xref: /openbmc/linux/drivers/md/dm.c (revision 332f2b1e7360dc118d95bc6f15bcb6830b73a8aa)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 /*
44  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45  * dm_io into one list, and reuse bio->bi_private as the list head. Before
46  * ending this fs bio, we will recover its ->bi_private.
47  */
48 #define REQ_DM_POLL_LIST	REQ_DRV
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67 
68 void dm_issue_global_event(void)
69 {
70 	atomic_inc(&dm_global_event_nr);
71 	wake_up(&dm_global_eventq);
72 }
73 
74 /*
75  * One of these is allocated (on-stack) per original bio.
76  */
77 struct clone_info {
78 	struct dm_table *map;
79 	struct bio *bio;
80 	struct dm_io *io;
81 	sector_t sector;
82 	unsigned sector_count;
83 	bool submit_as_polled;
84 };
85 
86 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
87 #define DM_IO_BIO_OFFSET \
88 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
89 
90 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
91 {
92 	return container_of(clone, struct dm_target_io, clone);
93 }
94 
95 void *dm_per_bio_data(struct bio *bio, size_t data_size)
96 {
97 	if (!clone_to_tio(bio)->inside_dm_io)
98 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
99 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
100 }
101 EXPORT_SYMBOL_GPL(dm_per_bio_data);
102 
103 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
104 {
105 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
106 	if (io->magic == DM_IO_MAGIC)
107 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
108 	BUG_ON(io->magic != DM_TIO_MAGIC);
109 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
110 }
111 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
112 
113 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
114 {
115 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
116 }
117 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
118 
119 #define MINOR_ALLOCED ((void *)-1)
120 
121 #define DM_NUMA_NODE NUMA_NO_NODE
122 static int dm_numa_node = DM_NUMA_NODE;
123 
124 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
125 static int swap_bios = DEFAULT_SWAP_BIOS;
126 static int get_swap_bios(void)
127 {
128 	int latch = READ_ONCE(swap_bios);
129 	if (unlikely(latch <= 0))
130 		latch = DEFAULT_SWAP_BIOS;
131 	return latch;
132 }
133 
134 /*
135  * For mempools pre-allocation at the table loading time.
136  */
137 struct dm_md_mempools {
138 	struct bio_set bs;
139 	struct bio_set io_bs;
140 };
141 
142 struct table_device {
143 	struct list_head list;
144 	refcount_t count;
145 	struct dm_dev dm_dev;
146 };
147 
148 /*
149  * Bio-based DM's mempools' reserved IOs set by the user.
150  */
151 #define RESERVED_BIO_BASED_IOS		16
152 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
153 
154 static int __dm_get_module_param_int(int *module_param, int min, int max)
155 {
156 	int param = READ_ONCE(*module_param);
157 	int modified_param = 0;
158 	bool modified = true;
159 
160 	if (param < min)
161 		modified_param = min;
162 	else if (param > max)
163 		modified_param = max;
164 	else
165 		modified = false;
166 
167 	if (modified) {
168 		(void)cmpxchg(module_param, param, modified_param);
169 		param = modified_param;
170 	}
171 
172 	return param;
173 }
174 
175 unsigned __dm_get_module_param(unsigned *module_param,
176 			       unsigned def, unsigned max)
177 {
178 	unsigned param = READ_ONCE(*module_param);
179 	unsigned modified_param = 0;
180 
181 	if (!param)
182 		modified_param = def;
183 	else if (param > max)
184 		modified_param = max;
185 
186 	if (modified_param) {
187 		(void)cmpxchg(module_param, param, modified_param);
188 		param = modified_param;
189 	}
190 
191 	return param;
192 }
193 
194 unsigned dm_get_reserved_bio_based_ios(void)
195 {
196 	return __dm_get_module_param(&reserved_bio_based_ios,
197 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
198 }
199 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
200 
201 static unsigned dm_get_numa_node(void)
202 {
203 	return __dm_get_module_param_int(&dm_numa_node,
204 					 DM_NUMA_NODE, num_online_nodes() - 1);
205 }
206 
207 static int __init local_init(void)
208 {
209 	int r;
210 
211 	r = dm_uevent_init();
212 	if (r)
213 		return r;
214 
215 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
216 	if (!deferred_remove_workqueue) {
217 		r = -ENOMEM;
218 		goto out_uevent_exit;
219 	}
220 
221 	_major = major;
222 	r = register_blkdev(_major, _name);
223 	if (r < 0)
224 		goto out_free_workqueue;
225 
226 	if (!_major)
227 		_major = r;
228 
229 	return 0;
230 
231 out_free_workqueue:
232 	destroy_workqueue(deferred_remove_workqueue);
233 out_uevent_exit:
234 	dm_uevent_exit();
235 
236 	return r;
237 }
238 
239 static void local_exit(void)
240 {
241 	flush_scheduled_work();
242 	destroy_workqueue(deferred_remove_workqueue);
243 
244 	unregister_blkdev(_major, _name);
245 	dm_uevent_exit();
246 
247 	_major = 0;
248 
249 	DMINFO("cleaned up");
250 }
251 
252 static int (*_inits[])(void) __initdata = {
253 	local_init,
254 	dm_target_init,
255 	dm_linear_init,
256 	dm_stripe_init,
257 	dm_io_init,
258 	dm_kcopyd_init,
259 	dm_interface_init,
260 	dm_statistics_init,
261 };
262 
263 static void (*_exits[])(void) = {
264 	local_exit,
265 	dm_target_exit,
266 	dm_linear_exit,
267 	dm_stripe_exit,
268 	dm_io_exit,
269 	dm_kcopyd_exit,
270 	dm_interface_exit,
271 	dm_statistics_exit,
272 };
273 
274 static int __init dm_init(void)
275 {
276 	const int count = ARRAY_SIZE(_inits);
277 	int r, i;
278 
279 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
280 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
281 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
282 #endif
283 
284 	for (i = 0; i < count; i++) {
285 		r = _inits[i]();
286 		if (r)
287 			goto bad;
288 	}
289 
290 	return 0;
291 bad:
292 	while (i--)
293 		_exits[i]();
294 
295 	return r;
296 }
297 
298 static void __exit dm_exit(void)
299 {
300 	int i = ARRAY_SIZE(_exits);
301 
302 	while (i--)
303 		_exits[i]();
304 
305 	/*
306 	 * Should be empty by this point.
307 	 */
308 	idr_destroy(&_minor_idr);
309 }
310 
311 /*
312  * Block device functions
313  */
314 int dm_deleting_md(struct mapped_device *md)
315 {
316 	return test_bit(DMF_DELETING, &md->flags);
317 }
318 
319 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
320 {
321 	struct mapped_device *md;
322 
323 	spin_lock(&_minor_lock);
324 
325 	md = bdev->bd_disk->private_data;
326 	if (!md)
327 		goto out;
328 
329 	if (test_bit(DMF_FREEING, &md->flags) ||
330 	    dm_deleting_md(md)) {
331 		md = NULL;
332 		goto out;
333 	}
334 
335 	dm_get(md);
336 	atomic_inc(&md->open_count);
337 out:
338 	spin_unlock(&_minor_lock);
339 
340 	return md ? 0 : -ENXIO;
341 }
342 
343 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
344 {
345 	struct mapped_device *md;
346 
347 	spin_lock(&_minor_lock);
348 
349 	md = disk->private_data;
350 	if (WARN_ON(!md))
351 		goto out;
352 
353 	if (atomic_dec_and_test(&md->open_count) &&
354 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
355 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
356 
357 	dm_put(md);
358 out:
359 	spin_unlock(&_minor_lock);
360 }
361 
362 int dm_open_count(struct mapped_device *md)
363 {
364 	return atomic_read(&md->open_count);
365 }
366 
367 /*
368  * Guarantees nothing is using the device before it's deleted.
369  */
370 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
371 {
372 	int r = 0;
373 
374 	spin_lock(&_minor_lock);
375 
376 	if (dm_open_count(md)) {
377 		r = -EBUSY;
378 		if (mark_deferred)
379 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
380 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
381 		r = -EEXIST;
382 	else
383 		set_bit(DMF_DELETING, &md->flags);
384 
385 	spin_unlock(&_minor_lock);
386 
387 	return r;
388 }
389 
390 int dm_cancel_deferred_remove(struct mapped_device *md)
391 {
392 	int r = 0;
393 
394 	spin_lock(&_minor_lock);
395 
396 	if (test_bit(DMF_DELETING, &md->flags))
397 		r = -EBUSY;
398 	else
399 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
400 
401 	spin_unlock(&_minor_lock);
402 
403 	return r;
404 }
405 
406 static void do_deferred_remove(struct work_struct *w)
407 {
408 	dm_deferred_remove();
409 }
410 
411 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
412 {
413 	struct mapped_device *md = bdev->bd_disk->private_data;
414 
415 	return dm_get_geometry(md, geo);
416 }
417 
418 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
419 			    struct block_device **bdev)
420 {
421 	struct dm_target *tgt;
422 	struct dm_table *map;
423 	int r;
424 
425 retry:
426 	r = -ENOTTY;
427 	map = dm_get_live_table(md, srcu_idx);
428 	if (!map || !dm_table_get_size(map))
429 		return r;
430 
431 	/* We only support devices that have a single target */
432 	if (dm_table_get_num_targets(map) != 1)
433 		return r;
434 
435 	tgt = dm_table_get_target(map, 0);
436 	if (!tgt->type->prepare_ioctl)
437 		return r;
438 
439 	if (dm_suspended_md(md))
440 		return -EAGAIN;
441 
442 	r = tgt->type->prepare_ioctl(tgt, bdev);
443 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
444 		dm_put_live_table(md, *srcu_idx);
445 		msleep(10);
446 		goto retry;
447 	}
448 
449 	return r;
450 }
451 
452 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
453 {
454 	dm_put_live_table(md, srcu_idx);
455 }
456 
457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 			unsigned int cmd, unsigned long arg)
459 {
460 	struct mapped_device *md = bdev->bd_disk->private_data;
461 	int r, srcu_idx;
462 
463 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
464 	if (r < 0)
465 		goto out;
466 
467 	if (r > 0) {
468 		/*
469 		 * Target determined this ioctl is being issued against a
470 		 * subset of the parent bdev; require extra privileges.
471 		 */
472 		if (!capable(CAP_SYS_RAWIO)) {
473 			DMDEBUG_LIMIT(
474 	"%s: sending ioctl %x to DM device without required privilege.",
475 				current->comm, cmd);
476 			r = -ENOIOCTLCMD;
477 			goto out;
478 		}
479 	}
480 
481 	if (!bdev->bd_disk->fops->ioctl)
482 		r = -ENOTTY;
483 	else
484 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
485 out:
486 	dm_unprepare_ioctl(md, srcu_idx);
487 	return r;
488 }
489 
490 u64 dm_start_time_ns_from_clone(struct bio *bio)
491 {
492 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
493 }
494 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
495 
496 static bool bio_is_flush_with_data(struct bio *bio)
497 {
498 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
499 }
500 
501 static void dm_io_acct(bool end, struct mapped_device *md, struct bio *bio,
502 		       unsigned long start_time, struct dm_stats_aux *stats_aux)
503 {
504 	bool is_flush_with_data;
505 	unsigned int bi_size;
506 
507 	/* If REQ_PREFLUSH set save any payload but do not account it */
508 	is_flush_with_data = bio_is_flush_with_data(bio);
509 	if (is_flush_with_data) {
510 		bi_size = bio->bi_iter.bi_size;
511 		bio->bi_iter.bi_size = 0;
512 	}
513 
514 	if (!end)
515 		bio_start_io_acct_time(bio, start_time);
516 	else
517 		bio_end_io_acct(bio, start_time);
518 
519 	if (unlikely(dm_stats_used(&md->stats)))
520 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
521 				    bio->bi_iter.bi_sector, bio_sectors(bio),
522 				    end, start_time, stats_aux);
523 
524 	/* Restore bio's payload so it does get accounted upon requeue */
525 	if (is_flush_with_data)
526 		bio->bi_iter.bi_size = bi_size;
527 }
528 
529 static void __dm_start_io_acct(struct dm_io *io, struct bio *bio)
530 {
531 	dm_io_acct(false, io->md, bio, io->start_time, &io->stats_aux);
532 }
533 
534 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
535 {
536 	/* Must account IO to DM device in terms of orig_bio */
537 	struct bio *bio = io->orig_bio;
538 
539 	/*
540 	 * Ensure IO accounting is only ever started once.
541 	 * Expect no possibility for race unless is_duplicate_bio.
542 	 */
543 	if (!clone || likely(!clone_to_tio(clone)->is_duplicate_bio)) {
544 		if (WARN_ON_ONCE(io->was_accounted))
545 			return;
546 		io->was_accounted = 1;
547 	} else if (xchg(&io->was_accounted, 1) == 1)
548 		return;
549 
550 	__dm_start_io_acct(io, bio);
551 }
552 
553 static void dm_end_io_acct(struct dm_io *io, struct bio *bio)
554 {
555 	dm_io_acct(true, io->md, bio, io->start_time, &io->stats_aux);
556 }
557 
558 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
559 {
560 	struct dm_io *io;
561 	struct dm_target_io *tio;
562 	struct bio *clone;
563 
564 	clone = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, &md->io_bs);
565 
566 	tio = clone_to_tio(clone);
567 	tio->inside_dm_io = true;
568 	tio->io = NULL;
569 
570 	io = container_of(tio, struct dm_io, tio);
571 	io->magic = DM_IO_MAGIC;
572 	io->status = 0;
573 	atomic_set(&io->io_count, 1);
574 	this_cpu_inc(*md->pending_io);
575 	io->orig_bio = NULL;
576 	io->md = md;
577 	io->map_task = current;
578 	spin_lock_init(&io->endio_lock);
579 
580 	io->start_time = jiffies;
581 	io->start_io_acct = false;
582 	io->was_accounted = 0;
583 
584 	dm_stats_record_start(&md->stats, &io->stats_aux);
585 
586 	return io;
587 }
588 
589 static void free_io(struct dm_io *io)
590 {
591 	bio_put(&io->tio.clone);
592 }
593 
594 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
595 		unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
596 {
597 	struct dm_target_io *tio;
598 	struct bio *clone;
599 
600 	if (!ci->io->tio.io) {
601 		/* the dm_target_io embedded in ci->io is available */
602 		tio = &ci->io->tio;
603 		/* alloc_io() already initialized embedded clone */
604 		clone = &tio->clone;
605 	} else {
606 		clone = bio_alloc_clone(ci->bio->bi_bdev, ci->bio,
607 					gfp_mask, &ci->io->md->bs);
608 		if (!clone)
609 			return NULL;
610 
611 		/* REQ_DM_POLL_LIST shouldn't be inherited */
612 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
613 
614 		tio = clone_to_tio(clone);
615 		tio->inside_dm_io = false;
616 	}
617 
618 	tio->magic = DM_TIO_MAGIC;
619 	tio->io = ci->io;
620 	tio->ti = ti;
621 	tio->target_bio_nr = target_bio_nr;
622 	tio->is_duplicate_bio = false;
623 	tio->len_ptr = len;
624 	tio->old_sector = 0;
625 
626 	if (len) {
627 		clone->bi_iter.bi_size = to_bytes(*len);
628 		if (bio_integrity(clone))
629 			bio_integrity_trim(clone);
630 	}
631 
632 	return clone;
633 }
634 
635 static void free_tio(struct bio *clone)
636 {
637 	if (clone_to_tio(clone)->inside_dm_io)
638 		return;
639 	bio_put(clone);
640 }
641 
642 /*
643  * Add the bio to the list of deferred io.
644  */
645 static void queue_io(struct mapped_device *md, struct bio *bio)
646 {
647 	unsigned long flags;
648 
649 	spin_lock_irqsave(&md->deferred_lock, flags);
650 	bio_list_add(&md->deferred, bio);
651 	spin_unlock_irqrestore(&md->deferred_lock, flags);
652 	queue_work(md->wq, &md->work);
653 }
654 
655 /*
656  * Everyone (including functions in this file), should use this
657  * function to access the md->map field, and make sure they call
658  * dm_put_live_table() when finished.
659  */
660 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
661 {
662 	*srcu_idx = srcu_read_lock(&md->io_barrier);
663 
664 	return srcu_dereference(md->map, &md->io_barrier);
665 }
666 
667 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
668 {
669 	srcu_read_unlock(&md->io_barrier, srcu_idx);
670 }
671 
672 void dm_sync_table(struct mapped_device *md)
673 {
674 	synchronize_srcu(&md->io_barrier);
675 	synchronize_rcu_expedited();
676 }
677 
678 /*
679  * A fast alternative to dm_get_live_table/dm_put_live_table.
680  * The caller must not block between these two functions.
681  */
682 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
683 {
684 	rcu_read_lock();
685 	return rcu_dereference(md->map);
686 }
687 
688 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
689 {
690 	rcu_read_unlock();
691 }
692 
693 static char *_dm_claim_ptr = "I belong to device-mapper";
694 
695 /*
696  * Open a table device so we can use it as a map destination.
697  */
698 static int open_table_device(struct table_device *td, dev_t dev,
699 			     struct mapped_device *md)
700 {
701 	struct block_device *bdev;
702 	u64 part_off;
703 	int r;
704 
705 	BUG_ON(td->dm_dev.bdev);
706 
707 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
708 	if (IS_ERR(bdev))
709 		return PTR_ERR(bdev);
710 
711 	r = bd_link_disk_holder(bdev, dm_disk(md));
712 	if (r) {
713 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
714 		return r;
715 	}
716 
717 	td->dm_dev.bdev = bdev;
718 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
719 	return 0;
720 }
721 
722 /*
723  * Close a table device that we've been using.
724  */
725 static void close_table_device(struct table_device *td, struct mapped_device *md)
726 {
727 	if (!td->dm_dev.bdev)
728 		return;
729 
730 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
731 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
732 	put_dax(td->dm_dev.dax_dev);
733 	td->dm_dev.bdev = NULL;
734 	td->dm_dev.dax_dev = NULL;
735 }
736 
737 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
738 					      fmode_t mode)
739 {
740 	struct table_device *td;
741 
742 	list_for_each_entry(td, l, list)
743 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
744 			return td;
745 
746 	return NULL;
747 }
748 
749 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
750 			struct dm_dev **result)
751 {
752 	int r;
753 	struct table_device *td;
754 
755 	mutex_lock(&md->table_devices_lock);
756 	td = find_table_device(&md->table_devices, dev, mode);
757 	if (!td) {
758 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
759 		if (!td) {
760 			mutex_unlock(&md->table_devices_lock);
761 			return -ENOMEM;
762 		}
763 
764 		td->dm_dev.mode = mode;
765 		td->dm_dev.bdev = NULL;
766 
767 		if ((r = open_table_device(td, dev, md))) {
768 			mutex_unlock(&md->table_devices_lock);
769 			kfree(td);
770 			return r;
771 		}
772 
773 		format_dev_t(td->dm_dev.name, dev);
774 
775 		refcount_set(&td->count, 1);
776 		list_add(&td->list, &md->table_devices);
777 	} else {
778 		refcount_inc(&td->count);
779 	}
780 	mutex_unlock(&md->table_devices_lock);
781 
782 	*result = &td->dm_dev;
783 	return 0;
784 }
785 
786 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
787 {
788 	struct table_device *td = container_of(d, struct table_device, dm_dev);
789 
790 	mutex_lock(&md->table_devices_lock);
791 	if (refcount_dec_and_test(&td->count)) {
792 		close_table_device(td, md);
793 		list_del(&td->list);
794 		kfree(td);
795 	}
796 	mutex_unlock(&md->table_devices_lock);
797 }
798 
799 static void free_table_devices(struct list_head *devices)
800 {
801 	struct list_head *tmp, *next;
802 
803 	list_for_each_safe(tmp, next, devices) {
804 		struct table_device *td = list_entry(tmp, struct table_device, list);
805 
806 		DMWARN("dm_destroy: %s still exists with %d references",
807 		       td->dm_dev.name, refcount_read(&td->count));
808 		kfree(td);
809 	}
810 }
811 
812 /*
813  * Get the geometry associated with a dm device
814  */
815 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
816 {
817 	*geo = md->geometry;
818 
819 	return 0;
820 }
821 
822 /*
823  * Set the geometry of a device.
824  */
825 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
826 {
827 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
828 
829 	if (geo->start > sz) {
830 		DMWARN("Start sector is beyond the geometry limits.");
831 		return -EINVAL;
832 	}
833 
834 	md->geometry = *geo;
835 
836 	return 0;
837 }
838 
839 static int __noflush_suspending(struct mapped_device *md)
840 {
841 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
842 }
843 
844 static void dm_io_complete(struct dm_io *io)
845 {
846 	blk_status_t io_error;
847 	struct mapped_device *md = io->md;
848 	struct bio *bio = io->orig_bio;
849 
850 	if (io->status == BLK_STS_DM_REQUEUE) {
851 		unsigned long flags;
852 		/*
853 		 * Target requested pushing back the I/O.
854 		 */
855 		spin_lock_irqsave(&md->deferred_lock, flags);
856 		if (__noflush_suspending(md) &&
857 		    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
858 			/* NOTE early return due to BLK_STS_DM_REQUEUE below */
859 			bio_list_add_head(&md->deferred, bio);
860 		} else {
861 			/*
862 			 * noflush suspend was interrupted or this is
863 			 * a write to a zoned target.
864 			 */
865 			io->status = BLK_STS_IOERR;
866 		}
867 		spin_unlock_irqrestore(&md->deferred_lock, flags);
868 	}
869 
870 	io_error = io->status;
871 	if (io->was_accounted)
872 		dm_end_io_acct(io, bio);
873 	else if (!io_error) {
874 		/*
875 		 * Must handle target that DM_MAPIO_SUBMITTED only to
876 		 * then bio_endio() rather than dm_submit_bio_remap()
877 		 */
878 		__dm_start_io_acct(io, bio);
879 		dm_end_io_acct(io, bio);
880 	}
881 	free_io(io);
882 	smp_wmb();
883 	this_cpu_dec(*md->pending_io);
884 
885 	/* nudge anyone waiting on suspend queue */
886 	if (unlikely(wq_has_sleeper(&md->wait)))
887 		wake_up(&md->wait);
888 
889 	if (io_error == BLK_STS_DM_REQUEUE) {
890 		/*
891 		 * Upper layer won't help us poll split bio, io->orig_bio
892 		 * may only reflect a subset of the pre-split original,
893 		 * so clear REQ_POLLED in case of requeue
894 		 */
895 		bio->bi_opf &= ~REQ_POLLED;
896 		return;
897 	}
898 
899 	if (bio_is_flush_with_data(bio)) {
900 		/*
901 		 * Preflush done for flush with data, reissue
902 		 * without REQ_PREFLUSH.
903 		 */
904 		bio->bi_opf &= ~REQ_PREFLUSH;
905 		queue_io(md, bio);
906 	} else {
907 		/* done with normal IO or empty flush */
908 		if (io_error)
909 			bio->bi_status = io_error;
910 		bio_endio(bio);
911 	}
912 }
913 
914 /*
915  * Decrements the number of outstanding ios that a bio has been
916  * cloned into, completing the original io if necc.
917  */
918 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
919 {
920 	/* Push-back supersedes any I/O errors */
921 	if (unlikely(error)) {
922 		unsigned long flags;
923 		spin_lock_irqsave(&io->endio_lock, flags);
924 		if (!(io->status == BLK_STS_DM_REQUEUE &&
925 		      __noflush_suspending(io->md)))
926 			io->status = error;
927 		spin_unlock_irqrestore(&io->endio_lock, flags);
928 	}
929 
930 	if (atomic_dec_and_test(&io->io_count))
931 		dm_io_complete(io);
932 }
933 
934 void disable_discard(struct mapped_device *md)
935 {
936 	struct queue_limits *limits = dm_get_queue_limits(md);
937 
938 	/* device doesn't really support DISCARD, disable it */
939 	limits->max_discard_sectors = 0;
940 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
941 }
942 
943 void disable_write_same(struct mapped_device *md)
944 {
945 	struct queue_limits *limits = dm_get_queue_limits(md);
946 
947 	/* device doesn't really support WRITE SAME, disable it */
948 	limits->max_write_same_sectors = 0;
949 }
950 
951 void disable_write_zeroes(struct mapped_device *md)
952 {
953 	struct queue_limits *limits = dm_get_queue_limits(md);
954 
955 	/* device doesn't really support WRITE ZEROES, disable it */
956 	limits->max_write_zeroes_sectors = 0;
957 }
958 
959 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
960 {
961 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
962 }
963 
964 static void clone_endio(struct bio *bio)
965 {
966 	blk_status_t error = bio->bi_status;
967 	struct dm_target_io *tio = clone_to_tio(bio);
968 	struct dm_io *io = tio->io;
969 	struct mapped_device *md = tio->io->md;
970 	dm_endio_fn endio = tio->ti->type->end_io;
971 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
972 
973 	if (unlikely(error == BLK_STS_TARGET)) {
974 		if (bio_op(bio) == REQ_OP_DISCARD &&
975 		    !q->limits.max_discard_sectors)
976 			disable_discard(md);
977 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
978 			 !q->limits.max_write_same_sectors)
979 			disable_write_same(md);
980 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
981 			 !q->limits.max_write_zeroes_sectors)
982 			disable_write_zeroes(md);
983 	}
984 
985 	if (blk_queue_is_zoned(q))
986 		dm_zone_endio(io, bio);
987 
988 	if (endio) {
989 		int r = endio(tio->ti, bio, &error);
990 		switch (r) {
991 		case DM_ENDIO_REQUEUE:
992 			/*
993 			 * Requeuing writes to a sequential zone of a zoned
994 			 * target will break the sequential write pattern:
995 			 * fail such IO.
996 			 */
997 			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
998 				error = BLK_STS_IOERR;
999 			else
1000 				error = BLK_STS_DM_REQUEUE;
1001 			fallthrough;
1002 		case DM_ENDIO_DONE:
1003 			break;
1004 		case DM_ENDIO_INCOMPLETE:
1005 			/* The target will handle the io */
1006 			return;
1007 		default:
1008 			DMWARN("unimplemented target endio return value: %d", r);
1009 			BUG();
1010 		}
1011 	}
1012 
1013 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
1014 		struct mapped_device *md = io->md;
1015 		up(&md->swap_bios_semaphore);
1016 	}
1017 
1018 	free_tio(bio);
1019 	dm_io_dec_pending(io, error);
1020 }
1021 
1022 /*
1023  * Return maximum size of I/O possible at the supplied sector up to the current
1024  * target boundary.
1025  */
1026 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1027 						  sector_t target_offset)
1028 {
1029 	return ti->len - target_offset;
1030 }
1031 
1032 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1033 {
1034 	sector_t target_offset = dm_target_offset(ti, sector);
1035 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1036 	sector_t max_len;
1037 
1038 	/*
1039 	 * Does the target need to split IO even further?
1040 	 * - varied (per target) IO splitting is a tenet of DM; this
1041 	 *   explains why stacked chunk_sectors based splitting via
1042 	 *   blk_max_size_offset() isn't possible here. So pass in
1043 	 *   ti->max_io_len to override stacked chunk_sectors.
1044 	 */
1045 	if (ti->max_io_len) {
1046 		max_len = blk_max_size_offset(ti->table->md->queue,
1047 					      target_offset, ti->max_io_len);
1048 		if (len > max_len)
1049 			len = max_len;
1050 	}
1051 
1052 	return len;
1053 }
1054 
1055 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1056 {
1057 	if (len > UINT_MAX) {
1058 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1059 		      (unsigned long long)len, UINT_MAX);
1060 		ti->error = "Maximum size of target IO is too large";
1061 		return -EINVAL;
1062 	}
1063 
1064 	ti->max_io_len = (uint32_t) len;
1065 
1066 	return 0;
1067 }
1068 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1069 
1070 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1071 						sector_t sector, int *srcu_idx)
1072 	__acquires(md->io_barrier)
1073 {
1074 	struct dm_table *map;
1075 	struct dm_target *ti;
1076 
1077 	map = dm_get_live_table(md, srcu_idx);
1078 	if (!map)
1079 		return NULL;
1080 
1081 	ti = dm_table_find_target(map, sector);
1082 	if (!ti)
1083 		return NULL;
1084 
1085 	return ti;
1086 }
1087 
1088 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1089 				 long nr_pages, void **kaddr, pfn_t *pfn)
1090 {
1091 	struct mapped_device *md = dax_get_private(dax_dev);
1092 	sector_t sector = pgoff * PAGE_SECTORS;
1093 	struct dm_target *ti;
1094 	long len, ret = -EIO;
1095 	int srcu_idx;
1096 
1097 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1098 
1099 	if (!ti)
1100 		goto out;
1101 	if (!ti->type->direct_access)
1102 		goto out;
1103 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1104 	if (len < 1)
1105 		goto out;
1106 	nr_pages = min(len, nr_pages);
1107 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1108 
1109  out:
1110 	dm_put_live_table(md, srcu_idx);
1111 
1112 	return ret;
1113 }
1114 
1115 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1116 				  size_t nr_pages)
1117 {
1118 	struct mapped_device *md = dax_get_private(dax_dev);
1119 	sector_t sector = pgoff * PAGE_SECTORS;
1120 	struct dm_target *ti;
1121 	int ret = -EIO;
1122 	int srcu_idx;
1123 
1124 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1125 
1126 	if (!ti)
1127 		goto out;
1128 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1129 		/*
1130 		 * ->zero_page_range() is mandatory dax operation. If we are
1131 		 *  here, something is wrong.
1132 		 */
1133 		goto out;
1134 	}
1135 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1136  out:
1137 	dm_put_live_table(md, srcu_idx);
1138 
1139 	return ret;
1140 }
1141 
1142 /*
1143  * A target may call dm_accept_partial_bio only from the map routine.  It is
1144  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1145  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1146  * __send_duplicate_bios().
1147  *
1148  * dm_accept_partial_bio informs the dm that the target only wants to process
1149  * additional n_sectors sectors of the bio and the rest of the data should be
1150  * sent in a next bio.
1151  *
1152  * A diagram that explains the arithmetics:
1153  * +--------------------+---------------+-------+
1154  * |         1          |       2       |   3   |
1155  * +--------------------+---------------+-------+
1156  *
1157  * <-------------- *tio->len_ptr --------------->
1158  *                      <------- bi_size ------->
1159  *                      <-- n_sectors -->
1160  *
1161  * Region 1 was already iterated over with bio_advance or similar function.
1162  *	(it may be empty if the target doesn't use bio_advance)
1163  * Region 2 is the remaining bio size that the target wants to process.
1164  *	(it may be empty if region 1 is non-empty, although there is no reason
1165  *	 to make it empty)
1166  * The target requires that region 3 is to be sent in the next bio.
1167  *
1168  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1169  * the partially processed part (the sum of regions 1+2) must be the same for all
1170  * copies of the bio.
1171  */
1172 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1173 {
1174 	struct dm_target_io *tio = clone_to_tio(bio);
1175 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1176 
1177 	BUG_ON(tio->is_duplicate_bio);
1178 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1179 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1180 	BUG_ON(bi_size > *tio->len_ptr);
1181 	BUG_ON(n_sectors > bi_size);
1182 
1183 	*tio->len_ptr -= bi_size - n_sectors;
1184 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1185 }
1186 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1187 
1188 static inline void __dm_submit_bio_remap(struct bio *clone,
1189 					 dev_t dev, sector_t old_sector)
1190 {
1191 	trace_block_bio_remap(clone, dev, old_sector);
1192 	submit_bio_noacct(clone);
1193 }
1194 
1195 /*
1196  * @clone: clone bio that DM core passed to target's .map function
1197  * @tgt_clone: clone of @clone bio that target needs submitted
1198  *
1199  * Targets should use this interface to submit bios they take
1200  * ownership of when returning DM_MAPIO_SUBMITTED.
1201  *
1202  * Target should also enable ti->accounts_remapped_io
1203  */
1204 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1205 {
1206 	struct dm_target_io *tio = clone_to_tio(clone);
1207 	struct dm_io *io = tio->io;
1208 
1209 	WARN_ON_ONCE(!tio->ti->accounts_remapped_io);
1210 
1211 	/* establish bio that will get submitted */
1212 	if (!tgt_clone)
1213 		tgt_clone = clone;
1214 
1215 	/*
1216 	 * Account io->origin_bio to DM dev on behalf of target
1217 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1218 	 */
1219 	if (io->map_task == current) {
1220 		/* Still in target's map function */
1221 		io->start_io_acct = true;
1222 	} else {
1223 		/*
1224 		 * Called by another thread, managed by DM target,
1225 		 * wait for dm_split_and_process_bio() to store
1226 		 * io->orig_bio
1227 		 */
1228 		while (unlikely(!smp_load_acquire(&io->orig_bio)))
1229 			msleep(1);
1230 		dm_start_io_acct(io, clone);
1231 	}
1232 
1233 	__dm_submit_bio_remap(tgt_clone, disk_devt(io->md->disk),
1234 			      tio->old_sector);
1235 }
1236 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1237 
1238 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1239 {
1240 	mutex_lock(&md->swap_bios_lock);
1241 	while (latch < md->swap_bios) {
1242 		cond_resched();
1243 		down(&md->swap_bios_semaphore);
1244 		md->swap_bios--;
1245 	}
1246 	while (latch > md->swap_bios) {
1247 		cond_resched();
1248 		up(&md->swap_bios_semaphore);
1249 		md->swap_bios++;
1250 	}
1251 	mutex_unlock(&md->swap_bios_lock);
1252 }
1253 
1254 static void __map_bio(struct bio *clone)
1255 {
1256 	struct dm_target_io *tio = clone_to_tio(clone);
1257 	int r;
1258 	struct dm_io *io = tio->io;
1259 	struct dm_target *ti = tio->ti;
1260 
1261 	clone->bi_end_io = clone_endio;
1262 
1263 	/*
1264 	 * Map the clone.
1265 	 */
1266 	dm_io_inc_pending(io);
1267 	tio->old_sector = clone->bi_iter.bi_sector;
1268 
1269 	if (unlikely(swap_bios_limit(ti, clone))) {
1270 		struct mapped_device *md = io->md;
1271 		int latch = get_swap_bios();
1272 		if (unlikely(latch != md->swap_bios))
1273 			__set_swap_bios_limit(md, latch);
1274 		down(&md->swap_bios_semaphore);
1275 	}
1276 
1277 	/*
1278 	 * Check if the IO needs a special mapping due to zone append emulation
1279 	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1280 	 * map operation.
1281 	 */
1282 	if (dm_emulate_zone_append(io->md))
1283 		r = dm_zone_map_bio(tio);
1284 	else
1285 		r = ti->type->map(ti, clone);
1286 
1287 	switch (r) {
1288 	case DM_MAPIO_SUBMITTED:
1289 		/* target has assumed ownership of this io */
1290 		if (!ti->accounts_remapped_io)
1291 			io->start_io_acct = true;
1292 		break;
1293 	case DM_MAPIO_REMAPPED:
1294 		/*
1295 		 * the bio has been remapped so dispatch it, but defer
1296 		 * dm_start_io_acct() until after possible bio_split().
1297 		 */
1298 		__dm_submit_bio_remap(clone, disk_devt(io->md->disk),
1299 				      tio->old_sector);
1300 		io->start_io_acct = true;
1301 		break;
1302 	case DM_MAPIO_KILL:
1303 	case DM_MAPIO_REQUEUE:
1304 		if (unlikely(swap_bios_limit(ti, clone)))
1305 			up(&io->md->swap_bios_semaphore);
1306 		free_tio(clone);
1307 		if (r == DM_MAPIO_KILL)
1308 			dm_io_dec_pending(io, BLK_STS_IOERR);
1309 		else
1310 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1311 		break;
1312 	default:
1313 		DMWARN("unimplemented target map return value: %d", r);
1314 		BUG();
1315 	}
1316 }
1317 
1318 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1319 				struct dm_target *ti, unsigned num_bios,
1320 				unsigned *len)
1321 {
1322 	struct bio *bio;
1323 	int try;
1324 
1325 	for (try = 0; try < 2; try++) {
1326 		int bio_nr;
1327 
1328 		if (try)
1329 			mutex_lock(&ci->io->md->table_devices_lock);
1330 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1331 			bio = alloc_tio(ci, ti, bio_nr, len,
1332 					try ? GFP_NOIO : GFP_NOWAIT);
1333 			if (!bio)
1334 				break;
1335 
1336 			bio_list_add(blist, bio);
1337 		}
1338 		if (try)
1339 			mutex_unlock(&ci->io->md->table_devices_lock);
1340 		if (bio_nr == num_bios)
1341 			return;
1342 
1343 		while ((bio = bio_list_pop(blist)))
1344 			free_tio(bio);
1345 	}
1346 }
1347 
1348 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1349 				  unsigned num_bios, unsigned *len)
1350 {
1351 	struct bio_list blist = BIO_EMPTY_LIST;
1352 	struct bio *clone;
1353 
1354 	switch (num_bios) {
1355 	case 0:
1356 		break;
1357 	case 1:
1358 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1359 		clone_to_tio(clone)->is_duplicate_bio = true;
1360 		__map_bio(clone);
1361 		break;
1362 	default:
1363 		alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1364 		while ((clone = bio_list_pop(&blist))) {
1365 			clone_to_tio(clone)->is_duplicate_bio = true;
1366 			__map_bio(clone);
1367 		}
1368 		break;
1369 	}
1370 }
1371 
1372 static void __send_empty_flush(struct clone_info *ci)
1373 {
1374 	unsigned target_nr = 0;
1375 	struct dm_target *ti;
1376 	struct bio flush_bio;
1377 
1378 	/*
1379 	 * Use an on-stack bio for this, it's safe since we don't
1380 	 * need to reference it after submit. It's just used as
1381 	 * the basis for the clone(s).
1382 	 */
1383 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1384 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1385 
1386 	ci->bio = &flush_bio;
1387 	ci->sector_count = 0;
1388 
1389 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1390 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1391 
1392 	bio_uninit(ci->bio);
1393 }
1394 
1395 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1396 					unsigned num_bios)
1397 {
1398 	unsigned len;
1399 
1400 	len = min_t(sector_t, ci->sector_count,
1401 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1402 
1403 	/*
1404 	 * dm_accept_partial_bio cannot be used with duplicate bios,
1405 	 * so update clone_info cursor before __send_duplicate_bios().
1406 	 */
1407 	ci->sector += len;
1408 	ci->sector_count -= len;
1409 
1410 	__send_duplicate_bios(ci, ti, num_bios, &len);
1411 }
1412 
1413 static bool is_abnormal_io(struct bio *bio)
1414 {
1415 	bool r = false;
1416 
1417 	switch (bio_op(bio)) {
1418 	case REQ_OP_DISCARD:
1419 	case REQ_OP_SECURE_ERASE:
1420 	case REQ_OP_WRITE_SAME:
1421 	case REQ_OP_WRITE_ZEROES:
1422 		r = true;
1423 		break;
1424 	}
1425 
1426 	return r;
1427 }
1428 
1429 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1430 				  int *result)
1431 {
1432 	unsigned num_bios = 0;
1433 
1434 	switch (bio_op(ci->bio)) {
1435 	case REQ_OP_DISCARD:
1436 		num_bios = ti->num_discard_bios;
1437 		break;
1438 	case REQ_OP_SECURE_ERASE:
1439 		num_bios = ti->num_secure_erase_bios;
1440 		break;
1441 	case REQ_OP_WRITE_SAME:
1442 		num_bios = ti->num_write_same_bios;
1443 		break;
1444 	case REQ_OP_WRITE_ZEROES:
1445 		num_bios = ti->num_write_zeroes_bios;
1446 		break;
1447 	default:
1448 		return false;
1449 	}
1450 
1451 	/*
1452 	 * Even though the device advertised support for this type of
1453 	 * request, that does not mean every target supports it, and
1454 	 * reconfiguration might also have changed that since the
1455 	 * check was performed.
1456 	 */
1457 	if (!num_bios)
1458 		*result = -EOPNOTSUPP;
1459 	else {
1460 		__send_changing_extent_only(ci, ti, num_bios);
1461 		*result = 0;
1462 	}
1463 	return true;
1464 }
1465 
1466 /*
1467  * Reuse ->bi_private as hlist head for storing all dm_io instances
1468  * associated with this bio, and this bio's bi_private needs to be
1469  * stored in dm_io->data before the reuse.
1470  *
1471  * bio->bi_private is owned by fs or upper layer, so block layer won't
1472  * touch it after splitting. Meantime it won't be changed by anyone after
1473  * bio is submitted. So this reuse is safe.
1474  */
1475 static inline struct hlist_head *dm_get_bio_hlist_head(struct bio *bio)
1476 {
1477 	return (struct hlist_head *)&bio->bi_private;
1478 }
1479 
1480 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1481 {
1482 	struct hlist_head *head = dm_get_bio_hlist_head(bio);
1483 
1484 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1485 		bio->bi_opf |= REQ_DM_POLL_LIST;
1486 		/*
1487 		 * Save .bi_private into dm_io, so that we can reuse
1488 		 * .bi_private as hlist head for storing dm_io list
1489 		 */
1490 		io->data = bio->bi_private;
1491 
1492 		INIT_HLIST_HEAD(head);
1493 
1494 		/* tell block layer to poll for completion */
1495 		bio->bi_cookie = ~BLK_QC_T_NONE;
1496 	} else {
1497 		/*
1498 		 * bio recursed due to split, reuse original poll list,
1499 		 * and save bio->bi_private too.
1500 		 */
1501 		io->data = hlist_entry(head->first, struct dm_io, node)->data;
1502 	}
1503 
1504 	hlist_add_head(&io->node, head);
1505 }
1506 
1507 /*
1508  * Select the correct strategy for processing a non-flush bio.
1509  */
1510 static int __split_and_process_bio(struct clone_info *ci)
1511 {
1512 	struct bio *clone;
1513 	struct dm_target *ti;
1514 	unsigned len;
1515 	int r;
1516 
1517 	ti = dm_table_find_target(ci->map, ci->sector);
1518 	if (!ti)
1519 		return -EIO;
1520 
1521 	if (__process_abnormal_io(ci, ti, &r))
1522 		return r;
1523 
1524 	/*
1525 	 * Only support bio polling for normal IO, and the target io is
1526 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1527 	 */
1528 	ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED;
1529 
1530 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1531 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1532 	__map_bio(clone);
1533 
1534 	ci->sector += len;
1535 	ci->sector_count -= len;
1536 
1537 	return 0;
1538 }
1539 
1540 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1541 			    struct dm_table *map, struct bio *bio)
1542 {
1543 	ci->map = map;
1544 	ci->io = alloc_io(md, bio);
1545 	ci->bio = bio;
1546 	ci->submit_as_polled = false;
1547 	ci->sector = bio->bi_iter.bi_sector;
1548 	ci->sector_count = bio_sectors(bio);
1549 
1550 	/* Shouldn't happen but sector_count was being set to 0 so... */
1551 	if (WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1552 		ci->sector_count = 0;
1553 }
1554 
1555 /*
1556  * Entry point to split a bio into clones and submit them to the targets.
1557  */
1558 static void dm_split_and_process_bio(struct mapped_device *md,
1559 				     struct dm_table *map, struct bio *bio)
1560 {
1561 	struct clone_info ci;
1562 	struct bio *orig_bio = NULL;
1563 	int error = 0;
1564 
1565 	init_clone_info(&ci, md, map, bio);
1566 
1567 	if (bio->bi_opf & REQ_PREFLUSH) {
1568 		__send_empty_flush(&ci);
1569 		/* dm_io_complete submits any data associated with flush */
1570 		goto out;
1571 	}
1572 
1573 	error = __split_and_process_bio(&ci);
1574 	ci.io->map_task = NULL;
1575 	if (error || !ci.sector_count)
1576 		goto out;
1577 
1578 	/*
1579 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1580 	 * *after* bios already submitted have been completely processed.
1581 	 * We take a clone of the original to store in ci.io->orig_bio to be
1582 	 * used by dm_end_io_acct() and for dm_io_complete() to use for
1583 	 * completion handling.
1584 	 */
1585 	orig_bio = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1586 			     GFP_NOIO, &md->queue->bio_split);
1587 	bio_chain(orig_bio, bio);
1588 	trace_block_split(orig_bio, bio->bi_iter.bi_sector);
1589 	submit_bio_noacct(bio);
1590 out:
1591 	if (!orig_bio)
1592 		orig_bio = bio;
1593 	smp_store_release(&ci.io->orig_bio, orig_bio);
1594 	if (ci.io->start_io_acct)
1595 		dm_start_io_acct(ci.io, NULL);
1596 
1597 	/*
1598 	 * Drop the extra reference count for non-POLLED bio, and hold one
1599 	 * reference for POLLED bio, which will be released in dm_poll_bio
1600 	 *
1601 	 * Add every dm_io instance into the hlist_head which is stored in
1602 	 * bio->bi_private, so that dm_poll_bio can poll them all.
1603 	 */
1604 	if (error || !ci.submit_as_polled)
1605 		dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1606 	else
1607 		dm_queue_poll_io(bio, ci.io);
1608 }
1609 
1610 static void dm_submit_bio(struct bio *bio)
1611 {
1612 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1613 	int srcu_idx;
1614 	struct dm_table *map;
1615 
1616 	map = dm_get_live_table(md, &srcu_idx);
1617 
1618 	/* If suspended, or map not yet available, queue this IO for later */
1619 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1620 	    unlikely(!map)) {
1621 		if (bio->bi_opf & REQ_NOWAIT)
1622 			bio_wouldblock_error(bio);
1623 		else if (bio->bi_opf & REQ_RAHEAD)
1624 			bio_io_error(bio);
1625 		else
1626 			queue_io(md, bio);
1627 		goto out;
1628 	}
1629 
1630 	/*
1631 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1632 	 * otherwise associated queue_limits won't be imposed.
1633 	 */
1634 	if (is_abnormal_io(bio))
1635 		blk_queue_split(&bio);
1636 
1637 	dm_split_and_process_bio(md, map, bio);
1638 out:
1639 	dm_put_live_table(md, srcu_idx);
1640 }
1641 
1642 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1643 			  unsigned int flags)
1644 {
1645 	WARN_ON_ONCE(!io->tio.inside_dm_io);
1646 
1647 	/* don't poll if the mapped io is done */
1648 	if (atomic_read(&io->io_count) > 1)
1649 		bio_poll(&io->tio.clone, iob, flags);
1650 
1651 	/* bio_poll holds the last reference */
1652 	return atomic_read(&io->io_count) == 1;
1653 }
1654 
1655 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1656 		       unsigned int flags)
1657 {
1658 	struct hlist_head *head = dm_get_bio_hlist_head(bio);
1659 	struct hlist_head tmp = HLIST_HEAD_INIT;
1660 	struct hlist_node *next;
1661 	struct dm_io *io;
1662 
1663 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1664 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1665 		return 0;
1666 
1667 	WARN_ON_ONCE(hlist_empty(head));
1668 
1669 	hlist_move_list(head, &tmp);
1670 
1671 	/*
1672 	 * Restore .bi_private before possibly completing dm_io.
1673 	 *
1674 	 * bio_poll() is only possible once @bio has been completely
1675 	 * submitted via submit_bio_noacct()'s depth-first submission.
1676 	 * So there is no dm_queue_poll_io() race associated with
1677 	 * clearing REQ_DM_POLL_LIST here.
1678 	 */
1679 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1680 	bio->bi_private = hlist_entry(tmp.first, struct dm_io, node)->data;
1681 
1682 	hlist_for_each_entry_safe(io, next, &tmp, node) {
1683 		if (dm_poll_dm_io(io, iob, flags)) {
1684 			hlist_del_init(&io->node);
1685 			/*
1686 			 * clone_endio() has already occurred, so passing
1687 			 * error as 0 here doesn't override io->status
1688 			 */
1689 			dm_io_dec_pending(io, 0);
1690 		}
1691 	}
1692 
1693 	/* Not done? */
1694 	if (!hlist_empty(&tmp)) {
1695 		bio->bi_opf |= REQ_DM_POLL_LIST;
1696 		/* Reset bio->bi_private to dm_io list head */
1697 		hlist_move_list(&tmp, head);
1698 		return 0;
1699 	}
1700 	return 1;
1701 }
1702 
1703 /*-----------------------------------------------------------------
1704  * An IDR is used to keep track of allocated minor numbers.
1705  *---------------------------------------------------------------*/
1706 static void free_minor(int minor)
1707 {
1708 	spin_lock(&_minor_lock);
1709 	idr_remove(&_minor_idr, minor);
1710 	spin_unlock(&_minor_lock);
1711 }
1712 
1713 /*
1714  * See if the device with a specific minor # is free.
1715  */
1716 static int specific_minor(int minor)
1717 {
1718 	int r;
1719 
1720 	if (minor >= (1 << MINORBITS))
1721 		return -EINVAL;
1722 
1723 	idr_preload(GFP_KERNEL);
1724 	spin_lock(&_minor_lock);
1725 
1726 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1727 
1728 	spin_unlock(&_minor_lock);
1729 	idr_preload_end();
1730 	if (r < 0)
1731 		return r == -ENOSPC ? -EBUSY : r;
1732 	return 0;
1733 }
1734 
1735 static int next_free_minor(int *minor)
1736 {
1737 	int r;
1738 
1739 	idr_preload(GFP_KERNEL);
1740 	spin_lock(&_minor_lock);
1741 
1742 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1743 
1744 	spin_unlock(&_minor_lock);
1745 	idr_preload_end();
1746 	if (r < 0)
1747 		return r;
1748 	*minor = r;
1749 	return 0;
1750 }
1751 
1752 static const struct block_device_operations dm_blk_dops;
1753 static const struct block_device_operations dm_rq_blk_dops;
1754 static const struct dax_operations dm_dax_ops;
1755 
1756 static void dm_wq_work(struct work_struct *work);
1757 
1758 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1759 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1760 {
1761 	dm_destroy_crypto_profile(q->crypto_profile);
1762 }
1763 
1764 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1765 
1766 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1767 {
1768 }
1769 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1770 
1771 static void cleanup_mapped_device(struct mapped_device *md)
1772 {
1773 	if (md->wq)
1774 		destroy_workqueue(md->wq);
1775 	bioset_exit(&md->bs);
1776 	bioset_exit(&md->io_bs);
1777 
1778 	if (md->dax_dev) {
1779 		dax_remove_host(md->disk);
1780 		kill_dax(md->dax_dev);
1781 		put_dax(md->dax_dev);
1782 		md->dax_dev = NULL;
1783 	}
1784 
1785 	dm_cleanup_zoned_dev(md);
1786 	if (md->disk) {
1787 		spin_lock(&_minor_lock);
1788 		md->disk->private_data = NULL;
1789 		spin_unlock(&_minor_lock);
1790 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1791 			dm_sysfs_exit(md);
1792 			del_gendisk(md->disk);
1793 		}
1794 		dm_queue_destroy_crypto_profile(md->queue);
1795 		blk_cleanup_disk(md->disk);
1796 	}
1797 
1798 	if (md->pending_io) {
1799 		free_percpu(md->pending_io);
1800 		md->pending_io = NULL;
1801 	}
1802 
1803 	cleanup_srcu_struct(&md->io_barrier);
1804 
1805 	mutex_destroy(&md->suspend_lock);
1806 	mutex_destroy(&md->type_lock);
1807 	mutex_destroy(&md->table_devices_lock);
1808 	mutex_destroy(&md->swap_bios_lock);
1809 
1810 	dm_mq_cleanup_mapped_device(md);
1811 }
1812 
1813 /*
1814  * Allocate and initialise a blank device with a given minor.
1815  */
1816 static struct mapped_device *alloc_dev(int minor)
1817 {
1818 	int r, numa_node_id = dm_get_numa_node();
1819 	struct mapped_device *md;
1820 	void *old_md;
1821 
1822 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1823 	if (!md) {
1824 		DMWARN("unable to allocate device, out of memory.");
1825 		return NULL;
1826 	}
1827 
1828 	if (!try_module_get(THIS_MODULE))
1829 		goto bad_module_get;
1830 
1831 	/* get a minor number for the dev */
1832 	if (minor == DM_ANY_MINOR)
1833 		r = next_free_minor(&minor);
1834 	else
1835 		r = specific_minor(minor);
1836 	if (r < 0)
1837 		goto bad_minor;
1838 
1839 	r = init_srcu_struct(&md->io_barrier);
1840 	if (r < 0)
1841 		goto bad_io_barrier;
1842 
1843 	md->numa_node_id = numa_node_id;
1844 	md->init_tio_pdu = false;
1845 	md->type = DM_TYPE_NONE;
1846 	mutex_init(&md->suspend_lock);
1847 	mutex_init(&md->type_lock);
1848 	mutex_init(&md->table_devices_lock);
1849 	spin_lock_init(&md->deferred_lock);
1850 	atomic_set(&md->holders, 1);
1851 	atomic_set(&md->open_count, 0);
1852 	atomic_set(&md->event_nr, 0);
1853 	atomic_set(&md->uevent_seq, 0);
1854 	INIT_LIST_HEAD(&md->uevent_list);
1855 	INIT_LIST_HEAD(&md->table_devices);
1856 	spin_lock_init(&md->uevent_lock);
1857 
1858 	/*
1859 	 * default to bio-based until DM table is loaded and md->type
1860 	 * established. If request-based table is loaded: blk-mq will
1861 	 * override accordingly.
1862 	 */
1863 	md->disk = blk_alloc_disk(md->numa_node_id);
1864 	if (!md->disk)
1865 		goto bad;
1866 	md->queue = md->disk->queue;
1867 
1868 	init_waitqueue_head(&md->wait);
1869 	INIT_WORK(&md->work, dm_wq_work);
1870 	init_waitqueue_head(&md->eventq);
1871 	init_completion(&md->kobj_holder.completion);
1872 
1873 	md->swap_bios = get_swap_bios();
1874 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1875 	mutex_init(&md->swap_bios_lock);
1876 
1877 	md->disk->major = _major;
1878 	md->disk->first_minor = minor;
1879 	md->disk->minors = 1;
1880 	md->disk->flags |= GENHD_FL_NO_PART;
1881 	md->disk->fops = &dm_blk_dops;
1882 	md->disk->queue = md->queue;
1883 	md->disk->private_data = md;
1884 	sprintf(md->disk->disk_name, "dm-%d", minor);
1885 
1886 	if (IS_ENABLED(CONFIG_FS_DAX)) {
1887 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
1888 		if (IS_ERR(md->dax_dev)) {
1889 			md->dax_dev = NULL;
1890 			goto bad;
1891 		}
1892 		set_dax_nocache(md->dax_dev);
1893 		set_dax_nomc(md->dax_dev);
1894 		if (dax_add_host(md->dax_dev, md->disk))
1895 			goto bad;
1896 	}
1897 
1898 	format_dev_t(md->name, MKDEV(_major, minor));
1899 
1900 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
1901 	if (!md->wq)
1902 		goto bad;
1903 
1904 	md->pending_io = alloc_percpu(unsigned long);
1905 	if (!md->pending_io)
1906 		goto bad;
1907 
1908 	dm_stats_init(&md->stats);
1909 
1910 	/* Populate the mapping, nobody knows we exist yet */
1911 	spin_lock(&_minor_lock);
1912 	old_md = idr_replace(&_minor_idr, md, minor);
1913 	spin_unlock(&_minor_lock);
1914 
1915 	BUG_ON(old_md != MINOR_ALLOCED);
1916 
1917 	return md;
1918 
1919 bad:
1920 	cleanup_mapped_device(md);
1921 bad_io_barrier:
1922 	free_minor(minor);
1923 bad_minor:
1924 	module_put(THIS_MODULE);
1925 bad_module_get:
1926 	kvfree(md);
1927 	return NULL;
1928 }
1929 
1930 static void unlock_fs(struct mapped_device *md);
1931 
1932 static void free_dev(struct mapped_device *md)
1933 {
1934 	int minor = MINOR(disk_devt(md->disk));
1935 
1936 	unlock_fs(md);
1937 
1938 	cleanup_mapped_device(md);
1939 
1940 	free_table_devices(&md->table_devices);
1941 	dm_stats_cleanup(&md->stats);
1942 	free_minor(minor);
1943 
1944 	module_put(THIS_MODULE);
1945 	kvfree(md);
1946 }
1947 
1948 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1949 {
1950 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1951 	int ret = 0;
1952 
1953 	if (dm_table_bio_based(t)) {
1954 		/*
1955 		 * The md may already have mempools that need changing.
1956 		 * If so, reload bioset because front_pad may have changed
1957 		 * because a different table was loaded.
1958 		 */
1959 		bioset_exit(&md->bs);
1960 		bioset_exit(&md->io_bs);
1961 
1962 	} else if (bioset_initialized(&md->bs)) {
1963 		/*
1964 		 * There's no need to reload with request-based dm
1965 		 * because the size of front_pad doesn't change.
1966 		 * Note for future: If you are to reload bioset,
1967 		 * prep-ed requests in the queue may refer
1968 		 * to bio from the old bioset, so you must walk
1969 		 * through the queue to unprep.
1970 		 */
1971 		goto out;
1972 	}
1973 
1974 	BUG_ON(!p ||
1975 	       bioset_initialized(&md->bs) ||
1976 	       bioset_initialized(&md->io_bs));
1977 
1978 	ret = bioset_init_from_src(&md->bs, &p->bs);
1979 	if (ret)
1980 		goto out;
1981 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1982 	if (ret)
1983 		bioset_exit(&md->bs);
1984 out:
1985 	/* mempool bind completed, no longer need any mempools in the table */
1986 	dm_table_free_md_mempools(t);
1987 	return ret;
1988 }
1989 
1990 /*
1991  * Bind a table to the device.
1992  */
1993 static void event_callback(void *context)
1994 {
1995 	unsigned long flags;
1996 	LIST_HEAD(uevents);
1997 	struct mapped_device *md = (struct mapped_device *) context;
1998 
1999 	spin_lock_irqsave(&md->uevent_lock, flags);
2000 	list_splice_init(&md->uevent_list, &uevents);
2001 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2002 
2003 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2004 
2005 	atomic_inc(&md->event_nr);
2006 	wake_up(&md->eventq);
2007 	dm_issue_global_event();
2008 }
2009 
2010 /*
2011  * Returns old map, which caller must destroy.
2012  */
2013 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2014 			       struct queue_limits *limits)
2015 {
2016 	struct dm_table *old_map;
2017 	sector_t size;
2018 	int ret;
2019 
2020 	lockdep_assert_held(&md->suspend_lock);
2021 
2022 	size = dm_table_get_size(t);
2023 
2024 	/*
2025 	 * Wipe any geometry if the size of the table changed.
2026 	 */
2027 	if (size != dm_get_size(md))
2028 		memset(&md->geometry, 0, sizeof(md->geometry));
2029 
2030 	if (!get_capacity(md->disk))
2031 		set_capacity(md->disk, size);
2032 	else
2033 		set_capacity_and_notify(md->disk, size);
2034 
2035 	dm_table_event_callback(t, event_callback, md);
2036 
2037 	if (dm_table_request_based(t)) {
2038 		/*
2039 		 * Leverage the fact that request-based DM targets are
2040 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2041 		 */
2042 		md->immutable_target = dm_table_get_immutable_target(t);
2043 	}
2044 
2045 	ret = __bind_mempools(md, t);
2046 	if (ret) {
2047 		old_map = ERR_PTR(ret);
2048 		goto out;
2049 	}
2050 
2051 	ret = dm_table_set_restrictions(t, md->queue, limits);
2052 	if (ret) {
2053 		old_map = ERR_PTR(ret);
2054 		goto out;
2055 	}
2056 
2057 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2058 	rcu_assign_pointer(md->map, (void *)t);
2059 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2060 
2061 	if (old_map)
2062 		dm_sync_table(md);
2063 out:
2064 	return old_map;
2065 }
2066 
2067 /*
2068  * Returns unbound table for the caller to free.
2069  */
2070 static struct dm_table *__unbind(struct mapped_device *md)
2071 {
2072 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2073 
2074 	if (!map)
2075 		return NULL;
2076 
2077 	dm_table_event_callback(map, NULL, NULL);
2078 	RCU_INIT_POINTER(md->map, NULL);
2079 	dm_sync_table(md);
2080 
2081 	return map;
2082 }
2083 
2084 /*
2085  * Constructor for a new device.
2086  */
2087 int dm_create(int minor, struct mapped_device **result)
2088 {
2089 	struct mapped_device *md;
2090 
2091 	md = alloc_dev(minor);
2092 	if (!md)
2093 		return -ENXIO;
2094 
2095 	dm_ima_reset_data(md);
2096 
2097 	*result = md;
2098 	return 0;
2099 }
2100 
2101 /*
2102  * Functions to manage md->type.
2103  * All are required to hold md->type_lock.
2104  */
2105 void dm_lock_md_type(struct mapped_device *md)
2106 {
2107 	mutex_lock(&md->type_lock);
2108 }
2109 
2110 void dm_unlock_md_type(struct mapped_device *md)
2111 {
2112 	mutex_unlock(&md->type_lock);
2113 }
2114 
2115 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2116 {
2117 	BUG_ON(!mutex_is_locked(&md->type_lock));
2118 	md->type = type;
2119 }
2120 
2121 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2122 {
2123 	return md->type;
2124 }
2125 
2126 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2127 {
2128 	return md->immutable_target_type;
2129 }
2130 
2131 /*
2132  * The queue_limits are only valid as long as you have a reference
2133  * count on 'md'.
2134  */
2135 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2136 {
2137 	BUG_ON(!atomic_read(&md->holders));
2138 	return &md->queue->limits;
2139 }
2140 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2141 
2142 /*
2143  * Setup the DM device's queue based on md's type
2144  */
2145 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2146 {
2147 	enum dm_queue_mode type = dm_table_get_type(t);
2148 	struct queue_limits limits;
2149 	int r;
2150 
2151 	switch (type) {
2152 	case DM_TYPE_REQUEST_BASED:
2153 		md->disk->fops = &dm_rq_blk_dops;
2154 		r = dm_mq_init_request_queue(md, t);
2155 		if (r) {
2156 			DMERR("Cannot initialize queue for request-based dm mapped device");
2157 			return r;
2158 		}
2159 		break;
2160 	case DM_TYPE_BIO_BASED:
2161 	case DM_TYPE_DAX_BIO_BASED:
2162 		break;
2163 	case DM_TYPE_NONE:
2164 		WARN_ON_ONCE(true);
2165 		break;
2166 	}
2167 
2168 	r = dm_calculate_queue_limits(t, &limits);
2169 	if (r) {
2170 		DMERR("Cannot calculate initial queue limits");
2171 		return r;
2172 	}
2173 	r = dm_table_set_restrictions(t, md->queue, &limits);
2174 	if (r)
2175 		return r;
2176 
2177 	r = add_disk(md->disk);
2178 	if (r)
2179 		return r;
2180 
2181 	r = dm_sysfs_init(md);
2182 	if (r) {
2183 		del_gendisk(md->disk);
2184 		return r;
2185 	}
2186 	md->type = type;
2187 	return 0;
2188 }
2189 
2190 struct mapped_device *dm_get_md(dev_t dev)
2191 {
2192 	struct mapped_device *md;
2193 	unsigned minor = MINOR(dev);
2194 
2195 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2196 		return NULL;
2197 
2198 	spin_lock(&_minor_lock);
2199 
2200 	md = idr_find(&_minor_idr, minor);
2201 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2202 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2203 		md = NULL;
2204 		goto out;
2205 	}
2206 	dm_get(md);
2207 out:
2208 	spin_unlock(&_minor_lock);
2209 
2210 	return md;
2211 }
2212 EXPORT_SYMBOL_GPL(dm_get_md);
2213 
2214 void *dm_get_mdptr(struct mapped_device *md)
2215 {
2216 	return md->interface_ptr;
2217 }
2218 
2219 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2220 {
2221 	md->interface_ptr = ptr;
2222 }
2223 
2224 void dm_get(struct mapped_device *md)
2225 {
2226 	atomic_inc(&md->holders);
2227 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2228 }
2229 
2230 int dm_hold(struct mapped_device *md)
2231 {
2232 	spin_lock(&_minor_lock);
2233 	if (test_bit(DMF_FREEING, &md->flags)) {
2234 		spin_unlock(&_minor_lock);
2235 		return -EBUSY;
2236 	}
2237 	dm_get(md);
2238 	spin_unlock(&_minor_lock);
2239 	return 0;
2240 }
2241 EXPORT_SYMBOL_GPL(dm_hold);
2242 
2243 const char *dm_device_name(struct mapped_device *md)
2244 {
2245 	return md->name;
2246 }
2247 EXPORT_SYMBOL_GPL(dm_device_name);
2248 
2249 static void __dm_destroy(struct mapped_device *md, bool wait)
2250 {
2251 	struct dm_table *map;
2252 	int srcu_idx;
2253 
2254 	might_sleep();
2255 
2256 	spin_lock(&_minor_lock);
2257 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2258 	set_bit(DMF_FREEING, &md->flags);
2259 	spin_unlock(&_minor_lock);
2260 
2261 	blk_set_queue_dying(md->queue);
2262 
2263 	/*
2264 	 * Take suspend_lock so that presuspend and postsuspend methods
2265 	 * do not race with internal suspend.
2266 	 */
2267 	mutex_lock(&md->suspend_lock);
2268 	map = dm_get_live_table(md, &srcu_idx);
2269 	if (!dm_suspended_md(md)) {
2270 		dm_table_presuspend_targets(map);
2271 		set_bit(DMF_SUSPENDED, &md->flags);
2272 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2273 		dm_table_postsuspend_targets(map);
2274 	}
2275 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2276 	dm_put_live_table(md, srcu_idx);
2277 	mutex_unlock(&md->suspend_lock);
2278 
2279 	/*
2280 	 * Rare, but there may be I/O requests still going to complete,
2281 	 * for example.  Wait for all references to disappear.
2282 	 * No one should increment the reference count of the mapped_device,
2283 	 * after the mapped_device state becomes DMF_FREEING.
2284 	 */
2285 	if (wait)
2286 		while (atomic_read(&md->holders))
2287 			msleep(1);
2288 	else if (atomic_read(&md->holders))
2289 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2290 		       dm_device_name(md), atomic_read(&md->holders));
2291 
2292 	dm_table_destroy(__unbind(md));
2293 	free_dev(md);
2294 }
2295 
2296 void dm_destroy(struct mapped_device *md)
2297 {
2298 	__dm_destroy(md, true);
2299 }
2300 
2301 void dm_destroy_immediate(struct mapped_device *md)
2302 {
2303 	__dm_destroy(md, false);
2304 }
2305 
2306 void dm_put(struct mapped_device *md)
2307 {
2308 	atomic_dec(&md->holders);
2309 }
2310 EXPORT_SYMBOL_GPL(dm_put);
2311 
2312 static bool dm_in_flight_bios(struct mapped_device *md)
2313 {
2314 	int cpu;
2315 	unsigned long sum = 0;
2316 
2317 	for_each_possible_cpu(cpu)
2318 		sum += *per_cpu_ptr(md->pending_io, cpu);
2319 
2320 	return sum != 0;
2321 }
2322 
2323 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2324 {
2325 	int r = 0;
2326 	DEFINE_WAIT(wait);
2327 
2328 	while (true) {
2329 		prepare_to_wait(&md->wait, &wait, task_state);
2330 
2331 		if (!dm_in_flight_bios(md))
2332 			break;
2333 
2334 		if (signal_pending_state(task_state, current)) {
2335 			r = -EINTR;
2336 			break;
2337 		}
2338 
2339 		io_schedule();
2340 	}
2341 	finish_wait(&md->wait, &wait);
2342 
2343 	smp_rmb();
2344 
2345 	return r;
2346 }
2347 
2348 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2349 {
2350 	int r = 0;
2351 
2352 	if (!queue_is_mq(md->queue))
2353 		return dm_wait_for_bios_completion(md, task_state);
2354 
2355 	while (true) {
2356 		if (!blk_mq_queue_inflight(md->queue))
2357 			break;
2358 
2359 		if (signal_pending_state(task_state, current)) {
2360 			r = -EINTR;
2361 			break;
2362 		}
2363 
2364 		msleep(5);
2365 	}
2366 
2367 	return r;
2368 }
2369 
2370 /*
2371  * Process the deferred bios
2372  */
2373 static void dm_wq_work(struct work_struct *work)
2374 {
2375 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2376 	struct bio *bio;
2377 
2378 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2379 		spin_lock_irq(&md->deferred_lock);
2380 		bio = bio_list_pop(&md->deferred);
2381 		spin_unlock_irq(&md->deferred_lock);
2382 
2383 		if (!bio)
2384 			break;
2385 
2386 		submit_bio_noacct(bio);
2387 	}
2388 }
2389 
2390 static void dm_queue_flush(struct mapped_device *md)
2391 {
2392 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2393 	smp_mb__after_atomic();
2394 	queue_work(md->wq, &md->work);
2395 }
2396 
2397 /*
2398  * Swap in a new table, returning the old one for the caller to destroy.
2399  */
2400 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2401 {
2402 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2403 	struct queue_limits limits;
2404 	int r;
2405 
2406 	mutex_lock(&md->suspend_lock);
2407 
2408 	/* device must be suspended */
2409 	if (!dm_suspended_md(md))
2410 		goto out;
2411 
2412 	/*
2413 	 * If the new table has no data devices, retain the existing limits.
2414 	 * This helps multipath with queue_if_no_path if all paths disappear,
2415 	 * then new I/O is queued based on these limits, and then some paths
2416 	 * reappear.
2417 	 */
2418 	if (dm_table_has_no_data_devices(table)) {
2419 		live_map = dm_get_live_table_fast(md);
2420 		if (live_map)
2421 			limits = md->queue->limits;
2422 		dm_put_live_table_fast(md);
2423 	}
2424 
2425 	if (!live_map) {
2426 		r = dm_calculate_queue_limits(table, &limits);
2427 		if (r) {
2428 			map = ERR_PTR(r);
2429 			goto out;
2430 		}
2431 	}
2432 
2433 	map = __bind(md, table, &limits);
2434 	dm_issue_global_event();
2435 
2436 out:
2437 	mutex_unlock(&md->suspend_lock);
2438 	return map;
2439 }
2440 
2441 /*
2442  * Functions to lock and unlock any filesystem running on the
2443  * device.
2444  */
2445 static int lock_fs(struct mapped_device *md)
2446 {
2447 	int r;
2448 
2449 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2450 
2451 	r = freeze_bdev(md->disk->part0);
2452 	if (!r)
2453 		set_bit(DMF_FROZEN, &md->flags);
2454 	return r;
2455 }
2456 
2457 static void unlock_fs(struct mapped_device *md)
2458 {
2459 	if (!test_bit(DMF_FROZEN, &md->flags))
2460 		return;
2461 	thaw_bdev(md->disk->part0);
2462 	clear_bit(DMF_FROZEN, &md->flags);
2463 }
2464 
2465 /*
2466  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2467  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2468  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2469  *
2470  * If __dm_suspend returns 0, the device is completely quiescent
2471  * now. There is no request-processing activity. All new requests
2472  * are being added to md->deferred list.
2473  */
2474 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2475 			unsigned suspend_flags, unsigned int task_state,
2476 			int dmf_suspended_flag)
2477 {
2478 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2479 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2480 	int r;
2481 
2482 	lockdep_assert_held(&md->suspend_lock);
2483 
2484 	/*
2485 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2486 	 * This flag is cleared before dm_suspend returns.
2487 	 */
2488 	if (noflush)
2489 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2490 	else
2491 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2492 
2493 	/*
2494 	 * This gets reverted if there's an error later and the targets
2495 	 * provide the .presuspend_undo hook.
2496 	 */
2497 	dm_table_presuspend_targets(map);
2498 
2499 	/*
2500 	 * Flush I/O to the device.
2501 	 * Any I/O submitted after lock_fs() may not be flushed.
2502 	 * noflush takes precedence over do_lockfs.
2503 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2504 	 */
2505 	if (!noflush && do_lockfs) {
2506 		r = lock_fs(md);
2507 		if (r) {
2508 			dm_table_presuspend_undo_targets(map);
2509 			return r;
2510 		}
2511 	}
2512 
2513 	/*
2514 	 * Here we must make sure that no processes are submitting requests
2515 	 * to target drivers i.e. no one may be executing
2516 	 * dm_split_and_process_bio from dm_submit_bio.
2517 	 *
2518 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2519 	 * we take the write lock. To prevent any process from reentering
2520 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2521 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2522 	 * flush_workqueue(md->wq).
2523 	 */
2524 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2525 	if (map)
2526 		synchronize_srcu(&md->io_barrier);
2527 
2528 	/*
2529 	 * Stop md->queue before flushing md->wq in case request-based
2530 	 * dm defers requests to md->wq from md->queue.
2531 	 */
2532 	if (dm_request_based(md))
2533 		dm_stop_queue(md->queue);
2534 
2535 	flush_workqueue(md->wq);
2536 
2537 	/*
2538 	 * At this point no more requests are entering target request routines.
2539 	 * We call dm_wait_for_completion to wait for all existing requests
2540 	 * to finish.
2541 	 */
2542 	r = dm_wait_for_completion(md, task_state);
2543 	if (!r)
2544 		set_bit(dmf_suspended_flag, &md->flags);
2545 
2546 	if (noflush)
2547 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2548 	if (map)
2549 		synchronize_srcu(&md->io_barrier);
2550 
2551 	/* were we interrupted ? */
2552 	if (r < 0) {
2553 		dm_queue_flush(md);
2554 
2555 		if (dm_request_based(md))
2556 			dm_start_queue(md->queue);
2557 
2558 		unlock_fs(md);
2559 		dm_table_presuspend_undo_targets(map);
2560 		/* pushback list is already flushed, so skip flush */
2561 	}
2562 
2563 	return r;
2564 }
2565 
2566 /*
2567  * We need to be able to change a mapping table under a mounted
2568  * filesystem.  For example we might want to move some data in
2569  * the background.  Before the table can be swapped with
2570  * dm_bind_table, dm_suspend must be called to flush any in
2571  * flight bios and ensure that any further io gets deferred.
2572  */
2573 /*
2574  * Suspend mechanism in request-based dm.
2575  *
2576  * 1. Flush all I/Os by lock_fs() if needed.
2577  * 2. Stop dispatching any I/O by stopping the request_queue.
2578  * 3. Wait for all in-flight I/Os to be completed or requeued.
2579  *
2580  * To abort suspend, start the request_queue.
2581  */
2582 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2583 {
2584 	struct dm_table *map = NULL;
2585 	int r = 0;
2586 
2587 retry:
2588 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2589 
2590 	if (dm_suspended_md(md)) {
2591 		r = -EINVAL;
2592 		goto out_unlock;
2593 	}
2594 
2595 	if (dm_suspended_internally_md(md)) {
2596 		/* already internally suspended, wait for internal resume */
2597 		mutex_unlock(&md->suspend_lock);
2598 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2599 		if (r)
2600 			return r;
2601 		goto retry;
2602 	}
2603 
2604 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2605 
2606 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2607 	if (r)
2608 		goto out_unlock;
2609 
2610 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2611 	dm_table_postsuspend_targets(map);
2612 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2613 
2614 out_unlock:
2615 	mutex_unlock(&md->suspend_lock);
2616 	return r;
2617 }
2618 
2619 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2620 {
2621 	if (map) {
2622 		int r = dm_table_resume_targets(map);
2623 		if (r)
2624 			return r;
2625 	}
2626 
2627 	dm_queue_flush(md);
2628 
2629 	/*
2630 	 * Flushing deferred I/Os must be done after targets are resumed
2631 	 * so that mapping of targets can work correctly.
2632 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2633 	 */
2634 	if (dm_request_based(md))
2635 		dm_start_queue(md->queue);
2636 
2637 	unlock_fs(md);
2638 
2639 	return 0;
2640 }
2641 
2642 int dm_resume(struct mapped_device *md)
2643 {
2644 	int r;
2645 	struct dm_table *map = NULL;
2646 
2647 retry:
2648 	r = -EINVAL;
2649 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2650 
2651 	if (!dm_suspended_md(md))
2652 		goto out;
2653 
2654 	if (dm_suspended_internally_md(md)) {
2655 		/* already internally suspended, wait for internal resume */
2656 		mutex_unlock(&md->suspend_lock);
2657 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2658 		if (r)
2659 			return r;
2660 		goto retry;
2661 	}
2662 
2663 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2664 	if (!map || !dm_table_get_size(map))
2665 		goto out;
2666 
2667 	r = __dm_resume(md, map);
2668 	if (r)
2669 		goto out;
2670 
2671 	clear_bit(DMF_SUSPENDED, &md->flags);
2672 out:
2673 	mutex_unlock(&md->suspend_lock);
2674 
2675 	return r;
2676 }
2677 
2678 /*
2679  * Internal suspend/resume works like userspace-driven suspend. It waits
2680  * until all bios finish and prevents issuing new bios to the target drivers.
2681  * It may be used only from the kernel.
2682  */
2683 
2684 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2685 {
2686 	struct dm_table *map = NULL;
2687 
2688 	lockdep_assert_held(&md->suspend_lock);
2689 
2690 	if (md->internal_suspend_count++)
2691 		return; /* nested internal suspend */
2692 
2693 	if (dm_suspended_md(md)) {
2694 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2695 		return; /* nest suspend */
2696 	}
2697 
2698 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2699 
2700 	/*
2701 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2702 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2703 	 * would require changing .presuspend to return an error -- avoid this
2704 	 * until there is a need for more elaborate variants of internal suspend.
2705 	 */
2706 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2707 			    DMF_SUSPENDED_INTERNALLY);
2708 
2709 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2710 	dm_table_postsuspend_targets(map);
2711 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2712 }
2713 
2714 static void __dm_internal_resume(struct mapped_device *md)
2715 {
2716 	BUG_ON(!md->internal_suspend_count);
2717 
2718 	if (--md->internal_suspend_count)
2719 		return; /* resume from nested internal suspend */
2720 
2721 	if (dm_suspended_md(md))
2722 		goto done; /* resume from nested suspend */
2723 
2724 	/*
2725 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2726 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2727 	 */
2728 	(void) __dm_resume(md, NULL);
2729 
2730 done:
2731 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2732 	smp_mb__after_atomic();
2733 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2734 }
2735 
2736 void dm_internal_suspend_noflush(struct mapped_device *md)
2737 {
2738 	mutex_lock(&md->suspend_lock);
2739 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2740 	mutex_unlock(&md->suspend_lock);
2741 }
2742 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2743 
2744 void dm_internal_resume(struct mapped_device *md)
2745 {
2746 	mutex_lock(&md->suspend_lock);
2747 	__dm_internal_resume(md);
2748 	mutex_unlock(&md->suspend_lock);
2749 }
2750 EXPORT_SYMBOL_GPL(dm_internal_resume);
2751 
2752 /*
2753  * Fast variants of internal suspend/resume hold md->suspend_lock,
2754  * which prevents interaction with userspace-driven suspend.
2755  */
2756 
2757 void dm_internal_suspend_fast(struct mapped_device *md)
2758 {
2759 	mutex_lock(&md->suspend_lock);
2760 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2761 		return;
2762 
2763 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2764 	synchronize_srcu(&md->io_barrier);
2765 	flush_workqueue(md->wq);
2766 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2767 }
2768 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2769 
2770 void dm_internal_resume_fast(struct mapped_device *md)
2771 {
2772 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2773 		goto done;
2774 
2775 	dm_queue_flush(md);
2776 
2777 done:
2778 	mutex_unlock(&md->suspend_lock);
2779 }
2780 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2781 
2782 /*-----------------------------------------------------------------
2783  * Event notification.
2784  *---------------------------------------------------------------*/
2785 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2786 		       unsigned cookie)
2787 {
2788 	int r;
2789 	unsigned noio_flag;
2790 	char udev_cookie[DM_COOKIE_LENGTH];
2791 	char *envp[] = { udev_cookie, NULL };
2792 
2793 	noio_flag = memalloc_noio_save();
2794 
2795 	if (!cookie)
2796 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2797 	else {
2798 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2799 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2800 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2801 				       action, envp);
2802 	}
2803 
2804 	memalloc_noio_restore(noio_flag);
2805 
2806 	return r;
2807 }
2808 
2809 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2810 {
2811 	return atomic_add_return(1, &md->uevent_seq);
2812 }
2813 
2814 uint32_t dm_get_event_nr(struct mapped_device *md)
2815 {
2816 	return atomic_read(&md->event_nr);
2817 }
2818 
2819 int dm_wait_event(struct mapped_device *md, int event_nr)
2820 {
2821 	return wait_event_interruptible(md->eventq,
2822 			(event_nr != atomic_read(&md->event_nr)));
2823 }
2824 
2825 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2826 {
2827 	unsigned long flags;
2828 
2829 	spin_lock_irqsave(&md->uevent_lock, flags);
2830 	list_add(elist, &md->uevent_list);
2831 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2832 }
2833 
2834 /*
2835  * The gendisk is only valid as long as you have a reference
2836  * count on 'md'.
2837  */
2838 struct gendisk *dm_disk(struct mapped_device *md)
2839 {
2840 	return md->disk;
2841 }
2842 EXPORT_SYMBOL_GPL(dm_disk);
2843 
2844 struct kobject *dm_kobject(struct mapped_device *md)
2845 {
2846 	return &md->kobj_holder.kobj;
2847 }
2848 
2849 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2850 {
2851 	struct mapped_device *md;
2852 
2853 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2854 
2855 	spin_lock(&_minor_lock);
2856 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2857 		md = NULL;
2858 		goto out;
2859 	}
2860 	dm_get(md);
2861 out:
2862 	spin_unlock(&_minor_lock);
2863 
2864 	return md;
2865 }
2866 
2867 int dm_suspended_md(struct mapped_device *md)
2868 {
2869 	return test_bit(DMF_SUSPENDED, &md->flags);
2870 }
2871 
2872 static int dm_post_suspending_md(struct mapped_device *md)
2873 {
2874 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2875 }
2876 
2877 int dm_suspended_internally_md(struct mapped_device *md)
2878 {
2879 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2880 }
2881 
2882 int dm_test_deferred_remove_flag(struct mapped_device *md)
2883 {
2884 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2885 }
2886 
2887 int dm_suspended(struct dm_target *ti)
2888 {
2889 	return dm_suspended_md(ti->table->md);
2890 }
2891 EXPORT_SYMBOL_GPL(dm_suspended);
2892 
2893 int dm_post_suspending(struct dm_target *ti)
2894 {
2895 	return dm_post_suspending_md(ti->table->md);
2896 }
2897 EXPORT_SYMBOL_GPL(dm_post_suspending);
2898 
2899 int dm_noflush_suspending(struct dm_target *ti)
2900 {
2901 	return __noflush_suspending(ti->table->md);
2902 }
2903 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2904 
2905 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2906 					    unsigned integrity, unsigned per_io_data_size,
2907 					    unsigned min_pool_size)
2908 {
2909 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2910 	unsigned int pool_size = 0;
2911 	unsigned int front_pad, io_front_pad;
2912 	int ret;
2913 
2914 	if (!pools)
2915 		return NULL;
2916 
2917 	switch (type) {
2918 	case DM_TYPE_BIO_BASED:
2919 	case DM_TYPE_DAX_BIO_BASED:
2920 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2921 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2922 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2923 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2924 		if (ret)
2925 			goto out;
2926 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2927 			goto out;
2928 		break;
2929 	case DM_TYPE_REQUEST_BASED:
2930 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2931 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2932 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2933 		break;
2934 	default:
2935 		BUG();
2936 	}
2937 
2938 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2939 	if (ret)
2940 		goto out;
2941 
2942 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2943 		goto out;
2944 
2945 	return pools;
2946 
2947 out:
2948 	dm_free_md_mempools(pools);
2949 
2950 	return NULL;
2951 }
2952 
2953 void dm_free_md_mempools(struct dm_md_mempools *pools)
2954 {
2955 	if (!pools)
2956 		return;
2957 
2958 	bioset_exit(&pools->bs);
2959 	bioset_exit(&pools->io_bs);
2960 
2961 	kfree(pools);
2962 }
2963 
2964 struct dm_pr {
2965 	u64	old_key;
2966 	u64	new_key;
2967 	u32	flags;
2968 	bool	fail_early;
2969 };
2970 
2971 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2972 		      void *data)
2973 {
2974 	struct mapped_device *md = bdev->bd_disk->private_data;
2975 	struct dm_table *table;
2976 	struct dm_target *ti;
2977 	int ret = -ENOTTY, srcu_idx;
2978 
2979 	table = dm_get_live_table(md, &srcu_idx);
2980 	if (!table || !dm_table_get_size(table))
2981 		goto out;
2982 
2983 	/* We only support devices that have a single target */
2984 	if (dm_table_get_num_targets(table) != 1)
2985 		goto out;
2986 	ti = dm_table_get_target(table, 0);
2987 
2988 	ret = -EINVAL;
2989 	if (!ti->type->iterate_devices)
2990 		goto out;
2991 
2992 	ret = ti->type->iterate_devices(ti, fn, data);
2993 out:
2994 	dm_put_live_table(md, srcu_idx);
2995 	return ret;
2996 }
2997 
2998 /*
2999  * For register / unregister we need to manually call out to every path.
3000  */
3001 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3002 			    sector_t start, sector_t len, void *data)
3003 {
3004 	struct dm_pr *pr = data;
3005 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3006 
3007 	if (!ops || !ops->pr_register)
3008 		return -EOPNOTSUPP;
3009 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3010 }
3011 
3012 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3013 			  u32 flags)
3014 {
3015 	struct dm_pr pr = {
3016 		.old_key	= old_key,
3017 		.new_key	= new_key,
3018 		.flags		= flags,
3019 		.fail_early	= true,
3020 	};
3021 	int ret;
3022 
3023 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3024 	if (ret && new_key) {
3025 		/* unregister all paths if we failed to register any path */
3026 		pr.old_key = new_key;
3027 		pr.new_key = 0;
3028 		pr.flags = 0;
3029 		pr.fail_early = false;
3030 		dm_call_pr(bdev, __dm_pr_register, &pr);
3031 	}
3032 
3033 	return ret;
3034 }
3035 
3036 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3037 			 u32 flags)
3038 {
3039 	struct mapped_device *md = bdev->bd_disk->private_data;
3040 	const struct pr_ops *ops;
3041 	int r, srcu_idx;
3042 
3043 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3044 	if (r < 0)
3045 		goto out;
3046 
3047 	ops = bdev->bd_disk->fops->pr_ops;
3048 	if (ops && ops->pr_reserve)
3049 		r = ops->pr_reserve(bdev, key, type, flags);
3050 	else
3051 		r = -EOPNOTSUPP;
3052 out:
3053 	dm_unprepare_ioctl(md, srcu_idx);
3054 	return r;
3055 }
3056 
3057 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3058 {
3059 	struct mapped_device *md = bdev->bd_disk->private_data;
3060 	const struct pr_ops *ops;
3061 	int r, srcu_idx;
3062 
3063 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3064 	if (r < 0)
3065 		goto out;
3066 
3067 	ops = bdev->bd_disk->fops->pr_ops;
3068 	if (ops && ops->pr_release)
3069 		r = ops->pr_release(bdev, key, type);
3070 	else
3071 		r = -EOPNOTSUPP;
3072 out:
3073 	dm_unprepare_ioctl(md, srcu_idx);
3074 	return r;
3075 }
3076 
3077 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3078 			 enum pr_type type, bool abort)
3079 {
3080 	struct mapped_device *md = bdev->bd_disk->private_data;
3081 	const struct pr_ops *ops;
3082 	int r, srcu_idx;
3083 
3084 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3085 	if (r < 0)
3086 		goto out;
3087 
3088 	ops = bdev->bd_disk->fops->pr_ops;
3089 	if (ops && ops->pr_preempt)
3090 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3091 	else
3092 		r = -EOPNOTSUPP;
3093 out:
3094 	dm_unprepare_ioctl(md, srcu_idx);
3095 	return r;
3096 }
3097 
3098 static int dm_pr_clear(struct block_device *bdev, u64 key)
3099 {
3100 	struct mapped_device *md = bdev->bd_disk->private_data;
3101 	const struct pr_ops *ops;
3102 	int r, srcu_idx;
3103 
3104 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3105 	if (r < 0)
3106 		goto out;
3107 
3108 	ops = bdev->bd_disk->fops->pr_ops;
3109 	if (ops && ops->pr_clear)
3110 		r = ops->pr_clear(bdev, key);
3111 	else
3112 		r = -EOPNOTSUPP;
3113 out:
3114 	dm_unprepare_ioctl(md, srcu_idx);
3115 	return r;
3116 }
3117 
3118 static const struct pr_ops dm_pr_ops = {
3119 	.pr_register	= dm_pr_register,
3120 	.pr_reserve	= dm_pr_reserve,
3121 	.pr_release	= dm_pr_release,
3122 	.pr_preempt	= dm_pr_preempt,
3123 	.pr_clear	= dm_pr_clear,
3124 };
3125 
3126 static const struct block_device_operations dm_blk_dops = {
3127 	.submit_bio = dm_submit_bio,
3128 	.poll_bio = dm_poll_bio,
3129 	.open = dm_blk_open,
3130 	.release = dm_blk_close,
3131 	.ioctl = dm_blk_ioctl,
3132 	.getgeo = dm_blk_getgeo,
3133 	.report_zones = dm_blk_report_zones,
3134 	.pr_ops = &dm_pr_ops,
3135 	.owner = THIS_MODULE
3136 };
3137 
3138 static const struct block_device_operations dm_rq_blk_dops = {
3139 	.open = dm_blk_open,
3140 	.release = dm_blk_close,
3141 	.ioctl = dm_blk_ioctl,
3142 	.getgeo = dm_blk_getgeo,
3143 	.pr_ops = &dm_pr_ops,
3144 	.owner = THIS_MODULE
3145 };
3146 
3147 static const struct dax_operations dm_dax_ops = {
3148 	.direct_access = dm_dax_direct_access,
3149 	.zero_page_range = dm_dax_zero_page_range,
3150 };
3151 
3152 /*
3153  * module hooks
3154  */
3155 module_init(dm_init);
3156 module_exit(dm_exit);
3157 
3158 module_param(major, uint, 0);
3159 MODULE_PARM_DESC(major, "The major number of the device mapper");
3160 
3161 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3162 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3163 
3164 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3165 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3166 
3167 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3168 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3169 
3170 MODULE_DESCRIPTION(DM_NAME " driver");
3171 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3172 MODULE_LICENSE("GPL");
3173