xref: /openbmc/linux/drivers/md/dm.c (revision 4ae9944d132b160d444fa3aa875307eb0fa3eeec)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 
28 #include <trace/events/block.h>
29 
30 #define DM_MSG_PREFIX "core"
31 
32 #ifdef CONFIG_PRINTK
33 /*
34  * ratelimit state to be used in DMXXX_LIMIT().
35  */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 		       DEFAULT_RATELIMIT_INTERVAL,
38 		       DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41 
42 /*
43  * Cookies are numeric values sent with CHANGE and REMOVE
44  * uevents while resuming, removing or renaming the device.
45  */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48 
49 static const char *_name = DM_NAME;
50 
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53 
54 static DEFINE_IDR(_minor_idr);
55 
56 static DEFINE_SPINLOCK(_minor_lock);
57 
58 static void do_deferred_remove(struct work_struct *w);
59 
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61 
62 static struct workqueue_struct *deferred_remove_workqueue;
63 
64 /*
65  * For bio-based dm.
66  * One of these is allocated per bio.
67  */
68 struct dm_io {
69 	struct mapped_device *md;
70 	int error;
71 	atomic_t io_count;
72 	struct bio *bio;
73 	unsigned long start_time;
74 	spinlock_t endio_lock;
75 	struct dm_stats_aux stats_aux;
76 };
77 
78 /*
79  * For request-based dm.
80  * One of these is allocated per request.
81  */
82 struct dm_rq_target_io {
83 	struct mapped_device *md;
84 	struct dm_target *ti;
85 	struct request *orig, *clone;
86 	struct kthread_work work;
87 	int error;
88 	union map_info info;
89 };
90 
91 /*
92  * For request-based dm - the bio clones we allocate are embedded in these
93  * structs.
94  *
95  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
96  * the bioset is created - this means the bio has to come at the end of the
97  * struct.
98  */
99 struct dm_rq_clone_bio_info {
100 	struct bio *orig;
101 	struct dm_rq_target_io *tio;
102 	struct bio clone;
103 };
104 
105 union map_info *dm_get_rq_mapinfo(struct request *rq)
106 {
107 	if (rq && rq->end_io_data)
108 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
109 	return NULL;
110 }
111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
112 
113 #define MINOR_ALLOCED ((void *)-1)
114 
115 /*
116  * Bits for the md->flags field.
117  */
118 #define DMF_BLOCK_IO_FOR_SUSPEND 0
119 #define DMF_SUSPENDED 1
120 #define DMF_FROZEN 2
121 #define DMF_FREEING 3
122 #define DMF_DELETING 4
123 #define DMF_NOFLUSH_SUSPENDING 5
124 #define DMF_MERGE_IS_OPTIONAL 6
125 #define DMF_DEFERRED_REMOVE 7
126 #define DMF_SUSPENDED_INTERNALLY 8
127 
128 /*
129  * A dummy definition to make RCU happy.
130  * struct dm_table should never be dereferenced in this file.
131  */
132 struct dm_table {
133 	int undefined__;
134 };
135 
136 /*
137  * Work processed by per-device workqueue.
138  */
139 struct mapped_device {
140 	struct srcu_struct io_barrier;
141 	struct mutex suspend_lock;
142 	atomic_t holders;
143 	atomic_t open_count;
144 
145 	/*
146 	 * The current mapping.
147 	 * Use dm_get_live_table{_fast} or take suspend_lock for
148 	 * dereference.
149 	 */
150 	struct dm_table __rcu *map;
151 
152 	struct list_head table_devices;
153 	struct mutex table_devices_lock;
154 
155 	unsigned long flags;
156 
157 	struct request_queue *queue;
158 	unsigned type;
159 	/* Protect queue and type against concurrent access. */
160 	struct mutex type_lock;
161 
162 	struct target_type *immutable_target_type;
163 
164 	struct gendisk *disk;
165 	char name[16];
166 
167 	void *interface_ptr;
168 
169 	/*
170 	 * A list of ios that arrived while we were suspended.
171 	 */
172 	atomic_t pending[2];
173 	wait_queue_head_t wait;
174 	struct work_struct work;
175 	struct bio_list deferred;
176 	spinlock_t deferred_lock;
177 
178 	/*
179 	 * Processing queue (flush)
180 	 */
181 	struct workqueue_struct *wq;
182 
183 	/*
184 	 * io objects are allocated from here.
185 	 */
186 	mempool_t *io_pool;
187 	mempool_t *rq_pool;
188 
189 	struct bio_set *bs;
190 
191 	/*
192 	 * Event handling.
193 	 */
194 	atomic_t event_nr;
195 	wait_queue_head_t eventq;
196 	atomic_t uevent_seq;
197 	struct list_head uevent_list;
198 	spinlock_t uevent_lock; /* Protect access to uevent_list */
199 
200 	/*
201 	 * freeze/thaw support require holding onto a super block
202 	 */
203 	struct super_block *frozen_sb;
204 	struct block_device *bdev;
205 
206 	/* forced geometry settings */
207 	struct hd_geometry geometry;
208 
209 	/* kobject and completion */
210 	struct dm_kobject_holder kobj_holder;
211 
212 	/* zero-length flush that will be cloned and submitted to targets */
213 	struct bio flush_bio;
214 
215 	/* the number of internal suspends */
216 	unsigned internal_suspend_count;
217 
218 	struct dm_stats stats;
219 
220 	struct kthread_worker kworker;
221 	struct task_struct *kworker_task;
222 
223 	/* for request-based merge heuristic in dm_request_fn() */
224 	unsigned seq_rq_merge_deadline_usecs;
225 	int last_rq_rw;
226 	sector_t last_rq_pos;
227 	ktime_t last_rq_start_time;
228 
229 	/* for blk-mq request-based DM support */
230 	struct blk_mq_tag_set tag_set;
231 	bool use_blk_mq;
232 };
233 
234 #ifdef CONFIG_DM_MQ_DEFAULT
235 static bool use_blk_mq = true;
236 #else
237 static bool use_blk_mq = false;
238 #endif
239 
240 bool dm_use_blk_mq(struct mapped_device *md)
241 {
242 	return md->use_blk_mq;
243 }
244 
245 /*
246  * For mempools pre-allocation at the table loading time.
247  */
248 struct dm_md_mempools {
249 	mempool_t *io_pool;
250 	mempool_t *rq_pool;
251 	struct bio_set *bs;
252 };
253 
254 struct table_device {
255 	struct list_head list;
256 	atomic_t count;
257 	struct dm_dev dm_dev;
258 };
259 
260 #define RESERVED_BIO_BASED_IOS		16
261 #define RESERVED_REQUEST_BASED_IOS	256
262 #define RESERVED_MAX_IOS		1024
263 static struct kmem_cache *_io_cache;
264 static struct kmem_cache *_rq_tio_cache;
265 static struct kmem_cache *_rq_cache;
266 
267 /*
268  * Bio-based DM's mempools' reserved IOs set by the user.
269  */
270 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
271 
272 /*
273  * Request-based DM's mempools' reserved IOs set by the user.
274  */
275 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
276 
277 static unsigned __dm_get_module_param(unsigned *module_param,
278 				      unsigned def, unsigned max)
279 {
280 	unsigned param = ACCESS_ONCE(*module_param);
281 	unsigned modified_param = 0;
282 
283 	if (!param)
284 		modified_param = def;
285 	else if (param > max)
286 		modified_param = max;
287 
288 	if (modified_param) {
289 		(void)cmpxchg(module_param, param, modified_param);
290 		param = modified_param;
291 	}
292 
293 	return param;
294 }
295 
296 unsigned dm_get_reserved_bio_based_ios(void)
297 {
298 	return __dm_get_module_param(&reserved_bio_based_ios,
299 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
300 }
301 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
302 
303 unsigned dm_get_reserved_rq_based_ios(void)
304 {
305 	return __dm_get_module_param(&reserved_rq_based_ios,
306 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
307 }
308 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
309 
310 static int __init local_init(void)
311 {
312 	int r = -ENOMEM;
313 
314 	/* allocate a slab for the dm_ios */
315 	_io_cache = KMEM_CACHE(dm_io, 0);
316 	if (!_io_cache)
317 		return r;
318 
319 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
320 	if (!_rq_tio_cache)
321 		goto out_free_io_cache;
322 
323 	_rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
324 				      __alignof__(struct request), 0, NULL);
325 	if (!_rq_cache)
326 		goto out_free_rq_tio_cache;
327 
328 	r = dm_uevent_init();
329 	if (r)
330 		goto out_free_rq_cache;
331 
332 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
333 	if (!deferred_remove_workqueue) {
334 		r = -ENOMEM;
335 		goto out_uevent_exit;
336 	}
337 
338 	_major = major;
339 	r = register_blkdev(_major, _name);
340 	if (r < 0)
341 		goto out_free_workqueue;
342 
343 	if (!_major)
344 		_major = r;
345 
346 	return 0;
347 
348 out_free_workqueue:
349 	destroy_workqueue(deferred_remove_workqueue);
350 out_uevent_exit:
351 	dm_uevent_exit();
352 out_free_rq_cache:
353 	kmem_cache_destroy(_rq_cache);
354 out_free_rq_tio_cache:
355 	kmem_cache_destroy(_rq_tio_cache);
356 out_free_io_cache:
357 	kmem_cache_destroy(_io_cache);
358 
359 	return r;
360 }
361 
362 static void local_exit(void)
363 {
364 	flush_scheduled_work();
365 	destroy_workqueue(deferred_remove_workqueue);
366 
367 	kmem_cache_destroy(_rq_cache);
368 	kmem_cache_destroy(_rq_tio_cache);
369 	kmem_cache_destroy(_io_cache);
370 	unregister_blkdev(_major, _name);
371 	dm_uevent_exit();
372 
373 	_major = 0;
374 
375 	DMINFO("cleaned up");
376 }
377 
378 static int (*_inits[])(void) __initdata = {
379 	local_init,
380 	dm_target_init,
381 	dm_linear_init,
382 	dm_stripe_init,
383 	dm_io_init,
384 	dm_kcopyd_init,
385 	dm_interface_init,
386 	dm_statistics_init,
387 };
388 
389 static void (*_exits[])(void) = {
390 	local_exit,
391 	dm_target_exit,
392 	dm_linear_exit,
393 	dm_stripe_exit,
394 	dm_io_exit,
395 	dm_kcopyd_exit,
396 	dm_interface_exit,
397 	dm_statistics_exit,
398 };
399 
400 static int __init dm_init(void)
401 {
402 	const int count = ARRAY_SIZE(_inits);
403 
404 	int r, i;
405 
406 	for (i = 0; i < count; i++) {
407 		r = _inits[i]();
408 		if (r)
409 			goto bad;
410 	}
411 
412 	return 0;
413 
414       bad:
415 	while (i--)
416 		_exits[i]();
417 
418 	return r;
419 }
420 
421 static void __exit dm_exit(void)
422 {
423 	int i = ARRAY_SIZE(_exits);
424 
425 	while (i--)
426 		_exits[i]();
427 
428 	/*
429 	 * Should be empty by this point.
430 	 */
431 	idr_destroy(&_minor_idr);
432 }
433 
434 /*
435  * Block device functions
436  */
437 int dm_deleting_md(struct mapped_device *md)
438 {
439 	return test_bit(DMF_DELETING, &md->flags);
440 }
441 
442 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
443 {
444 	struct mapped_device *md;
445 
446 	spin_lock(&_minor_lock);
447 
448 	md = bdev->bd_disk->private_data;
449 	if (!md)
450 		goto out;
451 
452 	if (test_bit(DMF_FREEING, &md->flags) ||
453 	    dm_deleting_md(md)) {
454 		md = NULL;
455 		goto out;
456 	}
457 
458 	dm_get(md);
459 	atomic_inc(&md->open_count);
460 out:
461 	spin_unlock(&_minor_lock);
462 
463 	return md ? 0 : -ENXIO;
464 }
465 
466 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
467 {
468 	struct mapped_device *md;
469 
470 	spin_lock(&_minor_lock);
471 
472 	md = disk->private_data;
473 	if (WARN_ON(!md))
474 		goto out;
475 
476 	if (atomic_dec_and_test(&md->open_count) &&
477 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
478 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
479 
480 	dm_put(md);
481 out:
482 	spin_unlock(&_minor_lock);
483 }
484 
485 int dm_open_count(struct mapped_device *md)
486 {
487 	return atomic_read(&md->open_count);
488 }
489 
490 /*
491  * Guarantees nothing is using the device before it's deleted.
492  */
493 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
494 {
495 	int r = 0;
496 
497 	spin_lock(&_minor_lock);
498 
499 	if (dm_open_count(md)) {
500 		r = -EBUSY;
501 		if (mark_deferred)
502 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
503 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
504 		r = -EEXIST;
505 	else
506 		set_bit(DMF_DELETING, &md->flags);
507 
508 	spin_unlock(&_minor_lock);
509 
510 	return r;
511 }
512 
513 int dm_cancel_deferred_remove(struct mapped_device *md)
514 {
515 	int r = 0;
516 
517 	spin_lock(&_minor_lock);
518 
519 	if (test_bit(DMF_DELETING, &md->flags))
520 		r = -EBUSY;
521 	else
522 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
523 
524 	spin_unlock(&_minor_lock);
525 
526 	return r;
527 }
528 
529 static void do_deferred_remove(struct work_struct *w)
530 {
531 	dm_deferred_remove();
532 }
533 
534 sector_t dm_get_size(struct mapped_device *md)
535 {
536 	return get_capacity(md->disk);
537 }
538 
539 struct request_queue *dm_get_md_queue(struct mapped_device *md)
540 {
541 	return md->queue;
542 }
543 
544 struct dm_stats *dm_get_stats(struct mapped_device *md)
545 {
546 	return &md->stats;
547 }
548 
549 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
550 {
551 	struct mapped_device *md = bdev->bd_disk->private_data;
552 
553 	return dm_get_geometry(md, geo);
554 }
555 
556 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
557 			unsigned int cmd, unsigned long arg)
558 {
559 	struct mapped_device *md = bdev->bd_disk->private_data;
560 	int srcu_idx;
561 	struct dm_table *map;
562 	struct dm_target *tgt;
563 	int r = -ENOTTY;
564 
565 retry:
566 	map = dm_get_live_table(md, &srcu_idx);
567 
568 	if (!map || !dm_table_get_size(map))
569 		goto out;
570 
571 	/* We only support devices that have a single target */
572 	if (dm_table_get_num_targets(map) != 1)
573 		goto out;
574 
575 	tgt = dm_table_get_target(map, 0);
576 	if (!tgt->type->ioctl)
577 		goto out;
578 
579 	if (dm_suspended_md(md)) {
580 		r = -EAGAIN;
581 		goto out;
582 	}
583 
584 	r = tgt->type->ioctl(tgt, cmd, arg);
585 
586 out:
587 	dm_put_live_table(md, srcu_idx);
588 
589 	if (r == -ENOTCONN) {
590 		msleep(10);
591 		goto retry;
592 	}
593 
594 	return r;
595 }
596 
597 static struct dm_io *alloc_io(struct mapped_device *md)
598 {
599 	return mempool_alloc(md->io_pool, GFP_NOIO);
600 }
601 
602 static void free_io(struct mapped_device *md, struct dm_io *io)
603 {
604 	mempool_free(io, md->io_pool);
605 }
606 
607 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
608 {
609 	bio_put(&tio->clone);
610 }
611 
612 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
613 					    gfp_t gfp_mask)
614 {
615 	return mempool_alloc(md->io_pool, gfp_mask);
616 }
617 
618 static void free_rq_tio(struct dm_rq_target_io *tio)
619 {
620 	mempool_free(tio, tio->md->io_pool);
621 }
622 
623 static struct request *alloc_clone_request(struct mapped_device *md,
624 					   gfp_t gfp_mask)
625 {
626 	return mempool_alloc(md->rq_pool, gfp_mask);
627 }
628 
629 static void free_clone_request(struct mapped_device *md, struct request *rq)
630 {
631 	mempool_free(rq, md->rq_pool);
632 }
633 
634 static int md_in_flight(struct mapped_device *md)
635 {
636 	return atomic_read(&md->pending[READ]) +
637 	       atomic_read(&md->pending[WRITE]);
638 }
639 
640 static void start_io_acct(struct dm_io *io)
641 {
642 	struct mapped_device *md = io->md;
643 	struct bio *bio = io->bio;
644 	int cpu;
645 	int rw = bio_data_dir(bio);
646 
647 	io->start_time = jiffies;
648 
649 	cpu = part_stat_lock();
650 	part_round_stats(cpu, &dm_disk(md)->part0);
651 	part_stat_unlock();
652 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
653 		atomic_inc_return(&md->pending[rw]));
654 
655 	if (unlikely(dm_stats_used(&md->stats)))
656 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
657 				    bio_sectors(bio), false, 0, &io->stats_aux);
658 }
659 
660 static void end_io_acct(struct dm_io *io)
661 {
662 	struct mapped_device *md = io->md;
663 	struct bio *bio = io->bio;
664 	unsigned long duration = jiffies - io->start_time;
665 	int pending;
666 	int rw = bio_data_dir(bio);
667 
668 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
669 
670 	if (unlikely(dm_stats_used(&md->stats)))
671 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
672 				    bio_sectors(bio), true, duration, &io->stats_aux);
673 
674 	/*
675 	 * After this is decremented the bio must not be touched if it is
676 	 * a flush.
677 	 */
678 	pending = atomic_dec_return(&md->pending[rw]);
679 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
680 	pending += atomic_read(&md->pending[rw^0x1]);
681 
682 	/* nudge anyone waiting on suspend queue */
683 	if (!pending)
684 		wake_up(&md->wait);
685 }
686 
687 /*
688  * Add the bio to the list of deferred io.
689  */
690 static void queue_io(struct mapped_device *md, struct bio *bio)
691 {
692 	unsigned long flags;
693 
694 	spin_lock_irqsave(&md->deferred_lock, flags);
695 	bio_list_add(&md->deferred, bio);
696 	spin_unlock_irqrestore(&md->deferred_lock, flags);
697 	queue_work(md->wq, &md->work);
698 }
699 
700 /*
701  * Everyone (including functions in this file), should use this
702  * function to access the md->map field, and make sure they call
703  * dm_put_live_table() when finished.
704  */
705 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
706 {
707 	*srcu_idx = srcu_read_lock(&md->io_barrier);
708 
709 	return srcu_dereference(md->map, &md->io_barrier);
710 }
711 
712 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
713 {
714 	srcu_read_unlock(&md->io_barrier, srcu_idx);
715 }
716 
717 void dm_sync_table(struct mapped_device *md)
718 {
719 	synchronize_srcu(&md->io_barrier);
720 	synchronize_rcu_expedited();
721 }
722 
723 /*
724  * A fast alternative to dm_get_live_table/dm_put_live_table.
725  * The caller must not block between these two functions.
726  */
727 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
728 {
729 	rcu_read_lock();
730 	return rcu_dereference(md->map);
731 }
732 
733 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
734 {
735 	rcu_read_unlock();
736 }
737 
738 /*
739  * Open a table device so we can use it as a map destination.
740  */
741 static int open_table_device(struct table_device *td, dev_t dev,
742 			     struct mapped_device *md)
743 {
744 	static char *_claim_ptr = "I belong to device-mapper";
745 	struct block_device *bdev;
746 
747 	int r;
748 
749 	BUG_ON(td->dm_dev.bdev);
750 
751 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
752 	if (IS_ERR(bdev))
753 		return PTR_ERR(bdev);
754 
755 	r = bd_link_disk_holder(bdev, dm_disk(md));
756 	if (r) {
757 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
758 		return r;
759 	}
760 
761 	td->dm_dev.bdev = bdev;
762 	return 0;
763 }
764 
765 /*
766  * Close a table device that we've been using.
767  */
768 static void close_table_device(struct table_device *td, struct mapped_device *md)
769 {
770 	if (!td->dm_dev.bdev)
771 		return;
772 
773 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
774 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
775 	td->dm_dev.bdev = NULL;
776 }
777 
778 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
779 					      fmode_t mode) {
780 	struct table_device *td;
781 
782 	list_for_each_entry(td, l, list)
783 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
784 			return td;
785 
786 	return NULL;
787 }
788 
789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
790 			struct dm_dev **result) {
791 	int r;
792 	struct table_device *td;
793 
794 	mutex_lock(&md->table_devices_lock);
795 	td = find_table_device(&md->table_devices, dev, mode);
796 	if (!td) {
797 		td = kmalloc(sizeof(*td), GFP_KERNEL);
798 		if (!td) {
799 			mutex_unlock(&md->table_devices_lock);
800 			return -ENOMEM;
801 		}
802 
803 		td->dm_dev.mode = mode;
804 		td->dm_dev.bdev = NULL;
805 
806 		if ((r = open_table_device(td, dev, md))) {
807 			mutex_unlock(&md->table_devices_lock);
808 			kfree(td);
809 			return r;
810 		}
811 
812 		format_dev_t(td->dm_dev.name, dev);
813 
814 		atomic_set(&td->count, 0);
815 		list_add(&td->list, &md->table_devices);
816 	}
817 	atomic_inc(&td->count);
818 	mutex_unlock(&md->table_devices_lock);
819 
820 	*result = &td->dm_dev;
821 	return 0;
822 }
823 EXPORT_SYMBOL_GPL(dm_get_table_device);
824 
825 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
826 {
827 	struct table_device *td = container_of(d, struct table_device, dm_dev);
828 
829 	mutex_lock(&md->table_devices_lock);
830 	if (atomic_dec_and_test(&td->count)) {
831 		close_table_device(td, md);
832 		list_del(&td->list);
833 		kfree(td);
834 	}
835 	mutex_unlock(&md->table_devices_lock);
836 }
837 EXPORT_SYMBOL(dm_put_table_device);
838 
839 static void free_table_devices(struct list_head *devices)
840 {
841 	struct list_head *tmp, *next;
842 
843 	list_for_each_safe(tmp, next, devices) {
844 		struct table_device *td = list_entry(tmp, struct table_device, list);
845 
846 		DMWARN("dm_destroy: %s still exists with %d references",
847 		       td->dm_dev.name, atomic_read(&td->count));
848 		kfree(td);
849 	}
850 }
851 
852 /*
853  * Get the geometry associated with a dm device
854  */
855 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
856 {
857 	*geo = md->geometry;
858 
859 	return 0;
860 }
861 
862 /*
863  * Set the geometry of a device.
864  */
865 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
866 {
867 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
868 
869 	if (geo->start > sz) {
870 		DMWARN("Start sector is beyond the geometry limits.");
871 		return -EINVAL;
872 	}
873 
874 	md->geometry = *geo;
875 
876 	return 0;
877 }
878 
879 /*-----------------------------------------------------------------
880  * CRUD START:
881  *   A more elegant soln is in the works that uses the queue
882  *   merge fn, unfortunately there are a couple of changes to
883  *   the block layer that I want to make for this.  So in the
884  *   interests of getting something for people to use I give
885  *   you this clearly demarcated crap.
886  *---------------------------------------------------------------*/
887 
888 static int __noflush_suspending(struct mapped_device *md)
889 {
890 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
891 }
892 
893 /*
894  * Decrements the number of outstanding ios that a bio has been
895  * cloned into, completing the original io if necc.
896  */
897 static void dec_pending(struct dm_io *io, int error)
898 {
899 	unsigned long flags;
900 	int io_error;
901 	struct bio *bio;
902 	struct mapped_device *md = io->md;
903 
904 	/* Push-back supersedes any I/O errors */
905 	if (unlikely(error)) {
906 		spin_lock_irqsave(&io->endio_lock, flags);
907 		if (!(io->error > 0 && __noflush_suspending(md)))
908 			io->error = error;
909 		spin_unlock_irqrestore(&io->endio_lock, flags);
910 	}
911 
912 	if (atomic_dec_and_test(&io->io_count)) {
913 		if (io->error == DM_ENDIO_REQUEUE) {
914 			/*
915 			 * Target requested pushing back the I/O.
916 			 */
917 			spin_lock_irqsave(&md->deferred_lock, flags);
918 			if (__noflush_suspending(md))
919 				bio_list_add_head(&md->deferred, io->bio);
920 			else
921 				/* noflush suspend was interrupted. */
922 				io->error = -EIO;
923 			spin_unlock_irqrestore(&md->deferred_lock, flags);
924 		}
925 
926 		io_error = io->error;
927 		bio = io->bio;
928 		end_io_acct(io);
929 		free_io(md, io);
930 
931 		if (io_error == DM_ENDIO_REQUEUE)
932 			return;
933 
934 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
935 			/*
936 			 * Preflush done for flush with data, reissue
937 			 * without REQ_FLUSH.
938 			 */
939 			bio->bi_rw &= ~REQ_FLUSH;
940 			queue_io(md, bio);
941 		} else {
942 			/* done with normal IO or empty flush */
943 			trace_block_bio_complete(md->queue, bio, io_error);
944 			bio_endio(bio, io_error);
945 		}
946 	}
947 }
948 
949 static void disable_write_same(struct mapped_device *md)
950 {
951 	struct queue_limits *limits = dm_get_queue_limits(md);
952 
953 	/* device doesn't really support WRITE SAME, disable it */
954 	limits->max_write_same_sectors = 0;
955 }
956 
957 static void clone_endio(struct bio *bio, int error)
958 {
959 	int r = error;
960 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
961 	struct dm_io *io = tio->io;
962 	struct mapped_device *md = tio->io->md;
963 	dm_endio_fn endio = tio->ti->type->end_io;
964 
965 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
966 		error = -EIO;
967 
968 	if (endio) {
969 		r = endio(tio->ti, bio, error);
970 		if (r < 0 || r == DM_ENDIO_REQUEUE)
971 			/*
972 			 * error and requeue request are handled
973 			 * in dec_pending().
974 			 */
975 			error = r;
976 		else if (r == DM_ENDIO_INCOMPLETE)
977 			/* The target will handle the io */
978 			return;
979 		else if (r) {
980 			DMWARN("unimplemented target endio return value: %d", r);
981 			BUG();
982 		}
983 	}
984 
985 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
986 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
987 		disable_write_same(md);
988 
989 	free_tio(md, tio);
990 	dec_pending(io, error);
991 }
992 
993 /*
994  * Partial completion handling for request-based dm
995  */
996 static void end_clone_bio(struct bio *clone, int error)
997 {
998 	struct dm_rq_clone_bio_info *info =
999 		container_of(clone, struct dm_rq_clone_bio_info, clone);
1000 	struct dm_rq_target_io *tio = info->tio;
1001 	struct bio *bio = info->orig;
1002 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1003 
1004 	bio_put(clone);
1005 
1006 	if (tio->error)
1007 		/*
1008 		 * An error has already been detected on the request.
1009 		 * Once error occurred, just let clone->end_io() handle
1010 		 * the remainder.
1011 		 */
1012 		return;
1013 	else if (error) {
1014 		/*
1015 		 * Don't notice the error to the upper layer yet.
1016 		 * The error handling decision is made by the target driver,
1017 		 * when the request is completed.
1018 		 */
1019 		tio->error = error;
1020 		return;
1021 	}
1022 
1023 	/*
1024 	 * I/O for the bio successfully completed.
1025 	 * Notice the data completion to the upper layer.
1026 	 */
1027 
1028 	/*
1029 	 * bios are processed from the head of the list.
1030 	 * So the completing bio should always be rq->bio.
1031 	 * If it's not, something wrong is happening.
1032 	 */
1033 	if (tio->orig->bio != bio)
1034 		DMERR("bio completion is going in the middle of the request");
1035 
1036 	/*
1037 	 * Update the original request.
1038 	 * Do not use blk_end_request() here, because it may complete
1039 	 * the original request before the clone, and break the ordering.
1040 	 */
1041 	blk_update_request(tio->orig, 0, nr_bytes);
1042 }
1043 
1044 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1045 {
1046 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1047 }
1048 
1049 /*
1050  * Don't touch any member of the md after calling this function because
1051  * the md may be freed in dm_put() at the end of this function.
1052  * Or do dm_get() before calling this function and dm_put() later.
1053  */
1054 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1055 {
1056 	int nr_requests_pending;
1057 
1058 	atomic_dec(&md->pending[rw]);
1059 
1060 	/* nudge anyone waiting on suspend queue */
1061 	nr_requests_pending = md_in_flight(md);
1062 	if (!nr_requests_pending)
1063 		wake_up(&md->wait);
1064 
1065 	/*
1066 	 * Run this off this callpath, as drivers could invoke end_io while
1067 	 * inside their request_fn (and holding the queue lock). Calling
1068 	 * back into ->request_fn() could deadlock attempting to grab the
1069 	 * queue lock again.
1070 	 */
1071 	if (run_queue) {
1072 		if (md->queue->mq_ops)
1073 			blk_mq_run_hw_queues(md->queue, true);
1074 		else if (!nr_requests_pending ||
1075 			 (nr_requests_pending >= md->queue->nr_congestion_on))
1076 			blk_run_queue_async(md->queue);
1077 	}
1078 
1079 	/*
1080 	 * dm_put() must be at the end of this function. See the comment above
1081 	 */
1082 	dm_put(md);
1083 }
1084 
1085 static void free_rq_clone(struct request *clone, bool must_be_mapped)
1086 {
1087 	struct dm_rq_target_io *tio = clone->end_io_data;
1088 	struct mapped_device *md = tio->md;
1089 
1090 	WARN_ON_ONCE(must_be_mapped && !clone->q);
1091 
1092 	blk_rq_unprep_clone(clone);
1093 
1094 	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1095 		/* stacked on blk-mq queue(s) */
1096 		tio->ti->type->release_clone_rq(clone);
1097 	else if (!md->queue->mq_ops)
1098 		/* request_fn queue stacked on request_fn queue(s) */
1099 		free_clone_request(md, clone);
1100 	/*
1101 	 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1102 	 * no need to call free_clone_request() because we leverage blk-mq by
1103 	 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1104 	 */
1105 
1106 	if (!md->queue->mq_ops)
1107 		free_rq_tio(tio);
1108 }
1109 
1110 /*
1111  * Complete the clone and the original request.
1112  * Must be called without clone's queue lock held,
1113  * see end_clone_request() for more details.
1114  */
1115 static void dm_end_request(struct request *clone, int error)
1116 {
1117 	int rw = rq_data_dir(clone);
1118 	struct dm_rq_target_io *tio = clone->end_io_data;
1119 	struct mapped_device *md = tio->md;
1120 	struct request *rq = tio->orig;
1121 
1122 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1123 		rq->errors = clone->errors;
1124 		rq->resid_len = clone->resid_len;
1125 
1126 		if (rq->sense)
1127 			/*
1128 			 * We are using the sense buffer of the original
1129 			 * request.
1130 			 * So setting the length of the sense data is enough.
1131 			 */
1132 			rq->sense_len = clone->sense_len;
1133 	}
1134 
1135 	free_rq_clone(clone, true);
1136 	if (!rq->q->mq_ops)
1137 		blk_end_request_all(rq, error);
1138 	else
1139 		blk_mq_end_request(rq, error);
1140 	rq_completed(md, rw, true);
1141 }
1142 
1143 static void dm_unprep_request(struct request *rq)
1144 {
1145 	struct dm_rq_target_io *tio = tio_from_request(rq);
1146 	struct request *clone = tio->clone;
1147 
1148 	if (!rq->q->mq_ops) {
1149 		rq->special = NULL;
1150 		rq->cmd_flags &= ~REQ_DONTPREP;
1151 	}
1152 
1153 	if (clone)
1154 		free_rq_clone(clone, false);
1155 }
1156 
1157 /*
1158  * Requeue the original request of a clone.
1159  */
1160 static void old_requeue_request(struct request *rq)
1161 {
1162 	struct request_queue *q = rq->q;
1163 	unsigned long flags;
1164 
1165 	spin_lock_irqsave(q->queue_lock, flags);
1166 	blk_requeue_request(q, rq);
1167 	blk_run_queue_async(q);
1168 	spin_unlock_irqrestore(q->queue_lock, flags);
1169 }
1170 
1171 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1172 						 struct request *rq)
1173 {
1174 	int rw = rq_data_dir(rq);
1175 
1176 	dm_unprep_request(rq);
1177 
1178 	if (!rq->q->mq_ops)
1179 		old_requeue_request(rq);
1180 	else {
1181 		blk_mq_requeue_request(rq);
1182 		blk_mq_kick_requeue_list(rq->q);
1183 	}
1184 
1185 	rq_completed(md, rw, false);
1186 }
1187 
1188 static void dm_requeue_unmapped_request(struct request *clone)
1189 {
1190 	struct dm_rq_target_io *tio = clone->end_io_data;
1191 
1192 	dm_requeue_unmapped_original_request(tio->md, tio->orig);
1193 }
1194 
1195 static void old_stop_queue(struct request_queue *q)
1196 {
1197 	unsigned long flags;
1198 
1199 	if (blk_queue_stopped(q))
1200 		return;
1201 
1202 	spin_lock_irqsave(q->queue_lock, flags);
1203 	blk_stop_queue(q);
1204 	spin_unlock_irqrestore(q->queue_lock, flags);
1205 }
1206 
1207 static void stop_queue(struct request_queue *q)
1208 {
1209 	if (!q->mq_ops)
1210 		old_stop_queue(q);
1211 	else
1212 		blk_mq_stop_hw_queues(q);
1213 }
1214 
1215 static void old_start_queue(struct request_queue *q)
1216 {
1217 	unsigned long flags;
1218 
1219 	spin_lock_irqsave(q->queue_lock, flags);
1220 	if (blk_queue_stopped(q))
1221 		blk_start_queue(q);
1222 	spin_unlock_irqrestore(q->queue_lock, flags);
1223 }
1224 
1225 static void start_queue(struct request_queue *q)
1226 {
1227 	if (!q->mq_ops)
1228 		old_start_queue(q);
1229 	else
1230 		blk_mq_start_stopped_hw_queues(q, true);
1231 }
1232 
1233 static void dm_done(struct request *clone, int error, bool mapped)
1234 {
1235 	int r = error;
1236 	struct dm_rq_target_io *tio = clone->end_io_data;
1237 	dm_request_endio_fn rq_end_io = NULL;
1238 
1239 	if (tio->ti) {
1240 		rq_end_io = tio->ti->type->rq_end_io;
1241 
1242 		if (mapped && rq_end_io)
1243 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1244 	}
1245 
1246 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1247 		     !clone->q->limits.max_write_same_sectors))
1248 		disable_write_same(tio->md);
1249 
1250 	if (r <= 0)
1251 		/* The target wants to complete the I/O */
1252 		dm_end_request(clone, r);
1253 	else if (r == DM_ENDIO_INCOMPLETE)
1254 		/* The target will handle the I/O */
1255 		return;
1256 	else if (r == DM_ENDIO_REQUEUE)
1257 		/* The target wants to requeue the I/O */
1258 		dm_requeue_unmapped_request(clone);
1259 	else {
1260 		DMWARN("unimplemented target endio return value: %d", r);
1261 		BUG();
1262 	}
1263 }
1264 
1265 /*
1266  * Request completion handler for request-based dm
1267  */
1268 static void dm_softirq_done(struct request *rq)
1269 {
1270 	bool mapped = true;
1271 	struct dm_rq_target_io *tio = tio_from_request(rq);
1272 	struct request *clone = tio->clone;
1273 	int rw;
1274 
1275 	if (!clone) {
1276 		rw = rq_data_dir(rq);
1277 		if (!rq->q->mq_ops) {
1278 			blk_end_request_all(rq, tio->error);
1279 			rq_completed(tio->md, rw, false);
1280 			free_rq_tio(tio);
1281 		} else {
1282 			blk_mq_end_request(rq, tio->error);
1283 			rq_completed(tio->md, rw, false);
1284 		}
1285 		return;
1286 	}
1287 
1288 	if (rq->cmd_flags & REQ_FAILED)
1289 		mapped = false;
1290 
1291 	dm_done(clone, tio->error, mapped);
1292 }
1293 
1294 /*
1295  * Complete the clone and the original request with the error status
1296  * through softirq context.
1297  */
1298 static void dm_complete_request(struct request *rq, int error)
1299 {
1300 	struct dm_rq_target_io *tio = tio_from_request(rq);
1301 
1302 	tio->error = error;
1303 	blk_complete_request(rq);
1304 }
1305 
1306 /*
1307  * Complete the not-mapped clone and the original request with the error status
1308  * through softirq context.
1309  * Target's rq_end_io() function isn't called.
1310  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1311  */
1312 static void dm_kill_unmapped_request(struct request *rq, int error)
1313 {
1314 	rq->cmd_flags |= REQ_FAILED;
1315 	dm_complete_request(rq, error);
1316 }
1317 
1318 /*
1319  * Called with the clone's queue lock held (for non-blk-mq)
1320  */
1321 static void end_clone_request(struct request *clone, int error)
1322 {
1323 	struct dm_rq_target_io *tio = clone->end_io_data;
1324 
1325 	if (!clone->q->mq_ops) {
1326 		/*
1327 		 * For just cleaning up the information of the queue in which
1328 		 * the clone was dispatched.
1329 		 * The clone is *NOT* freed actually here because it is alloced
1330 		 * from dm own mempool (REQ_ALLOCED isn't set).
1331 		 */
1332 		__blk_put_request(clone->q, clone);
1333 	}
1334 
1335 	/*
1336 	 * Actual request completion is done in a softirq context which doesn't
1337 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1338 	 *     - another request may be submitted by the upper level driver
1339 	 *       of the stacking during the completion
1340 	 *     - the submission which requires queue lock may be done
1341 	 *       against this clone's queue
1342 	 */
1343 	dm_complete_request(tio->orig, error);
1344 }
1345 
1346 /*
1347  * Return maximum size of I/O possible at the supplied sector up to the current
1348  * target boundary.
1349  */
1350 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1351 {
1352 	sector_t target_offset = dm_target_offset(ti, sector);
1353 
1354 	return ti->len - target_offset;
1355 }
1356 
1357 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1358 {
1359 	sector_t len = max_io_len_target_boundary(sector, ti);
1360 	sector_t offset, max_len;
1361 
1362 	/*
1363 	 * Does the target need to split even further?
1364 	 */
1365 	if (ti->max_io_len) {
1366 		offset = dm_target_offset(ti, sector);
1367 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1368 			max_len = sector_div(offset, ti->max_io_len);
1369 		else
1370 			max_len = offset & (ti->max_io_len - 1);
1371 		max_len = ti->max_io_len - max_len;
1372 
1373 		if (len > max_len)
1374 			len = max_len;
1375 	}
1376 
1377 	return len;
1378 }
1379 
1380 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1381 {
1382 	if (len > UINT_MAX) {
1383 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1384 		      (unsigned long long)len, UINT_MAX);
1385 		ti->error = "Maximum size of target IO is too large";
1386 		return -EINVAL;
1387 	}
1388 
1389 	ti->max_io_len = (uint32_t) len;
1390 
1391 	return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1394 
1395 /*
1396  * A target may call dm_accept_partial_bio only from the map routine.  It is
1397  * allowed for all bio types except REQ_FLUSH.
1398  *
1399  * dm_accept_partial_bio informs the dm that the target only wants to process
1400  * additional n_sectors sectors of the bio and the rest of the data should be
1401  * sent in a next bio.
1402  *
1403  * A diagram that explains the arithmetics:
1404  * +--------------------+---------------+-------+
1405  * |         1          |       2       |   3   |
1406  * +--------------------+---------------+-------+
1407  *
1408  * <-------------- *tio->len_ptr --------------->
1409  *                      <------- bi_size ------->
1410  *                      <-- n_sectors -->
1411  *
1412  * Region 1 was already iterated over with bio_advance or similar function.
1413  *	(it may be empty if the target doesn't use bio_advance)
1414  * Region 2 is the remaining bio size that the target wants to process.
1415  *	(it may be empty if region 1 is non-empty, although there is no reason
1416  *	 to make it empty)
1417  * The target requires that region 3 is to be sent in the next bio.
1418  *
1419  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1420  * the partially processed part (the sum of regions 1+2) must be the same for all
1421  * copies of the bio.
1422  */
1423 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1424 {
1425 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1426 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1427 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1428 	BUG_ON(bi_size > *tio->len_ptr);
1429 	BUG_ON(n_sectors > bi_size);
1430 	*tio->len_ptr -= bi_size - n_sectors;
1431 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1432 }
1433 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1434 
1435 static void __map_bio(struct dm_target_io *tio)
1436 {
1437 	int r;
1438 	sector_t sector;
1439 	struct mapped_device *md;
1440 	struct bio *clone = &tio->clone;
1441 	struct dm_target *ti = tio->ti;
1442 
1443 	clone->bi_end_io = clone_endio;
1444 
1445 	/*
1446 	 * Map the clone.  If r == 0 we don't need to do
1447 	 * anything, the target has assumed ownership of
1448 	 * this io.
1449 	 */
1450 	atomic_inc(&tio->io->io_count);
1451 	sector = clone->bi_iter.bi_sector;
1452 	r = ti->type->map(ti, clone);
1453 	if (r == DM_MAPIO_REMAPPED) {
1454 		/* the bio has been remapped so dispatch it */
1455 
1456 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1457 				      tio->io->bio->bi_bdev->bd_dev, sector);
1458 
1459 		generic_make_request(clone);
1460 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1461 		/* error the io and bail out, or requeue it if needed */
1462 		md = tio->io->md;
1463 		dec_pending(tio->io, r);
1464 		free_tio(md, tio);
1465 	} else if (r) {
1466 		DMWARN("unimplemented target map return value: %d", r);
1467 		BUG();
1468 	}
1469 }
1470 
1471 struct clone_info {
1472 	struct mapped_device *md;
1473 	struct dm_table *map;
1474 	struct bio *bio;
1475 	struct dm_io *io;
1476 	sector_t sector;
1477 	unsigned sector_count;
1478 };
1479 
1480 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1481 {
1482 	bio->bi_iter.bi_sector = sector;
1483 	bio->bi_iter.bi_size = to_bytes(len);
1484 }
1485 
1486 /*
1487  * Creates a bio that consists of range of complete bvecs.
1488  */
1489 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1490 		      sector_t sector, unsigned len)
1491 {
1492 	struct bio *clone = &tio->clone;
1493 
1494 	__bio_clone_fast(clone, bio);
1495 
1496 	if (bio_integrity(bio))
1497 		bio_integrity_clone(clone, bio, GFP_NOIO);
1498 
1499 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1500 	clone->bi_iter.bi_size = to_bytes(len);
1501 
1502 	if (bio_integrity(bio))
1503 		bio_integrity_trim(clone, 0, len);
1504 }
1505 
1506 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1507 				      struct dm_target *ti,
1508 				      unsigned target_bio_nr)
1509 {
1510 	struct dm_target_io *tio;
1511 	struct bio *clone;
1512 
1513 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1514 	tio = container_of(clone, struct dm_target_io, clone);
1515 
1516 	tio->io = ci->io;
1517 	tio->ti = ti;
1518 	tio->target_bio_nr = target_bio_nr;
1519 
1520 	return tio;
1521 }
1522 
1523 static void __clone_and_map_simple_bio(struct clone_info *ci,
1524 				       struct dm_target *ti,
1525 				       unsigned target_bio_nr, unsigned *len)
1526 {
1527 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1528 	struct bio *clone = &tio->clone;
1529 
1530 	tio->len_ptr = len;
1531 
1532 	__bio_clone_fast(clone, ci->bio);
1533 	if (len)
1534 		bio_setup_sector(clone, ci->sector, *len);
1535 
1536 	__map_bio(tio);
1537 }
1538 
1539 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1540 				  unsigned num_bios, unsigned *len)
1541 {
1542 	unsigned target_bio_nr;
1543 
1544 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1545 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1546 }
1547 
1548 static int __send_empty_flush(struct clone_info *ci)
1549 {
1550 	unsigned target_nr = 0;
1551 	struct dm_target *ti;
1552 
1553 	BUG_ON(bio_has_data(ci->bio));
1554 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1555 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1556 
1557 	return 0;
1558 }
1559 
1560 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1561 				     sector_t sector, unsigned *len)
1562 {
1563 	struct bio *bio = ci->bio;
1564 	struct dm_target_io *tio;
1565 	unsigned target_bio_nr;
1566 	unsigned num_target_bios = 1;
1567 
1568 	/*
1569 	 * Does the target want to receive duplicate copies of the bio?
1570 	 */
1571 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1572 		num_target_bios = ti->num_write_bios(ti, bio);
1573 
1574 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1575 		tio = alloc_tio(ci, ti, target_bio_nr);
1576 		tio->len_ptr = len;
1577 		clone_bio(tio, bio, sector, *len);
1578 		__map_bio(tio);
1579 	}
1580 }
1581 
1582 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1583 
1584 static unsigned get_num_discard_bios(struct dm_target *ti)
1585 {
1586 	return ti->num_discard_bios;
1587 }
1588 
1589 static unsigned get_num_write_same_bios(struct dm_target *ti)
1590 {
1591 	return ti->num_write_same_bios;
1592 }
1593 
1594 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1595 
1596 static bool is_split_required_for_discard(struct dm_target *ti)
1597 {
1598 	return ti->split_discard_bios;
1599 }
1600 
1601 static int __send_changing_extent_only(struct clone_info *ci,
1602 				       get_num_bios_fn get_num_bios,
1603 				       is_split_required_fn is_split_required)
1604 {
1605 	struct dm_target *ti;
1606 	unsigned len;
1607 	unsigned num_bios;
1608 
1609 	do {
1610 		ti = dm_table_find_target(ci->map, ci->sector);
1611 		if (!dm_target_is_valid(ti))
1612 			return -EIO;
1613 
1614 		/*
1615 		 * Even though the device advertised support for this type of
1616 		 * request, that does not mean every target supports it, and
1617 		 * reconfiguration might also have changed that since the
1618 		 * check was performed.
1619 		 */
1620 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1621 		if (!num_bios)
1622 			return -EOPNOTSUPP;
1623 
1624 		if (is_split_required && !is_split_required(ti))
1625 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1626 		else
1627 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1628 
1629 		__send_duplicate_bios(ci, ti, num_bios, &len);
1630 
1631 		ci->sector += len;
1632 	} while (ci->sector_count -= len);
1633 
1634 	return 0;
1635 }
1636 
1637 static int __send_discard(struct clone_info *ci)
1638 {
1639 	return __send_changing_extent_only(ci, get_num_discard_bios,
1640 					   is_split_required_for_discard);
1641 }
1642 
1643 static int __send_write_same(struct clone_info *ci)
1644 {
1645 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1646 }
1647 
1648 /*
1649  * Select the correct strategy for processing a non-flush bio.
1650  */
1651 static int __split_and_process_non_flush(struct clone_info *ci)
1652 {
1653 	struct bio *bio = ci->bio;
1654 	struct dm_target *ti;
1655 	unsigned len;
1656 
1657 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1658 		return __send_discard(ci);
1659 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1660 		return __send_write_same(ci);
1661 
1662 	ti = dm_table_find_target(ci->map, ci->sector);
1663 	if (!dm_target_is_valid(ti))
1664 		return -EIO;
1665 
1666 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1667 
1668 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1669 
1670 	ci->sector += len;
1671 	ci->sector_count -= len;
1672 
1673 	return 0;
1674 }
1675 
1676 /*
1677  * Entry point to split a bio into clones and submit them to the targets.
1678  */
1679 static void __split_and_process_bio(struct mapped_device *md,
1680 				    struct dm_table *map, struct bio *bio)
1681 {
1682 	struct clone_info ci;
1683 	int error = 0;
1684 
1685 	if (unlikely(!map)) {
1686 		bio_io_error(bio);
1687 		return;
1688 	}
1689 
1690 	ci.map = map;
1691 	ci.md = md;
1692 	ci.io = alloc_io(md);
1693 	ci.io->error = 0;
1694 	atomic_set(&ci.io->io_count, 1);
1695 	ci.io->bio = bio;
1696 	ci.io->md = md;
1697 	spin_lock_init(&ci.io->endio_lock);
1698 	ci.sector = bio->bi_iter.bi_sector;
1699 
1700 	start_io_acct(ci.io);
1701 
1702 	if (bio->bi_rw & REQ_FLUSH) {
1703 		ci.bio = &ci.md->flush_bio;
1704 		ci.sector_count = 0;
1705 		error = __send_empty_flush(&ci);
1706 		/* dec_pending submits any data associated with flush */
1707 	} else {
1708 		ci.bio = bio;
1709 		ci.sector_count = bio_sectors(bio);
1710 		while (ci.sector_count && !error)
1711 			error = __split_and_process_non_flush(&ci);
1712 	}
1713 
1714 	/* drop the extra reference count */
1715 	dec_pending(ci.io, error);
1716 }
1717 /*-----------------------------------------------------------------
1718  * CRUD END
1719  *---------------------------------------------------------------*/
1720 
1721 static int dm_merge_bvec(struct request_queue *q,
1722 			 struct bvec_merge_data *bvm,
1723 			 struct bio_vec *biovec)
1724 {
1725 	struct mapped_device *md = q->queuedata;
1726 	struct dm_table *map = dm_get_live_table_fast(md);
1727 	struct dm_target *ti;
1728 	sector_t max_sectors;
1729 	int max_size = 0;
1730 
1731 	if (unlikely(!map))
1732 		goto out;
1733 
1734 	ti = dm_table_find_target(map, bvm->bi_sector);
1735 	if (!dm_target_is_valid(ti))
1736 		goto out;
1737 
1738 	/*
1739 	 * Find maximum amount of I/O that won't need splitting
1740 	 */
1741 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1742 			  (sector_t) queue_max_sectors(q));
1743 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1744 	if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1745 		max_size = 0;
1746 
1747 	/*
1748 	 * merge_bvec_fn() returns number of bytes
1749 	 * it can accept at this offset
1750 	 * max is precomputed maximal io size
1751 	 */
1752 	if (max_size && ti->type->merge)
1753 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1754 	/*
1755 	 * If the target doesn't support merge method and some of the devices
1756 	 * provided their merge_bvec method (we know this by looking for the
1757 	 * max_hw_sectors that dm_set_device_limits may set), then we can't
1758 	 * allow bios with multiple vector entries.  So always set max_size
1759 	 * to 0, and the code below allows just one page.
1760 	 */
1761 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1762 		max_size = 0;
1763 
1764 out:
1765 	dm_put_live_table_fast(md);
1766 	/*
1767 	 * Always allow an entire first page
1768 	 */
1769 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1770 		max_size = biovec->bv_len;
1771 
1772 	return max_size;
1773 }
1774 
1775 /*
1776  * The request function that just remaps the bio built up by
1777  * dm_merge_bvec.
1778  */
1779 static void dm_make_request(struct request_queue *q, struct bio *bio)
1780 {
1781 	int rw = bio_data_dir(bio);
1782 	struct mapped_device *md = q->queuedata;
1783 	int srcu_idx;
1784 	struct dm_table *map;
1785 
1786 	map = dm_get_live_table(md, &srcu_idx);
1787 
1788 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1789 
1790 	/* if we're suspended, we have to queue this io for later */
1791 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1792 		dm_put_live_table(md, srcu_idx);
1793 
1794 		if (bio_rw(bio) != READA)
1795 			queue_io(md, bio);
1796 		else
1797 			bio_io_error(bio);
1798 		return;
1799 	}
1800 
1801 	__split_and_process_bio(md, map, bio);
1802 	dm_put_live_table(md, srcu_idx);
1803 	return;
1804 }
1805 
1806 int dm_request_based(struct mapped_device *md)
1807 {
1808 	return blk_queue_stackable(md->queue);
1809 }
1810 
1811 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1812 {
1813 	int r;
1814 
1815 	if (blk_queue_io_stat(clone->q))
1816 		clone->cmd_flags |= REQ_IO_STAT;
1817 
1818 	clone->start_time = jiffies;
1819 	r = blk_insert_cloned_request(clone->q, clone);
1820 	if (r)
1821 		/* must complete clone in terms of original request */
1822 		dm_complete_request(rq, r);
1823 }
1824 
1825 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1826 				 void *data)
1827 {
1828 	struct dm_rq_target_io *tio = data;
1829 	struct dm_rq_clone_bio_info *info =
1830 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1831 
1832 	info->orig = bio_orig;
1833 	info->tio = tio;
1834 	bio->bi_end_io = end_clone_bio;
1835 
1836 	return 0;
1837 }
1838 
1839 static int setup_clone(struct request *clone, struct request *rq,
1840 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1841 {
1842 	int r;
1843 
1844 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1845 			      dm_rq_bio_constructor, tio);
1846 	if (r)
1847 		return r;
1848 
1849 	clone->cmd = rq->cmd;
1850 	clone->cmd_len = rq->cmd_len;
1851 	clone->sense = rq->sense;
1852 	clone->end_io = end_clone_request;
1853 	clone->end_io_data = tio;
1854 
1855 	tio->clone = clone;
1856 
1857 	return 0;
1858 }
1859 
1860 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1861 				struct dm_rq_target_io *tio, gfp_t gfp_mask)
1862 {
1863 	/*
1864 	 * Do not allocate a clone if tio->clone was already set
1865 	 * (see: dm_mq_queue_rq).
1866 	 */
1867 	bool alloc_clone = !tio->clone;
1868 	struct request *clone;
1869 
1870 	if (alloc_clone) {
1871 		clone = alloc_clone_request(md, gfp_mask);
1872 		if (!clone)
1873 			return NULL;
1874 	} else
1875 		clone = tio->clone;
1876 
1877 	blk_rq_init(NULL, clone);
1878 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1879 		/* -ENOMEM */
1880 		if (alloc_clone)
1881 			free_clone_request(md, clone);
1882 		return NULL;
1883 	}
1884 
1885 	return clone;
1886 }
1887 
1888 static void map_tio_request(struct kthread_work *work);
1889 
1890 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1891 		     struct mapped_device *md)
1892 {
1893 	tio->md = md;
1894 	tio->ti = NULL;
1895 	tio->clone = NULL;
1896 	tio->orig = rq;
1897 	tio->error = 0;
1898 	memset(&tio->info, 0, sizeof(tio->info));
1899 	if (md->kworker_task)
1900 		init_kthread_work(&tio->work, map_tio_request);
1901 }
1902 
1903 static struct dm_rq_target_io *prep_tio(struct request *rq,
1904 					struct mapped_device *md, gfp_t gfp_mask)
1905 {
1906 	struct dm_rq_target_io *tio;
1907 	int srcu_idx;
1908 	struct dm_table *table;
1909 
1910 	tio = alloc_rq_tio(md, gfp_mask);
1911 	if (!tio)
1912 		return NULL;
1913 
1914 	init_tio(tio, rq, md);
1915 
1916 	table = dm_get_live_table(md, &srcu_idx);
1917 	if (!dm_table_mq_request_based(table)) {
1918 		if (!clone_rq(rq, md, tio, gfp_mask)) {
1919 			dm_put_live_table(md, srcu_idx);
1920 			free_rq_tio(tio);
1921 			return NULL;
1922 		}
1923 	}
1924 	dm_put_live_table(md, srcu_idx);
1925 
1926 	return tio;
1927 }
1928 
1929 /*
1930  * Called with the queue lock held.
1931  */
1932 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1933 {
1934 	struct mapped_device *md = q->queuedata;
1935 	struct dm_rq_target_io *tio;
1936 
1937 	if (unlikely(rq->special)) {
1938 		DMWARN("Already has something in rq->special.");
1939 		return BLKPREP_KILL;
1940 	}
1941 
1942 	tio = prep_tio(rq, md, GFP_ATOMIC);
1943 	if (!tio)
1944 		return BLKPREP_DEFER;
1945 
1946 	rq->special = tio;
1947 	rq->cmd_flags |= REQ_DONTPREP;
1948 
1949 	return BLKPREP_OK;
1950 }
1951 
1952 /*
1953  * Returns:
1954  * 0                : the request has been processed
1955  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1956  * < 0              : the request was completed due to failure
1957  */
1958 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1959 		       struct mapped_device *md)
1960 {
1961 	int r;
1962 	struct dm_target *ti = tio->ti;
1963 	struct request *clone = NULL;
1964 
1965 	if (tio->clone) {
1966 		clone = tio->clone;
1967 		r = ti->type->map_rq(ti, clone, &tio->info);
1968 	} else {
1969 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1970 		if (r < 0) {
1971 			/* The target wants to complete the I/O */
1972 			dm_kill_unmapped_request(rq, r);
1973 			return r;
1974 		}
1975 		if (IS_ERR(clone))
1976 			return DM_MAPIO_REQUEUE;
1977 		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1978 			/* -ENOMEM */
1979 			ti->type->release_clone_rq(clone);
1980 			return DM_MAPIO_REQUEUE;
1981 		}
1982 	}
1983 
1984 	switch (r) {
1985 	case DM_MAPIO_SUBMITTED:
1986 		/* The target has taken the I/O to submit by itself later */
1987 		break;
1988 	case DM_MAPIO_REMAPPED:
1989 		/* The target has remapped the I/O so dispatch it */
1990 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1991 				     blk_rq_pos(rq));
1992 		dm_dispatch_clone_request(clone, rq);
1993 		break;
1994 	case DM_MAPIO_REQUEUE:
1995 		/* The target wants to requeue the I/O */
1996 		dm_requeue_unmapped_request(clone);
1997 		break;
1998 	default:
1999 		if (r > 0) {
2000 			DMWARN("unimplemented target map return value: %d", r);
2001 			BUG();
2002 		}
2003 
2004 		/* The target wants to complete the I/O */
2005 		dm_kill_unmapped_request(rq, r);
2006 		return r;
2007 	}
2008 
2009 	return 0;
2010 }
2011 
2012 static void map_tio_request(struct kthread_work *work)
2013 {
2014 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2015 	struct request *rq = tio->orig;
2016 	struct mapped_device *md = tio->md;
2017 
2018 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2019 		dm_requeue_unmapped_original_request(md, rq);
2020 }
2021 
2022 static void dm_start_request(struct mapped_device *md, struct request *orig)
2023 {
2024 	if (!orig->q->mq_ops)
2025 		blk_start_request(orig);
2026 	else
2027 		blk_mq_start_request(orig);
2028 	atomic_inc(&md->pending[rq_data_dir(orig)]);
2029 
2030 	if (md->seq_rq_merge_deadline_usecs) {
2031 		md->last_rq_pos = rq_end_sector(orig);
2032 		md->last_rq_rw = rq_data_dir(orig);
2033 		md->last_rq_start_time = ktime_get();
2034 	}
2035 
2036 	/*
2037 	 * Hold the md reference here for the in-flight I/O.
2038 	 * We can't rely on the reference count by device opener,
2039 	 * because the device may be closed during the request completion
2040 	 * when all bios are completed.
2041 	 * See the comment in rq_completed() too.
2042 	 */
2043 	dm_get(md);
2044 }
2045 
2046 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2047 
2048 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2049 {
2050 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2051 }
2052 
2053 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2054 						     const char *buf, size_t count)
2055 {
2056 	unsigned deadline;
2057 
2058 	if (!dm_request_based(md) || md->use_blk_mq)
2059 		return count;
2060 
2061 	if (kstrtouint(buf, 10, &deadline))
2062 		return -EINVAL;
2063 
2064 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2065 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2066 
2067 	md->seq_rq_merge_deadline_usecs = deadline;
2068 
2069 	return count;
2070 }
2071 
2072 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2073 {
2074 	ktime_t kt_deadline;
2075 
2076 	if (!md->seq_rq_merge_deadline_usecs)
2077 		return false;
2078 
2079 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2080 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2081 
2082 	return !ktime_after(ktime_get(), kt_deadline);
2083 }
2084 
2085 /*
2086  * q->request_fn for request-based dm.
2087  * Called with the queue lock held.
2088  */
2089 static void dm_request_fn(struct request_queue *q)
2090 {
2091 	struct mapped_device *md = q->queuedata;
2092 	int srcu_idx;
2093 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2094 	struct dm_target *ti;
2095 	struct request *rq;
2096 	struct dm_rq_target_io *tio;
2097 	sector_t pos;
2098 
2099 	/*
2100 	 * For suspend, check blk_queue_stopped() and increment
2101 	 * ->pending within a single queue_lock not to increment the
2102 	 * number of in-flight I/Os after the queue is stopped in
2103 	 * dm_suspend().
2104 	 */
2105 	while (!blk_queue_stopped(q)) {
2106 		rq = blk_peek_request(q);
2107 		if (!rq)
2108 			goto out;
2109 
2110 		/* always use block 0 to find the target for flushes for now */
2111 		pos = 0;
2112 		if (!(rq->cmd_flags & REQ_FLUSH))
2113 			pos = blk_rq_pos(rq);
2114 
2115 		ti = dm_table_find_target(map, pos);
2116 		if (!dm_target_is_valid(ti)) {
2117 			/*
2118 			 * Must perform setup, that rq_completed() requires,
2119 			 * before calling dm_kill_unmapped_request
2120 			 */
2121 			DMERR_LIMIT("request attempted access beyond the end of device");
2122 			dm_start_request(md, rq);
2123 			dm_kill_unmapped_request(rq, -EIO);
2124 			continue;
2125 		}
2126 
2127 		if (dm_request_peeked_before_merge_deadline(md) &&
2128 		    md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2129 		    md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2130 			goto delay_and_out;
2131 
2132 		if (ti->type->busy && ti->type->busy(ti))
2133 			goto delay_and_out;
2134 
2135 		dm_start_request(md, rq);
2136 
2137 		tio = tio_from_request(rq);
2138 		/* Establish tio->ti before queuing work (map_tio_request) */
2139 		tio->ti = ti;
2140 		queue_kthread_work(&md->kworker, &tio->work);
2141 		BUG_ON(!irqs_disabled());
2142 	}
2143 
2144 	goto out;
2145 
2146 delay_and_out:
2147 	blk_delay_queue(q, HZ / 100);
2148 out:
2149 	dm_put_live_table(md, srcu_idx);
2150 }
2151 
2152 static int dm_any_congested(void *congested_data, int bdi_bits)
2153 {
2154 	int r = bdi_bits;
2155 	struct mapped_device *md = congested_data;
2156 	struct dm_table *map;
2157 
2158 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2159 		map = dm_get_live_table_fast(md);
2160 		if (map) {
2161 			/*
2162 			 * Request-based dm cares about only own queue for
2163 			 * the query about congestion status of request_queue
2164 			 */
2165 			if (dm_request_based(md))
2166 				r = md->queue->backing_dev_info.state &
2167 				    bdi_bits;
2168 			else
2169 				r = dm_table_any_congested(map, bdi_bits);
2170 		}
2171 		dm_put_live_table_fast(md);
2172 	}
2173 
2174 	return r;
2175 }
2176 
2177 /*-----------------------------------------------------------------
2178  * An IDR is used to keep track of allocated minor numbers.
2179  *---------------------------------------------------------------*/
2180 static void free_minor(int minor)
2181 {
2182 	spin_lock(&_minor_lock);
2183 	idr_remove(&_minor_idr, minor);
2184 	spin_unlock(&_minor_lock);
2185 }
2186 
2187 /*
2188  * See if the device with a specific minor # is free.
2189  */
2190 static int specific_minor(int minor)
2191 {
2192 	int r;
2193 
2194 	if (minor >= (1 << MINORBITS))
2195 		return -EINVAL;
2196 
2197 	idr_preload(GFP_KERNEL);
2198 	spin_lock(&_minor_lock);
2199 
2200 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2201 
2202 	spin_unlock(&_minor_lock);
2203 	idr_preload_end();
2204 	if (r < 0)
2205 		return r == -ENOSPC ? -EBUSY : r;
2206 	return 0;
2207 }
2208 
2209 static int next_free_minor(int *minor)
2210 {
2211 	int r;
2212 
2213 	idr_preload(GFP_KERNEL);
2214 	spin_lock(&_minor_lock);
2215 
2216 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2217 
2218 	spin_unlock(&_minor_lock);
2219 	idr_preload_end();
2220 	if (r < 0)
2221 		return r;
2222 	*minor = r;
2223 	return 0;
2224 }
2225 
2226 static const struct block_device_operations dm_blk_dops;
2227 
2228 static void dm_wq_work(struct work_struct *work);
2229 
2230 static void dm_init_md_queue(struct mapped_device *md)
2231 {
2232 	/*
2233 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2234 	 * devices.  The type of this dm device may not have been decided yet.
2235 	 * The type is decided at the first table loading time.
2236 	 * To prevent problematic device stacking, clear the queue flag
2237 	 * for request stacking support until then.
2238 	 *
2239 	 * This queue is new, so no concurrency on the queue_flags.
2240 	 */
2241 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2242 }
2243 
2244 static void dm_init_old_md_queue(struct mapped_device *md)
2245 {
2246 	md->use_blk_mq = false;
2247 	dm_init_md_queue(md);
2248 
2249 	/*
2250 	 * Initialize aspects of queue that aren't relevant for blk-mq
2251 	 */
2252 	md->queue->queuedata = md;
2253 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2254 	md->queue->backing_dev_info.congested_data = md;
2255 
2256 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2257 }
2258 
2259 /*
2260  * Allocate and initialise a blank device with a given minor.
2261  */
2262 static struct mapped_device *alloc_dev(int minor)
2263 {
2264 	int r;
2265 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2266 	void *old_md;
2267 
2268 	if (!md) {
2269 		DMWARN("unable to allocate device, out of memory.");
2270 		return NULL;
2271 	}
2272 
2273 	if (!try_module_get(THIS_MODULE))
2274 		goto bad_module_get;
2275 
2276 	/* get a minor number for the dev */
2277 	if (minor == DM_ANY_MINOR)
2278 		r = next_free_minor(&minor);
2279 	else
2280 		r = specific_minor(minor);
2281 	if (r < 0)
2282 		goto bad_minor;
2283 
2284 	r = init_srcu_struct(&md->io_barrier);
2285 	if (r < 0)
2286 		goto bad_io_barrier;
2287 
2288 	md->use_blk_mq = use_blk_mq;
2289 	md->type = DM_TYPE_NONE;
2290 	mutex_init(&md->suspend_lock);
2291 	mutex_init(&md->type_lock);
2292 	mutex_init(&md->table_devices_lock);
2293 	spin_lock_init(&md->deferred_lock);
2294 	atomic_set(&md->holders, 1);
2295 	atomic_set(&md->open_count, 0);
2296 	atomic_set(&md->event_nr, 0);
2297 	atomic_set(&md->uevent_seq, 0);
2298 	INIT_LIST_HEAD(&md->uevent_list);
2299 	INIT_LIST_HEAD(&md->table_devices);
2300 	spin_lock_init(&md->uevent_lock);
2301 
2302 	md->queue = blk_alloc_queue(GFP_KERNEL);
2303 	if (!md->queue)
2304 		goto bad_queue;
2305 
2306 	dm_init_md_queue(md);
2307 
2308 	md->disk = alloc_disk(1);
2309 	if (!md->disk)
2310 		goto bad_disk;
2311 
2312 	atomic_set(&md->pending[0], 0);
2313 	atomic_set(&md->pending[1], 0);
2314 	init_waitqueue_head(&md->wait);
2315 	INIT_WORK(&md->work, dm_wq_work);
2316 	init_waitqueue_head(&md->eventq);
2317 	init_completion(&md->kobj_holder.completion);
2318 	md->kworker_task = NULL;
2319 
2320 	md->disk->major = _major;
2321 	md->disk->first_minor = minor;
2322 	md->disk->fops = &dm_blk_dops;
2323 	md->disk->queue = md->queue;
2324 	md->disk->private_data = md;
2325 	sprintf(md->disk->disk_name, "dm-%d", minor);
2326 	add_disk(md->disk);
2327 	format_dev_t(md->name, MKDEV(_major, minor));
2328 
2329 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2330 	if (!md->wq)
2331 		goto bad_thread;
2332 
2333 	md->bdev = bdget_disk(md->disk, 0);
2334 	if (!md->bdev)
2335 		goto bad_bdev;
2336 
2337 	bio_init(&md->flush_bio);
2338 	md->flush_bio.bi_bdev = md->bdev;
2339 	md->flush_bio.bi_rw = WRITE_FLUSH;
2340 
2341 	dm_stats_init(&md->stats);
2342 
2343 	/* Populate the mapping, nobody knows we exist yet */
2344 	spin_lock(&_minor_lock);
2345 	old_md = idr_replace(&_minor_idr, md, minor);
2346 	spin_unlock(&_minor_lock);
2347 
2348 	BUG_ON(old_md != MINOR_ALLOCED);
2349 
2350 	return md;
2351 
2352 bad_bdev:
2353 	destroy_workqueue(md->wq);
2354 bad_thread:
2355 	del_gendisk(md->disk);
2356 	put_disk(md->disk);
2357 bad_disk:
2358 	blk_cleanup_queue(md->queue);
2359 bad_queue:
2360 	cleanup_srcu_struct(&md->io_barrier);
2361 bad_io_barrier:
2362 	free_minor(minor);
2363 bad_minor:
2364 	module_put(THIS_MODULE);
2365 bad_module_get:
2366 	kfree(md);
2367 	return NULL;
2368 }
2369 
2370 static void unlock_fs(struct mapped_device *md);
2371 
2372 static void free_dev(struct mapped_device *md)
2373 {
2374 	int minor = MINOR(disk_devt(md->disk));
2375 
2376 	unlock_fs(md);
2377 	destroy_workqueue(md->wq);
2378 
2379 	if (md->kworker_task)
2380 		kthread_stop(md->kworker_task);
2381 	if (md->io_pool)
2382 		mempool_destroy(md->io_pool);
2383 	if (md->rq_pool)
2384 		mempool_destroy(md->rq_pool);
2385 	if (md->bs)
2386 		bioset_free(md->bs);
2387 
2388 	cleanup_srcu_struct(&md->io_barrier);
2389 	free_table_devices(&md->table_devices);
2390 	dm_stats_cleanup(&md->stats);
2391 
2392 	spin_lock(&_minor_lock);
2393 	md->disk->private_data = NULL;
2394 	spin_unlock(&_minor_lock);
2395 	if (blk_get_integrity(md->disk))
2396 		blk_integrity_unregister(md->disk);
2397 	del_gendisk(md->disk);
2398 	put_disk(md->disk);
2399 	blk_cleanup_queue(md->queue);
2400 	if (md->use_blk_mq)
2401 		blk_mq_free_tag_set(&md->tag_set);
2402 	bdput(md->bdev);
2403 	free_minor(minor);
2404 
2405 	module_put(THIS_MODULE);
2406 	kfree(md);
2407 }
2408 
2409 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2410 {
2411 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2412 
2413 	if (md->bs) {
2414 		/* The md already has necessary mempools. */
2415 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2416 			/*
2417 			 * Reload bioset because front_pad may have changed
2418 			 * because a different table was loaded.
2419 			 */
2420 			bioset_free(md->bs);
2421 			md->bs = p->bs;
2422 			p->bs = NULL;
2423 		}
2424 		/*
2425 		 * There's no need to reload with request-based dm
2426 		 * because the size of front_pad doesn't change.
2427 		 * Note for future: If you are to reload bioset,
2428 		 * prep-ed requests in the queue may refer
2429 		 * to bio from the old bioset, so you must walk
2430 		 * through the queue to unprep.
2431 		 */
2432 		goto out;
2433 	}
2434 
2435 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2436 
2437 	md->io_pool = p->io_pool;
2438 	p->io_pool = NULL;
2439 	md->rq_pool = p->rq_pool;
2440 	p->rq_pool = NULL;
2441 	md->bs = p->bs;
2442 	p->bs = NULL;
2443 
2444 out:
2445 	/* mempool bind completed, no longer need any mempools in the table */
2446 	dm_table_free_md_mempools(t);
2447 }
2448 
2449 /*
2450  * Bind a table to the device.
2451  */
2452 static void event_callback(void *context)
2453 {
2454 	unsigned long flags;
2455 	LIST_HEAD(uevents);
2456 	struct mapped_device *md = (struct mapped_device *) context;
2457 
2458 	spin_lock_irqsave(&md->uevent_lock, flags);
2459 	list_splice_init(&md->uevent_list, &uevents);
2460 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2461 
2462 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2463 
2464 	atomic_inc(&md->event_nr);
2465 	wake_up(&md->eventq);
2466 }
2467 
2468 /*
2469  * Protected by md->suspend_lock obtained by dm_swap_table().
2470  */
2471 static void __set_size(struct mapped_device *md, sector_t size)
2472 {
2473 	set_capacity(md->disk, size);
2474 
2475 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2476 }
2477 
2478 /*
2479  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2480  *
2481  * If this function returns 0, then the device is either a non-dm
2482  * device without a merge_bvec_fn, or it is a dm device that is
2483  * able to split any bios it receives that are too big.
2484  */
2485 int dm_queue_merge_is_compulsory(struct request_queue *q)
2486 {
2487 	struct mapped_device *dev_md;
2488 
2489 	if (!q->merge_bvec_fn)
2490 		return 0;
2491 
2492 	if (q->make_request_fn == dm_make_request) {
2493 		dev_md = q->queuedata;
2494 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2495 			return 0;
2496 	}
2497 
2498 	return 1;
2499 }
2500 
2501 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2502 					 struct dm_dev *dev, sector_t start,
2503 					 sector_t len, void *data)
2504 {
2505 	struct block_device *bdev = dev->bdev;
2506 	struct request_queue *q = bdev_get_queue(bdev);
2507 
2508 	return dm_queue_merge_is_compulsory(q);
2509 }
2510 
2511 /*
2512  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2513  * on the properties of the underlying devices.
2514  */
2515 static int dm_table_merge_is_optional(struct dm_table *table)
2516 {
2517 	unsigned i = 0;
2518 	struct dm_target *ti;
2519 
2520 	while (i < dm_table_get_num_targets(table)) {
2521 		ti = dm_table_get_target(table, i++);
2522 
2523 		if (ti->type->iterate_devices &&
2524 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2525 			return 0;
2526 	}
2527 
2528 	return 1;
2529 }
2530 
2531 /*
2532  * Returns old map, which caller must destroy.
2533  */
2534 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2535 			       struct queue_limits *limits)
2536 {
2537 	struct dm_table *old_map;
2538 	struct request_queue *q = md->queue;
2539 	sector_t size;
2540 	int merge_is_optional;
2541 
2542 	size = dm_table_get_size(t);
2543 
2544 	/*
2545 	 * Wipe any geometry if the size of the table changed.
2546 	 */
2547 	if (size != dm_get_size(md))
2548 		memset(&md->geometry, 0, sizeof(md->geometry));
2549 
2550 	__set_size(md, size);
2551 
2552 	dm_table_event_callback(t, event_callback, md);
2553 
2554 	/*
2555 	 * The queue hasn't been stopped yet, if the old table type wasn't
2556 	 * for request-based during suspension.  So stop it to prevent
2557 	 * I/O mapping before resume.
2558 	 * This must be done before setting the queue restrictions,
2559 	 * because request-based dm may be run just after the setting.
2560 	 */
2561 	if (dm_table_request_based(t))
2562 		stop_queue(q);
2563 
2564 	__bind_mempools(md, t);
2565 
2566 	merge_is_optional = dm_table_merge_is_optional(t);
2567 
2568 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2569 	rcu_assign_pointer(md->map, t);
2570 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2571 
2572 	dm_table_set_restrictions(t, q, limits);
2573 	if (merge_is_optional)
2574 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2575 	else
2576 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2577 	if (old_map)
2578 		dm_sync_table(md);
2579 
2580 	return old_map;
2581 }
2582 
2583 /*
2584  * Returns unbound table for the caller to free.
2585  */
2586 static struct dm_table *__unbind(struct mapped_device *md)
2587 {
2588 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2589 
2590 	if (!map)
2591 		return NULL;
2592 
2593 	dm_table_event_callback(map, NULL, NULL);
2594 	RCU_INIT_POINTER(md->map, NULL);
2595 	dm_sync_table(md);
2596 
2597 	return map;
2598 }
2599 
2600 /*
2601  * Constructor for a new device.
2602  */
2603 int dm_create(int minor, struct mapped_device **result)
2604 {
2605 	struct mapped_device *md;
2606 
2607 	md = alloc_dev(minor);
2608 	if (!md)
2609 		return -ENXIO;
2610 
2611 	dm_sysfs_init(md);
2612 
2613 	*result = md;
2614 	return 0;
2615 }
2616 
2617 /*
2618  * Functions to manage md->type.
2619  * All are required to hold md->type_lock.
2620  */
2621 void dm_lock_md_type(struct mapped_device *md)
2622 {
2623 	mutex_lock(&md->type_lock);
2624 }
2625 
2626 void dm_unlock_md_type(struct mapped_device *md)
2627 {
2628 	mutex_unlock(&md->type_lock);
2629 }
2630 
2631 void dm_set_md_type(struct mapped_device *md, unsigned type)
2632 {
2633 	BUG_ON(!mutex_is_locked(&md->type_lock));
2634 	md->type = type;
2635 }
2636 
2637 unsigned dm_get_md_type(struct mapped_device *md)
2638 {
2639 	BUG_ON(!mutex_is_locked(&md->type_lock));
2640 	return md->type;
2641 }
2642 
2643 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2644 {
2645 	return md->immutable_target_type;
2646 }
2647 
2648 /*
2649  * The queue_limits are only valid as long as you have a reference
2650  * count on 'md'.
2651  */
2652 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2653 {
2654 	BUG_ON(!atomic_read(&md->holders));
2655 	return &md->queue->limits;
2656 }
2657 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2658 
2659 static void init_rq_based_worker_thread(struct mapped_device *md)
2660 {
2661 	/* Initialize the request-based DM worker thread */
2662 	init_kthread_worker(&md->kworker);
2663 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2664 				       "kdmwork-%s", dm_device_name(md));
2665 }
2666 
2667 /*
2668  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2669  */
2670 static int dm_init_request_based_queue(struct mapped_device *md)
2671 {
2672 	struct request_queue *q = NULL;
2673 
2674 	/* Fully initialize the queue */
2675 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2676 	if (!q)
2677 		return -EINVAL;
2678 
2679 	/* disable dm_request_fn's merge heuristic by default */
2680 	md->seq_rq_merge_deadline_usecs = 0;
2681 
2682 	md->queue = q;
2683 	dm_init_old_md_queue(md);
2684 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2685 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2686 
2687 	init_rq_based_worker_thread(md);
2688 
2689 	elv_register_queue(md->queue);
2690 
2691 	return 0;
2692 }
2693 
2694 static int dm_mq_init_request(void *data, struct request *rq,
2695 			      unsigned int hctx_idx, unsigned int request_idx,
2696 			      unsigned int numa_node)
2697 {
2698 	struct mapped_device *md = data;
2699 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2700 
2701 	/*
2702 	 * Must initialize md member of tio, otherwise it won't
2703 	 * be available in dm_mq_queue_rq.
2704 	 */
2705 	tio->md = md;
2706 
2707 	return 0;
2708 }
2709 
2710 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2711 			  const struct blk_mq_queue_data *bd)
2712 {
2713 	struct request *rq = bd->rq;
2714 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2715 	struct mapped_device *md = tio->md;
2716 	int srcu_idx;
2717 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2718 	struct dm_target *ti;
2719 	sector_t pos;
2720 
2721 	/* always use block 0 to find the target for flushes for now */
2722 	pos = 0;
2723 	if (!(rq->cmd_flags & REQ_FLUSH))
2724 		pos = blk_rq_pos(rq);
2725 
2726 	ti = dm_table_find_target(map, pos);
2727 	if (!dm_target_is_valid(ti)) {
2728 		dm_put_live_table(md, srcu_idx);
2729 		DMERR_LIMIT("request attempted access beyond the end of device");
2730 		/*
2731 		 * Must perform setup, that rq_completed() requires,
2732 		 * before returning BLK_MQ_RQ_QUEUE_ERROR
2733 		 */
2734 		dm_start_request(md, rq);
2735 		return BLK_MQ_RQ_QUEUE_ERROR;
2736 	}
2737 	dm_put_live_table(md, srcu_idx);
2738 
2739 	if (ti->type->busy && ti->type->busy(ti))
2740 		return BLK_MQ_RQ_QUEUE_BUSY;
2741 
2742 	dm_start_request(md, rq);
2743 
2744 	/* Init tio using md established in .init_request */
2745 	init_tio(tio, rq, md);
2746 
2747 	/*
2748 	 * Establish tio->ti before queuing work (map_tio_request)
2749 	 * or making direct call to map_request().
2750 	 */
2751 	tio->ti = ti;
2752 
2753 	/* Clone the request if underlying devices aren't blk-mq */
2754 	if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2755 		/* clone request is allocated at the end of the pdu */
2756 		tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2757 		if (!clone_rq(rq, md, tio, GFP_ATOMIC))
2758 			return BLK_MQ_RQ_QUEUE_BUSY;
2759 		queue_kthread_work(&md->kworker, &tio->work);
2760 	} else {
2761 		/* Direct call is fine since .queue_rq allows allocations */
2762 		if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2763 			dm_requeue_unmapped_original_request(md, rq);
2764 	}
2765 
2766 	return BLK_MQ_RQ_QUEUE_OK;
2767 }
2768 
2769 static struct blk_mq_ops dm_mq_ops = {
2770 	.queue_rq = dm_mq_queue_rq,
2771 	.map_queue = blk_mq_map_queue,
2772 	.complete = dm_softirq_done,
2773 	.init_request = dm_mq_init_request,
2774 };
2775 
2776 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2777 {
2778 	unsigned md_type = dm_get_md_type(md);
2779 	struct request_queue *q;
2780 	int err;
2781 
2782 	memset(&md->tag_set, 0, sizeof(md->tag_set));
2783 	md->tag_set.ops = &dm_mq_ops;
2784 	md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2785 	md->tag_set.numa_node = NUMA_NO_NODE;
2786 	md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2787 	md->tag_set.nr_hw_queues = 1;
2788 	if (md_type == DM_TYPE_REQUEST_BASED) {
2789 		/* make the memory for non-blk-mq clone part of the pdu */
2790 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2791 	} else
2792 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2793 	md->tag_set.driver_data = md;
2794 
2795 	err = blk_mq_alloc_tag_set(&md->tag_set);
2796 	if (err)
2797 		return err;
2798 
2799 	q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2800 	if (IS_ERR(q)) {
2801 		err = PTR_ERR(q);
2802 		goto out_tag_set;
2803 	}
2804 	md->queue = q;
2805 	dm_init_md_queue(md);
2806 
2807 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2808 	blk_mq_register_disk(md->disk);
2809 
2810 	if (md_type == DM_TYPE_REQUEST_BASED)
2811 		init_rq_based_worker_thread(md);
2812 
2813 	return 0;
2814 
2815 out_tag_set:
2816 	blk_mq_free_tag_set(&md->tag_set);
2817 	return err;
2818 }
2819 
2820 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2821 {
2822 	if (type == DM_TYPE_BIO_BASED)
2823 		return type;
2824 
2825 	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2826 }
2827 
2828 /*
2829  * Setup the DM device's queue based on md's type
2830  */
2831 int dm_setup_md_queue(struct mapped_device *md)
2832 {
2833 	int r;
2834 	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2835 
2836 	switch (md_type) {
2837 	case DM_TYPE_REQUEST_BASED:
2838 		r = dm_init_request_based_queue(md);
2839 		if (r) {
2840 			DMWARN("Cannot initialize queue for request-based mapped device");
2841 			return r;
2842 		}
2843 		break;
2844 	case DM_TYPE_MQ_REQUEST_BASED:
2845 		r = dm_init_request_based_blk_mq_queue(md);
2846 		if (r) {
2847 			DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2848 			return r;
2849 		}
2850 		break;
2851 	case DM_TYPE_BIO_BASED:
2852 		dm_init_old_md_queue(md);
2853 		blk_queue_make_request(md->queue, dm_make_request);
2854 		blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2855 		break;
2856 	}
2857 
2858 	return 0;
2859 }
2860 
2861 struct mapped_device *dm_get_md(dev_t dev)
2862 {
2863 	struct mapped_device *md;
2864 	unsigned minor = MINOR(dev);
2865 
2866 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2867 		return NULL;
2868 
2869 	spin_lock(&_minor_lock);
2870 
2871 	md = idr_find(&_minor_idr, minor);
2872 	if (md) {
2873 		if ((md == MINOR_ALLOCED ||
2874 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2875 		     dm_deleting_md(md) ||
2876 		     test_bit(DMF_FREEING, &md->flags))) {
2877 			md = NULL;
2878 			goto out;
2879 		}
2880 		dm_get(md);
2881 	}
2882 
2883 out:
2884 	spin_unlock(&_minor_lock);
2885 
2886 	return md;
2887 }
2888 EXPORT_SYMBOL_GPL(dm_get_md);
2889 
2890 void *dm_get_mdptr(struct mapped_device *md)
2891 {
2892 	return md->interface_ptr;
2893 }
2894 
2895 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2896 {
2897 	md->interface_ptr = ptr;
2898 }
2899 
2900 void dm_get(struct mapped_device *md)
2901 {
2902 	atomic_inc(&md->holders);
2903 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2904 }
2905 
2906 int dm_hold(struct mapped_device *md)
2907 {
2908 	spin_lock(&_minor_lock);
2909 	if (test_bit(DMF_FREEING, &md->flags)) {
2910 		spin_unlock(&_minor_lock);
2911 		return -EBUSY;
2912 	}
2913 	dm_get(md);
2914 	spin_unlock(&_minor_lock);
2915 	return 0;
2916 }
2917 EXPORT_SYMBOL_GPL(dm_hold);
2918 
2919 const char *dm_device_name(struct mapped_device *md)
2920 {
2921 	return md->name;
2922 }
2923 EXPORT_SYMBOL_GPL(dm_device_name);
2924 
2925 static void __dm_destroy(struct mapped_device *md, bool wait)
2926 {
2927 	struct dm_table *map;
2928 	int srcu_idx;
2929 
2930 	might_sleep();
2931 
2932 	map = dm_get_live_table(md, &srcu_idx);
2933 
2934 	spin_lock(&_minor_lock);
2935 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2936 	set_bit(DMF_FREEING, &md->flags);
2937 	spin_unlock(&_minor_lock);
2938 
2939 	if (dm_request_based(md) && md->kworker_task)
2940 		flush_kthread_worker(&md->kworker);
2941 
2942 	/*
2943 	 * Take suspend_lock so that presuspend and postsuspend methods
2944 	 * do not race with internal suspend.
2945 	 */
2946 	mutex_lock(&md->suspend_lock);
2947 	if (!dm_suspended_md(md)) {
2948 		dm_table_presuspend_targets(map);
2949 		dm_table_postsuspend_targets(map);
2950 	}
2951 	mutex_unlock(&md->suspend_lock);
2952 
2953 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2954 	dm_put_live_table(md, srcu_idx);
2955 
2956 	/*
2957 	 * Rare, but there may be I/O requests still going to complete,
2958 	 * for example.  Wait for all references to disappear.
2959 	 * No one should increment the reference count of the mapped_device,
2960 	 * after the mapped_device state becomes DMF_FREEING.
2961 	 */
2962 	if (wait)
2963 		while (atomic_read(&md->holders))
2964 			msleep(1);
2965 	else if (atomic_read(&md->holders))
2966 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2967 		       dm_device_name(md), atomic_read(&md->holders));
2968 
2969 	dm_sysfs_exit(md);
2970 	dm_table_destroy(__unbind(md));
2971 	free_dev(md);
2972 }
2973 
2974 void dm_destroy(struct mapped_device *md)
2975 {
2976 	__dm_destroy(md, true);
2977 }
2978 
2979 void dm_destroy_immediate(struct mapped_device *md)
2980 {
2981 	__dm_destroy(md, false);
2982 }
2983 
2984 void dm_put(struct mapped_device *md)
2985 {
2986 	atomic_dec(&md->holders);
2987 }
2988 EXPORT_SYMBOL_GPL(dm_put);
2989 
2990 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2991 {
2992 	int r = 0;
2993 	DECLARE_WAITQUEUE(wait, current);
2994 
2995 	add_wait_queue(&md->wait, &wait);
2996 
2997 	while (1) {
2998 		set_current_state(interruptible);
2999 
3000 		if (!md_in_flight(md))
3001 			break;
3002 
3003 		if (interruptible == TASK_INTERRUPTIBLE &&
3004 		    signal_pending(current)) {
3005 			r = -EINTR;
3006 			break;
3007 		}
3008 
3009 		io_schedule();
3010 	}
3011 	set_current_state(TASK_RUNNING);
3012 
3013 	remove_wait_queue(&md->wait, &wait);
3014 
3015 	return r;
3016 }
3017 
3018 /*
3019  * Process the deferred bios
3020  */
3021 static void dm_wq_work(struct work_struct *work)
3022 {
3023 	struct mapped_device *md = container_of(work, struct mapped_device,
3024 						work);
3025 	struct bio *c;
3026 	int srcu_idx;
3027 	struct dm_table *map;
3028 
3029 	map = dm_get_live_table(md, &srcu_idx);
3030 
3031 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3032 		spin_lock_irq(&md->deferred_lock);
3033 		c = bio_list_pop(&md->deferred);
3034 		spin_unlock_irq(&md->deferred_lock);
3035 
3036 		if (!c)
3037 			break;
3038 
3039 		if (dm_request_based(md))
3040 			generic_make_request(c);
3041 		else
3042 			__split_and_process_bio(md, map, c);
3043 	}
3044 
3045 	dm_put_live_table(md, srcu_idx);
3046 }
3047 
3048 static void dm_queue_flush(struct mapped_device *md)
3049 {
3050 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3051 	smp_mb__after_atomic();
3052 	queue_work(md->wq, &md->work);
3053 }
3054 
3055 /*
3056  * Swap in a new table, returning the old one for the caller to destroy.
3057  */
3058 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3059 {
3060 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3061 	struct queue_limits limits;
3062 	int r;
3063 
3064 	mutex_lock(&md->suspend_lock);
3065 
3066 	/* device must be suspended */
3067 	if (!dm_suspended_md(md))
3068 		goto out;
3069 
3070 	/*
3071 	 * If the new table has no data devices, retain the existing limits.
3072 	 * This helps multipath with queue_if_no_path if all paths disappear,
3073 	 * then new I/O is queued based on these limits, and then some paths
3074 	 * reappear.
3075 	 */
3076 	if (dm_table_has_no_data_devices(table)) {
3077 		live_map = dm_get_live_table_fast(md);
3078 		if (live_map)
3079 			limits = md->queue->limits;
3080 		dm_put_live_table_fast(md);
3081 	}
3082 
3083 	if (!live_map) {
3084 		r = dm_calculate_queue_limits(table, &limits);
3085 		if (r) {
3086 			map = ERR_PTR(r);
3087 			goto out;
3088 		}
3089 	}
3090 
3091 	map = __bind(md, table, &limits);
3092 
3093 out:
3094 	mutex_unlock(&md->suspend_lock);
3095 	return map;
3096 }
3097 
3098 /*
3099  * Functions to lock and unlock any filesystem running on the
3100  * device.
3101  */
3102 static int lock_fs(struct mapped_device *md)
3103 {
3104 	int r;
3105 
3106 	WARN_ON(md->frozen_sb);
3107 
3108 	md->frozen_sb = freeze_bdev(md->bdev);
3109 	if (IS_ERR(md->frozen_sb)) {
3110 		r = PTR_ERR(md->frozen_sb);
3111 		md->frozen_sb = NULL;
3112 		return r;
3113 	}
3114 
3115 	set_bit(DMF_FROZEN, &md->flags);
3116 
3117 	return 0;
3118 }
3119 
3120 static void unlock_fs(struct mapped_device *md)
3121 {
3122 	if (!test_bit(DMF_FROZEN, &md->flags))
3123 		return;
3124 
3125 	thaw_bdev(md->bdev, md->frozen_sb);
3126 	md->frozen_sb = NULL;
3127 	clear_bit(DMF_FROZEN, &md->flags);
3128 }
3129 
3130 /*
3131  * If __dm_suspend returns 0, the device is completely quiescent
3132  * now. There is no request-processing activity. All new requests
3133  * are being added to md->deferred list.
3134  *
3135  * Caller must hold md->suspend_lock
3136  */
3137 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3138 			unsigned suspend_flags, int interruptible)
3139 {
3140 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3141 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3142 	int r;
3143 
3144 	/*
3145 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3146 	 * This flag is cleared before dm_suspend returns.
3147 	 */
3148 	if (noflush)
3149 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3150 
3151 	/*
3152 	 * This gets reverted if there's an error later and the targets
3153 	 * provide the .presuspend_undo hook.
3154 	 */
3155 	dm_table_presuspend_targets(map);
3156 
3157 	/*
3158 	 * Flush I/O to the device.
3159 	 * Any I/O submitted after lock_fs() may not be flushed.
3160 	 * noflush takes precedence over do_lockfs.
3161 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3162 	 */
3163 	if (!noflush && do_lockfs) {
3164 		r = lock_fs(md);
3165 		if (r) {
3166 			dm_table_presuspend_undo_targets(map);
3167 			return r;
3168 		}
3169 	}
3170 
3171 	/*
3172 	 * Here we must make sure that no processes are submitting requests
3173 	 * to target drivers i.e. no one may be executing
3174 	 * __split_and_process_bio. This is called from dm_request and
3175 	 * dm_wq_work.
3176 	 *
3177 	 * To get all processes out of __split_and_process_bio in dm_request,
3178 	 * we take the write lock. To prevent any process from reentering
3179 	 * __split_and_process_bio from dm_request and quiesce the thread
3180 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3181 	 * flush_workqueue(md->wq).
3182 	 */
3183 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3184 	if (map)
3185 		synchronize_srcu(&md->io_barrier);
3186 
3187 	/*
3188 	 * Stop md->queue before flushing md->wq in case request-based
3189 	 * dm defers requests to md->wq from md->queue.
3190 	 */
3191 	if (dm_request_based(md)) {
3192 		stop_queue(md->queue);
3193 		if (md->kworker_task)
3194 			flush_kthread_worker(&md->kworker);
3195 	}
3196 
3197 	flush_workqueue(md->wq);
3198 
3199 	/*
3200 	 * At this point no more requests are entering target request routines.
3201 	 * We call dm_wait_for_completion to wait for all existing requests
3202 	 * to finish.
3203 	 */
3204 	r = dm_wait_for_completion(md, interruptible);
3205 
3206 	if (noflush)
3207 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3208 	if (map)
3209 		synchronize_srcu(&md->io_barrier);
3210 
3211 	/* were we interrupted ? */
3212 	if (r < 0) {
3213 		dm_queue_flush(md);
3214 
3215 		if (dm_request_based(md))
3216 			start_queue(md->queue);
3217 
3218 		unlock_fs(md);
3219 		dm_table_presuspend_undo_targets(map);
3220 		/* pushback list is already flushed, so skip flush */
3221 	}
3222 
3223 	return r;
3224 }
3225 
3226 /*
3227  * We need to be able to change a mapping table under a mounted
3228  * filesystem.  For example we might want to move some data in
3229  * the background.  Before the table can be swapped with
3230  * dm_bind_table, dm_suspend must be called to flush any in
3231  * flight bios and ensure that any further io gets deferred.
3232  */
3233 /*
3234  * Suspend mechanism in request-based dm.
3235  *
3236  * 1. Flush all I/Os by lock_fs() if needed.
3237  * 2. Stop dispatching any I/O by stopping the request_queue.
3238  * 3. Wait for all in-flight I/Os to be completed or requeued.
3239  *
3240  * To abort suspend, start the request_queue.
3241  */
3242 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3243 {
3244 	struct dm_table *map = NULL;
3245 	int r = 0;
3246 
3247 retry:
3248 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3249 
3250 	if (dm_suspended_md(md)) {
3251 		r = -EINVAL;
3252 		goto out_unlock;
3253 	}
3254 
3255 	if (dm_suspended_internally_md(md)) {
3256 		/* already internally suspended, wait for internal resume */
3257 		mutex_unlock(&md->suspend_lock);
3258 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3259 		if (r)
3260 			return r;
3261 		goto retry;
3262 	}
3263 
3264 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3265 
3266 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3267 	if (r)
3268 		goto out_unlock;
3269 
3270 	set_bit(DMF_SUSPENDED, &md->flags);
3271 
3272 	dm_table_postsuspend_targets(map);
3273 
3274 out_unlock:
3275 	mutex_unlock(&md->suspend_lock);
3276 	return r;
3277 }
3278 
3279 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3280 {
3281 	if (map) {
3282 		int r = dm_table_resume_targets(map);
3283 		if (r)
3284 			return r;
3285 	}
3286 
3287 	dm_queue_flush(md);
3288 
3289 	/*
3290 	 * Flushing deferred I/Os must be done after targets are resumed
3291 	 * so that mapping of targets can work correctly.
3292 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3293 	 */
3294 	if (dm_request_based(md))
3295 		start_queue(md->queue);
3296 
3297 	unlock_fs(md);
3298 
3299 	return 0;
3300 }
3301 
3302 int dm_resume(struct mapped_device *md)
3303 {
3304 	int r = -EINVAL;
3305 	struct dm_table *map = NULL;
3306 
3307 retry:
3308 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3309 
3310 	if (!dm_suspended_md(md))
3311 		goto out;
3312 
3313 	if (dm_suspended_internally_md(md)) {
3314 		/* already internally suspended, wait for internal resume */
3315 		mutex_unlock(&md->suspend_lock);
3316 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3317 		if (r)
3318 			return r;
3319 		goto retry;
3320 	}
3321 
3322 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3323 	if (!map || !dm_table_get_size(map))
3324 		goto out;
3325 
3326 	r = __dm_resume(md, map);
3327 	if (r)
3328 		goto out;
3329 
3330 	clear_bit(DMF_SUSPENDED, &md->flags);
3331 
3332 	r = 0;
3333 out:
3334 	mutex_unlock(&md->suspend_lock);
3335 
3336 	return r;
3337 }
3338 
3339 /*
3340  * Internal suspend/resume works like userspace-driven suspend. It waits
3341  * until all bios finish and prevents issuing new bios to the target drivers.
3342  * It may be used only from the kernel.
3343  */
3344 
3345 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3346 {
3347 	struct dm_table *map = NULL;
3348 
3349 	if (md->internal_suspend_count++)
3350 		return; /* nested internal suspend */
3351 
3352 	if (dm_suspended_md(md)) {
3353 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3354 		return; /* nest suspend */
3355 	}
3356 
3357 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3358 
3359 	/*
3360 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3361 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3362 	 * would require changing .presuspend to return an error -- avoid this
3363 	 * until there is a need for more elaborate variants of internal suspend.
3364 	 */
3365 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3366 
3367 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3368 
3369 	dm_table_postsuspend_targets(map);
3370 }
3371 
3372 static void __dm_internal_resume(struct mapped_device *md)
3373 {
3374 	BUG_ON(!md->internal_suspend_count);
3375 
3376 	if (--md->internal_suspend_count)
3377 		return; /* resume from nested internal suspend */
3378 
3379 	if (dm_suspended_md(md))
3380 		goto done; /* resume from nested suspend */
3381 
3382 	/*
3383 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3384 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3385 	 */
3386 	(void) __dm_resume(md, NULL);
3387 
3388 done:
3389 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3390 	smp_mb__after_atomic();
3391 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3392 }
3393 
3394 void dm_internal_suspend_noflush(struct mapped_device *md)
3395 {
3396 	mutex_lock(&md->suspend_lock);
3397 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3398 	mutex_unlock(&md->suspend_lock);
3399 }
3400 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3401 
3402 void dm_internal_resume(struct mapped_device *md)
3403 {
3404 	mutex_lock(&md->suspend_lock);
3405 	__dm_internal_resume(md);
3406 	mutex_unlock(&md->suspend_lock);
3407 }
3408 EXPORT_SYMBOL_GPL(dm_internal_resume);
3409 
3410 /*
3411  * Fast variants of internal suspend/resume hold md->suspend_lock,
3412  * which prevents interaction with userspace-driven suspend.
3413  */
3414 
3415 void dm_internal_suspend_fast(struct mapped_device *md)
3416 {
3417 	mutex_lock(&md->suspend_lock);
3418 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3419 		return;
3420 
3421 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3422 	synchronize_srcu(&md->io_barrier);
3423 	flush_workqueue(md->wq);
3424 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3425 }
3426 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3427 
3428 void dm_internal_resume_fast(struct mapped_device *md)
3429 {
3430 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3431 		goto done;
3432 
3433 	dm_queue_flush(md);
3434 
3435 done:
3436 	mutex_unlock(&md->suspend_lock);
3437 }
3438 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3439 
3440 /*-----------------------------------------------------------------
3441  * Event notification.
3442  *---------------------------------------------------------------*/
3443 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3444 		       unsigned cookie)
3445 {
3446 	char udev_cookie[DM_COOKIE_LENGTH];
3447 	char *envp[] = { udev_cookie, NULL };
3448 
3449 	if (!cookie)
3450 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3451 	else {
3452 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3453 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3454 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3455 					  action, envp);
3456 	}
3457 }
3458 
3459 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3460 {
3461 	return atomic_add_return(1, &md->uevent_seq);
3462 }
3463 
3464 uint32_t dm_get_event_nr(struct mapped_device *md)
3465 {
3466 	return atomic_read(&md->event_nr);
3467 }
3468 
3469 int dm_wait_event(struct mapped_device *md, int event_nr)
3470 {
3471 	return wait_event_interruptible(md->eventq,
3472 			(event_nr != atomic_read(&md->event_nr)));
3473 }
3474 
3475 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3476 {
3477 	unsigned long flags;
3478 
3479 	spin_lock_irqsave(&md->uevent_lock, flags);
3480 	list_add(elist, &md->uevent_list);
3481 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3482 }
3483 
3484 /*
3485  * The gendisk is only valid as long as you have a reference
3486  * count on 'md'.
3487  */
3488 struct gendisk *dm_disk(struct mapped_device *md)
3489 {
3490 	return md->disk;
3491 }
3492 EXPORT_SYMBOL_GPL(dm_disk);
3493 
3494 struct kobject *dm_kobject(struct mapped_device *md)
3495 {
3496 	return &md->kobj_holder.kobj;
3497 }
3498 
3499 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3500 {
3501 	struct mapped_device *md;
3502 
3503 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3504 
3505 	if (test_bit(DMF_FREEING, &md->flags) ||
3506 	    dm_deleting_md(md))
3507 		return NULL;
3508 
3509 	dm_get(md);
3510 	return md;
3511 }
3512 
3513 int dm_suspended_md(struct mapped_device *md)
3514 {
3515 	return test_bit(DMF_SUSPENDED, &md->flags);
3516 }
3517 
3518 int dm_suspended_internally_md(struct mapped_device *md)
3519 {
3520 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3521 }
3522 
3523 int dm_test_deferred_remove_flag(struct mapped_device *md)
3524 {
3525 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3526 }
3527 
3528 int dm_suspended(struct dm_target *ti)
3529 {
3530 	return dm_suspended_md(dm_table_get_md(ti->table));
3531 }
3532 EXPORT_SYMBOL_GPL(dm_suspended);
3533 
3534 int dm_noflush_suspending(struct dm_target *ti)
3535 {
3536 	return __noflush_suspending(dm_table_get_md(ti->table));
3537 }
3538 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3539 
3540 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3541 					    unsigned integrity, unsigned per_bio_data_size)
3542 {
3543 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3544 	struct kmem_cache *cachep = NULL;
3545 	unsigned int pool_size = 0;
3546 	unsigned int front_pad;
3547 
3548 	if (!pools)
3549 		return NULL;
3550 
3551 	type = filter_md_type(type, md);
3552 
3553 	switch (type) {
3554 	case DM_TYPE_BIO_BASED:
3555 		cachep = _io_cache;
3556 		pool_size = dm_get_reserved_bio_based_ios();
3557 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3558 		break;
3559 	case DM_TYPE_REQUEST_BASED:
3560 		cachep = _rq_tio_cache;
3561 		pool_size = dm_get_reserved_rq_based_ios();
3562 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3563 		if (!pools->rq_pool)
3564 			goto out;
3565 		/* fall through to setup remaining rq-based pools */
3566 	case DM_TYPE_MQ_REQUEST_BASED:
3567 		if (!pool_size)
3568 			pool_size = dm_get_reserved_rq_based_ios();
3569 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3570 		/* per_bio_data_size is not used. See __bind_mempools(). */
3571 		WARN_ON(per_bio_data_size != 0);
3572 		break;
3573 	default:
3574 		BUG();
3575 	}
3576 
3577 	if (cachep) {
3578 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3579 		if (!pools->io_pool)
3580 			goto out;
3581 	}
3582 
3583 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3584 	if (!pools->bs)
3585 		goto out;
3586 
3587 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3588 		goto out;
3589 
3590 	return pools;
3591 
3592 out:
3593 	dm_free_md_mempools(pools);
3594 
3595 	return NULL;
3596 }
3597 
3598 void dm_free_md_mempools(struct dm_md_mempools *pools)
3599 {
3600 	if (!pools)
3601 		return;
3602 
3603 	if (pools->io_pool)
3604 		mempool_destroy(pools->io_pool);
3605 
3606 	if (pools->rq_pool)
3607 		mempool_destroy(pools->rq_pool);
3608 
3609 	if (pools->bs)
3610 		bioset_free(pools->bs);
3611 
3612 	kfree(pools);
3613 }
3614 
3615 static const struct block_device_operations dm_blk_dops = {
3616 	.open = dm_blk_open,
3617 	.release = dm_blk_close,
3618 	.ioctl = dm_blk_ioctl,
3619 	.getgeo = dm_blk_getgeo,
3620 	.owner = THIS_MODULE
3621 };
3622 
3623 /*
3624  * module hooks
3625  */
3626 module_init(dm_init);
3627 module_exit(dm_exit);
3628 
3629 module_param(major, uint, 0);
3630 MODULE_PARM_DESC(major, "The major number of the device mapper");
3631 
3632 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3633 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3634 
3635 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3636 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3637 
3638 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3639 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3640 
3641 MODULE_DESCRIPTION(DM_NAME " driver");
3642 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3643 MODULE_LICENSE("GPL");
3644