1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/buffer_head.h> 18 #include <linux/mempool.h> 19 #include <linux/slab.h> 20 #include <linux/idr.h> 21 #include <linux/hdreg.h> 22 #include <linux/delay.h> 23 24 #include <trace/events/block.h> 25 26 #define DM_MSG_PREFIX "core" 27 28 #ifdef CONFIG_PRINTK 29 /* 30 * ratelimit state to be used in DMXXX_LIMIT(). 31 */ 32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 33 DEFAULT_RATELIMIT_INTERVAL, 34 DEFAULT_RATELIMIT_BURST); 35 EXPORT_SYMBOL(dm_ratelimit_state); 36 #endif 37 38 /* 39 * Cookies are numeric values sent with CHANGE and REMOVE 40 * uevents while resuming, removing or renaming the device. 41 */ 42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 43 #define DM_COOKIE_LENGTH 24 44 45 static const char *_name = DM_NAME; 46 47 static unsigned int major = 0; 48 static unsigned int _major = 0; 49 50 static DEFINE_IDR(_minor_idr); 51 52 static DEFINE_SPINLOCK(_minor_lock); 53 /* 54 * For bio-based dm. 55 * One of these is allocated per bio. 56 */ 57 struct dm_io { 58 struct mapped_device *md; 59 int error; 60 atomic_t io_count; 61 struct bio *bio; 62 unsigned long start_time; 63 spinlock_t endio_lock; 64 }; 65 66 /* 67 * For bio-based dm. 68 * One of these is allocated per target within a bio. Hopefully 69 * this will be simplified out one day. 70 */ 71 struct dm_target_io { 72 struct dm_io *io; 73 struct dm_target *ti; 74 union map_info info; 75 }; 76 77 /* 78 * For request-based dm. 79 * One of these is allocated per request. 80 */ 81 struct dm_rq_target_io { 82 struct mapped_device *md; 83 struct dm_target *ti; 84 struct request *orig, clone; 85 int error; 86 union map_info info; 87 }; 88 89 /* 90 * For request-based dm. 91 * One of these is allocated per bio. 92 */ 93 struct dm_rq_clone_bio_info { 94 struct bio *orig; 95 struct dm_rq_target_io *tio; 96 }; 97 98 union map_info *dm_get_mapinfo(struct bio *bio) 99 { 100 if (bio && bio->bi_private) 101 return &((struct dm_target_io *)bio->bi_private)->info; 102 return NULL; 103 } 104 105 union map_info *dm_get_rq_mapinfo(struct request *rq) 106 { 107 if (rq && rq->end_io_data) 108 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 109 return NULL; 110 } 111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 112 113 #define MINOR_ALLOCED ((void *)-1) 114 115 /* 116 * Bits for the md->flags field. 117 */ 118 #define DMF_BLOCK_IO_FOR_SUSPEND 0 119 #define DMF_SUSPENDED 1 120 #define DMF_FROZEN 2 121 #define DMF_FREEING 3 122 #define DMF_DELETING 4 123 #define DMF_NOFLUSH_SUSPENDING 5 124 #define DMF_MERGE_IS_OPTIONAL 6 125 126 /* 127 * Work processed by per-device workqueue. 128 */ 129 struct mapped_device { 130 struct rw_semaphore io_lock; 131 struct mutex suspend_lock; 132 rwlock_t map_lock; 133 atomic_t holders; 134 atomic_t open_count; 135 136 unsigned long flags; 137 138 struct request_queue *queue; 139 unsigned type; 140 /* Protect queue and type against concurrent access. */ 141 struct mutex type_lock; 142 143 struct target_type *immutable_target_type; 144 145 struct gendisk *disk; 146 char name[16]; 147 148 void *interface_ptr; 149 150 /* 151 * A list of ios that arrived while we were suspended. 152 */ 153 atomic_t pending[2]; 154 wait_queue_head_t wait; 155 struct work_struct work; 156 struct bio_list deferred; 157 spinlock_t deferred_lock; 158 159 /* 160 * Processing queue (flush) 161 */ 162 struct workqueue_struct *wq; 163 164 /* 165 * The current mapping. 166 */ 167 struct dm_table *map; 168 169 /* 170 * io objects are allocated from here. 171 */ 172 mempool_t *io_pool; 173 mempool_t *tio_pool; 174 175 struct bio_set *bs; 176 177 /* 178 * Event handling. 179 */ 180 atomic_t event_nr; 181 wait_queue_head_t eventq; 182 atomic_t uevent_seq; 183 struct list_head uevent_list; 184 spinlock_t uevent_lock; /* Protect access to uevent_list */ 185 186 /* 187 * freeze/thaw support require holding onto a super block 188 */ 189 struct super_block *frozen_sb; 190 struct block_device *bdev; 191 192 /* forced geometry settings */ 193 struct hd_geometry geometry; 194 195 /* For saving the address of __make_request for request based dm */ 196 make_request_fn *saved_make_request_fn; 197 198 /* sysfs handle */ 199 struct kobject kobj; 200 201 /* zero-length flush that will be cloned and submitted to targets */ 202 struct bio flush_bio; 203 }; 204 205 /* 206 * For mempools pre-allocation at the table loading time. 207 */ 208 struct dm_md_mempools { 209 mempool_t *io_pool; 210 mempool_t *tio_pool; 211 struct bio_set *bs; 212 }; 213 214 #define MIN_IOS 256 215 static struct kmem_cache *_io_cache; 216 static struct kmem_cache *_tio_cache; 217 static struct kmem_cache *_rq_tio_cache; 218 static struct kmem_cache *_rq_bio_info_cache; 219 220 static int __init local_init(void) 221 { 222 int r = -ENOMEM; 223 224 /* allocate a slab for the dm_ios */ 225 _io_cache = KMEM_CACHE(dm_io, 0); 226 if (!_io_cache) 227 return r; 228 229 /* allocate a slab for the target ios */ 230 _tio_cache = KMEM_CACHE(dm_target_io, 0); 231 if (!_tio_cache) 232 goto out_free_io_cache; 233 234 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 235 if (!_rq_tio_cache) 236 goto out_free_tio_cache; 237 238 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0); 239 if (!_rq_bio_info_cache) 240 goto out_free_rq_tio_cache; 241 242 r = dm_uevent_init(); 243 if (r) 244 goto out_free_rq_bio_info_cache; 245 246 _major = major; 247 r = register_blkdev(_major, _name); 248 if (r < 0) 249 goto out_uevent_exit; 250 251 if (!_major) 252 _major = r; 253 254 return 0; 255 256 out_uevent_exit: 257 dm_uevent_exit(); 258 out_free_rq_bio_info_cache: 259 kmem_cache_destroy(_rq_bio_info_cache); 260 out_free_rq_tio_cache: 261 kmem_cache_destroy(_rq_tio_cache); 262 out_free_tio_cache: 263 kmem_cache_destroy(_tio_cache); 264 out_free_io_cache: 265 kmem_cache_destroy(_io_cache); 266 267 return r; 268 } 269 270 static void local_exit(void) 271 { 272 kmem_cache_destroy(_rq_bio_info_cache); 273 kmem_cache_destroy(_rq_tio_cache); 274 kmem_cache_destroy(_tio_cache); 275 kmem_cache_destroy(_io_cache); 276 unregister_blkdev(_major, _name); 277 dm_uevent_exit(); 278 279 _major = 0; 280 281 DMINFO("cleaned up"); 282 } 283 284 static int (*_inits[])(void) __initdata = { 285 local_init, 286 dm_target_init, 287 dm_linear_init, 288 dm_stripe_init, 289 dm_io_init, 290 dm_kcopyd_init, 291 dm_interface_init, 292 }; 293 294 static void (*_exits[])(void) = { 295 local_exit, 296 dm_target_exit, 297 dm_linear_exit, 298 dm_stripe_exit, 299 dm_io_exit, 300 dm_kcopyd_exit, 301 dm_interface_exit, 302 }; 303 304 static int __init dm_init(void) 305 { 306 const int count = ARRAY_SIZE(_inits); 307 308 int r, i; 309 310 for (i = 0; i < count; i++) { 311 r = _inits[i](); 312 if (r) 313 goto bad; 314 } 315 316 return 0; 317 318 bad: 319 while (i--) 320 _exits[i](); 321 322 return r; 323 } 324 325 static void __exit dm_exit(void) 326 { 327 int i = ARRAY_SIZE(_exits); 328 329 while (i--) 330 _exits[i](); 331 332 /* 333 * Should be empty by this point. 334 */ 335 idr_remove_all(&_minor_idr); 336 idr_destroy(&_minor_idr); 337 } 338 339 /* 340 * Block device functions 341 */ 342 int dm_deleting_md(struct mapped_device *md) 343 { 344 return test_bit(DMF_DELETING, &md->flags); 345 } 346 347 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 348 { 349 struct mapped_device *md; 350 351 spin_lock(&_minor_lock); 352 353 md = bdev->bd_disk->private_data; 354 if (!md) 355 goto out; 356 357 if (test_bit(DMF_FREEING, &md->flags) || 358 dm_deleting_md(md)) { 359 md = NULL; 360 goto out; 361 } 362 363 dm_get(md); 364 atomic_inc(&md->open_count); 365 366 out: 367 spin_unlock(&_minor_lock); 368 369 return md ? 0 : -ENXIO; 370 } 371 372 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 373 { 374 struct mapped_device *md = disk->private_data; 375 376 spin_lock(&_minor_lock); 377 378 atomic_dec(&md->open_count); 379 dm_put(md); 380 381 spin_unlock(&_minor_lock); 382 383 return 0; 384 } 385 386 int dm_open_count(struct mapped_device *md) 387 { 388 return atomic_read(&md->open_count); 389 } 390 391 /* 392 * Guarantees nothing is using the device before it's deleted. 393 */ 394 int dm_lock_for_deletion(struct mapped_device *md) 395 { 396 int r = 0; 397 398 spin_lock(&_minor_lock); 399 400 if (dm_open_count(md)) 401 r = -EBUSY; 402 else 403 set_bit(DMF_DELETING, &md->flags); 404 405 spin_unlock(&_minor_lock); 406 407 return r; 408 } 409 410 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 411 { 412 struct mapped_device *md = bdev->bd_disk->private_data; 413 414 return dm_get_geometry(md, geo); 415 } 416 417 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 418 unsigned int cmd, unsigned long arg) 419 { 420 struct mapped_device *md = bdev->bd_disk->private_data; 421 struct dm_table *map = dm_get_live_table(md); 422 struct dm_target *tgt; 423 int r = -ENOTTY; 424 425 if (!map || !dm_table_get_size(map)) 426 goto out; 427 428 /* We only support devices that have a single target */ 429 if (dm_table_get_num_targets(map) != 1) 430 goto out; 431 432 tgt = dm_table_get_target(map, 0); 433 434 if (dm_suspended_md(md)) { 435 r = -EAGAIN; 436 goto out; 437 } 438 439 if (tgt->type->ioctl) 440 r = tgt->type->ioctl(tgt, cmd, arg); 441 442 out: 443 dm_table_put(map); 444 445 return r; 446 } 447 448 static struct dm_io *alloc_io(struct mapped_device *md) 449 { 450 return mempool_alloc(md->io_pool, GFP_NOIO); 451 } 452 453 static void free_io(struct mapped_device *md, struct dm_io *io) 454 { 455 mempool_free(io, md->io_pool); 456 } 457 458 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 459 { 460 mempool_free(tio, md->tio_pool); 461 } 462 463 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 464 gfp_t gfp_mask) 465 { 466 return mempool_alloc(md->tio_pool, gfp_mask); 467 } 468 469 static void free_rq_tio(struct dm_rq_target_io *tio) 470 { 471 mempool_free(tio, tio->md->tio_pool); 472 } 473 474 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md) 475 { 476 return mempool_alloc(md->io_pool, GFP_ATOMIC); 477 } 478 479 static void free_bio_info(struct dm_rq_clone_bio_info *info) 480 { 481 mempool_free(info, info->tio->md->io_pool); 482 } 483 484 static int md_in_flight(struct mapped_device *md) 485 { 486 return atomic_read(&md->pending[READ]) + 487 atomic_read(&md->pending[WRITE]); 488 } 489 490 static void start_io_acct(struct dm_io *io) 491 { 492 struct mapped_device *md = io->md; 493 int cpu; 494 int rw = bio_data_dir(io->bio); 495 496 io->start_time = jiffies; 497 498 cpu = part_stat_lock(); 499 part_round_stats(cpu, &dm_disk(md)->part0); 500 part_stat_unlock(); 501 atomic_set(&dm_disk(md)->part0.in_flight[rw], 502 atomic_inc_return(&md->pending[rw])); 503 } 504 505 static void end_io_acct(struct dm_io *io) 506 { 507 struct mapped_device *md = io->md; 508 struct bio *bio = io->bio; 509 unsigned long duration = jiffies - io->start_time; 510 int pending, cpu; 511 int rw = bio_data_dir(bio); 512 513 cpu = part_stat_lock(); 514 part_round_stats(cpu, &dm_disk(md)->part0); 515 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 516 part_stat_unlock(); 517 518 /* 519 * After this is decremented the bio must not be touched if it is 520 * a flush. 521 */ 522 pending = atomic_dec_return(&md->pending[rw]); 523 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 524 pending += atomic_read(&md->pending[rw^0x1]); 525 526 /* nudge anyone waiting on suspend queue */ 527 if (!pending) 528 wake_up(&md->wait); 529 } 530 531 /* 532 * Add the bio to the list of deferred io. 533 */ 534 static void queue_io(struct mapped_device *md, struct bio *bio) 535 { 536 unsigned long flags; 537 538 spin_lock_irqsave(&md->deferred_lock, flags); 539 bio_list_add(&md->deferred, bio); 540 spin_unlock_irqrestore(&md->deferred_lock, flags); 541 queue_work(md->wq, &md->work); 542 } 543 544 /* 545 * Everyone (including functions in this file), should use this 546 * function to access the md->map field, and make sure they call 547 * dm_table_put() when finished. 548 */ 549 struct dm_table *dm_get_live_table(struct mapped_device *md) 550 { 551 struct dm_table *t; 552 unsigned long flags; 553 554 read_lock_irqsave(&md->map_lock, flags); 555 t = md->map; 556 if (t) 557 dm_table_get(t); 558 read_unlock_irqrestore(&md->map_lock, flags); 559 560 return t; 561 } 562 563 /* 564 * Get the geometry associated with a dm device 565 */ 566 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 567 { 568 *geo = md->geometry; 569 570 return 0; 571 } 572 573 /* 574 * Set the geometry of a device. 575 */ 576 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 577 { 578 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 579 580 if (geo->start > sz) { 581 DMWARN("Start sector is beyond the geometry limits."); 582 return -EINVAL; 583 } 584 585 md->geometry = *geo; 586 587 return 0; 588 } 589 590 /*----------------------------------------------------------------- 591 * CRUD START: 592 * A more elegant soln is in the works that uses the queue 593 * merge fn, unfortunately there are a couple of changes to 594 * the block layer that I want to make for this. So in the 595 * interests of getting something for people to use I give 596 * you this clearly demarcated crap. 597 *---------------------------------------------------------------*/ 598 599 static int __noflush_suspending(struct mapped_device *md) 600 { 601 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 602 } 603 604 /* 605 * Decrements the number of outstanding ios that a bio has been 606 * cloned into, completing the original io if necc. 607 */ 608 static void dec_pending(struct dm_io *io, int error) 609 { 610 unsigned long flags; 611 int io_error; 612 struct bio *bio; 613 struct mapped_device *md = io->md; 614 615 /* Push-back supersedes any I/O errors */ 616 if (unlikely(error)) { 617 spin_lock_irqsave(&io->endio_lock, flags); 618 if (!(io->error > 0 && __noflush_suspending(md))) 619 io->error = error; 620 spin_unlock_irqrestore(&io->endio_lock, flags); 621 } 622 623 if (atomic_dec_and_test(&io->io_count)) { 624 if (io->error == DM_ENDIO_REQUEUE) { 625 /* 626 * Target requested pushing back the I/O. 627 */ 628 spin_lock_irqsave(&md->deferred_lock, flags); 629 if (__noflush_suspending(md)) 630 bio_list_add_head(&md->deferred, io->bio); 631 else 632 /* noflush suspend was interrupted. */ 633 io->error = -EIO; 634 spin_unlock_irqrestore(&md->deferred_lock, flags); 635 } 636 637 io_error = io->error; 638 bio = io->bio; 639 end_io_acct(io); 640 free_io(md, io); 641 642 if (io_error == DM_ENDIO_REQUEUE) 643 return; 644 645 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) { 646 /* 647 * Preflush done for flush with data, reissue 648 * without REQ_FLUSH. 649 */ 650 bio->bi_rw &= ~REQ_FLUSH; 651 queue_io(md, bio); 652 } else { 653 /* done with normal IO or empty flush */ 654 trace_block_bio_complete(md->queue, bio, io_error); 655 bio_endio(bio, io_error); 656 } 657 } 658 } 659 660 static void clone_endio(struct bio *bio, int error) 661 { 662 int r = 0; 663 struct dm_target_io *tio = bio->bi_private; 664 struct dm_io *io = tio->io; 665 struct mapped_device *md = tio->io->md; 666 dm_endio_fn endio = tio->ti->type->end_io; 667 668 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 669 error = -EIO; 670 671 if (endio) { 672 r = endio(tio->ti, bio, error, &tio->info); 673 if (r < 0 || r == DM_ENDIO_REQUEUE) 674 /* 675 * error and requeue request are handled 676 * in dec_pending(). 677 */ 678 error = r; 679 else if (r == DM_ENDIO_INCOMPLETE) 680 /* The target will handle the io */ 681 return; 682 else if (r) { 683 DMWARN("unimplemented target endio return value: %d", r); 684 BUG(); 685 } 686 } 687 688 /* 689 * Store md for cleanup instead of tio which is about to get freed. 690 */ 691 bio->bi_private = md->bs; 692 693 free_tio(md, tio); 694 bio_put(bio); 695 dec_pending(io, error); 696 } 697 698 /* 699 * Partial completion handling for request-based dm 700 */ 701 static void end_clone_bio(struct bio *clone, int error) 702 { 703 struct dm_rq_clone_bio_info *info = clone->bi_private; 704 struct dm_rq_target_io *tio = info->tio; 705 struct bio *bio = info->orig; 706 unsigned int nr_bytes = info->orig->bi_size; 707 708 bio_put(clone); 709 710 if (tio->error) 711 /* 712 * An error has already been detected on the request. 713 * Once error occurred, just let clone->end_io() handle 714 * the remainder. 715 */ 716 return; 717 else if (error) { 718 /* 719 * Don't notice the error to the upper layer yet. 720 * The error handling decision is made by the target driver, 721 * when the request is completed. 722 */ 723 tio->error = error; 724 return; 725 } 726 727 /* 728 * I/O for the bio successfully completed. 729 * Notice the data completion to the upper layer. 730 */ 731 732 /* 733 * bios are processed from the head of the list. 734 * So the completing bio should always be rq->bio. 735 * If it's not, something wrong is happening. 736 */ 737 if (tio->orig->bio != bio) 738 DMERR("bio completion is going in the middle of the request"); 739 740 /* 741 * Update the original request. 742 * Do not use blk_end_request() here, because it may complete 743 * the original request before the clone, and break the ordering. 744 */ 745 blk_update_request(tio->orig, 0, nr_bytes); 746 } 747 748 /* 749 * Don't touch any member of the md after calling this function because 750 * the md may be freed in dm_put() at the end of this function. 751 * Or do dm_get() before calling this function and dm_put() later. 752 */ 753 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 754 { 755 atomic_dec(&md->pending[rw]); 756 757 /* nudge anyone waiting on suspend queue */ 758 if (!md_in_flight(md)) 759 wake_up(&md->wait); 760 761 if (run_queue) 762 blk_run_queue(md->queue); 763 764 /* 765 * dm_put() must be at the end of this function. See the comment above 766 */ 767 dm_put(md); 768 } 769 770 static void free_rq_clone(struct request *clone) 771 { 772 struct dm_rq_target_io *tio = clone->end_io_data; 773 774 blk_rq_unprep_clone(clone); 775 free_rq_tio(tio); 776 } 777 778 /* 779 * Complete the clone and the original request. 780 * Must be called without queue lock. 781 */ 782 static void dm_end_request(struct request *clone, int error) 783 { 784 int rw = rq_data_dir(clone); 785 struct dm_rq_target_io *tio = clone->end_io_data; 786 struct mapped_device *md = tio->md; 787 struct request *rq = tio->orig; 788 789 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 790 rq->errors = clone->errors; 791 rq->resid_len = clone->resid_len; 792 793 if (rq->sense) 794 /* 795 * We are using the sense buffer of the original 796 * request. 797 * So setting the length of the sense data is enough. 798 */ 799 rq->sense_len = clone->sense_len; 800 } 801 802 free_rq_clone(clone); 803 blk_end_request_all(rq, error); 804 rq_completed(md, rw, true); 805 } 806 807 static void dm_unprep_request(struct request *rq) 808 { 809 struct request *clone = rq->special; 810 811 rq->special = NULL; 812 rq->cmd_flags &= ~REQ_DONTPREP; 813 814 free_rq_clone(clone); 815 } 816 817 /* 818 * Requeue the original request of a clone. 819 */ 820 void dm_requeue_unmapped_request(struct request *clone) 821 { 822 int rw = rq_data_dir(clone); 823 struct dm_rq_target_io *tio = clone->end_io_data; 824 struct mapped_device *md = tio->md; 825 struct request *rq = tio->orig; 826 struct request_queue *q = rq->q; 827 unsigned long flags; 828 829 dm_unprep_request(rq); 830 831 spin_lock_irqsave(q->queue_lock, flags); 832 blk_requeue_request(q, rq); 833 spin_unlock_irqrestore(q->queue_lock, flags); 834 835 rq_completed(md, rw, 0); 836 } 837 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 838 839 static void __stop_queue(struct request_queue *q) 840 { 841 blk_stop_queue(q); 842 } 843 844 static void stop_queue(struct request_queue *q) 845 { 846 unsigned long flags; 847 848 spin_lock_irqsave(q->queue_lock, flags); 849 __stop_queue(q); 850 spin_unlock_irqrestore(q->queue_lock, flags); 851 } 852 853 static void __start_queue(struct request_queue *q) 854 { 855 if (blk_queue_stopped(q)) 856 blk_start_queue(q); 857 } 858 859 static void start_queue(struct request_queue *q) 860 { 861 unsigned long flags; 862 863 spin_lock_irqsave(q->queue_lock, flags); 864 __start_queue(q); 865 spin_unlock_irqrestore(q->queue_lock, flags); 866 } 867 868 static void dm_done(struct request *clone, int error, bool mapped) 869 { 870 int r = error; 871 struct dm_rq_target_io *tio = clone->end_io_data; 872 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io; 873 874 if (mapped && rq_end_io) 875 r = rq_end_io(tio->ti, clone, error, &tio->info); 876 877 if (r <= 0) 878 /* The target wants to complete the I/O */ 879 dm_end_request(clone, r); 880 else if (r == DM_ENDIO_INCOMPLETE) 881 /* The target will handle the I/O */ 882 return; 883 else if (r == DM_ENDIO_REQUEUE) 884 /* The target wants to requeue the I/O */ 885 dm_requeue_unmapped_request(clone); 886 else { 887 DMWARN("unimplemented target endio return value: %d", r); 888 BUG(); 889 } 890 } 891 892 /* 893 * Request completion handler for request-based dm 894 */ 895 static void dm_softirq_done(struct request *rq) 896 { 897 bool mapped = true; 898 struct request *clone = rq->completion_data; 899 struct dm_rq_target_io *tio = clone->end_io_data; 900 901 if (rq->cmd_flags & REQ_FAILED) 902 mapped = false; 903 904 dm_done(clone, tio->error, mapped); 905 } 906 907 /* 908 * Complete the clone and the original request with the error status 909 * through softirq context. 910 */ 911 static void dm_complete_request(struct request *clone, int error) 912 { 913 struct dm_rq_target_io *tio = clone->end_io_data; 914 struct request *rq = tio->orig; 915 916 tio->error = error; 917 rq->completion_data = clone; 918 blk_complete_request(rq); 919 } 920 921 /* 922 * Complete the not-mapped clone and the original request with the error status 923 * through softirq context. 924 * Target's rq_end_io() function isn't called. 925 * This may be used when the target's map_rq() function fails. 926 */ 927 void dm_kill_unmapped_request(struct request *clone, int error) 928 { 929 struct dm_rq_target_io *tio = clone->end_io_data; 930 struct request *rq = tio->orig; 931 932 rq->cmd_flags |= REQ_FAILED; 933 dm_complete_request(clone, error); 934 } 935 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 936 937 /* 938 * Called with the queue lock held 939 */ 940 static void end_clone_request(struct request *clone, int error) 941 { 942 /* 943 * For just cleaning up the information of the queue in which 944 * the clone was dispatched. 945 * The clone is *NOT* freed actually here because it is alloced from 946 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 947 */ 948 __blk_put_request(clone->q, clone); 949 950 /* 951 * Actual request completion is done in a softirq context which doesn't 952 * hold the queue lock. Otherwise, deadlock could occur because: 953 * - another request may be submitted by the upper level driver 954 * of the stacking during the completion 955 * - the submission which requires queue lock may be done 956 * against this queue 957 */ 958 dm_complete_request(clone, error); 959 } 960 961 /* 962 * Return maximum size of I/O possible at the supplied sector up to the current 963 * target boundary. 964 */ 965 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 966 { 967 sector_t target_offset = dm_target_offset(ti, sector); 968 969 return ti->len - target_offset; 970 } 971 972 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 973 { 974 sector_t len = max_io_len_target_boundary(sector, ti); 975 976 /* 977 * Does the target need to split even further ? 978 */ 979 if (ti->split_io) { 980 sector_t boundary; 981 sector_t offset = dm_target_offset(ti, sector); 982 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1)) 983 - offset; 984 if (len > boundary) 985 len = boundary; 986 } 987 988 return len; 989 } 990 991 static void __map_bio(struct dm_target *ti, struct bio *clone, 992 struct dm_target_io *tio) 993 { 994 int r; 995 sector_t sector; 996 struct mapped_device *md; 997 998 clone->bi_end_io = clone_endio; 999 clone->bi_private = tio; 1000 1001 /* 1002 * Map the clone. If r == 0 we don't need to do 1003 * anything, the target has assumed ownership of 1004 * this io. 1005 */ 1006 atomic_inc(&tio->io->io_count); 1007 sector = clone->bi_sector; 1008 r = ti->type->map(ti, clone, &tio->info); 1009 if (r == DM_MAPIO_REMAPPED) { 1010 /* the bio has been remapped so dispatch it */ 1011 1012 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1013 tio->io->bio->bi_bdev->bd_dev, sector); 1014 1015 generic_make_request(clone); 1016 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1017 /* error the io and bail out, or requeue it if needed */ 1018 md = tio->io->md; 1019 dec_pending(tio->io, r); 1020 /* 1021 * Store bio_set for cleanup. 1022 */ 1023 clone->bi_private = md->bs; 1024 bio_put(clone); 1025 free_tio(md, tio); 1026 } else if (r) { 1027 DMWARN("unimplemented target map return value: %d", r); 1028 BUG(); 1029 } 1030 } 1031 1032 struct clone_info { 1033 struct mapped_device *md; 1034 struct dm_table *map; 1035 struct bio *bio; 1036 struct dm_io *io; 1037 sector_t sector; 1038 sector_t sector_count; 1039 unsigned short idx; 1040 }; 1041 1042 static void dm_bio_destructor(struct bio *bio) 1043 { 1044 struct bio_set *bs = bio->bi_private; 1045 1046 bio_free(bio, bs); 1047 } 1048 1049 /* 1050 * Creates a little bio that just does part of a bvec. 1051 */ 1052 static struct bio *split_bvec(struct bio *bio, sector_t sector, 1053 unsigned short idx, unsigned int offset, 1054 unsigned int len, struct bio_set *bs) 1055 { 1056 struct bio *clone; 1057 struct bio_vec *bv = bio->bi_io_vec + idx; 1058 1059 clone = bio_alloc_bioset(GFP_NOIO, 1, bs); 1060 clone->bi_destructor = dm_bio_destructor; 1061 *clone->bi_io_vec = *bv; 1062 1063 clone->bi_sector = sector; 1064 clone->bi_bdev = bio->bi_bdev; 1065 clone->bi_rw = bio->bi_rw; 1066 clone->bi_vcnt = 1; 1067 clone->bi_size = to_bytes(len); 1068 clone->bi_io_vec->bv_offset = offset; 1069 clone->bi_io_vec->bv_len = clone->bi_size; 1070 clone->bi_flags |= 1 << BIO_CLONED; 1071 1072 if (bio_integrity(bio)) { 1073 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1074 bio_integrity_trim(clone, 1075 bio_sector_offset(bio, idx, offset), len); 1076 } 1077 1078 return clone; 1079 } 1080 1081 /* 1082 * Creates a bio that consists of range of complete bvecs. 1083 */ 1084 static struct bio *clone_bio(struct bio *bio, sector_t sector, 1085 unsigned short idx, unsigned short bv_count, 1086 unsigned int len, struct bio_set *bs) 1087 { 1088 struct bio *clone; 1089 1090 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs); 1091 __bio_clone(clone, bio); 1092 clone->bi_destructor = dm_bio_destructor; 1093 clone->bi_sector = sector; 1094 clone->bi_idx = idx; 1095 clone->bi_vcnt = idx + bv_count; 1096 clone->bi_size = to_bytes(len); 1097 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 1098 1099 if (bio_integrity(bio)) { 1100 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1101 1102 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1103 bio_integrity_trim(clone, 1104 bio_sector_offset(bio, idx, 0), len); 1105 } 1106 1107 return clone; 1108 } 1109 1110 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1111 struct dm_target *ti) 1112 { 1113 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO); 1114 1115 tio->io = ci->io; 1116 tio->ti = ti; 1117 memset(&tio->info, 0, sizeof(tio->info)); 1118 1119 return tio; 1120 } 1121 1122 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti, 1123 unsigned request_nr, sector_t len) 1124 { 1125 struct dm_target_io *tio = alloc_tio(ci, ti); 1126 struct bio *clone; 1127 1128 tio->info.target_request_nr = request_nr; 1129 1130 /* 1131 * Discard requests require the bio's inline iovecs be initialized. 1132 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1133 * and discard, so no need for concern about wasted bvec allocations. 1134 */ 1135 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs); 1136 __bio_clone(clone, ci->bio); 1137 clone->bi_destructor = dm_bio_destructor; 1138 if (len) { 1139 clone->bi_sector = ci->sector; 1140 clone->bi_size = to_bytes(len); 1141 } 1142 1143 __map_bio(ti, clone, tio); 1144 } 1145 1146 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti, 1147 unsigned num_requests, sector_t len) 1148 { 1149 unsigned request_nr; 1150 1151 for (request_nr = 0; request_nr < num_requests; request_nr++) 1152 __issue_target_request(ci, ti, request_nr, len); 1153 } 1154 1155 static int __clone_and_map_empty_flush(struct clone_info *ci) 1156 { 1157 unsigned target_nr = 0; 1158 struct dm_target *ti; 1159 1160 BUG_ON(bio_has_data(ci->bio)); 1161 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1162 __issue_target_requests(ci, ti, ti->num_flush_requests, 0); 1163 1164 return 0; 1165 } 1166 1167 /* 1168 * Perform all io with a single clone. 1169 */ 1170 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti) 1171 { 1172 struct bio *clone, *bio = ci->bio; 1173 struct dm_target_io *tio; 1174 1175 tio = alloc_tio(ci, ti); 1176 clone = clone_bio(bio, ci->sector, ci->idx, 1177 bio->bi_vcnt - ci->idx, ci->sector_count, 1178 ci->md->bs); 1179 __map_bio(ti, clone, tio); 1180 ci->sector_count = 0; 1181 } 1182 1183 static int __clone_and_map_discard(struct clone_info *ci) 1184 { 1185 struct dm_target *ti; 1186 sector_t len; 1187 1188 do { 1189 ti = dm_table_find_target(ci->map, ci->sector); 1190 if (!dm_target_is_valid(ti)) 1191 return -EIO; 1192 1193 /* 1194 * Even though the device advertised discard support, 1195 * that does not mean every target supports it, and 1196 * reconfiguration might also have changed that since the 1197 * check was performed. 1198 */ 1199 if (!ti->num_discard_requests) 1200 return -EOPNOTSUPP; 1201 1202 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1203 1204 __issue_target_requests(ci, ti, ti->num_discard_requests, len); 1205 1206 ci->sector += len; 1207 } while (ci->sector_count -= len); 1208 1209 return 0; 1210 } 1211 1212 static int __clone_and_map(struct clone_info *ci) 1213 { 1214 struct bio *clone, *bio = ci->bio; 1215 struct dm_target *ti; 1216 sector_t len = 0, max; 1217 struct dm_target_io *tio; 1218 1219 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1220 return __clone_and_map_discard(ci); 1221 1222 ti = dm_table_find_target(ci->map, ci->sector); 1223 if (!dm_target_is_valid(ti)) 1224 return -EIO; 1225 1226 max = max_io_len(ci->sector, ti); 1227 1228 if (ci->sector_count <= max) { 1229 /* 1230 * Optimise for the simple case where we can do all of 1231 * the remaining io with a single clone. 1232 */ 1233 __clone_and_map_simple(ci, ti); 1234 1235 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1236 /* 1237 * There are some bvecs that don't span targets. 1238 * Do as many of these as possible. 1239 */ 1240 int i; 1241 sector_t remaining = max; 1242 sector_t bv_len; 1243 1244 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 1245 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 1246 1247 if (bv_len > remaining) 1248 break; 1249 1250 remaining -= bv_len; 1251 len += bv_len; 1252 } 1253 1254 tio = alloc_tio(ci, ti); 1255 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len, 1256 ci->md->bs); 1257 __map_bio(ti, clone, tio); 1258 1259 ci->sector += len; 1260 ci->sector_count -= len; 1261 ci->idx = i; 1262 1263 } else { 1264 /* 1265 * Handle a bvec that must be split between two or more targets. 1266 */ 1267 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1268 sector_t remaining = to_sector(bv->bv_len); 1269 unsigned int offset = 0; 1270 1271 do { 1272 if (offset) { 1273 ti = dm_table_find_target(ci->map, ci->sector); 1274 if (!dm_target_is_valid(ti)) 1275 return -EIO; 1276 1277 max = max_io_len(ci->sector, ti); 1278 } 1279 1280 len = min(remaining, max); 1281 1282 tio = alloc_tio(ci, ti); 1283 clone = split_bvec(bio, ci->sector, ci->idx, 1284 bv->bv_offset + offset, len, 1285 ci->md->bs); 1286 1287 __map_bio(ti, clone, tio); 1288 1289 ci->sector += len; 1290 ci->sector_count -= len; 1291 offset += to_bytes(len); 1292 } while (remaining -= len); 1293 1294 ci->idx++; 1295 } 1296 1297 return 0; 1298 } 1299 1300 /* 1301 * Split the bio into several clones and submit it to targets. 1302 */ 1303 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 1304 { 1305 struct clone_info ci; 1306 int error = 0; 1307 1308 ci.map = dm_get_live_table(md); 1309 if (unlikely(!ci.map)) { 1310 bio_io_error(bio); 1311 return; 1312 } 1313 1314 ci.md = md; 1315 ci.io = alloc_io(md); 1316 ci.io->error = 0; 1317 atomic_set(&ci.io->io_count, 1); 1318 ci.io->bio = bio; 1319 ci.io->md = md; 1320 spin_lock_init(&ci.io->endio_lock); 1321 ci.sector = bio->bi_sector; 1322 ci.idx = bio->bi_idx; 1323 1324 start_io_acct(ci.io); 1325 if (bio->bi_rw & REQ_FLUSH) { 1326 ci.bio = &ci.md->flush_bio; 1327 ci.sector_count = 0; 1328 error = __clone_and_map_empty_flush(&ci); 1329 /* dec_pending submits any data associated with flush */ 1330 } else { 1331 ci.bio = bio; 1332 ci.sector_count = bio_sectors(bio); 1333 while (ci.sector_count && !error) 1334 error = __clone_and_map(&ci); 1335 } 1336 1337 /* drop the extra reference count */ 1338 dec_pending(ci.io, error); 1339 dm_table_put(ci.map); 1340 } 1341 /*----------------------------------------------------------------- 1342 * CRUD END 1343 *---------------------------------------------------------------*/ 1344 1345 static int dm_merge_bvec(struct request_queue *q, 1346 struct bvec_merge_data *bvm, 1347 struct bio_vec *biovec) 1348 { 1349 struct mapped_device *md = q->queuedata; 1350 struct dm_table *map = dm_get_live_table(md); 1351 struct dm_target *ti; 1352 sector_t max_sectors; 1353 int max_size = 0; 1354 1355 if (unlikely(!map)) 1356 goto out; 1357 1358 ti = dm_table_find_target(map, bvm->bi_sector); 1359 if (!dm_target_is_valid(ti)) 1360 goto out_table; 1361 1362 /* 1363 * Find maximum amount of I/O that won't need splitting 1364 */ 1365 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1366 (sector_t) BIO_MAX_SECTORS); 1367 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1368 if (max_size < 0) 1369 max_size = 0; 1370 1371 /* 1372 * merge_bvec_fn() returns number of bytes 1373 * it can accept at this offset 1374 * max is precomputed maximal io size 1375 */ 1376 if (max_size && ti->type->merge) 1377 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1378 /* 1379 * If the target doesn't support merge method and some of the devices 1380 * provided their merge_bvec method (we know this by looking at 1381 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1382 * entries. So always set max_size to 0, and the code below allows 1383 * just one page. 1384 */ 1385 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1386 1387 max_size = 0; 1388 1389 out_table: 1390 dm_table_put(map); 1391 1392 out: 1393 /* 1394 * Always allow an entire first page 1395 */ 1396 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1397 max_size = biovec->bv_len; 1398 1399 return max_size; 1400 } 1401 1402 /* 1403 * The request function that just remaps the bio built up by 1404 * dm_merge_bvec. 1405 */ 1406 static int _dm_request(struct request_queue *q, struct bio *bio) 1407 { 1408 int rw = bio_data_dir(bio); 1409 struct mapped_device *md = q->queuedata; 1410 int cpu; 1411 1412 down_read(&md->io_lock); 1413 1414 cpu = part_stat_lock(); 1415 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1416 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1417 part_stat_unlock(); 1418 1419 /* if we're suspended, we have to queue this io for later */ 1420 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1421 up_read(&md->io_lock); 1422 1423 if (bio_rw(bio) != READA) 1424 queue_io(md, bio); 1425 else 1426 bio_io_error(bio); 1427 return 0; 1428 } 1429 1430 __split_and_process_bio(md, bio); 1431 up_read(&md->io_lock); 1432 return 0; 1433 } 1434 1435 static int dm_make_request(struct request_queue *q, struct bio *bio) 1436 { 1437 struct mapped_device *md = q->queuedata; 1438 1439 return md->saved_make_request_fn(q, bio); /* call __make_request() */ 1440 } 1441 1442 static int dm_request_based(struct mapped_device *md) 1443 { 1444 return blk_queue_stackable(md->queue); 1445 } 1446 1447 static int dm_request(struct request_queue *q, struct bio *bio) 1448 { 1449 struct mapped_device *md = q->queuedata; 1450 1451 if (dm_request_based(md)) 1452 return dm_make_request(q, bio); 1453 1454 return _dm_request(q, bio); 1455 } 1456 1457 void dm_dispatch_request(struct request *rq) 1458 { 1459 int r; 1460 1461 if (blk_queue_io_stat(rq->q)) 1462 rq->cmd_flags |= REQ_IO_STAT; 1463 1464 rq->start_time = jiffies; 1465 r = blk_insert_cloned_request(rq->q, rq); 1466 if (r) 1467 dm_complete_request(rq, r); 1468 } 1469 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1470 1471 static void dm_rq_bio_destructor(struct bio *bio) 1472 { 1473 struct dm_rq_clone_bio_info *info = bio->bi_private; 1474 struct mapped_device *md = info->tio->md; 1475 1476 free_bio_info(info); 1477 bio_free(bio, md->bs); 1478 } 1479 1480 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1481 void *data) 1482 { 1483 struct dm_rq_target_io *tio = data; 1484 struct mapped_device *md = tio->md; 1485 struct dm_rq_clone_bio_info *info = alloc_bio_info(md); 1486 1487 if (!info) 1488 return -ENOMEM; 1489 1490 info->orig = bio_orig; 1491 info->tio = tio; 1492 bio->bi_end_io = end_clone_bio; 1493 bio->bi_private = info; 1494 bio->bi_destructor = dm_rq_bio_destructor; 1495 1496 return 0; 1497 } 1498 1499 static int setup_clone(struct request *clone, struct request *rq, 1500 struct dm_rq_target_io *tio) 1501 { 1502 int r; 1503 1504 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1505 dm_rq_bio_constructor, tio); 1506 if (r) 1507 return r; 1508 1509 clone->cmd = rq->cmd; 1510 clone->cmd_len = rq->cmd_len; 1511 clone->sense = rq->sense; 1512 clone->buffer = rq->buffer; 1513 clone->end_io = end_clone_request; 1514 clone->end_io_data = tio; 1515 1516 return 0; 1517 } 1518 1519 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1520 gfp_t gfp_mask) 1521 { 1522 struct request *clone; 1523 struct dm_rq_target_io *tio; 1524 1525 tio = alloc_rq_tio(md, gfp_mask); 1526 if (!tio) 1527 return NULL; 1528 1529 tio->md = md; 1530 tio->ti = NULL; 1531 tio->orig = rq; 1532 tio->error = 0; 1533 memset(&tio->info, 0, sizeof(tio->info)); 1534 1535 clone = &tio->clone; 1536 if (setup_clone(clone, rq, tio)) { 1537 /* -ENOMEM */ 1538 free_rq_tio(tio); 1539 return NULL; 1540 } 1541 1542 return clone; 1543 } 1544 1545 /* 1546 * Called with the queue lock held. 1547 */ 1548 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1549 { 1550 struct mapped_device *md = q->queuedata; 1551 struct request *clone; 1552 1553 if (unlikely(rq->special)) { 1554 DMWARN("Already has something in rq->special."); 1555 return BLKPREP_KILL; 1556 } 1557 1558 clone = clone_rq(rq, md, GFP_ATOMIC); 1559 if (!clone) 1560 return BLKPREP_DEFER; 1561 1562 rq->special = clone; 1563 rq->cmd_flags |= REQ_DONTPREP; 1564 1565 return BLKPREP_OK; 1566 } 1567 1568 /* 1569 * Returns: 1570 * 0 : the request has been processed (not requeued) 1571 * !0 : the request has been requeued 1572 */ 1573 static int map_request(struct dm_target *ti, struct request *clone, 1574 struct mapped_device *md) 1575 { 1576 int r, requeued = 0; 1577 struct dm_rq_target_io *tio = clone->end_io_data; 1578 1579 /* 1580 * Hold the md reference here for the in-flight I/O. 1581 * We can't rely on the reference count by device opener, 1582 * because the device may be closed during the request completion 1583 * when all bios are completed. 1584 * See the comment in rq_completed() too. 1585 */ 1586 dm_get(md); 1587 1588 tio->ti = ti; 1589 r = ti->type->map_rq(ti, clone, &tio->info); 1590 switch (r) { 1591 case DM_MAPIO_SUBMITTED: 1592 /* The target has taken the I/O to submit by itself later */ 1593 break; 1594 case DM_MAPIO_REMAPPED: 1595 /* The target has remapped the I/O so dispatch it */ 1596 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1597 blk_rq_pos(tio->orig)); 1598 dm_dispatch_request(clone); 1599 break; 1600 case DM_MAPIO_REQUEUE: 1601 /* The target wants to requeue the I/O */ 1602 dm_requeue_unmapped_request(clone); 1603 requeued = 1; 1604 break; 1605 default: 1606 if (r > 0) { 1607 DMWARN("unimplemented target map return value: %d", r); 1608 BUG(); 1609 } 1610 1611 /* The target wants to complete the I/O */ 1612 dm_kill_unmapped_request(clone, r); 1613 break; 1614 } 1615 1616 return requeued; 1617 } 1618 1619 /* 1620 * q->request_fn for request-based dm. 1621 * Called with the queue lock held. 1622 */ 1623 static void dm_request_fn(struct request_queue *q) 1624 { 1625 struct mapped_device *md = q->queuedata; 1626 struct dm_table *map = dm_get_live_table(md); 1627 struct dm_target *ti; 1628 struct request *rq, *clone; 1629 sector_t pos; 1630 1631 /* 1632 * For suspend, check blk_queue_stopped() and increment 1633 * ->pending within a single queue_lock not to increment the 1634 * number of in-flight I/Os after the queue is stopped in 1635 * dm_suspend(). 1636 */ 1637 while (!blk_queue_stopped(q)) { 1638 rq = blk_peek_request(q); 1639 if (!rq) 1640 goto delay_and_out; 1641 1642 /* always use block 0 to find the target for flushes for now */ 1643 pos = 0; 1644 if (!(rq->cmd_flags & REQ_FLUSH)) 1645 pos = blk_rq_pos(rq); 1646 1647 ti = dm_table_find_target(map, pos); 1648 BUG_ON(!dm_target_is_valid(ti)); 1649 1650 if (ti->type->busy && ti->type->busy(ti)) 1651 goto delay_and_out; 1652 1653 blk_start_request(rq); 1654 clone = rq->special; 1655 atomic_inc(&md->pending[rq_data_dir(clone)]); 1656 1657 spin_unlock(q->queue_lock); 1658 if (map_request(ti, clone, md)) 1659 goto requeued; 1660 1661 BUG_ON(!irqs_disabled()); 1662 spin_lock(q->queue_lock); 1663 } 1664 1665 goto out; 1666 1667 requeued: 1668 BUG_ON(!irqs_disabled()); 1669 spin_lock(q->queue_lock); 1670 1671 delay_and_out: 1672 blk_delay_queue(q, HZ / 10); 1673 out: 1674 dm_table_put(map); 1675 1676 return; 1677 } 1678 1679 int dm_underlying_device_busy(struct request_queue *q) 1680 { 1681 return blk_lld_busy(q); 1682 } 1683 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1684 1685 static int dm_lld_busy(struct request_queue *q) 1686 { 1687 int r; 1688 struct mapped_device *md = q->queuedata; 1689 struct dm_table *map = dm_get_live_table(md); 1690 1691 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1692 r = 1; 1693 else 1694 r = dm_table_any_busy_target(map); 1695 1696 dm_table_put(map); 1697 1698 return r; 1699 } 1700 1701 static int dm_any_congested(void *congested_data, int bdi_bits) 1702 { 1703 int r = bdi_bits; 1704 struct mapped_device *md = congested_data; 1705 struct dm_table *map; 1706 1707 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1708 map = dm_get_live_table(md); 1709 if (map) { 1710 /* 1711 * Request-based dm cares about only own queue for 1712 * the query about congestion status of request_queue 1713 */ 1714 if (dm_request_based(md)) 1715 r = md->queue->backing_dev_info.state & 1716 bdi_bits; 1717 else 1718 r = dm_table_any_congested(map, bdi_bits); 1719 1720 dm_table_put(map); 1721 } 1722 } 1723 1724 return r; 1725 } 1726 1727 /*----------------------------------------------------------------- 1728 * An IDR is used to keep track of allocated minor numbers. 1729 *---------------------------------------------------------------*/ 1730 static void free_minor(int minor) 1731 { 1732 spin_lock(&_minor_lock); 1733 idr_remove(&_minor_idr, minor); 1734 spin_unlock(&_minor_lock); 1735 } 1736 1737 /* 1738 * See if the device with a specific minor # is free. 1739 */ 1740 static int specific_minor(int minor) 1741 { 1742 int r, m; 1743 1744 if (minor >= (1 << MINORBITS)) 1745 return -EINVAL; 1746 1747 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1748 if (!r) 1749 return -ENOMEM; 1750 1751 spin_lock(&_minor_lock); 1752 1753 if (idr_find(&_minor_idr, minor)) { 1754 r = -EBUSY; 1755 goto out; 1756 } 1757 1758 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 1759 if (r) 1760 goto out; 1761 1762 if (m != minor) { 1763 idr_remove(&_minor_idr, m); 1764 r = -EBUSY; 1765 goto out; 1766 } 1767 1768 out: 1769 spin_unlock(&_minor_lock); 1770 return r; 1771 } 1772 1773 static int next_free_minor(int *minor) 1774 { 1775 int r, m; 1776 1777 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1778 if (!r) 1779 return -ENOMEM; 1780 1781 spin_lock(&_minor_lock); 1782 1783 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1784 if (r) 1785 goto out; 1786 1787 if (m >= (1 << MINORBITS)) { 1788 idr_remove(&_minor_idr, m); 1789 r = -ENOSPC; 1790 goto out; 1791 } 1792 1793 *minor = m; 1794 1795 out: 1796 spin_unlock(&_minor_lock); 1797 return r; 1798 } 1799 1800 static const struct block_device_operations dm_blk_dops; 1801 1802 static void dm_wq_work(struct work_struct *work); 1803 1804 static void dm_init_md_queue(struct mapped_device *md) 1805 { 1806 /* 1807 * Request-based dm devices cannot be stacked on top of bio-based dm 1808 * devices. The type of this dm device has not been decided yet. 1809 * The type is decided at the first table loading time. 1810 * To prevent problematic device stacking, clear the queue flag 1811 * for request stacking support until then. 1812 * 1813 * This queue is new, so no concurrency on the queue_flags. 1814 */ 1815 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1816 1817 md->queue->queuedata = md; 1818 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1819 md->queue->backing_dev_info.congested_data = md; 1820 blk_queue_make_request(md->queue, dm_request); 1821 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1822 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1823 } 1824 1825 /* 1826 * Allocate and initialise a blank device with a given minor. 1827 */ 1828 static struct mapped_device *alloc_dev(int minor) 1829 { 1830 int r; 1831 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1832 void *old_md; 1833 1834 if (!md) { 1835 DMWARN("unable to allocate device, out of memory."); 1836 return NULL; 1837 } 1838 1839 if (!try_module_get(THIS_MODULE)) 1840 goto bad_module_get; 1841 1842 /* get a minor number for the dev */ 1843 if (minor == DM_ANY_MINOR) 1844 r = next_free_minor(&minor); 1845 else 1846 r = specific_minor(minor); 1847 if (r < 0) 1848 goto bad_minor; 1849 1850 md->type = DM_TYPE_NONE; 1851 init_rwsem(&md->io_lock); 1852 mutex_init(&md->suspend_lock); 1853 mutex_init(&md->type_lock); 1854 spin_lock_init(&md->deferred_lock); 1855 rwlock_init(&md->map_lock); 1856 atomic_set(&md->holders, 1); 1857 atomic_set(&md->open_count, 0); 1858 atomic_set(&md->event_nr, 0); 1859 atomic_set(&md->uevent_seq, 0); 1860 INIT_LIST_HEAD(&md->uevent_list); 1861 spin_lock_init(&md->uevent_lock); 1862 1863 md->queue = blk_alloc_queue(GFP_KERNEL); 1864 if (!md->queue) 1865 goto bad_queue; 1866 1867 dm_init_md_queue(md); 1868 1869 md->disk = alloc_disk(1); 1870 if (!md->disk) 1871 goto bad_disk; 1872 1873 atomic_set(&md->pending[0], 0); 1874 atomic_set(&md->pending[1], 0); 1875 init_waitqueue_head(&md->wait); 1876 INIT_WORK(&md->work, dm_wq_work); 1877 init_waitqueue_head(&md->eventq); 1878 1879 md->disk->major = _major; 1880 md->disk->first_minor = minor; 1881 md->disk->fops = &dm_blk_dops; 1882 md->disk->queue = md->queue; 1883 md->disk->private_data = md; 1884 sprintf(md->disk->disk_name, "dm-%d", minor); 1885 add_disk(md->disk); 1886 format_dev_t(md->name, MKDEV(_major, minor)); 1887 1888 md->wq = alloc_workqueue("kdmflush", 1889 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); 1890 if (!md->wq) 1891 goto bad_thread; 1892 1893 md->bdev = bdget_disk(md->disk, 0); 1894 if (!md->bdev) 1895 goto bad_bdev; 1896 1897 bio_init(&md->flush_bio); 1898 md->flush_bio.bi_bdev = md->bdev; 1899 md->flush_bio.bi_rw = WRITE_FLUSH; 1900 1901 /* Populate the mapping, nobody knows we exist yet */ 1902 spin_lock(&_minor_lock); 1903 old_md = idr_replace(&_minor_idr, md, minor); 1904 spin_unlock(&_minor_lock); 1905 1906 BUG_ON(old_md != MINOR_ALLOCED); 1907 1908 return md; 1909 1910 bad_bdev: 1911 destroy_workqueue(md->wq); 1912 bad_thread: 1913 del_gendisk(md->disk); 1914 put_disk(md->disk); 1915 bad_disk: 1916 blk_cleanup_queue(md->queue); 1917 bad_queue: 1918 free_minor(minor); 1919 bad_minor: 1920 module_put(THIS_MODULE); 1921 bad_module_get: 1922 kfree(md); 1923 return NULL; 1924 } 1925 1926 static void unlock_fs(struct mapped_device *md); 1927 1928 static void free_dev(struct mapped_device *md) 1929 { 1930 int minor = MINOR(disk_devt(md->disk)); 1931 1932 unlock_fs(md); 1933 bdput(md->bdev); 1934 destroy_workqueue(md->wq); 1935 if (md->tio_pool) 1936 mempool_destroy(md->tio_pool); 1937 if (md->io_pool) 1938 mempool_destroy(md->io_pool); 1939 if (md->bs) 1940 bioset_free(md->bs); 1941 blk_integrity_unregister(md->disk); 1942 del_gendisk(md->disk); 1943 free_minor(minor); 1944 1945 spin_lock(&_minor_lock); 1946 md->disk->private_data = NULL; 1947 spin_unlock(&_minor_lock); 1948 1949 put_disk(md->disk); 1950 blk_cleanup_queue(md->queue); 1951 module_put(THIS_MODULE); 1952 kfree(md); 1953 } 1954 1955 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1956 { 1957 struct dm_md_mempools *p; 1958 1959 if (md->io_pool && md->tio_pool && md->bs) 1960 /* the md already has necessary mempools */ 1961 goto out; 1962 1963 p = dm_table_get_md_mempools(t); 1964 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs); 1965 1966 md->io_pool = p->io_pool; 1967 p->io_pool = NULL; 1968 md->tio_pool = p->tio_pool; 1969 p->tio_pool = NULL; 1970 md->bs = p->bs; 1971 p->bs = NULL; 1972 1973 out: 1974 /* mempool bind completed, now no need any mempools in the table */ 1975 dm_table_free_md_mempools(t); 1976 } 1977 1978 /* 1979 * Bind a table to the device. 1980 */ 1981 static void event_callback(void *context) 1982 { 1983 unsigned long flags; 1984 LIST_HEAD(uevents); 1985 struct mapped_device *md = (struct mapped_device *) context; 1986 1987 spin_lock_irqsave(&md->uevent_lock, flags); 1988 list_splice_init(&md->uevent_list, &uevents); 1989 spin_unlock_irqrestore(&md->uevent_lock, flags); 1990 1991 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1992 1993 atomic_inc(&md->event_nr); 1994 wake_up(&md->eventq); 1995 } 1996 1997 /* 1998 * Protected by md->suspend_lock obtained by dm_swap_table(). 1999 */ 2000 static void __set_size(struct mapped_device *md, sector_t size) 2001 { 2002 set_capacity(md->disk, size); 2003 2004 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2005 } 2006 2007 /* 2008 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2009 * 2010 * If this function returns 0, then the device is either a non-dm 2011 * device without a merge_bvec_fn, or it is a dm device that is 2012 * able to split any bios it receives that are too big. 2013 */ 2014 int dm_queue_merge_is_compulsory(struct request_queue *q) 2015 { 2016 struct mapped_device *dev_md; 2017 2018 if (!q->merge_bvec_fn) 2019 return 0; 2020 2021 if (q->make_request_fn == dm_request) { 2022 dev_md = q->queuedata; 2023 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2024 return 0; 2025 } 2026 2027 return 1; 2028 } 2029 2030 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2031 struct dm_dev *dev, sector_t start, 2032 sector_t len, void *data) 2033 { 2034 struct block_device *bdev = dev->bdev; 2035 struct request_queue *q = bdev_get_queue(bdev); 2036 2037 return dm_queue_merge_is_compulsory(q); 2038 } 2039 2040 /* 2041 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2042 * on the properties of the underlying devices. 2043 */ 2044 static int dm_table_merge_is_optional(struct dm_table *table) 2045 { 2046 unsigned i = 0; 2047 struct dm_target *ti; 2048 2049 while (i < dm_table_get_num_targets(table)) { 2050 ti = dm_table_get_target(table, i++); 2051 2052 if (ti->type->iterate_devices && 2053 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2054 return 0; 2055 } 2056 2057 return 1; 2058 } 2059 2060 /* 2061 * Returns old map, which caller must destroy. 2062 */ 2063 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2064 struct queue_limits *limits) 2065 { 2066 struct dm_table *old_map; 2067 struct request_queue *q = md->queue; 2068 sector_t size; 2069 unsigned long flags; 2070 int merge_is_optional; 2071 2072 size = dm_table_get_size(t); 2073 2074 /* 2075 * Wipe any geometry if the size of the table changed. 2076 */ 2077 if (size != get_capacity(md->disk)) 2078 memset(&md->geometry, 0, sizeof(md->geometry)); 2079 2080 __set_size(md, size); 2081 2082 dm_table_event_callback(t, event_callback, md); 2083 2084 /* 2085 * The queue hasn't been stopped yet, if the old table type wasn't 2086 * for request-based during suspension. So stop it to prevent 2087 * I/O mapping before resume. 2088 * This must be done before setting the queue restrictions, 2089 * because request-based dm may be run just after the setting. 2090 */ 2091 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2092 stop_queue(q); 2093 2094 __bind_mempools(md, t); 2095 2096 merge_is_optional = dm_table_merge_is_optional(t); 2097 2098 write_lock_irqsave(&md->map_lock, flags); 2099 old_map = md->map; 2100 md->map = t; 2101 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2102 2103 dm_table_set_restrictions(t, q, limits); 2104 if (merge_is_optional) 2105 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2106 else 2107 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2108 write_unlock_irqrestore(&md->map_lock, flags); 2109 2110 return old_map; 2111 } 2112 2113 /* 2114 * Returns unbound table for the caller to free. 2115 */ 2116 static struct dm_table *__unbind(struct mapped_device *md) 2117 { 2118 struct dm_table *map = md->map; 2119 unsigned long flags; 2120 2121 if (!map) 2122 return NULL; 2123 2124 dm_table_event_callback(map, NULL, NULL); 2125 write_lock_irqsave(&md->map_lock, flags); 2126 md->map = NULL; 2127 write_unlock_irqrestore(&md->map_lock, flags); 2128 2129 return map; 2130 } 2131 2132 /* 2133 * Constructor for a new device. 2134 */ 2135 int dm_create(int minor, struct mapped_device **result) 2136 { 2137 struct mapped_device *md; 2138 2139 md = alloc_dev(minor); 2140 if (!md) 2141 return -ENXIO; 2142 2143 dm_sysfs_init(md); 2144 2145 *result = md; 2146 return 0; 2147 } 2148 2149 /* 2150 * Functions to manage md->type. 2151 * All are required to hold md->type_lock. 2152 */ 2153 void dm_lock_md_type(struct mapped_device *md) 2154 { 2155 mutex_lock(&md->type_lock); 2156 } 2157 2158 void dm_unlock_md_type(struct mapped_device *md) 2159 { 2160 mutex_unlock(&md->type_lock); 2161 } 2162 2163 void dm_set_md_type(struct mapped_device *md, unsigned type) 2164 { 2165 md->type = type; 2166 } 2167 2168 unsigned dm_get_md_type(struct mapped_device *md) 2169 { 2170 return md->type; 2171 } 2172 2173 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2174 { 2175 return md->immutable_target_type; 2176 } 2177 2178 /* 2179 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2180 */ 2181 static int dm_init_request_based_queue(struct mapped_device *md) 2182 { 2183 struct request_queue *q = NULL; 2184 2185 if (md->queue->elevator) 2186 return 1; 2187 2188 /* Fully initialize the queue */ 2189 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2190 if (!q) 2191 return 0; 2192 2193 md->queue = q; 2194 md->saved_make_request_fn = md->queue->make_request_fn; 2195 dm_init_md_queue(md); 2196 blk_queue_softirq_done(md->queue, dm_softirq_done); 2197 blk_queue_prep_rq(md->queue, dm_prep_fn); 2198 blk_queue_lld_busy(md->queue, dm_lld_busy); 2199 2200 elv_register_queue(md->queue); 2201 2202 return 1; 2203 } 2204 2205 /* 2206 * Setup the DM device's queue based on md's type 2207 */ 2208 int dm_setup_md_queue(struct mapped_device *md) 2209 { 2210 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2211 !dm_init_request_based_queue(md)) { 2212 DMWARN("Cannot initialize queue for request-based mapped device"); 2213 return -EINVAL; 2214 } 2215 2216 return 0; 2217 } 2218 2219 static struct mapped_device *dm_find_md(dev_t dev) 2220 { 2221 struct mapped_device *md; 2222 unsigned minor = MINOR(dev); 2223 2224 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2225 return NULL; 2226 2227 spin_lock(&_minor_lock); 2228 2229 md = idr_find(&_minor_idr, minor); 2230 if (md && (md == MINOR_ALLOCED || 2231 (MINOR(disk_devt(dm_disk(md))) != minor) || 2232 dm_deleting_md(md) || 2233 test_bit(DMF_FREEING, &md->flags))) { 2234 md = NULL; 2235 goto out; 2236 } 2237 2238 out: 2239 spin_unlock(&_minor_lock); 2240 2241 return md; 2242 } 2243 2244 struct mapped_device *dm_get_md(dev_t dev) 2245 { 2246 struct mapped_device *md = dm_find_md(dev); 2247 2248 if (md) 2249 dm_get(md); 2250 2251 return md; 2252 } 2253 2254 void *dm_get_mdptr(struct mapped_device *md) 2255 { 2256 return md->interface_ptr; 2257 } 2258 2259 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2260 { 2261 md->interface_ptr = ptr; 2262 } 2263 2264 void dm_get(struct mapped_device *md) 2265 { 2266 atomic_inc(&md->holders); 2267 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2268 } 2269 2270 const char *dm_device_name(struct mapped_device *md) 2271 { 2272 return md->name; 2273 } 2274 EXPORT_SYMBOL_GPL(dm_device_name); 2275 2276 static void __dm_destroy(struct mapped_device *md, bool wait) 2277 { 2278 struct dm_table *map; 2279 2280 might_sleep(); 2281 2282 spin_lock(&_minor_lock); 2283 map = dm_get_live_table(md); 2284 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2285 set_bit(DMF_FREEING, &md->flags); 2286 spin_unlock(&_minor_lock); 2287 2288 if (!dm_suspended_md(md)) { 2289 dm_table_presuspend_targets(map); 2290 dm_table_postsuspend_targets(map); 2291 } 2292 2293 /* 2294 * Rare, but there may be I/O requests still going to complete, 2295 * for example. Wait for all references to disappear. 2296 * No one should increment the reference count of the mapped_device, 2297 * after the mapped_device state becomes DMF_FREEING. 2298 */ 2299 if (wait) 2300 while (atomic_read(&md->holders)) 2301 msleep(1); 2302 else if (atomic_read(&md->holders)) 2303 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2304 dm_device_name(md), atomic_read(&md->holders)); 2305 2306 dm_sysfs_exit(md); 2307 dm_table_put(map); 2308 dm_table_destroy(__unbind(md)); 2309 free_dev(md); 2310 } 2311 2312 void dm_destroy(struct mapped_device *md) 2313 { 2314 __dm_destroy(md, true); 2315 } 2316 2317 void dm_destroy_immediate(struct mapped_device *md) 2318 { 2319 __dm_destroy(md, false); 2320 } 2321 2322 void dm_put(struct mapped_device *md) 2323 { 2324 atomic_dec(&md->holders); 2325 } 2326 EXPORT_SYMBOL_GPL(dm_put); 2327 2328 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2329 { 2330 int r = 0; 2331 DECLARE_WAITQUEUE(wait, current); 2332 2333 add_wait_queue(&md->wait, &wait); 2334 2335 while (1) { 2336 set_current_state(interruptible); 2337 2338 if (!md_in_flight(md)) 2339 break; 2340 2341 if (interruptible == TASK_INTERRUPTIBLE && 2342 signal_pending(current)) { 2343 r = -EINTR; 2344 break; 2345 } 2346 2347 io_schedule(); 2348 } 2349 set_current_state(TASK_RUNNING); 2350 2351 remove_wait_queue(&md->wait, &wait); 2352 2353 return r; 2354 } 2355 2356 /* 2357 * Process the deferred bios 2358 */ 2359 static void dm_wq_work(struct work_struct *work) 2360 { 2361 struct mapped_device *md = container_of(work, struct mapped_device, 2362 work); 2363 struct bio *c; 2364 2365 down_read(&md->io_lock); 2366 2367 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2368 spin_lock_irq(&md->deferred_lock); 2369 c = bio_list_pop(&md->deferred); 2370 spin_unlock_irq(&md->deferred_lock); 2371 2372 if (!c) 2373 break; 2374 2375 up_read(&md->io_lock); 2376 2377 if (dm_request_based(md)) 2378 generic_make_request(c); 2379 else 2380 __split_and_process_bio(md, c); 2381 2382 down_read(&md->io_lock); 2383 } 2384 2385 up_read(&md->io_lock); 2386 } 2387 2388 static void dm_queue_flush(struct mapped_device *md) 2389 { 2390 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2391 smp_mb__after_clear_bit(); 2392 queue_work(md->wq, &md->work); 2393 } 2394 2395 /* 2396 * Swap in a new table, returning the old one for the caller to destroy. 2397 */ 2398 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2399 { 2400 struct dm_table *map = ERR_PTR(-EINVAL); 2401 struct queue_limits limits; 2402 int r; 2403 2404 mutex_lock(&md->suspend_lock); 2405 2406 /* device must be suspended */ 2407 if (!dm_suspended_md(md)) 2408 goto out; 2409 2410 r = dm_calculate_queue_limits(table, &limits); 2411 if (r) { 2412 map = ERR_PTR(r); 2413 goto out; 2414 } 2415 2416 map = __bind(md, table, &limits); 2417 2418 out: 2419 mutex_unlock(&md->suspend_lock); 2420 return map; 2421 } 2422 2423 /* 2424 * Functions to lock and unlock any filesystem running on the 2425 * device. 2426 */ 2427 static int lock_fs(struct mapped_device *md) 2428 { 2429 int r; 2430 2431 WARN_ON(md->frozen_sb); 2432 2433 md->frozen_sb = freeze_bdev(md->bdev); 2434 if (IS_ERR(md->frozen_sb)) { 2435 r = PTR_ERR(md->frozen_sb); 2436 md->frozen_sb = NULL; 2437 return r; 2438 } 2439 2440 set_bit(DMF_FROZEN, &md->flags); 2441 2442 return 0; 2443 } 2444 2445 static void unlock_fs(struct mapped_device *md) 2446 { 2447 if (!test_bit(DMF_FROZEN, &md->flags)) 2448 return; 2449 2450 thaw_bdev(md->bdev, md->frozen_sb); 2451 md->frozen_sb = NULL; 2452 clear_bit(DMF_FROZEN, &md->flags); 2453 } 2454 2455 /* 2456 * We need to be able to change a mapping table under a mounted 2457 * filesystem. For example we might want to move some data in 2458 * the background. Before the table can be swapped with 2459 * dm_bind_table, dm_suspend must be called to flush any in 2460 * flight bios and ensure that any further io gets deferred. 2461 */ 2462 /* 2463 * Suspend mechanism in request-based dm. 2464 * 2465 * 1. Flush all I/Os by lock_fs() if needed. 2466 * 2. Stop dispatching any I/O by stopping the request_queue. 2467 * 3. Wait for all in-flight I/Os to be completed or requeued. 2468 * 2469 * To abort suspend, start the request_queue. 2470 */ 2471 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2472 { 2473 struct dm_table *map = NULL; 2474 int r = 0; 2475 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2476 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2477 2478 mutex_lock(&md->suspend_lock); 2479 2480 if (dm_suspended_md(md)) { 2481 r = -EINVAL; 2482 goto out_unlock; 2483 } 2484 2485 map = dm_get_live_table(md); 2486 2487 /* 2488 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2489 * This flag is cleared before dm_suspend returns. 2490 */ 2491 if (noflush) 2492 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2493 2494 /* This does not get reverted if there's an error later. */ 2495 dm_table_presuspend_targets(map); 2496 2497 /* 2498 * Flush I/O to the device. 2499 * Any I/O submitted after lock_fs() may not be flushed. 2500 * noflush takes precedence over do_lockfs. 2501 * (lock_fs() flushes I/Os and waits for them to complete.) 2502 */ 2503 if (!noflush && do_lockfs) { 2504 r = lock_fs(md); 2505 if (r) 2506 goto out; 2507 } 2508 2509 /* 2510 * Here we must make sure that no processes are submitting requests 2511 * to target drivers i.e. no one may be executing 2512 * __split_and_process_bio. This is called from dm_request and 2513 * dm_wq_work. 2514 * 2515 * To get all processes out of __split_and_process_bio in dm_request, 2516 * we take the write lock. To prevent any process from reentering 2517 * __split_and_process_bio from dm_request and quiesce the thread 2518 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2519 * flush_workqueue(md->wq). 2520 */ 2521 down_write(&md->io_lock); 2522 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2523 up_write(&md->io_lock); 2524 2525 /* 2526 * Stop md->queue before flushing md->wq in case request-based 2527 * dm defers requests to md->wq from md->queue. 2528 */ 2529 if (dm_request_based(md)) 2530 stop_queue(md->queue); 2531 2532 flush_workqueue(md->wq); 2533 2534 /* 2535 * At this point no more requests are entering target request routines. 2536 * We call dm_wait_for_completion to wait for all existing requests 2537 * to finish. 2538 */ 2539 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2540 2541 down_write(&md->io_lock); 2542 if (noflush) 2543 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2544 up_write(&md->io_lock); 2545 2546 /* were we interrupted ? */ 2547 if (r < 0) { 2548 dm_queue_flush(md); 2549 2550 if (dm_request_based(md)) 2551 start_queue(md->queue); 2552 2553 unlock_fs(md); 2554 goto out; /* pushback list is already flushed, so skip flush */ 2555 } 2556 2557 /* 2558 * If dm_wait_for_completion returned 0, the device is completely 2559 * quiescent now. There is no request-processing activity. All new 2560 * requests are being added to md->deferred list. 2561 */ 2562 2563 set_bit(DMF_SUSPENDED, &md->flags); 2564 2565 dm_table_postsuspend_targets(map); 2566 2567 out: 2568 dm_table_put(map); 2569 2570 out_unlock: 2571 mutex_unlock(&md->suspend_lock); 2572 return r; 2573 } 2574 2575 int dm_resume(struct mapped_device *md) 2576 { 2577 int r = -EINVAL; 2578 struct dm_table *map = NULL; 2579 2580 mutex_lock(&md->suspend_lock); 2581 if (!dm_suspended_md(md)) 2582 goto out; 2583 2584 map = dm_get_live_table(md); 2585 if (!map || !dm_table_get_size(map)) 2586 goto out; 2587 2588 r = dm_table_resume_targets(map); 2589 if (r) 2590 goto out; 2591 2592 dm_queue_flush(md); 2593 2594 /* 2595 * Flushing deferred I/Os must be done after targets are resumed 2596 * so that mapping of targets can work correctly. 2597 * Request-based dm is queueing the deferred I/Os in its request_queue. 2598 */ 2599 if (dm_request_based(md)) 2600 start_queue(md->queue); 2601 2602 unlock_fs(md); 2603 2604 clear_bit(DMF_SUSPENDED, &md->flags); 2605 2606 r = 0; 2607 out: 2608 dm_table_put(map); 2609 mutex_unlock(&md->suspend_lock); 2610 2611 return r; 2612 } 2613 2614 /*----------------------------------------------------------------- 2615 * Event notification. 2616 *---------------------------------------------------------------*/ 2617 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2618 unsigned cookie) 2619 { 2620 char udev_cookie[DM_COOKIE_LENGTH]; 2621 char *envp[] = { udev_cookie, NULL }; 2622 2623 if (!cookie) 2624 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2625 else { 2626 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2627 DM_COOKIE_ENV_VAR_NAME, cookie); 2628 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2629 action, envp); 2630 } 2631 } 2632 2633 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2634 { 2635 return atomic_add_return(1, &md->uevent_seq); 2636 } 2637 2638 uint32_t dm_get_event_nr(struct mapped_device *md) 2639 { 2640 return atomic_read(&md->event_nr); 2641 } 2642 2643 int dm_wait_event(struct mapped_device *md, int event_nr) 2644 { 2645 return wait_event_interruptible(md->eventq, 2646 (event_nr != atomic_read(&md->event_nr))); 2647 } 2648 2649 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2650 { 2651 unsigned long flags; 2652 2653 spin_lock_irqsave(&md->uevent_lock, flags); 2654 list_add(elist, &md->uevent_list); 2655 spin_unlock_irqrestore(&md->uevent_lock, flags); 2656 } 2657 2658 /* 2659 * The gendisk is only valid as long as you have a reference 2660 * count on 'md'. 2661 */ 2662 struct gendisk *dm_disk(struct mapped_device *md) 2663 { 2664 return md->disk; 2665 } 2666 2667 struct kobject *dm_kobject(struct mapped_device *md) 2668 { 2669 return &md->kobj; 2670 } 2671 2672 /* 2673 * struct mapped_device should not be exported outside of dm.c 2674 * so use this check to verify that kobj is part of md structure 2675 */ 2676 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2677 { 2678 struct mapped_device *md; 2679 2680 md = container_of(kobj, struct mapped_device, kobj); 2681 if (&md->kobj != kobj) 2682 return NULL; 2683 2684 if (test_bit(DMF_FREEING, &md->flags) || 2685 dm_deleting_md(md)) 2686 return NULL; 2687 2688 dm_get(md); 2689 return md; 2690 } 2691 2692 int dm_suspended_md(struct mapped_device *md) 2693 { 2694 return test_bit(DMF_SUSPENDED, &md->flags); 2695 } 2696 2697 int dm_suspended(struct dm_target *ti) 2698 { 2699 return dm_suspended_md(dm_table_get_md(ti->table)); 2700 } 2701 EXPORT_SYMBOL_GPL(dm_suspended); 2702 2703 int dm_noflush_suspending(struct dm_target *ti) 2704 { 2705 return __noflush_suspending(dm_table_get_md(ti->table)); 2706 } 2707 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2708 2709 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity) 2710 { 2711 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL); 2712 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS; 2713 2714 if (!pools) 2715 return NULL; 2716 2717 pools->io_pool = (type == DM_TYPE_BIO_BASED) ? 2718 mempool_create_slab_pool(MIN_IOS, _io_cache) : 2719 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache); 2720 if (!pools->io_pool) 2721 goto free_pools_and_out; 2722 2723 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ? 2724 mempool_create_slab_pool(MIN_IOS, _tio_cache) : 2725 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache); 2726 if (!pools->tio_pool) 2727 goto free_io_pool_and_out; 2728 2729 pools->bs = bioset_create(pool_size, 0); 2730 if (!pools->bs) 2731 goto free_tio_pool_and_out; 2732 2733 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2734 goto free_bioset_and_out; 2735 2736 return pools; 2737 2738 free_bioset_and_out: 2739 bioset_free(pools->bs); 2740 2741 free_tio_pool_and_out: 2742 mempool_destroy(pools->tio_pool); 2743 2744 free_io_pool_and_out: 2745 mempool_destroy(pools->io_pool); 2746 2747 free_pools_and_out: 2748 kfree(pools); 2749 2750 return NULL; 2751 } 2752 2753 void dm_free_md_mempools(struct dm_md_mempools *pools) 2754 { 2755 if (!pools) 2756 return; 2757 2758 if (pools->io_pool) 2759 mempool_destroy(pools->io_pool); 2760 2761 if (pools->tio_pool) 2762 mempool_destroy(pools->tio_pool); 2763 2764 if (pools->bs) 2765 bioset_free(pools->bs); 2766 2767 kfree(pools); 2768 } 2769 2770 static const struct block_device_operations dm_blk_dops = { 2771 .open = dm_blk_open, 2772 .release = dm_blk_close, 2773 .ioctl = dm_blk_ioctl, 2774 .getgeo = dm_blk_getgeo, 2775 .owner = THIS_MODULE 2776 }; 2777 2778 EXPORT_SYMBOL(dm_get_mapinfo); 2779 2780 /* 2781 * module hooks 2782 */ 2783 module_init(dm_init); 2784 module_exit(dm_exit); 2785 2786 module_param(major, uint, 0); 2787 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2788 MODULE_DESCRIPTION(DM_NAME " driver"); 2789 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2790 MODULE_LICENSE("GPL"); 2791