xref: /openbmc/linux/drivers/md/dm.c (revision 36a0456fbf2d9680bf9af81b39daf4a8e22cb1b8)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
23 
24 #include <trace/events/block.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 #ifdef CONFIG_PRINTK
29 /*
30  * ratelimit state to be used in DMXXX_LIMIT().
31  */
32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
33 		       DEFAULT_RATELIMIT_INTERVAL,
34 		       DEFAULT_RATELIMIT_BURST);
35 EXPORT_SYMBOL(dm_ratelimit_state);
36 #endif
37 
38 /*
39  * Cookies are numeric values sent with CHANGE and REMOVE
40  * uevents while resuming, removing or renaming the device.
41  */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44 
45 static const char *_name = DM_NAME;
46 
47 static unsigned int major = 0;
48 static unsigned int _major = 0;
49 
50 static DEFINE_IDR(_minor_idr);
51 
52 static DEFINE_SPINLOCK(_minor_lock);
53 /*
54  * For bio-based dm.
55  * One of these is allocated per bio.
56  */
57 struct dm_io {
58 	struct mapped_device *md;
59 	int error;
60 	atomic_t io_count;
61 	struct bio *bio;
62 	unsigned long start_time;
63 	spinlock_t endio_lock;
64 };
65 
66 /*
67  * For bio-based dm.
68  * One of these is allocated per target within a bio.  Hopefully
69  * this will be simplified out one day.
70  */
71 struct dm_target_io {
72 	struct dm_io *io;
73 	struct dm_target *ti;
74 	union map_info info;
75 };
76 
77 /*
78  * For request-based dm.
79  * One of these is allocated per request.
80  */
81 struct dm_rq_target_io {
82 	struct mapped_device *md;
83 	struct dm_target *ti;
84 	struct request *orig, clone;
85 	int error;
86 	union map_info info;
87 };
88 
89 /*
90  * For request-based dm.
91  * One of these is allocated per bio.
92  */
93 struct dm_rq_clone_bio_info {
94 	struct bio *orig;
95 	struct dm_rq_target_io *tio;
96 };
97 
98 union map_info *dm_get_mapinfo(struct bio *bio)
99 {
100 	if (bio && bio->bi_private)
101 		return &((struct dm_target_io *)bio->bi_private)->info;
102 	return NULL;
103 }
104 
105 union map_info *dm_get_rq_mapinfo(struct request *rq)
106 {
107 	if (rq && rq->end_io_data)
108 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
109 	return NULL;
110 }
111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
112 
113 #define MINOR_ALLOCED ((void *)-1)
114 
115 /*
116  * Bits for the md->flags field.
117  */
118 #define DMF_BLOCK_IO_FOR_SUSPEND 0
119 #define DMF_SUSPENDED 1
120 #define DMF_FROZEN 2
121 #define DMF_FREEING 3
122 #define DMF_DELETING 4
123 #define DMF_NOFLUSH_SUSPENDING 5
124 #define DMF_MERGE_IS_OPTIONAL 6
125 
126 /*
127  * Work processed by per-device workqueue.
128  */
129 struct mapped_device {
130 	struct rw_semaphore io_lock;
131 	struct mutex suspend_lock;
132 	rwlock_t map_lock;
133 	atomic_t holders;
134 	atomic_t open_count;
135 
136 	unsigned long flags;
137 
138 	struct request_queue *queue;
139 	unsigned type;
140 	/* Protect queue and type against concurrent access. */
141 	struct mutex type_lock;
142 
143 	struct target_type *immutable_target_type;
144 
145 	struct gendisk *disk;
146 	char name[16];
147 
148 	void *interface_ptr;
149 
150 	/*
151 	 * A list of ios that arrived while we were suspended.
152 	 */
153 	atomic_t pending[2];
154 	wait_queue_head_t wait;
155 	struct work_struct work;
156 	struct bio_list deferred;
157 	spinlock_t deferred_lock;
158 
159 	/*
160 	 * Processing queue (flush)
161 	 */
162 	struct workqueue_struct *wq;
163 
164 	/*
165 	 * The current mapping.
166 	 */
167 	struct dm_table *map;
168 
169 	/*
170 	 * io objects are allocated from here.
171 	 */
172 	mempool_t *io_pool;
173 	mempool_t *tio_pool;
174 
175 	struct bio_set *bs;
176 
177 	/*
178 	 * Event handling.
179 	 */
180 	atomic_t event_nr;
181 	wait_queue_head_t eventq;
182 	atomic_t uevent_seq;
183 	struct list_head uevent_list;
184 	spinlock_t uevent_lock; /* Protect access to uevent_list */
185 
186 	/*
187 	 * freeze/thaw support require holding onto a super block
188 	 */
189 	struct super_block *frozen_sb;
190 	struct block_device *bdev;
191 
192 	/* forced geometry settings */
193 	struct hd_geometry geometry;
194 
195 	/* For saving the address of __make_request for request based dm */
196 	make_request_fn *saved_make_request_fn;
197 
198 	/* sysfs handle */
199 	struct kobject kobj;
200 
201 	/* zero-length flush that will be cloned and submitted to targets */
202 	struct bio flush_bio;
203 };
204 
205 /*
206  * For mempools pre-allocation at the table loading time.
207  */
208 struct dm_md_mempools {
209 	mempool_t *io_pool;
210 	mempool_t *tio_pool;
211 	struct bio_set *bs;
212 };
213 
214 #define MIN_IOS 256
215 static struct kmem_cache *_io_cache;
216 static struct kmem_cache *_tio_cache;
217 static struct kmem_cache *_rq_tio_cache;
218 static struct kmem_cache *_rq_bio_info_cache;
219 
220 static int __init local_init(void)
221 {
222 	int r = -ENOMEM;
223 
224 	/* allocate a slab for the dm_ios */
225 	_io_cache = KMEM_CACHE(dm_io, 0);
226 	if (!_io_cache)
227 		return r;
228 
229 	/* allocate a slab for the target ios */
230 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
231 	if (!_tio_cache)
232 		goto out_free_io_cache;
233 
234 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
235 	if (!_rq_tio_cache)
236 		goto out_free_tio_cache;
237 
238 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
239 	if (!_rq_bio_info_cache)
240 		goto out_free_rq_tio_cache;
241 
242 	r = dm_uevent_init();
243 	if (r)
244 		goto out_free_rq_bio_info_cache;
245 
246 	_major = major;
247 	r = register_blkdev(_major, _name);
248 	if (r < 0)
249 		goto out_uevent_exit;
250 
251 	if (!_major)
252 		_major = r;
253 
254 	return 0;
255 
256 out_uevent_exit:
257 	dm_uevent_exit();
258 out_free_rq_bio_info_cache:
259 	kmem_cache_destroy(_rq_bio_info_cache);
260 out_free_rq_tio_cache:
261 	kmem_cache_destroy(_rq_tio_cache);
262 out_free_tio_cache:
263 	kmem_cache_destroy(_tio_cache);
264 out_free_io_cache:
265 	kmem_cache_destroy(_io_cache);
266 
267 	return r;
268 }
269 
270 static void local_exit(void)
271 {
272 	kmem_cache_destroy(_rq_bio_info_cache);
273 	kmem_cache_destroy(_rq_tio_cache);
274 	kmem_cache_destroy(_tio_cache);
275 	kmem_cache_destroy(_io_cache);
276 	unregister_blkdev(_major, _name);
277 	dm_uevent_exit();
278 
279 	_major = 0;
280 
281 	DMINFO("cleaned up");
282 }
283 
284 static int (*_inits[])(void) __initdata = {
285 	local_init,
286 	dm_target_init,
287 	dm_linear_init,
288 	dm_stripe_init,
289 	dm_io_init,
290 	dm_kcopyd_init,
291 	dm_interface_init,
292 };
293 
294 static void (*_exits[])(void) = {
295 	local_exit,
296 	dm_target_exit,
297 	dm_linear_exit,
298 	dm_stripe_exit,
299 	dm_io_exit,
300 	dm_kcopyd_exit,
301 	dm_interface_exit,
302 };
303 
304 static int __init dm_init(void)
305 {
306 	const int count = ARRAY_SIZE(_inits);
307 
308 	int r, i;
309 
310 	for (i = 0; i < count; i++) {
311 		r = _inits[i]();
312 		if (r)
313 			goto bad;
314 	}
315 
316 	return 0;
317 
318       bad:
319 	while (i--)
320 		_exits[i]();
321 
322 	return r;
323 }
324 
325 static void __exit dm_exit(void)
326 {
327 	int i = ARRAY_SIZE(_exits);
328 
329 	while (i--)
330 		_exits[i]();
331 
332 	/*
333 	 * Should be empty by this point.
334 	 */
335 	idr_remove_all(&_minor_idr);
336 	idr_destroy(&_minor_idr);
337 }
338 
339 /*
340  * Block device functions
341  */
342 int dm_deleting_md(struct mapped_device *md)
343 {
344 	return test_bit(DMF_DELETING, &md->flags);
345 }
346 
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
348 {
349 	struct mapped_device *md;
350 
351 	spin_lock(&_minor_lock);
352 
353 	md = bdev->bd_disk->private_data;
354 	if (!md)
355 		goto out;
356 
357 	if (test_bit(DMF_FREEING, &md->flags) ||
358 	    dm_deleting_md(md)) {
359 		md = NULL;
360 		goto out;
361 	}
362 
363 	dm_get(md);
364 	atomic_inc(&md->open_count);
365 
366 out:
367 	spin_unlock(&_minor_lock);
368 
369 	return md ? 0 : -ENXIO;
370 }
371 
372 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
373 {
374 	struct mapped_device *md = disk->private_data;
375 
376 	spin_lock(&_minor_lock);
377 
378 	atomic_dec(&md->open_count);
379 	dm_put(md);
380 
381 	spin_unlock(&_minor_lock);
382 
383 	return 0;
384 }
385 
386 int dm_open_count(struct mapped_device *md)
387 {
388 	return atomic_read(&md->open_count);
389 }
390 
391 /*
392  * Guarantees nothing is using the device before it's deleted.
393  */
394 int dm_lock_for_deletion(struct mapped_device *md)
395 {
396 	int r = 0;
397 
398 	spin_lock(&_minor_lock);
399 
400 	if (dm_open_count(md))
401 		r = -EBUSY;
402 	else
403 		set_bit(DMF_DELETING, &md->flags);
404 
405 	spin_unlock(&_minor_lock);
406 
407 	return r;
408 }
409 
410 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
411 {
412 	struct mapped_device *md = bdev->bd_disk->private_data;
413 
414 	return dm_get_geometry(md, geo);
415 }
416 
417 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
418 			unsigned int cmd, unsigned long arg)
419 {
420 	struct mapped_device *md = bdev->bd_disk->private_data;
421 	struct dm_table *map = dm_get_live_table(md);
422 	struct dm_target *tgt;
423 	int r = -ENOTTY;
424 
425 	if (!map || !dm_table_get_size(map))
426 		goto out;
427 
428 	/* We only support devices that have a single target */
429 	if (dm_table_get_num_targets(map) != 1)
430 		goto out;
431 
432 	tgt = dm_table_get_target(map, 0);
433 
434 	if (dm_suspended_md(md)) {
435 		r = -EAGAIN;
436 		goto out;
437 	}
438 
439 	if (tgt->type->ioctl)
440 		r = tgt->type->ioctl(tgt, cmd, arg);
441 
442 out:
443 	dm_table_put(map);
444 
445 	return r;
446 }
447 
448 static struct dm_io *alloc_io(struct mapped_device *md)
449 {
450 	return mempool_alloc(md->io_pool, GFP_NOIO);
451 }
452 
453 static void free_io(struct mapped_device *md, struct dm_io *io)
454 {
455 	mempool_free(io, md->io_pool);
456 }
457 
458 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
459 {
460 	mempool_free(tio, md->tio_pool);
461 }
462 
463 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
464 					    gfp_t gfp_mask)
465 {
466 	return mempool_alloc(md->tio_pool, gfp_mask);
467 }
468 
469 static void free_rq_tio(struct dm_rq_target_io *tio)
470 {
471 	mempool_free(tio, tio->md->tio_pool);
472 }
473 
474 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
475 {
476 	return mempool_alloc(md->io_pool, GFP_ATOMIC);
477 }
478 
479 static void free_bio_info(struct dm_rq_clone_bio_info *info)
480 {
481 	mempool_free(info, info->tio->md->io_pool);
482 }
483 
484 static int md_in_flight(struct mapped_device *md)
485 {
486 	return atomic_read(&md->pending[READ]) +
487 	       atomic_read(&md->pending[WRITE]);
488 }
489 
490 static void start_io_acct(struct dm_io *io)
491 {
492 	struct mapped_device *md = io->md;
493 	int cpu;
494 	int rw = bio_data_dir(io->bio);
495 
496 	io->start_time = jiffies;
497 
498 	cpu = part_stat_lock();
499 	part_round_stats(cpu, &dm_disk(md)->part0);
500 	part_stat_unlock();
501 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
502 		atomic_inc_return(&md->pending[rw]));
503 }
504 
505 static void end_io_acct(struct dm_io *io)
506 {
507 	struct mapped_device *md = io->md;
508 	struct bio *bio = io->bio;
509 	unsigned long duration = jiffies - io->start_time;
510 	int pending, cpu;
511 	int rw = bio_data_dir(bio);
512 
513 	cpu = part_stat_lock();
514 	part_round_stats(cpu, &dm_disk(md)->part0);
515 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
516 	part_stat_unlock();
517 
518 	/*
519 	 * After this is decremented the bio must not be touched if it is
520 	 * a flush.
521 	 */
522 	pending = atomic_dec_return(&md->pending[rw]);
523 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
524 	pending += atomic_read(&md->pending[rw^0x1]);
525 
526 	/* nudge anyone waiting on suspend queue */
527 	if (!pending)
528 		wake_up(&md->wait);
529 }
530 
531 /*
532  * Add the bio to the list of deferred io.
533  */
534 static void queue_io(struct mapped_device *md, struct bio *bio)
535 {
536 	unsigned long flags;
537 
538 	spin_lock_irqsave(&md->deferred_lock, flags);
539 	bio_list_add(&md->deferred, bio);
540 	spin_unlock_irqrestore(&md->deferred_lock, flags);
541 	queue_work(md->wq, &md->work);
542 }
543 
544 /*
545  * Everyone (including functions in this file), should use this
546  * function to access the md->map field, and make sure they call
547  * dm_table_put() when finished.
548  */
549 struct dm_table *dm_get_live_table(struct mapped_device *md)
550 {
551 	struct dm_table *t;
552 	unsigned long flags;
553 
554 	read_lock_irqsave(&md->map_lock, flags);
555 	t = md->map;
556 	if (t)
557 		dm_table_get(t);
558 	read_unlock_irqrestore(&md->map_lock, flags);
559 
560 	return t;
561 }
562 
563 /*
564  * Get the geometry associated with a dm device
565  */
566 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
567 {
568 	*geo = md->geometry;
569 
570 	return 0;
571 }
572 
573 /*
574  * Set the geometry of a device.
575  */
576 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
577 {
578 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
579 
580 	if (geo->start > sz) {
581 		DMWARN("Start sector is beyond the geometry limits.");
582 		return -EINVAL;
583 	}
584 
585 	md->geometry = *geo;
586 
587 	return 0;
588 }
589 
590 /*-----------------------------------------------------------------
591  * CRUD START:
592  *   A more elegant soln is in the works that uses the queue
593  *   merge fn, unfortunately there are a couple of changes to
594  *   the block layer that I want to make for this.  So in the
595  *   interests of getting something for people to use I give
596  *   you this clearly demarcated crap.
597  *---------------------------------------------------------------*/
598 
599 static int __noflush_suspending(struct mapped_device *md)
600 {
601 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
602 }
603 
604 /*
605  * Decrements the number of outstanding ios that a bio has been
606  * cloned into, completing the original io if necc.
607  */
608 static void dec_pending(struct dm_io *io, int error)
609 {
610 	unsigned long flags;
611 	int io_error;
612 	struct bio *bio;
613 	struct mapped_device *md = io->md;
614 
615 	/* Push-back supersedes any I/O errors */
616 	if (unlikely(error)) {
617 		spin_lock_irqsave(&io->endio_lock, flags);
618 		if (!(io->error > 0 && __noflush_suspending(md)))
619 			io->error = error;
620 		spin_unlock_irqrestore(&io->endio_lock, flags);
621 	}
622 
623 	if (atomic_dec_and_test(&io->io_count)) {
624 		if (io->error == DM_ENDIO_REQUEUE) {
625 			/*
626 			 * Target requested pushing back the I/O.
627 			 */
628 			spin_lock_irqsave(&md->deferred_lock, flags);
629 			if (__noflush_suspending(md))
630 				bio_list_add_head(&md->deferred, io->bio);
631 			else
632 				/* noflush suspend was interrupted. */
633 				io->error = -EIO;
634 			spin_unlock_irqrestore(&md->deferred_lock, flags);
635 		}
636 
637 		io_error = io->error;
638 		bio = io->bio;
639 		end_io_acct(io);
640 		free_io(md, io);
641 
642 		if (io_error == DM_ENDIO_REQUEUE)
643 			return;
644 
645 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
646 			/*
647 			 * Preflush done for flush with data, reissue
648 			 * without REQ_FLUSH.
649 			 */
650 			bio->bi_rw &= ~REQ_FLUSH;
651 			queue_io(md, bio);
652 		} else {
653 			/* done with normal IO or empty flush */
654 			trace_block_bio_complete(md->queue, bio, io_error);
655 			bio_endio(bio, io_error);
656 		}
657 	}
658 }
659 
660 static void clone_endio(struct bio *bio, int error)
661 {
662 	int r = 0;
663 	struct dm_target_io *tio = bio->bi_private;
664 	struct dm_io *io = tio->io;
665 	struct mapped_device *md = tio->io->md;
666 	dm_endio_fn endio = tio->ti->type->end_io;
667 
668 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
669 		error = -EIO;
670 
671 	if (endio) {
672 		r = endio(tio->ti, bio, error, &tio->info);
673 		if (r < 0 || r == DM_ENDIO_REQUEUE)
674 			/*
675 			 * error and requeue request are handled
676 			 * in dec_pending().
677 			 */
678 			error = r;
679 		else if (r == DM_ENDIO_INCOMPLETE)
680 			/* The target will handle the io */
681 			return;
682 		else if (r) {
683 			DMWARN("unimplemented target endio return value: %d", r);
684 			BUG();
685 		}
686 	}
687 
688 	/*
689 	 * Store md for cleanup instead of tio which is about to get freed.
690 	 */
691 	bio->bi_private = md->bs;
692 
693 	free_tio(md, tio);
694 	bio_put(bio);
695 	dec_pending(io, error);
696 }
697 
698 /*
699  * Partial completion handling for request-based dm
700  */
701 static void end_clone_bio(struct bio *clone, int error)
702 {
703 	struct dm_rq_clone_bio_info *info = clone->bi_private;
704 	struct dm_rq_target_io *tio = info->tio;
705 	struct bio *bio = info->orig;
706 	unsigned int nr_bytes = info->orig->bi_size;
707 
708 	bio_put(clone);
709 
710 	if (tio->error)
711 		/*
712 		 * An error has already been detected on the request.
713 		 * Once error occurred, just let clone->end_io() handle
714 		 * the remainder.
715 		 */
716 		return;
717 	else if (error) {
718 		/*
719 		 * Don't notice the error to the upper layer yet.
720 		 * The error handling decision is made by the target driver,
721 		 * when the request is completed.
722 		 */
723 		tio->error = error;
724 		return;
725 	}
726 
727 	/*
728 	 * I/O for the bio successfully completed.
729 	 * Notice the data completion to the upper layer.
730 	 */
731 
732 	/*
733 	 * bios are processed from the head of the list.
734 	 * So the completing bio should always be rq->bio.
735 	 * If it's not, something wrong is happening.
736 	 */
737 	if (tio->orig->bio != bio)
738 		DMERR("bio completion is going in the middle of the request");
739 
740 	/*
741 	 * Update the original request.
742 	 * Do not use blk_end_request() here, because it may complete
743 	 * the original request before the clone, and break the ordering.
744 	 */
745 	blk_update_request(tio->orig, 0, nr_bytes);
746 }
747 
748 /*
749  * Don't touch any member of the md after calling this function because
750  * the md may be freed in dm_put() at the end of this function.
751  * Or do dm_get() before calling this function and dm_put() later.
752  */
753 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
754 {
755 	atomic_dec(&md->pending[rw]);
756 
757 	/* nudge anyone waiting on suspend queue */
758 	if (!md_in_flight(md))
759 		wake_up(&md->wait);
760 
761 	if (run_queue)
762 		blk_run_queue(md->queue);
763 
764 	/*
765 	 * dm_put() must be at the end of this function. See the comment above
766 	 */
767 	dm_put(md);
768 }
769 
770 static void free_rq_clone(struct request *clone)
771 {
772 	struct dm_rq_target_io *tio = clone->end_io_data;
773 
774 	blk_rq_unprep_clone(clone);
775 	free_rq_tio(tio);
776 }
777 
778 /*
779  * Complete the clone and the original request.
780  * Must be called without queue lock.
781  */
782 static void dm_end_request(struct request *clone, int error)
783 {
784 	int rw = rq_data_dir(clone);
785 	struct dm_rq_target_io *tio = clone->end_io_data;
786 	struct mapped_device *md = tio->md;
787 	struct request *rq = tio->orig;
788 
789 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
790 		rq->errors = clone->errors;
791 		rq->resid_len = clone->resid_len;
792 
793 		if (rq->sense)
794 			/*
795 			 * We are using the sense buffer of the original
796 			 * request.
797 			 * So setting the length of the sense data is enough.
798 			 */
799 			rq->sense_len = clone->sense_len;
800 	}
801 
802 	free_rq_clone(clone);
803 	blk_end_request_all(rq, error);
804 	rq_completed(md, rw, true);
805 }
806 
807 static void dm_unprep_request(struct request *rq)
808 {
809 	struct request *clone = rq->special;
810 
811 	rq->special = NULL;
812 	rq->cmd_flags &= ~REQ_DONTPREP;
813 
814 	free_rq_clone(clone);
815 }
816 
817 /*
818  * Requeue the original request of a clone.
819  */
820 void dm_requeue_unmapped_request(struct request *clone)
821 {
822 	int rw = rq_data_dir(clone);
823 	struct dm_rq_target_io *tio = clone->end_io_data;
824 	struct mapped_device *md = tio->md;
825 	struct request *rq = tio->orig;
826 	struct request_queue *q = rq->q;
827 	unsigned long flags;
828 
829 	dm_unprep_request(rq);
830 
831 	spin_lock_irqsave(q->queue_lock, flags);
832 	blk_requeue_request(q, rq);
833 	spin_unlock_irqrestore(q->queue_lock, flags);
834 
835 	rq_completed(md, rw, 0);
836 }
837 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
838 
839 static void __stop_queue(struct request_queue *q)
840 {
841 	blk_stop_queue(q);
842 }
843 
844 static void stop_queue(struct request_queue *q)
845 {
846 	unsigned long flags;
847 
848 	spin_lock_irqsave(q->queue_lock, flags);
849 	__stop_queue(q);
850 	spin_unlock_irqrestore(q->queue_lock, flags);
851 }
852 
853 static void __start_queue(struct request_queue *q)
854 {
855 	if (blk_queue_stopped(q))
856 		blk_start_queue(q);
857 }
858 
859 static void start_queue(struct request_queue *q)
860 {
861 	unsigned long flags;
862 
863 	spin_lock_irqsave(q->queue_lock, flags);
864 	__start_queue(q);
865 	spin_unlock_irqrestore(q->queue_lock, flags);
866 }
867 
868 static void dm_done(struct request *clone, int error, bool mapped)
869 {
870 	int r = error;
871 	struct dm_rq_target_io *tio = clone->end_io_data;
872 	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
873 
874 	if (mapped && rq_end_io)
875 		r = rq_end_io(tio->ti, clone, error, &tio->info);
876 
877 	if (r <= 0)
878 		/* The target wants to complete the I/O */
879 		dm_end_request(clone, r);
880 	else if (r == DM_ENDIO_INCOMPLETE)
881 		/* The target will handle the I/O */
882 		return;
883 	else if (r == DM_ENDIO_REQUEUE)
884 		/* The target wants to requeue the I/O */
885 		dm_requeue_unmapped_request(clone);
886 	else {
887 		DMWARN("unimplemented target endio return value: %d", r);
888 		BUG();
889 	}
890 }
891 
892 /*
893  * Request completion handler for request-based dm
894  */
895 static void dm_softirq_done(struct request *rq)
896 {
897 	bool mapped = true;
898 	struct request *clone = rq->completion_data;
899 	struct dm_rq_target_io *tio = clone->end_io_data;
900 
901 	if (rq->cmd_flags & REQ_FAILED)
902 		mapped = false;
903 
904 	dm_done(clone, tio->error, mapped);
905 }
906 
907 /*
908  * Complete the clone and the original request with the error status
909  * through softirq context.
910  */
911 static void dm_complete_request(struct request *clone, int error)
912 {
913 	struct dm_rq_target_io *tio = clone->end_io_data;
914 	struct request *rq = tio->orig;
915 
916 	tio->error = error;
917 	rq->completion_data = clone;
918 	blk_complete_request(rq);
919 }
920 
921 /*
922  * Complete the not-mapped clone and the original request with the error status
923  * through softirq context.
924  * Target's rq_end_io() function isn't called.
925  * This may be used when the target's map_rq() function fails.
926  */
927 void dm_kill_unmapped_request(struct request *clone, int error)
928 {
929 	struct dm_rq_target_io *tio = clone->end_io_data;
930 	struct request *rq = tio->orig;
931 
932 	rq->cmd_flags |= REQ_FAILED;
933 	dm_complete_request(clone, error);
934 }
935 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
936 
937 /*
938  * Called with the queue lock held
939  */
940 static void end_clone_request(struct request *clone, int error)
941 {
942 	/*
943 	 * For just cleaning up the information of the queue in which
944 	 * the clone was dispatched.
945 	 * The clone is *NOT* freed actually here because it is alloced from
946 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
947 	 */
948 	__blk_put_request(clone->q, clone);
949 
950 	/*
951 	 * Actual request completion is done in a softirq context which doesn't
952 	 * hold the queue lock.  Otherwise, deadlock could occur because:
953 	 *     - another request may be submitted by the upper level driver
954 	 *       of the stacking during the completion
955 	 *     - the submission which requires queue lock may be done
956 	 *       against this queue
957 	 */
958 	dm_complete_request(clone, error);
959 }
960 
961 /*
962  * Return maximum size of I/O possible at the supplied sector up to the current
963  * target boundary.
964  */
965 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
966 {
967 	sector_t target_offset = dm_target_offset(ti, sector);
968 
969 	return ti->len - target_offset;
970 }
971 
972 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
973 {
974 	sector_t len = max_io_len_target_boundary(sector, ti);
975 
976 	/*
977 	 * Does the target need to split even further ?
978 	 */
979 	if (ti->split_io) {
980 		sector_t boundary;
981 		sector_t offset = dm_target_offset(ti, sector);
982 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
983 			   - offset;
984 		if (len > boundary)
985 			len = boundary;
986 	}
987 
988 	return len;
989 }
990 
991 static void __map_bio(struct dm_target *ti, struct bio *clone,
992 		      struct dm_target_io *tio)
993 {
994 	int r;
995 	sector_t sector;
996 	struct mapped_device *md;
997 
998 	clone->bi_end_io = clone_endio;
999 	clone->bi_private = tio;
1000 
1001 	/*
1002 	 * Map the clone.  If r == 0 we don't need to do
1003 	 * anything, the target has assumed ownership of
1004 	 * this io.
1005 	 */
1006 	atomic_inc(&tio->io->io_count);
1007 	sector = clone->bi_sector;
1008 	r = ti->type->map(ti, clone, &tio->info);
1009 	if (r == DM_MAPIO_REMAPPED) {
1010 		/* the bio has been remapped so dispatch it */
1011 
1012 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1013 				      tio->io->bio->bi_bdev->bd_dev, sector);
1014 
1015 		generic_make_request(clone);
1016 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1017 		/* error the io and bail out, or requeue it if needed */
1018 		md = tio->io->md;
1019 		dec_pending(tio->io, r);
1020 		/*
1021 		 * Store bio_set for cleanup.
1022 		 */
1023 		clone->bi_private = md->bs;
1024 		bio_put(clone);
1025 		free_tio(md, tio);
1026 	} else if (r) {
1027 		DMWARN("unimplemented target map return value: %d", r);
1028 		BUG();
1029 	}
1030 }
1031 
1032 struct clone_info {
1033 	struct mapped_device *md;
1034 	struct dm_table *map;
1035 	struct bio *bio;
1036 	struct dm_io *io;
1037 	sector_t sector;
1038 	sector_t sector_count;
1039 	unsigned short idx;
1040 };
1041 
1042 static void dm_bio_destructor(struct bio *bio)
1043 {
1044 	struct bio_set *bs = bio->bi_private;
1045 
1046 	bio_free(bio, bs);
1047 }
1048 
1049 /*
1050  * Creates a little bio that just does part of a bvec.
1051  */
1052 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1053 			      unsigned short idx, unsigned int offset,
1054 			      unsigned int len, struct bio_set *bs)
1055 {
1056 	struct bio *clone;
1057 	struct bio_vec *bv = bio->bi_io_vec + idx;
1058 
1059 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1060 	clone->bi_destructor = dm_bio_destructor;
1061 	*clone->bi_io_vec = *bv;
1062 
1063 	clone->bi_sector = sector;
1064 	clone->bi_bdev = bio->bi_bdev;
1065 	clone->bi_rw = bio->bi_rw;
1066 	clone->bi_vcnt = 1;
1067 	clone->bi_size = to_bytes(len);
1068 	clone->bi_io_vec->bv_offset = offset;
1069 	clone->bi_io_vec->bv_len = clone->bi_size;
1070 	clone->bi_flags |= 1 << BIO_CLONED;
1071 
1072 	if (bio_integrity(bio)) {
1073 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1074 		bio_integrity_trim(clone,
1075 				   bio_sector_offset(bio, idx, offset), len);
1076 	}
1077 
1078 	return clone;
1079 }
1080 
1081 /*
1082  * Creates a bio that consists of range of complete bvecs.
1083  */
1084 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1085 			     unsigned short idx, unsigned short bv_count,
1086 			     unsigned int len, struct bio_set *bs)
1087 {
1088 	struct bio *clone;
1089 
1090 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1091 	__bio_clone(clone, bio);
1092 	clone->bi_destructor = dm_bio_destructor;
1093 	clone->bi_sector = sector;
1094 	clone->bi_idx = idx;
1095 	clone->bi_vcnt = idx + bv_count;
1096 	clone->bi_size = to_bytes(len);
1097 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1098 
1099 	if (bio_integrity(bio)) {
1100 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1101 
1102 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1103 			bio_integrity_trim(clone,
1104 					   bio_sector_offset(bio, idx, 0), len);
1105 	}
1106 
1107 	return clone;
1108 }
1109 
1110 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1111 				      struct dm_target *ti)
1112 {
1113 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1114 
1115 	tio->io = ci->io;
1116 	tio->ti = ti;
1117 	memset(&tio->info, 0, sizeof(tio->info));
1118 
1119 	return tio;
1120 }
1121 
1122 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1123 				   unsigned request_nr, sector_t len)
1124 {
1125 	struct dm_target_io *tio = alloc_tio(ci, ti);
1126 	struct bio *clone;
1127 
1128 	tio->info.target_request_nr = request_nr;
1129 
1130 	/*
1131 	 * Discard requests require the bio's inline iovecs be initialized.
1132 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1133 	 * and discard, so no need for concern about wasted bvec allocations.
1134 	 */
1135 	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1136 	__bio_clone(clone, ci->bio);
1137 	clone->bi_destructor = dm_bio_destructor;
1138 	if (len) {
1139 		clone->bi_sector = ci->sector;
1140 		clone->bi_size = to_bytes(len);
1141 	}
1142 
1143 	__map_bio(ti, clone, tio);
1144 }
1145 
1146 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1147 				    unsigned num_requests, sector_t len)
1148 {
1149 	unsigned request_nr;
1150 
1151 	for (request_nr = 0; request_nr < num_requests; request_nr++)
1152 		__issue_target_request(ci, ti, request_nr, len);
1153 }
1154 
1155 static int __clone_and_map_empty_flush(struct clone_info *ci)
1156 {
1157 	unsigned target_nr = 0;
1158 	struct dm_target *ti;
1159 
1160 	BUG_ON(bio_has_data(ci->bio));
1161 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1162 		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1163 
1164 	return 0;
1165 }
1166 
1167 /*
1168  * Perform all io with a single clone.
1169  */
1170 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1171 {
1172 	struct bio *clone, *bio = ci->bio;
1173 	struct dm_target_io *tio;
1174 
1175 	tio = alloc_tio(ci, ti);
1176 	clone = clone_bio(bio, ci->sector, ci->idx,
1177 			  bio->bi_vcnt - ci->idx, ci->sector_count,
1178 			  ci->md->bs);
1179 	__map_bio(ti, clone, tio);
1180 	ci->sector_count = 0;
1181 }
1182 
1183 static int __clone_and_map_discard(struct clone_info *ci)
1184 {
1185 	struct dm_target *ti;
1186 	sector_t len;
1187 
1188 	do {
1189 		ti = dm_table_find_target(ci->map, ci->sector);
1190 		if (!dm_target_is_valid(ti))
1191 			return -EIO;
1192 
1193 		/*
1194 		 * Even though the device advertised discard support,
1195 		 * that does not mean every target supports it, and
1196 		 * reconfiguration might also have changed that since the
1197 		 * check was performed.
1198 		 */
1199 		if (!ti->num_discard_requests)
1200 			return -EOPNOTSUPP;
1201 
1202 		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1203 
1204 		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1205 
1206 		ci->sector += len;
1207 	} while (ci->sector_count -= len);
1208 
1209 	return 0;
1210 }
1211 
1212 static int __clone_and_map(struct clone_info *ci)
1213 {
1214 	struct bio *clone, *bio = ci->bio;
1215 	struct dm_target *ti;
1216 	sector_t len = 0, max;
1217 	struct dm_target_io *tio;
1218 
1219 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1220 		return __clone_and_map_discard(ci);
1221 
1222 	ti = dm_table_find_target(ci->map, ci->sector);
1223 	if (!dm_target_is_valid(ti))
1224 		return -EIO;
1225 
1226 	max = max_io_len(ci->sector, ti);
1227 
1228 	if (ci->sector_count <= max) {
1229 		/*
1230 		 * Optimise for the simple case where we can do all of
1231 		 * the remaining io with a single clone.
1232 		 */
1233 		__clone_and_map_simple(ci, ti);
1234 
1235 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1236 		/*
1237 		 * There are some bvecs that don't span targets.
1238 		 * Do as many of these as possible.
1239 		 */
1240 		int i;
1241 		sector_t remaining = max;
1242 		sector_t bv_len;
1243 
1244 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1245 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1246 
1247 			if (bv_len > remaining)
1248 				break;
1249 
1250 			remaining -= bv_len;
1251 			len += bv_len;
1252 		}
1253 
1254 		tio = alloc_tio(ci, ti);
1255 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1256 				  ci->md->bs);
1257 		__map_bio(ti, clone, tio);
1258 
1259 		ci->sector += len;
1260 		ci->sector_count -= len;
1261 		ci->idx = i;
1262 
1263 	} else {
1264 		/*
1265 		 * Handle a bvec that must be split between two or more targets.
1266 		 */
1267 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1268 		sector_t remaining = to_sector(bv->bv_len);
1269 		unsigned int offset = 0;
1270 
1271 		do {
1272 			if (offset) {
1273 				ti = dm_table_find_target(ci->map, ci->sector);
1274 				if (!dm_target_is_valid(ti))
1275 					return -EIO;
1276 
1277 				max = max_io_len(ci->sector, ti);
1278 			}
1279 
1280 			len = min(remaining, max);
1281 
1282 			tio = alloc_tio(ci, ti);
1283 			clone = split_bvec(bio, ci->sector, ci->idx,
1284 					   bv->bv_offset + offset, len,
1285 					   ci->md->bs);
1286 
1287 			__map_bio(ti, clone, tio);
1288 
1289 			ci->sector += len;
1290 			ci->sector_count -= len;
1291 			offset += to_bytes(len);
1292 		} while (remaining -= len);
1293 
1294 		ci->idx++;
1295 	}
1296 
1297 	return 0;
1298 }
1299 
1300 /*
1301  * Split the bio into several clones and submit it to targets.
1302  */
1303 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1304 {
1305 	struct clone_info ci;
1306 	int error = 0;
1307 
1308 	ci.map = dm_get_live_table(md);
1309 	if (unlikely(!ci.map)) {
1310 		bio_io_error(bio);
1311 		return;
1312 	}
1313 
1314 	ci.md = md;
1315 	ci.io = alloc_io(md);
1316 	ci.io->error = 0;
1317 	atomic_set(&ci.io->io_count, 1);
1318 	ci.io->bio = bio;
1319 	ci.io->md = md;
1320 	spin_lock_init(&ci.io->endio_lock);
1321 	ci.sector = bio->bi_sector;
1322 	ci.idx = bio->bi_idx;
1323 
1324 	start_io_acct(ci.io);
1325 	if (bio->bi_rw & REQ_FLUSH) {
1326 		ci.bio = &ci.md->flush_bio;
1327 		ci.sector_count = 0;
1328 		error = __clone_and_map_empty_flush(&ci);
1329 		/* dec_pending submits any data associated with flush */
1330 	} else {
1331 		ci.bio = bio;
1332 		ci.sector_count = bio_sectors(bio);
1333 		while (ci.sector_count && !error)
1334 			error = __clone_and_map(&ci);
1335 	}
1336 
1337 	/* drop the extra reference count */
1338 	dec_pending(ci.io, error);
1339 	dm_table_put(ci.map);
1340 }
1341 /*-----------------------------------------------------------------
1342  * CRUD END
1343  *---------------------------------------------------------------*/
1344 
1345 static int dm_merge_bvec(struct request_queue *q,
1346 			 struct bvec_merge_data *bvm,
1347 			 struct bio_vec *biovec)
1348 {
1349 	struct mapped_device *md = q->queuedata;
1350 	struct dm_table *map = dm_get_live_table(md);
1351 	struct dm_target *ti;
1352 	sector_t max_sectors;
1353 	int max_size = 0;
1354 
1355 	if (unlikely(!map))
1356 		goto out;
1357 
1358 	ti = dm_table_find_target(map, bvm->bi_sector);
1359 	if (!dm_target_is_valid(ti))
1360 		goto out_table;
1361 
1362 	/*
1363 	 * Find maximum amount of I/O that won't need splitting
1364 	 */
1365 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1366 			  (sector_t) BIO_MAX_SECTORS);
1367 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1368 	if (max_size < 0)
1369 		max_size = 0;
1370 
1371 	/*
1372 	 * merge_bvec_fn() returns number of bytes
1373 	 * it can accept at this offset
1374 	 * max is precomputed maximal io size
1375 	 */
1376 	if (max_size && ti->type->merge)
1377 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1378 	/*
1379 	 * If the target doesn't support merge method and some of the devices
1380 	 * provided their merge_bvec method (we know this by looking at
1381 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1382 	 * entries.  So always set max_size to 0, and the code below allows
1383 	 * just one page.
1384 	 */
1385 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1386 
1387 		max_size = 0;
1388 
1389 out_table:
1390 	dm_table_put(map);
1391 
1392 out:
1393 	/*
1394 	 * Always allow an entire first page
1395 	 */
1396 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1397 		max_size = biovec->bv_len;
1398 
1399 	return max_size;
1400 }
1401 
1402 /*
1403  * The request function that just remaps the bio built up by
1404  * dm_merge_bvec.
1405  */
1406 static int _dm_request(struct request_queue *q, struct bio *bio)
1407 {
1408 	int rw = bio_data_dir(bio);
1409 	struct mapped_device *md = q->queuedata;
1410 	int cpu;
1411 
1412 	down_read(&md->io_lock);
1413 
1414 	cpu = part_stat_lock();
1415 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1416 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1417 	part_stat_unlock();
1418 
1419 	/* if we're suspended, we have to queue this io for later */
1420 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1421 		up_read(&md->io_lock);
1422 
1423 		if (bio_rw(bio) != READA)
1424 			queue_io(md, bio);
1425 		else
1426 			bio_io_error(bio);
1427 		return 0;
1428 	}
1429 
1430 	__split_and_process_bio(md, bio);
1431 	up_read(&md->io_lock);
1432 	return 0;
1433 }
1434 
1435 static int dm_make_request(struct request_queue *q, struct bio *bio)
1436 {
1437 	struct mapped_device *md = q->queuedata;
1438 
1439 	return md->saved_make_request_fn(q, bio); /* call __make_request() */
1440 }
1441 
1442 static int dm_request_based(struct mapped_device *md)
1443 {
1444 	return blk_queue_stackable(md->queue);
1445 }
1446 
1447 static int dm_request(struct request_queue *q, struct bio *bio)
1448 {
1449 	struct mapped_device *md = q->queuedata;
1450 
1451 	if (dm_request_based(md))
1452 		return dm_make_request(q, bio);
1453 
1454 	return _dm_request(q, bio);
1455 }
1456 
1457 void dm_dispatch_request(struct request *rq)
1458 {
1459 	int r;
1460 
1461 	if (blk_queue_io_stat(rq->q))
1462 		rq->cmd_flags |= REQ_IO_STAT;
1463 
1464 	rq->start_time = jiffies;
1465 	r = blk_insert_cloned_request(rq->q, rq);
1466 	if (r)
1467 		dm_complete_request(rq, r);
1468 }
1469 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1470 
1471 static void dm_rq_bio_destructor(struct bio *bio)
1472 {
1473 	struct dm_rq_clone_bio_info *info = bio->bi_private;
1474 	struct mapped_device *md = info->tio->md;
1475 
1476 	free_bio_info(info);
1477 	bio_free(bio, md->bs);
1478 }
1479 
1480 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1481 				 void *data)
1482 {
1483 	struct dm_rq_target_io *tio = data;
1484 	struct mapped_device *md = tio->md;
1485 	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1486 
1487 	if (!info)
1488 		return -ENOMEM;
1489 
1490 	info->orig = bio_orig;
1491 	info->tio = tio;
1492 	bio->bi_end_io = end_clone_bio;
1493 	bio->bi_private = info;
1494 	bio->bi_destructor = dm_rq_bio_destructor;
1495 
1496 	return 0;
1497 }
1498 
1499 static int setup_clone(struct request *clone, struct request *rq,
1500 		       struct dm_rq_target_io *tio)
1501 {
1502 	int r;
1503 
1504 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1505 			      dm_rq_bio_constructor, tio);
1506 	if (r)
1507 		return r;
1508 
1509 	clone->cmd = rq->cmd;
1510 	clone->cmd_len = rq->cmd_len;
1511 	clone->sense = rq->sense;
1512 	clone->buffer = rq->buffer;
1513 	clone->end_io = end_clone_request;
1514 	clone->end_io_data = tio;
1515 
1516 	return 0;
1517 }
1518 
1519 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1520 				gfp_t gfp_mask)
1521 {
1522 	struct request *clone;
1523 	struct dm_rq_target_io *tio;
1524 
1525 	tio = alloc_rq_tio(md, gfp_mask);
1526 	if (!tio)
1527 		return NULL;
1528 
1529 	tio->md = md;
1530 	tio->ti = NULL;
1531 	tio->orig = rq;
1532 	tio->error = 0;
1533 	memset(&tio->info, 0, sizeof(tio->info));
1534 
1535 	clone = &tio->clone;
1536 	if (setup_clone(clone, rq, tio)) {
1537 		/* -ENOMEM */
1538 		free_rq_tio(tio);
1539 		return NULL;
1540 	}
1541 
1542 	return clone;
1543 }
1544 
1545 /*
1546  * Called with the queue lock held.
1547  */
1548 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1549 {
1550 	struct mapped_device *md = q->queuedata;
1551 	struct request *clone;
1552 
1553 	if (unlikely(rq->special)) {
1554 		DMWARN("Already has something in rq->special.");
1555 		return BLKPREP_KILL;
1556 	}
1557 
1558 	clone = clone_rq(rq, md, GFP_ATOMIC);
1559 	if (!clone)
1560 		return BLKPREP_DEFER;
1561 
1562 	rq->special = clone;
1563 	rq->cmd_flags |= REQ_DONTPREP;
1564 
1565 	return BLKPREP_OK;
1566 }
1567 
1568 /*
1569  * Returns:
1570  * 0  : the request has been processed (not requeued)
1571  * !0 : the request has been requeued
1572  */
1573 static int map_request(struct dm_target *ti, struct request *clone,
1574 		       struct mapped_device *md)
1575 {
1576 	int r, requeued = 0;
1577 	struct dm_rq_target_io *tio = clone->end_io_data;
1578 
1579 	/*
1580 	 * Hold the md reference here for the in-flight I/O.
1581 	 * We can't rely on the reference count by device opener,
1582 	 * because the device may be closed during the request completion
1583 	 * when all bios are completed.
1584 	 * See the comment in rq_completed() too.
1585 	 */
1586 	dm_get(md);
1587 
1588 	tio->ti = ti;
1589 	r = ti->type->map_rq(ti, clone, &tio->info);
1590 	switch (r) {
1591 	case DM_MAPIO_SUBMITTED:
1592 		/* The target has taken the I/O to submit by itself later */
1593 		break;
1594 	case DM_MAPIO_REMAPPED:
1595 		/* The target has remapped the I/O so dispatch it */
1596 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1597 				     blk_rq_pos(tio->orig));
1598 		dm_dispatch_request(clone);
1599 		break;
1600 	case DM_MAPIO_REQUEUE:
1601 		/* The target wants to requeue the I/O */
1602 		dm_requeue_unmapped_request(clone);
1603 		requeued = 1;
1604 		break;
1605 	default:
1606 		if (r > 0) {
1607 			DMWARN("unimplemented target map return value: %d", r);
1608 			BUG();
1609 		}
1610 
1611 		/* The target wants to complete the I/O */
1612 		dm_kill_unmapped_request(clone, r);
1613 		break;
1614 	}
1615 
1616 	return requeued;
1617 }
1618 
1619 /*
1620  * q->request_fn for request-based dm.
1621  * Called with the queue lock held.
1622  */
1623 static void dm_request_fn(struct request_queue *q)
1624 {
1625 	struct mapped_device *md = q->queuedata;
1626 	struct dm_table *map = dm_get_live_table(md);
1627 	struct dm_target *ti;
1628 	struct request *rq, *clone;
1629 	sector_t pos;
1630 
1631 	/*
1632 	 * For suspend, check blk_queue_stopped() and increment
1633 	 * ->pending within a single queue_lock not to increment the
1634 	 * number of in-flight I/Os after the queue is stopped in
1635 	 * dm_suspend().
1636 	 */
1637 	while (!blk_queue_stopped(q)) {
1638 		rq = blk_peek_request(q);
1639 		if (!rq)
1640 			goto delay_and_out;
1641 
1642 		/* always use block 0 to find the target for flushes for now */
1643 		pos = 0;
1644 		if (!(rq->cmd_flags & REQ_FLUSH))
1645 			pos = blk_rq_pos(rq);
1646 
1647 		ti = dm_table_find_target(map, pos);
1648 		BUG_ON(!dm_target_is_valid(ti));
1649 
1650 		if (ti->type->busy && ti->type->busy(ti))
1651 			goto delay_and_out;
1652 
1653 		blk_start_request(rq);
1654 		clone = rq->special;
1655 		atomic_inc(&md->pending[rq_data_dir(clone)]);
1656 
1657 		spin_unlock(q->queue_lock);
1658 		if (map_request(ti, clone, md))
1659 			goto requeued;
1660 
1661 		BUG_ON(!irqs_disabled());
1662 		spin_lock(q->queue_lock);
1663 	}
1664 
1665 	goto out;
1666 
1667 requeued:
1668 	BUG_ON(!irqs_disabled());
1669 	spin_lock(q->queue_lock);
1670 
1671 delay_and_out:
1672 	blk_delay_queue(q, HZ / 10);
1673 out:
1674 	dm_table_put(map);
1675 
1676 	return;
1677 }
1678 
1679 int dm_underlying_device_busy(struct request_queue *q)
1680 {
1681 	return blk_lld_busy(q);
1682 }
1683 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1684 
1685 static int dm_lld_busy(struct request_queue *q)
1686 {
1687 	int r;
1688 	struct mapped_device *md = q->queuedata;
1689 	struct dm_table *map = dm_get_live_table(md);
1690 
1691 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1692 		r = 1;
1693 	else
1694 		r = dm_table_any_busy_target(map);
1695 
1696 	dm_table_put(map);
1697 
1698 	return r;
1699 }
1700 
1701 static int dm_any_congested(void *congested_data, int bdi_bits)
1702 {
1703 	int r = bdi_bits;
1704 	struct mapped_device *md = congested_data;
1705 	struct dm_table *map;
1706 
1707 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1708 		map = dm_get_live_table(md);
1709 		if (map) {
1710 			/*
1711 			 * Request-based dm cares about only own queue for
1712 			 * the query about congestion status of request_queue
1713 			 */
1714 			if (dm_request_based(md))
1715 				r = md->queue->backing_dev_info.state &
1716 				    bdi_bits;
1717 			else
1718 				r = dm_table_any_congested(map, bdi_bits);
1719 
1720 			dm_table_put(map);
1721 		}
1722 	}
1723 
1724 	return r;
1725 }
1726 
1727 /*-----------------------------------------------------------------
1728  * An IDR is used to keep track of allocated minor numbers.
1729  *---------------------------------------------------------------*/
1730 static void free_minor(int minor)
1731 {
1732 	spin_lock(&_minor_lock);
1733 	idr_remove(&_minor_idr, minor);
1734 	spin_unlock(&_minor_lock);
1735 }
1736 
1737 /*
1738  * See if the device with a specific minor # is free.
1739  */
1740 static int specific_minor(int minor)
1741 {
1742 	int r, m;
1743 
1744 	if (minor >= (1 << MINORBITS))
1745 		return -EINVAL;
1746 
1747 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1748 	if (!r)
1749 		return -ENOMEM;
1750 
1751 	spin_lock(&_minor_lock);
1752 
1753 	if (idr_find(&_minor_idr, minor)) {
1754 		r = -EBUSY;
1755 		goto out;
1756 	}
1757 
1758 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1759 	if (r)
1760 		goto out;
1761 
1762 	if (m != minor) {
1763 		idr_remove(&_minor_idr, m);
1764 		r = -EBUSY;
1765 		goto out;
1766 	}
1767 
1768 out:
1769 	spin_unlock(&_minor_lock);
1770 	return r;
1771 }
1772 
1773 static int next_free_minor(int *minor)
1774 {
1775 	int r, m;
1776 
1777 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1778 	if (!r)
1779 		return -ENOMEM;
1780 
1781 	spin_lock(&_minor_lock);
1782 
1783 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1784 	if (r)
1785 		goto out;
1786 
1787 	if (m >= (1 << MINORBITS)) {
1788 		idr_remove(&_minor_idr, m);
1789 		r = -ENOSPC;
1790 		goto out;
1791 	}
1792 
1793 	*minor = m;
1794 
1795 out:
1796 	spin_unlock(&_minor_lock);
1797 	return r;
1798 }
1799 
1800 static const struct block_device_operations dm_blk_dops;
1801 
1802 static void dm_wq_work(struct work_struct *work);
1803 
1804 static void dm_init_md_queue(struct mapped_device *md)
1805 {
1806 	/*
1807 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1808 	 * devices.  The type of this dm device has not been decided yet.
1809 	 * The type is decided at the first table loading time.
1810 	 * To prevent problematic device stacking, clear the queue flag
1811 	 * for request stacking support until then.
1812 	 *
1813 	 * This queue is new, so no concurrency on the queue_flags.
1814 	 */
1815 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1816 
1817 	md->queue->queuedata = md;
1818 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1819 	md->queue->backing_dev_info.congested_data = md;
1820 	blk_queue_make_request(md->queue, dm_request);
1821 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1822 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1823 }
1824 
1825 /*
1826  * Allocate and initialise a blank device with a given minor.
1827  */
1828 static struct mapped_device *alloc_dev(int minor)
1829 {
1830 	int r;
1831 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1832 	void *old_md;
1833 
1834 	if (!md) {
1835 		DMWARN("unable to allocate device, out of memory.");
1836 		return NULL;
1837 	}
1838 
1839 	if (!try_module_get(THIS_MODULE))
1840 		goto bad_module_get;
1841 
1842 	/* get a minor number for the dev */
1843 	if (minor == DM_ANY_MINOR)
1844 		r = next_free_minor(&minor);
1845 	else
1846 		r = specific_minor(minor);
1847 	if (r < 0)
1848 		goto bad_minor;
1849 
1850 	md->type = DM_TYPE_NONE;
1851 	init_rwsem(&md->io_lock);
1852 	mutex_init(&md->suspend_lock);
1853 	mutex_init(&md->type_lock);
1854 	spin_lock_init(&md->deferred_lock);
1855 	rwlock_init(&md->map_lock);
1856 	atomic_set(&md->holders, 1);
1857 	atomic_set(&md->open_count, 0);
1858 	atomic_set(&md->event_nr, 0);
1859 	atomic_set(&md->uevent_seq, 0);
1860 	INIT_LIST_HEAD(&md->uevent_list);
1861 	spin_lock_init(&md->uevent_lock);
1862 
1863 	md->queue = blk_alloc_queue(GFP_KERNEL);
1864 	if (!md->queue)
1865 		goto bad_queue;
1866 
1867 	dm_init_md_queue(md);
1868 
1869 	md->disk = alloc_disk(1);
1870 	if (!md->disk)
1871 		goto bad_disk;
1872 
1873 	atomic_set(&md->pending[0], 0);
1874 	atomic_set(&md->pending[1], 0);
1875 	init_waitqueue_head(&md->wait);
1876 	INIT_WORK(&md->work, dm_wq_work);
1877 	init_waitqueue_head(&md->eventq);
1878 
1879 	md->disk->major = _major;
1880 	md->disk->first_minor = minor;
1881 	md->disk->fops = &dm_blk_dops;
1882 	md->disk->queue = md->queue;
1883 	md->disk->private_data = md;
1884 	sprintf(md->disk->disk_name, "dm-%d", minor);
1885 	add_disk(md->disk);
1886 	format_dev_t(md->name, MKDEV(_major, minor));
1887 
1888 	md->wq = alloc_workqueue("kdmflush",
1889 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1890 	if (!md->wq)
1891 		goto bad_thread;
1892 
1893 	md->bdev = bdget_disk(md->disk, 0);
1894 	if (!md->bdev)
1895 		goto bad_bdev;
1896 
1897 	bio_init(&md->flush_bio);
1898 	md->flush_bio.bi_bdev = md->bdev;
1899 	md->flush_bio.bi_rw = WRITE_FLUSH;
1900 
1901 	/* Populate the mapping, nobody knows we exist yet */
1902 	spin_lock(&_minor_lock);
1903 	old_md = idr_replace(&_minor_idr, md, minor);
1904 	spin_unlock(&_minor_lock);
1905 
1906 	BUG_ON(old_md != MINOR_ALLOCED);
1907 
1908 	return md;
1909 
1910 bad_bdev:
1911 	destroy_workqueue(md->wq);
1912 bad_thread:
1913 	del_gendisk(md->disk);
1914 	put_disk(md->disk);
1915 bad_disk:
1916 	blk_cleanup_queue(md->queue);
1917 bad_queue:
1918 	free_minor(minor);
1919 bad_minor:
1920 	module_put(THIS_MODULE);
1921 bad_module_get:
1922 	kfree(md);
1923 	return NULL;
1924 }
1925 
1926 static void unlock_fs(struct mapped_device *md);
1927 
1928 static void free_dev(struct mapped_device *md)
1929 {
1930 	int minor = MINOR(disk_devt(md->disk));
1931 
1932 	unlock_fs(md);
1933 	bdput(md->bdev);
1934 	destroy_workqueue(md->wq);
1935 	if (md->tio_pool)
1936 		mempool_destroy(md->tio_pool);
1937 	if (md->io_pool)
1938 		mempool_destroy(md->io_pool);
1939 	if (md->bs)
1940 		bioset_free(md->bs);
1941 	blk_integrity_unregister(md->disk);
1942 	del_gendisk(md->disk);
1943 	free_minor(minor);
1944 
1945 	spin_lock(&_minor_lock);
1946 	md->disk->private_data = NULL;
1947 	spin_unlock(&_minor_lock);
1948 
1949 	put_disk(md->disk);
1950 	blk_cleanup_queue(md->queue);
1951 	module_put(THIS_MODULE);
1952 	kfree(md);
1953 }
1954 
1955 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1956 {
1957 	struct dm_md_mempools *p;
1958 
1959 	if (md->io_pool && md->tio_pool && md->bs)
1960 		/* the md already has necessary mempools */
1961 		goto out;
1962 
1963 	p = dm_table_get_md_mempools(t);
1964 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1965 
1966 	md->io_pool = p->io_pool;
1967 	p->io_pool = NULL;
1968 	md->tio_pool = p->tio_pool;
1969 	p->tio_pool = NULL;
1970 	md->bs = p->bs;
1971 	p->bs = NULL;
1972 
1973 out:
1974 	/* mempool bind completed, now no need any mempools in the table */
1975 	dm_table_free_md_mempools(t);
1976 }
1977 
1978 /*
1979  * Bind a table to the device.
1980  */
1981 static void event_callback(void *context)
1982 {
1983 	unsigned long flags;
1984 	LIST_HEAD(uevents);
1985 	struct mapped_device *md = (struct mapped_device *) context;
1986 
1987 	spin_lock_irqsave(&md->uevent_lock, flags);
1988 	list_splice_init(&md->uevent_list, &uevents);
1989 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1990 
1991 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1992 
1993 	atomic_inc(&md->event_nr);
1994 	wake_up(&md->eventq);
1995 }
1996 
1997 /*
1998  * Protected by md->suspend_lock obtained by dm_swap_table().
1999  */
2000 static void __set_size(struct mapped_device *md, sector_t size)
2001 {
2002 	set_capacity(md->disk, size);
2003 
2004 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2005 }
2006 
2007 /*
2008  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2009  *
2010  * If this function returns 0, then the device is either a non-dm
2011  * device without a merge_bvec_fn, or it is a dm device that is
2012  * able to split any bios it receives that are too big.
2013  */
2014 int dm_queue_merge_is_compulsory(struct request_queue *q)
2015 {
2016 	struct mapped_device *dev_md;
2017 
2018 	if (!q->merge_bvec_fn)
2019 		return 0;
2020 
2021 	if (q->make_request_fn == dm_request) {
2022 		dev_md = q->queuedata;
2023 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2024 			return 0;
2025 	}
2026 
2027 	return 1;
2028 }
2029 
2030 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2031 					 struct dm_dev *dev, sector_t start,
2032 					 sector_t len, void *data)
2033 {
2034 	struct block_device *bdev = dev->bdev;
2035 	struct request_queue *q = bdev_get_queue(bdev);
2036 
2037 	return dm_queue_merge_is_compulsory(q);
2038 }
2039 
2040 /*
2041  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2042  * on the properties of the underlying devices.
2043  */
2044 static int dm_table_merge_is_optional(struct dm_table *table)
2045 {
2046 	unsigned i = 0;
2047 	struct dm_target *ti;
2048 
2049 	while (i < dm_table_get_num_targets(table)) {
2050 		ti = dm_table_get_target(table, i++);
2051 
2052 		if (ti->type->iterate_devices &&
2053 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2054 			return 0;
2055 	}
2056 
2057 	return 1;
2058 }
2059 
2060 /*
2061  * Returns old map, which caller must destroy.
2062  */
2063 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2064 			       struct queue_limits *limits)
2065 {
2066 	struct dm_table *old_map;
2067 	struct request_queue *q = md->queue;
2068 	sector_t size;
2069 	unsigned long flags;
2070 	int merge_is_optional;
2071 
2072 	size = dm_table_get_size(t);
2073 
2074 	/*
2075 	 * Wipe any geometry if the size of the table changed.
2076 	 */
2077 	if (size != get_capacity(md->disk))
2078 		memset(&md->geometry, 0, sizeof(md->geometry));
2079 
2080 	__set_size(md, size);
2081 
2082 	dm_table_event_callback(t, event_callback, md);
2083 
2084 	/*
2085 	 * The queue hasn't been stopped yet, if the old table type wasn't
2086 	 * for request-based during suspension.  So stop it to prevent
2087 	 * I/O mapping before resume.
2088 	 * This must be done before setting the queue restrictions,
2089 	 * because request-based dm may be run just after the setting.
2090 	 */
2091 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2092 		stop_queue(q);
2093 
2094 	__bind_mempools(md, t);
2095 
2096 	merge_is_optional = dm_table_merge_is_optional(t);
2097 
2098 	write_lock_irqsave(&md->map_lock, flags);
2099 	old_map = md->map;
2100 	md->map = t;
2101 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2102 
2103 	dm_table_set_restrictions(t, q, limits);
2104 	if (merge_is_optional)
2105 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2106 	else
2107 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2108 	write_unlock_irqrestore(&md->map_lock, flags);
2109 
2110 	return old_map;
2111 }
2112 
2113 /*
2114  * Returns unbound table for the caller to free.
2115  */
2116 static struct dm_table *__unbind(struct mapped_device *md)
2117 {
2118 	struct dm_table *map = md->map;
2119 	unsigned long flags;
2120 
2121 	if (!map)
2122 		return NULL;
2123 
2124 	dm_table_event_callback(map, NULL, NULL);
2125 	write_lock_irqsave(&md->map_lock, flags);
2126 	md->map = NULL;
2127 	write_unlock_irqrestore(&md->map_lock, flags);
2128 
2129 	return map;
2130 }
2131 
2132 /*
2133  * Constructor for a new device.
2134  */
2135 int dm_create(int minor, struct mapped_device **result)
2136 {
2137 	struct mapped_device *md;
2138 
2139 	md = alloc_dev(minor);
2140 	if (!md)
2141 		return -ENXIO;
2142 
2143 	dm_sysfs_init(md);
2144 
2145 	*result = md;
2146 	return 0;
2147 }
2148 
2149 /*
2150  * Functions to manage md->type.
2151  * All are required to hold md->type_lock.
2152  */
2153 void dm_lock_md_type(struct mapped_device *md)
2154 {
2155 	mutex_lock(&md->type_lock);
2156 }
2157 
2158 void dm_unlock_md_type(struct mapped_device *md)
2159 {
2160 	mutex_unlock(&md->type_lock);
2161 }
2162 
2163 void dm_set_md_type(struct mapped_device *md, unsigned type)
2164 {
2165 	md->type = type;
2166 }
2167 
2168 unsigned dm_get_md_type(struct mapped_device *md)
2169 {
2170 	return md->type;
2171 }
2172 
2173 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2174 {
2175 	return md->immutable_target_type;
2176 }
2177 
2178 /*
2179  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2180  */
2181 static int dm_init_request_based_queue(struct mapped_device *md)
2182 {
2183 	struct request_queue *q = NULL;
2184 
2185 	if (md->queue->elevator)
2186 		return 1;
2187 
2188 	/* Fully initialize the queue */
2189 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2190 	if (!q)
2191 		return 0;
2192 
2193 	md->queue = q;
2194 	md->saved_make_request_fn = md->queue->make_request_fn;
2195 	dm_init_md_queue(md);
2196 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2197 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2198 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2199 
2200 	elv_register_queue(md->queue);
2201 
2202 	return 1;
2203 }
2204 
2205 /*
2206  * Setup the DM device's queue based on md's type
2207  */
2208 int dm_setup_md_queue(struct mapped_device *md)
2209 {
2210 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2211 	    !dm_init_request_based_queue(md)) {
2212 		DMWARN("Cannot initialize queue for request-based mapped device");
2213 		return -EINVAL;
2214 	}
2215 
2216 	return 0;
2217 }
2218 
2219 static struct mapped_device *dm_find_md(dev_t dev)
2220 {
2221 	struct mapped_device *md;
2222 	unsigned minor = MINOR(dev);
2223 
2224 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2225 		return NULL;
2226 
2227 	spin_lock(&_minor_lock);
2228 
2229 	md = idr_find(&_minor_idr, minor);
2230 	if (md && (md == MINOR_ALLOCED ||
2231 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2232 		   dm_deleting_md(md) ||
2233 		   test_bit(DMF_FREEING, &md->flags))) {
2234 		md = NULL;
2235 		goto out;
2236 	}
2237 
2238 out:
2239 	spin_unlock(&_minor_lock);
2240 
2241 	return md;
2242 }
2243 
2244 struct mapped_device *dm_get_md(dev_t dev)
2245 {
2246 	struct mapped_device *md = dm_find_md(dev);
2247 
2248 	if (md)
2249 		dm_get(md);
2250 
2251 	return md;
2252 }
2253 
2254 void *dm_get_mdptr(struct mapped_device *md)
2255 {
2256 	return md->interface_ptr;
2257 }
2258 
2259 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2260 {
2261 	md->interface_ptr = ptr;
2262 }
2263 
2264 void dm_get(struct mapped_device *md)
2265 {
2266 	atomic_inc(&md->holders);
2267 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2268 }
2269 
2270 const char *dm_device_name(struct mapped_device *md)
2271 {
2272 	return md->name;
2273 }
2274 EXPORT_SYMBOL_GPL(dm_device_name);
2275 
2276 static void __dm_destroy(struct mapped_device *md, bool wait)
2277 {
2278 	struct dm_table *map;
2279 
2280 	might_sleep();
2281 
2282 	spin_lock(&_minor_lock);
2283 	map = dm_get_live_table(md);
2284 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2285 	set_bit(DMF_FREEING, &md->flags);
2286 	spin_unlock(&_minor_lock);
2287 
2288 	if (!dm_suspended_md(md)) {
2289 		dm_table_presuspend_targets(map);
2290 		dm_table_postsuspend_targets(map);
2291 	}
2292 
2293 	/*
2294 	 * Rare, but there may be I/O requests still going to complete,
2295 	 * for example.  Wait for all references to disappear.
2296 	 * No one should increment the reference count of the mapped_device,
2297 	 * after the mapped_device state becomes DMF_FREEING.
2298 	 */
2299 	if (wait)
2300 		while (atomic_read(&md->holders))
2301 			msleep(1);
2302 	else if (atomic_read(&md->holders))
2303 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2304 		       dm_device_name(md), atomic_read(&md->holders));
2305 
2306 	dm_sysfs_exit(md);
2307 	dm_table_put(map);
2308 	dm_table_destroy(__unbind(md));
2309 	free_dev(md);
2310 }
2311 
2312 void dm_destroy(struct mapped_device *md)
2313 {
2314 	__dm_destroy(md, true);
2315 }
2316 
2317 void dm_destroy_immediate(struct mapped_device *md)
2318 {
2319 	__dm_destroy(md, false);
2320 }
2321 
2322 void dm_put(struct mapped_device *md)
2323 {
2324 	atomic_dec(&md->holders);
2325 }
2326 EXPORT_SYMBOL_GPL(dm_put);
2327 
2328 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2329 {
2330 	int r = 0;
2331 	DECLARE_WAITQUEUE(wait, current);
2332 
2333 	add_wait_queue(&md->wait, &wait);
2334 
2335 	while (1) {
2336 		set_current_state(interruptible);
2337 
2338 		if (!md_in_flight(md))
2339 			break;
2340 
2341 		if (interruptible == TASK_INTERRUPTIBLE &&
2342 		    signal_pending(current)) {
2343 			r = -EINTR;
2344 			break;
2345 		}
2346 
2347 		io_schedule();
2348 	}
2349 	set_current_state(TASK_RUNNING);
2350 
2351 	remove_wait_queue(&md->wait, &wait);
2352 
2353 	return r;
2354 }
2355 
2356 /*
2357  * Process the deferred bios
2358  */
2359 static void dm_wq_work(struct work_struct *work)
2360 {
2361 	struct mapped_device *md = container_of(work, struct mapped_device,
2362 						work);
2363 	struct bio *c;
2364 
2365 	down_read(&md->io_lock);
2366 
2367 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2368 		spin_lock_irq(&md->deferred_lock);
2369 		c = bio_list_pop(&md->deferred);
2370 		spin_unlock_irq(&md->deferred_lock);
2371 
2372 		if (!c)
2373 			break;
2374 
2375 		up_read(&md->io_lock);
2376 
2377 		if (dm_request_based(md))
2378 			generic_make_request(c);
2379 		else
2380 			__split_and_process_bio(md, c);
2381 
2382 		down_read(&md->io_lock);
2383 	}
2384 
2385 	up_read(&md->io_lock);
2386 }
2387 
2388 static void dm_queue_flush(struct mapped_device *md)
2389 {
2390 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2391 	smp_mb__after_clear_bit();
2392 	queue_work(md->wq, &md->work);
2393 }
2394 
2395 /*
2396  * Swap in a new table, returning the old one for the caller to destroy.
2397  */
2398 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2399 {
2400 	struct dm_table *map = ERR_PTR(-EINVAL);
2401 	struct queue_limits limits;
2402 	int r;
2403 
2404 	mutex_lock(&md->suspend_lock);
2405 
2406 	/* device must be suspended */
2407 	if (!dm_suspended_md(md))
2408 		goto out;
2409 
2410 	r = dm_calculate_queue_limits(table, &limits);
2411 	if (r) {
2412 		map = ERR_PTR(r);
2413 		goto out;
2414 	}
2415 
2416 	map = __bind(md, table, &limits);
2417 
2418 out:
2419 	mutex_unlock(&md->suspend_lock);
2420 	return map;
2421 }
2422 
2423 /*
2424  * Functions to lock and unlock any filesystem running on the
2425  * device.
2426  */
2427 static int lock_fs(struct mapped_device *md)
2428 {
2429 	int r;
2430 
2431 	WARN_ON(md->frozen_sb);
2432 
2433 	md->frozen_sb = freeze_bdev(md->bdev);
2434 	if (IS_ERR(md->frozen_sb)) {
2435 		r = PTR_ERR(md->frozen_sb);
2436 		md->frozen_sb = NULL;
2437 		return r;
2438 	}
2439 
2440 	set_bit(DMF_FROZEN, &md->flags);
2441 
2442 	return 0;
2443 }
2444 
2445 static void unlock_fs(struct mapped_device *md)
2446 {
2447 	if (!test_bit(DMF_FROZEN, &md->flags))
2448 		return;
2449 
2450 	thaw_bdev(md->bdev, md->frozen_sb);
2451 	md->frozen_sb = NULL;
2452 	clear_bit(DMF_FROZEN, &md->flags);
2453 }
2454 
2455 /*
2456  * We need to be able to change a mapping table under a mounted
2457  * filesystem.  For example we might want to move some data in
2458  * the background.  Before the table can be swapped with
2459  * dm_bind_table, dm_suspend must be called to flush any in
2460  * flight bios and ensure that any further io gets deferred.
2461  */
2462 /*
2463  * Suspend mechanism in request-based dm.
2464  *
2465  * 1. Flush all I/Os by lock_fs() if needed.
2466  * 2. Stop dispatching any I/O by stopping the request_queue.
2467  * 3. Wait for all in-flight I/Os to be completed or requeued.
2468  *
2469  * To abort suspend, start the request_queue.
2470  */
2471 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2472 {
2473 	struct dm_table *map = NULL;
2474 	int r = 0;
2475 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2476 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2477 
2478 	mutex_lock(&md->suspend_lock);
2479 
2480 	if (dm_suspended_md(md)) {
2481 		r = -EINVAL;
2482 		goto out_unlock;
2483 	}
2484 
2485 	map = dm_get_live_table(md);
2486 
2487 	/*
2488 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2489 	 * This flag is cleared before dm_suspend returns.
2490 	 */
2491 	if (noflush)
2492 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2493 
2494 	/* This does not get reverted if there's an error later. */
2495 	dm_table_presuspend_targets(map);
2496 
2497 	/*
2498 	 * Flush I/O to the device.
2499 	 * Any I/O submitted after lock_fs() may not be flushed.
2500 	 * noflush takes precedence over do_lockfs.
2501 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2502 	 */
2503 	if (!noflush && do_lockfs) {
2504 		r = lock_fs(md);
2505 		if (r)
2506 			goto out;
2507 	}
2508 
2509 	/*
2510 	 * Here we must make sure that no processes are submitting requests
2511 	 * to target drivers i.e. no one may be executing
2512 	 * __split_and_process_bio. This is called from dm_request and
2513 	 * dm_wq_work.
2514 	 *
2515 	 * To get all processes out of __split_and_process_bio in dm_request,
2516 	 * we take the write lock. To prevent any process from reentering
2517 	 * __split_and_process_bio from dm_request and quiesce the thread
2518 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2519 	 * flush_workqueue(md->wq).
2520 	 */
2521 	down_write(&md->io_lock);
2522 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2523 	up_write(&md->io_lock);
2524 
2525 	/*
2526 	 * Stop md->queue before flushing md->wq in case request-based
2527 	 * dm defers requests to md->wq from md->queue.
2528 	 */
2529 	if (dm_request_based(md))
2530 		stop_queue(md->queue);
2531 
2532 	flush_workqueue(md->wq);
2533 
2534 	/*
2535 	 * At this point no more requests are entering target request routines.
2536 	 * We call dm_wait_for_completion to wait for all existing requests
2537 	 * to finish.
2538 	 */
2539 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2540 
2541 	down_write(&md->io_lock);
2542 	if (noflush)
2543 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2544 	up_write(&md->io_lock);
2545 
2546 	/* were we interrupted ? */
2547 	if (r < 0) {
2548 		dm_queue_flush(md);
2549 
2550 		if (dm_request_based(md))
2551 			start_queue(md->queue);
2552 
2553 		unlock_fs(md);
2554 		goto out; /* pushback list is already flushed, so skip flush */
2555 	}
2556 
2557 	/*
2558 	 * If dm_wait_for_completion returned 0, the device is completely
2559 	 * quiescent now. There is no request-processing activity. All new
2560 	 * requests are being added to md->deferred list.
2561 	 */
2562 
2563 	set_bit(DMF_SUSPENDED, &md->flags);
2564 
2565 	dm_table_postsuspend_targets(map);
2566 
2567 out:
2568 	dm_table_put(map);
2569 
2570 out_unlock:
2571 	mutex_unlock(&md->suspend_lock);
2572 	return r;
2573 }
2574 
2575 int dm_resume(struct mapped_device *md)
2576 {
2577 	int r = -EINVAL;
2578 	struct dm_table *map = NULL;
2579 
2580 	mutex_lock(&md->suspend_lock);
2581 	if (!dm_suspended_md(md))
2582 		goto out;
2583 
2584 	map = dm_get_live_table(md);
2585 	if (!map || !dm_table_get_size(map))
2586 		goto out;
2587 
2588 	r = dm_table_resume_targets(map);
2589 	if (r)
2590 		goto out;
2591 
2592 	dm_queue_flush(md);
2593 
2594 	/*
2595 	 * Flushing deferred I/Os must be done after targets are resumed
2596 	 * so that mapping of targets can work correctly.
2597 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2598 	 */
2599 	if (dm_request_based(md))
2600 		start_queue(md->queue);
2601 
2602 	unlock_fs(md);
2603 
2604 	clear_bit(DMF_SUSPENDED, &md->flags);
2605 
2606 	r = 0;
2607 out:
2608 	dm_table_put(map);
2609 	mutex_unlock(&md->suspend_lock);
2610 
2611 	return r;
2612 }
2613 
2614 /*-----------------------------------------------------------------
2615  * Event notification.
2616  *---------------------------------------------------------------*/
2617 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2618 		       unsigned cookie)
2619 {
2620 	char udev_cookie[DM_COOKIE_LENGTH];
2621 	char *envp[] = { udev_cookie, NULL };
2622 
2623 	if (!cookie)
2624 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2625 	else {
2626 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2627 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2628 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2629 					  action, envp);
2630 	}
2631 }
2632 
2633 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2634 {
2635 	return atomic_add_return(1, &md->uevent_seq);
2636 }
2637 
2638 uint32_t dm_get_event_nr(struct mapped_device *md)
2639 {
2640 	return atomic_read(&md->event_nr);
2641 }
2642 
2643 int dm_wait_event(struct mapped_device *md, int event_nr)
2644 {
2645 	return wait_event_interruptible(md->eventq,
2646 			(event_nr != atomic_read(&md->event_nr)));
2647 }
2648 
2649 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2650 {
2651 	unsigned long flags;
2652 
2653 	spin_lock_irqsave(&md->uevent_lock, flags);
2654 	list_add(elist, &md->uevent_list);
2655 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2656 }
2657 
2658 /*
2659  * The gendisk is only valid as long as you have a reference
2660  * count on 'md'.
2661  */
2662 struct gendisk *dm_disk(struct mapped_device *md)
2663 {
2664 	return md->disk;
2665 }
2666 
2667 struct kobject *dm_kobject(struct mapped_device *md)
2668 {
2669 	return &md->kobj;
2670 }
2671 
2672 /*
2673  * struct mapped_device should not be exported outside of dm.c
2674  * so use this check to verify that kobj is part of md structure
2675  */
2676 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2677 {
2678 	struct mapped_device *md;
2679 
2680 	md = container_of(kobj, struct mapped_device, kobj);
2681 	if (&md->kobj != kobj)
2682 		return NULL;
2683 
2684 	if (test_bit(DMF_FREEING, &md->flags) ||
2685 	    dm_deleting_md(md))
2686 		return NULL;
2687 
2688 	dm_get(md);
2689 	return md;
2690 }
2691 
2692 int dm_suspended_md(struct mapped_device *md)
2693 {
2694 	return test_bit(DMF_SUSPENDED, &md->flags);
2695 }
2696 
2697 int dm_suspended(struct dm_target *ti)
2698 {
2699 	return dm_suspended_md(dm_table_get_md(ti->table));
2700 }
2701 EXPORT_SYMBOL_GPL(dm_suspended);
2702 
2703 int dm_noflush_suspending(struct dm_target *ti)
2704 {
2705 	return __noflush_suspending(dm_table_get_md(ti->table));
2706 }
2707 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2708 
2709 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2710 {
2711 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2712 	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2713 
2714 	if (!pools)
2715 		return NULL;
2716 
2717 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2718 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2719 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2720 	if (!pools->io_pool)
2721 		goto free_pools_and_out;
2722 
2723 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2724 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2725 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2726 	if (!pools->tio_pool)
2727 		goto free_io_pool_and_out;
2728 
2729 	pools->bs = bioset_create(pool_size, 0);
2730 	if (!pools->bs)
2731 		goto free_tio_pool_and_out;
2732 
2733 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2734 		goto free_bioset_and_out;
2735 
2736 	return pools;
2737 
2738 free_bioset_and_out:
2739 	bioset_free(pools->bs);
2740 
2741 free_tio_pool_and_out:
2742 	mempool_destroy(pools->tio_pool);
2743 
2744 free_io_pool_and_out:
2745 	mempool_destroy(pools->io_pool);
2746 
2747 free_pools_and_out:
2748 	kfree(pools);
2749 
2750 	return NULL;
2751 }
2752 
2753 void dm_free_md_mempools(struct dm_md_mempools *pools)
2754 {
2755 	if (!pools)
2756 		return;
2757 
2758 	if (pools->io_pool)
2759 		mempool_destroy(pools->io_pool);
2760 
2761 	if (pools->tio_pool)
2762 		mempool_destroy(pools->tio_pool);
2763 
2764 	if (pools->bs)
2765 		bioset_free(pools->bs);
2766 
2767 	kfree(pools);
2768 }
2769 
2770 static const struct block_device_operations dm_blk_dops = {
2771 	.open = dm_blk_open,
2772 	.release = dm_blk_close,
2773 	.ioctl = dm_blk_ioctl,
2774 	.getgeo = dm_blk_getgeo,
2775 	.owner = THIS_MODULE
2776 };
2777 
2778 EXPORT_SYMBOL(dm_get_mapinfo);
2779 
2780 /*
2781  * module hooks
2782  */
2783 module_init(dm_init);
2784 module_exit(dm_exit);
2785 
2786 module_param(major, uint, 0);
2787 MODULE_PARM_DESC(major, "The major number of the device mapper");
2788 MODULE_DESCRIPTION(DM_NAME " driver");
2789 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2790 MODULE_LICENSE("GPL");
2791