1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct dm_table *map; 67 struct bio *bio; 68 struct dm_io *io; 69 sector_t sector; 70 unsigned sector_count; 71 }; 72 73 /* 74 * One of these is allocated per clone bio. 75 */ 76 #define DM_TIO_MAGIC 7282014 77 struct dm_target_io { 78 unsigned magic; 79 struct dm_io *io; 80 struct dm_target *ti; 81 unsigned target_bio_nr; 82 unsigned *len_ptr; 83 bool inside_dm_io; 84 struct bio clone; 85 }; 86 87 /* 88 * One of these is allocated per original bio. 89 * It contains the first clone used for that original. 90 */ 91 #define DM_IO_MAGIC 5191977 92 struct dm_io { 93 unsigned magic; 94 struct mapped_device *md; 95 blk_status_t status; 96 atomic_t io_count; 97 struct bio *orig_bio; 98 unsigned long start_time; 99 spinlock_t endio_lock; 100 struct dm_stats_aux stats_aux; 101 /* last member of dm_target_io is 'struct bio' */ 102 struct dm_target_io tio; 103 }; 104 105 void *dm_per_bio_data(struct bio *bio, size_t data_size) 106 { 107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 108 if (!tio->inside_dm_io) 109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 111 } 112 EXPORT_SYMBOL_GPL(dm_per_bio_data); 113 114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 115 { 116 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 117 if (io->magic == DM_IO_MAGIC) 118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 119 BUG_ON(io->magic != DM_TIO_MAGIC); 120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 123 124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 125 { 126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 127 } 128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 129 130 #define MINOR_ALLOCED ((void *)-1) 131 132 /* 133 * Bits for the md->flags field. 134 */ 135 #define DMF_BLOCK_IO_FOR_SUSPEND 0 136 #define DMF_SUSPENDED 1 137 #define DMF_FROZEN 2 138 #define DMF_FREEING 3 139 #define DMF_DELETING 4 140 #define DMF_NOFLUSH_SUSPENDING 5 141 #define DMF_DEFERRED_REMOVE 6 142 #define DMF_SUSPENDED_INTERNALLY 7 143 144 #define DM_NUMA_NODE NUMA_NO_NODE 145 static int dm_numa_node = DM_NUMA_NODE; 146 147 /* 148 * For mempools pre-allocation at the table loading time. 149 */ 150 struct dm_md_mempools { 151 struct bio_set bs; 152 struct bio_set io_bs; 153 }; 154 155 struct table_device { 156 struct list_head list; 157 refcount_t count; 158 struct dm_dev dm_dev; 159 }; 160 161 /* 162 * Bio-based DM's mempools' reserved IOs set by the user. 163 */ 164 #define RESERVED_BIO_BASED_IOS 16 165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 166 167 static int __dm_get_module_param_int(int *module_param, int min, int max) 168 { 169 int param = READ_ONCE(*module_param); 170 int modified_param = 0; 171 bool modified = true; 172 173 if (param < min) 174 modified_param = min; 175 else if (param > max) 176 modified_param = max; 177 else 178 modified = false; 179 180 if (modified) { 181 (void)cmpxchg(module_param, param, modified_param); 182 param = modified_param; 183 } 184 185 return param; 186 } 187 188 unsigned __dm_get_module_param(unsigned *module_param, 189 unsigned def, unsigned max) 190 { 191 unsigned param = READ_ONCE(*module_param); 192 unsigned modified_param = 0; 193 194 if (!param) 195 modified_param = def; 196 else if (param > max) 197 modified_param = max; 198 199 if (modified_param) { 200 (void)cmpxchg(module_param, param, modified_param); 201 param = modified_param; 202 } 203 204 return param; 205 } 206 207 unsigned dm_get_reserved_bio_based_ios(void) 208 { 209 return __dm_get_module_param(&reserved_bio_based_ios, 210 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 211 } 212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 213 214 static unsigned dm_get_numa_node(void) 215 { 216 return __dm_get_module_param_int(&dm_numa_node, 217 DM_NUMA_NODE, num_online_nodes() - 1); 218 } 219 220 static int __init local_init(void) 221 { 222 int r; 223 224 r = dm_uevent_init(); 225 if (r) 226 return r; 227 228 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 229 if (!deferred_remove_workqueue) { 230 r = -ENOMEM; 231 goto out_uevent_exit; 232 } 233 234 _major = major; 235 r = register_blkdev(_major, _name); 236 if (r < 0) 237 goto out_free_workqueue; 238 239 if (!_major) 240 _major = r; 241 242 return 0; 243 244 out_free_workqueue: 245 destroy_workqueue(deferred_remove_workqueue); 246 out_uevent_exit: 247 dm_uevent_exit(); 248 249 return r; 250 } 251 252 static void local_exit(void) 253 { 254 flush_scheduled_work(); 255 destroy_workqueue(deferred_remove_workqueue); 256 257 unregister_blkdev(_major, _name); 258 dm_uevent_exit(); 259 260 _major = 0; 261 262 DMINFO("cleaned up"); 263 } 264 265 static int (*_inits[])(void) __initdata = { 266 local_init, 267 dm_target_init, 268 dm_linear_init, 269 dm_stripe_init, 270 dm_io_init, 271 dm_kcopyd_init, 272 dm_interface_init, 273 dm_statistics_init, 274 }; 275 276 static void (*_exits[])(void) = { 277 local_exit, 278 dm_target_exit, 279 dm_linear_exit, 280 dm_stripe_exit, 281 dm_io_exit, 282 dm_kcopyd_exit, 283 dm_interface_exit, 284 dm_statistics_exit, 285 }; 286 287 static int __init dm_init(void) 288 { 289 const int count = ARRAY_SIZE(_inits); 290 291 int r, i; 292 293 for (i = 0; i < count; i++) { 294 r = _inits[i](); 295 if (r) 296 goto bad; 297 } 298 299 return 0; 300 301 bad: 302 while (i--) 303 _exits[i](); 304 305 return r; 306 } 307 308 static void __exit dm_exit(void) 309 { 310 int i = ARRAY_SIZE(_exits); 311 312 while (i--) 313 _exits[i](); 314 315 /* 316 * Should be empty by this point. 317 */ 318 idr_destroy(&_minor_idr); 319 } 320 321 /* 322 * Block device functions 323 */ 324 int dm_deleting_md(struct mapped_device *md) 325 { 326 return test_bit(DMF_DELETING, &md->flags); 327 } 328 329 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 330 { 331 struct mapped_device *md; 332 333 spin_lock(&_minor_lock); 334 335 md = bdev->bd_disk->private_data; 336 if (!md) 337 goto out; 338 339 if (test_bit(DMF_FREEING, &md->flags) || 340 dm_deleting_md(md)) { 341 md = NULL; 342 goto out; 343 } 344 345 dm_get(md); 346 atomic_inc(&md->open_count); 347 out: 348 spin_unlock(&_minor_lock); 349 350 return md ? 0 : -ENXIO; 351 } 352 353 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 354 { 355 struct mapped_device *md; 356 357 spin_lock(&_minor_lock); 358 359 md = disk->private_data; 360 if (WARN_ON(!md)) 361 goto out; 362 363 if (atomic_dec_and_test(&md->open_count) && 364 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 365 queue_work(deferred_remove_workqueue, &deferred_remove_work); 366 367 dm_put(md); 368 out: 369 spin_unlock(&_minor_lock); 370 } 371 372 int dm_open_count(struct mapped_device *md) 373 { 374 return atomic_read(&md->open_count); 375 } 376 377 /* 378 * Guarantees nothing is using the device before it's deleted. 379 */ 380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 381 { 382 int r = 0; 383 384 spin_lock(&_minor_lock); 385 386 if (dm_open_count(md)) { 387 r = -EBUSY; 388 if (mark_deferred) 389 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 390 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 391 r = -EEXIST; 392 else 393 set_bit(DMF_DELETING, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 int dm_cancel_deferred_remove(struct mapped_device *md) 401 { 402 int r = 0; 403 404 spin_lock(&_minor_lock); 405 406 if (test_bit(DMF_DELETING, &md->flags)) 407 r = -EBUSY; 408 else 409 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 410 411 spin_unlock(&_minor_lock); 412 413 return r; 414 } 415 416 static void do_deferred_remove(struct work_struct *w) 417 { 418 dm_deferred_remove(); 419 } 420 421 sector_t dm_get_size(struct mapped_device *md) 422 { 423 return get_capacity(md->disk); 424 } 425 426 struct request_queue *dm_get_md_queue(struct mapped_device *md) 427 { 428 return md->queue; 429 } 430 431 struct dm_stats *dm_get_stats(struct mapped_device *md) 432 { 433 return &md->stats; 434 } 435 436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 437 { 438 struct mapped_device *md = bdev->bd_disk->private_data; 439 440 return dm_get_geometry(md, geo); 441 } 442 443 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 444 struct blk_zone *zones, unsigned int *nr_zones) 445 { 446 #ifdef CONFIG_BLK_DEV_ZONED 447 struct mapped_device *md = disk->private_data; 448 struct dm_target *tgt; 449 struct dm_table *map; 450 int srcu_idx, ret; 451 452 if (dm_suspended_md(md)) 453 return -EAGAIN; 454 455 map = dm_get_live_table(md, &srcu_idx); 456 if (!map) 457 return -EIO; 458 459 tgt = dm_table_find_target(map, sector); 460 if (!tgt) { 461 ret = -EIO; 462 goto out; 463 } 464 465 /* 466 * If we are executing this, we already know that the block device 467 * is a zoned device and so each target should have support for that 468 * type of drive. A missing report_zones method means that the target 469 * driver has a problem. 470 */ 471 if (WARN_ON(!tgt->type->report_zones)) { 472 ret = -EIO; 473 goto out; 474 } 475 476 /* 477 * blkdev_report_zones() will loop and call this again to cover all the 478 * zones of the target, eventually moving on to the next target. 479 * So there is no need to loop here trying to fill the entire array 480 * of zones. 481 */ 482 ret = tgt->type->report_zones(tgt, sector, zones, nr_zones); 483 484 out: 485 dm_put_live_table(md, srcu_idx); 486 return ret; 487 #else 488 return -ENOTSUPP; 489 #endif 490 } 491 492 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 493 struct block_device **bdev) 494 __acquires(md->io_barrier) 495 { 496 struct dm_target *tgt; 497 struct dm_table *map; 498 int r; 499 500 retry: 501 r = -ENOTTY; 502 map = dm_get_live_table(md, srcu_idx); 503 if (!map || !dm_table_get_size(map)) 504 return r; 505 506 /* We only support devices that have a single target */ 507 if (dm_table_get_num_targets(map) != 1) 508 return r; 509 510 tgt = dm_table_get_target(map, 0); 511 if (!tgt->type->prepare_ioctl) 512 return r; 513 514 if (dm_suspended_md(md)) 515 return -EAGAIN; 516 517 r = tgt->type->prepare_ioctl(tgt, bdev); 518 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 519 dm_put_live_table(md, *srcu_idx); 520 msleep(10); 521 goto retry; 522 } 523 524 return r; 525 } 526 527 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 528 __releases(md->io_barrier) 529 { 530 dm_put_live_table(md, srcu_idx); 531 } 532 533 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 534 unsigned int cmd, unsigned long arg) 535 { 536 struct mapped_device *md = bdev->bd_disk->private_data; 537 int r, srcu_idx; 538 539 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 540 if (r < 0) 541 goto out; 542 543 if (r > 0) { 544 /* 545 * Target determined this ioctl is being issued against a 546 * subset of the parent bdev; require extra privileges. 547 */ 548 if (!capable(CAP_SYS_RAWIO)) { 549 DMWARN_LIMIT( 550 "%s: sending ioctl %x to DM device without required privilege.", 551 current->comm, cmd); 552 r = -ENOIOCTLCMD; 553 goto out; 554 } 555 } 556 557 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 558 out: 559 dm_unprepare_ioctl(md, srcu_idx); 560 return r; 561 } 562 563 static void start_io_acct(struct dm_io *io); 564 565 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 566 { 567 struct dm_io *io; 568 struct dm_target_io *tio; 569 struct bio *clone; 570 571 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 572 if (!clone) 573 return NULL; 574 575 tio = container_of(clone, struct dm_target_io, clone); 576 tio->inside_dm_io = true; 577 tio->io = NULL; 578 579 io = container_of(tio, struct dm_io, tio); 580 io->magic = DM_IO_MAGIC; 581 io->status = 0; 582 atomic_set(&io->io_count, 1); 583 io->orig_bio = bio; 584 io->md = md; 585 spin_lock_init(&io->endio_lock); 586 587 start_io_acct(io); 588 589 return io; 590 } 591 592 static void free_io(struct mapped_device *md, struct dm_io *io) 593 { 594 bio_put(&io->tio.clone); 595 } 596 597 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 598 unsigned target_bio_nr, gfp_t gfp_mask) 599 { 600 struct dm_target_io *tio; 601 602 if (!ci->io->tio.io) { 603 /* the dm_target_io embedded in ci->io is available */ 604 tio = &ci->io->tio; 605 } else { 606 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 607 if (!clone) 608 return NULL; 609 610 tio = container_of(clone, struct dm_target_io, clone); 611 tio->inside_dm_io = false; 612 } 613 614 tio->magic = DM_TIO_MAGIC; 615 tio->io = ci->io; 616 tio->ti = ti; 617 tio->target_bio_nr = target_bio_nr; 618 619 return tio; 620 } 621 622 static void free_tio(struct dm_target_io *tio) 623 { 624 if (tio->inside_dm_io) 625 return; 626 bio_put(&tio->clone); 627 } 628 629 static bool md_in_flight_bios(struct mapped_device *md) 630 { 631 int cpu; 632 struct hd_struct *part = &dm_disk(md)->part0; 633 long sum = 0; 634 635 for_each_possible_cpu(cpu) { 636 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 637 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 638 } 639 640 return sum != 0; 641 } 642 643 static bool md_in_flight(struct mapped_device *md) 644 { 645 if (queue_is_mq(md->queue)) 646 return blk_mq_queue_inflight(md->queue); 647 else 648 return md_in_flight_bios(md); 649 } 650 651 static void start_io_acct(struct dm_io *io) 652 { 653 struct mapped_device *md = io->md; 654 struct bio *bio = io->orig_bio; 655 656 io->start_time = jiffies; 657 658 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio), 659 &dm_disk(md)->part0); 660 661 if (unlikely(dm_stats_used(&md->stats))) 662 dm_stats_account_io(&md->stats, bio_data_dir(bio), 663 bio->bi_iter.bi_sector, bio_sectors(bio), 664 false, 0, &io->stats_aux); 665 } 666 667 static void end_io_acct(struct dm_io *io) 668 { 669 struct mapped_device *md = io->md; 670 struct bio *bio = io->orig_bio; 671 unsigned long duration = jiffies - io->start_time; 672 673 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0, 674 io->start_time); 675 676 if (unlikely(dm_stats_used(&md->stats))) 677 dm_stats_account_io(&md->stats, bio_data_dir(bio), 678 bio->bi_iter.bi_sector, bio_sectors(bio), 679 true, duration, &io->stats_aux); 680 681 /* nudge anyone waiting on suspend queue */ 682 if (unlikely(wq_has_sleeper(&md->wait))) 683 wake_up(&md->wait); 684 } 685 686 /* 687 * Add the bio to the list of deferred io. 688 */ 689 static void queue_io(struct mapped_device *md, struct bio *bio) 690 { 691 unsigned long flags; 692 693 spin_lock_irqsave(&md->deferred_lock, flags); 694 bio_list_add(&md->deferred, bio); 695 spin_unlock_irqrestore(&md->deferred_lock, flags); 696 queue_work(md->wq, &md->work); 697 } 698 699 /* 700 * Everyone (including functions in this file), should use this 701 * function to access the md->map field, and make sure they call 702 * dm_put_live_table() when finished. 703 */ 704 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 705 { 706 *srcu_idx = srcu_read_lock(&md->io_barrier); 707 708 return srcu_dereference(md->map, &md->io_barrier); 709 } 710 711 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 712 { 713 srcu_read_unlock(&md->io_barrier, srcu_idx); 714 } 715 716 void dm_sync_table(struct mapped_device *md) 717 { 718 synchronize_srcu(&md->io_barrier); 719 synchronize_rcu_expedited(); 720 } 721 722 /* 723 * A fast alternative to dm_get_live_table/dm_put_live_table. 724 * The caller must not block between these two functions. 725 */ 726 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 727 { 728 rcu_read_lock(); 729 return rcu_dereference(md->map); 730 } 731 732 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 733 { 734 rcu_read_unlock(); 735 } 736 737 static char *_dm_claim_ptr = "I belong to device-mapper"; 738 739 /* 740 * Open a table device so we can use it as a map destination. 741 */ 742 static int open_table_device(struct table_device *td, dev_t dev, 743 struct mapped_device *md) 744 { 745 struct block_device *bdev; 746 747 int r; 748 749 BUG_ON(td->dm_dev.bdev); 750 751 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 752 if (IS_ERR(bdev)) 753 return PTR_ERR(bdev); 754 755 r = bd_link_disk_holder(bdev, dm_disk(md)); 756 if (r) { 757 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 758 return r; 759 } 760 761 td->dm_dev.bdev = bdev; 762 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 763 return 0; 764 } 765 766 /* 767 * Close a table device that we've been using. 768 */ 769 static void close_table_device(struct table_device *td, struct mapped_device *md) 770 { 771 if (!td->dm_dev.bdev) 772 return; 773 774 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 775 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 776 put_dax(td->dm_dev.dax_dev); 777 td->dm_dev.bdev = NULL; 778 td->dm_dev.dax_dev = NULL; 779 } 780 781 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 782 fmode_t mode) 783 { 784 struct table_device *td; 785 786 list_for_each_entry(td, l, list) 787 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 788 return td; 789 790 return NULL; 791 } 792 793 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 794 struct dm_dev **result) 795 { 796 int r; 797 struct table_device *td; 798 799 mutex_lock(&md->table_devices_lock); 800 td = find_table_device(&md->table_devices, dev, mode); 801 if (!td) { 802 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 803 if (!td) { 804 mutex_unlock(&md->table_devices_lock); 805 return -ENOMEM; 806 } 807 808 td->dm_dev.mode = mode; 809 td->dm_dev.bdev = NULL; 810 811 if ((r = open_table_device(td, dev, md))) { 812 mutex_unlock(&md->table_devices_lock); 813 kfree(td); 814 return r; 815 } 816 817 format_dev_t(td->dm_dev.name, dev); 818 819 refcount_set(&td->count, 1); 820 list_add(&td->list, &md->table_devices); 821 } else { 822 refcount_inc(&td->count); 823 } 824 mutex_unlock(&md->table_devices_lock); 825 826 *result = &td->dm_dev; 827 return 0; 828 } 829 EXPORT_SYMBOL_GPL(dm_get_table_device); 830 831 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 832 { 833 struct table_device *td = container_of(d, struct table_device, dm_dev); 834 835 mutex_lock(&md->table_devices_lock); 836 if (refcount_dec_and_test(&td->count)) { 837 close_table_device(td, md); 838 list_del(&td->list); 839 kfree(td); 840 } 841 mutex_unlock(&md->table_devices_lock); 842 } 843 EXPORT_SYMBOL(dm_put_table_device); 844 845 static void free_table_devices(struct list_head *devices) 846 { 847 struct list_head *tmp, *next; 848 849 list_for_each_safe(tmp, next, devices) { 850 struct table_device *td = list_entry(tmp, struct table_device, list); 851 852 DMWARN("dm_destroy: %s still exists with %d references", 853 td->dm_dev.name, refcount_read(&td->count)); 854 kfree(td); 855 } 856 } 857 858 /* 859 * Get the geometry associated with a dm device 860 */ 861 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 862 { 863 *geo = md->geometry; 864 865 return 0; 866 } 867 868 /* 869 * Set the geometry of a device. 870 */ 871 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 872 { 873 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 874 875 if (geo->start > sz) { 876 DMWARN("Start sector is beyond the geometry limits."); 877 return -EINVAL; 878 } 879 880 md->geometry = *geo; 881 882 return 0; 883 } 884 885 static int __noflush_suspending(struct mapped_device *md) 886 { 887 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 888 } 889 890 /* 891 * Decrements the number of outstanding ios that a bio has been 892 * cloned into, completing the original io if necc. 893 */ 894 static void dec_pending(struct dm_io *io, blk_status_t error) 895 { 896 unsigned long flags; 897 blk_status_t io_error; 898 struct bio *bio; 899 struct mapped_device *md = io->md; 900 901 /* Push-back supersedes any I/O errors */ 902 if (unlikely(error)) { 903 spin_lock_irqsave(&io->endio_lock, flags); 904 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 905 io->status = error; 906 spin_unlock_irqrestore(&io->endio_lock, flags); 907 } 908 909 if (atomic_dec_and_test(&io->io_count)) { 910 if (io->status == BLK_STS_DM_REQUEUE) { 911 /* 912 * Target requested pushing back the I/O. 913 */ 914 spin_lock_irqsave(&md->deferred_lock, flags); 915 if (__noflush_suspending(md)) 916 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 917 bio_list_add_head(&md->deferred, io->orig_bio); 918 else 919 /* noflush suspend was interrupted. */ 920 io->status = BLK_STS_IOERR; 921 spin_unlock_irqrestore(&md->deferred_lock, flags); 922 } 923 924 io_error = io->status; 925 bio = io->orig_bio; 926 end_io_acct(io); 927 free_io(md, io); 928 929 if (io_error == BLK_STS_DM_REQUEUE) 930 return; 931 932 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 933 /* 934 * Preflush done for flush with data, reissue 935 * without REQ_PREFLUSH. 936 */ 937 bio->bi_opf &= ~REQ_PREFLUSH; 938 queue_io(md, bio); 939 } else { 940 /* done with normal IO or empty flush */ 941 if (io_error) 942 bio->bi_status = io_error; 943 bio_endio(bio); 944 } 945 } 946 } 947 948 void disable_discard(struct mapped_device *md) 949 { 950 struct queue_limits *limits = dm_get_queue_limits(md); 951 952 /* device doesn't really support DISCARD, disable it */ 953 limits->max_discard_sectors = 0; 954 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 955 } 956 957 void disable_write_same(struct mapped_device *md) 958 { 959 struct queue_limits *limits = dm_get_queue_limits(md); 960 961 /* device doesn't really support WRITE SAME, disable it */ 962 limits->max_write_same_sectors = 0; 963 } 964 965 void disable_write_zeroes(struct mapped_device *md) 966 { 967 struct queue_limits *limits = dm_get_queue_limits(md); 968 969 /* device doesn't really support WRITE ZEROES, disable it */ 970 limits->max_write_zeroes_sectors = 0; 971 } 972 973 static void clone_endio(struct bio *bio) 974 { 975 blk_status_t error = bio->bi_status; 976 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 977 struct dm_io *io = tio->io; 978 struct mapped_device *md = tio->io->md; 979 dm_endio_fn endio = tio->ti->type->end_io; 980 981 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 982 if (bio_op(bio) == REQ_OP_DISCARD && 983 !bio->bi_disk->queue->limits.max_discard_sectors) 984 disable_discard(md); 985 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 986 !bio->bi_disk->queue->limits.max_write_same_sectors) 987 disable_write_same(md); 988 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 989 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 990 disable_write_zeroes(md); 991 } 992 993 if (endio) { 994 int r = endio(tio->ti, bio, &error); 995 switch (r) { 996 case DM_ENDIO_REQUEUE: 997 error = BLK_STS_DM_REQUEUE; 998 /*FALLTHRU*/ 999 case DM_ENDIO_DONE: 1000 break; 1001 case DM_ENDIO_INCOMPLETE: 1002 /* The target will handle the io */ 1003 return; 1004 default: 1005 DMWARN("unimplemented target endio return value: %d", r); 1006 BUG(); 1007 } 1008 } 1009 1010 free_tio(tio); 1011 dec_pending(io, error); 1012 } 1013 1014 /* 1015 * Return maximum size of I/O possible at the supplied sector up to the current 1016 * target boundary. 1017 */ 1018 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1019 { 1020 sector_t target_offset = dm_target_offset(ti, sector); 1021 1022 return ti->len - target_offset; 1023 } 1024 1025 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1026 { 1027 sector_t len = max_io_len_target_boundary(sector, ti); 1028 sector_t offset, max_len; 1029 1030 /* 1031 * Does the target need to split even further? 1032 */ 1033 if (ti->max_io_len) { 1034 offset = dm_target_offset(ti, sector); 1035 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1036 max_len = sector_div(offset, ti->max_io_len); 1037 else 1038 max_len = offset & (ti->max_io_len - 1); 1039 max_len = ti->max_io_len - max_len; 1040 1041 if (len > max_len) 1042 len = max_len; 1043 } 1044 1045 return len; 1046 } 1047 1048 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1049 { 1050 if (len > UINT_MAX) { 1051 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1052 (unsigned long long)len, UINT_MAX); 1053 ti->error = "Maximum size of target IO is too large"; 1054 return -EINVAL; 1055 } 1056 1057 ti->max_io_len = (uint32_t) len; 1058 1059 return 0; 1060 } 1061 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1062 1063 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1064 sector_t sector, int *srcu_idx) 1065 __acquires(md->io_barrier) 1066 { 1067 struct dm_table *map; 1068 struct dm_target *ti; 1069 1070 map = dm_get_live_table(md, srcu_idx); 1071 if (!map) 1072 return NULL; 1073 1074 ti = dm_table_find_target(map, sector); 1075 if (!ti) 1076 return NULL; 1077 1078 return ti; 1079 } 1080 1081 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1082 long nr_pages, void **kaddr, pfn_t *pfn) 1083 { 1084 struct mapped_device *md = dax_get_private(dax_dev); 1085 sector_t sector = pgoff * PAGE_SECTORS; 1086 struct dm_target *ti; 1087 long len, ret = -EIO; 1088 int srcu_idx; 1089 1090 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1091 1092 if (!ti) 1093 goto out; 1094 if (!ti->type->direct_access) 1095 goto out; 1096 len = max_io_len(sector, ti) / PAGE_SECTORS; 1097 if (len < 1) 1098 goto out; 1099 nr_pages = min(len, nr_pages); 1100 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1101 1102 out: 1103 dm_put_live_table(md, srcu_idx); 1104 1105 return ret; 1106 } 1107 1108 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1109 int blocksize, sector_t start, sector_t len) 1110 { 1111 struct mapped_device *md = dax_get_private(dax_dev); 1112 struct dm_table *map; 1113 int srcu_idx; 1114 bool ret; 1115 1116 map = dm_get_live_table(md, &srcu_idx); 1117 if (!map) 1118 return false; 1119 1120 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize); 1121 1122 dm_put_live_table(md, srcu_idx); 1123 1124 return ret; 1125 } 1126 1127 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1128 void *addr, size_t bytes, struct iov_iter *i) 1129 { 1130 struct mapped_device *md = dax_get_private(dax_dev); 1131 sector_t sector = pgoff * PAGE_SECTORS; 1132 struct dm_target *ti; 1133 long ret = 0; 1134 int srcu_idx; 1135 1136 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1137 1138 if (!ti) 1139 goto out; 1140 if (!ti->type->dax_copy_from_iter) { 1141 ret = copy_from_iter(addr, bytes, i); 1142 goto out; 1143 } 1144 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1145 out: 1146 dm_put_live_table(md, srcu_idx); 1147 1148 return ret; 1149 } 1150 1151 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1152 void *addr, size_t bytes, struct iov_iter *i) 1153 { 1154 struct mapped_device *md = dax_get_private(dax_dev); 1155 sector_t sector = pgoff * PAGE_SECTORS; 1156 struct dm_target *ti; 1157 long ret = 0; 1158 int srcu_idx; 1159 1160 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1161 1162 if (!ti) 1163 goto out; 1164 if (!ti->type->dax_copy_to_iter) { 1165 ret = copy_to_iter(addr, bytes, i); 1166 goto out; 1167 } 1168 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1169 out: 1170 dm_put_live_table(md, srcu_idx); 1171 1172 return ret; 1173 } 1174 1175 /* 1176 * A target may call dm_accept_partial_bio only from the map routine. It is 1177 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET, 1178 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH. 1179 * 1180 * dm_accept_partial_bio informs the dm that the target only wants to process 1181 * additional n_sectors sectors of the bio and the rest of the data should be 1182 * sent in a next bio. 1183 * 1184 * A diagram that explains the arithmetics: 1185 * +--------------------+---------------+-------+ 1186 * | 1 | 2 | 3 | 1187 * +--------------------+---------------+-------+ 1188 * 1189 * <-------------- *tio->len_ptr ---------------> 1190 * <------- bi_size -------> 1191 * <-- n_sectors --> 1192 * 1193 * Region 1 was already iterated over with bio_advance or similar function. 1194 * (it may be empty if the target doesn't use bio_advance) 1195 * Region 2 is the remaining bio size that the target wants to process. 1196 * (it may be empty if region 1 is non-empty, although there is no reason 1197 * to make it empty) 1198 * The target requires that region 3 is to be sent in the next bio. 1199 * 1200 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1201 * the partially processed part (the sum of regions 1+2) must be the same for all 1202 * copies of the bio. 1203 */ 1204 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1205 { 1206 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1207 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1208 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1209 BUG_ON(bi_size > *tio->len_ptr); 1210 BUG_ON(n_sectors > bi_size); 1211 *tio->len_ptr -= bi_size - n_sectors; 1212 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1213 } 1214 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1215 1216 /* 1217 * The zone descriptors obtained with a zone report indicate 1218 * zone positions within the underlying device of the target. The zone 1219 * descriptors must be remapped to match their position within the dm device. 1220 * The caller target should obtain the zones information using 1221 * blkdev_report_zones() to ensure that remapping for partition offset is 1222 * already handled. 1223 */ 1224 void dm_remap_zone_report(struct dm_target *ti, sector_t start, 1225 struct blk_zone *zones, unsigned int *nr_zones) 1226 { 1227 #ifdef CONFIG_BLK_DEV_ZONED 1228 struct blk_zone *zone; 1229 unsigned int nrz = *nr_zones; 1230 int i; 1231 1232 /* 1233 * Remap the start sector and write pointer position of the zones in 1234 * the array. Since we may have obtained from the target underlying 1235 * device more zones that the target size, also adjust the number 1236 * of zones. 1237 */ 1238 for (i = 0; i < nrz; i++) { 1239 zone = zones + i; 1240 if (zone->start >= start + ti->len) { 1241 memset(zone, 0, sizeof(struct blk_zone) * (nrz - i)); 1242 break; 1243 } 1244 1245 zone->start = zone->start + ti->begin - start; 1246 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 1247 continue; 1248 1249 if (zone->cond == BLK_ZONE_COND_FULL) 1250 zone->wp = zone->start + zone->len; 1251 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1252 zone->wp = zone->start; 1253 else 1254 zone->wp = zone->wp + ti->begin - start; 1255 } 1256 1257 *nr_zones = i; 1258 #else /* !CONFIG_BLK_DEV_ZONED */ 1259 *nr_zones = 0; 1260 #endif 1261 } 1262 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1263 1264 static blk_qc_t __map_bio(struct dm_target_io *tio) 1265 { 1266 int r; 1267 sector_t sector; 1268 struct bio *clone = &tio->clone; 1269 struct dm_io *io = tio->io; 1270 struct mapped_device *md = io->md; 1271 struct dm_target *ti = tio->ti; 1272 blk_qc_t ret = BLK_QC_T_NONE; 1273 1274 clone->bi_end_io = clone_endio; 1275 1276 /* 1277 * Map the clone. If r == 0 we don't need to do 1278 * anything, the target has assumed ownership of 1279 * this io. 1280 */ 1281 atomic_inc(&io->io_count); 1282 sector = clone->bi_iter.bi_sector; 1283 1284 r = ti->type->map(ti, clone); 1285 switch (r) { 1286 case DM_MAPIO_SUBMITTED: 1287 break; 1288 case DM_MAPIO_REMAPPED: 1289 /* the bio has been remapped so dispatch it */ 1290 trace_block_bio_remap(clone->bi_disk->queue, clone, 1291 bio_dev(io->orig_bio), sector); 1292 if (md->type == DM_TYPE_NVME_BIO_BASED) 1293 ret = direct_make_request(clone); 1294 else 1295 ret = generic_make_request(clone); 1296 break; 1297 case DM_MAPIO_KILL: 1298 free_tio(tio); 1299 dec_pending(io, BLK_STS_IOERR); 1300 break; 1301 case DM_MAPIO_REQUEUE: 1302 free_tio(tio); 1303 dec_pending(io, BLK_STS_DM_REQUEUE); 1304 break; 1305 default: 1306 DMWARN("unimplemented target map return value: %d", r); 1307 BUG(); 1308 } 1309 1310 return ret; 1311 } 1312 1313 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1314 { 1315 bio->bi_iter.bi_sector = sector; 1316 bio->bi_iter.bi_size = to_bytes(len); 1317 } 1318 1319 /* 1320 * Creates a bio that consists of range of complete bvecs. 1321 */ 1322 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1323 sector_t sector, unsigned len) 1324 { 1325 struct bio *clone = &tio->clone; 1326 1327 __bio_clone_fast(clone, bio); 1328 1329 if (bio_integrity(bio)) { 1330 int r; 1331 1332 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1333 !dm_target_passes_integrity(tio->ti->type))) { 1334 DMWARN("%s: the target %s doesn't support integrity data.", 1335 dm_device_name(tio->io->md), 1336 tio->ti->type->name); 1337 return -EIO; 1338 } 1339 1340 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1341 if (r < 0) 1342 return r; 1343 } 1344 1345 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1346 clone->bi_iter.bi_size = to_bytes(len); 1347 1348 if (bio_integrity(bio)) 1349 bio_integrity_trim(clone); 1350 1351 return 0; 1352 } 1353 1354 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1355 struct dm_target *ti, unsigned num_bios) 1356 { 1357 struct dm_target_io *tio; 1358 int try; 1359 1360 if (!num_bios) 1361 return; 1362 1363 if (num_bios == 1) { 1364 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1365 bio_list_add(blist, &tio->clone); 1366 return; 1367 } 1368 1369 for (try = 0; try < 2; try++) { 1370 int bio_nr; 1371 struct bio *bio; 1372 1373 if (try) 1374 mutex_lock(&ci->io->md->table_devices_lock); 1375 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1376 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1377 if (!tio) 1378 break; 1379 1380 bio_list_add(blist, &tio->clone); 1381 } 1382 if (try) 1383 mutex_unlock(&ci->io->md->table_devices_lock); 1384 if (bio_nr == num_bios) 1385 return; 1386 1387 while ((bio = bio_list_pop(blist))) { 1388 tio = container_of(bio, struct dm_target_io, clone); 1389 free_tio(tio); 1390 } 1391 } 1392 } 1393 1394 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1395 struct dm_target_io *tio, unsigned *len) 1396 { 1397 struct bio *clone = &tio->clone; 1398 1399 tio->len_ptr = len; 1400 1401 __bio_clone_fast(clone, ci->bio); 1402 if (len) 1403 bio_setup_sector(clone, ci->sector, *len); 1404 1405 return __map_bio(tio); 1406 } 1407 1408 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1409 unsigned num_bios, unsigned *len) 1410 { 1411 struct bio_list blist = BIO_EMPTY_LIST; 1412 struct bio *bio; 1413 struct dm_target_io *tio; 1414 1415 alloc_multiple_bios(&blist, ci, ti, num_bios); 1416 1417 while ((bio = bio_list_pop(&blist))) { 1418 tio = container_of(bio, struct dm_target_io, clone); 1419 (void) __clone_and_map_simple_bio(ci, tio, len); 1420 } 1421 } 1422 1423 static int __send_empty_flush(struct clone_info *ci) 1424 { 1425 unsigned target_nr = 0; 1426 struct dm_target *ti; 1427 1428 /* 1429 * Empty flush uses a statically initialized bio, as the base for 1430 * cloning. However, blkg association requires that a bdev is 1431 * associated with a gendisk, which doesn't happen until the bdev is 1432 * opened. So, blkg association is done at issue time of the flush 1433 * rather than when the device is created in alloc_dev(). 1434 */ 1435 bio_set_dev(ci->bio, ci->io->md->bdev); 1436 1437 BUG_ON(bio_has_data(ci->bio)); 1438 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1439 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1440 1441 bio_disassociate_blkg(ci->bio); 1442 1443 return 0; 1444 } 1445 1446 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1447 sector_t sector, unsigned *len) 1448 { 1449 struct bio *bio = ci->bio; 1450 struct dm_target_io *tio; 1451 int r; 1452 1453 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1454 tio->len_ptr = len; 1455 r = clone_bio(tio, bio, sector, *len); 1456 if (r < 0) { 1457 free_tio(tio); 1458 return r; 1459 } 1460 (void) __map_bio(tio); 1461 1462 return 0; 1463 } 1464 1465 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1466 1467 static unsigned get_num_discard_bios(struct dm_target *ti) 1468 { 1469 return ti->num_discard_bios; 1470 } 1471 1472 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1473 { 1474 return ti->num_secure_erase_bios; 1475 } 1476 1477 static unsigned get_num_write_same_bios(struct dm_target *ti) 1478 { 1479 return ti->num_write_same_bios; 1480 } 1481 1482 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1483 { 1484 return ti->num_write_zeroes_bios; 1485 } 1486 1487 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1488 unsigned num_bios) 1489 { 1490 unsigned len; 1491 1492 /* 1493 * Even though the device advertised support for this type of 1494 * request, that does not mean every target supports it, and 1495 * reconfiguration might also have changed that since the 1496 * check was performed. 1497 */ 1498 if (!num_bios) 1499 return -EOPNOTSUPP; 1500 1501 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1502 1503 __send_duplicate_bios(ci, ti, num_bios, &len); 1504 1505 ci->sector += len; 1506 ci->sector_count -= len; 1507 1508 return 0; 1509 } 1510 1511 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1512 { 1513 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti)); 1514 } 1515 1516 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1517 { 1518 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti)); 1519 } 1520 1521 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1522 { 1523 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti)); 1524 } 1525 1526 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1527 { 1528 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti)); 1529 } 1530 1531 static bool is_abnormal_io(struct bio *bio) 1532 { 1533 bool r = false; 1534 1535 switch (bio_op(bio)) { 1536 case REQ_OP_DISCARD: 1537 case REQ_OP_SECURE_ERASE: 1538 case REQ_OP_WRITE_SAME: 1539 case REQ_OP_WRITE_ZEROES: 1540 r = true; 1541 break; 1542 } 1543 1544 return r; 1545 } 1546 1547 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1548 int *result) 1549 { 1550 struct bio *bio = ci->bio; 1551 1552 if (bio_op(bio) == REQ_OP_DISCARD) 1553 *result = __send_discard(ci, ti); 1554 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1555 *result = __send_secure_erase(ci, ti); 1556 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1557 *result = __send_write_same(ci, ti); 1558 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1559 *result = __send_write_zeroes(ci, ti); 1560 else 1561 return false; 1562 1563 return true; 1564 } 1565 1566 /* 1567 * Select the correct strategy for processing a non-flush bio. 1568 */ 1569 static int __split_and_process_non_flush(struct clone_info *ci) 1570 { 1571 struct dm_target *ti; 1572 unsigned len; 1573 int r; 1574 1575 ti = dm_table_find_target(ci->map, ci->sector); 1576 if (!ti) 1577 return -EIO; 1578 1579 if (__process_abnormal_io(ci, ti, &r)) 1580 return r; 1581 1582 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1583 1584 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1585 if (r < 0) 1586 return r; 1587 1588 ci->sector += len; 1589 ci->sector_count -= len; 1590 1591 return 0; 1592 } 1593 1594 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1595 struct dm_table *map, struct bio *bio) 1596 { 1597 ci->map = map; 1598 ci->io = alloc_io(md, bio); 1599 ci->sector = bio->bi_iter.bi_sector; 1600 } 1601 1602 #define __dm_part_stat_sub(part, field, subnd) \ 1603 (part_stat_get(part, field) -= (subnd)) 1604 1605 /* 1606 * Entry point to split a bio into clones and submit them to the targets. 1607 */ 1608 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1609 struct dm_table *map, struct bio *bio) 1610 { 1611 struct clone_info ci; 1612 blk_qc_t ret = BLK_QC_T_NONE; 1613 int error = 0; 1614 1615 init_clone_info(&ci, md, map, bio); 1616 1617 if (bio->bi_opf & REQ_PREFLUSH) { 1618 struct bio flush_bio; 1619 1620 /* 1621 * Use an on-stack bio for this, it's safe since we don't 1622 * need to reference it after submit. It's just used as 1623 * the basis for the clone(s). 1624 */ 1625 bio_init(&flush_bio, NULL, 0); 1626 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1627 ci.bio = &flush_bio; 1628 ci.sector_count = 0; 1629 error = __send_empty_flush(&ci); 1630 /* dec_pending submits any data associated with flush */ 1631 } else if (op_is_zone_mgmt(bio_op(bio))) { 1632 ci.bio = bio; 1633 ci.sector_count = 0; 1634 error = __split_and_process_non_flush(&ci); 1635 } else { 1636 ci.bio = bio; 1637 ci.sector_count = bio_sectors(bio); 1638 while (ci.sector_count && !error) { 1639 error = __split_and_process_non_flush(&ci); 1640 if (current->bio_list && ci.sector_count && !error) { 1641 /* 1642 * Remainder must be passed to generic_make_request() 1643 * so that it gets handled *after* bios already submitted 1644 * have been completely processed. 1645 * We take a clone of the original to store in 1646 * ci.io->orig_bio to be used by end_io_acct() and 1647 * for dec_pending to use for completion handling. 1648 */ 1649 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1650 GFP_NOIO, &md->queue->bio_split); 1651 ci.io->orig_bio = b; 1652 1653 /* 1654 * Adjust IO stats for each split, otherwise upon queue 1655 * reentry there will be redundant IO accounting. 1656 * NOTE: this is a stop-gap fix, a proper fix involves 1657 * significant refactoring of DM core's bio splitting 1658 * (by eliminating DM's splitting and just using bio_split) 1659 */ 1660 part_stat_lock(); 1661 __dm_part_stat_sub(&dm_disk(md)->part0, 1662 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1663 part_stat_unlock(); 1664 1665 bio_chain(b, bio); 1666 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1667 ret = generic_make_request(bio); 1668 break; 1669 } 1670 } 1671 } 1672 1673 /* drop the extra reference count */ 1674 dec_pending(ci.io, errno_to_blk_status(error)); 1675 return ret; 1676 } 1677 1678 /* 1679 * Optimized variant of __split_and_process_bio that leverages the 1680 * fact that targets that use it do _not_ have a need to split bios. 1681 */ 1682 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map, 1683 struct bio *bio, struct dm_target *ti) 1684 { 1685 struct clone_info ci; 1686 blk_qc_t ret = BLK_QC_T_NONE; 1687 int error = 0; 1688 1689 init_clone_info(&ci, md, map, bio); 1690 1691 if (bio->bi_opf & REQ_PREFLUSH) { 1692 struct bio flush_bio; 1693 1694 /* 1695 * Use an on-stack bio for this, it's safe since we don't 1696 * need to reference it after submit. It's just used as 1697 * the basis for the clone(s). 1698 */ 1699 bio_init(&flush_bio, NULL, 0); 1700 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1701 ci.bio = &flush_bio; 1702 ci.sector_count = 0; 1703 error = __send_empty_flush(&ci); 1704 /* dec_pending submits any data associated with flush */ 1705 } else { 1706 struct dm_target_io *tio; 1707 1708 ci.bio = bio; 1709 ci.sector_count = bio_sectors(bio); 1710 if (__process_abnormal_io(&ci, ti, &error)) 1711 goto out; 1712 1713 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1714 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1715 } 1716 out: 1717 /* drop the extra reference count */ 1718 dec_pending(ci.io, errno_to_blk_status(error)); 1719 return ret; 1720 } 1721 1722 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio) 1723 { 1724 unsigned len, sector_count; 1725 1726 sector_count = bio_sectors(*bio); 1727 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count); 1728 1729 if (sector_count > len) { 1730 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split); 1731 1732 bio_chain(split, *bio); 1733 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector); 1734 generic_make_request(*bio); 1735 *bio = split; 1736 } 1737 } 1738 1739 static blk_qc_t dm_process_bio(struct mapped_device *md, 1740 struct dm_table *map, struct bio *bio) 1741 { 1742 blk_qc_t ret = BLK_QC_T_NONE; 1743 struct dm_target *ti = md->immutable_target; 1744 1745 if (unlikely(!map)) { 1746 bio_io_error(bio); 1747 return ret; 1748 } 1749 1750 if (!ti) { 1751 ti = dm_table_find_target(map, bio->bi_iter.bi_sector); 1752 if (unlikely(!ti)) { 1753 bio_io_error(bio); 1754 return ret; 1755 } 1756 } 1757 1758 /* 1759 * If in ->make_request_fn we need to use blk_queue_split(), otherwise 1760 * queue_limits for abnormal requests (e.g. discard, writesame, etc) 1761 * won't be imposed. 1762 */ 1763 if (current->bio_list) { 1764 blk_queue_split(md->queue, &bio); 1765 if (!is_abnormal_io(bio)) 1766 dm_queue_split(md, ti, &bio); 1767 } 1768 1769 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1770 return __process_bio(md, map, bio, ti); 1771 else 1772 return __split_and_process_bio(md, map, bio); 1773 } 1774 1775 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1776 { 1777 struct mapped_device *md = q->queuedata; 1778 blk_qc_t ret = BLK_QC_T_NONE; 1779 int srcu_idx; 1780 struct dm_table *map; 1781 1782 map = dm_get_live_table(md, &srcu_idx); 1783 1784 /* if we're suspended, we have to queue this io for later */ 1785 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1786 dm_put_live_table(md, srcu_idx); 1787 1788 if (!(bio->bi_opf & REQ_RAHEAD)) 1789 queue_io(md, bio); 1790 else 1791 bio_io_error(bio); 1792 return ret; 1793 } 1794 1795 ret = dm_process_bio(md, map, bio); 1796 1797 dm_put_live_table(md, srcu_idx); 1798 return ret; 1799 } 1800 1801 static int dm_any_congested(void *congested_data, int bdi_bits) 1802 { 1803 int r = bdi_bits; 1804 struct mapped_device *md = congested_data; 1805 struct dm_table *map; 1806 1807 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1808 if (dm_request_based(md)) { 1809 /* 1810 * With request-based DM we only need to check the 1811 * top-level queue for congestion. 1812 */ 1813 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1814 } else { 1815 map = dm_get_live_table_fast(md); 1816 if (map) 1817 r = dm_table_any_congested(map, bdi_bits); 1818 dm_put_live_table_fast(md); 1819 } 1820 } 1821 1822 return r; 1823 } 1824 1825 /*----------------------------------------------------------------- 1826 * An IDR is used to keep track of allocated minor numbers. 1827 *---------------------------------------------------------------*/ 1828 static void free_minor(int minor) 1829 { 1830 spin_lock(&_minor_lock); 1831 idr_remove(&_minor_idr, minor); 1832 spin_unlock(&_minor_lock); 1833 } 1834 1835 /* 1836 * See if the device with a specific minor # is free. 1837 */ 1838 static int specific_minor(int minor) 1839 { 1840 int r; 1841 1842 if (minor >= (1 << MINORBITS)) 1843 return -EINVAL; 1844 1845 idr_preload(GFP_KERNEL); 1846 spin_lock(&_minor_lock); 1847 1848 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1849 1850 spin_unlock(&_minor_lock); 1851 idr_preload_end(); 1852 if (r < 0) 1853 return r == -ENOSPC ? -EBUSY : r; 1854 return 0; 1855 } 1856 1857 static int next_free_minor(int *minor) 1858 { 1859 int r; 1860 1861 idr_preload(GFP_KERNEL); 1862 spin_lock(&_minor_lock); 1863 1864 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1865 1866 spin_unlock(&_minor_lock); 1867 idr_preload_end(); 1868 if (r < 0) 1869 return r; 1870 *minor = r; 1871 return 0; 1872 } 1873 1874 static const struct block_device_operations dm_blk_dops; 1875 static const struct dax_operations dm_dax_ops; 1876 1877 static void dm_wq_work(struct work_struct *work); 1878 1879 static void dm_init_normal_md_queue(struct mapped_device *md) 1880 { 1881 /* 1882 * Initialize aspects of queue that aren't relevant for blk-mq 1883 */ 1884 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1885 } 1886 1887 static void cleanup_mapped_device(struct mapped_device *md) 1888 { 1889 if (md->wq) 1890 destroy_workqueue(md->wq); 1891 bioset_exit(&md->bs); 1892 bioset_exit(&md->io_bs); 1893 1894 if (md->dax_dev) { 1895 kill_dax(md->dax_dev); 1896 put_dax(md->dax_dev); 1897 md->dax_dev = NULL; 1898 } 1899 1900 if (md->disk) { 1901 spin_lock(&_minor_lock); 1902 md->disk->private_data = NULL; 1903 spin_unlock(&_minor_lock); 1904 del_gendisk(md->disk); 1905 put_disk(md->disk); 1906 } 1907 1908 if (md->queue) 1909 blk_cleanup_queue(md->queue); 1910 1911 cleanup_srcu_struct(&md->io_barrier); 1912 1913 if (md->bdev) { 1914 bdput(md->bdev); 1915 md->bdev = NULL; 1916 } 1917 1918 mutex_destroy(&md->suspend_lock); 1919 mutex_destroy(&md->type_lock); 1920 mutex_destroy(&md->table_devices_lock); 1921 1922 dm_mq_cleanup_mapped_device(md); 1923 } 1924 1925 /* 1926 * Allocate and initialise a blank device with a given minor. 1927 */ 1928 static struct mapped_device *alloc_dev(int minor) 1929 { 1930 int r, numa_node_id = dm_get_numa_node(); 1931 struct mapped_device *md; 1932 void *old_md; 1933 1934 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1935 if (!md) { 1936 DMWARN("unable to allocate device, out of memory."); 1937 return NULL; 1938 } 1939 1940 if (!try_module_get(THIS_MODULE)) 1941 goto bad_module_get; 1942 1943 /* get a minor number for the dev */ 1944 if (minor == DM_ANY_MINOR) 1945 r = next_free_minor(&minor); 1946 else 1947 r = specific_minor(minor); 1948 if (r < 0) 1949 goto bad_minor; 1950 1951 r = init_srcu_struct(&md->io_barrier); 1952 if (r < 0) 1953 goto bad_io_barrier; 1954 1955 md->numa_node_id = numa_node_id; 1956 md->init_tio_pdu = false; 1957 md->type = DM_TYPE_NONE; 1958 mutex_init(&md->suspend_lock); 1959 mutex_init(&md->type_lock); 1960 mutex_init(&md->table_devices_lock); 1961 spin_lock_init(&md->deferred_lock); 1962 atomic_set(&md->holders, 1); 1963 atomic_set(&md->open_count, 0); 1964 atomic_set(&md->event_nr, 0); 1965 atomic_set(&md->uevent_seq, 0); 1966 INIT_LIST_HEAD(&md->uevent_list); 1967 INIT_LIST_HEAD(&md->table_devices); 1968 spin_lock_init(&md->uevent_lock); 1969 1970 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1971 if (!md->queue) 1972 goto bad; 1973 md->queue->queuedata = md; 1974 md->queue->backing_dev_info->congested_data = md; 1975 1976 md->disk = alloc_disk_node(1, md->numa_node_id); 1977 if (!md->disk) 1978 goto bad; 1979 1980 init_waitqueue_head(&md->wait); 1981 INIT_WORK(&md->work, dm_wq_work); 1982 init_waitqueue_head(&md->eventq); 1983 init_completion(&md->kobj_holder.completion); 1984 1985 md->disk->major = _major; 1986 md->disk->first_minor = minor; 1987 md->disk->fops = &dm_blk_dops; 1988 md->disk->queue = md->queue; 1989 md->disk->private_data = md; 1990 sprintf(md->disk->disk_name, "dm-%d", minor); 1991 1992 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1993 md->dax_dev = alloc_dax(md, md->disk->disk_name, 1994 &dm_dax_ops, 0); 1995 if (!md->dax_dev) 1996 goto bad; 1997 } 1998 1999 add_disk_no_queue_reg(md->disk); 2000 format_dev_t(md->name, MKDEV(_major, minor)); 2001 2002 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2003 if (!md->wq) 2004 goto bad; 2005 2006 md->bdev = bdget_disk(md->disk, 0); 2007 if (!md->bdev) 2008 goto bad; 2009 2010 dm_stats_init(&md->stats); 2011 2012 /* Populate the mapping, nobody knows we exist yet */ 2013 spin_lock(&_minor_lock); 2014 old_md = idr_replace(&_minor_idr, md, minor); 2015 spin_unlock(&_minor_lock); 2016 2017 BUG_ON(old_md != MINOR_ALLOCED); 2018 2019 return md; 2020 2021 bad: 2022 cleanup_mapped_device(md); 2023 bad_io_barrier: 2024 free_minor(minor); 2025 bad_minor: 2026 module_put(THIS_MODULE); 2027 bad_module_get: 2028 kvfree(md); 2029 return NULL; 2030 } 2031 2032 static void unlock_fs(struct mapped_device *md); 2033 2034 static void free_dev(struct mapped_device *md) 2035 { 2036 int minor = MINOR(disk_devt(md->disk)); 2037 2038 unlock_fs(md); 2039 2040 cleanup_mapped_device(md); 2041 2042 free_table_devices(&md->table_devices); 2043 dm_stats_cleanup(&md->stats); 2044 free_minor(minor); 2045 2046 module_put(THIS_MODULE); 2047 kvfree(md); 2048 } 2049 2050 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2051 { 2052 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2053 int ret = 0; 2054 2055 if (dm_table_bio_based(t)) { 2056 /* 2057 * The md may already have mempools that need changing. 2058 * If so, reload bioset because front_pad may have changed 2059 * because a different table was loaded. 2060 */ 2061 bioset_exit(&md->bs); 2062 bioset_exit(&md->io_bs); 2063 2064 } else if (bioset_initialized(&md->bs)) { 2065 /* 2066 * There's no need to reload with request-based dm 2067 * because the size of front_pad doesn't change. 2068 * Note for future: If you are to reload bioset, 2069 * prep-ed requests in the queue may refer 2070 * to bio from the old bioset, so you must walk 2071 * through the queue to unprep. 2072 */ 2073 goto out; 2074 } 2075 2076 BUG_ON(!p || 2077 bioset_initialized(&md->bs) || 2078 bioset_initialized(&md->io_bs)); 2079 2080 ret = bioset_init_from_src(&md->bs, &p->bs); 2081 if (ret) 2082 goto out; 2083 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2084 if (ret) 2085 bioset_exit(&md->bs); 2086 out: 2087 /* mempool bind completed, no longer need any mempools in the table */ 2088 dm_table_free_md_mempools(t); 2089 return ret; 2090 } 2091 2092 /* 2093 * Bind a table to the device. 2094 */ 2095 static void event_callback(void *context) 2096 { 2097 unsigned long flags; 2098 LIST_HEAD(uevents); 2099 struct mapped_device *md = (struct mapped_device *) context; 2100 2101 spin_lock_irqsave(&md->uevent_lock, flags); 2102 list_splice_init(&md->uevent_list, &uevents); 2103 spin_unlock_irqrestore(&md->uevent_lock, flags); 2104 2105 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2106 2107 atomic_inc(&md->event_nr); 2108 wake_up(&md->eventq); 2109 dm_issue_global_event(); 2110 } 2111 2112 /* 2113 * Protected by md->suspend_lock obtained by dm_swap_table(). 2114 */ 2115 static void __set_size(struct mapped_device *md, sector_t size) 2116 { 2117 lockdep_assert_held(&md->suspend_lock); 2118 2119 set_capacity(md->disk, size); 2120 2121 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2122 } 2123 2124 /* 2125 * Returns old map, which caller must destroy. 2126 */ 2127 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2128 struct queue_limits *limits) 2129 { 2130 struct dm_table *old_map; 2131 struct request_queue *q = md->queue; 2132 bool request_based = dm_table_request_based(t); 2133 sector_t size; 2134 int ret; 2135 2136 lockdep_assert_held(&md->suspend_lock); 2137 2138 size = dm_table_get_size(t); 2139 2140 /* 2141 * Wipe any geometry if the size of the table changed. 2142 */ 2143 if (size != dm_get_size(md)) 2144 memset(&md->geometry, 0, sizeof(md->geometry)); 2145 2146 __set_size(md, size); 2147 2148 dm_table_event_callback(t, event_callback, md); 2149 2150 /* 2151 * The queue hasn't been stopped yet, if the old table type wasn't 2152 * for request-based during suspension. So stop it to prevent 2153 * I/O mapping before resume. 2154 * This must be done before setting the queue restrictions, 2155 * because request-based dm may be run just after the setting. 2156 */ 2157 if (request_based) 2158 dm_stop_queue(q); 2159 2160 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2161 /* 2162 * Leverage the fact that request-based DM targets and 2163 * NVMe bio based targets are immutable singletons 2164 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2165 * and __process_bio. 2166 */ 2167 md->immutable_target = dm_table_get_immutable_target(t); 2168 } 2169 2170 ret = __bind_mempools(md, t); 2171 if (ret) { 2172 old_map = ERR_PTR(ret); 2173 goto out; 2174 } 2175 2176 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2177 rcu_assign_pointer(md->map, (void *)t); 2178 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2179 2180 dm_table_set_restrictions(t, q, limits); 2181 if (old_map) 2182 dm_sync_table(md); 2183 2184 out: 2185 return old_map; 2186 } 2187 2188 /* 2189 * Returns unbound table for the caller to free. 2190 */ 2191 static struct dm_table *__unbind(struct mapped_device *md) 2192 { 2193 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2194 2195 if (!map) 2196 return NULL; 2197 2198 dm_table_event_callback(map, NULL, NULL); 2199 RCU_INIT_POINTER(md->map, NULL); 2200 dm_sync_table(md); 2201 2202 return map; 2203 } 2204 2205 /* 2206 * Constructor for a new device. 2207 */ 2208 int dm_create(int minor, struct mapped_device **result) 2209 { 2210 int r; 2211 struct mapped_device *md; 2212 2213 md = alloc_dev(minor); 2214 if (!md) 2215 return -ENXIO; 2216 2217 r = dm_sysfs_init(md); 2218 if (r) { 2219 free_dev(md); 2220 return r; 2221 } 2222 2223 *result = md; 2224 return 0; 2225 } 2226 2227 /* 2228 * Functions to manage md->type. 2229 * All are required to hold md->type_lock. 2230 */ 2231 void dm_lock_md_type(struct mapped_device *md) 2232 { 2233 mutex_lock(&md->type_lock); 2234 } 2235 2236 void dm_unlock_md_type(struct mapped_device *md) 2237 { 2238 mutex_unlock(&md->type_lock); 2239 } 2240 2241 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2242 { 2243 BUG_ON(!mutex_is_locked(&md->type_lock)); 2244 md->type = type; 2245 } 2246 2247 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2248 { 2249 return md->type; 2250 } 2251 2252 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2253 { 2254 return md->immutable_target_type; 2255 } 2256 2257 /* 2258 * The queue_limits are only valid as long as you have a reference 2259 * count on 'md'. 2260 */ 2261 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2262 { 2263 BUG_ON(!atomic_read(&md->holders)); 2264 return &md->queue->limits; 2265 } 2266 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2267 2268 /* 2269 * Setup the DM device's queue based on md's type 2270 */ 2271 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2272 { 2273 int r; 2274 struct queue_limits limits; 2275 enum dm_queue_mode type = dm_get_md_type(md); 2276 2277 switch (type) { 2278 case DM_TYPE_REQUEST_BASED: 2279 r = dm_mq_init_request_queue(md, t); 2280 if (r) { 2281 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2282 return r; 2283 } 2284 break; 2285 case DM_TYPE_BIO_BASED: 2286 case DM_TYPE_DAX_BIO_BASED: 2287 case DM_TYPE_NVME_BIO_BASED: 2288 dm_init_normal_md_queue(md); 2289 blk_queue_make_request(md->queue, dm_make_request); 2290 break; 2291 case DM_TYPE_NONE: 2292 WARN_ON_ONCE(true); 2293 break; 2294 } 2295 2296 r = dm_calculate_queue_limits(t, &limits); 2297 if (r) { 2298 DMERR("Cannot calculate initial queue limits"); 2299 return r; 2300 } 2301 dm_table_set_restrictions(t, md->queue, &limits); 2302 blk_register_queue(md->disk); 2303 2304 return 0; 2305 } 2306 2307 struct mapped_device *dm_get_md(dev_t dev) 2308 { 2309 struct mapped_device *md; 2310 unsigned minor = MINOR(dev); 2311 2312 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2313 return NULL; 2314 2315 spin_lock(&_minor_lock); 2316 2317 md = idr_find(&_minor_idr, minor); 2318 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2319 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2320 md = NULL; 2321 goto out; 2322 } 2323 dm_get(md); 2324 out: 2325 spin_unlock(&_minor_lock); 2326 2327 return md; 2328 } 2329 EXPORT_SYMBOL_GPL(dm_get_md); 2330 2331 void *dm_get_mdptr(struct mapped_device *md) 2332 { 2333 return md->interface_ptr; 2334 } 2335 2336 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2337 { 2338 md->interface_ptr = ptr; 2339 } 2340 2341 void dm_get(struct mapped_device *md) 2342 { 2343 atomic_inc(&md->holders); 2344 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2345 } 2346 2347 int dm_hold(struct mapped_device *md) 2348 { 2349 spin_lock(&_minor_lock); 2350 if (test_bit(DMF_FREEING, &md->flags)) { 2351 spin_unlock(&_minor_lock); 2352 return -EBUSY; 2353 } 2354 dm_get(md); 2355 spin_unlock(&_minor_lock); 2356 return 0; 2357 } 2358 EXPORT_SYMBOL_GPL(dm_hold); 2359 2360 const char *dm_device_name(struct mapped_device *md) 2361 { 2362 return md->name; 2363 } 2364 EXPORT_SYMBOL_GPL(dm_device_name); 2365 2366 static void __dm_destroy(struct mapped_device *md, bool wait) 2367 { 2368 struct dm_table *map; 2369 int srcu_idx; 2370 2371 might_sleep(); 2372 2373 spin_lock(&_minor_lock); 2374 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2375 set_bit(DMF_FREEING, &md->flags); 2376 spin_unlock(&_minor_lock); 2377 2378 blk_set_queue_dying(md->queue); 2379 2380 /* 2381 * Take suspend_lock so that presuspend and postsuspend methods 2382 * do not race with internal suspend. 2383 */ 2384 mutex_lock(&md->suspend_lock); 2385 map = dm_get_live_table(md, &srcu_idx); 2386 if (!dm_suspended_md(md)) { 2387 dm_table_presuspend_targets(map); 2388 dm_table_postsuspend_targets(map); 2389 } 2390 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2391 dm_put_live_table(md, srcu_idx); 2392 mutex_unlock(&md->suspend_lock); 2393 2394 /* 2395 * Rare, but there may be I/O requests still going to complete, 2396 * for example. Wait for all references to disappear. 2397 * No one should increment the reference count of the mapped_device, 2398 * after the mapped_device state becomes DMF_FREEING. 2399 */ 2400 if (wait) 2401 while (atomic_read(&md->holders)) 2402 msleep(1); 2403 else if (atomic_read(&md->holders)) 2404 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2405 dm_device_name(md), atomic_read(&md->holders)); 2406 2407 dm_sysfs_exit(md); 2408 dm_table_destroy(__unbind(md)); 2409 free_dev(md); 2410 } 2411 2412 void dm_destroy(struct mapped_device *md) 2413 { 2414 __dm_destroy(md, true); 2415 } 2416 2417 void dm_destroy_immediate(struct mapped_device *md) 2418 { 2419 __dm_destroy(md, false); 2420 } 2421 2422 void dm_put(struct mapped_device *md) 2423 { 2424 atomic_dec(&md->holders); 2425 } 2426 EXPORT_SYMBOL_GPL(dm_put); 2427 2428 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2429 { 2430 int r = 0; 2431 DEFINE_WAIT(wait); 2432 2433 while (1) { 2434 prepare_to_wait(&md->wait, &wait, task_state); 2435 2436 if (!md_in_flight(md)) 2437 break; 2438 2439 if (signal_pending_state(task_state, current)) { 2440 r = -EINTR; 2441 break; 2442 } 2443 2444 io_schedule(); 2445 } 2446 finish_wait(&md->wait, &wait); 2447 2448 return r; 2449 } 2450 2451 /* 2452 * Process the deferred bios 2453 */ 2454 static void dm_wq_work(struct work_struct *work) 2455 { 2456 struct mapped_device *md = container_of(work, struct mapped_device, 2457 work); 2458 struct bio *c; 2459 int srcu_idx; 2460 struct dm_table *map; 2461 2462 map = dm_get_live_table(md, &srcu_idx); 2463 2464 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2465 spin_lock_irq(&md->deferred_lock); 2466 c = bio_list_pop(&md->deferred); 2467 spin_unlock_irq(&md->deferred_lock); 2468 2469 if (!c) 2470 break; 2471 2472 if (dm_request_based(md)) 2473 (void) generic_make_request(c); 2474 else 2475 (void) dm_process_bio(md, map, c); 2476 } 2477 2478 dm_put_live_table(md, srcu_idx); 2479 } 2480 2481 static void dm_queue_flush(struct mapped_device *md) 2482 { 2483 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2484 smp_mb__after_atomic(); 2485 queue_work(md->wq, &md->work); 2486 } 2487 2488 /* 2489 * Swap in a new table, returning the old one for the caller to destroy. 2490 */ 2491 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2492 { 2493 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2494 struct queue_limits limits; 2495 int r; 2496 2497 mutex_lock(&md->suspend_lock); 2498 2499 /* device must be suspended */ 2500 if (!dm_suspended_md(md)) 2501 goto out; 2502 2503 /* 2504 * If the new table has no data devices, retain the existing limits. 2505 * This helps multipath with queue_if_no_path if all paths disappear, 2506 * then new I/O is queued based on these limits, and then some paths 2507 * reappear. 2508 */ 2509 if (dm_table_has_no_data_devices(table)) { 2510 live_map = dm_get_live_table_fast(md); 2511 if (live_map) 2512 limits = md->queue->limits; 2513 dm_put_live_table_fast(md); 2514 } 2515 2516 if (!live_map) { 2517 r = dm_calculate_queue_limits(table, &limits); 2518 if (r) { 2519 map = ERR_PTR(r); 2520 goto out; 2521 } 2522 } 2523 2524 map = __bind(md, table, &limits); 2525 dm_issue_global_event(); 2526 2527 out: 2528 mutex_unlock(&md->suspend_lock); 2529 return map; 2530 } 2531 2532 /* 2533 * Functions to lock and unlock any filesystem running on the 2534 * device. 2535 */ 2536 static int lock_fs(struct mapped_device *md) 2537 { 2538 int r; 2539 2540 WARN_ON(md->frozen_sb); 2541 2542 md->frozen_sb = freeze_bdev(md->bdev); 2543 if (IS_ERR(md->frozen_sb)) { 2544 r = PTR_ERR(md->frozen_sb); 2545 md->frozen_sb = NULL; 2546 return r; 2547 } 2548 2549 set_bit(DMF_FROZEN, &md->flags); 2550 2551 return 0; 2552 } 2553 2554 static void unlock_fs(struct mapped_device *md) 2555 { 2556 if (!test_bit(DMF_FROZEN, &md->flags)) 2557 return; 2558 2559 thaw_bdev(md->bdev, md->frozen_sb); 2560 md->frozen_sb = NULL; 2561 clear_bit(DMF_FROZEN, &md->flags); 2562 } 2563 2564 /* 2565 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2566 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2567 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2568 * 2569 * If __dm_suspend returns 0, the device is completely quiescent 2570 * now. There is no request-processing activity. All new requests 2571 * are being added to md->deferred list. 2572 */ 2573 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2574 unsigned suspend_flags, long task_state, 2575 int dmf_suspended_flag) 2576 { 2577 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2578 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2579 int r; 2580 2581 lockdep_assert_held(&md->suspend_lock); 2582 2583 /* 2584 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2585 * This flag is cleared before dm_suspend returns. 2586 */ 2587 if (noflush) 2588 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2589 else 2590 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2591 2592 /* 2593 * This gets reverted if there's an error later and the targets 2594 * provide the .presuspend_undo hook. 2595 */ 2596 dm_table_presuspend_targets(map); 2597 2598 /* 2599 * Flush I/O to the device. 2600 * Any I/O submitted after lock_fs() may not be flushed. 2601 * noflush takes precedence over do_lockfs. 2602 * (lock_fs() flushes I/Os and waits for them to complete.) 2603 */ 2604 if (!noflush && do_lockfs) { 2605 r = lock_fs(md); 2606 if (r) { 2607 dm_table_presuspend_undo_targets(map); 2608 return r; 2609 } 2610 } 2611 2612 /* 2613 * Here we must make sure that no processes are submitting requests 2614 * to target drivers i.e. no one may be executing 2615 * __split_and_process_bio. This is called from dm_request and 2616 * dm_wq_work. 2617 * 2618 * To get all processes out of __split_and_process_bio in dm_request, 2619 * we take the write lock. To prevent any process from reentering 2620 * __split_and_process_bio from dm_request and quiesce the thread 2621 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2622 * flush_workqueue(md->wq). 2623 */ 2624 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2625 if (map) 2626 synchronize_srcu(&md->io_barrier); 2627 2628 /* 2629 * Stop md->queue before flushing md->wq in case request-based 2630 * dm defers requests to md->wq from md->queue. 2631 */ 2632 if (dm_request_based(md)) 2633 dm_stop_queue(md->queue); 2634 2635 flush_workqueue(md->wq); 2636 2637 /* 2638 * At this point no more requests are entering target request routines. 2639 * We call dm_wait_for_completion to wait for all existing requests 2640 * to finish. 2641 */ 2642 r = dm_wait_for_completion(md, task_state); 2643 if (!r) 2644 set_bit(dmf_suspended_flag, &md->flags); 2645 2646 if (noflush) 2647 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2648 if (map) 2649 synchronize_srcu(&md->io_barrier); 2650 2651 /* were we interrupted ? */ 2652 if (r < 0) { 2653 dm_queue_flush(md); 2654 2655 if (dm_request_based(md)) 2656 dm_start_queue(md->queue); 2657 2658 unlock_fs(md); 2659 dm_table_presuspend_undo_targets(map); 2660 /* pushback list is already flushed, so skip flush */ 2661 } 2662 2663 return r; 2664 } 2665 2666 /* 2667 * We need to be able to change a mapping table under a mounted 2668 * filesystem. For example we might want to move some data in 2669 * the background. Before the table can be swapped with 2670 * dm_bind_table, dm_suspend must be called to flush any in 2671 * flight bios and ensure that any further io gets deferred. 2672 */ 2673 /* 2674 * Suspend mechanism in request-based dm. 2675 * 2676 * 1. Flush all I/Os by lock_fs() if needed. 2677 * 2. Stop dispatching any I/O by stopping the request_queue. 2678 * 3. Wait for all in-flight I/Os to be completed or requeued. 2679 * 2680 * To abort suspend, start the request_queue. 2681 */ 2682 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2683 { 2684 struct dm_table *map = NULL; 2685 int r = 0; 2686 2687 retry: 2688 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2689 2690 if (dm_suspended_md(md)) { 2691 r = -EINVAL; 2692 goto out_unlock; 2693 } 2694 2695 if (dm_suspended_internally_md(md)) { 2696 /* already internally suspended, wait for internal resume */ 2697 mutex_unlock(&md->suspend_lock); 2698 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2699 if (r) 2700 return r; 2701 goto retry; 2702 } 2703 2704 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2705 2706 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2707 if (r) 2708 goto out_unlock; 2709 2710 dm_table_postsuspend_targets(map); 2711 2712 out_unlock: 2713 mutex_unlock(&md->suspend_lock); 2714 return r; 2715 } 2716 2717 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2718 { 2719 if (map) { 2720 int r = dm_table_resume_targets(map); 2721 if (r) 2722 return r; 2723 } 2724 2725 dm_queue_flush(md); 2726 2727 /* 2728 * Flushing deferred I/Os must be done after targets are resumed 2729 * so that mapping of targets can work correctly. 2730 * Request-based dm is queueing the deferred I/Os in its request_queue. 2731 */ 2732 if (dm_request_based(md)) 2733 dm_start_queue(md->queue); 2734 2735 unlock_fs(md); 2736 2737 return 0; 2738 } 2739 2740 int dm_resume(struct mapped_device *md) 2741 { 2742 int r; 2743 struct dm_table *map = NULL; 2744 2745 retry: 2746 r = -EINVAL; 2747 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2748 2749 if (!dm_suspended_md(md)) 2750 goto out; 2751 2752 if (dm_suspended_internally_md(md)) { 2753 /* already internally suspended, wait for internal resume */ 2754 mutex_unlock(&md->suspend_lock); 2755 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2756 if (r) 2757 return r; 2758 goto retry; 2759 } 2760 2761 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2762 if (!map || !dm_table_get_size(map)) 2763 goto out; 2764 2765 r = __dm_resume(md, map); 2766 if (r) 2767 goto out; 2768 2769 clear_bit(DMF_SUSPENDED, &md->flags); 2770 out: 2771 mutex_unlock(&md->suspend_lock); 2772 2773 return r; 2774 } 2775 2776 /* 2777 * Internal suspend/resume works like userspace-driven suspend. It waits 2778 * until all bios finish and prevents issuing new bios to the target drivers. 2779 * It may be used only from the kernel. 2780 */ 2781 2782 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2783 { 2784 struct dm_table *map = NULL; 2785 2786 lockdep_assert_held(&md->suspend_lock); 2787 2788 if (md->internal_suspend_count++) 2789 return; /* nested internal suspend */ 2790 2791 if (dm_suspended_md(md)) { 2792 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2793 return; /* nest suspend */ 2794 } 2795 2796 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2797 2798 /* 2799 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2800 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2801 * would require changing .presuspend to return an error -- avoid this 2802 * until there is a need for more elaborate variants of internal suspend. 2803 */ 2804 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2805 DMF_SUSPENDED_INTERNALLY); 2806 2807 dm_table_postsuspend_targets(map); 2808 } 2809 2810 static void __dm_internal_resume(struct mapped_device *md) 2811 { 2812 BUG_ON(!md->internal_suspend_count); 2813 2814 if (--md->internal_suspend_count) 2815 return; /* resume from nested internal suspend */ 2816 2817 if (dm_suspended_md(md)) 2818 goto done; /* resume from nested suspend */ 2819 2820 /* 2821 * NOTE: existing callers don't need to call dm_table_resume_targets 2822 * (which may fail -- so best to avoid it for now by passing NULL map) 2823 */ 2824 (void) __dm_resume(md, NULL); 2825 2826 done: 2827 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2828 smp_mb__after_atomic(); 2829 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2830 } 2831 2832 void dm_internal_suspend_noflush(struct mapped_device *md) 2833 { 2834 mutex_lock(&md->suspend_lock); 2835 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2836 mutex_unlock(&md->suspend_lock); 2837 } 2838 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2839 2840 void dm_internal_resume(struct mapped_device *md) 2841 { 2842 mutex_lock(&md->suspend_lock); 2843 __dm_internal_resume(md); 2844 mutex_unlock(&md->suspend_lock); 2845 } 2846 EXPORT_SYMBOL_GPL(dm_internal_resume); 2847 2848 /* 2849 * Fast variants of internal suspend/resume hold md->suspend_lock, 2850 * which prevents interaction with userspace-driven suspend. 2851 */ 2852 2853 void dm_internal_suspend_fast(struct mapped_device *md) 2854 { 2855 mutex_lock(&md->suspend_lock); 2856 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2857 return; 2858 2859 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2860 synchronize_srcu(&md->io_barrier); 2861 flush_workqueue(md->wq); 2862 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2863 } 2864 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2865 2866 void dm_internal_resume_fast(struct mapped_device *md) 2867 { 2868 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2869 goto done; 2870 2871 dm_queue_flush(md); 2872 2873 done: 2874 mutex_unlock(&md->suspend_lock); 2875 } 2876 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2877 2878 /*----------------------------------------------------------------- 2879 * Event notification. 2880 *---------------------------------------------------------------*/ 2881 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2882 unsigned cookie) 2883 { 2884 char udev_cookie[DM_COOKIE_LENGTH]; 2885 char *envp[] = { udev_cookie, NULL }; 2886 2887 if (!cookie) 2888 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2889 else { 2890 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2891 DM_COOKIE_ENV_VAR_NAME, cookie); 2892 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2893 action, envp); 2894 } 2895 } 2896 2897 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2898 { 2899 return atomic_add_return(1, &md->uevent_seq); 2900 } 2901 2902 uint32_t dm_get_event_nr(struct mapped_device *md) 2903 { 2904 return atomic_read(&md->event_nr); 2905 } 2906 2907 int dm_wait_event(struct mapped_device *md, int event_nr) 2908 { 2909 return wait_event_interruptible(md->eventq, 2910 (event_nr != atomic_read(&md->event_nr))); 2911 } 2912 2913 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2914 { 2915 unsigned long flags; 2916 2917 spin_lock_irqsave(&md->uevent_lock, flags); 2918 list_add(elist, &md->uevent_list); 2919 spin_unlock_irqrestore(&md->uevent_lock, flags); 2920 } 2921 2922 /* 2923 * The gendisk is only valid as long as you have a reference 2924 * count on 'md'. 2925 */ 2926 struct gendisk *dm_disk(struct mapped_device *md) 2927 { 2928 return md->disk; 2929 } 2930 EXPORT_SYMBOL_GPL(dm_disk); 2931 2932 struct kobject *dm_kobject(struct mapped_device *md) 2933 { 2934 return &md->kobj_holder.kobj; 2935 } 2936 2937 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2938 { 2939 struct mapped_device *md; 2940 2941 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2942 2943 spin_lock(&_minor_lock); 2944 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2945 md = NULL; 2946 goto out; 2947 } 2948 dm_get(md); 2949 out: 2950 spin_unlock(&_minor_lock); 2951 2952 return md; 2953 } 2954 2955 int dm_suspended_md(struct mapped_device *md) 2956 { 2957 return test_bit(DMF_SUSPENDED, &md->flags); 2958 } 2959 2960 int dm_suspended_internally_md(struct mapped_device *md) 2961 { 2962 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2963 } 2964 2965 int dm_test_deferred_remove_flag(struct mapped_device *md) 2966 { 2967 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2968 } 2969 2970 int dm_suspended(struct dm_target *ti) 2971 { 2972 return dm_suspended_md(dm_table_get_md(ti->table)); 2973 } 2974 EXPORT_SYMBOL_GPL(dm_suspended); 2975 2976 int dm_noflush_suspending(struct dm_target *ti) 2977 { 2978 return __noflush_suspending(dm_table_get_md(ti->table)); 2979 } 2980 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2981 2982 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2983 unsigned integrity, unsigned per_io_data_size, 2984 unsigned min_pool_size) 2985 { 2986 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2987 unsigned int pool_size = 0; 2988 unsigned int front_pad, io_front_pad; 2989 int ret; 2990 2991 if (!pools) 2992 return NULL; 2993 2994 switch (type) { 2995 case DM_TYPE_BIO_BASED: 2996 case DM_TYPE_DAX_BIO_BASED: 2997 case DM_TYPE_NVME_BIO_BASED: 2998 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2999 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3000 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 3001 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 3002 if (ret) 3003 goto out; 3004 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 3005 goto out; 3006 break; 3007 case DM_TYPE_REQUEST_BASED: 3008 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3009 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3010 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3011 break; 3012 default: 3013 BUG(); 3014 } 3015 3016 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3017 if (ret) 3018 goto out; 3019 3020 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3021 goto out; 3022 3023 return pools; 3024 3025 out: 3026 dm_free_md_mempools(pools); 3027 3028 return NULL; 3029 } 3030 3031 void dm_free_md_mempools(struct dm_md_mempools *pools) 3032 { 3033 if (!pools) 3034 return; 3035 3036 bioset_exit(&pools->bs); 3037 bioset_exit(&pools->io_bs); 3038 3039 kfree(pools); 3040 } 3041 3042 struct dm_pr { 3043 u64 old_key; 3044 u64 new_key; 3045 u32 flags; 3046 bool fail_early; 3047 }; 3048 3049 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3050 void *data) 3051 { 3052 struct mapped_device *md = bdev->bd_disk->private_data; 3053 struct dm_table *table; 3054 struct dm_target *ti; 3055 int ret = -ENOTTY, srcu_idx; 3056 3057 table = dm_get_live_table(md, &srcu_idx); 3058 if (!table || !dm_table_get_size(table)) 3059 goto out; 3060 3061 /* We only support devices that have a single target */ 3062 if (dm_table_get_num_targets(table) != 1) 3063 goto out; 3064 ti = dm_table_get_target(table, 0); 3065 3066 ret = -EINVAL; 3067 if (!ti->type->iterate_devices) 3068 goto out; 3069 3070 ret = ti->type->iterate_devices(ti, fn, data); 3071 out: 3072 dm_put_live_table(md, srcu_idx); 3073 return ret; 3074 } 3075 3076 /* 3077 * For register / unregister we need to manually call out to every path. 3078 */ 3079 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3080 sector_t start, sector_t len, void *data) 3081 { 3082 struct dm_pr *pr = data; 3083 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3084 3085 if (!ops || !ops->pr_register) 3086 return -EOPNOTSUPP; 3087 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3088 } 3089 3090 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3091 u32 flags) 3092 { 3093 struct dm_pr pr = { 3094 .old_key = old_key, 3095 .new_key = new_key, 3096 .flags = flags, 3097 .fail_early = true, 3098 }; 3099 int ret; 3100 3101 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3102 if (ret && new_key) { 3103 /* unregister all paths if we failed to register any path */ 3104 pr.old_key = new_key; 3105 pr.new_key = 0; 3106 pr.flags = 0; 3107 pr.fail_early = false; 3108 dm_call_pr(bdev, __dm_pr_register, &pr); 3109 } 3110 3111 return ret; 3112 } 3113 3114 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3115 u32 flags) 3116 { 3117 struct mapped_device *md = bdev->bd_disk->private_data; 3118 const struct pr_ops *ops; 3119 int r, srcu_idx; 3120 3121 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3122 if (r < 0) 3123 goto out; 3124 3125 ops = bdev->bd_disk->fops->pr_ops; 3126 if (ops && ops->pr_reserve) 3127 r = ops->pr_reserve(bdev, key, type, flags); 3128 else 3129 r = -EOPNOTSUPP; 3130 out: 3131 dm_unprepare_ioctl(md, srcu_idx); 3132 return r; 3133 } 3134 3135 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3136 { 3137 struct mapped_device *md = bdev->bd_disk->private_data; 3138 const struct pr_ops *ops; 3139 int r, srcu_idx; 3140 3141 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3142 if (r < 0) 3143 goto out; 3144 3145 ops = bdev->bd_disk->fops->pr_ops; 3146 if (ops && ops->pr_release) 3147 r = ops->pr_release(bdev, key, type); 3148 else 3149 r = -EOPNOTSUPP; 3150 out: 3151 dm_unprepare_ioctl(md, srcu_idx); 3152 return r; 3153 } 3154 3155 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3156 enum pr_type type, bool abort) 3157 { 3158 struct mapped_device *md = bdev->bd_disk->private_data; 3159 const struct pr_ops *ops; 3160 int r, srcu_idx; 3161 3162 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3163 if (r < 0) 3164 goto out; 3165 3166 ops = bdev->bd_disk->fops->pr_ops; 3167 if (ops && ops->pr_preempt) 3168 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3169 else 3170 r = -EOPNOTSUPP; 3171 out: 3172 dm_unprepare_ioctl(md, srcu_idx); 3173 return r; 3174 } 3175 3176 static int dm_pr_clear(struct block_device *bdev, u64 key) 3177 { 3178 struct mapped_device *md = bdev->bd_disk->private_data; 3179 const struct pr_ops *ops; 3180 int r, srcu_idx; 3181 3182 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3183 if (r < 0) 3184 goto out; 3185 3186 ops = bdev->bd_disk->fops->pr_ops; 3187 if (ops && ops->pr_clear) 3188 r = ops->pr_clear(bdev, key); 3189 else 3190 r = -EOPNOTSUPP; 3191 out: 3192 dm_unprepare_ioctl(md, srcu_idx); 3193 return r; 3194 } 3195 3196 static const struct pr_ops dm_pr_ops = { 3197 .pr_register = dm_pr_register, 3198 .pr_reserve = dm_pr_reserve, 3199 .pr_release = dm_pr_release, 3200 .pr_preempt = dm_pr_preempt, 3201 .pr_clear = dm_pr_clear, 3202 }; 3203 3204 static const struct block_device_operations dm_blk_dops = { 3205 .open = dm_blk_open, 3206 .release = dm_blk_close, 3207 .ioctl = dm_blk_ioctl, 3208 .getgeo = dm_blk_getgeo, 3209 .report_zones = dm_blk_report_zones, 3210 .pr_ops = &dm_pr_ops, 3211 .owner = THIS_MODULE 3212 }; 3213 3214 static const struct dax_operations dm_dax_ops = { 3215 .direct_access = dm_dax_direct_access, 3216 .dax_supported = dm_dax_supported, 3217 .copy_from_iter = dm_dax_copy_from_iter, 3218 .copy_to_iter = dm_dax_copy_to_iter, 3219 }; 3220 3221 /* 3222 * module hooks 3223 */ 3224 module_init(dm_init); 3225 module_exit(dm_exit); 3226 3227 module_param(major, uint, 0); 3228 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3229 3230 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3231 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3232 3233 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3234 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3235 3236 MODULE_DESCRIPTION(DM_NAME " driver"); 3237 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3238 MODULE_LICENSE("GPL"); 3239