xref: /openbmc/linux/drivers/md/dm.c (revision 2e2d6f7e44a2b9f96ca8af445ae0150a6cefde41)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set bs;
152 	struct bio_set io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 /*
162  * Bio-based DM's mempools' reserved IOs set by the user.
163  */
164 #define RESERVED_BIO_BASED_IOS		16
165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
166 
167 static int __dm_get_module_param_int(int *module_param, int min, int max)
168 {
169 	int param = READ_ONCE(*module_param);
170 	int modified_param = 0;
171 	bool modified = true;
172 
173 	if (param < min)
174 		modified_param = min;
175 	else if (param > max)
176 		modified_param = max;
177 	else
178 		modified = false;
179 
180 	if (modified) {
181 		(void)cmpxchg(module_param, param, modified_param);
182 		param = modified_param;
183 	}
184 
185 	return param;
186 }
187 
188 unsigned __dm_get_module_param(unsigned *module_param,
189 			       unsigned def, unsigned max)
190 {
191 	unsigned param = READ_ONCE(*module_param);
192 	unsigned modified_param = 0;
193 
194 	if (!param)
195 		modified_param = def;
196 	else if (param > max)
197 		modified_param = max;
198 
199 	if (modified_param) {
200 		(void)cmpxchg(module_param, param, modified_param);
201 		param = modified_param;
202 	}
203 
204 	return param;
205 }
206 
207 unsigned dm_get_reserved_bio_based_ios(void)
208 {
209 	return __dm_get_module_param(&reserved_bio_based_ios,
210 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
211 }
212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
213 
214 static unsigned dm_get_numa_node(void)
215 {
216 	return __dm_get_module_param_int(&dm_numa_node,
217 					 DM_NUMA_NODE, num_online_nodes() - 1);
218 }
219 
220 static int __init local_init(void)
221 {
222 	int r;
223 
224 	r = dm_uevent_init();
225 	if (r)
226 		return r;
227 
228 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
229 	if (!deferred_remove_workqueue) {
230 		r = -ENOMEM;
231 		goto out_uevent_exit;
232 	}
233 
234 	_major = major;
235 	r = register_blkdev(_major, _name);
236 	if (r < 0)
237 		goto out_free_workqueue;
238 
239 	if (!_major)
240 		_major = r;
241 
242 	return 0;
243 
244 out_free_workqueue:
245 	destroy_workqueue(deferred_remove_workqueue);
246 out_uevent_exit:
247 	dm_uevent_exit();
248 
249 	return r;
250 }
251 
252 static void local_exit(void)
253 {
254 	flush_scheduled_work();
255 	destroy_workqueue(deferred_remove_workqueue);
256 
257 	unregister_blkdev(_major, _name);
258 	dm_uevent_exit();
259 
260 	_major = 0;
261 
262 	DMINFO("cleaned up");
263 }
264 
265 static int (*_inits[])(void) __initdata = {
266 	local_init,
267 	dm_target_init,
268 	dm_linear_init,
269 	dm_stripe_init,
270 	dm_io_init,
271 	dm_kcopyd_init,
272 	dm_interface_init,
273 	dm_statistics_init,
274 };
275 
276 static void (*_exits[])(void) = {
277 	local_exit,
278 	dm_target_exit,
279 	dm_linear_exit,
280 	dm_stripe_exit,
281 	dm_io_exit,
282 	dm_kcopyd_exit,
283 	dm_interface_exit,
284 	dm_statistics_exit,
285 };
286 
287 static int __init dm_init(void)
288 {
289 	const int count = ARRAY_SIZE(_inits);
290 
291 	int r, i;
292 
293 	for (i = 0; i < count; i++) {
294 		r = _inits[i]();
295 		if (r)
296 			goto bad;
297 	}
298 
299 	return 0;
300 
301       bad:
302 	while (i--)
303 		_exits[i]();
304 
305 	return r;
306 }
307 
308 static void __exit dm_exit(void)
309 {
310 	int i = ARRAY_SIZE(_exits);
311 
312 	while (i--)
313 		_exits[i]();
314 
315 	/*
316 	 * Should be empty by this point.
317 	 */
318 	idr_destroy(&_minor_idr);
319 }
320 
321 /*
322  * Block device functions
323  */
324 int dm_deleting_md(struct mapped_device *md)
325 {
326 	return test_bit(DMF_DELETING, &md->flags);
327 }
328 
329 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
330 {
331 	struct mapped_device *md;
332 
333 	spin_lock(&_minor_lock);
334 
335 	md = bdev->bd_disk->private_data;
336 	if (!md)
337 		goto out;
338 
339 	if (test_bit(DMF_FREEING, &md->flags) ||
340 	    dm_deleting_md(md)) {
341 		md = NULL;
342 		goto out;
343 	}
344 
345 	dm_get(md);
346 	atomic_inc(&md->open_count);
347 out:
348 	spin_unlock(&_minor_lock);
349 
350 	return md ? 0 : -ENXIO;
351 }
352 
353 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
354 {
355 	struct mapped_device *md;
356 
357 	spin_lock(&_minor_lock);
358 
359 	md = disk->private_data;
360 	if (WARN_ON(!md))
361 		goto out;
362 
363 	if (atomic_dec_and_test(&md->open_count) &&
364 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
365 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
366 
367 	dm_put(md);
368 out:
369 	spin_unlock(&_minor_lock);
370 }
371 
372 int dm_open_count(struct mapped_device *md)
373 {
374 	return atomic_read(&md->open_count);
375 }
376 
377 /*
378  * Guarantees nothing is using the device before it's deleted.
379  */
380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
381 {
382 	int r = 0;
383 
384 	spin_lock(&_minor_lock);
385 
386 	if (dm_open_count(md)) {
387 		r = -EBUSY;
388 		if (mark_deferred)
389 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
390 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
391 		r = -EEXIST;
392 	else
393 		set_bit(DMF_DELETING, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 int dm_cancel_deferred_remove(struct mapped_device *md)
401 {
402 	int r = 0;
403 
404 	spin_lock(&_minor_lock);
405 
406 	if (test_bit(DMF_DELETING, &md->flags))
407 		r = -EBUSY;
408 	else
409 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
410 
411 	spin_unlock(&_minor_lock);
412 
413 	return r;
414 }
415 
416 static void do_deferred_remove(struct work_struct *w)
417 {
418 	dm_deferred_remove();
419 }
420 
421 sector_t dm_get_size(struct mapped_device *md)
422 {
423 	return get_capacity(md->disk);
424 }
425 
426 struct request_queue *dm_get_md_queue(struct mapped_device *md)
427 {
428 	return md->queue;
429 }
430 
431 struct dm_stats *dm_get_stats(struct mapped_device *md)
432 {
433 	return &md->stats;
434 }
435 
436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
437 {
438 	struct mapped_device *md = bdev->bd_disk->private_data;
439 
440 	return dm_get_geometry(md, geo);
441 }
442 
443 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
444 			       struct blk_zone *zones, unsigned int *nr_zones)
445 {
446 #ifdef CONFIG_BLK_DEV_ZONED
447 	struct mapped_device *md = disk->private_data;
448 	struct dm_target *tgt;
449 	struct dm_table *map;
450 	int srcu_idx, ret;
451 
452 	if (dm_suspended_md(md))
453 		return -EAGAIN;
454 
455 	map = dm_get_live_table(md, &srcu_idx);
456 	if (!map)
457 		return -EIO;
458 
459 	tgt = dm_table_find_target(map, sector);
460 	if (!tgt) {
461 		ret = -EIO;
462 		goto out;
463 	}
464 
465 	/*
466 	 * If we are executing this, we already know that the block device
467 	 * is a zoned device and so each target should have support for that
468 	 * type of drive. A missing report_zones method means that the target
469 	 * driver has a problem.
470 	 */
471 	if (WARN_ON(!tgt->type->report_zones)) {
472 		ret = -EIO;
473 		goto out;
474 	}
475 
476 	/*
477 	 * blkdev_report_zones() will loop and call this again to cover all the
478 	 * zones of the target, eventually moving on to the next target.
479 	 * So there is no need to loop here trying to fill the entire array
480 	 * of zones.
481 	 */
482 	ret = tgt->type->report_zones(tgt, sector, zones, nr_zones);
483 
484 out:
485 	dm_put_live_table(md, srcu_idx);
486 	return ret;
487 #else
488 	return -ENOTSUPP;
489 #endif
490 }
491 
492 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
493 			    struct block_device **bdev)
494 	__acquires(md->io_barrier)
495 {
496 	struct dm_target *tgt;
497 	struct dm_table *map;
498 	int r;
499 
500 retry:
501 	r = -ENOTTY;
502 	map = dm_get_live_table(md, srcu_idx);
503 	if (!map || !dm_table_get_size(map))
504 		return r;
505 
506 	/* We only support devices that have a single target */
507 	if (dm_table_get_num_targets(map) != 1)
508 		return r;
509 
510 	tgt = dm_table_get_target(map, 0);
511 	if (!tgt->type->prepare_ioctl)
512 		return r;
513 
514 	if (dm_suspended_md(md))
515 		return -EAGAIN;
516 
517 	r = tgt->type->prepare_ioctl(tgt, bdev);
518 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
519 		dm_put_live_table(md, *srcu_idx);
520 		msleep(10);
521 		goto retry;
522 	}
523 
524 	return r;
525 }
526 
527 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
528 	__releases(md->io_barrier)
529 {
530 	dm_put_live_table(md, srcu_idx);
531 }
532 
533 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
534 			unsigned int cmd, unsigned long arg)
535 {
536 	struct mapped_device *md = bdev->bd_disk->private_data;
537 	int r, srcu_idx;
538 
539 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
540 	if (r < 0)
541 		goto out;
542 
543 	if (r > 0) {
544 		/*
545 		 * Target determined this ioctl is being issued against a
546 		 * subset of the parent bdev; require extra privileges.
547 		 */
548 		if (!capable(CAP_SYS_RAWIO)) {
549 			DMWARN_LIMIT(
550 	"%s: sending ioctl %x to DM device without required privilege.",
551 				current->comm, cmd);
552 			r = -ENOIOCTLCMD;
553 			goto out;
554 		}
555 	}
556 
557 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
558 out:
559 	dm_unprepare_ioctl(md, srcu_idx);
560 	return r;
561 }
562 
563 static void start_io_acct(struct dm_io *io);
564 
565 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
566 {
567 	struct dm_io *io;
568 	struct dm_target_io *tio;
569 	struct bio *clone;
570 
571 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
572 	if (!clone)
573 		return NULL;
574 
575 	tio = container_of(clone, struct dm_target_io, clone);
576 	tio->inside_dm_io = true;
577 	tio->io = NULL;
578 
579 	io = container_of(tio, struct dm_io, tio);
580 	io->magic = DM_IO_MAGIC;
581 	io->status = 0;
582 	atomic_set(&io->io_count, 1);
583 	io->orig_bio = bio;
584 	io->md = md;
585 	spin_lock_init(&io->endio_lock);
586 
587 	start_io_acct(io);
588 
589 	return io;
590 }
591 
592 static void free_io(struct mapped_device *md, struct dm_io *io)
593 {
594 	bio_put(&io->tio.clone);
595 }
596 
597 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
598 				      unsigned target_bio_nr, gfp_t gfp_mask)
599 {
600 	struct dm_target_io *tio;
601 
602 	if (!ci->io->tio.io) {
603 		/* the dm_target_io embedded in ci->io is available */
604 		tio = &ci->io->tio;
605 	} else {
606 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
607 		if (!clone)
608 			return NULL;
609 
610 		tio = container_of(clone, struct dm_target_io, clone);
611 		tio->inside_dm_io = false;
612 	}
613 
614 	tio->magic = DM_TIO_MAGIC;
615 	tio->io = ci->io;
616 	tio->ti = ti;
617 	tio->target_bio_nr = target_bio_nr;
618 
619 	return tio;
620 }
621 
622 static void free_tio(struct dm_target_io *tio)
623 {
624 	if (tio->inside_dm_io)
625 		return;
626 	bio_put(&tio->clone);
627 }
628 
629 static bool md_in_flight_bios(struct mapped_device *md)
630 {
631 	int cpu;
632 	struct hd_struct *part = &dm_disk(md)->part0;
633 	long sum = 0;
634 
635 	for_each_possible_cpu(cpu) {
636 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
637 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
638 	}
639 
640 	return sum != 0;
641 }
642 
643 static bool md_in_flight(struct mapped_device *md)
644 {
645 	if (queue_is_mq(md->queue))
646 		return blk_mq_queue_inflight(md->queue);
647 	else
648 		return md_in_flight_bios(md);
649 }
650 
651 static void start_io_acct(struct dm_io *io)
652 {
653 	struct mapped_device *md = io->md;
654 	struct bio *bio = io->orig_bio;
655 
656 	io->start_time = jiffies;
657 
658 	generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
659 			      &dm_disk(md)->part0);
660 
661 	if (unlikely(dm_stats_used(&md->stats)))
662 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
663 				    bio->bi_iter.bi_sector, bio_sectors(bio),
664 				    false, 0, &io->stats_aux);
665 }
666 
667 static void end_io_acct(struct dm_io *io)
668 {
669 	struct mapped_device *md = io->md;
670 	struct bio *bio = io->orig_bio;
671 	unsigned long duration = jiffies - io->start_time;
672 
673 	generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
674 			    io->start_time);
675 
676 	if (unlikely(dm_stats_used(&md->stats)))
677 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
678 				    bio->bi_iter.bi_sector, bio_sectors(bio),
679 				    true, duration, &io->stats_aux);
680 
681 	/* nudge anyone waiting on suspend queue */
682 	if (unlikely(wq_has_sleeper(&md->wait)))
683 		wake_up(&md->wait);
684 }
685 
686 /*
687  * Add the bio to the list of deferred io.
688  */
689 static void queue_io(struct mapped_device *md, struct bio *bio)
690 {
691 	unsigned long flags;
692 
693 	spin_lock_irqsave(&md->deferred_lock, flags);
694 	bio_list_add(&md->deferred, bio);
695 	spin_unlock_irqrestore(&md->deferred_lock, flags);
696 	queue_work(md->wq, &md->work);
697 }
698 
699 /*
700  * Everyone (including functions in this file), should use this
701  * function to access the md->map field, and make sure they call
702  * dm_put_live_table() when finished.
703  */
704 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
705 {
706 	*srcu_idx = srcu_read_lock(&md->io_barrier);
707 
708 	return srcu_dereference(md->map, &md->io_barrier);
709 }
710 
711 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
712 {
713 	srcu_read_unlock(&md->io_barrier, srcu_idx);
714 }
715 
716 void dm_sync_table(struct mapped_device *md)
717 {
718 	synchronize_srcu(&md->io_barrier);
719 	synchronize_rcu_expedited();
720 }
721 
722 /*
723  * A fast alternative to dm_get_live_table/dm_put_live_table.
724  * The caller must not block between these two functions.
725  */
726 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
727 {
728 	rcu_read_lock();
729 	return rcu_dereference(md->map);
730 }
731 
732 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
733 {
734 	rcu_read_unlock();
735 }
736 
737 static char *_dm_claim_ptr = "I belong to device-mapper";
738 
739 /*
740  * Open a table device so we can use it as a map destination.
741  */
742 static int open_table_device(struct table_device *td, dev_t dev,
743 			     struct mapped_device *md)
744 {
745 	struct block_device *bdev;
746 
747 	int r;
748 
749 	BUG_ON(td->dm_dev.bdev);
750 
751 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
752 	if (IS_ERR(bdev))
753 		return PTR_ERR(bdev);
754 
755 	r = bd_link_disk_holder(bdev, dm_disk(md));
756 	if (r) {
757 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
758 		return r;
759 	}
760 
761 	td->dm_dev.bdev = bdev;
762 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
763 	return 0;
764 }
765 
766 /*
767  * Close a table device that we've been using.
768  */
769 static void close_table_device(struct table_device *td, struct mapped_device *md)
770 {
771 	if (!td->dm_dev.bdev)
772 		return;
773 
774 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
775 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
776 	put_dax(td->dm_dev.dax_dev);
777 	td->dm_dev.bdev = NULL;
778 	td->dm_dev.dax_dev = NULL;
779 }
780 
781 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
782 					      fmode_t mode)
783 {
784 	struct table_device *td;
785 
786 	list_for_each_entry(td, l, list)
787 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
788 			return td;
789 
790 	return NULL;
791 }
792 
793 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
794 			struct dm_dev **result)
795 {
796 	int r;
797 	struct table_device *td;
798 
799 	mutex_lock(&md->table_devices_lock);
800 	td = find_table_device(&md->table_devices, dev, mode);
801 	if (!td) {
802 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
803 		if (!td) {
804 			mutex_unlock(&md->table_devices_lock);
805 			return -ENOMEM;
806 		}
807 
808 		td->dm_dev.mode = mode;
809 		td->dm_dev.bdev = NULL;
810 
811 		if ((r = open_table_device(td, dev, md))) {
812 			mutex_unlock(&md->table_devices_lock);
813 			kfree(td);
814 			return r;
815 		}
816 
817 		format_dev_t(td->dm_dev.name, dev);
818 
819 		refcount_set(&td->count, 1);
820 		list_add(&td->list, &md->table_devices);
821 	} else {
822 		refcount_inc(&td->count);
823 	}
824 	mutex_unlock(&md->table_devices_lock);
825 
826 	*result = &td->dm_dev;
827 	return 0;
828 }
829 EXPORT_SYMBOL_GPL(dm_get_table_device);
830 
831 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
832 {
833 	struct table_device *td = container_of(d, struct table_device, dm_dev);
834 
835 	mutex_lock(&md->table_devices_lock);
836 	if (refcount_dec_and_test(&td->count)) {
837 		close_table_device(td, md);
838 		list_del(&td->list);
839 		kfree(td);
840 	}
841 	mutex_unlock(&md->table_devices_lock);
842 }
843 EXPORT_SYMBOL(dm_put_table_device);
844 
845 static void free_table_devices(struct list_head *devices)
846 {
847 	struct list_head *tmp, *next;
848 
849 	list_for_each_safe(tmp, next, devices) {
850 		struct table_device *td = list_entry(tmp, struct table_device, list);
851 
852 		DMWARN("dm_destroy: %s still exists with %d references",
853 		       td->dm_dev.name, refcount_read(&td->count));
854 		kfree(td);
855 	}
856 }
857 
858 /*
859  * Get the geometry associated with a dm device
860  */
861 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
862 {
863 	*geo = md->geometry;
864 
865 	return 0;
866 }
867 
868 /*
869  * Set the geometry of a device.
870  */
871 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
872 {
873 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
874 
875 	if (geo->start > sz) {
876 		DMWARN("Start sector is beyond the geometry limits.");
877 		return -EINVAL;
878 	}
879 
880 	md->geometry = *geo;
881 
882 	return 0;
883 }
884 
885 static int __noflush_suspending(struct mapped_device *md)
886 {
887 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
888 }
889 
890 /*
891  * Decrements the number of outstanding ios that a bio has been
892  * cloned into, completing the original io if necc.
893  */
894 static void dec_pending(struct dm_io *io, blk_status_t error)
895 {
896 	unsigned long flags;
897 	blk_status_t io_error;
898 	struct bio *bio;
899 	struct mapped_device *md = io->md;
900 
901 	/* Push-back supersedes any I/O errors */
902 	if (unlikely(error)) {
903 		spin_lock_irqsave(&io->endio_lock, flags);
904 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
905 			io->status = error;
906 		spin_unlock_irqrestore(&io->endio_lock, flags);
907 	}
908 
909 	if (atomic_dec_and_test(&io->io_count)) {
910 		if (io->status == BLK_STS_DM_REQUEUE) {
911 			/*
912 			 * Target requested pushing back the I/O.
913 			 */
914 			spin_lock_irqsave(&md->deferred_lock, flags);
915 			if (__noflush_suspending(md))
916 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
917 				bio_list_add_head(&md->deferred, io->orig_bio);
918 			else
919 				/* noflush suspend was interrupted. */
920 				io->status = BLK_STS_IOERR;
921 			spin_unlock_irqrestore(&md->deferred_lock, flags);
922 		}
923 
924 		io_error = io->status;
925 		bio = io->orig_bio;
926 		end_io_acct(io);
927 		free_io(md, io);
928 
929 		if (io_error == BLK_STS_DM_REQUEUE)
930 			return;
931 
932 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
933 			/*
934 			 * Preflush done for flush with data, reissue
935 			 * without REQ_PREFLUSH.
936 			 */
937 			bio->bi_opf &= ~REQ_PREFLUSH;
938 			queue_io(md, bio);
939 		} else {
940 			/* done with normal IO or empty flush */
941 			if (io_error)
942 				bio->bi_status = io_error;
943 			bio_endio(bio);
944 		}
945 	}
946 }
947 
948 void disable_discard(struct mapped_device *md)
949 {
950 	struct queue_limits *limits = dm_get_queue_limits(md);
951 
952 	/* device doesn't really support DISCARD, disable it */
953 	limits->max_discard_sectors = 0;
954 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
955 }
956 
957 void disable_write_same(struct mapped_device *md)
958 {
959 	struct queue_limits *limits = dm_get_queue_limits(md);
960 
961 	/* device doesn't really support WRITE SAME, disable it */
962 	limits->max_write_same_sectors = 0;
963 }
964 
965 void disable_write_zeroes(struct mapped_device *md)
966 {
967 	struct queue_limits *limits = dm_get_queue_limits(md);
968 
969 	/* device doesn't really support WRITE ZEROES, disable it */
970 	limits->max_write_zeroes_sectors = 0;
971 }
972 
973 static void clone_endio(struct bio *bio)
974 {
975 	blk_status_t error = bio->bi_status;
976 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
977 	struct dm_io *io = tio->io;
978 	struct mapped_device *md = tio->io->md;
979 	dm_endio_fn endio = tio->ti->type->end_io;
980 
981 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
982 		if (bio_op(bio) == REQ_OP_DISCARD &&
983 		    !bio->bi_disk->queue->limits.max_discard_sectors)
984 			disable_discard(md);
985 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
986 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
987 			disable_write_same(md);
988 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
989 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
990 			disable_write_zeroes(md);
991 	}
992 
993 	if (endio) {
994 		int r = endio(tio->ti, bio, &error);
995 		switch (r) {
996 		case DM_ENDIO_REQUEUE:
997 			error = BLK_STS_DM_REQUEUE;
998 			/*FALLTHRU*/
999 		case DM_ENDIO_DONE:
1000 			break;
1001 		case DM_ENDIO_INCOMPLETE:
1002 			/* The target will handle the io */
1003 			return;
1004 		default:
1005 			DMWARN("unimplemented target endio return value: %d", r);
1006 			BUG();
1007 		}
1008 	}
1009 
1010 	free_tio(tio);
1011 	dec_pending(io, error);
1012 }
1013 
1014 /*
1015  * Return maximum size of I/O possible at the supplied sector up to the current
1016  * target boundary.
1017  */
1018 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1019 {
1020 	sector_t target_offset = dm_target_offset(ti, sector);
1021 
1022 	return ti->len - target_offset;
1023 }
1024 
1025 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1026 {
1027 	sector_t len = max_io_len_target_boundary(sector, ti);
1028 	sector_t offset, max_len;
1029 
1030 	/*
1031 	 * Does the target need to split even further?
1032 	 */
1033 	if (ti->max_io_len) {
1034 		offset = dm_target_offset(ti, sector);
1035 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1036 			max_len = sector_div(offset, ti->max_io_len);
1037 		else
1038 			max_len = offset & (ti->max_io_len - 1);
1039 		max_len = ti->max_io_len - max_len;
1040 
1041 		if (len > max_len)
1042 			len = max_len;
1043 	}
1044 
1045 	return len;
1046 }
1047 
1048 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1049 {
1050 	if (len > UINT_MAX) {
1051 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1052 		      (unsigned long long)len, UINT_MAX);
1053 		ti->error = "Maximum size of target IO is too large";
1054 		return -EINVAL;
1055 	}
1056 
1057 	ti->max_io_len = (uint32_t) len;
1058 
1059 	return 0;
1060 }
1061 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1062 
1063 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1064 						sector_t sector, int *srcu_idx)
1065 	__acquires(md->io_barrier)
1066 {
1067 	struct dm_table *map;
1068 	struct dm_target *ti;
1069 
1070 	map = dm_get_live_table(md, srcu_idx);
1071 	if (!map)
1072 		return NULL;
1073 
1074 	ti = dm_table_find_target(map, sector);
1075 	if (!ti)
1076 		return NULL;
1077 
1078 	return ti;
1079 }
1080 
1081 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1082 				 long nr_pages, void **kaddr, pfn_t *pfn)
1083 {
1084 	struct mapped_device *md = dax_get_private(dax_dev);
1085 	sector_t sector = pgoff * PAGE_SECTORS;
1086 	struct dm_target *ti;
1087 	long len, ret = -EIO;
1088 	int srcu_idx;
1089 
1090 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1091 
1092 	if (!ti)
1093 		goto out;
1094 	if (!ti->type->direct_access)
1095 		goto out;
1096 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1097 	if (len < 1)
1098 		goto out;
1099 	nr_pages = min(len, nr_pages);
1100 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1101 
1102  out:
1103 	dm_put_live_table(md, srcu_idx);
1104 
1105 	return ret;
1106 }
1107 
1108 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1109 		int blocksize, sector_t start, sector_t len)
1110 {
1111 	struct mapped_device *md = dax_get_private(dax_dev);
1112 	struct dm_table *map;
1113 	int srcu_idx;
1114 	bool ret;
1115 
1116 	map = dm_get_live_table(md, &srcu_idx);
1117 	if (!map)
1118 		return false;
1119 
1120 	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1121 
1122 	dm_put_live_table(md, srcu_idx);
1123 
1124 	return ret;
1125 }
1126 
1127 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1128 				    void *addr, size_t bytes, struct iov_iter *i)
1129 {
1130 	struct mapped_device *md = dax_get_private(dax_dev);
1131 	sector_t sector = pgoff * PAGE_SECTORS;
1132 	struct dm_target *ti;
1133 	long ret = 0;
1134 	int srcu_idx;
1135 
1136 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1137 
1138 	if (!ti)
1139 		goto out;
1140 	if (!ti->type->dax_copy_from_iter) {
1141 		ret = copy_from_iter(addr, bytes, i);
1142 		goto out;
1143 	}
1144 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1145  out:
1146 	dm_put_live_table(md, srcu_idx);
1147 
1148 	return ret;
1149 }
1150 
1151 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1152 		void *addr, size_t bytes, struct iov_iter *i)
1153 {
1154 	struct mapped_device *md = dax_get_private(dax_dev);
1155 	sector_t sector = pgoff * PAGE_SECTORS;
1156 	struct dm_target *ti;
1157 	long ret = 0;
1158 	int srcu_idx;
1159 
1160 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1161 
1162 	if (!ti)
1163 		goto out;
1164 	if (!ti->type->dax_copy_to_iter) {
1165 		ret = copy_to_iter(addr, bytes, i);
1166 		goto out;
1167 	}
1168 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1169  out:
1170 	dm_put_live_table(md, srcu_idx);
1171 
1172 	return ret;
1173 }
1174 
1175 /*
1176  * A target may call dm_accept_partial_bio only from the map routine.  It is
1177  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1178  * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1179  *
1180  * dm_accept_partial_bio informs the dm that the target only wants to process
1181  * additional n_sectors sectors of the bio and the rest of the data should be
1182  * sent in a next bio.
1183  *
1184  * A diagram that explains the arithmetics:
1185  * +--------------------+---------------+-------+
1186  * |         1          |       2       |   3   |
1187  * +--------------------+---------------+-------+
1188  *
1189  * <-------------- *tio->len_ptr --------------->
1190  *                      <------- bi_size ------->
1191  *                      <-- n_sectors -->
1192  *
1193  * Region 1 was already iterated over with bio_advance or similar function.
1194  *	(it may be empty if the target doesn't use bio_advance)
1195  * Region 2 is the remaining bio size that the target wants to process.
1196  *	(it may be empty if region 1 is non-empty, although there is no reason
1197  *	 to make it empty)
1198  * The target requires that region 3 is to be sent in the next bio.
1199  *
1200  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1201  * the partially processed part (the sum of regions 1+2) must be the same for all
1202  * copies of the bio.
1203  */
1204 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1205 {
1206 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1207 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1208 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1209 	BUG_ON(bi_size > *tio->len_ptr);
1210 	BUG_ON(n_sectors > bi_size);
1211 	*tio->len_ptr -= bi_size - n_sectors;
1212 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1213 }
1214 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1215 
1216 /*
1217  * The zone descriptors obtained with a zone report indicate
1218  * zone positions within the underlying device of the target. The zone
1219  * descriptors must be remapped to match their position within the dm device.
1220  * The caller target should obtain the zones information using
1221  * blkdev_report_zones() to ensure that remapping for partition offset is
1222  * already handled.
1223  */
1224 void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1225 			  struct blk_zone *zones, unsigned int *nr_zones)
1226 {
1227 #ifdef CONFIG_BLK_DEV_ZONED
1228 	struct blk_zone *zone;
1229 	unsigned int nrz = *nr_zones;
1230 	int i;
1231 
1232 	/*
1233 	 * Remap the start sector and write pointer position of the zones in
1234 	 * the array. Since we may have obtained from the target underlying
1235 	 * device more zones that the target size, also adjust the number
1236 	 * of zones.
1237 	 */
1238 	for (i = 0; i < nrz; i++) {
1239 		zone = zones + i;
1240 		if (zone->start >= start + ti->len) {
1241 			memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1242 			break;
1243 		}
1244 
1245 		zone->start = zone->start + ti->begin - start;
1246 		if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1247 			continue;
1248 
1249 		if (zone->cond == BLK_ZONE_COND_FULL)
1250 			zone->wp = zone->start + zone->len;
1251 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
1252 			zone->wp = zone->start;
1253 		else
1254 			zone->wp = zone->wp + ti->begin - start;
1255 	}
1256 
1257 	*nr_zones = i;
1258 #else /* !CONFIG_BLK_DEV_ZONED */
1259 	*nr_zones = 0;
1260 #endif
1261 }
1262 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1263 
1264 static blk_qc_t __map_bio(struct dm_target_io *tio)
1265 {
1266 	int r;
1267 	sector_t sector;
1268 	struct bio *clone = &tio->clone;
1269 	struct dm_io *io = tio->io;
1270 	struct mapped_device *md = io->md;
1271 	struct dm_target *ti = tio->ti;
1272 	blk_qc_t ret = BLK_QC_T_NONE;
1273 
1274 	clone->bi_end_io = clone_endio;
1275 
1276 	/*
1277 	 * Map the clone.  If r == 0 we don't need to do
1278 	 * anything, the target has assumed ownership of
1279 	 * this io.
1280 	 */
1281 	atomic_inc(&io->io_count);
1282 	sector = clone->bi_iter.bi_sector;
1283 
1284 	r = ti->type->map(ti, clone);
1285 	switch (r) {
1286 	case DM_MAPIO_SUBMITTED:
1287 		break;
1288 	case DM_MAPIO_REMAPPED:
1289 		/* the bio has been remapped so dispatch it */
1290 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1291 				      bio_dev(io->orig_bio), sector);
1292 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1293 			ret = direct_make_request(clone);
1294 		else
1295 			ret = generic_make_request(clone);
1296 		break;
1297 	case DM_MAPIO_KILL:
1298 		free_tio(tio);
1299 		dec_pending(io, BLK_STS_IOERR);
1300 		break;
1301 	case DM_MAPIO_REQUEUE:
1302 		free_tio(tio);
1303 		dec_pending(io, BLK_STS_DM_REQUEUE);
1304 		break;
1305 	default:
1306 		DMWARN("unimplemented target map return value: %d", r);
1307 		BUG();
1308 	}
1309 
1310 	return ret;
1311 }
1312 
1313 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1314 {
1315 	bio->bi_iter.bi_sector = sector;
1316 	bio->bi_iter.bi_size = to_bytes(len);
1317 }
1318 
1319 /*
1320  * Creates a bio that consists of range of complete bvecs.
1321  */
1322 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1323 		     sector_t sector, unsigned len)
1324 {
1325 	struct bio *clone = &tio->clone;
1326 
1327 	__bio_clone_fast(clone, bio);
1328 
1329 	if (bio_integrity(bio)) {
1330 		int r;
1331 
1332 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1333 			     !dm_target_passes_integrity(tio->ti->type))) {
1334 			DMWARN("%s: the target %s doesn't support integrity data.",
1335 				dm_device_name(tio->io->md),
1336 				tio->ti->type->name);
1337 			return -EIO;
1338 		}
1339 
1340 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1341 		if (r < 0)
1342 			return r;
1343 	}
1344 
1345 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1346 	clone->bi_iter.bi_size = to_bytes(len);
1347 
1348 	if (bio_integrity(bio))
1349 		bio_integrity_trim(clone);
1350 
1351 	return 0;
1352 }
1353 
1354 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1355 				struct dm_target *ti, unsigned num_bios)
1356 {
1357 	struct dm_target_io *tio;
1358 	int try;
1359 
1360 	if (!num_bios)
1361 		return;
1362 
1363 	if (num_bios == 1) {
1364 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1365 		bio_list_add(blist, &tio->clone);
1366 		return;
1367 	}
1368 
1369 	for (try = 0; try < 2; try++) {
1370 		int bio_nr;
1371 		struct bio *bio;
1372 
1373 		if (try)
1374 			mutex_lock(&ci->io->md->table_devices_lock);
1375 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1376 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1377 			if (!tio)
1378 				break;
1379 
1380 			bio_list_add(blist, &tio->clone);
1381 		}
1382 		if (try)
1383 			mutex_unlock(&ci->io->md->table_devices_lock);
1384 		if (bio_nr == num_bios)
1385 			return;
1386 
1387 		while ((bio = bio_list_pop(blist))) {
1388 			tio = container_of(bio, struct dm_target_io, clone);
1389 			free_tio(tio);
1390 		}
1391 	}
1392 }
1393 
1394 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1395 					   struct dm_target_io *tio, unsigned *len)
1396 {
1397 	struct bio *clone = &tio->clone;
1398 
1399 	tio->len_ptr = len;
1400 
1401 	__bio_clone_fast(clone, ci->bio);
1402 	if (len)
1403 		bio_setup_sector(clone, ci->sector, *len);
1404 
1405 	return __map_bio(tio);
1406 }
1407 
1408 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1409 				  unsigned num_bios, unsigned *len)
1410 {
1411 	struct bio_list blist = BIO_EMPTY_LIST;
1412 	struct bio *bio;
1413 	struct dm_target_io *tio;
1414 
1415 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1416 
1417 	while ((bio = bio_list_pop(&blist))) {
1418 		tio = container_of(bio, struct dm_target_io, clone);
1419 		(void) __clone_and_map_simple_bio(ci, tio, len);
1420 	}
1421 }
1422 
1423 static int __send_empty_flush(struct clone_info *ci)
1424 {
1425 	unsigned target_nr = 0;
1426 	struct dm_target *ti;
1427 
1428 	/*
1429 	 * Empty flush uses a statically initialized bio, as the base for
1430 	 * cloning.  However, blkg association requires that a bdev is
1431 	 * associated with a gendisk, which doesn't happen until the bdev is
1432 	 * opened.  So, blkg association is done at issue time of the flush
1433 	 * rather than when the device is created in alloc_dev().
1434 	 */
1435 	bio_set_dev(ci->bio, ci->io->md->bdev);
1436 
1437 	BUG_ON(bio_has_data(ci->bio));
1438 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1439 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1440 
1441 	bio_disassociate_blkg(ci->bio);
1442 
1443 	return 0;
1444 }
1445 
1446 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1447 				    sector_t sector, unsigned *len)
1448 {
1449 	struct bio *bio = ci->bio;
1450 	struct dm_target_io *tio;
1451 	int r;
1452 
1453 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1454 	tio->len_ptr = len;
1455 	r = clone_bio(tio, bio, sector, *len);
1456 	if (r < 0) {
1457 		free_tio(tio);
1458 		return r;
1459 	}
1460 	(void) __map_bio(tio);
1461 
1462 	return 0;
1463 }
1464 
1465 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1466 
1467 static unsigned get_num_discard_bios(struct dm_target *ti)
1468 {
1469 	return ti->num_discard_bios;
1470 }
1471 
1472 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1473 {
1474 	return ti->num_secure_erase_bios;
1475 }
1476 
1477 static unsigned get_num_write_same_bios(struct dm_target *ti)
1478 {
1479 	return ti->num_write_same_bios;
1480 }
1481 
1482 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1483 {
1484 	return ti->num_write_zeroes_bios;
1485 }
1486 
1487 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1488 				       unsigned num_bios)
1489 {
1490 	unsigned len;
1491 
1492 	/*
1493 	 * Even though the device advertised support for this type of
1494 	 * request, that does not mean every target supports it, and
1495 	 * reconfiguration might also have changed that since the
1496 	 * check was performed.
1497 	 */
1498 	if (!num_bios)
1499 		return -EOPNOTSUPP;
1500 
1501 	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1502 
1503 	__send_duplicate_bios(ci, ti, num_bios, &len);
1504 
1505 	ci->sector += len;
1506 	ci->sector_count -= len;
1507 
1508 	return 0;
1509 }
1510 
1511 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1512 {
1513 	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1514 }
1515 
1516 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1517 {
1518 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1519 }
1520 
1521 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1522 {
1523 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1524 }
1525 
1526 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1527 {
1528 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1529 }
1530 
1531 static bool is_abnormal_io(struct bio *bio)
1532 {
1533 	bool r = false;
1534 
1535 	switch (bio_op(bio)) {
1536 	case REQ_OP_DISCARD:
1537 	case REQ_OP_SECURE_ERASE:
1538 	case REQ_OP_WRITE_SAME:
1539 	case REQ_OP_WRITE_ZEROES:
1540 		r = true;
1541 		break;
1542 	}
1543 
1544 	return r;
1545 }
1546 
1547 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1548 				  int *result)
1549 {
1550 	struct bio *bio = ci->bio;
1551 
1552 	if (bio_op(bio) == REQ_OP_DISCARD)
1553 		*result = __send_discard(ci, ti);
1554 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1555 		*result = __send_secure_erase(ci, ti);
1556 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1557 		*result = __send_write_same(ci, ti);
1558 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1559 		*result = __send_write_zeroes(ci, ti);
1560 	else
1561 		return false;
1562 
1563 	return true;
1564 }
1565 
1566 /*
1567  * Select the correct strategy for processing a non-flush bio.
1568  */
1569 static int __split_and_process_non_flush(struct clone_info *ci)
1570 {
1571 	struct dm_target *ti;
1572 	unsigned len;
1573 	int r;
1574 
1575 	ti = dm_table_find_target(ci->map, ci->sector);
1576 	if (!ti)
1577 		return -EIO;
1578 
1579 	if (__process_abnormal_io(ci, ti, &r))
1580 		return r;
1581 
1582 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1583 
1584 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1585 	if (r < 0)
1586 		return r;
1587 
1588 	ci->sector += len;
1589 	ci->sector_count -= len;
1590 
1591 	return 0;
1592 }
1593 
1594 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1595 			    struct dm_table *map, struct bio *bio)
1596 {
1597 	ci->map = map;
1598 	ci->io = alloc_io(md, bio);
1599 	ci->sector = bio->bi_iter.bi_sector;
1600 }
1601 
1602 #define __dm_part_stat_sub(part, field, subnd)	\
1603 	(part_stat_get(part, field) -= (subnd))
1604 
1605 /*
1606  * Entry point to split a bio into clones and submit them to the targets.
1607  */
1608 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1609 					struct dm_table *map, struct bio *bio)
1610 {
1611 	struct clone_info ci;
1612 	blk_qc_t ret = BLK_QC_T_NONE;
1613 	int error = 0;
1614 
1615 	init_clone_info(&ci, md, map, bio);
1616 
1617 	if (bio->bi_opf & REQ_PREFLUSH) {
1618 		struct bio flush_bio;
1619 
1620 		/*
1621 		 * Use an on-stack bio for this, it's safe since we don't
1622 		 * need to reference it after submit. It's just used as
1623 		 * the basis for the clone(s).
1624 		 */
1625 		bio_init(&flush_bio, NULL, 0);
1626 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1627 		ci.bio = &flush_bio;
1628 		ci.sector_count = 0;
1629 		error = __send_empty_flush(&ci);
1630 		/* dec_pending submits any data associated with flush */
1631 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1632 		ci.bio = bio;
1633 		ci.sector_count = 0;
1634 		error = __split_and_process_non_flush(&ci);
1635 	} else {
1636 		ci.bio = bio;
1637 		ci.sector_count = bio_sectors(bio);
1638 		while (ci.sector_count && !error) {
1639 			error = __split_and_process_non_flush(&ci);
1640 			if (current->bio_list && ci.sector_count && !error) {
1641 				/*
1642 				 * Remainder must be passed to generic_make_request()
1643 				 * so that it gets handled *after* bios already submitted
1644 				 * have been completely processed.
1645 				 * We take a clone of the original to store in
1646 				 * ci.io->orig_bio to be used by end_io_acct() and
1647 				 * for dec_pending to use for completion handling.
1648 				 */
1649 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1650 							  GFP_NOIO, &md->queue->bio_split);
1651 				ci.io->orig_bio = b;
1652 
1653 				/*
1654 				 * Adjust IO stats for each split, otherwise upon queue
1655 				 * reentry there will be redundant IO accounting.
1656 				 * NOTE: this is a stop-gap fix, a proper fix involves
1657 				 * significant refactoring of DM core's bio splitting
1658 				 * (by eliminating DM's splitting and just using bio_split)
1659 				 */
1660 				part_stat_lock();
1661 				__dm_part_stat_sub(&dm_disk(md)->part0,
1662 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1663 				part_stat_unlock();
1664 
1665 				bio_chain(b, bio);
1666 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1667 				ret = generic_make_request(bio);
1668 				break;
1669 			}
1670 		}
1671 	}
1672 
1673 	/* drop the extra reference count */
1674 	dec_pending(ci.io, errno_to_blk_status(error));
1675 	return ret;
1676 }
1677 
1678 /*
1679  * Optimized variant of __split_and_process_bio that leverages the
1680  * fact that targets that use it do _not_ have a need to split bios.
1681  */
1682 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1683 			      struct bio *bio, struct dm_target *ti)
1684 {
1685 	struct clone_info ci;
1686 	blk_qc_t ret = BLK_QC_T_NONE;
1687 	int error = 0;
1688 
1689 	init_clone_info(&ci, md, map, bio);
1690 
1691 	if (bio->bi_opf & REQ_PREFLUSH) {
1692 		struct bio flush_bio;
1693 
1694 		/*
1695 		 * Use an on-stack bio for this, it's safe since we don't
1696 		 * need to reference it after submit. It's just used as
1697 		 * the basis for the clone(s).
1698 		 */
1699 		bio_init(&flush_bio, NULL, 0);
1700 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1701 		ci.bio = &flush_bio;
1702 		ci.sector_count = 0;
1703 		error = __send_empty_flush(&ci);
1704 		/* dec_pending submits any data associated with flush */
1705 	} else {
1706 		struct dm_target_io *tio;
1707 
1708 		ci.bio = bio;
1709 		ci.sector_count = bio_sectors(bio);
1710 		if (__process_abnormal_io(&ci, ti, &error))
1711 			goto out;
1712 
1713 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1714 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1715 	}
1716 out:
1717 	/* drop the extra reference count */
1718 	dec_pending(ci.io, errno_to_blk_status(error));
1719 	return ret;
1720 }
1721 
1722 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1723 {
1724 	unsigned len, sector_count;
1725 
1726 	sector_count = bio_sectors(*bio);
1727 	len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1728 
1729 	if (sector_count > len) {
1730 		struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1731 
1732 		bio_chain(split, *bio);
1733 		trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1734 		generic_make_request(*bio);
1735 		*bio = split;
1736 	}
1737 }
1738 
1739 static blk_qc_t dm_process_bio(struct mapped_device *md,
1740 			       struct dm_table *map, struct bio *bio)
1741 {
1742 	blk_qc_t ret = BLK_QC_T_NONE;
1743 	struct dm_target *ti = md->immutable_target;
1744 
1745 	if (unlikely(!map)) {
1746 		bio_io_error(bio);
1747 		return ret;
1748 	}
1749 
1750 	if (!ti) {
1751 		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1752 		if (unlikely(!ti)) {
1753 			bio_io_error(bio);
1754 			return ret;
1755 		}
1756 	}
1757 
1758 	/*
1759 	 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1760 	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1761 	 * won't be imposed.
1762 	 */
1763 	if (current->bio_list) {
1764 		blk_queue_split(md->queue, &bio);
1765 		if (!is_abnormal_io(bio))
1766 			dm_queue_split(md, ti, &bio);
1767 	}
1768 
1769 	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1770 		return __process_bio(md, map, bio, ti);
1771 	else
1772 		return __split_and_process_bio(md, map, bio);
1773 }
1774 
1775 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1776 {
1777 	struct mapped_device *md = q->queuedata;
1778 	blk_qc_t ret = BLK_QC_T_NONE;
1779 	int srcu_idx;
1780 	struct dm_table *map;
1781 
1782 	map = dm_get_live_table(md, &srcu_idx);
1783 
1784 	/* if we're suspended, we have to queue this io for later */
1785 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1786 		dm_put_live_table(md, srcu_idx);
1787 
1788 		if (!(bio->bi_opf & REQ_RAHEAD))
1789 			queue_io(md, bio);
1790 		else
1791 			bio_io_error(bio);
1792 		return ret;
1793 	}
1794 
1795 	ret = dm_process_bio(md, map, bio);
1796 
1797 	dm_put_live_table(md, srcu_idx);
1798 	return ret;
1799 }
1800 
1801 static int dm_any_congested(void *congested_data, int bdi_bits)
1802 {
1803 	int r = bdi_bits;
1804 	struct mapped_device *md = congested_data;
1805 	struct dm_table *map;
1806 
1807 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1808 		if (dm_request_based(md)) {
1809 			/*
1810 			 * With request-based DM we only need to check the
1811 			 * top-level queue for congestion.
1812 			 */
1813 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1814 		} else {
1815 			map = dm_get_live_table_fast(md);
1816 			if (map)
1817 				r = dm_table_any_congested(map, bdi_bits);
1818 			dm_put_live_table_fast(md);
1819 		}
1820 	}
1821 
1822 	return r;
1823 }
1824 
1825 /*-----------------------------------------------------------------
1826  * An IDR is used to keep track of allocated minor numbers.
1827  *---------------------------------------------------------------*/
1828 static void free_minor(int minor)
1829 {
1830 	spin_lock(&_minor_lock);
1831 	idr_remove(&_minor_idr, minor);
1832 	spin_unlock(&_minor_lock);
1833 }
1834 
1835 /*
1836  * See if the device with a specific minor # is free.
1837  */
1838 static int specific_minor(int minor)
1839 {
1840 	int r;
1841 
1842 	if (minor >= (1 << MINORBITS))
1843 		return -EINVAL;
1844 
1845 	idr_preload(GFP_KERNEL);
1846 	spin_lock(&_minor_lock);
1847 
1848 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1849 
1850 	spin_unlock(&_minor_lock);
1851 	idr_preload_end();
1852 	if (r < 0)
1853 		return r == -ENOSPC ? -EBUSY : r;
1854 	return 0;
1855 }
1856 
1857 static int next_free_minor(int *minor)
1858 {
1859 	int r;
1860 
1861 	idr_preload(GFP_KERNEL);
1862 	spin_lock(&_minor_lock);
1863 
1864 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1865 
1866 	spin_unlock(&_minor_lock);
1867 	idr_preload_end();
1868 	if (r < 0)
1869 		return r;
1870 	*minor = r;
1871 	return 0;
1872 }
1873 
1874 static const struct block_device_operations dm_blk_dops;
1875 static const struct dax_operations dm_dax_ops;
1876 
1877 static void dm_wq_work(struct work_struct *work);
1878 
1879 static void dm_init_normal_md_queue(struct mapped_device *md)
1880 {
1881 	/*
1882 	 * Initialize aspects of queue that aren't relevant for blk-mq
1883 	 */
1884 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1885 }
1886 
1887 static void cleanup_mapped_device(struct mapped_device *md)
1888 {
1889 	if (md->wq)
1890 		destroy_workqueue(md->wq);
1891 	bioset_exit(&md->bs);
1892 	bioset_exit(&md->io_bs);
1893 
1894 	if (md->dax_dev) {
1895 		kill_dax(md->dax_dev);
1896 		put_dax(md->dax_dev);
1897 		md->dax_dev = NULL;
1898 	}
1899 
1900 	if (md->disk) {
1901 		spin_lock(&_minor_lock);
1902 		md->disk->private_data = NULL;
1903 		spin_unlock(&_minor_lock);
1904 		del_gendisk(md->disk);
1905 		put_disk(md->disk);
1906 	}
1907 
1908 	if (md->queue)
1909 		blk_cleanup_queue(md->queue);
1910 
1911 	cleanup_srcu_struct(&md->io_barrier);
1912 
1913 	if (md->bdev) {
1914 		bdput(md->bdev);
1915 		md->bdev = NULL;
1916 	}
1917 
1918 	mutex_destroy(&md->suspend_lock);
1919 	mutex_destroy(&md->type_lock);
1920 	mutex_destroy(&md->table_devices_lock);
1921 
1922 	dm_mq_cleanup_mapped_device(md);
1923 }
1924 
1925 /*
1926  * Allocate and initialise a blank device with a given minor.
1927  */
1928 static struct mapped_device *alloc_dev(int minor)
1929 {
1930 	int r, numa_node_id = dm_get_numa_node();
1931 	struct mapped_device *md;
1932 	void *old_md;
1933 
1934 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1935 	if (!md) {
1936 		DMWARN("unable to allocate device, out of memory.");
1937 		return NULL;
1938 	}
1939 
1940 	if (!try_module_get(THIS_MODULE))
1941 		goto bad_module_get;
1942 
1943 	/* get a minor number for the dev */
1944 	if (minor == DM_ANY_MINOR)
1945 		r = next_free_minor(&minor);
1946 	else
1947 		r = specific_minor(minor);
1948 	if (r < 0)
1949 		goto bad_minor;
1950 
1951 	r = init_srcu_struct(&md->io_barrier);
1952 	if (r < 0)
1953 		goto bad_io_barrier;
1954 
1955 	md->numa_node_id = numa_node_id;
1956 	md->init_tio_pdu = false;
1957 	md->type = DM_TYPE_NONE;
1958 	mutex_init(&md->suspend_lock);
1959 	mutex_init(&md->type_lock);
1960 	mutex_init(&md->table_devices_lock);
1961 	spin_lock_init(&md->deferred_lock);
1962 	atomic_set(&md->holders, 1);
1963 	atomic_set(&md->open_count, 0);
1964 	atomic_set(&md->event_nr, 0);
1965 	atomic_set(&md->uevent_seq, 0);
1966 	INIT_LIST_HEAD(&md->uevent_list);
1967 	INIT_LIST_HEAD(&md->table_devices);
1968 	spin_lock_init(&md->uevent_lock);
1969 
1970 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1971 	if (!md->queue)
1972 		goto bad;
1973 	md->queue->queuedata = md;
1974 	md->queue->backing_dev_info->congested_data = md;
1975 
1976 	md->disk = alloc_disk_node(1, md->numa_node_id);
1977 	if (!md->disk)
1978 		goto bad;
1979 
1980 	init_waitqueue_head(&md->wait);
1981 	INIT_WORK(&md->work, dm_wq_work);
1982 	init_waitqueue_head(&md->eventq);
1983 	init_completion(&md->kobj_holder.completion);
1984 
1985 	md->disk->major = _major;
1986 	md->disk->first_minor = minor;
1987 	md->disk->fops = &dm_blk_dops;
1988 	md->disk->queue = md->queue;
1989 	md->disk->private_data = md;
1990 	sprintf(md->disk->disk_name, "dm-%d", minor);
1991 
1992 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1993 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1994 					&dm_dax_ops, 0);
1995 		if (!md->dax_dev)
1996 			goto bad;
1997 	}
1998 
1999 	add_disk_no_queue_reg(md->disk);
2000 	format_dev_t(md->name, MKDEV(_major, minor));
2001 
2002 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2003 	if (!md->wq)
2004 		goto bad;
2005 
2006 	md->bdev = bdget_disk(md->disk, 0);
2007 	if (!md->bdev)
2008 		goto bad;
2009 
2010 	dm_stats_init(&md->stats);
2011 
2012 	/* Populate the mapping, nobody knows we exist yet */
2013 	spin_lock(&_minor_lock);
2014 	old_md = idr_replace(&_minor_idr, md, minor);
2015 	spin_unlock(&_minor_lock);
2016 
2017 	BUG_ON(old_md != MINOR_ALLOCED);
2018 
2019 	return md;
2020 
2021 bad:
2022 	cleanup_mapped_device(md);
2023 bad_io_barrier:
2024 	free_minor(minor);
2025 bad_minor:
2026 	module_put(THIS_MODULE);
2027 bad_module_get:
2028 	kvfree(md);
2029 	return NULL;
2030 }
2031 
2032 static void unlock_fs(struct mapped_device *md);
2033 
2034 static void free_dev(struct mapped_device *md)
2035 {
2036 	int minor = MINOR(disk_devt(md->disk));
2037 
2038 	unlock_fs(md);
2039 
2040 	cleanup_mapped_device(md);
2041 
2042 	free_table_devices(&md->table_devices);
2043 	dm_stats_cleanup(&md->stats);
2044 	free_minor(minor);
2045 
2046 	module_put(THIS_MODULE);
2047 	kvfree(md);
2048 }
2049 
2050 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2051 {
2052 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2053 	int ret = 0;
2054 
2055 	if (dm_table_bio_based(t)) {
2056 		/*
2057 		 * The md may already have mempools that need changing.
2058 		 * If so, reload bioset because front_pad may have changed
2059 		 * because a different table was loaded.
2060 		 */
2061 		bioset_exit(&md->bs);
2062 		bioset_exit(&md->io_bs);
2063 
2064 	} else if (bioset_initialized(&md->bs)) {
2065 		/*
2066 		 * There's no need to reload with request-based dm
2067 		 * because the size of front_pad doesn't change.
2068 		 * Note for future: If you are to reload bioset,
2069 		 * prep-ed requests in the queue may refer
2070 		 * to bio from the old bioset, so you must walk
2071 		 * through the queue to unprep.
2072 		 */
2073 		goto out;
2074 	}
2075 
2076 	BUG_ON(!p ||
2077 	       bioset_initialized(&md->bs) ||
2078 	       bioset_initialized(&md->io_bs));
2079 
2080 	ret = bioset_init_from_src(&md->bs, &p->bs);
2081 	if (ret)
2082 		goto out;
2083 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2084 	if (ret)
2085 		bioset_exit(&md->bs);
2086 out:
2087 	/* mempool bind completed, no longer need any mempools in the table */
2088 	dm_table_free_md_mempools(t);
2089 	return ret;
2090 }
2091 
2092 /*
2093  * Bind a table to the device.
2094  */
2095 static void event_callback(void *context)
2096 {
2097 	unsigned long flags;
2098 	LIST_HEAD(uevents);
2099 	struct mapped_device *md = (struct mapped_device *) context;
2100 
2101 	spin_lock_irqsave(&md->uevent_lock, flags);
2102 	list_splice_init(&md->uevent_list, &uevents);
2103 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2104 
2105 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2106 
2107 	atomic_inc(&md->event_nr);
2108 	wake_up(&md->eventq);
2109 	dm_issue_global_event();
2110 }
2111 
2112 /*
2113  * Protected by md->suspend_lock obtained by dm_swap_table().
2114  */
2115 static void __set_size(struct mapped_device *md, sector_t size)
2116 {
2117 	lockdep_assert_held(&md->suspend_lock);
2118 
2119 	set_capacity(md->disk, size);
2120 
2121 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2122 }
2123 
2124 /*
2125  * Returns old map, which caller must destroy.
2126  */
2127 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2128 			       struct queue_limits *limits)
2129 {
2130 	struct dm_table *old_map;
2131 	struct request_queue *q = md->queue;
2132 	bool request_based = dm_table_request_based(t);
2133 	sector_t size;
2134 	int ret;
2135 
2136 	lockdep_assert_held(&md->suspend_lock);
2137 
2138 	size = dm_table_get_size(t);
2139 
2140 	/*
2141 	 * Wipe any geometry if the size of the table changed.
2142 	 */
2143 	if (size != dm_get_size(md))
2144 		memset(&md->geometry, 0, sizeof(md->geometry));
2145 
2146 	__set_size(md, size);
2147 
2148 	dm_table_event_callback(t, event_callback, md);
2149 
2150 	/*
2151 	 * The queue hasn't been stopped yet, if the old table type wasn't
2152 	 * for request-based during suspension.  So stop it to prevent
2153 	 * I/O mapping before resume.
2154 	 * This must be done before setting the queue restrictions,
2155 	 * because request-based dm may be run just after the setting.
2156 	 */
2157 	if (request_based)
2158 		dm_stop_queue(q);
2159 
2160 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2161 		/*
2162 		 * Leverage the fact that request-based DM targets and
2163 		 * NVMe bio based targets are immutable singletons
2164 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2165 		 *   and __process_bio.
2166 		 */
2167 		md->immutable_target = dm_table_get_immutable_target(t);
2168 	}
2169 
2170 	ret = __bind_mempools(md, t);
2171 	if (ret) {
2172 		old_map = ERR_PTR(ret);
2173 		goto out;
2174 	}
2175 
2176 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2177 	rcu_assign_pointer(md->map, (void *)t);
2178 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2179 
2180 	dm_table_set_restrictions(t, q, limits);
2181 	if (old_map)
2182 		dm_sync_table(md);
2183 
2184 out:
2185 	return old_map;
2186 }
2187 
2188 /*
2189  * Returns unbound table for the caller to free.
2190  */
2191 static struct dm_table *__unbind(struct mapped_device *md)
2192 {
2193 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2194 
2195 	if (!map)
2196 		return NULL;
2197 
2198 	dm_table_event_callback(map, NULL, NULL);
2199 	RCU_INIT_POINTER(md->map, NULL);
2200 	dm_sync_table(md);
2201 
2202 	return map;
2203 }
2204 
2205 /*
2206  * Constructor for a new device.
2207  */
2208 int dm_create(int minor, struct mapped_device **result)
2209 {
2210 	int r;
2211 	struct mapped_device *md;
2212 
2213 	md = alloc_dev(minor);
2214 	if (!md)
2215 		return -ENXIO;
2216 
2217 	r = dm_sysfs_init(md);
2218 	if (r) {
2219 		free_dev(md);
2220 		return r;
2221 	}
2222 
2223 	*result = md;
2224 	return 0;
2225 }
2226 
2227 /*
2228  * Functions to manage md->type.
2229  * All are required to hold md->type_lock.
2230  */
2231 void dm_lock_md_type(struct mapped_device *md)
2232 {
2233 	mutex_lock(&md->type_lock);
2234 }
2235 
2236 void dm_unlock_md_type(struct mapped_device *md)
2237 {
2238 	mutex_unlock(&md->type_lock);
2239 }
2240 
2241 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2242 {
2243 	BUG_ON(!mutex_is_locked(&md->type_lock));
2244 	md->type = type;
2245 }
2246 
2247 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2248 {
2249 	return md->type;
2250 }
2251 
2252 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2253 {
2254 	return md->immutable_target_type;
2255 }
2256 
2257 /*
2258  * The queue_limits are only valid as long as you have a reference
2259  * count on 'md'.
2260  */
2261 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2262 {
2263 	BUG_ON(!atomic_read(&md->holders));
2264 	return &md->queue->limits;
2265 }
2266 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2267 
2268 /*
2269  * Setup the DM device's queue based on md's type
2270  */
2271 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2272 {
2273 	int r;
2274 	struct queue_limits limits;
2275 	enum dm_queue_mode type = dm_get_md_type(md);
2276 
2277 	switch (type) {
2278 	case DM_TYPE_REQUEST_BASED:
2279 		r = dm_mq_init_request_queue(md, t);
2280 		if (r) {
2281 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2282 			return r;
2283 		}
2284 		break;
2285 	case DM_TYPE_BIO_BASED:
2286 	case DM_TYPE_DAX_BIO_BASED:
2287 	case DM_TYPE_NVME_BIO_BASED:
2288 		dm_init_normal_md_queue(md);
2289 		blk_queue_make_request(md->queue, dm_make_request);
2290 		break;
2291 	case DM_TYPE_NONE:
2292 		WARN_ON_ONCE(true);
2293 		break;
2294 	}
2295 
2296 	r = dm_calculate_queue_limits(t, &limits);
2297 	if (r) {
2298 		DMERR("Cannot calculate initial queue limits");
2299 		return r;
2300 	}
2301 	dm_table_set_restrictions(t, md->queue, &limits);
2302 	blk_register_queue(md->disk);
2303 
2304 	return 0;
2305 }
2306 
2307 struct mapped_device *dm_get_md(dev_t dev)
2308 {
2309 	struct mapped_device *md;
2310 	unsigned minor = MINOR(dev);
2311 
2312 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2313 		return NULL;
2314 
2315 	spin_lock(&_minor_lock);
2316 
2317 	md = idr_find(&_minor_idr, minor);
2318 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2319 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2320 		md = NULL;
2321 		goto out;
2322 	}
2323 	dm_get(md);
2324 out:
2325 	spin_unlock(&_minor_lock);
2326 
2327 	return md;
2328 }
2329 EXPORT_SYMBOL_GPL(dm_get_md);
2330 
2331 void *dm_get_mdptr(struct mapped_device *md)
2332 {
2333 	return md->interface_ptr;
2334 }
2335 
2336 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2337 {
2338 	md->interface_ptr = ptr;
2339 }
2340 
2341 void dm_get(struct mapped_device *md)
2342 {
2343 	atomic_inc(&md->holders);
2344 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2345 }
2346 
2347 int dm_hold(struct mapped_device *md)
2348 {
2349 	spin_lock(&_minor_lock);
2350 	if (test_bit(DMF_FREEING, &md->flags)) {
2351 		spin_unlock(&_minor_lock);
2352 		return -EBUSY;
2353 	}
2354 	dm_get(md);
2355 	spin_unlock(&_minor_lock);
2356 	return 0;
2357 }
2358 EXPORT_SYMBOL_GPL(dm_hold);
2359 
2360 const char *dm_device_name(struct mapped_device *md)
2361 {
2362 	return md->name;
2363 }
2364 EXPORT_SYMBOL_GPL(dm_device_name);
2365 
2366 static void __dm_destroy(struct mapped_device *md, bool wait)
2367 {
2368 	struct dm_table *map;
2369 	int srcu_idx;
2370 
2371 	might_sleep();
2372 
2373 	spin_lock(&_minor_lock);
2374 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2375 	set_bit(DMF_FREEING, &md->flags);
2376 	spin_unlock(&_minor_lock);
2377 
2378 	blk_set_queue_dying(md->queue);
2379 
2380 	/*
2381 	 * Take suspend_lock so that presuspend and postsuspend methods
2382 	 * do not race with internal suspend.
2383 	 */
2384 	mutex_lock(&md->suspend_lock);
2385 	map = dm_get_live_table(md, &srcu_idx);
2386 	if (!dm_suspended_md(md)) {
2387 		dm_table_presuspend_targets(map);
2388 		dm_table_postsuspend_targets(map);
2389 	}
2390 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2391 	dm_put_live_table(md, srcu_idx);
2392 	mutex_unlock(&md->suspend_lock);
2393 
2394 	/*
2395 	 * Rare, but there may be I/O requests still going to complete,
2396 	 * for example.  Wait for all references to disappear.
2397 	 * No one should increment the reference count of the mapped_device,
2398 	 * after the mapped_device state becomes DMF_FREEING.
2399 	 */
2400 	if (wait)
2401 		while (atomic_read(&md->holders))
2402 			msleep(1);
2403 	else if (atomic_read(&md->holders))
2404 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2405 		       dm_device_name(md), atomic_read(&md->holders));
2406 
2407 	dm_sysfs_exit(md);
2408 	dm_table_destroy(__unbind(md));
2409 	free_dev(md);
2410 }
2411 
2412 void dm_destroy(struct mapped_device *md)
2413 {
2414 	__dm_destroy(md, true);
2415 }
2416 
2417 void dm_destroy_immediate(struct mapped_device *md)
2418 {
2419 	__dm_destroy(md, false);
2420 }
2421 
2422 void dm_put(struct mapped_device *md)
2423 {
2424 	atomic_dec(&md->holders);
2425 }
2426 EXPORT_SYMBOL_GPL(dm_put);
2427 
2428 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2429 {
2430 	int r = 0;
2431 	DEFINE_WAIT(wait);
2432 
2433 	while (1) {
2434 		prepare_to_wait(&md->wait, &wait, task_state);
2435 
2436 		if (!md_in_flight(md))
2437 			break;
2438 
2439 		if (signal_pending_state(task_state, current)) {
2440 			r = -EINTR;
2441 			break;
2442 		}
2443 
2444 		io_schedule();
2445 	}
2446 	finish_wait(&md->wait, &wait);
2447 
2448 	return r;
2449 }
2450 
2451 /*
2452  * Process the deferred bios
2453  */
2454 static void dm_wq_work(struct work_struct *work)
2455 {
2456 	struct mapped_device *md = container_of(work, struct mapped_device,
2457 						work);
2458 	struct bio *c;
2459 	int srcu_idx;
2460 	struct dm_table *map;
2461 
2462 	map = dm_get_live_table(md, &srcu_idx);
2463 
2464 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2465 		spin_lock_irq(&md->deferred_lock);
2466 		c = bio_list_pop(&md->deferred);
2467 		spin_unlock_irq(&md->deferred_lock);
2468 
2469 		if (!c)
2470 			break;
2471 
2472 		if (dm_request_based(md))
2473 			(void) generic_make_request(c);
2474 		else
2475 			(void) dm_process_bio(md, map, c);
2476 	}
2477 
2478 	dm_put_live_table(md, srcu_idx);
2479 }
2480 
2481 static void dm_queue_flush(struct mapped_device *md)
2482 {
2483 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2484 	smp_mb__after_atomic();
2485 	queue_work(md->wq, &md->work);
2486 }
2487 
2488 /*
2489  * Swap in a new table, returning the old one for the caller to destroy.
2490  */
2491 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2492 {
2493 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2494 	struct queue_limits limits;
2495 	int r;
2496 
2497 	mutex_lock(&md->suspend_lock);
2498 
2499 	/* device must be suspended */
2500 	if (!dm_suspended_md(md))
2501 		goto out;
2502 
2503 	/*
2504 	 * If the new table has no data devices, retain the existing limits.
2505 	 * This helps multipath with queue_if_no_path if all paths disappear,
2506 	 * then new I/O is queued based on these limits, and then some paths
2507 	 * reappear.
2508 	 */
2509 	if (dm_table_has_no_data_devices(table)) {
2510 		live_map = dm_get_live_table_fast(md);
2511 		if (live_map)
2512 			limits = md->queue->limits;
2513 		dm_put_live_table_fast(md);
2514 	}
2515 
2516 	if (!live_map) {
2517 		r = dm_calculate_queue_limits(table, &limits);
2518 		if (r) {
2519 			map = ERR_PTR(r);
2520 			goto out;
2521 		}
2522 	}
2523 
2524 	map = __bind(md, table, &limits);
2525 	dm_issue_global_event();
2526 
2527 out:
2528 	mutex_unlock(&md->suspend_lock);
2529 	return map;
2530 }
2531 
2532 /*
2533  * Functions to lock and unlock any filesystem running on the
2534  * device.
2535  */
2536 static int lock_fs(struct mapped_device *md)
2537 {
2538 	int r;
2539 
2540 	WARN_ON(md->frozen_sb);
2541 
2542 	md->frozen_sb = freeze_bdev(md->bdev);
2543 	if (IS_ERR(md->frozen_sb)) {
2544 		r = PTR_ERR(md->frozen_sb);
2545 		md->frozen_sb = NULL;
2546 		return r;
2547 	}
2548 
2549 	set_bit(DMF_FROZEN, &md->flags);
2550 
2551 	return 0;
2552 }
2553 
2554 static void unlock_fs(struct mapped_device *md)
2555 {
2556 	if (!test_bit(DMF_FROZEN, &md->flags))
2557 		return;
2558 
2559 	thaw_bdev(md->bdev, md->frozen_sb);
2560 	md->frozen_sb = NULL;
2561 	clear_bit(DMF_FROZEN, &md->flags);
2562 }
2563 
2564 /*
2565  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2566  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2567  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2568  *
2569  * If __dm_suspend returns 0, the device is completely quiescent
2570  * now. There is no request-processing activity. All new requests
2571  * are being added to md->deferred list.
2572  */
2573 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2574 			unsigned suspend_flags, long task_state,
2575 			int dmf_suspended_flag)
2576 {
2577 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2578 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2579 	int r;
2580 
2581 	lockdep_assert_held(&md->suspend_lock);
2582 
2583 	/*
2584 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2585 	 * This flag is cleared before dm_suspend returns.
2586 	 */
2587 	if (noflush)
2588 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2589 	else
2590 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2591 
2592 	/*
2593 	 * This gets reverted if there's an error later and the targets
2594 	 * provide the .presuspend_undo hook.
2595 	 */
2596 	dm_table_presuspend_targets(map);
2597 
2598 	/*
2599 	 * Flush I/O to the device.
2600 	 * Any I/O submitted after lock_fs() may not be flushed.
2601 	 * noflush takes precedence over do_lockfs.
2602 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2603 	 */
2604 	if (!noflush && do_lockfs) {
2605 		r = lock_fs(md);
2606 		if (r) {
2607 			dm_table_presuspend_undo_targets(map);
2608 			return r;
2609 		}
2610 	}
2611 
2612 	/*
2613 	 * Here we must make sure that no processes are submitting requests
2614 	 * to target drivers i.e. no one may be executing
2615 	 * __split_and_process_bio. This is called from dm_request and
2616 	 * dm_wq_work.
2617 	 *
2618 	 * To get all processes out of __split_and_process_bio in dm_request,
2619 	 * we take the write lock. To prevent any process from reentering
2620 	 * __split_and_process_bio from dm_request and quiesce the thread
2621 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2622 	 * flush_workqueue(md->wq).
2623 	 */
2624 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2625 	if (map)
2626 		synchronize_srcu(&md->io_barrier);
2627 
2628 	/*
2629 	 * Stop md->queue before flushing md->wq in case request-based
2630 	 * dm defers requests to md->wq from md->queue.
2631 	 */
2632 	if (dm_request_based(md))
2633 		dm_stop_queue(md->queue);
2634 
2635 	flush_workqueue(md->wq);
2636 
2637 	/*
2638 	 * At this point no more requests are entering target request routines.
2639 	 * We call dm_wait_for_completion to wait for all existing requests
2640 	 * to finish.
2641 	 */
2642 	r = dm_wait_for_completion(md, task_state);
2643 	if (!r)
2644 		set_bit(dmf_suspended_flag, &md->flags);
2645 
2646 	if (noflush)
2647 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2648 	if (map)
2649 		synchronize_srcu(&md->io_barrier);
2650 
2651 	/* were we interrupted ? */
2652 	if (r < 0) {
2653 		dm_queue_flush(md);
2654 
2655 		if (dm_request_based(md))
2656 			dm_start_queue(md->queue);
2657 
2658 		unlock_fs(md);
2659 		dm_table_presuspend_undo_targets(map);
2660 		/* pushback list is already flushed, so skip flush */
2661 	}
2662 
2663 	return r;
2664 }
2665 
2666 /*
2667  * We need to be able to change a mapping table under a mounted
2668  * filesystem.  For example we might want to move some data in
2669  * the background.  Before the table can be swapped with
2670  * dm_bind_table, dm_suspend must be called to flush any in
2671  * flight bios and ensure that any further io gets deferred.
2672  */
2673 /*
2674  * Suspend mechanism in request-based dm.
2675  *
2676  * 1. Flush all I/Os by lock_fs() if needed.
2677  * 2. Stop dispatching any I/O by stopping the request_queue.
2678  * 3. Wait for all in-flight I/Os to be completed or requeued.
2679  *
2680  * To abort suspend, start the request_queue.
2681  */
2682 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2683 {
2684 	struct dm_table *map = NULL;
2685 	int r = 0;
2686 
2687 retry:
2688 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2689 
2690 	if (dm_suspended_md(md)) {
2691 		r = -EINVAL;
2692 		goto out_unlock;
2693 	}
2694 
2695 	if (dm_suspended_internally_md(md)) {
2696 		/* already internally suspended, wait for internal resume */
2697 		mutex_unlock(&md->suspend_lock);
2698 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2699 		if (r)
2700 			return r;
2701 		goto retry;
2702 	}
2703 
2704 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2705 
2706 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2707 	if (r)
2708 		goto out_unlock;
2709 
2710 	dm_table_postsuspend_targets(map);
2711 
2712 out_unlock:
2713 	mutex_unlock(&md->suspend_lock);
2714 	return r;
2715 }
2716 
2717 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2718 {
2719 	if (map) {
2720 		int r = dm_table_resume_targets(map);
2721 		if (r)
2722 			return r;
2723 	}
2724 
2725 	dm_queue_flush(md);
2726 
2727 	/*
2728 	 * Flushing deferred I/Os must be done after targets are resumed
2729 	 * so that mapping of targets can work correctly.
2730 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2731 	 */
2732 	if (dm_request_based(md))
2733 		dm_start_queue(md->queue);
2734 
2735 	unlock_fs(md);
2736 
2737 	return 0;
2738 }
2739 
2740 int dm_resume(struct mapped_device *md)
2741 {
2742 	int r;
2743 	struct dm_table *map = NULL;
2744 
2745 retry:
2746 	r = -EINVAL;
2747 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2748 
2749 	if (!dm_suspended_md(md))
2750 		goto out;
2751 
2752 	if (dm_suspended_internally_md(md)) {
2753 		/* already internally suspended, wait for internal resume */
2754 		mutex_unlock(&md->suspend_lock);
2755 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2756 		if (r)
2757 			return r;
2758 		goto retry;
2759 	}
2760 
2761 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2762 	if (!map || !dm_table_get_size(map))
2763 		goto out;
2764 
2765 	r = __dm_resume(md, map);
2766 	if (r)
2767 		goto out;
2768 
2769 	clear_bit(DMF_SUSPENDED, &md->flags);
2770 out:
2771 	mutex_unlock(&md->suspend_lock);
2772 
2773 	return r;
2774 }
2775 
2776 /*
2777  * Internal suspend/resume works like userspace-driven suspend. It waits
2778  * until all bios finish and prevents issuing new bios to the target drivers.
2779  * It may be used only from the kernel.
2780  */
2781 
2782 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2783 {
2784 	struct dm_table *map = NULL;
2785 
2786 	lockdep_assert_held(&md->suspend_lock);
2787 
2788 	if (md->internal_suspend_count++)
2789 		return; /* nested internal suspend */
2790 
2791 	if (dm_suspended_md(md)) {
2792 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2793 		return; /* nest suspend */
2794 	}
2795 
2796 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2797 
2798 	/*
2799 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2800 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2801 	 * would require changing .presuspend to return an error -- avoid this
2802 	 * until there is a need for more elaborate variants of internal suspend.
2803 	 */
2804 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2805 			    DMF_SUSPENDED_INTERNALLY);
2806 
2807 	dm_table_postsuspend_targets(map);
2808 }
2809 
2810 static void __dm_internal_resume(struct mapped_device *md)
2811 {
2812 	BUG_ON(!md->internal_suspend_count);
2813 
2814 	if (--md->internal_suspend_count)
2815 		return; /* resume from nested internal suspend */
2816 
2817 	if (dm_suspended_md(md))
2818 		goto done; /* resume from nested suspend */
2819 
2820 	/*
2821 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2822 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2823 	 */
2824 	(void) __dm_resume(md, NULL);
2825 
2826 done:
2827 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2828 	smp_mb__after_atomic();
2829 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2830 }
2831 
2832 void dm_internal_suspend_noflush(struct mapped_device *md)
2833 {
2834 	mutex_lock(&md->suspend_lock);
2835 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2836 	mutex_unlock(&md->suspend_lock);
2837 }
2838 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2839 
2840 void dm_internal_resume(struct mapped_device *md)
2841 {
2842 	mutex_lock(&md->suspend_lock);
2843 	__dm_internal_resume(md);
2844 	mutex_unlock(&md->suspend_lock);
2845 }
2846 EXPORT_SYMBOL_GPL(dm_internal_resume);
2847 
2848 /*
2849  * Fast variants of internal suspend/resume hold md->suspend_lock,
2850  * which prevents interaction with userspace-driven suspend.
2851  */
2852 
2853 void dm_internal_suspend_fast(struct mapped_device *md)
2854 {
2855 	mutex_lock(&md->suspend_lock);
2856 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2857 		return;
2858 
2859 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2860 	synchronize_srcu(&md->io_barrier);
2861 	flush_workqueue(md->wq);
2862 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2863 }
2864 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2865 
2866 void dm_internal_resume_fast(struct mapped_device *md)
2867 {
2868 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2869 		goto done;
2870 
2871 	dm_queue_flush(md);
2872 
2873 done:
2874 	mutex_unlock(&md->suspend_lock);
2875 }
2876 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2877 
2878 /*-----------------------------------------------------------------
2879  * Event notification.
2880  *---------------------------------------------------------------*/
2881 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2882 		       unsigned cookie)
2883 {
2884 	char udev_cookie[DM_COOKIE_LENGTH];
2885 	char *envp[] = { udev_cookie, NULL };
2886 
2887 	if (!cookie)
2888 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2889 	else {
2890 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2891 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2892 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2893 					  action, envp);
2894 	}
2895 }
2896 
2897 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2898 {
2899 	return atomic_add_return(1, &md->uevent_seq);
2900 }
2901 
2902 uint32_t dm_get_event_nr(struct mapped_device *md)
2903 {
2904 	return atomic_read(&md->event_nr);
2905 }
2906 
2907 int dm_wait_event(struct mapped_device *md, int event_nr)
2908 {
2909 	return wait_event_interruptible(md->eventq,
2910 			(event_nr != atomic_read(&md->event_nr)));
2911 }
2912 
2913 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2914 {
2915 	unsigned long flags;
2916 
2917 	spin_lock_irqsave(&md->uevent_lock, flags);
2918 	list_add(elist, &md->uevent_list);
2919 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2920 }
2921 
2922 /*
2923  * The gendisk is only valid as long as you have a reference
2924  * count on 'md'.
2925  */
2926 struct gendisk *dm_disk(struct mapped_device *md)
2927 {
2928 	return md->disk;
2929 }
2930 EXPORT_SYMBOL_GPL(dm_disk);
2931 
2932 struct kobject *dm_kobject(struct mapped_device *md)
2933 {
2934 	return &md->kobj_holder.kobj;
2935 }
2936 
2937 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2938 {
2939 	struct mapped_device *md;
2940 
2941 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2942 
2943 	spin_lock(&_minor_lock);
2944 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2945 		md = NULL;
2946 		goto out;
2947 	}
2948 	dm_get(md);
2949 out:
2950 	spin_unlock(&_minor_lock);
2951 
2952 	return md;
2953 }
2954 
2955 int dm_suspended_md(struct mapped_device *md)
2956 {
2957 	return test_bit(DMF_SUSPENDED, &md->flags);
2958 }
2959 
2960 int dm_suspended_internally_md(struct mapped_device *md)
2961 {
2962 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2963 }
2964 
2965 int dm_test_deferred_remove_flag(struct mapped_device *md)
2966 {
2967 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2968 }
2969 
2970 int dm_suspended(struct dm_target *ti)
2971 {
2972 	return dm_suspended_md(dm_table_get_md(ti->table));
2973 }
2974 EXPORT_SYMBOL_GPL(dm_suspended);
2975 
2976 int dm_noflush_suspending(struct dm_target *ti)
2977 {
2978 	return __noflush_suspending(dm_table_get_md(ti->table));
2979 }
2980 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2981 
2982 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2983 					    unsigned integrity, unsigned per_io_data_size,
2984 					    unsigned min_pool_size)
2985 {
2986 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2987 	unsigned int pool_size = 0;
2988 	unsigned int front_pad, io_front_pad;
2989 	int ret;
2990 
2991 	if (!pools)
2992 		return NULL;
2993 
2994 	switch (type) {
2995 	case DM_TYPE_BIO_BASED:
2996 	case DM_TYPE_DAX_BIO_BASED:
2997 	case DM_TYPE_NVME_BIO_BASED:
2998 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2999 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3000 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3001 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3002 		if (ret)
3003 			goto out;
3004 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3005 			goto out;
3006 		break;
3007 	case DM_TYPE_REQUEST_BASED:
3008 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3009 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3010 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3011 		break;
3012 	default:
3013 		BUG();
3014 	}
3015 
3016 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3017 	if (ret)
3018 		goto out;
3019 
3020 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3021 		goto out;
3022 
3023 	return pools;
3024 
3025 out:
3026 	dm_free_md_mempools(pools);
3027 
3028 	return NULL;
3029 }
3030 
3031 void dm_free_md_mempools(struct dm_md_mempools *pools)
3032 {
3033 	if (!pools)
3034 		return;
3035 
3036 	bioset_exit(&pools->bs);
3037 	bioset_exit(&pools->io_bs);
3038 
3039 	kfree(pools);
3040 }
3041 
3042 struct dm_pr {
3043 	u64	old_key;
3044 	u64	new_key;
3045 	u32	flags;
3046 	bool	fail_early;
3047 };
3048 
3049 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3050 		      void *data)
3051 {
3052 	struct mapped_device *md = bdev->bd_disk->private_data;
3053 	struct dm_table *table;
3054 	struct dm_target *ti;
3055 	int ret = -ENOTTY, srcu_idx;
3056 
3057 	table = dm_get_live_table(md, &srcu_idx);
3058 	if (!table || !dm_table_get_size(table))
3059 		goto out;
3060 
3061 	/* We only support devices that have a single target */
3062 	if (dm_table_get_num_targets(table) != 1)
3063 		goto out;
3064 	ti = dm_table_get_target(table, 0);
3065 
3066 	ret = -EINVAL;
3067 	if (!ti->type->iterate_devices)
3068 		goto out;
3069 
3070 	ret = ti->type->iterate_devices(ti, fn, data);
3071 out:
3072 	dm_put_live_table(md, srcu_idx);
3073 	return ret;
3074 }
3075 
3076 /*
3077  * For register / unregister we need to manually call out to every path.
3078  */
3079 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3080 			    sector_t start, sector_t len, void *data)
3081 {
3082 	struct dm_pr *pr = data;
3083 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3084 
3085 	if (!ops || !ops->pr_register)
3086 		return -EOPNOTSUPP;
3087 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3088 }
3089 
3090 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3091 			  u32 flags)
3092 {
3093 	struct dm_pr pr = {
3094 		.old_key	= old_key,
3095 		.new_key	= new_key,
3096 		.flags		= flags,
3097 		.fail_early	= true,
3098 	};
3099 	int ret;
3100 
3101 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3102 	if (ret && new_key) {
3103 		/* unregister all paths if we failed to register any path */
3104 		pr.old_key = new_key;
3105 		pr.new_key = 0;
3106 		pr.flags = 0;
3107 		pr.fail_early = false;
3108 		dm_call_pr(bdev, __dm_pr_register, &pr);
3109 	}
3110 
3111 	return ret;
3112 }
3113 
3114 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3115 			 u32 flags)
3116 {
3117 	struct mapped_device *md = bdev->bd_disk->private_data;
3118 	const struct pr_ops *ops;
3119 	int r, srcu_idx;
3120 
3121 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3122 	if (r < 0)
3123 		goto out;
3124 
3125 	ops = bdev->bd_disk->fops->pr_ops;
3126 	if (ops && ops->pr_reserve)
3127 		r = ops->pr_reserve(bdev, key, type, flags);
3128 	else
3129 		r = -EOPNOTSUPP;
3130 out:
3131 	dm_unprepare_ioctl(md, srcu_idx);
3132 	return r;
3133 }
3134 
3135 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3136 {
3137 	struct mapped_device *md = bdev->bd_disk->private_data;
3138 	const struct pr_ops *ops;
3139 	int r, srcu_idx;
3140 
3141 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3142 	if (r < 0)
3143 		goto out;
3144 
3145 	ops = bdev->bd_disk->fops->pr_ops;
3146 	if (ops && ops->pr_release)
3147 		r = ops->pr_release(bdev, key, type);
3148 	else
3149 		r = -EOPNOTSUPP;
3150 out:
3151 	dm_unprepare_ioctl(md, srcu_idx);
3152 	return r;
3153 }
3154 
3155 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3156 			 enum pr_type type, bool abort)
3157 {
3158 	struct mapped_device *md = bdev->bd_disk->private_data;
3159 	const struct pr_ops *ops;
3160 	int r, srcu_idx;
3161 
3162 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3163 	if (r < 0)
3164 		goto out;
3165 
3166 	ops = bdev->bd_disk->fops->pr_ops;
3167 	if (ops && ops->pr_preempt)
3168 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3169 	else
3170 		r = -EOPNOTSUPP;
3171 out:
3172 	dm_unprepare_ioctl(md, srcu_idx);
3173 	return r;
3174 }
3175 
3176 static int dm_pr_clear(struct block_device *bdev, u64 key)
3177 {
3178 	struct mapped_device *md = bdev->bd_disk->private_data;
3179 	const struct pr_ops *ops;
3180 	int r, srcu_idx;
3181 
3182 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3183 	if (r < 0)
3184 		goto out;
3185 
3186 	ops = bdev->bd_disk->fops->pr_ops;
3187 	if (ops && ops->pr_clear)
3188 		r = ops->pr_clear(bdev, key);
3189 	else
3190 		r = -EOPNOTSUPP;
3191 out:
3192 	dm_unprepare_ioctl(md, srcu_idx);
3193 	return r;
3194 }
3195 
3196 static const struct pr_ops dm_pr_ops = {
3197 	.pr_register	= dm_pr_register,
3198 	.pr_reserve	= dm_pr_reserve,
3199 	.pr_release	= dm_pr_release,
3200 	.pr_preempt	= dm_pr_preempt,
3201 	.pr_clear	= dm_pr_clear,
3202 };
3203 
3204 static const struct block_device_operations dm_blk_dops = {
3205 	.open = dm_blk_open,
3206 	.release = dm_blk_close,
3207 	.ioctl = dm_blk_ioctl,
3208 	.getgeo = dm_blk_getgeo,
3209 	.report_zones = dm_blk_report_zones,
3210 	.pr_ops = &dm_pr_ops,
3211 	.owner = THIS_MODULE
3212 };
3213 
3214 static const struct dax_operations dm_dax_ops = {
3215 	.direct_access = dm_dax_direct_access,
3216 	.dax_supported = dm_dax_supported,
3217 	.copy_from_iter = dm_dax_copy_from_iter,
3218 	.copy_to_iter = dm_dax_copy_to_iter,
3219 };
3220 
3221 /*
3222  * module hooks
3223  */
3224 module_init(dm_init);
3225 module_exit(dm_exit);
3226 
3227 module_param(major, uint, 0);
3228 MODULE_PARM_DESC(major, "The major number of the device mapper");
3229 
3230 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3231 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3232 
3233 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3234 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3235 
3236 MODULE_DESCRIPTION(DM_NAME " driver");
3237 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3238 MODULE_LICENSE("GPL");
3239