freed in dm_put() at the end of this function. 719 * Or do dm_get() before calling this function and dm_put() later. 720 */ 721 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 722 { 723 atomic_dec(&md->pending[rw]); 724 725 /* nudge anyone waiting on suspend queue */ 726 if (!md_in_flight(md)) 727 wake_up(&md->wait); 728 729 /* 730 * Run this off this callpath, as drivers could invoke end_io while 731 * inside their request_fn (and holding the queue lock). Calling 732 * back into ->request_fn() could deadlock attempting to grab the 733 * queue lock again. 734 */ 735 if (run_queue) 736 blk_run_queue_async(md->queue); 737 738 /* 739 * dm_put() must be at the end of this function. See the comment above 740 */ 741 dm_put(md); 742 } 743 744 static void free_rq_clone(struct request *clone) 745 { 746 struct dm_rq_target_io *tio = clone->end_io_data; 747 748 blk_rq_unprep_clone(clone); 749 free_rq_tio(tio); 750 } 751 752 /* 753 * Complete the clone and the original request. 754 * Must be called without queue lock. 755 */ 756 static void dm_end_request(struct request *clone, int error) 757 { 758 int rw = rq_data_dir(clone); 759 struct dm_rq_target_io *tio = clone->end_io_data; 760 struct mapped_device *md = tio->md; 761 struct request *rq = tio->orig; 762 763 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 764 rq->errors = clone->errors; 765 rq->resid_len = clone->resid_len; 766 767 if (rq->sense) 768 /* 769 * We are using the sense buffer of the original 770 * request. 771 * So setting the length of the sense data is enough. 772 */ 773 rq->sense_len = clone->sense_len; 774 } 775 776 free_rq_clone(clone); 777 blk_end_request_all(rq, error); 778 rq_completed(md, rw, true); 779 } 780 781 static void dm_unprep_request(struct request *rq) 782 { 783 struct request *clone = rq->special; 784 785 rq->special = NULL; 786 rq->cmd_flags &= ~REQ_DONTPREP; 787 788 free_rq_clone(clone); 789 } 790 791 /* 792 * Requeue the original request of a clone. 793 */ 794 void dm_requeue_unmapped_request(struct request *clone) 795 { 796 int rw = rq_data_dir(clone); 797 struct dm_rq_target_io *tio = clone->end_io_data; 798 struct mapped_device *md = tio->md; 799 struct request *rq = tio->orig; 800 struct request_queue *q = rq->q; 801 unsigned long flags; 802 803 dm_unprep_request(rq); 804 805 spin_lock_irqsave(q->queue_lock, flags); 806 blk_requeue_request(q, rq); 807 spin_unlock_irqrestore(q->queue_lock, flags); 808 809 rq_completed(md, rw, 0); 810 } 811 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 812 813 static void __stop_queue(struct request_queue *q) 814 { 815 blk_stop_queue(q); 816 } 817 818 static void stop_queue(struct request_queue *q) 819 { 820 unsigned long flags; 821 822 spin_lock_irqsave(q->queue_lock, flags); 823 __stop_queue(q); 824 spin_unlock_irqrestore(q->queue_lock, flags); 825 } 826 827 static void __start_queue(struct request_queue *q) 828 { 829 if (blk_queue_stopped(q)) 830 blk_start_queue(q); 831 } 832 833 static void start_queue(struct request_queue *q) 834 { 835 unsigned long flags; 836 837 spin_lock_irqsave(q->queue_lock, flags); 838 __start_queue(q); 839 spin_unlock_irqrestore(q->queue_lock, flags); 840 } 841 842 static void dm_done(struct request *clone, int error, bool mapped) 843 { 844 int r = error; 845 struct dm_rq_target_io *tio = clone->end_io_data; 846 dm_request_endio_fn rq_end_io = NULL; 847 848 if (tio->ti) { 849 rq_end_io = tio->ti->type->rq_end_io; 850 851 if (mapped && rq_end_io) 852 r = rq_end_io(tio->ti, clone, error, &tio->info); 853 } 854 855 if (r <= 0) 856 /* The target wants to complete the I/O */ 857 dm_end_request(clone, r); 858 else if (r == DM_ENDIO_INCOMPLETE) 859 /* The target will handle the I/O */ 860 return; 861 else if (r == DM_ENDIO_REQUEUE) 862 /* The target wants to requeue the I/O */ 863 dm_requeue_unmapped_request(clone); 864 else { 865 DMWARN("unimplemented target endio return value: %d", r); 866 BUG(); 867 } 868 } 869 870 /* 871 * Request completion handler for request-based dm 872 */ 873 static void dm_softirq_done(struct request *rq) 874 { 875 bool mapped = true; 876 struct request *clone = rq->completion_data; 877 struct dm_rq_target_io *tio = clone->end_io_data; 878 879 if (rq->cmd_flags & REQ_FAILED) 880 mapped = false; 881 882 dm_done(clone, tio->error, mapped); 883 } 884 885 /* 886 * Complete the clone and the original request with the error status 887 * through softirq context. 888 */ 889 static void dm_complete_request(struct request *clone, int error) 890 { 891 struct dm_rq_target_io *tio = clone->end_io_data; 892 struct request *rq = tio->orig; 893 894 tio->error = error; 895 rq->completion_data = clone; 896 blk_complete_request(rq); 897 } 898 899 /* 900 * Complete the not-mapped clone and the original request with the error status 901 * through softirq context. 902 * Target's rq_end_io() function isn't called. 903 * This may be used when the target's map_rq() function fails. 904 */ 905 void dm_kill_unmapped_request(struct request *clone, int error) 906 { 907 struct dm_rq_target_io *tio = clone->end_io_data; 908 struct request *rq = tio->orig; 909 910 rq->cmd_flags |= REQ_FAILED; 911 dm_complete_request(clone, error); 912 } 913 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 914 915 /* 916 * Called with the queue lock held 917 */ 918 static void end_clone_request(struct request *clone, int error) 919 { 920 /* 921 * For just cleaning up the information of the queue in which 922 * the clone was dispatched. 923 * The clone is *NOT* freed actually here because it is alloced from 924 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 925 */ 926 __blk_put_request(clone->q, clone); 927 928 /* 929 * Actual request completion is done in a softirq context which doesn't 930 * hold the queue lock. Otherwise, deadlock could occur because: 931 * - another request may be submitted by the upper level driver 932 * of the stacking during the completion 933 * - the submission which requires queue lock may be done 934 * against this queue 935 */ 936 dm_complete_request(clone, error); 937 } 938 939 /* 940 * Return maximum size of I/O possible at the supplied sector up to the current 941 * target boundary. 942 */ 943 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 944 { 945 sector_t target_offset = dm_target_offset(ti, sector); 946 947 return ti->len - target_offset; 948 } 949 950 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 951 { 952 sector_t len = max_io_len_target_boundary(sector, ti); 953 sector_t offset, max_len; 954 955 /* 956 * Does the target need to split even further? 957 */ 958 if (ti->max_io_len) { 959 offset = dm_target_offset(ti, sector); 960 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 961 max_len = sector_div(offset, ti->max_io_len); 962 else 963 max_len = offset & (ti->max_io_len - 1); 964 max_len = ti->max_io_len - max_len; 965 966 if (len > max_len) 967 len = max_len; 968 } 969 970 return len; 971 } 972 973 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 974 { 975 if (len > UINT_MAX) { 976 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 977 (unsigned long long)len, UINT_MAX); 978 ti->error = "Maximum size of target IO is too large"; 979 return -EINVAL; 980 } 981 982 ti->max_io_len = (uint32_t) len; 983 984 return 0; 985 } 986 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 987 988 static void __map_bio(struct dm_target_io *tio) 989 { 990 int r; 991 sector_t sector; 992 struct mapped_device *md; 993 struct bio *clone = &tio->clone; 994 struct dm_target *ti = tio->ti; 995 996 clone->bi_end_io = clone_endio; 997 clone->bi_private = tio; 998 999 /* 1000 * Map the clone. If r == 0 we don't need to do 1001 * anything, the target has assumed ownership of 1002 * this io. 1003 */ 1004 atomic_inc(&tio->io->io_count); 1005 sector = clone->bi_sector; 1006 r = ti->type->map(ti, clone); 1007 if (r == DM_MAPIO_REMAPPED) { 1008 /* the bio has been remapped so dispatch it */ 1009 1010 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1011 tio->io->bio->bi_bdev->bd_dev, sector); 1012 1013 generic_make_request(clone); 1014 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1015 /* error the io and bail out, or requeue it if needed */ 1016 md = tio->io->md; 1017 dec_pending(tio->io, r); 1018 free_tio(md, tio); 1019 } else if (r) { 1020 DMWARN("unimplemented target map return value: %d", r); 1021 BUG(); 1022 } 1023 } 1024 1025 struct clone_info { 1026 struct mapped_device *md; 1027 struct dm_table *map; 1028 struct bio *bio; 1029 struct dm_io *io; 1030 sector_t sector; 1031 sector_t sector_count; 1032 unsigned short idx; 1033 }; 1034 1035 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len) 1036 { 1037 bio->bi_sector = sector; 1038 bio->bi_size = to_bytes(len); 1039 } 1040 1041 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count) 1042 { 1043 bio->bi_idx = idx; 1044 bio->bi_vcnt = idx + bv_count; 1045 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 1046 } 1047 1048 static void clone_bio_integrity(struct bio *bio, struct bio *clone, 1049 unsigned short idx, unsigned len, unsigned offset, 1050 unsigned trim) 1051 { 1052 if (!bio_integrity(bio)) 1053 return; 1054 1055 bio_integrity_clone(clone, bio, GFP_NOIO); 1056 1057 if (trim) 1058 bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len); 1059 } 1060 1061 /* 1062 * Creates a little bio that just does part of a bvec. 1063 */ 1064 static void split_bvec(struct dm_target_io *tio, struct bio *bio, 1065 sector_t sector, unsigned short idx, unsigned int offset, 1066 unsigned int len) 1067 { 1068 struct bio *clone = &tio->clone; 1069 struct bio_vec *bv = bio->bi_io_vec + idx; 1070 1071 *clone->bi_io_vec = *bv; 1072 1073 bio_setup_sector(clone, sector, len); 1074 1075 clone->bi_bdev = bio->bi_bdev; 1076 clone->bi_rw = bio->bi_rw; 1077 clone->bi_vcnt = 1; 1078 clone->bi_io_vec->bv_offset = offset; 1079 clone->bi_io_vec->bv_len = clone->bi_size; 1080 clone->bi_flags |= 1 << BIO_CLONED; 1081 1082 clone_bio_integrity(bio, clone, idx, len, offset, 1); 1083 } 1084 1085 /* 1086 * Creates a bio that consists of range of complete bvecs. 1087 */ 1088 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1089 sector_t sector, unsigned short idx, 1090 unsigned short bv_count, unsigned int len) 1091 { 1092 struct bio *clone = &tio->clone; 1093 unsigned trim = 0; 1094 1095 __bio_clone(clone, bio); 1096 bio_setup_sector(clone, sector, len); 1097 bio_setup_bv(clone, idx, bv_count); 1098 1099 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1100 trim = 1; 1101 clone_bio_integrity(bio, clone, idx, len, 0, trim); 1102 } 1103 1104 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1105 struct dm_target *ti, int nr_iovecs, 1106 unsigned target_bio_nr) 1107 { 1108 struct dm_target_io *tio; 1109 struct bio *clone; 1110 1111 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs); 1112 tio = container_of(clone, struct dm_target_io, clone); 1113 1114 tio->io = ci->io; 1115 tio->ti = ti; 1116 memset(&tio->info, 0, sizeof(tio->info)); 1117 tio->target_bio_nr = target_bio_nr; 1118 1119 return tio; 1120 } 1121 1122 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti, 1123 unsigned target_bio_nr, sector_t len) 1124 { 1125 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr); 1126 struct bio *clone = &tio->clone; 1127 1128 /* 1129 * Discard requests require the bio's inline iovecs be initialized. 1130 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1131 * and discard, so no need for concern about wasted bvec allocations. 1132 */ 1133 __bio_clone(clone, ci->bio); 1134 if (len) 1135 bio_setup_sector(clone, ci->sector, len); 1136 1137 __map_bio(tio); 1138 } 1139 1140 static void __issue_target_bios(struct clone_info *ci, struct dm_target *ti, 1141 unsigned num_bios, sector_t len) 1142 { 1143 unsigned target_bio_nr; 1144 1145 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1146 __issue_target_request(ci, ti, target_bio_nr, len); 1147 } 1148 1149 static int __clone_and_map_empty_flush(struct clone_info *ci) 1150 { 1151 unsigned target_nr = 0; 1152 struct dm_target *ti; 1153 1154 BUG_ON(bio_has_data(ci->bio)); 1155 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1156 __issue_target_bios(ci, ti, ti->num_flush_bios, 0); 1157 1158 return 0; 1159 } 1160 1161 /* 1162 * Perform all io with a single clone. 1163 */ 1164 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti) 1165 { 1166 struct bio *bio = ci->bio; 1167 struct dm_target_io *tio; 1168 1169 tio = alloc_tio(ci, ti, bio->bi_max_vecs, 0); 1170 clone_bio(tio, bio, ci->sector, ci->idx, bio->bi_vcnt - ci->idx, 1171 ci->sector_count); 1172 __map_bio(tio); 1173 ci->sector_count = 0; 1174 } 1175 1176 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1177 1178 static unsigned get_num_discard_bios(struct dm_target *ti) 1179 { 1180 return ti->num_discard_bios; 1181 } 1182 1183 static unsigned get_num_write_same_bios(struct dm_target *ti) 1184 { 1185 return ti->num_write_same_bios; 1186 } 1187 1188 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1189 1190 static bool is_split_required_for_discard(struct dm_target *ti) 1191 { 1192 return ti->split_discard_bios; 1193 } 1194 1195 static int __clone_and_map_changing_extent_only(struct clone_info *ci, 1196 get_num_bios_fn get_num_bios, 1197 is_split_required_fn is_split_required) 1198 { 1199 struct dm_target *ti; 1200 sector_t len; 1201 unsigned num_bios; 1202 1203 do { 1204 ti = dm_table_find_target(ci->map, ci->sector); 1205 if (!dm_target_is_valid(ti)) 1206 return -EIO; 1207 1208 /* 1209 * Even though the device advertised support for this type of 1210 * request, that does not mean every target supports it, and 1211 * reconfiguration might also have changed that since the 1212 * check was performed. 1213 */ 1214 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1215 if (!num_bios) 1216 return -EOPNOTSUPP; 1217 1218 if (is_split_required && !is_split_required(ti)) 1219 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1220 else 1221 len = min(ci->sector_count, max_io_len(ci->sector, ti)); 1222 1223 __issue_target_bios(ci, ti, num_bios, len); 1224 1225 ci->sector += len; 1226 } while (ci->sector_count -= len); 1227 1228 return 0; 1229 } 1230 1231 static int __clone_and_map_discard(struct clone_info *ci) 1232 { 1233 return __clone_and_map_changing_extent_only(ci, get_num_discard_bios, 1234 is_split_required_for_discard); 1235 } 1236 1237 static int __clone_and_map_write_same(struct clone_info *ci) 1238 { 1239 return __clone_and_map_changing_extent_only(ci, get_num_write_same_bios, NULL); 1240 } 1241 1242 static int __clone_and_map(struct clone_info *ci) 1243 { 1244 struct bio *bio = ci->bio; 1245 struct dm_target *ti; 1246 sector_t len = 0, max; 1247 struct dm_target_io *tio; 1248 1249 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1250 return __clone_and_map_discard(ci); 1251 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1252 return __clone_and_map_write_same(ci); 1253 1254 ti = dm_table_find_target(ci->map, ci->sector); 1255 if (!dm_target_is_valid(ti)) 1256 return -EIO; 1257 1258 max = max_io_len(ci->sector, ti); 1259 1260 if (ci->sector_count <= max) { 1261 /* 1262 * Optimise for the simple case where we can do all of 1263 * the remaining io with a single clone. 1264 */ 1265 __clone_and_map_simple(ci, ti); 1266 1267 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1268 /* 1269 * There are some bvecs that don't span targets. 1270 * Do as many of these as possible. 1271 */ 1272 int i; 1273 sector_t remaining = max; 1274 sector_t bv_len; 1275 1276 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 1277 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 1278 1279 if (bv_len > remaining) 1280 break; 1281 1282 remaining -= bv_len; 1283 len += bv_len; 1284 } 1285 1286 tio = alloc_tio(ci, ti, bio->bi_max_vecs, 0); 1287 clone_bio(tio, bio, ci->sector, ci->idx, i - ci->idx, len); 1288 __map_bio(tio); 1289 1290 ci->sector += len; 1291 ci->sector_count -= len; 1292 ci->idx = i; 1293 1294 } else { 1295 /* 1296 * Handle a bvec that must be split between two or more targets. 1297 */ 1298 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1299 sector_t remaining = to_sector(bv->bv_len); 1300 unsigned int offset = 0; 1301 1302 do { 1303 if (offset) { 1304 ti = dm_table_find_target(ci->map, ci->sector); 1305 if (!dm_target_is_valid(ti)) 1306 return -EIO; 1307 1308 max = max_io_len(ci->sector, ti); 1309 } 1310 1311 len = min(remaining, max); 1312 1313 tio = alloc_tio(ci, ti, 1, 0); 1314 split_bvec(tio, bio, ci->sector, ci->idx, 1315 bv->bv_offset + offset, len); 1316 1317 __map_bio(tio); 1318 1319 ci->sector += len; 1320 ci->sector_count -= len; 1321 offset += to_bytes(len); 1322 } while (remaining -= len); 1323 1324 ci->idx++; 1325 } 1326 1327 return 0; 1328 } 1329 1330 /* 1331 * Split the bio into several clones and submit it to targets. 1332 */ 1333 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 1334 { 1335 struct clone_info ci; 1336 int error = 0; 1337 1338 ci.map = dm_get_live_table(md); 1339 if (unlikely(!ci.map)) { 1340 bio_io_error(bio); 1341 return; 1342 } 1343 1344 ci.md = md; 1345 ci.io = alloc_io(md); 1346 ci.io->error = 0; 1347 atomic_set(&ci.io->io_count, 1); 1348 ci.io->bio = bio; 1349 ci.io->md = md; 1350 spin_lock_init(&ci.io->endio_lock); 1351 ci.sector = bio->bi_sector; 1352 ci.idx = bio->bi_idx; 1353 1354 start_io_acct(ci.io); 1355 1356 if (bio->bi_rw & REQ_FLUSH) { 1357 ci.bio = &ci.md->flush_bio; 1358 ci.sector_count = 0; 1359 error = __clone_and_map_empty_flush(&ci); 1360 /* dec_pending submits any data associated with flush */ 1361 } else { 1362 ci.bio = bio; 1363 ci.sector_count = bio_sectors(bio); 1364 while (ci.sector_count && !error) 1365 error = __clone_and_map(&ci); 1366 } 1367 1368 /* drop the extra reference count */ 1369 dec_pending(ci.io, error); 1370 dm_table_put(ci.map); 1371 } 1372 /*----------------------------------------------------------------- 1373 * CRUD END 1374 *---------------------------------------------------------------*/ 1375 1376 static int dm_merge_bvec(struct request_queue *q, 1377 struct bvec_merge_data *bvm, 1378 struct bio_vec *biovec) 1379 { 1380 struct mapped_device *md = q->queuedata; 1381 struct dm_table *map = dm_get_live_table(md); 1382 struct dm_target *ti; 1383 sector_t max_sectors; 1384 int max_size = 0; 1385 1386 if (unlikely(!map)) 1387 goto out; 1388 1389 ti = dm_table_find_target(map, bvm->bi_sector); 1390 if (!dm_target_is_valid(ti)) 1391 goto out_table; 1392 1393 /* 1394 * Find maximum amount of I/O that won't need splitting 1395 */ 1396 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1397 (sector_t) BIO_MAX_SECTORS); 1398 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1399 if (max_size < 0) 1400 max_size = 0; 1401 1402 /* 1403 * merge_bvec_fn() returns number of bytes 1404 * it can accept at this offset 1405 * max is precomputed maximal io size 1406 */ 1407 if (max_size && ti->type->merge) 1408 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1409 /* 1410 * If the target doesn't support merge method and some of the devices 1411 * provided their merge_bvec method (we know this by looking at 1412 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1413 * entries. So always set max_size to 0, and the code below allows 1414 * just one page. 1415 */ 1416 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1417 1418 max_size = 0; 1419 1420 out_table: 1421 dm_table_put(map); 1422 1423 out: 1424 /* 1425 * Always allow an entire first page 1426 */ 1427 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1428 max_size = biovec->bv_len; 1429 1430 return max_size; 1431 } 1432 1433 /* 1434 * The request function that just remaps the bio built up by 1435 * dm_merge_bvec. 1436 */ 1437 static void _dm_request(struct request_queue *q, struct bio *bio) 1438 { 1439 int rw = bio_data_dir(bio); 1440 struct mapped_device *md = q->queuedata; 1441 int cpu; 1442 1443 down_read(&md->io_lock); 1444 1445 cpu = part_stat_lock(); 1446 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1447 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1448 part_stat_unlock(); 1449 1450 /* if we're suspended, we have to queue this io for later */ 1451 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1452 up_read(&md->io_lock); 1453 1454 if (bio_rw(bio) != READA) 1455 queue_io(md, bio); 1456 else 1457 bio_io_error(bio); 1458 return; 1459 } 1460 1461 __split_and_process_bio(md, bio); 1462 up_read(&md->io_lock); 1463 return; 1464 } 1465 1466 static int dm_request_based(struct mapped_device *md) 1467 { 1468 return blk_queue_stackable(md->queue); 1469 } 1470 1471 static void dm_request(struct request_queue *q, struct bio *bio) 1472 { 1473 struct mapped_device *md = q->queuedata; 1474 1475 if (dm_request_based(md)) 1476 blk_queue_bio(q, bio); 1477 else 1478 _dm_request(q, bio); 1479 } 1480 1481 void dm_dispatch_request(struct request *rq) 1482 { 1483 int r; 1484 1485 if (blk_queue_io_stat(rq->q)) 1486 rq->cmd_flags |= REQ_IO_STAT; 1487 1488 rq->start_time = jiffies; 1489 r = blk_insert_cloned_request(rq->q, rq); 1490 if (r) 1491 dm_complete_request(rq, r); 1492 } 1493 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1494 1495 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1496 void *data) 1497 { 1498 struct dm_rq_target_io *tio = data; 1499 struct dm_rq_clone_bio_info *info = 1500 container_of(bio, struct dm_rq_clone_bio_info, clone); 1501 1502 info->orig = bio_orig; 1503 info->tio = tio; 1504 bio->bi_end_io = end_clone_bio; 1505 bio->bi_private = info; 1506 1507 return 0; 1508 } 1509 1510 static int setup_clone(struct request *clone, struct request *rq, 1511 struct dm_rq_target_io *tio) 1512 { 1513 int r; 1514 1515 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1516 dm_rq_bio_constructor, tio); 1517 if (r) 1518 return r; 1519 1520 clone->cmd = rq->cmd; 1521 clone->cmd_len = rq->cmd_len; 1522 clone->sense = rq->sense; 1523 clone->buffer = rq->buffer; 1524 clone->end_io = end_clone_request; 1525 clone->end_io_data = tio; 1526 1527 return 0; 1528 } 1529 1530 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1531 gfp_t gfp_mask) 1532 { 1533 struct request *clone; 1534 struct dm_rq_target_io *tio; 1535 1536 tio = alloc_rq_tio(md, gfp_mask); 1537 if (!tio) 1538 return NULL; 1539 1540 tio->md = md; 1541 tio->ti = NULL; 1542 tio->orig = rq; 1543 tio->error = 0; 1544 memset(&tio->info, 0, sizeof(tio->info)); 1545 1546 clone = &tio->clone; 1547 if (setup_clone(clone, rq, tio)) { 1548 /* -ENOMEM */ 1549 free_rq_tio(tio); 1550 return NULL; 1551 } 1552 1553 return clone; 1554 } 1555 1556 /* 1557 * Called with the queue lock held. 1558 */ 1559 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1560 { 1561 struct mapped_device *md = q->queuedata; 1562 struct request *clone; 1563 1564 if (unlikely(rq->special)) { 1565 DMWARN("Already has something in rq->special."); 1566 return BLKPREP_KILL; 1567 } 1568 1569 clone = clone_rq(rq, md, GFP_ATOMIC); 1570 if (!clone) 1571 return BLKPREP_DEFER; 1572 1573 rq->special = clone; 1574 rq->cmd_flags |= REQ_DONTPREP; 1575 1576 return BLKPREP_OK; 1577 } 1578 1579 /* 1580 * Returns: 1581 * 0 : the request has been processed (not requeued) 1582 * !0 : the request has been requeued 1583 */ 1584 static int map_request(struct dm_target *ti, struct request *clone, 1585 struct mapped_device *md) 1586 { 1587 int r, requeued = 0; 1588 struct dm_rq_target_io *tio = clone->end_io_data; 1589 1590 tio->ti = ti; 1591 r = ti->type->map_rq(ti, clone, &tio->info); 1592 switch (r) { 1593 case DM_MAPIO_SUBMITTED: 1594 /* The target has taken the I/O to submit by itself later */ 1595 break; 1596 case DM_MAPIO_REMAPPED: 1597 /* The target has remapped the I/O so dispatch it */ 1598 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1599 blk_rq_pos(tio->orig)); 1600 dm_dispatch_request(clone); 1601 break; 1602 case DM_MAPIO_REQUEUE: 1603 /* The target wants to requeue the I/O */ 1604 dm_requeue_unmapped_request(clone); 1605 requeued = 1; 1606 break; 1607 default: 1608 if (r > 0) { 1609 DMWARN("unimplemented target map return value: %d", r); 1610 BUG(); 1611 } 1612 1613 /* The target wants to complete the I/O */ 1614 dm_kill_unmapped_request(clone, r); 1615 break; 1616 } 1617 1618 return requeued; 1619 } 1620 1621 static struct request *dm_start_request(struct mapped_device *md, struct request *orig) 1622 { 1623 struct request *clone; 1624 1625 blk_start_request(orig); 1626 clone = orig->special; 1627 atomic_inc(&md->pending[rq_data_dir(clone)]); 1628 1629 /* 1630 * Hold the md reference here for the in-flight I/O. 1631 * We can't rely on the reference count by device opener, 1632 * because the device may be closed during the request completion 1633 * when all bios are completed. 1634 * See the comment in rq_completed() too. 1635 */ 1636 dm_get(md); 1637 1638 return clone; 1639 } 1640 1641 /* 1642 * q->request_fn for request-based dm. 1643 * Called with the queue lock held. 1644 */ 1645 static void dm_request_fn(struct request_queue *q) 1646 { 1647 struct mapped_device *md = q->queuedata; 1648 struct dm_table *map = dm_get_live_table(md); 1649 struct dm_target *ti; 1650 struct request *rq, *clone; 1651 sector_t pos; 1652 1653 /* 1654 * For suspend, check blk_queue_stopped() and increment 1655 * ->pending within a single queue_lock not to increment the 1656 * number of in-flight I/Os after the queue is stopped in 1657 * dm_suspend(). 1658 */ 1659 while (!blk_queue_stopped(q)) { 1660 rq = blk_peek_request(q); 1661 if (!rq) 1662 goto delay_and_out; 1663 1664 /* always use block 0 to find the target for flushes for now */ 1665 pos = 0; 1666 if (!(rq->cmd_flags & REQ_FLUSH)) 1667 pos = blk_rq_pos(rq); 1668 1669 ti = dm_table_find_target(map, pos); 1670 if (!dm_target_is_valid(ti)) { 1671 /* 1672 * Must perform setup, that dm_done() requires, 1673 * before calling dm_kill_unmapped_request 1674 */ 1675 DMERR_LIMIT("request attempted access beyond the end of device"); 1676 clone = dm_start_request(md, rq); 1677 dm_kill_unmapped_request(clone, -EIO); 1678 continue; 1679 } 1680 1681 if (ti->type->busy && ti->type->busy(ti)) 1682 goto delay_and_out; 1683 1684 clone = dm_start_request(md, rq); 1685 1686 spin_unlock(q->queue_lock); 1687 if (map_request(ti, clone, md)) 1688 goto requeued; 1689 1690 BUG_ON(!irqs_disabled()); 1691 spin_lock(q->queue_lock); 1692 } 1693 1694 goto out; 1695 1696 requeued: 1697 BUG_ON(!irqs_disabled()); 1698 spin_lock(q->queue_lock); 1699 1700 delay_and_out: 1701 blk_delay_queue(q, HZ / 10); 1702 out: 1703 dm_table_put(map); 1704 } 1705 1706 int dm_underlying_device_busy(struct request_queue *q) 1707 { 1708 return blk_lld_busy(q); 1709 } 1710 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1711 1712 static int dm_lld_busy(struct request_queue *q) 1713 { 1714 int r; 1715 struct mapped_device *md = q->queuedata; 1716 struct dm_table *map = dm_get_live_table(md); 1717 1718 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1719 r = 1; 1720 else 1721 r = dm_table_any_busy_target(map); 1722 1723 dm_table_put(map); 1724 1725 return r; 1726 } 1727 1728 static int dm_any_congested(void *congested_data, int bdi_bits) 1729 { 1730 int r = bdi_bits; 1731 struct mapped_device *md = congested_data; 1732 struct dm_table *map; 1733 1734 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1735 map = dm_get_live_table(md); 1736 if (map) { 1737 /* 1738 * Request-based dm cares about only own queue for 1739 * the query about congestion status of request_queue 1740 */ 1741 if (dm_request_based(md)) 1742 r = md->queue->backing_dev_info.state & 1743 bdi_bits; 1744 else 1745 r = dm_table_any_congested(map, bdi_bits); 1746 1747 dm_table_put(map); 1748 } 1749 } 1750 1751 return r; 1752 } 1753 1754 /*----------------------------------------------------------------- 1755 * An IDR is used to keep track of allocated minor numbers. 1756 *---------------------------------------------------------------*/ 1757 static void free_minor(int minor) 1758 { 1759 spin_lock(&_minor_lock); 1760 idr_remove(&_minor_idr, minor); 1761 spin_unlock(&_minor_lock); 1762 } 1763 1764 /* 1765 * See if the device with a specific minor # is free. 1766 */ 1767 static int specific_minor(int minor) 1768 { 1769 int r; 1770 1771 if (minor >= (1 << MINORBITS)) 1772 return -EINVAL; 1773 1774 idr_preload(GFP_KERNEL); 1775 spin_lock(&_minor_lock); 1776 1777 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1778 1779 spin_unlock(&_minor_lock); 1780 idr_preload_end(); 1781 if (r < 0) 1782 return r == -ENOSPC ? -EBUSY : r; 1783 return 0; 1784 } 1785 1786 static int next_free_minor(int *minor) 1787 { 1788 int r; 1789 1790 idr_preload(GFP_KERNEL); 1791 spin_lock(&_minor_lock); 1792 1793 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1794 1795 spin_unlock(&_minor_lock); 1796 idr_preload_end(); 1797 if (r < 0) 1798 return r; 1799 *minor = r; 1800 return 0; 1801 } 1802 1803 static const struct block_device_operations dm_blk_dops; 1804 1805 static void dm_wq_work(struct work_struct *work); 1806 1807 static void dm_init_md_queue(struct mapped_device *md) 1808 { 1809 /* 1810 * Request-based dm devices cannot be stacked on top of bio-based dm 1811 * devices. The type of this dm device has not been decided yet. 1812 * The type is decided at the first table loading time. 1813 * To prevent problematic device stacking, clear the queue flag 1814 * for request stacking support until then. 1815 * 1816 * This queue is new, so no concurrency on the queue_flags. 1817 */ 1818 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1819 1820 md->queue->queuedata = md; 1821 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1822 md->queue->backing_dev_info.congested_data = md; 1823 blk_queue_make_request(md->queue, dm_request); 1824 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1825 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1826 } 1827 1828 /* 1829 * Allocate and initialise a blank device with a given minor. 1830 */ 1831 static struct mapped_device *alloc_dev(int minor) 1832 { 1833 int r; 1834 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1835 void *old_md; 1836 1837 if (!md) { 1838 DMWARN("unable to allocate device, out of memory."); 1839 return NULL; 1840 } 1841 1842 if (!try_module_get(THIS_MODULE)) 1843 goto bad_module_get; 1844 1845 /* get a minor number for the dev */ 1846 if (minor == DM_ANY_MINOR) 1847 r = next_free_minor(&minor); 1848 else 1849 r = specific_minor(minor); 1850 if (r < 0) 1851 goto bad_minor; 1852 1853 md->type = DM_TYPE_NONE; 1854 init_rwsem(&md->io_lock); 1855 mutex_init(&md->suspend_lock); 1856 mutex_init(&md->type_lock); 1857 spin_lock_init(&md->deferred_lock); 1858 rwlock_init(&md->map_lock); 1859 atomic_set(&md->holders, 1); 1860 atomic_set(&md->open_count, 0); 1861 atomic_set(&md->event_nr, 0); 1862 atomic_set(&md->uevent_seq, 0); 1863 INIT_LIST_HEAD(&md->uevent_list); 1864 spin_lock_init(&md->uevent_lock); 1865 1866 md->queue = blk_alloc_queue(GFP_KERNEL); 1867 if (!md->queue) 1868 goto bad_queue; 1869 1870 dm_init_md_queue(md); 1871 1872 md->disk = alloc_disk(1); 1873 if (!md->disk) 1874 goto bad_disk; 1875 1876 atomic_set(&md->pending[0], 0); 1877 atomic_set(&md->pending[1], 0); 1878 init_waitqueue_head(&md->wait); 1879 INIT_WORK(&md->work, dm_wq_work); 1880 init_waitqueue_head(&md->eventq); 1881 1882 md->disk->major = _major; 1883 md->disk->first_minor = minor; 1884 md->disk->fops = &dm_blk_dops; 1885 md->disk->queue = md->queue; 1886 md->disk->private_data = md; 1887 sprintf(md->disk->disk_name, "dm-%d", minor); 1888 add_disk(md->disk); 1889 format_dev_t(md->name, MKDEV(_major, minor)); 1890 1891 md->wq = alloc_workqueue("kdmflush", 1892 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); 1893 if (!md->wq) 1894 goto bad_thread; 1895 1896 md->bdev = bdget_disk(md->disk, 0); 1897 if (!md->bdev) 1898 goto bad_bdev; 1899 1900 bio_init(&md->flush_bio); 1901 md->flush_bio.bi_bdev = md->bdev; 1902 md->flush_bio.bi_rw = WRITE_FLUSH; 1903 1904 /* Populate the mapping, nobody knows we exist yet */ 1905 spin_lock(&_minor_lock); 1906 old_md = idr_replace(&_minor_idr, md, minor); 1907 spin_unlock(&_minor_lock); 1908 1909 BUG_ON(old_md != MINOR_ALLOCED); 1910 1911 return md; 1912 1913 bad_bdev: 1914 destroy_workqueue(md->wq); 1915 bad_thread: 1916 del_gendisk(md->disk); 1917 put_disk(md->disk); 1918 bad_disk: 1919 blk_cleanup_queue(md->queue); 1920 bad_queue: 1921 free_minor(minor); 1922 bad_minor: 1923 module_put(THIS_MODULE); 1924 bad_module_get: 1925 kfree(md); 1926 return NULL; 1927 } 1928 1929 static void unlock_fs(struct mapped_device *md); 1930 1931 static void free_dev(struct mapped_device *md) 1932 { 1933 int minor = MINOR(disk_devt(md->disk)); 1934 1935 unlock_fs(md); 1936 bdput(md->bdev); 1937 destroy_workqueue(md->wq); 1938 if (md->tio_pool) 1939 mempool_destroy(md->tio_pool); 1940 if (md->io_pool) 1941 mempool_destroy(md->io_pool); 1942 if (md->bs) 1943 bioset_free(md->bs); 1944 blk_integrity_unregister(md->disk); 1945 del_gendisk(md->disk); 1946 free_minor(minor); 1947 1948 spin_lock(&_minor_lock); 1949 md->disk->private_data = NULL; 1950 spin_unlock(&_minor_lock); 1951 1952 put_disk(md->disk); 1953 blk_cleanup_queue(md->queue); 1954 module_put(THIS_MODULE); 1955 kfree(md); 1956 } 1957 1958 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1959 { 1960 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1961 1962 if (md->io_pool && md->bs) { 1963 /* The md already has necessary mempools. */ 1964 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 1965 /* 1966 * Reload bioset because front_pad may have changed 1967 * because a different table was loaded. 1968 */ 1969 bioset_free(md->bs); 1970 md->bs = p->bs; 1971 p->bs = NULL; 1972 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) { 1973 BUG_ON(!md->tio_pool); 1974 /* 1975 * There's no need to reload with request-based dm 1976 * because the size of front_pad doesn't change. 1977 * Note for future: If you are to reload bioset, 1978 * prep-ed requests in the queue may refer 1979 * to bio from the old bioset, so you must walk 1980 * through the queue to unprep. 1981 */ 1982 } 1983 goto out; 1984 } 1985 1986 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs); 1987 1988 md->io_pool = p->io_pool; 1989 p->io_pool = NULL; 1990 md->tio_pool = p->tio_pool; 1991 p->tio_pool = NULL; 1992 md->bs = p->bs; 1993 p->bs = NULL; 1994 1995 out: 1996 /* mempool bind completed, now no need any mempools in the table */ 1997 dm_table_free_md_mempools(t); 1998 } 1999 2000 /* 2001 * Bind a table to the device. 2002 */ 2003 static void event_callback(void *context) 2004 { 2005 unsigned long flags; 2006 LIST_HEAD(uevents); 2007 struct mapped_device *md = (struct mapped_device *) context; 2008 2009 spin_lock_irqsave(&md->uevent_lock, flags); 2010 list_splice_init(&md->uevent_list, &uevents); 2011 spin_unlock_irqrestore(&md->uevent_lock, flags); 2012 2013 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2014 2015 atomic_inc(&md->event_nr); 2016 wake_up(&md->eventq); 2017 } 2018 2019 /* 2020 * Protected by md->suspend_lock obtained by dm_swap_table(). 2021 */ 2022 static void __set_size(struct mapped_device *md, sector_t size) 2023 { 2024 set_capacity(md->disk, size); 2025 2026 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2027 } 2028 2029 /* 2030 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2031 * 2032 * If this function returns 0, then the device is either a non-dm 2033 * device without a merge_bvec_fn, or it is a dm device that is 2034 * able to split any bios it receives that are too big. 2035 */ 2036 int dm_queue_merge_is_compulsory(struct request_queue *q) 2037 { 2038 struct mapped_device *dev_md; 2039 2040 if (!q->merge_bvec_fn) 2041 return 0; 2042 2043 if (q->make_request_fn == dm_request) { 2044 dev_md = q->queuedata; 2045 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2046 return 0; 2047 } 2048 2049 return 1; 2050 } 2051 2052 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2053 struct dm_dev *dev, sector_t start, 2054 sector_t len, void *data) 2055 { 2056 struct block_device *bdev = dev->bdev; 2057 struct request_queue *q = bdev_get_queue(bdev); 2058 2059 return dm_queue_merge_is_compulsory(q); 2060 } 2061 2062 /* 2063 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2064 * on the properties of the underlying devices. 2065 */ 2066 static int dm_table_merge_is_optional(struct dm_table *table) 2067 { 2068 unsigned i = 0; 2069 struct dm_target *ti; 2070 2071 while (i < dm_table_get_num_targets(table)) { 2072 ti = dm_table_get_target(table, i++); 2073 2074 if (ti->type->iterate_devices && 2075 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2076 return 0; 2077 } 2078 2079 return 1; 2080 } 2081 2082 /* 2083 * Returns old map, which caller must destroy. 2084 */ 2085 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2086 struct queue_limits *limits) 2087 { 2088 struct dm_table *old_map; 2089 struct request_queue *q = md->queue; 2090 sector_t size; 2091 unsigned long flags; 2092 int merge_is_optional; 2093 2094 size = dm_table_get_size(t); 2095 2096 /* 2097 * Wipe any geometry if the size of the table changed. 2098 */ 2099 if (size != get_capacity(md->disk)) 2100 memset(&md->geometry, 0, sizeof(md->geometry)); 2101 2102 __set_size(md, size); 2103 2104 dm_table_event_callback(t, event_callback, md); 2105 2106 /* 2107 * The queue hasn't been stopped yet, if the old table type wasn't 2108 * for request-based during suspension. So stop it to prevent 2109 * I/O mapping before resume. 2110 * This must be done before setting the queue restrictions, 2111 * because request-based dm may be run just after the setting. 2112 */ 2113 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2114 stop_queue(q); 2115 2116 __bind_mempools(md, t); 2117 2118 merge_is_optional = dm_table_merge_is_optional(t); 2119 2120 write_lock_irqsave(&md->map_lock, flags); 2121 old_map = md->map; 2122 md->map = t; 2123 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2124 2125 dm_table_set_restrictions(t, q, limits); 2126 if (merge_is_optional) 2127 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2128 else 2129 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2130 write_unlock_irqrestore(&md->map_lock, flags); 2131 2132 return old_map; 2133 } 2134 2135 /* 2136 * Returns unbound table for the caller to free. 2137 */ 2138 static struct dm_table *__unbind(struct mapped_device *md) 2139 { 2140 struct dm_table *map = md->map; 2141 unsigned long flags; 2142 2143 if (!map) 2144 return NULL; 2145 2146 dm_table_event_callback(map, NULL, NULL); 2147 write_lock_irqsave(&md->map_lock, flags); 2148 md->map = NULL; 2149 write_unlock_irqrestore(&md->map_lock, flags); 2150 2151 return map; 2152 } 2153 2154 /* 2155 * Constructor for a new device. 2156 */ 2157 int dm_create(int minor, struct mapped_device **result) 2158 { 2159 struct mapped_device *md; 2160 2161 md = alloc_dev(minor); 2162 if (!md) 2163 return -ENXIO; 2164 2165 dm_sysfs_init(md); 2166 2167 *result = md; 2168 return 0; 2169 } 2170 2171 /* 2172 * Functions to manage md->type. 2173 * All are required to hold md->type_lock. 2174 */ 2175 void dm_lock_md_type(struct mapped_device *md) 2176 { 2177 mutex_lock(&md->type_lock); 2178 } 2179 2180 void dm_unlock_md_type(struct mapped_device *md) 2181 { 2182 mutex_unlock(&md->type_lock); 2183 } 2184 2185 void dm_set_md_type(struct mapped_device *md, unsigned type) 2186 { 2187 md->type = type; 2188 } 2189 2190 unsigned dm_get_md_type(struct mapped_device *md) 2191 { 2192 return md->type; 2193 } 2194 2195 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2196 { 2197 return md->immutable_target_type; 2198 } 2199 2200 /* 2201 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2202 */ 2203 static int dm_init_request_based_queue(struct mapped_device *md) 2204 { 2205 struct request_queue *q = NULL; 2206 2207 if (md->queue->elevator) 2208 return 1; 2209 2210 /* Fully initialize the queue */ 2211 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2212 if (!q) 2213 return 0; 2214 2215 md->queue = q; 2216 dm_init_md_queue(md); 2217 blk_queue_softirq_done(md->queue, dm_softirq_done); 2218 blk_queue_prep_rq(md->queue, dm_prep_fn); 2219 blk_queue_lld_busy(md->queue, dm_lld_busy); 2220 2221 elv_register_queue(md->queue); 2222 2223 return 1; 2224 } 2225 2226 /* 2227 * Setup the DM device's queue based on md's type 2228 */ 2229 int dm_setup_md_queue(struct mapped_device *md) 2230 { 2231 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2232 !dm_init_request_based_queue(md)) { 2233 DMWARN("Cannot initialize queue for request-based mapped device"); 2234 return -EINVAL; 2235 } 2236 2237 return 0; 2238 } 2239 2240 static struct mapped_device *dm_find_md(dev_t dev) 2241 { 2242 struct mapped_device *md; 2243 unsigned minor = MINOR(dev); 2244 2245 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2246 return NULL; 2247 2248 spin_lock(&_minor_lock); 2249 2250 md = idr_find(&_minor_idr, minor); 2251 if (md && (md == MINOR_ALLOCED || 2252 (MINOR(disk_devt(dm_disk(md))) != minor) || 2253 dm_deleting_md(md) || 2254 test_bit(DMF_FREEING, &md->flags))) { 2255 md = NULL; 2256 goto out; 2257 } 2258 2259 out: 2260 spin_unlock(&_minor_lock); 2261 2262 return md; 2263 } 2264 2265 struct mapped_device *dm_get_md(dev_t dev) 2266 { 2267 struct mapped_device *md = dm_find_md(dev); 2268 2269 if (md) 2270 dm_get(md); 2271 2272 return md; 2273 } 2274 EXPORT_SYMBOL_GPL(dm_get_md); 2275 2276 void *dm_get_mdptr(struct mapped_device *md) 2277 { 2278 return md->interface_ptr; 2279 } 2280 2281 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2282 { 2283 md->interface_ptr = ptr; 2284 } 2285 2286 void dm_get(struct mapped_device *md) 2287 { 2288 atomic_inc(&md->holders); 2289 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2290 } 2291 2292 const char *dm_device_name(struct mapped_device *md) 2293 { 2294 return md->name; 2295 } 2296 EXPORT_SYMBOL_GPL(dm_device_name); 2297 2298 static void __dm_destroy(struct mapped_device *md, bool wait) 2299 { 2300 struct dm_table *map; 2301 2302 might_sleep(); 2303 2304 spin_lock(&_minor_lock); 2305 map = dm_get_live_table(md); 2306 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2307 set_bit(DMF_FREEING, &md->flags); 2308 spin_unlock(&_minor_lock); 2309 2310 if (!dm_suspended_md(md)) { 2311 dm_table_presuspend_targets(map); 2312 dm_table_postsuspend_targets(map); 2313 } 2314 2315 /* 2316 * Rare, but there may be I/O requests still going to complete, 2317 * for example. Wait for all references to disappear. 2318 * No one should increment the reference count of the mapped_device, 2319 * after the mapped_device state becomes DMF_FREEING. 2320 */ 2321 if (wait) 2322 while (atomic_read(&md->holders)) 2323 msleep(1); 2324 else if (atomic_read(&md->holders)) 2325 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2326 dm_device_name(md), atomic_read(&md->holders)); 2327 2328 dm_sysfs_exit(md); 2329 dm_table_put(map); 2330 dm_table_destroy(__unbind(md)); 2331 free_dev(md); 2332 } 2333 2334 void dm_destroy(struct mapped_device *md) 2335 { 2336 __dm_destroy(md, true); 2337 } 2338 2339 void dm_destroy_immediate(struct mapped_device *md) 2340 { 2341 __dm_destroy(md, false); 2342 } 2343 2344 void dm_put(struct mapped_device *md) 2345 { 2346 atomic_dec(&md->holders); 2347 } 2348 EXPORT_SYMBOL_GPL(dm_put); 2349 2350 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2351 { 2352 int r = 0; 2353 DECLARE_WAITQUEUE(wait, current); 2354 2355 add_wait_queue(&md->wait, &wait); 2356 2357 while (1) { 2358 set_current_state(interruptible); 2359 2360 if (!md_in_flight(md)) 2361 break; 2362 2363 if (interruptible == TASK_INTERRUPTIBLE && 2364 signal_pending(current)) { 2365 r = -EINTR; 2366 break; 2367 } 2368 2369 io_schedule(); 2370 } 2371 set_current_state(TASK_RUNNING); 2372 2373 remove_wait_queue(&md->wait, &wait); 2374 2375 return r; 2376 } 2377 2378 /* 2379 * Process the deferred bios 2380 */ 2381 static void dm_wq_work(struct work_struct *work) 2382 { 2383 struct mapped_device *md = container_of(work, struct mapped_device, 2384 work); 2385 struct bio *c; 2386 2387 down_read(&md->io_lock); 2388 2389 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2390 spin_lock_irq(&md->deferred_lock); 2391 c = bio_list_pop(&md->deferred); 2392 spin_unlock_irq(&md->deferred_lock); 2393 2394 if (!c) 2395 break; 2396 2397 up_read(&md->io_lock); 2398 2399 if (dm_request_based(md)) 2400 generic_make_request(c); 2401 else 2402 __split_and_process_bio(md, c); 2403 2404 down_read(&md->io_lock); 2405 } 2406 2407 up_read(&md->io_lock); 2408 } 2409 2410 static void dm_queue_flush(struct mapped_device *md) 2411 { 2412 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2413 smp_mb__after_clear_bit(); 2414 queue_work(md->wq, &md->work); 2415 } 2416 2417 /* 2418 * Swap in a new table, returning the old one for the caller to destroy. 2419 */ 2420 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2421 { 2422 struct dm_table *live_map, *map = ERR_PTR(-EINVAL); 2423 struct queue_limits limits; 2424 int r; 2425 2426 mutex_lock(&md->suspend_lock); 2427 2428 /* device must be suspended */ 2429 if (!dm_suspended_md(md)) 2430 goto out; 2431 2432 /* 2433 * If the new table has no data devices, retain the existing limits. 2434 * This helps multipath with queue_if_no_path if all paths disappear, 2435 * then new I/O is queued based on these limits, and then some paths 2436 * reappear. 2437 */ 2438 if (dm_table_has_no_data_devices(table)) { 2439 live_map = dm_get_live_table(md); 2440 if (live_map) 2441 limits = md->queue->limits; 2442 dm_table_put(live_map); 2443 } 2444 2445 r = dm_calculate_queue_limits(table, &limits); 2446 if (r) { 2447 map = ERR_PTR(r); 2448 goto out; 2449 } 2450 2451 map = __bind(md, table, &limits); 2452 2453 out: 2454 mutex_unlock(&md->suspend_lock); 2455 return map; 2456 } 2457 2458 /* 2459 * Functions to lock and unlock any filesystem running on the 2460 * device. 2461 */ 2462 static int lock_fs(struct mapped_device *md) 2463 { 2464 int r; 2465 2466 WARN_ON(md->frozen_sb); 2467 2468 md->frozen_sb = freeze_bdev(md->bdev); 2469 if (IS_ERR(md->frozen_sb)) { 2470 r = PTR_ERR(md->frozen_sb); 2471 md->frozen_sb = NULL; 2472 return r; 2473 } 2474 2475 set_bit(DMF_FROZEN, &md->flags); 2476 2477 return 0; 2478 } 2479 2480 static void unlock_fs(struct mapped_device *md) 2481 { 2482 if (!test_bit(DMF_FROZEN, &md->flags)) 2483 return; 2484 2485 thaw_bdev(md->bdev, md->frozen_sb); 2486 md->frozen_sb = NULL; 2487 clear_bit(DMF_FROZEN, &md->flags); 2488 } 2489 2490 /* 2491 * We need to be able to change a mapping table under a mounted 2492 * filesystem. For example we might want to move some data in 2493 * the background. Before the table can be swapped with 2494 * dm_bind_table, dm_suspend must be called to flush any in 2495 * flight bios and ensure that any further io gets deferred. 2496 */ 2497 /* 2498 * Suspend mechanism in request-based dm. 2499 * 2500 * 1. Flush all I/Os by lock_fs() if needed. 2501 * 2. Stop dispatching any I/O by stopping the request_queue. 2502 * 3. Wait for all in-flight I/Os to be completed or requeued. 2503 * 2504 * To abort suspend, start the request_queue. 2505 */ 2506 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2507 { 2508 struct dm_table *map = NULL; 2509 int r = 0; 2510 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2511 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2512 2513 mutex_lock(&md->suspend_lock); 2514 2515 if (dm_suspended_md(md)) { 2516 r = -EINVAL; 2517 goto out_unlock; 2518 } 2519 2520 map = dm_get_live_table(md); 2521 2522 /* 2523 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2524 * This flag is cleared before dm_suspend returns. 2525 */ 2526 if (noflush) 2527 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2528 2529 /* This does not get reverted if there's an error later. */ 2530 dm_table_presuspend_targets(map); 2531 2532 /* 2533 * Flush I/O to the device. 2534 * Any I/O submitted after lock_fs() may not be flushed. 2535 * noflush takes precedence over do_lockfs. 2536 * (lock_fs() flushes I/Os and waits for them to complete.) 2537 */ 2538 if (!noflush && do_lockfs) { 2539 r = lock_fs(md); 2540 if (r) 2541 goto out; 2542 } 2543 2544 /* 2545 * Here we must make sure that no processes are submitting requests 2546 * to target drivers i.e. no one may be executing 2547 * __split_and_process_bio. This is called from dm_request and 2548 * dm_wq_work. 2549 * 2550 * To get all processes out of __split_and_process_bio in dm_request, 2551 * we take the write lock. To prevent any process from reentering 2552 * __split_and_process_bio from dm_request and quiesce the thread 2553 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2554 * flush_workqueue(md->wq). 2555 */ 2556 down_write(&md->io_lock); 2557 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2558 up_write(&md->io_lock); 2559 2560 /* 2561 * Stop md->queue before flushing md->wq in case request-based 2562 * dm defers requests to md->wq from md->queue. 2563 */ 2564 if (dm_request_based(md)) 2565 stop_queue(md->queue); 2566 2567 flush_workqueue(md->wq); 2568 2569 /* 2570 * At this point no more requests are entering target request routines. 2571 * We call dm_wait_for_completion to wait for all existing requests 2572 * to finish. 2573 */ 2574 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2575 2576 down_write(&md->io_lock); 2577 if (noflush) 2578 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2579 up_write(&md->io_lock); 2580 2581 /* were we interrupted ? */ 2582 if (r < 0) { 2583 dm_queue_flush(md); 2584 2585 if (dm_request_based(md)) 2586 start_queue(md->queue); 2587 2588 unlock_fs(md); 2589 goto out; /* pushback list is already flushed, so skip flush */ 2590 } 2591 2592 /* 2593 * If dm_wait_for_completion returned 0, the device is completely 2594 * quiescent now. There is no request-processing activity. All new 2595 * requests are being added to md->deferred list. 2596 */ 2597 2598 set_bit(DMF_SUSPENDED, &md->flags); 2599 2600 dm_table_postsuspend_targets(map); 2601 2602 out: 2603 dm_table_put(map); 2604 2605 out_unlock: 2606 mutex_unlock(&md->suspend_lock); 2607 return r; 2608 } 2609 2610 int dm_resume(struct mapped_device *md) 2611 { 2612 int r = -EINVAL; 2613 struct dm_table *map = NULL; 2614 2615 mutex_lock(&md->suspend_lock); 2616 if (!dm_suspended_md(md)) 2617 goto out; 2618 2619 map = dm_get_live_table(md); 2620 if (!map || !dm_table_get_size(map)) 2621 goto out; 2622 2623 r = dm_table_resume_targets(map); 2624 if (r) 2625 goto out; 2626 2627 dm_queue_flush(md); 2628 2629 /* 2630 * Flushing deferred I/Os must be done after targets are resumed 2631 * so that mapping of targets can work correctly. 2632 * Request-based dm is queueing the deferred I/Os in its request_queue. 2633 */ 2634 if (dm_request_based(md)) 2635 start_queue(md->queue); 2636 2637 unlock_fs(md); 2638 2639 clear_bit(DMF_SUSPENDED, &md->flags); 2640 2641 r = 0; 2642 out: 2643 dm_table_put(map); 2644 mutex_unlock(&md->suspend_lock); 2645 2646 return r; 2647 } 2648 2649 /*----------------------------------------------------------------- 2650 * Event notification. 2651 *---------------------------------------------------------------*/ 2652 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2653 unsigned cookie) 2654 { 2655 char udev_cookie[DM_COOKIE_LENGTH]; 2656 char *envp[] = { udev_cookie, NULL }; 2657 2658 if (!cookie) 2659 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2660 else { 2661 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2662 DM_COOKIE_ENV_VAR_NAME, cookie); 2663 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2664 action, envp); 2665 } 2666 } 2667 2668 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2669 { 2670 return atomic_add_return(1, &md->uevent_seq); 2671 } 2672 2673 uint32_t dm_get_event_nr(struct mapped_device *md) 2674 { 2675 return atomic_read(&md->event_nr); 2676 } 2677 2678 int dm_wait_event(struct mapped_device *md, int event_nr) 2679 { 2680 return wait_event_interruptible(md->eventq, 2681 (event_nr != atomic_read(&md->event_nr))); 2682 } 2683 2684 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2685 { 2686 unsigned long flags; 2687 2688 spin_lock_irqsave(&md->uevent_lock, flags); 2689 list_add(elist, &md->uevent_list); 2690 spin_unlock_irqrestore(&md->uevent_lock, flags); 2691 } 2692 2693 /* 2694 * The gendisk is only valid as long as you have a reference 2695 * count on 'md'. 2696 */ 2697 struct gendisk *dm_disk(struct mapped_device *md) 2698 { 2699 return md->disk; 2700 } 2701 2702 struct kobject *dm_kobject(struct mapped_device *md) 2703 { 2704 return &md->kobj; 2705 } 2706 2707 /* 2708 * struct mapped_device should not be exported outside of dm.c 2709 * so use this check to verify that kobj is part of md structure 2710 */ 2711 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2712 { 2713 struct mapped_device *md; 2714 2715 md = container_of(kobj, struct mapped_device, kobj); 2716 if (&md->kobj != kobj) 2717 return NULL; 2718 2719 if (test_bit(DMF_FREEING, &md->flags) || 2720 dm_deleting_md(md)) 2721 return NULL; 2722 2723 dm_get(md); 2724 return md; 2725 } 2726 2727 int dm_suspended_md(struct mapped_device *md) 2728 { 2729 return test_bit(DMF_SUSPENDED, &md->flags); 2730 } 2731 2732 int dm_suspended(struct dm_target *ti) 2733 { 2734 return dm_suspended_md(dm_table_get_md(ti->table)); 2735 } 2736 EXPORT_SYMBOL_GPL(dm_suspended); 2737 2738 int dm_noflush_suspending(struct dm_target *ti) 2739 { 2740 return __noflush_suspending(dm_table_get_md(ti->table)); 2741 } 2742 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2743 2744 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size) 2745 { 2746 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL); 2747 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS; 2748 2749 if (!pools) 2750 return NULL; 2751 2752 per_bio_data_size = roundup(per_bio_data_size, __alignof__(struct dm_target_io)); 2753 2754 pools->io_pool = (type == DM_TYPE_BIO_BASED) ? 2755 mempool_create_slab_pool(MIN_IOS, _io_cache) : 2756 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache); 2757 if (!pools->io_pool) 2758 goto free_pools_and_out; 2759 2760 pools->tio_pool = NULL; 2761 if (type == DM_TYPE_REQUEST_BASED) { 2762 pools->tio_pool = mempool_create_slab_pool(MIN_IOS, _rq_tio_cache); 2763 if (!pools->tio_pool) 2764 goto free_io_pool_and_out; 2765 } 2766 2767 pools->bs = (type == DM_TYPE_BIO_BASED) ? 2768 bioset_create(pool_size, 2769 per_bio_data_size + offsetof(struct dm_target_io, clone)) : 2770 bioset_create(pool_size, 2771 offsetof(struct dm_rq_clone_bio_info, clone)); 2772 if (!pools->bs) 2773 goto free_tio_pool_and_out; 2774 2775 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2776 goto free_bioset_and_out; 2777 2778 return pools; 2779 2780 free_bioset_and_out: 2781 bioset_free(pools->bs); 2782 2783 free_tio_pool_and_out: 2784 if (pools->tio_pool) 2785 mempool_destroy(pools->tio_pool); 2786 2787 free_io_pool_and_out: 2788 mempool_destroy(pools->io_pool); 2789 2790 free_pools_and_out: 2791 kfree(pools); 2792 2793 return NULL; 2794 } 2795 2796 void dm_free_md_mempools(struct dm_md_mempools *pools) 2797 { 2798 if (!pools) 2799 return; 2800 2801 if (pools->io_pool) 2802 mempool_destroy(pools->io_pool); 2803 2804 if (pools->tio_pool) 2805 mempool_destroy(pools->tio_pool); 2806 2807 if (pools->bs) 2808 bioset_free(pools->bs); 2809 2810 kfree(pools); 2811 } 2812 2813 static const struct block_device_operations dm_blk_dops = { 2814 .open = dm_blk_open, 2815 .release = dm_blk_close, 2816 .ioctl = dm_blk_ioctl, 2817 .getgeo = dm_blk_getgeo, 2818 .owner = THIS_MODULE 2819 }; 2820 2821 EXPORT_SYMBOL(dm_get_mapinfo); 2822 2823 /* 2824 * module hooks 2825 */ 2826 module_init(dm_init); 2827 module_exit(dm_exit); 2828 2829 module_param(major, uint, 0); 2830 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2831 MODULE_DESCRIPTION(DM_NAME " driver"); 2832 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2833 MODULE_LICENSE("GPL"); 2834