xref: /openbmc/linux/drivers/md/dm.c (revision 55a62eef8d1b50ceff3b7bf46851103bdcc7e5b0)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53  * For bio-based dm.
54  * One of these is allocated per bio.
55  */
56 struct dm_io {
57 	struct mapped_device *md;
58 	int error;
59 	atomic_t io_count;
60 	struct bio *bio;
61 	unsigned long start_time;
62 	spinlock_t endio_lock;
63 };
64 
65 /*
66  * For request-based dm.
67  * One of these is allocated per request.
68  */
69 struct dm_rq_target_io {
70 	struct mapped_device *md;
71 	struct dm_target *ti;
72 	struct request *orig, clone;
73 	int error;
74 	union map_info info;
75 };
76 
77 /*
78  * For request-based dm - the bio clones we allocate are embedded in these
79  * structs.
80  *
81  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
82  * the bioset is created - this means the bio has to come at the end of the
83  * struct.
84  */
85 struct dm_rq_clone_bio_info {
86 	struct bio *orig;
87 	struct dm_rq_target_io *tio;
88 	struct bio clone;
89 };
90 
91 union map_info *dm_get_mapinfo(struct bio *bio)
92 {
93 	if (bio && bio->bi_private)
94 		return &((struct dm_target_io *)bio->bi_private)->info;
95 	return NULL;
96 }
97 
98 union map_info *dm_get_rq_mapinfo(struct request *rq)
99 {
100 	if (rq && rq->end_io_data)
101 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
102 	return NULL;
103 }
104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
105 
106 #define MINOR_ALLOCED ((void *)-1)
107 
108 /*
109  * Bits for the md->flags field.
110  */
111 #define DMF_BLOCK_IO_FOR_SUSPEND 0
112 #define DMF_SUSPENDED 1
113 #define DMF_FROZEN 2
114 #define DMF_FREEING 3
115 #define DMF_DELETING 4
116 #define DMF_NOFLUSH_SUSPENDING 5
117 #define DMF_MERGE_IS_OPTIONAL 6
118 
119 /*
120  * Work processed by per-device workqueue.
121  */
122 struct mapped_device {
123 	struct rw_semaphore io_lock;
124 	struct mutex suspend_lock;
125 	rwlock_t map_lock;
126 	atomic_t holders;
127 	atomic_t open_count;
128 
129 	unsigned long flags;
130 
131 	struct request_queue *queue;
132 	unsigned type;
133 	/* Protect queue and type against concurrent access. */
134 	struct mutex type_lock;
135 
136 	struct target_type *immutable_target_type;
137 
138 	struct gendisk *disk;
139 	char name[16];
140 
141 	void *interface_ptr;
142 
143 	/*
144 	 * A list of ios that arrived while we were suspended.
145 	 */
146 	atomic_t pending[2];
147 	wait_queue_head_t wait;
148 	struct work_struct work;
149 	struct bio_list deferred;
150 	spinlock_t deferred_lock;
151 
152 	/*
153 	 * Processing queue (flush)
154 	 */
155 	struct workqueue_struct *wq;
156 
157 	/*
158 	 * The current mapping.
159 	 */
160 	struct dm_table *map;
161 
162 	/*
163 	 * io objects are allocated from here.
164 	 */
165 	mempool_t *io_pool;
166 	mempool_t *tio_pool;
167 
168 	struct bio_set *bs;
169 
170 	/*
171 	 * Event handling.
172 	 */
173 	atomic_t event_nr;
174 	wait_queue_head_t eventq;
175 	atomic_t uevent_seq;
176 	struct list_head uevent_list;
177 	spinlock_t uevent_lock; /* Protect access to uevent_list */
178 
179 	/*
180 	 * freeze/thaw support require holding onto a super block
181 	 */
182 	struct super_block *frozen_sb;
183 	struct block_device *bdev;
184 
185 	/* forced geometry settings */
186 	struct hd_geometry geometry;
187 
188 	/* sysfs handle */
189 	struct kobject kobj;
190 
191 	/* zero-length flush that will be cloned and submitted to targets */
192 	struct bio flush_bio;
193 };
194 
195 /*
196  * For mempools pre-allocation at the table loading time.
197  */
198 struct dm_md_mempools {
199 	mempool_t *io_pool;
200 	mempool_t *tio_pool;
201 	struct bio_set *bs;
202 };
203 
204 #define MIN_IOS 256
205 static struct kmem_cache *_io_cache;
206 static struct kmem_cache *_rq_tio_cache;
207 
208 /*
209  * Unused now, and needs to be deleted. But since io_pool is overloaded and it's
210  * still used for _io_cache, I'm leaving this for a later cleanup
211  */
212 static struct kmem_cache *_rq_bio_info_cache;
213 
214 static int __init local_init(void)
215 {
216 	int r = -ENOMEM;
217 
218 	/* allocate a slab for the dm_ios */
219 	_io_cache = KMEM_CACHE(dm_io, 0);
220 	if (!_io_cache)
221 		return r;
222 
223 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
224 	if (!_rq_tio_cache)
225 		goto out_free_io_cache;
226 
227 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
228 	if (!_rq_bio_info_cache)
229 		goto out_free_rq_tio_cache;
230 
231 	r = dm_uevent_init();
232 	if (r)
233 		goto out_free_rq_bio_info_cache;
234 
235 	_major = major;
236 	r = register_blkdev(_major, _name);
237 	if (r < 0)
238 		goto out_uevent_exit;
239 
240 	if (!_major)
241 		_major = r;
242 
243 	return 0;
244 
245 out_uevent_exit:
246 	dm_uevent_exit();
247 out_free_rq_bio_info_cache:
248 	kmem_cache_destroy(_rq_bio_info_cache);
249 out_free_rq_tio_cache:
250 	kmem_cache_destroy(_rq_tio_cache);
251 out_free_io_cache:
252 	kmem_cache_destroy(_io_cache);
253 
254 	return r;
255 }
256 
257 static void local_exit(void)
258 {
259 	kmem_cache_destroy(_rq_bio_info_cache);
260 	kmem_cache_destroy(_rq_tio_cache);
261 	kmem_cache_destroy(_io_cache);
262 	unregister_blkdev(_major, _name);
263 	dm_uevent_exit();
264 
265 	_major = 0;
266 
267 	DMINFO("cleaned up");
268 }
269 
270 static int (*_inits[])(void) __initdata = {
271 	local_init,
272 	dm_target_init,
273 	dm_linear_init,
274 	dm_stripe_init,
275 	dm_io_init,
276 	dm_kcopyd_init,
277 	dm_interface_init,
278 };
279 
280 static void (*_exits[])(void) = {
281 	local_exit,
282 	dm_target_exit,
283 	dm_linear_exit,
284 	dm_stripe_exit,
285 	dm_io_exit,
286 	dm_kcopyd_exit,
287 	dm_interface_exit,
288 };
289 
290 static int __init dm_init(void)
291 {
292 	const int count = ARRAY_SIZE(_inits);
293 
294 	int r, i;
295 
296 	for (i = 0; i < count; i++) {
297 		r = _inits[i]();
298 		if (r)
299 			goto bad;
300 	}
301 
302 	return 0;
303 
304       bad:
305 	while (i--)
306 		_exits[i]();
307 
308 	return r;
309 }
310 
311 static void __exit dm_exit(void)
312 {
313 	int i = ARRAY_SIZE(_exits);
314 
315 	while (i--)
316 		_exits[i]();
317 
318 	/*
319 	 * Should be empty by this point.
320 	 */
321 	idr_destroy(&_minor_idr);
322 }
323 
324 /*
325  * Block device functions
326  */
327 int dm_deleting_md(struct mapped_device *md)
328 {
329 	return test_bit(DMF_DELETING, &md->flags);
330 }
331 
332 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
333 {
334 	struct mapped_device *md;
335 
336 	spin_lock(&_minor_lock);
337 
338 	md = bdev->bd_disk->private_data;
339 	if (!md)
340 		goto out;
341 
342 	if (test_bit(DMF_FREEING, &md->flags) ||
343 	    dm_deleting_md(md)) {
344 		md = NULL;
345 		goto out;
346 	}
347 
348 	dm_get(md);
349 	atomic_inc(&md->open_count);
350 
351 out:
352 	spin_unlock(&_minor_lock);
353 
354 	return md ? 0 : -ENXIO;
355 }
356 
357 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
358 {
359 	struct mapped_device *md = disk->private_data;
360 
361 	spin_lock(&_minor_lock);
362 
363 	atomic_dec(&md->open_count);
364 	dm_put(md);
365 
366 	spin_unlock(&_minor_lock);
367 
368 	return 0;
369 }
370 
371 int dm_open_count(struct mapped_device *md)
372 {
373 	return atomic_read(&md->open_count);
374 }
375 
376 /*
377  * Guarantees nothing is using the device before it's deleted.
378  */
379 int dm_lock_for_deletion(struct mapped_device *md)
380 {
381 	int r = 0;
382 
383 	spin_lock(&_minor_lock);
384 
385 	if (dm_open_count(md))
386 		r = -EBUSY;
387 	else
388 		set_bit(DMF_DELETING, &md->flags);
389 
390 	spin_unlock(&_minor_lock);
391 
392 	return r;
393 }
394 
395 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
396 {
397 	struct mapped_device *md = bdev->bd_disk->private_data;
398 
399 	return dm_get_geometry(md, geo);
400 }
401 
402 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
403 			unsigned int cmd, unsigned long arg)
404 {
405 	struct mapped_device *md = bdev->bd_disk->private_data;
406 	struct dm_table *map = dm_get_live_table(md);
407 	struct dm_target *tgt;
408 	int r = -ENOTTY;
409 
410 	if (!map || !dm_table_get_size(map))
411 		goto out;
412 
413 	/* We only support devices that have a single target */
414 	if (dm_table_get_num_targets(map) != 1)
415 		goto out;
416 
417 	tgt = dm_table_get_target(map, 0);
418 
419 	if (dm_suspended_md(md)) {
420 		r = -EAGAIN;
421 		goto out;
422 	}
423 
424 	if (tgt->type->ioctl)
425 		r = tgt->type->ioctl(tgt, cmd, arg);
426 
427 out:
428 	dm_table_put(map);
429 
430 	return r;
431 }
432 
433 static struct dm_io *alloc_io(struct mapped_device *md)
434 {
435 	return mempool_alloc(md->io_pool, GFP_NOIO);
436 }
437 
438 static void free_io(struct mapped_device *md, struct dm_io *io)
439 {
440 	mempool_free(io, md->io_pool);
441 }
442 
443 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
444 {
445 	bio_put(&tio->clone);
446 }
447 
448 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
449 					    gfp_t gfp_mask)
450 {
451 	return mempool_alloc(md->tio_pool, gfp_mask);
452 }
453 
454 static void free_rq_tio(struct dm_rq_target_io *tio)
455 {
456 	mempool_free(tio, tio->md->tio_pool);
457 }
458 
459 static int md_in_flight(struct mapped_device *md)
460 {
461 	return atomic_read(&md->pending[READ]) +
462 	       atomic_read(&md->pending[WRITE]);
463 }
464 
465 static void start_io_acct(struct dm_io *io)
466 {
467 	struct mapped_device *md = io->md;
468 	int cpu;
469 	int rw = bio_data_dir(io->bio);
470 
471 	io->start_time = jiffies;
472 
473 	cpu = part_stat_lock();
474 	part_round_stats(cpu, &dm_disk(md)->part0);
475 	part_stat_unlock();
476 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
477 		atomic_inc_return(&md->pending[rw]));
478 }
479 
480 static void end_io_acct(struct dm_io *io)
481 {
482 	struct mapped_device *md = io->md;
483 	struct bio *bio = io->bio;
484 	unsigned long duration = jiffies - io->start_time;
485 	int pending, cpu;
486 	int rw = bio_data_dir(bio);
487 
488 	cpu = part_stat_lock();
489 	part_round_stats(cpu, &dm_disk(md)->part0);
490 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
491 	part_stat_unlock();
492 
493 	/*
494 	 * After this is decremented the bio must not be touched if it is
495 	 * a flush.
496 	 */
497 	pending = atomic_dec_return(&md->pending[rw]);
498 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
499 	pending += atomic_read(&md->pending[rw^0x1]);
500 
501 	/* nudge anyone waiting on suspend queue */
502 	if (!pending)
503 		wake_up(&md->wait);
504 }
505 
506 /*
507  * Add the bio to the list of deferred io.
508  */
509 static void queue_io(struct mapped_device *md, struct bio *bio)
510 {
511 	unsigned long flags;
512 
513 	spin_lock_irqsave(&md->deferred_lock, flags);
514 	bio_list_add(&md->deferred, bio);
515 	spin_unlock_irqrestore(&md->deferred_lock, flags);
516 	queue_work(md->wq, &md->work);
517 }
518 
519 /*
520  * Everyone (including functions in this file), should use this
521  * function to access the md->map field, and make sure they call
522  * dm_table_put() when finished.
523  */
524 struct dm_table *dm_get_live_table(struct mapped_device *md)
525 {
526 	struct dm_table *t;
527 	unsigned long flags;
528 
529 	read_lock_irqsave(&md->map_lock, flags);
530 	t = md->map;
531 	if (t)
532 		dm_table_get(t);
533 	read_unlock_irqrestore(&md->map_lock, flags);
534 
535 	return t;
536 }
537 
538 /*
539  * Get the geometry associated with a dm device
540  */
541 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
542 {
543 	*geo = md->geometry;
544 
545 	return 0;
546 }
547 
548 /*
549  * Set the geometry of a device.
550  */
551 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
552 {
553 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
554 
555 	if (geo->start > sz) {
556 		DMWARN("Start sector is beyond the geometry limits.");
557 		return -EINVAL;
558 	}
559 
560 	md->geometry = *geo;
561 
562 	return 0;
563 }
564 
565 /*-----------------------------------------------------------------
566  * CRUD START:
567  *   A more elegant soln is in the works that uses the queue
568  *   merge fn, unfortunately there are a couple of changes to
569  *   the block layer that I want to make for this.  So in the
570  *   interests of getting something for people to use I give
571  *   you this clearly demarcated crap.
572  *---------------------------------------------------------------*/
573 
574 static int __noflush_suspending(struct mapped_device *md)
575 {
576 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
577 }
578 
579 /*
580  * Decrements the number of outstanding ios that a bio has been
581  * cloned into, completing the original io if necc.
582  */
583 static void dec_pending(struct dm_io *io, int error)
584 {
585 	unsigned long flags;
586 	int io_error;
587 	struct bio *bio;
588 	struct mapped_device *md = io->md;
589 
590 	/* Push-back supersedes any I/O errors */
591 	if (unlikely(error)) {
592 		spin_lock_irqsave(&io->endio_lock, flags);
593 		if (!(io->error > 0 && __noflush_suspending(md)))
594 			io->error = error;
595 		spin_unlock_irqrestore(&io->endio_lock, flags);
596 	}
597 
598 	if (atomic_dec_and_test(&io->io_count)) {
599 		if (io->error == DM_ENDIO_REQUEUE) {
600 			/*
601 			 * Target requested pushing back the I/O.
602 			 */
603 			spin_lock_irqsave(&md->deferred_lock, flags);
604 			if (__noflush_suspending(md))
605 				bio_list_add_head(&md->deferred, io->bio);
606 			else
607 				/* noflush suspend was interrupted. */
608 				io->error = -EIO;
609 			spin_unlock_irqrestore(&md->deferred_lock, flags);
610 		}
611 
612 		io_error = io->error;
613 		bio = io->bio;
614 		end_io_acct(io);
615 		free_io(md, io);
616 
617 		if (io_error == DM_ENDIO_REQUEUE)
618 			return;
619 
620 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
621 			/*
622 			 * Preflush done for flush with data, reissue
623 			 * without REQ_FLUSH.
624 			 */
625 			bio->bi_rw &= ~REQ_FLUSH;
626 			queue_io(md, bio);
627 		} else {
628 			/* done with normal IO or empty flush */
629 			bio_endio(bio, io_error);
630 		}
631 	}
632 }
633 
634 static void clone_endio(struct bio *bio, int error)
635 {
636 	int r = 0;
637 	struct dm_target_io *tio = bio->bi_private;
638 	struct dm_io *io = tio->io;
639 	struct mapped_device *md = tio->io->md;
640 	dm_endio_fn endio = tio->ti->type->end_io;
641 
642 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
643 		error = -EIO;
644 
645 	if (endio) {
646 		r = endio(tio->ti, bio, error);
647 		if (r < 0 || r == DM_ENDIO_REQUEUE)
648 			/*
649 			 * error and requeue request are handled
650 			 * in dec_pending().
651 			 */
652 			error = r;
653 		else if (r == DM_ENDIO_INCOMPLETE)
654 			/* The target will handle the io */
655 			return;
656 		else if (r) {
657 			DMWARN("unimplemented target endio return value: %d", r);
658 			BUG();
659 		}
660 	}
661 
662 	free_tio(md, tio);
663 	dec_pending(io, error);
664 }
665 
666 /*
667  * Partial completion handling for request-based dm
668  */
669 static void end_clone_bio(struct bio *clone, int error)
670 {
671 	struct dm_rq_clone_bio_info *info = clone->bi_private;
672 	struct dm_rq_target_io *tio = info->tio;
673 	struct bio *bio = info->orig;
674 	unsigned int nr_bytes = info->orig->bi_size;
675 
676 	bio_put(clone);
677 
678 	if (tio->error)
679 		/*
680 		 * An error has already been detected on the request.
681 		 * Once error occurred, just let clone->end_io() handle
682 		 * the remainder.
683 		 */
684 		return;
685 	else if (error) {
686 		/*
687 		 * Don't notice the error to the upper layer yet.
688 		 * The error handling decision is made by the target driver,
689 		 * when the request is completed.
690 		 */
691 		tio->error = error;
692 		return;
693 	}
694 
695 	/*
696 	 * I/O for the bio successfully completed.
697 	 * Notice the data completion to the upper layer.
698 	 */
699 
700 	/*
701 	 * bios are processed from the head of the list.
702 	 * So the completing bio should always be rq->bio.
703 	 * If it's not, something wrong is happening.
704 	 */
705 	if (tio->orig->bio != bio)
706 		DMERR("bio completion is going in the middle of the request");
707 
708 	/*
709 	 * Update the original request.
710 	 * Do not use blk_end_request() here, because it may complete
711 	 * the original request before the clone, and break the ordering.
712 	 */
713 	blk_update_request(tio->orig, 0, nr_bytes);
714 }
715 
716 /*
717  * Don't touch any member of the md after calling this function because
718  * the md may be freed in dm_put() at the end of this function.
719  * Or do dm_get() before calling this function and dm_put() later.
720  */
721 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
722 {
723 	atomic_dec(&md->pending[rw]);
724 
725 	/* nudge anyone waiting on suspend queue */
726 	if (!md_in_flight(md))
727 		wake_up(&md->wait);
728 
729 	/*
730 	 * Run this off this callpath, as drivers could invoke end_io while
731 	 * inside their request_fn (and holding the queue lock). Calling
732 	 * back into ->request_fn() could deadlock attempting to grab the
733 	 * queue lock again.
734 	 */
735 	if (run_queue)
736 		blk_run_queue_async(md->queue);
737 
738 	/*
739 	 * dm_put() must be at the end of this function. See the comment above
740 	 */
741 	dm_put(md);
742 }
743 
744 static void free_rq_clone(struct request *clone)
745 {
746 	struct dm_rq_target_io *tio = clone->end_io_data;
747 
748 	blk_rq_unprep_clone(clone);
749 	free_rq_tio(tio);
750 }
751 
752 /*
753  * Complete the clone and the original request.
754  * Must be called without queue lock.
755  */
756 static void dm_end_request(struct request *clone, int error)
757 {
758 	int rw = rq_data_dir(clone);
759 	struct dm_rq_target_io *tio = clone->end_io_data;
760 	struct mapped_device *md = tio->md;
761 	struct request *rq = tio->orig;
762 
763 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
764 		rq->errors = clone->errors;
765 		rq->resid_len = clone->resid_len;
766 
767 		if (rq->sense)
768 			/*
769 			 * We are using the sense buffer of the original
770 			 * request.
771 			 * So setting the length of the sense data is enough.
772 			 */
773 			rq->sense_len = clone->sense_len;
774 	}
775 
776 	free_rq_clone(clone);
777 	blk_end_request_all(rq, error);
778 	rq_completed(md, rw, true);
779 }
780 
781 static void dm_unprep_request(struct request *rq)
782 {
783 	struct request *clone = rq->special;
784 
785 	rq->special = NULL;
786 	rq->cmd_flags &= ~REQ_DONTPREP;
787 
788 	free_rq_clone(clone);
789 }
790 
791 /*
792  * Requeue the original request of a clone.
793  */
794 void dm_requeue_unmapped_request(struct request *clone)
795 {
796 	int rw = rq_data_dir(clone);
797 	struct dm_rq_target_io *tio = clone->end_io_data;
798 	struct mapped_device *md = tio->md;
799 	struct request *rq = tio->orig;
800 	struct request_queue *q = rq->q;
801 	unsigned long flags;
802 
803 	dm_unprep_request(rq);
804 
805 	spin_lock_irqsave(q->queue_lock, flags);
806 	blk_requeue_request(q, rq);
807 	spin_unlock_irqrestore(q->queue_lock, flags);
808 
809 	rq_completed(md, rw, 0);
810 }
811 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
812 
813 static void __stop_queue(struct request_queue *q)
814 {
815 	blk_stop_queue(q);
816 }
817 
818 static void stop_queue(struct request_queue *q)
819 {
820 	unsigned long flags;
821 
822 	spin_lock_irqsave(q->queue_lock, flags);
823 	__stop_queue(q);
824 	spin_unlock_irqrestore(q->queue_lock, flags);
825 }
826 
827 static void __start_queue(struct request_queue *q)
828 {
829 	if (blk_queue_stopped(q))
830 		blk_start_queue(q);
831 }
832 
833 static void start_queue(struct request_queue *q)
834 {
835 	unsigned long flags;
836 
837 	spin_lock_irqsave(q->queue_lock, flags);
838 	__start_queue(q);
839 	spin_unlock_irqrestore(q->queue_lock, flags);
840 }
841 
842 static void dm_done(struct request *clone, int error, bool mapped)
843 {
844 	int r = error;
845 	struct dm_rq_target_io *tio = clone->end_io_data;
846 	dm_request_endio_fn rq_end_io = NULL;
847 
848 	if (tio->ti) {
849 		rq_end_io = tio->ti->type->rq_end_io;
850 
851 		if (mapped && rq_end_io)
852 			r = rq_end_io(tio->ti, clone, error, &tio->info);
853 	}
854 
855 	if (r <= 0)
856 		/* The target wants to complete the I/O */
857 		dm_end_request(clone, r);
858 	else if (r == DM_ENDIO_INCOMPLETE)
859 		/* The target will handle the I/O */
860 		return;
861 	else if (r == DM_ENDIO_REQUEUE)
862 		/* The target wants to requeue the I/O */
863 		dm_requeue_unmapped_request(clone);
864 	else {
865 		DMWARN("unimplemented target endio return value: %d", r);
866 		BUG();
867 	}
868 }
869 
870 /*
871  * Request completion handler for request-based dm
872  */
873 static void dm_softirq_done(struct request *rq)
874 {
875 	bool mapped = true;
876 	struct request *clone = rq->completion_data;
877 	struct dm_rq_target_io *tio = clone->end_io_data;
878 
879 	if (rq->cmd_flags & REQ_FAILED)
880 		mapped = false;
881 
882 	dm_done(clone, tio->error, mapped);
883 }
884 
885 /*
886  * Complete the clone and the original request with the error status
887  * through softirq context.
888  */
889 static void dm_complete_request(struct request *clone, int error)
890 {
891 	struct dm_rq_target_io *tio = clone->end_io_data;
892 	struct request *rq = tio->orig;
893 
894 	tio->error = error;
895 	rq->completion_data = clone;
896 	blk_complete_request(rq);
897 }
898 
899 /*
900  * Complete the not-mapped clone and the original request with the error status
901  * through softirq context.
902  * Target's rq_end_io() function isn't called.
903  * This may be used when the target's map_rq() function fails.
904  */
905 void dm_kill_unmapped_request(struct request *clone, int error)
906 {
907 	struct dm_rq_target_io *tio = clone->end_io_data;
908 	struct request *rq = tio->orig;
909 
910 	rq->cmd_flags |= REQ_FAILED;
911 	dm_complete_request(clone, error);
912 }
913 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
914 
915 /*
916  * Called with the queue lock held
917  */
918 static void end_clone_request(struct request *clone, int error)
919 {
920 	/*
921 	 * For just cleaning up the information of the queue in which
922 	 * the clone was dispatched.
923 	 * The clone is *NOT* freed actually here because it is alloced from
924 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
925 	 */
926 	__blk_put_request(clone->q, clone);
927 
928 	/*
929 	 * Actual request completion is done in a softirq context which doesn't
930 	 * hold the queue lock.  Otherwise, deadlock could occur because:
931 	 *     - another request may be submitted by the upper level driver
932 	 *       of the stacking during the completion
933 	 *     - the submission which requires queue lock may be done
934 	 *       against this queue
935 	 */
936 	dm_complete_request(clone, error);
937 }
938 
939 /*
940  * Return maximum size of I/O possible at the supplied sector up to the current
941  * target boundary.
942  */
943 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
944 {
945 	sector_t target_offset = dm_target_offset(ti, sector);
946 
947 	return ti->len - target_offset;
948 }
949 
950 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
951 {
952 	sector_t len = max_io_len_target_boundary(sector, ti);
953 	sector_t offset, max_len;
954 
955 	/*
956 	 * Does the target need to split even further?
957 	 */
958 	if (ti->max_io_len) {
959 		offset = dm_target_offset(ti, sector);
960 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
961 			max_len = sector_div(offset, ti->max_io_len);
962 		else
963 			max_len = offset & (ti->max_io_len - 1);
964 		max_len = ti->max_io_len - max_len;
965 
966 		if (len > max_len)
967 			len = max_len;
968 	}
969 
970 	return len;
971 }
972 
973 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
974 {
975 	if (len > UINT_MAX) {
976 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
977 		      (unsigned long long)len, UINT_MAX);
978 		ti->error = "Maximum size of target IO is too large";
979 		return -EINVAL;
980 	}
981 
982 	ti->max_io_len = (uint32_t) len;
983 
984 	return 0;
985 }
986 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
987 
988 static void __map_bio(struct dm_target_io *tio)
989 {
990 	int r;
991 	sector_t sector;
992 	struct mapped_device *md;
993 	struct bio *clone = &tio->clone;
994 	struct dm_target *ti = tio->ti;
995 
996 	clone->bi_end_io = clone_endio;
997 	clone->bi_private = tio;
998 
999 	/*
1000 	 * Map the clone.  If r == 0 we don't need to do
1001 	 * anything, the target has assumed ownership of
1002 	 * this io.
1003 	 */
1004 	atomic_inc(&tio->io->io_count);
1005 	sector = clone->bi_sector;
1006 	r = ti->type->map(ti, clone);
1007 	if (r == DM_MAPIO_REMAPPED) {
1008 		/* the bio has been remapped so dispatch it */
1009 
1010 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1011 				      tio->io->bio->bi_bdev->bd_dev, sector);
1012 
1013 		generic_make_request(clone);
1014 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1015 		/* error the io and bail out, or requeue it if needed */
1016 		md = tio->io->md;
1017 		dec_pending(tio->io, r);
1018 		free_tio(md, tio);
1019 	} else if (r) {
1020 		DMWARN("unimplemented target map return value: %d", r);
1021 		BUG();
1022 	}
1023 }
1024 
1025 struct clone_info {
1026 	struct mapped_device *md;
1027 	struct dm_table *map;
1028 	struct bio *bio;
1029 	struct dm_io *io;
1030 	sector_t sector;
1031 	sector_t sector_count;
1032 	unsigned short idx;
1033 };
1034 
1035 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
1036 {
1037 	bio->bi_sector = sector;
1038 	bio->bi_size = to_bytes(len);
1039 }
1040 
1041 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count)
1042 {
1043 	bio->bi_idx = idx;
1044 	bio->bi_vcnt = idx + bv_count;
1045 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
1046 }
1047 
1048 static void clone_bio_integrity(struct bio *bio, struct bio *clone,
1049 				unsigned short idx, unsigned len, unsigned offset,
1050 				unsigned trim)
1051 {
1052 	if (!bio_integrity(bio))
1053 		return;
1054 
1055 	bio_integrity_clone(clone, bio, GFP_NOIO);
1056 
1057 	if (trim)
1058 		bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len);
1059 }
1060 
1061 /*
1062  * Creates a little bio that just does part of a bvec.
1063  */
1064 static void split_bvec(struct dm_target_io *tio, struct bio *bio,
1065 		       sector_t sector, unsigned short idx, unsigned int offset,
1066 		       unsigned int len)
1067 {
1068 	struct bio *clone = &tio->clone;
1069 	struct bio_vec *bv = bio->bi_io_vec + idx;
1070 
1071 	*clone->bi_io_vec = *bv;
1072 
1073 	bio_setup_sector(clone, sector, len);
1074 
1075 	clone->bi_bdev = bio->bi_bdev;
1076 	clone->bi_rw = bio->bi_rw;
1077 	clone->bi_vcnt = 1;
1078 	clone->bi_io_vec->bv_offset = offset;
1079 	clone->bi_io_vec->bv_len = clone->bi_size;
1080 	clone->bi_flags |= 1 << BIO_CLONED;
1081 
1082 	clone_bio_integrity(bio, clone, idx, len, offset, 1);
1083 }
1084 
1085 /*
1086  * Creates a bio that consists of range of complete bvecs.
1087  */
1088 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1089 		      sector_t sector, unsigned short idx,
1090 		      unsigned short bv_count, unsigned int len)
1091 {
1092 	struct bio *clone = &tio->clone;
1093 	unsigned trim = 0;
1094 
1095 	__bio_clone(clone, bio);
1096 	bio_setup_sector(clone, sector, len);
1097 	bio_setup_bv(clone, idx, bv_count);
1098 
1099 	if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1100 		trim = 1;
1101 	clone_bio_integrity(bio, clone, idx, len, 0, trim);
1102 }
1103 
1104 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1105 				      struct dm_target *ti, int nr_iovecs,
1106 				      unsigned target_bio_nr)
1107 {
1108 	struct dm_target_io *tio;
1109 	struct bio *clone;
1110 
1111 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1112 	tio = container_of(clone, struct dm_target_io, clone);
1113 
1114 	tio->io = ci->io;
1115 	tio->ti = ti;
1116 	memset(&tio->info, 0, sizeof(tio->info));
1117 	tio->target_bio_nr = target_bio_nr;
1118 
1119 	return tio;
1120 }
1121 
1122 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1123 				   unsigned target_bio_nr, sector_t len)
1124 {
1125 	struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1126 	struct bio *clone = &tio->clone;
1127 
1128 	/*
1129 	 * Discard requests require the bio's inline iovecs be initialized.
1130 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1131 	 * and discard, so no need for concern about wasted bvec allocations.
1132 	 */
1133 	 __bio_clone(clone, ci->bio);
1134 	if (len)
1135 		bio_setup_sector(clone, ci->sector, len);
1136 
1137 	__map_bio(tio);
1138 }
1139 
1140 static void __issue_target_bios(struct clone_info *ci, struct dm_target *ti,
1141 				unsigned num_bios, sector_t len)
1142 {
1143 	unsigned target_bio_nr;
1144 
1145 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1146 		__issue_target_request(ci, ti, target_bio_nr, len);
1147 }
1148 
1149 static int __clone_and_map_empty_flush(struct clone_info *ci)
1150 {
1151 	unsigned target_nr = 0;
1152 	struct dm_target *ti;
1153 
1154 	BUG_ON(bio_has_data(ci->bio));
1155 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1156 		__issue_target_bios(ci, ti, ti->num_flush_bios, 0);
1157 
1158 	return 0;
1159 }
1160 
1161 /*
1162  * Perform all io with a single clone.
1163  */
1164 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1165 {
1166 	struct bio *bio = ci->bio;
1167 	struct dm_target_io *tio;
1168 
1169 	tio = alloc_tio(ci, ti, bio->bi_max_vecs, 0);
1170 	clone_bio(tio, bio, ci->sector, ci->idx, bio->bi_vcnt - ci->idx,
1171 		  ci->sector_count);
1172 	__map_bio(tio);
1173 	ci->sector_count = 0;
1174 }
1175 
1176 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1177 
1178 static unsigned get_num_discard_bios(struct dm_target *ti)
1179 {
1180 	return ti->num_discard_bios;
1181 }
1182 
1183 static unsigned get_num_write_same_bios(struct dm_target *ti)
1184 {
1185 	return ti->num_write_same_bios;
1186 }
1187 
1188 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1189 
1190 static bool is_split_required_for_discard(struct dm_target *ti)
1191 {
1192 	return ti->split_discard_bios;
1193 }
1194 
1195 static int __clone_and_map_changing_extent_only(struct clone_info *ci,
1196 						get_num_bios_fn get_num_bios,
1197 						is_split_required_fn is_split_required)
1198 {
1199 	struct dm_target *ti;
1200 	sector_t len;
1201 	unsigned num_bios;
1202 
1203 	do {
1204 		ti = dm_table_find_target(ci->map, ci->sector);
1205 		if (!dm_target_is_valid(ti))
1206 			return -EIO;
1207 
1208 		/*
1209 		 * Even though the device advertised support for this type of
1210 		 * request, that does not mean every target supports it, and
1211 		 * reconfiguration might also have changed that since the
1212 		 * check was performed.
1213 		 */
1214 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1215 		if (!num_bios)
1216 			return -EOPNOTSUPP;
1217 
1218 		if (is_split_required && !is_split_required(ti))
1219 			len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1220 		else
1221 			len = min(ci->sector_count, max_io_len(ci->sector, ti));
1222 
1223 		__issue_target_bios(ci, ti, num_bios, len);
1224 
1225 		ci->sector += len;
1226 	} while (ci->sector_count -= len);
1227 
1228 	return 0;
1229 }
1230 
1231 static int __clone_and_map_discard(struct clone_info *ci)
1232 {
1233 	return __clone_and_map_changing_extent_only(ci, get_num_discard_bios,
1234 						    is_split_required_for_discard);
1235 }
1236 
1237 static int __clone_and_map_write_same(struct clone_info *ci)
1238 {
1239 	return __clone_and_map_changing_extent_only(ci, get_num_write_same_bios, NULL);
1240 }
1241 
1242 static int __clone_and_map(struct clone_info *ci)
1243 {
1244 	struct bio *bio = ci->bio;
1245 	struct dm_target *ti;
1246 	sector_t len = 0, max;
1247 	struct dm_target_io *tio;
1248 
1249 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1250 		return __clone_and_map_discard(ci);
1251 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1252 		return __clone_and_map_write_same(ci);
1253 
1254 	ti = dm_table_find_target(ci->map, ci->sector);
1255 	if (!dm_target_is_valid(ti))
1256 		return -EIO;
1257 
1258 	max = max_io_len(ci->sector, ti);
1259 
1260 	if (ci->sector_count <= max) {
1261 		/*
1262 		 * Optimise for the simple case where we can do all of
1263 		 * the remaining io with a single clone.
1264 		 */
1265 		__clone_and_map_simple(ci, ti);
1266 
1267 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1268 		/*
1269 		 * There are some bvecs that don't span targets.
1270 		 * Do as many of these as possible.
1271 		 */
1272 		int i;
1273 		sector_t remaining = max;
1274 		sector_t bv_len;
1275 
1276 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1277 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1278 
1279 			if (bv_len > remaining)
1280 				break;
1281 
1282 			remaining -= bv_len;
1283 			len += bv_len;
1284 		}
1285 
1286 		tio = alloc_tio(ci, ti, bio->bi_max_vecs, 0);
1287 		clone_bio(tio, bio, ci->sector, ci->idx, i - ci->idx, len);
1288 		__map_bio(tio);
1289 
1290 		ci->sector += len;
1291 		ci->sector_count -= len;
1292 		ci->idx = i;
1293 
1294 	} else {
1295 		/*
1296 		 * Handle a bvec that must be split between two or more targets.
1297 		 */
1298 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1299 		sector_t remaining = to_sector(bv->bv_len);
1300 		unsigned int offset = 0;
1301 
1302 		do {
1303 			if (offset) {
1304 				ti = dm_table_find_target(ci->map, ci->sector);
1305 				if (!dm_target_is_valid(ti))
1306 					return -EIO;
1307 
1308 				max = max_io_len(ci->sector, ti);
1309 			}
1310 
1311 			len = min(remaining, max);
1312 
1313 			tio = alloc_tio(ci, ti, 1, 0);
1314 			split_bvec(tio, bio, ci->sector, ci->idx,
1315 				   bv->bv_offset + offset, len);
1316 
1317 			__map_bio(tio);
1318 
1319 			ci->sector += len;
1320 			ci->sector_count -= len;
1321 			offset += to_bytes(len);
1322 		} while (remaining -= len);
1323 
1324 		ci->idx++;
1325 	}
1326 
1327 	return 0;
1328 }
1329 
1330 /*
1331  * Split the bio into several clones and submit it to targets.
1332  */
1333 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1334 {
1335 	struct clone_info ci;
1336 	int error = 0;
1337 
1338 	ci.map = dm_get_live_table(md);
1339 	if (unlikely(!ci.map)) {
1340 		bio_io_error(bio);
1341 		return;
1342 	}
1343 
1344 	ci.md = md;
1345 	ci.io = alloc_io(md);
1346 	ci.io->error = 0;
1347 	atomic_set(&ci.io->io_count, 1);
1348 	ci.io->bio = bio;
1349 	ci.io->md = md;
1350 	spin_lock_init(&ci.io->endio_lock);
1351 	ci.sector = bio->bi_sector;
1352 	ci.idx = bio->bi_idx;
1353 
1354 	start_io_acct(ci.io);
1355 
1356 	if (bio->bi_rw & REQ_FLUSH) {
1357 		ci.bio = &ci.md->flush_bio;
1358 		ci.sector_count = 0;
1359 		error = __clone_and_map_empty_flush(&ci);
1360 		/* dec_pending submits any data associated with flush */
1361 	} else {
1362 		ci.bio = bio;
1363 		ci.sector_count = bio_sectors(bio);
1364 		while (ci.sector_count && !error)
1365 			error = __clone_and_map(&ci);
1366 	}
1367 
1368 	/* drop the extra reference count */
1369 	dec_pending(ci.io, error);
1370 	dm_table_put(ci.map);
1371 }
1372 /*-----------------------------------------------------------------
1373  * CRUD END
1374  *---------------------------------------------------------------*/
1375 
1376 static int dm_merge_bvec(struct request_queue *q,
1377 			 struct bvec_merge_data *bvm,
1378 			 struct bio_vec *biovec)
1379 {
1380 	struct mapped_device *md = q->queuedata;
1381 	struct dm_table *map = dm_get_live_table(md);
1382 	struct dm_target *ti;
1383 	sector_t max_sectors;
1384 	int max_size = 0;
1385 
1386 	if (unlikely(!map))
1387 		goto out;
1388 
1389 	ti = dm_table_find_target(map, bvm->bi_sector);
1390 	if (!dm_target_is_valid(ti))
1391 		goto out_table;
1392 
1393 	/*
1394 	 * Find maximum amount of I/O that won't need splitting
1395 	 */
1396 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1397 			  (sector_t) BIO_MAX_SECTORS);
1398 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1399 	if (max_size < 0)
1400 		max_size = 0;
1401 
1402 	/*
1403 	 * merge_bvec_fn() returns number of bytes
1404 	 * it can accept at this offset
1405 	 * max is precomputed maximal io size
1406 	 */
1407 	if (max_size && ti->type->merge)
1408 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1409 	/*
1410 	 * If the target doesn't support merge method and some of the devices
1411 	 * provided their merge_bvec method (we know this by looking at
1412 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1413 	 * entries.  So always set max_size to 0, and the code below allows
1414 	 * just one page.
1415 	 */
1416 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1417 
1418 		max_size = 0;
1419 
1420 out_table:
1421 	dm_table_put(map);
1422 
1423 out:
1424 	/*
1425 	 * Always allow an entire first page
1426 	 */
1427 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1428 		max_size = biovec->bv_len;
1429 
1430 	return max_size;
1431 }
1432 
1433 /*
1434  * The request function that just remaps the bio built up by
1435  * dm_merge_bvec.
1436  */
1437 static void _dm_request(struct request_queue *q, struct bio *bio)
1438 {
1439 	int rw = bio_data_dir(bio);
1440 	struct mapped_device *md = q->queuedata;
1441 	int cpu;
1442 
1443 	down_read(&md->io_lock);
1444 
1445 	cpu = part_stat_lock();
1446 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1447 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1448 	part_stat_unlock();
1449 
1450 	/* if we're suspended, we have to queue this io for later */
1451 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1452 		up_read(&md->io_lock);
1453 
1454 		if (bio_rw(bio) != READA)
1455 			queue_io(md, bio);
1456 		else
1457 			bio_io_error(bio);
1458 		return;
1459 	}
1460 
1461 	__split_and_process_bio(md, bio);
1462 	up_read(&md->io_lock);
1463 	return;
1464 }
1465 
1466 static int dm_request_based(struct mapped_device *md)
1467 {
1468 	return blk_queue_stackable(md->queue);
1469 }
1470 
1471 static void dm_request(struct request_queue *q, struct bio *bio)
1472 {
1473 	struct mapped_device *md = q->queuedata;
1474 
1475 	if (dm_request_based(md))
1476 		blk_queue_bio(q, bio);
1477 	else
1478 		_dm_request(q, bio);
1479 }
1480 
1481 void dm_dispatch_request(struct request *rq)
1482 {
1483 	int r;
1484 
1485 	if (blk_queue_io_stat(rq->q))
1486 		rq->cmd_flags |= REQ_IO_STAT;
1487 
1488 	rq->start_time = jiffies;
1489 	r = blk_insert_cloned_request(rq->q, rq);
1490 	if (r)
1491 		dm_complete_request(rq, r);
1492 }
1493 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1494 
1495 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1496 				 void *data)
1497 {
1498 	struct dm_rq_target_io *tio = data;
1499 	struct dm_rq_clone_bio_info *info =
1500 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1501 
1502 	info->orig = bio_orig;
1503 	info->tio = tio;
1504 	bio->bi_end_io = end_clone_bio;
1505 	bio->bi_private = info;
1506 
1507 	return 0;
1508 }
1509 
1510 static int setup_clone(struct request *clone, struct request *rq,
1511 		       struct dm_rq_target_io *tio)
1512 {
1513 	int r;
1514 
1515 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1516 			      dm_rq_bio_constructor, tio);
1517 	if (r)
1518 		return r;
1519 
1520 	clone->cmd = rq->cmd;
1521 	clone->cmd_len = rq->cmd_len;
1522 	clone->sense = rq->sense;
1523 	clone->buffer = rq->buffer;
1524 	clone->end_io = end_clone_request;
1525 	clone->end_io_data = tio;
1526 
1527 	return 0;
1528 }
1529 
1530 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1531 				gfp_t gfp_mask)
1532 {
1533 	struct request *clone;
1534 	struct dm_rq_target_io *tio;
1535 
1536 	tio = alloc_rq_tio(md, gfp_mask);
1537 	if (!tio)
1538 		return NULL;
1539 
1540 	tio->md = md;
1541 	tio->ti = NULL;
1542 	tio->orig = rq;
1543 	tio->error = 0;
1544 	memset(&tio->info, 0, sizeof(tio->info));
1545 
1546 	clone = &tio->clone;
1547 	if (setup_clone(clone, rq, tio)) {
1548 		/* -ENOMEM */
1549 		free_rq_tio(tio);
1550 		return NULL;
1551 	}
1552 
1553 	return clone;
1554 }
1555 
1556 /*
1557  * Called with the queue lock held.
1558  */
1559 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1560 {
1561 	struct mapped_device *md = q->queuedata;
1562 	struct request *clone;
1563 
1564 	if (unlikely(rq->special)) {
1565 		DMWARN("Already has something in rq->special.");
1566 		return BLKPREP_KILL;
1567 	}
1568 
1569 	clone = clone_rq(rq, md, GFP_ATOMIC);
1570 	if (!clone)
1571 		return BLKPREP_DEFER;
1572 
1573 	rq->special = clone;
1574 	rq->cmd_flags |= REQ_DONTPREP;
1575 
1576 	return BLKPREP_OK;
1577 }
1578 
1579 /*
1580  * Returns:
1581  * 0  : the request has been processed (not requeued)
1582  * !0 : the request has been requeued
1583  */
1584 static int map_request(struct dm_target *ti, struct request *clone,
1585 		       struct mapped_device *md)
1586 {
1587 	int r, requeued = 0;
1588 	struct dm_rq_target_io *tio = clone->end_io_data;
1589 
1590 	tio->ti = ti;
1591 	r = ti->type->map_rq(ti, clone, &tio->info);
1592 	switch (r) {
1593 	case DM_MAPIO_SUBMITTED:
1594 		/* The target has taken the I/O to submit by itself later */
1595 		break;
1596 	case DM_MAPIO_REMAPPED:
1597 		/* The target has remapped the I/O so dispatch it */
1598 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1599 				     blk_rq_pos(tio->orig));
1600 		dm_dispatch_request(clone);
1601 		break;
1602 	case DM_MAPIO_REQUEUE:
1603 		/* The target wants to requeue the I/O */
1604 		dm_requeue_unmapped_request(clone);
1605 		requeued = 1;
1606 		break;
1607 	default:
1608 		if (r > 0) {
1609 			DMWARN("unimplemented target map return value: %d", r);
1610 			BUG();
1611 		}
1612 
1613 		/* The target wants to complete the I/O */
1614 		dm_kill_unmapped_request(clone, r);
1615 		break;
1616 	}
1617 
1618 	return requeued;
1619 }
1620 
1621 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1622 {
1623 	struct request *clone;
1624 
1625 	blk_start_request(orig);
1626 	clone = orig->special;
1627 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1628 
1629 	/*
1630 	 * Hold the md reference here for the in-flight I/O.
1631 	 * We can't rely on the reference count by device opener,
1632 	 * because the device may be closed during the request completion
1633 	 * when all bios are completed.
1634 	 * See the comment in rq_completed() too.
1635 	 */
1636 	dm_get(md);
1637 
1638 	return clone;
1639 }
1640 
1641 /*
1642  * q->request_fn for request-based dm.
1643  * Called with the queue lock held.
1644  */
1645 static void dm_request_fn(struct request_queue *q)
1646 {
1647 	struct mapped_device *md = q->queuedata;
1648 	struct dm_table *map = dm_get_live_table(md);
1649 	struct dm_target *ti;
1650 	struct request *rq, *clone;
1651 	sector_t pos;
1652 
1653 	/*
1654 	 * For suspend, check blk_queue_stopped() and increment
1655 	 * ->pending within a single queue_lock not to increment the
1656 	 * number of in-flight I/Os after the queue is stopped in
1657 	 * dm_suspend().
1658 	 */
1659 	while (!blk_queue_stopped(q)) {
1660 		rq = blk_peek_request(q);
1661 		if (!rq)
1662 			goto delay_and_out;
1663 
1664 		/* always use block 0 to find the target for flushes for now */
1665 		pos = 0;
1666 		if (!(rq->cmd_flags & REQ_FLUSH))
1667 			pos = blk_rq_pos(rq);
1668 
1669 		ti = dm_table_find_target(map, pos);
1670 		if (!dm_target_is_valid(ti)) {
1671 			/*
1672 			 * Must perform setup, that dm_done() requires,
1673 			 * before calling dm_kill_unmapped_request
1674 			 */
1675 			DMERR_LIMIT("request attempted access beyond the end of device");
1676 			clone = dm_start_request(md, rq);
1677 			dm_kill_unmapped_request(clone, -EIO);
1678 			continue;
1679 		}
1680 
1681 		if (ti->type->busy && ti->type->busy(ti))
1682 			goto delay_and_out;
1683 
1684 		clone = dm_start_request(md, rq);
1685 
1686 		spin_unlock(q->queue_lock);
1687 		if (map_request(ti, clone, md))
1688 			goto requeued;
1689 
1690 		BUG_ON(!irqs_disabled());
1691 		spin_lock(q->queue_lock);
1692 	}
1693 
1694 	goto out;
1695 
1696 requeued:
1697 	BUG_ON(!irqs_disabled());
1698 	spin_lock(q->queue_lock);
1699 
1700 delay_and_out:
1701 	blk_delay_queue(q, HZ / 10);
1702 out:
1703 	dm_table_put(map);
1704 }
1705 
1706 int dm_underlying_device_busy(struct request_queue *q)
1707 {
1708 	return blk_lld_busy(q);
1709 }
1710 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1711 
1712 static int dm_lld_busy(struct request_queue *q)
1713 {
1714 	int r;
1715 	struct mapped_device *md = q->queuedata;
1716 	struct dm_table *map = dm_get_live_table(md);
1717 
1718 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1719 		r = 1;
1720 	else
1721 		r = dm_table_any_busy_target(map);
1722 
1723 	dm_table_put(map);
1724 
1725 	return r;
1726 }
1727 
1728 static int dm_any_congested(void *congested_data, int bdi_bits)
1729 {
1730 	int r = bdi_bits;
1731 	struct mapped_device *md = congested_data;
1732 	struct dm_table *map;
1733 
1734 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1735 		map = dm_get_live_table(md);
1736 		if (map) {
1737 			/*
1738 			 * Request-based dm cares about only own queue for
1739 			 * the query about congestion status of request_queue
1740 			 */
1741 			if (dm_request_based(md))
1742 				r = md->queue->backing_dev_info.state &
1743 				    bdi_bits;
1744 			else
1745 				r = dm_table_any_congested(map, bdi_bits);
1746 
1747 			dm_table_put(map);
1748 		}
1749 	}
1750 
1751 	return r;
1752 }
1753 
1754 /*-----------------------------------------------------------------
1755  * An IDR is used to keep track of allocated minor numbers.
1756  *---------------------------------------------------------------*/
1757 static void free_minor(int minor)
1758 {
1759 	spin_lock(&_minor_lock);
1760 	idr_remove(&_minor_idr, minor);
1761 	spin_unlock(&_minor_lock);
1762 }
1763 
1764 /*
1765  * See if the device with a specific minor # is free.
1766  */
1767 static int specific_minor(int minor)
1768 {
1769 	int r;
1770 
1771 	if (minor >= (1 << MINORBITS))
1772 		return -EINVAL;
1773 
1774 	idr_preload(GFP_KERNEL);
1775 	spin_lock(&_minor_lock);
1776 
1777 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1778 
1779 	spin_unlock(&_minor_lock);
1780 	idr_preload_end();
1781 	if (r < 0)
1782 		return r == -ENOSPC ? -EBUSY : r;
1783 	return 0;
1784 }
1785 
1786 static int next_free_minor(int *minor)
1787 {
1788 	int r;
1789 
1790 	idr_preload(GFP_KERNEL);
1791 	spin_lock(&_minor_lock);
1792 
1793 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1794 
1795 	spin_unlock(&_minor_lock);
1796 	idr_preload_end();
1797 	if (r < 0)
1798 		return r;
1799 	*minor = r;
1800 	return 0;
1801 }
1802 
1803 static const struct block_device_operations dm_blk_dops;
1804 
1805 static void dm_wq_work(struct work_struct *work);
1806 
1807 static void dm_init_md_queue(struct mapped_device *md)
1808 {
1809 	/*
1810 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1811 	 * devices.  The type of this dm device has not been decided yet.
1812 	 * The type is decided at the first table loading time.
1813 	 * To prevent problematic device stacking, clear the queue flag
1814 	 * for request stacking support until then.
1815 	 *
1816 	 * This queue is new, so no concurrency on the queue_flags.
1817 	 */
1818 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1819 
1820 	md->queue->queuedata = md;
1821 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1822 	md->queue->backing_dev_info.congested_data = md;
1823 	blk_queue_make_request(md->queue, dm_request);
1824 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1825 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1826 }
1827 
1828 /*
1829  * Allocate and initialise a blank device with a given minor.
1830  */
1831 static struct mapped_device *alloc_dev(int minor)
1832 {
1833 	int r;
1834 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1835 	void *old_md;
1836 
1837 	if (!md) {
1838 		DMWARN("unable to allocate device, out of memory.");
1839 		return NULL;
1840 	}
1841 
1842 	if (!try_module_get(THIS_MODULE))
1843 		goto bad_module_get;
1844 
1845 	/* get a minor number for the dev */
1846 	if (minor == DM_ANY_MINOR)
1847 		r = next_free_minor(&minor);
1848 	else
1849 		r = specific_minor(minor);
1850 	if (r < 0)
1851 		goto bad_minor;
1852 
1853 	md->type = DM_TYPE_NONE;
1854 	init_rwsem(&md->io_lock);
1855 	mutex_init(&md->suspend_lock);
1856 	mutex_init(&md->type_lock);
1857 	spin_lock_init(&md->deferred_lock);
1858 	rwlock_init(&md->map_lock);
1859 	atomic_set(&md->holders, 1);
1860 	atomic_set(&md->open_count, 0);
1861 	atomic_set(&md->event_nr, 0);
1862 	atomic_set(&md->uevent_seq, 0);
1863 	INIT_LIST_HEAD(&md->uevent_list);
1864 	spin_lock_init(&md->uevent_lock);
1865 
1866 	md->queue = blk_alloc_queue(GFP_KERNEL);
1867 	if (!md->queue)
1868 		goto bad_queue;
1869 
1870 	dm_init_md_queue(md);
1871 
1872 	md->disk = alloc_disk(1);
1873 	if (!md->disk)
1874 		goto bad_disk;
1875 
1876 	atomic_set(&md->pending[0], 0);
1877 	atomic_set(&md->pending[1], 0);
1878 	init_waitqueue_head(&md->wait);
1879 	INIT_WORK(&md->work, dm_wq_work);
1880 	init_waitqueue_head(&md->eventq);
1881 
1882 	md->disk->major = _major;
1883 	md->disk->first_minor = minor;
1884 	md->disk->fops = &dm_blk_dops;
1885 	md->disk->queue = md->queue;
1886 	md->disk->private_data = md;
1887 	sprintf(md->disk->disk_name, "dm-%d", minor);
1888 	add_disk(md->disk);
1889 	format_dev_t(md->name, MKDEV(_major, minor));
1890 
1891 	md->wq = alloc_workqueue("kdmflush",
1892 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1893 	if (!md->wq)
1894 		goto bad_thread;
1895 
1896 	md->bdev = bdget_disk(md->disk, 0);
1897 	if (!md->bdev)
1898 		goto bad_bdev;
1899 
1900 	bio_init(&md->flush_bio);
1901 	md->flush_bio.bi_bdev = md->bdev;
1902 	md->flush_bio.bi_rw = WRITE_FLUSH;
1903 
1904 	/* Populate the mapping, nobody knows we exist yet */
1905 	spin_lock(&_minor_lock);
1906 	old_md = idr_replace(&_minor_idr, md, minor);
1907 	spin_unlock(&_minor_lock);
1908 
1909 	BUG_ON(old_md != MINOR_ALLOCED);
1910 
1911 	return md;
1912 
1913 bad_bdev:
1914 	destroy_workqueue(md->wq);
1915 bad_thread:
1916 	del_gendisk(md->disk);
1917 	put_disk(md->disk);
1918 bad_disk:
1919 	blk_cleanup_queue(md->queue);
1920 bad_queue:
1921 	free_minor(minor);
1922 bad_minor:
1923 	module_put(THIS_MODULE);
1924 bad_module_get:
1925 	kfree(md);
1926 	return NULL;
1927 }
1928 
1929 static void unlock_fs(struct mapped_device *md);
1930 
1931 static void free_dev(struct mapped_device *md)
1932 {
1933 	int minor = MINOR(disk_devt(md->disk));
1934 
1935 	unlock_fs(md);
1936 	bdput(md->bdev);
1937 	destroy_workqueue(md->wq);
1938 	if (md->tio_pool)
1939 		mempool_destroy(md->tio_pool);
1940 	if (md->io_pool)
1941 		mempool_destroy(md->io_pool);
1942 	if (md->bs)
1943 		bioset_free(md->bs);
1944 	blk_integrity_unregister(md->disk);
1945 	del_gendisk(md->disk);
1946 	free_minor(minor);
1947 
1948 	spin_lock(&_minor_lock);
1949 	md->disk->private_data = NULL;
1950 	spin_unlock(&_minor_lock);
1951 
1952 	put_disk(md->disk);
1953 	blk_cleanup_queue(md->queue);
1954 	module_put(THIS_MODULE);
1955 	kfree(md);
1956 }
1957 
1958 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1959 {
1960 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1961 
1962 	if (md->io_pool && md->bs) {
1963 		/* The md already has necessary mempools. */
1964 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
1965 			/*
1966 			 * Reload bioset because front_pad may have changed
1967 			 * because a different table was loaded.
1968 			 */
1969 			bioset_free(md->bs);
1970 			md->bs = p->bs;
1971 			p->bs = NULL;
1972 		} else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
1973 			BUG_ON(!md->tio_pool);
1974 			/*
1975 			 * There's no need to reload with request-based dm
1976 			 * because the size of front_pad doesn't change.
1977 			 * Note for future: If you are to reload bioset,
1978 			 * prep-ed requests in the queue may refer
1979 			 * to bio from the old bioset, so you must walk
1980 			 * through the queue to unprep.
1981 			 */
1982 		}
1983 		goto out;
1984 	}
1985 
1986 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1987 
1988 	md->io_pool = p->io_pool;
1989 	p->io_pool = NULL;
1990 	md->tio_pool = p->tio_pool;
1991 	p->tio_pool = NULL;
1992 	md->bs = p->bs;
1993 	p->bs = NULL;
1994 
1995 out:
1996 	/* mempool bind completed, now no need any mempools in the table */
1997 	dm_table_free_md_mempools(t);
1998 }
1999 
2000 /*
2001  * Bind a table to the device.
2002  */
2003 static void event_callback(void *context)
2004 {
2005 	unsigned long flags;
2006 	LIST_HEAD(uevents);
2007 	struct mapped_device *md = (struct mapped_device *) context;
2008 
2009 	spin_lock_irqsave(&md->uevent_lock, flags);
2010 	list_splice_init(&md->uevent_list, &uevents);
2011 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2012 
2013 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2014 
2015 	atomic_inc(&md->event_nr);
2016 	wake_up(&md->eventq);
2017 }
2018 
2019 /*
2020  * Protected by md->suspend_lock obtained by dm_swap_table().
2021  */
2022 static void __set_size(struct mapped_device *md, sector_t size)
2023 {
2024 	set_capacity(md->disk, size);
2025 
2026 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2027 }
2028 
2029 /*
2030  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2031  *
2032  * If this function returns 0, then the device is either a non-dm
2033  * device without a merge_bvec_fn, or it is a dm device that is
2034  * able to split any bios it receives that are too big.
2035  */
2036 int dm_queue_merge_is_compulsory(struct request_queue *q)
2037 {
2038 	struct mapped_device *dev_md;
2039 
2040 	if (!q->merge_bvec_fn)
2041 		return 0;
2042 
2043 	if (q->make_request_fn == dm_request) {
2044 		dev_md = q->queuedata;
2045 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2046 			return 0;
2047 	}
2048 
2049 	return 1;
2050 }
2051 
2052 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2053 					 struct dm_dev *dev, sector_t start,
2054 					 sector_t len, void *data)
2055 {
2056 	struct block_device *bdev = dev->bdev;
2057 	struct request_queue *q = bdev_get_queue(bdev);
2058 
2059 	return dm_queue_merge_is_compulsory(q);
2060 }
2061 
2062 /*
2063  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2064  * on the properties of the underlying devices.
2065  */
2066 static int dm_table_merge_is_optional(struct dm_table *table)
2067 {
2068 	unsigned i = 0;
2069 	struct dm_target *ti;
2070 
2071 	while (i < dm_table_get_num_targets(table)) {
2072 		ti = dm_table_get_target(table, i++);
2073 
2074 		if (ti->type->iterate_devices &&
2075 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2076 			return 0;
2077 	}
2078 
2079 	return 1;
2080 }
2081 
2082 /*
2083  * Returns old map, which caller must destroy.
2084  */
2085 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2086 			       struct queue_limits *limits)
2087 {
2088 	struct dm_table *old_map;
2089 	struct request_queue *q = md->queue;
2090 	sector_t size;
2091 	unsigned long flags;
2092 	int merge_is_optional;
2093 
2094 	size = dm_table_get_size(t);
2095 
2096 	/*
2097 	 * Wipe any geometry if the size of the table changed.
2098 	 */
2099 	if (size != get_capacity(md->disk))
2100 		memset(&md->geometry, 0, sizeof(md->geometry));
2101 
2102 	__set_size(md, size);
2103 
2104 	dm_table_event_callback(t, event_callback, md);
2105 
2106 	/*
2107 	 * The queue hasn't been stopped yet, if the old table type wasn't
2108 	 * for request-based during suspension.  So stop it to prevent
2109 	 * I/O mapping before resume.
2110 	 * This must be done before setting the queue restrictions,
2111 	 * because request-based dm may be run just after the setting.
2112 	 */
2113 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2114 		stop_queue(q);
2115 
2116 	__bind_mempools(md, t);
2117 
2118 	merge_is_optional = dm_table_merge_is_optional(t);
2119 
2120 	write_lock_irqsave(&md->map_lock, flags);
2121 	old_map = md->map;
2122 	md->map = t;
2123 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2124 
2125 	dm_table_set_restrictions(t, q, limits);
2126 	if (merge_is_optional)
2127 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2128 	else
2129 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2130 	write_unlock_irqrestore(&md->map_lock, flags);
2131 
2132 	return old_map;
2133 }
2134 
2135 /*
2136  * Returns unbound table for the caller to free.
2137  */
2138 static struct dm_table *__unbind(struct mapped_device *md)
2139 {
2140 	struct dm_table *map = md->map;
2141 	unsigned long flags;
2142 
2143 	if (!map)
2144 		return NULL;
2145 
2146 	dm_table_event_callback(map, NULL, NULL);
2147 	write_lock_irqsave(&md->map_lock, flags);
2148 	md->map = NULL;
2149 	write_unlock_irqrestore(&md->map_lock, flags);
2150 
2151 	return map;
2152 }
2153 
2154 /*
2155  * Constructor for a new device.
2156  */
2157 int dm_create(int minor, struct mapped_device **result)
2158 {
2159 	struct mapped_device *md;
2160 
2161 	md = alloc_dev(minor);
2162 	if (!md)
2163 		return -ENXIO;
2164 
2165 	dm_sysfs_init(md);
2166 
2167 	*result = md;
2168 	return 0;
2169 }
2170 
2171 /*
2172  * Functions to manage md->type.
2173  * All are required to hold md->type_lock.
2174  */
2175 void dm_lock_md_type(struct mapped_device *md)
2176 {
2177 	mutex_lock(&md->type_lock);
2178 }
2179 
2180 void dm_unlock_md_type(struct mapped_device *md)
2181 {
2182 	mutex_unlock(&md->type_lock);
2183 }
2184 
2185 void dm_set_md_type(struct mapped_device *md, unsigned type)
2186 {
2187 	md->type = type;
2188 }
2189 
2190 unsigned dm_get_md_type(struct mapped_device *md)
2191 {
2192 	return md->type;
2193 }
2194 
2195 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2196 {
2197 	return md->immutable_target_type;
2198 }
2199 
2200 /*
2201  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2202  */
2203 static int dm_init_request_based_queue(struct mapped_device *md)
2204 {
2205 	struct request_queue *q = NULL;
2206 
2207 	if (md->queue->elevator)
2208 		return 1;
2209 
2210 	/* Fully initialize the queue */
2211 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2212 	if (!q)
2213 		return 0;
2214 
2215 	md->queue = q;
2216 	dm_init_md_queue(md);
2217 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2218 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2219 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2220 
2221 	elv_register_queue(md->queue);
2222 
2223 	return 1;
2224 }
2225 
2226 /*
2227  * Setup the DM device's queue based on md's type
2228  */
2229 int dm_setup_md_queue(struct mapped_device *md)
2230 {
2231 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2232 	    !dm_init_request_based_queue(md)) {
2233 		DMWARN("Cannot initialize queue for request-based mapped device");
2234 		return -EINVAL;
2235 	}
2236 
2237 	return 0;
2238 }
2239 
2240 static struct mapped_device *dm_find_md(dev_t dev)
2241 {
2242 	struct mapped_device *md;
2243 	unsigned minor = MINOR(dev);
2244 
2245 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2246 		return NULL;
2247 
2248 	spin_lock(&_minor_lock);
2249 
2250 	md = idr_find(&_minor_idr, minor);
2251 	if (md && (md == MINOR_ALLOCED ||
2252 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2253 		   dm_deleting_md(md) ||
2254 		   test_bit(DMF_FREEING, &md->flags))) {
2255 		md = NULL;
2256 		goto out;
2257 	}
2258 
2259 out:
2260 	spin_unlock(&_minor_lock);
2261 
2262 	return md;
2263 }
2264 
2265 struct mapped_device *dm_get_md(dev_t dev)
2266 {
2267 	struct mapped_device *md = dm_find_md(dev);
2268 
2269 	if (md)
2270 		dm_get(md);
2271 
2272 	return md;
2273 }
2274 EXPORT_SYMBOL_GPL(dm_get_md);
2275 
2276 void *dm_get_mdptr(struct mapped_device *md)
2277 {
2278 	return md->interface_ptr;
2279 }
2280 
2281 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2282 {
2283 	md->interface_ptr = ptr;
2284 }
2285 
2286 void dm_get(struct mapped_device *md)
2287 {
2288 	atomic_inc(&md->holders);
2289 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2290 }
2291 
2292 const char *dm_device_name(struct mapped_device *md)
2293 {
2294 	return md->name;
2295 }
2296 EXPORT_SYMBOL_GPL(dm_device_name);
2297 
2298 static void __dm_destroy(struct mapped_device *md, bool wait)
2299 {
2300 	struct dm_table *map;
2301 
2302 	might_sleep();
2303 
2304 	spin_lock(&_minor_lock);
2305 	map = dm_get_live_table(md);
2306 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2307 	set_bit(DMF_FREEING, &md->flags);
2308 	spin_unlock(&_minor_lock);
2309 
2310 	if (!dm_suspended_md(md)) {
2311 		dm_table_presuspend_targets(map);
2312 		dm_table_postsuspend_targets(map);
2313 	}
2314 
2315 	/*
2316 	 * Rare, but there may be I/O requests still going to complete,
2317 	 * for example.  Wait for all references to disappear.
2318 	 * No one should increment the reference count of the mapped_device,
2319 	 * after the mapped_device state becomes DMF_FREEING.
2320 	 */
2321 	if (wait)
2322 		while (atomic_read(&md->holders))
2323 			msleep(1);
2324 	else if (atomic_read(&md->holders))
2325 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2326 		       dm_device_name(md), atomic_read(&md->holders));
2327 
2328 	dm_sysfs_exit(md);
2329 	dm_table_put(map);
2330 	dm_table_destroy(__unbind(md));
2331 	free_dev(md);
2332 }
2333 
2334 void dm_destroy(struct mapped_device *md)
2335 {
2336 	__dm_destroy(md, true);
2337 }
2338 
2339 void dm_destroy_immediate(struct mapped_device *md)
2340 {
2341 	__dm_destroy(md, false);
2342 }
2343 
2344 void dm_put(struct mapped_device *md)
2345 {
2346 	atomic_dec(&md->holders);
2347 }
2348 EXPORT_SYMBOL_GPL(dm_put);
2349 
2350 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2351 {
2352 	int r = 0;
2353 	DECLARE_WAITQUEUE(wait, current);
2354 
2355 	add_wait_queue(&md->wait, &wait);
2356 
2357 	while (1) {
2358 		set_current_state(interruptible);
2359 
2360 		if (!md_in_flight(md))
2361 			break;
2362 
2363 		if (interruptible == TASK_INTERRUPTIBLE &&
2364 		    signal_pending(current)) {
2365 			r = -EINTR;
2366 			break;
2367 		}
2368 
2369 		io_schedule();
2370 	}
2371 	set_current_state(TASK_RUNNING);
2372 
2373 	remove_wait_queue(&md->wait, &wait);
2374 
2375 	return r;
2376 }
2377 
2378 /*
2379  * Process the deferred bios
2380  */
2381 static void dm_wq_work(struct work_struct *work)
2382 {
2383 	struct mapped_device *md = container_of(work, struct mapped_device,
2384 						work);
2385 	struct bio *c;
2386 
2387 	down_read(&md->io_lock);
2388 
2389 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2390 		spin_lock_irq(&md->deferred_lock);
2391 		c = bio_list_pop(&md->deferred);
2392 		spin_unlock_irq(&md->deferred_lock);
2393 
2394 		if (!c)
2395 			break;
2396 
2397 		up_read(&md->io_lock);
2398 
2399 		if (dm_request_based(md))
2400 			generic_make_request(c);
2401 		else
2402 			__split_and_process_bio(md, c);
2403 
2404 		down_read(&md->io_lock);
2405 	}
2406 
2407 	up_read(&md->io_lock);
2408 }
2409 
2410 static void dm_queue_flush(struct mapped_device *md)
2411 {
2412 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2413 	smp_mb__after_clear_bit();
2414 	queue_work(md->wq, &md->work);
2415 }
2416 
2417 /*
2418  * Swap in a new table, returning the old one for the caller to destroy.
2419  */
2420 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2421 {
2422 	struct dm_table *live_map, *map = ERR_PTR(-EINVAL);
2423 	struct queue_limits limits;
2424 	int r;
2425 
2426 	mutex_lock(&md->suspend_lock);
2427 
2428 	/* device must be suspended */
2429 	if (!dm_suspended_md(md))
2430 		goto out;
2431 
2432 	/*
2433 	 * If the new table has no data devices, retain the existing limits.
2434 	 * This helps multipath with queue_if_no_path if all paths disappear,
2435 	 * then new I/O is queued based on these limits, and then some paths
2436 	 * reappear.
2437 	 */
2438 	if (dm_table_has_no_data_devices(table)) {
2439 		live_map = dm_get_live_table(md);
2440 		if (live_map)
2441 			limits = md->queue->limits;
2442 		dm_table_put(live_map);
2443 	}
2444 
2445 	r = dm_calculate_queue_limits(table, &limits);
2446 	if (r) {
2447 		map = ERR_PTR(r);
2448 		goto out;
2449 	}
2450 
2451 	map = __bind(md, table, &limits);
2452 
2453 out:
2454 	mutex_unlock(&md->suspend_lock);
2455 	return map;
2456 }
2457 
2458 /*
2459  * Functions to lock and unlock any filesystem running on the
2460  * device.
2461  */
2462 static int lock_fs(struct mapped_device *md)
2463 {
2464 	int r;
2465 
2466 	WARN_ON(md->frozen_sb);
2467 
2468 	md->frozen_sb = freeze_bdev(md->bdev);
2469 	if (IS_ERR(md->frozen_sb)) {
2470 		r = PTR_ERR(md->frozen_sb);
2471 		md->frozen_sb = NULL;
2472 		return r;
2473 	}
2474 
2475 	set_bit(DMF_FROZEN, &md->flags);
2476 
2477 	return 0;
2478 }
2479 
2480 static void unlock_fs(struct mapped_device *md)
2481 {
2482 	if (!test_bit(DMF_FROZEN, &md->flags))
2483 		return;
2484 
2485 	thaw_bdev(md->bdev, md->frozen_sb);
2486 	md->frozen_sb = NULL;
2487 	clear_bit(DMF_FROZEN, &md->flags);
2488 }
2489 
2490 /*
2491  * We need to be able to change a mapping table under a mounted
2492  * filesystem.  For example we might want to move some data in
2493  * the background.  Before the table can be swapped with
2494  * dm_bind_table, dm_suspend must be called to flush any in
2495  * flight bios and ensure that any further io gets deferred.
2496  */
2497 /*
2498  * Suspend mechanism in request-based dm.
2499  *
2500  * 1. Flush all I/Os by lock_fs() if needed.
2501  * 2. Stop dispatching any I/O by stopping the request_queue.
2502  * 3. Wait for all in-flight I/Os to be completed or requeued.
2503  *
2504  * To abort suspend, start the request_queue.
2505  */
2506 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2507 {
2508 	struct dm_table *map = NULL;
2509 	int r = 0;
2510 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2511 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2512 
2513 	mutex_lock(&md->suspend_lock);
2514 
2515 	if (dm_suspended_md(md)) {
2516 		r = -EINVAL;
2517 		goto out_unlock;
2518 	}
2519 
2520 	map = dm_get_live_table(md);
2521 
2522 	/*
2523 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2524 	 * This flag is cleared before dm_suspend returns.
2525 	 */
2526 	if (noflush)
2527 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2528 
2529 	/* This does not get reverted if there's an error later. */
2530 	dm_table_presuspend_targets(map);
2531 
2532 	/*
2533 	 * Flush I/O to the device.
2534 	 * Any I/O submitted after lock_fs() may not be flushed.
2535 	 * noflush takes precedence over do_lockfs.
2536 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2537 	 */
2538 	if (!noflush && do_lockfs) {
2539 		r = lock_fs(md);
2540 		if (r)
2541 			goto out;
2542 	}
2543 
2544 	/*
2545 	 * Here we must make sure that no processes are submitting requests
2546 	 * to target drivers i.e. no one may be executing
2547 	 * __split_and_process_bio. This is called from dm_request and
2548 	 * dm_wq_work.
2549 	 *
2550 	 * To get all processes out of __split_and_process_bio in dm_request,
2551 	 * we take the write lock. To prevent any process from reentering
2552 	 * __split_and_process_bio from dm_request and quiesce the thread
2553 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2554 	 * flush_workqueue(md->wq).
2555 	 */
2556 	down_write(&md->io_lock);
2557 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2558 	up_write(&md->io_lock);
2559 
2560 	/*
2561 	 * Stop md->queue before flushing md->wq in case request-based
2562 	 * dm defers requests to md->wq from md->queue.
2563 	 */
2564 	if (dm_request_based(md))
2565 		stop_queue(md->queue);
2566 
2567 	flush_workqueue(md->wq);
2568 
2569 	/*
2570 	 * At this point no more requests are entering target request routines.
2571 	 * We call dm_wait_for_completion to wait for all existing requests
2572 	 * to finish.
2573 	 */
2574 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2575 
2576 	down_write(&md->io_lock);
2577 	if (noflush)
2578 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2579 	up_write(&md->io_lock);
2580 
2581 	/* were we interrupted ? */
2582 	if (r < 0) {
2583 		dm_queue_flush(md);
2584 
2585 		if (dm_request_based(md))
2586 			start_queue(md->queue);
2587 
2588 		unlock_fs(md);
2589 		goto out; /* pushback list is already flushed, so skip flush */
2590 	}
2591 
2592 	/*
2593 	 * If dm_wait_for_completion returned 0, the device is completely
2594 	 * quiescent now. There is no request-processing activity. All new
2595 	 * requests are being added to md->deferred list.
2596 	 */
2597 
2598 	set_bit(DMF_SUSPENDED, &md->flags);
2599 
2600 	dm_table_postsuspend_targets(map);
2601 
2602 out:
2603 	dm_table_put(map);
2604 
2605 out_unlock:
2606 	mutex_unlock(&md->suspend_lock);
2607 	return r;
2608 }
2609 
2610 int dm_resume(struct mapped_device *md)
2611 {
2612 	int r = -EINVAL;
2613 	struct dm_table *map = NULL;
2614 
2615 	mutex_lock(&md->suspend_lock);
2616 	if (!dm_suspended_md(md))
2617 		goto out;
2618 
2619 	map = dm_get_live_table(md);
2620 	if (!map || !dm_table_get_size(map))
2621 		goto out;
2622 
2623 	r = dm_table_resume_targets(map);
2624 	if (r)
2625 		goto out;
2626 
2627 	dm_queue_flush(md);
2628 
2629 	/*
2630 	 * Flushing deferred I/Os must be done after targets are resumed
2631 	 * so that mapping of targets can work correctly.
2632 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2633 	 */
2634 	if (dm_request_based(md))
2635 		start_queue(md->queue);
2636 
2637 	unlock_fs(md);
2638 
2639 	clear_bit(DMF_SUSPENDED, &md->flags);
2640 
2641 	r = 0;
2642 out:
2643 	dm_table_put(map);
2644 	mutex_unlock(&md->suspend_lock);
2645 
2646 	return r;
2647 }
2648 
2649 /*-----------------------------------------------------------------
2650  * Event notification.
2651  *---------------------------------------------------------------*/
2652 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2653 		       unsigned cookie)
2654 {
2655 	char udev_cookie[DM_COOKIE_LENGTH];
2656 	char *envp[] = { udev_cookie, NULL };
2657 
2658 	if (!cookie)
2659 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2660 	else {
2661 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2662 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2663 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2664 					  action, envp);
2665 	}
2666 }
2667 
2668 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2669 {
2670 	return atomic_add_return(1, &md->uevent_seq);
2671 }
2672 
2673 uint32_t dm_get_event_nr(struct mapped_device *md)
2674 {
2675 	return atomic_read(&md->event_nr);
2676 }
2677 
2678 int dm_wait_event(struct mapped_device *md, int event_nr)
2679 {
2680 	return wait_event_interruptible(md->eventq,
2681 			(event_nr != atomic_read(&md->event_nr)));
2682 }
2683 
2684 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2685 {
2686 	unsigned long flags;
2687 
2688 	spin_lock_irqsave(&md->uevent_lock, flags);
2689 	list_add(elist, &md->uevent_list);
2690 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2691 }
2692 
2693 /*
2694  * The gendisk is only valid as long as you have a reference
2695  * count on 'md'.
2696  */
2697 struct gendisk *dm_disk(struct mapped_device *md)
2698 {
2699 	return md->disk;
2700 }
2701 
2702 struct kobject *dm_kobject(struct mapped_device *md)
2703 {
2704 	return &md->kobj;
2705 }
2706 
2707 /*
2708  * struct mapped_device should not be exported outside of dm.c
2709  * so use this check to verify that kobj is part of md structure
2710  */
2711 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2712 {
2713 	struct mapped_device *md;
2714 
2715 	md = container_of(kobj, struct mapped_device, kobj);
2716 	if (&md->kobj != kobj)
2717 		return NULL;
2718 
2719 	if (test_bit(DMF_FREEING, &md->flags) ||
2720 	    dm_deleting_md(md))
2721 		return NULL;
2722 
2723 	dm_get(md);
2724 	return md;
2725 }
2726 
2727 int dm_suspended_md(struct mapped_device *md)
2728 {
2729 	return test_bit(DMF_SUSPENDED, &md->flags);
2730 }
2731 
2732 int dm_suspended(struct dm_target *ti)
2733 {
2734 	return dm_suspended_md(dm_table_get_md(ti->table));
2735 }
2736 EXPORT_SYMBOL_GPL(dm_suspended);
2737 
2738 int dm_noflush_suspending(struct dm_target *ti)
2739 {
2740 	return __noflush_suspending(dm_table_get_md(ti->table));
2741 }
2742 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2743 
2744 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2745 {
2746 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2747 	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2748 
2749 	if (!pools)
2750 		return NULL;
2751 
2752 	per_bio_data_size = roundup(per_bio_data_size, __alignof__(struct dm_target_io));
2753 
2754 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2755 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2756 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2757 	if (!pools->io_pool)
2758 		goto free_pools_and_out;
2759 
2760 	pools->tio_pool = NULL;
2761 	if (type == DM_TYPE_REQUEST_BASED) {
2762 		pools->tio_pool = mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2763 		if (!pools->tio_pool)
2764 			goto free_io_pool_and_out;
2765 	}
2766 
2767 	pools->bs = (type == DM_TYPE_BIO_BASED) ?
2768 		bioset_create(pool_size,
2769 			      per_bio_data_size + offsetof(struct dm_target_io, clone)) :
2770 		bioset_create(pool_size,
2771 			      offsetof(struct dm_rq_clone_bio_info, clone));
2772 	if (!pools->bs)
2773 		goto free_tio_pool_and_out;
2774 
2775 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2776 		goto free_bioset_and_out;
2777 
2778 	return pools;
2779 
2780 free_bioset_and_out:
2781 	bioset_free(pools->bs);
2782 
2783 free_tio_pool_and_out:
2784 	if (pools->tio_pool)
2785 		mempool_destroy(pools->tio_pool);
2786 
2787 free_io_pool_and_out:
2788 	mempool_destroy(pools->io_pool);
2789 
2790 free_pools_and_out:
2791 	kfree(pools);
2792 
2793 	return NULL;
2794 }
2795 
2796 void dm_free_md_mempools(struct dm_md_mempools *pools)
2797 {
2798 	if (!pools)
2799 		return;
2800 
2801 	if (pools->io_pool)
2802 		mempool_destroy(pools->io_pool);
2803 
2804 	if (pools->tio_pool)
2805 		mempool_destroy(pools->tio_pool);
2806 
2807 	if (pools->bs)
2808 		bioset_free(pools->bs);
2809 
2810 	kfree(pools);
2811 }
2812 
2813 static const struct block_device_operations dm_blk_dops = {
2814 	.open = dm_blk_open,
2815 	.release = dm_blk_close,
2816 	.ioctl = dm_blk_ioctl,
2817 	.getgeo = dm_blk_getgeo,
2818 	.owner = THIS_MODULE
2819 };
2820 
2821 EXPORT_SYMBOL(dm_get_mapinfo);
2822 
2823 /*
2824  * module hooks
2825  */
2826 module_init(dm_init);
2827 module_exit(dm_exit);
2828 
2829 module_param(major, uint, 0);
2830 MODULE_PARM_DESC(major, "The major number of the device mapper");
2831 MODULE_DESCRIPTION(DM_NAME " driver");
2832 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2833 MODULE_LICENSE("GPL");
2834