1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 /* 44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 45 * dm_io into one list, and reuse bio->bi_private as the list head. Before 46 * ending this fs bio, we will recover its ->bi_private. 47 */ 48 #define REQ_DM_POLL_LIST REQ_DRV 49 50 static const char *_name = DM_NAME; 51 52 static unsigned int major = 0; 53 static unsigned int _major = 0; 54 55 static DEFINE_IDR(_minor_idr); 56 57 static DEFINE_SPINLOCK(_minor_lock); 58 59 static void do_deferred_remove(struct work_struct *w); 60 61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 62 63 static struct workqueue_struct *deferred_remove_workqueue; 64 65 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 67 68 void dm_issue_global_event(void) 69 { 70 atomic_inc(&dm_global_event_nr); 71 wake_up(&dm_global_eventq); 72 } 73 74 DEFINE_STATIC_KEY_FALSE(stats_enabled); 75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 76 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 77 78 /* 79 * One of these is allocated (on-stack) per original bio. 80 */ 81 struct clone_info { 82 struct dm_table *map; 83 struct bio *bio; 84 struct dm_io *io; 85 sector_t sector; 86 unsigned sector_count; 87 bool is_abnormal_io:1; 88 bool submit_as_polled:1; 89 }; 90 91 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 92 #define DM_IO_BIO_OFFSET \ 93 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 94 95 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 96 { 97 return container_of(clone, struct dm_target_io, clone); 98 } 99 100 void *dm_per_bio_data(struct bio *bio, size_t data_size) 101 { 102 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 103 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 104 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 105 } 106 EXPORT_SYMBOL_GPL(dm_per_bio_data); 107 108 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 109 { 110 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 111 if (io->magic == DM_IO_MAGIC) 112 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 113 BUG_ON(io->magic != DM_TIO_MAGIC); 114 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 115 } 116 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 117 118 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 119 { 120 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 123 124 #define MINOR_ALLOCED ((void *)-1) 125 126 #define DM_NUMA_NODE NUMA_NO_NODE 127 static int dm_numa_node = DM_NUMA_NODE; 128 129 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 130 static int swap_bios = DEFAULT_SWAP_BIOS; 131 static int get_swap_bios(void) 132 { 133 int latch = READ_ONCE(swap_bios); 134 if (unlikely(latch <= 0)) 135 latch = DEFAULT_SWAP_BIOS; 136 return latch; 137 } 138 139 struct table_device { 140 struct list_head list; 141 refcount_t count; 142 struct dm_dev dm_dev; 143 }; 144 145 /* 146 * Bio-based DM's mempools' reserved IOs set by the user. 147 */ 148 #define RESERVED_BIO_BASED_IOS 16 149 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 150 151 static int __dm_get_module_param_int(int *module_param, int min, int max) 152 { 153 int param = READ_ONCE(*module_param); 154 int modified_param = 0; 155 bool modified = true; 156 157 if (param < min) 158 modified_param = min; 159 else if (param > max) 160 modified_param = max; 161 else 162 modified = false; 163 164 if (modified) { 165 (void)cmpxchg(module_param, param, modified_param); 166 param = modified_param; 167 } 168 169 return param; 170 } 171 172 unsigned __dm_get_module_param(unsigned *module_param, 173 unsigned def, unsigned max) 174 { 175 unsigned param = READ_ONCE(*module_param); 176 unsigned modified_param = 0; 177 178 if (!param) 179 modified_param = def; 180 else if (param > max) 181 modified_param = max; 182 183 if (modified_param) { 184 (void)cmpxchg(module_param, param, modified_param); 185 param = modified_param; 186 } 187 188 return param; 189 } 190 191 unsigned dm_get_reserved_bio_based_ios(void) 192 { 193 return __dm_get_module_param(&reserved_bio_based_ios, 194 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 195 } 196 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 197 198 static unsigned dm_get_numa_node(void) 199 { 200 return __dm_get_module_param_int(&dm_numa_node, 201 DM_NUMA_NODE, num_online_nodes() - 1); 202 } 203 204 static int __init local_init(void) 205 { 206 int r; 207 208 r = dm_uevent_init(); 209 if (r) 210 return r; 211 212 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 213 if (!deferred_remove_workqueue) { 214 r = -ENOMEM; 215 goto out_uevent_exit; 216 } 217 218 _major = major; 219 r = register_blkdev(_major, _name); 220 if (r < 0) 221 goto out_free_workqueue; 222 223 if (!_major) 224 _major = r; 225 226 return 0; 227 228 out_free_workqueue: 229 destroy_workqueue(deferred_remove_workqueue); 230 out_uevent_exit: 231 dm_uevent_exit(); 232 233 return r; 234 } 235 236 static void local_exit(void) 237 { 238 flush_scheduled_work(); 239 destroy_workqueue(deferred_remove_workqueue); 240 241 unregister_blkdev(_major, _name); 242 dm_uevent_exit(); 243 244 _major = 0; 245 246 DMINFO("cleaned up"); 247 } 248 249 static int (*_inits[])(void) __initdata = { 250 local_init, 251 dm_target_init, 252 dm_linear_init, 253 dm_stripe_init, 254 dm_io_init, 255 dm_kcopyd_init, 256 dm_interface_init, 257 dm_statistics_init, 258 }; 259 260 static void (*_exits[])(void) = { 261 local_exit, 262 dm_target_exit, 263 dm_linear_exit, 264 dm_stripe_exit, 265 dm_io_exit, 266 dm_kcopyd_exit, 267 dm_interface_exit, 268 dm_statistics_exit, 269 }; 270 271 static int __init dm_init(void) 272 { 273 const int count = ARRAY_SIZE(_inits); 274 int r, i; 275 276 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 277 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 278 " Duplicate IMA measurements will not be recorded in the IMA log."); 279 #endif 280 281 for (i = 0; i < count; i++) { 282 r = _inits[i](); 283 if (r) 284 goto bad; 285 } 286 287 return 0; 288 bad: 289 while (i--) 290 _exits[i](); 291 292 return r; 293 } 294 295 static void __exit dm_exit(void) 296 { 297 int i = ARRAY_SIZE(_exits); 298 299 while (i--) 300 _exits[i](); 301 302 /* 303 * Should be empty by this point. 304 */ 305 idr_destroy(&_minor_idr); 306 } 307 308 /* 309 * Block device functions 310 */ 311 int dm_deleting_md(struct mapped_device *md) 312 { 313 return test_bit(DMF_DELETING, &md->flags); 314 } 315 316 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 317 { 318 struct mapped_device *md; 319 320 spin_lock(&_minor_lock); 321 322 md = bdev->bd_disk->private_data; 323 if (!md) 324 goto out; 325 326 if (test_bit(DMF_FREEING, &md->flags) || 327 dm_deleting_md(md)) { 328 md = NULL; 329 goto out; 330 } 331 332 dm_get(md); 333 atomic_inc(&md->open_count); 334 out: 335 spin_unlock(&_minor_lock); 336 337 return md ? 0 : -ENXIO; 338 } 339 340 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 341 { 342 struct mapped_device *md; 343 344 spin_lock(&_minor_lock); 345 346 md = disk->private_data; 347 if (WARN_ON(!md)) 348 goto out; 349 350 if (atomic_dec_and_test(&md->open_count) && 351 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 352 queue_work(deferred_remove_workqueue, &deferred_remove_work); 353 354 dm_put(md); 355 out: 356 spin_unlock(&_minor_lock); 357 } 358 359 int dm_open_count(struct mapped_device *md) 360 { 361 return atomic_read(&md->open_count); 362 } 363 364 /* 365 * Guarantees nothing is using the device before it's deleted. 366 */ 367 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 368 { 369 int r = 0; 370 371 spin_lock(&_minor_lock); 372 373 if (dm_open_count(md)) { 374 r = -EBUSY; 375 if (mark_deferred) 376 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 377 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 378 r = -EEXIST; 379 else 380 set_bit(DMF_DELETING, &md->flags); 381 382 spin_unlock(&_minor_lock); 383 384 return r; 385 } 386 387 int dm_cancel_deferred_remove(struct mapped_device *md) 388 { 389 int r = 0; 390 391 spin_lock(&_minor_lock); 392 393 if (test_bit(DMF_DELETING, &md->flags)) 394 r = -EBUSY; 395 else 396 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 397 398 spin_unlock(&_minor_lock); 399 400 return r; 401 } 402 403 static void do_deferred_remove(struct work_struct *w) 404 { 405 dm_deferred_remove(); 406 } 407 408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 409 { 410 struct mapped_device *md = bdev->bd_disk->private_data; 411 412 return dm_get_geometry(md, geo); 413 } 414 415 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 416 struct block_device **bdev) 417 { 418 struct dm_target *tgt; 419 struct dm_table *map; 420 int r; 421 422 retry: 423 r = -ENOTTY; 424 map = dm_get_live_table(md, srcu_idx); 425 if (!map || !dm_table_get_size(map)) 426 return r; 427 428 /* We only support devices that have a single target */ 429 if (dm_table_get_num_targets(map) != 1) 430 return r; 431 432 tgt = dm_table_get_target(map, 0); 433 if (!tgt->type->prepare_ioctl) 434 return r; 435 436 if (dm_suspended_md(md)) 437 return -EAGAIN; 438 439 r = tgt->type->prepare_ioctl(tgt, bdev); 440 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 441 dm_put_live_table(md, *srcu_idx); 442 msleep(10); 443 goto retry; 444 } 445 446 return r; 447 } 448 449 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 450 { 451 dm_put_live_table(md, srcu_idx); 452 } 453 454 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 455 unsigned int cmd, unsigned long arg) 456 { 457 struct mapped_device *md = bdev->bd_disk->private_data; 458 int r, srcu_idx; 459 460 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 461 if (r < 0) 462 goto out; 463 464 if (r > 0) { 465 /* 466 * Target determined this ioctl is being issued against a 467 * subset of the parent bdev; require extra privileges. 468 */ 469 if (!capable(CAP_SYS_RAWIO)) { 470 DMDEBUG_LIMIT( 471 "%s: sending ioctl %x to DM device without required privilege.", 472 current->comm, cmd); 473 r = -ENOIOCTLCMD; 474 goto out; 475 } 476 } 477 478 if (!bdev->bd_disk->fops->ioctl) 479 r = -ENOTTY; 480 else 481 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 482 out: 483 dm_unprepare_ioctl(md, srcu_idx); 484 return r; 485 } 486 487 u64 dm_start_time_ns_from_clone(struct bio *bio) 488 { 489 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 490 } 491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 492 493 static bool bio_is_flush_with_data(struct bio *bio) 494 { 495 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 496 } 497 498 static void dm_io_acct(struct dm_io *io, bool end) 499 { 500 struct dm_stats_aux *stats_aux = &io->stats_aux; 501 unsigned long start_time = io->start_time; 502 struct mapped_device *md = io->md; 503 struct bio *bio = io->orig_bio; 504 unsigned int sectors; 505 506 /* 507 * If REQ_PREFLUSH set, don't account payload, it will be 508 * submitted (and accounted) after this flush completes. 509 */ 510 if (bio_is_flush_with_data(bio)) 511 sectors = 0; 512 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT)))) 513 sectors = bio_sectors(bio); 514 else 515 sectors = io->sectors; 516 517 if (!end) 518 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio), 519 start_time); 520 else 521 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time); 522 523 if (static_branch_unlikely(&stats_enabled) && 524 unlikely(dm_stats_used(&md->stats))) { 525 sector_t sector; 526 527 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT))) 528 sector = bio->bi_iter.bi_sector; 529 else 530 sector = bio_end_sector(bio) - io->sector_offset; 531 532 dm_stats_account_io(&md->stats, bio_data_dir(bio), 533 sector, sectors, 534 end, start_time, stats_aux); 535 } 536 } 537 538 static void __dm_start_io_acct(struct dm_io *io) 539 { 540 dm_io_acct(io, false); 541 } 542 543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 544 { 545 /* 546 * Ensure IO accounting is only ever started once. 547 */ 548 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 549 return; 550 551 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 552 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 553 dm_io_set_flag(io, DM_IO_ACCOUNTED); 554 } else { 555 unsigned long flags; 556 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 557 spin_lock_irqsave(&io->lock, flags); 558 dm_io_set_flag(io, DM_IO_ACCOUNTED); 559 spin_unlock_irqrestore(&io->lock, flags); 560 } 561 562 __dm_start_io_acct(io); 563 } 564 565 static void dm_end_io_acct(struct dm_io *io) 566 { 567 dm_io_acct(io, true); 568 } 569 570 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 571 { 572 struct dm_io *io; 573 struct dm_target_io *tio; 574 struct bio *clone; 575 576 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs); 577 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 578 clone->bi_bdev = md->disk->part0; 579 580 tio = clone_to_tio(clone); 581 tio->flags = 0; 582 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 583 tio->io = NULL; 584 585 io = container_of(tio, struct dm_io, tio); 586 io->magic = DM_IO_MAGIC; 587 io->status = BLK_STS_OK; 588 589 /* one ref is for submission, the other is for completion */ 590 atomic_set(&io->io_count, 2); 591 this_cpu_inc(*md->pending_io); 592 io->orig_bio = bio; 593 io->md = md; 594 spin_lock_init(&io->lock); 595 io->start_time = jiffies; 596 io->flags = 0; 597 598 if (static_branch_unlikely(&stats_enabled)) 599 dm_stats_record_start(&md->stats, &io->stats_aux); 600 601 return io; 602 } 603 604 static void free_io(struct dm_io *io) 605 { 606 bio_put(&io->tio.clone); 607 } 608 609 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 610 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask) 611 { 612 struct dm_target_io *tio; 613 struct bio *clone; 614 615 if (!ci->io->tio.io) { 616 /* the dm_target_io embedded in ci->io is available */ 617 tio = &ci->io->tio; 618 /* alloc_io() already initialized embedded clone */ 619 clone = &tio->clone; 620 } else { 621 struct mapped_device *md = ci->io->md; 622 623 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 624 &md->mempools->bs); 625 if (!clone) 626 return NULL; 627 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 628 clone->bi_bdev = md->disk->part0; 629 630 /* REQ_DM_POLL_LIST shouldn't be inherited */ 631 clone->bi_opf &= ~REQ_DM_POLL_LIST; 632 633 tio = clone_to_tio(clone); 634 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 635 } 636 637 tio->magic = DM_TIO_MAGIC; 638 tio->io = ci->io; 639 tio->ti = ti; 640 tio->target_bio_nr = target_bio_nr; 641 tio->len_ptr = len; 642 tio->old_sector = 0; 643 644 if (len) { 645 clone->bi_iter.bi_size = to_bytes(*len); 646 if (bio_integrity(clone)) 647 bio_integrity_trim(clone); 648 } 649 650 return clone; 651 } 652 653 static void free_tio(struct bio *clone) 654 { 655 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 656 return; 657 bio_put(clone); 658 } 659 660 /* 661 * Add the bio to the list of deferred io. 662 */ 663 static void queue_io(struct mapped_device *md, struct bio *bio) 664 { 665 unsigned long flags; 666 667 spin_lock_irqsave(&md->deferred_lock, flags); 668 bio_list_add(&md->deferred, bio); 669 spin_unlock_irqrestore(&md->deferred_lock, flags); 670 queue_work(md->wq, &md->work); 671 } 672 673 /* 674 * Everyone (including functions in this file), should use this 675 * function to access the md->map field, and make sure they call 676 * dm_put_live_table() when finished. 677 */ 678 struct dm_table *dm_get_live_table(struct mapped_device *md, 679 int *srcu_idx) __acquires(md->io_barrier) 680 { 681 *srcu_idx = srcu_read_lock(&md->io_barrier); 682 683 return srcu_dereference(md->map, &md->io_barrier); 684 } 685 686 void dm_put_live_table(struct mapped_device *md, 687 int srcu_idx) __releases(md->io_barrier) 688 { 689 srcu_read_unlock(&md->io_barrier, srcu_idx); 690 } 691 692 void dm_sync_table(struct mapped_device *md) 693 { 694 synchronize_srcu(&md->io_barrier); 695 synchronize_rcu_expedited(); 696 } 697 698 /* 699 * A fast alternative to dm_get_live_table/dm_put_live_table. 700 * The caller must not block between these two functions. 701 */ 702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 703 { 704 rcu_read_lock(); 705 return rcu_dereference(md->map); 706 } 707 708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 709 { 710 rcu_read_unlock(); 711 } 712 713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md, 714 int *srcu_idx, struct bio *bio) 715 { 716 if (bio->bi_opf & REQ_NOWAIT) 717 return dm_get_live_table_fast(md); 718 else 719 return dm_get_live_table(md, srcu_idx); 720 } 721 722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx, 723 struct bio *bio) 724 { 725 if (bio->bi_opf & REQ_NOWAIT) 726 dm_put_live_table_fast(md); 727 else 728 dm_put_live_table(md, srcu_idx); 729 } 730 731 static char *_dm_claim_ptr = "I belong to device-mapper"; 732 733 /* 734 * Open a table device so we can use it as a map destination. 735 */ 736 static int open_table_device(struct table_device *td, dev_t dev, 737 struct mapped_device *md) 738 { 739 struct block_device *bdev; 740 u64 part_off; 741 int r; 742 743 BUG_ON(td->dm_dev.bdev); 744 745 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 746 if (IS_ERR(bdev)) 747 return PTR_ERR(bdev); 748 749 r = bd_link_disk_holder(bdev, dm_disk(md)); 750 if (r) { 751 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 752 return r; 753 } 754 755 td->dm_dev.bdev = bdev; 756 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 757 return 0; 758 } 759 760 /* 761 * Close a table device that we've been using. 762 */ 763 static void close_table_device(struct table_device *td, struct mapped_device *md) 764 { 765 if (!td->dm_dev.bdev) 766 return; 767 768 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 769 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 770 put_dax(td->dm_dev.dax_dev); 771 td->dm_dev.bdev = NULL; 772 td->dm_dev.dax_dev = NULL; 773 } 774 775 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 776 fmode_t mode) 777 { 778 struct table_device *td; 779 780 list_for_each_entry(td, l, list) 781 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 782 return td; 783 784 return NULL; 785 } 786 787 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 788 struct dm_dev **result) 789 { 790 int r; 791 struct table_device *td; 792 793 mutex_lock(&md->table_devices_lock); 794 td = find_table_device(&md->table_devices, dev, mode); 795 if (!td) { 796 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 797 if (!td) { 798 mutex_unlock(&md->table_devices_lock); 799 return -ENOMEM; 800 } 801 802 td->dm_dev.mode = mode; 803 td->dm_dev.bdev = NULL; 804 805 if ((r = open_table_device(td, dev, md))) { 806 mutex_unlock(&md->table_devices_lock); 807 kfree(td); 808 return r; 809 } 810 811 format_dev_t(td->dm_dev.name, dev); 812 813 refcount_set(&td->count, 1); 814 list_add(&td->list, &md->table_devices); 815 } else { 816 refcount_inc(&td->count); 817 } 818 mutex_unlock(&md->table_devices_lock); 819 820 *result = &td->dm_dev; 821 return 0; 822 } 823 824 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 825 { 826 struct table_device *td = container_of(d, struct table_device, dm_dev); 827 828 mutex_lock(&md->table_devices_lock); 829 if (refcount_dec_and_test(&td->count)) { 830 close_table_device(td, md); 831 list_del(&td->list); 832 kfree(td); 833 } 834 mutex_unlock(&md->table_devices_lock); 835 } 836 837 static void free_table_devices(struct list_head *devices) 838 { 839 struct list_head *tmp, *next; 840 841 list_for_each_safe(tmp, next, devices) { 842 struct table_device *td = list_entry(tmp, struct table_device, list); 843 844 DMWARN("dm_destroy: %s still exists with %d references", 845 td->dm_dev.name, refcount_read(&td->count)); 846 kfree(td); 847 } 848 } 849 850 /* 851 * Get the geometry associated with a dm device 852 */ 853 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 854 { 855 *geo = md->geometry; 856 857 return 0; 858 } 859 860 /* 861 * Set the geometry of a device. 862 */ 863 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 864 { 865 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 866 867 if (geo->start > sz) { 868 DMWARN("Start sector is beyond the geometry limits."); 869 return -EINVAL; 870 } 871 872 md->geometry = *geo; 873 874 return 0; 875 } 876 877 static int __noflush_suspending(struct mapped_device *md) 878 { 879 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 880 } 881 882 static void dm_io_complete(struct dm_io *io) 883 { 884 blk_status_t io_error; 885 struct mapped_device *md = io->md; 886 struct bio *bio = io->orig_bio; 887 888 if (io->status == BLK_STS_DM_REQUEUE) { 889 unsigned long flags; 890 /* 891 * Target requested pushing back the I/O. 892 */ 893 spin_lock_irqsave(&md->deferred_lock, flags); 894 if (__noflush_suspending(md) && 895 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 896 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 897 bio_list_add_head(&md->deferred, bio); 898 } else { 899 /* 900 * noflush suspend was interrupted or this is 901 * a write to a zoned target. 902 */ 903 io->status = BLK_STS_IOERR; 904 } 905 spin_unlock_irqrestore(&md->deferred_lock, flags); 906 } 907 908 io_error = io->status; 909 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 910 dm_end_io_acct(io); 911 else if (!io_error) { 912 /* 913 * Must handle target that DM_MAPIO_SUBMITTED only to 914 * then bio_endio() rather than dm_submit_bio_remap() 915 */ 916 __dm_start_io_acct(io); 917 dm_end_io_acct(io); 918 } 919 free_io(io); 920 smp_wmb(); 921 this_cpu_dec(*md->pending_io); 922 923 /* nudge anyone waiting on suspend queue */ 924 if (unlikely(wq_has_sleeper(&md->wait))) 925 wake_up(&md->wait); 926 927 if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) { 928 if (bio->bi_opf & REQ_POLLED) { 929 /* 930 * Upper layer won't help us poll split bio (io->orig_bio 931 * may only reflect a subset of the pre-split original) 932 * so clear REQ_POLLED in case of requeue. 933 */ 934 bio_clear_polled(bio); 935 if (io_error == BLK_STS_AGAIN) { 936 /* io_uring doesn't handle BLK_STS_AGAIN (yet) */ 937 queue_io(md, bio); 938 } 939 } 940 return; 941 } 942 943 if (bio_is_flush_with_data(bio)) { 944 /* 945 * Preflush done for flush with data, reissue 946 * without REQ_PREFLUSH. 947 */ 948 bio->bi_opf &= ~REQ_PREFLUSH; 949 queue_io(md, bio); 950 } else { 951 /* done with normal IO or empty flush */ 952 if (io_error) 953 bio->bi_status = io_error; 954 bio_endio(bio); 955 } 956 } 957 958 /* 959 * Decrements the number of outstanding ios that a bio has been 960 * cloned into, completing the original io if necc. 961 */ 962 static inline void __dm_io_dec_pending(struct dm_io *io) 963 { 964 if (atomic_dec_and_test(&io->io_count)) 965 dm_io_complete(io); 966 } 967 968 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 969 { 970 unsigned long flags; 971 972 /* Push-back supersedes any I/O errors */ 973 spin_lock_irqsave(&io->lock, flags); 974 if (!(io->status == BLK_STS_DM_REQUEUE && 975 __noflush_suspending(io->md))) { 976 io->status = error; 977 } 978 spin_unlock_irqrestore(&io->lock, flags); 979 } 980 981 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 982 { 983 if (unlikely(error)) 984 dm_io_set_error(io, error); 985 986 __dm_io_dec_pending(io); 987 } 988 989 void disable_discard(struct mapped_device *md) 990 { 991 struct queue_limits *limits = dm_get_queue_limits(md); 992 993 /* device doesn't really support DISCARD, disable it */ 994 limits->max_discard_sectors = 0; 995 } 996 997 void disable_write_zeroes(struct mapped_device *md) 998 { 999 struct queue_limits *limits = dm_get_queue_limits(md); 1000 1001 /* device doesn't really support WRITE ZEROES, disable it */ 1002 limits->max_write_zeroes_sectors = 0; 1003 } 1004 1005 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1006 { 1007 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1008 } 1009 1010 static void clone_endio(struct bio *bio) 1011 { 1012 blk_status_t error = bio->bi_status; 1013 struct dm_target_io *tio = clone_to_tio(bio); 1014 struct dm_target *ti = tio->ti; 1015 dm_endio_fn endio = ti->type->end_io; 1016 struct dm_io *io = tio->io; 1017 struct mapped_device *md = io->md; 1018 1019 if (likely(bio->bi_bdev != md->disk->part0)) { 1020 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1021 1022 if (unlikely(error == BLK_STS_TARGET)) { 1023 if (bio_op(bio) == REQ_OP_DISCARD && 1024 !bdev_max_discard_sectors(bio->bi_bdev)) 1025 disable_discard(md); 1026 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1027 !q->limits.max_write_zeroes_sectors) 1028 disable_write_zeroes(md); 1029 } 1030 1031 if (static_branch_unlikely(&zoned_enabled) && 1032 unlikely(blk_queue_is_zoned(q))) 1033 dm_zone_endio(io, bio); 1034 } 1035 1036 if (endio) { 1037 int r = endio(ti, bio, &error); 1038 switch (r) { 1039 case DM_ENDIO_REQUEUE: 1040 if (static_branch_unlikely(&zoned_enabled)) { 1041 /* 1042 * Requeuing writes to a sequential zone of a zoned 1043 * target will break the sequential write pattern: 1044 * fail such IO. 1045 */ 1046 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1047 error = BLK_STS_IOERR; 1048 else 1049 error = BLK_STS_DM_REQUEUE; 1050 } else 1051 error = BLK_STS_DM_REQUEUE; 1052 fallthrough; 1053 case DM_ENDIO_DONE: 1054 break; 1055 case DM_ENDIO_INCOMPLETE: 1056 /* The target will handle the io */ 1057 return; 1058 default: 1059 DMWARN("unimplemented target endio return value: %d", r); 1060 BUG(); 1061 } 1062 } 1063 1064 if (static_branch_unlikely(&swap_bios_enabled) && 1065 unlikely(swap_bios_limit(ti, bio))) 1066 up(&md->swap_bios_semaphore); 1067 1068 free_tio(bio); 1069 dm_io_dec_pending(io, error); 1070 } 1071 1072 /* 1073 * Return maximum size of I/O possible at the supplied sector up to the current 1074 * target boundary. 1075 */ 1076 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1077 sector_t target_offset) 1078 { 1079 return ti->len - target_offset; 1080 } 1081 1082 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 1083 { 1084 sector_t target_offset = dm_target_offset(ti, sector); 1085 sector_t len = max_io_len_target_boundary(ti, target_offset); 1086 sector_t max_len; 1087 1088 /* 1089 * Does the target need to split IO even further? 1090 * - varied (per target) IO splitting is a tenet of DM; this 1091 * explains why stacked chunk_sectors based splitting via 1092 * blk_max_size_offset() isn't possible here. So pass in 1093 * ti->max_io_len to override stacked chunk_sectors. 1094 */ 1095 if (ti->max_io_len) { 1096 max_len = blk_max_size_offset(ti->table->md->queue, 1097 target_offset, ti->max_io_len); 1098 if (len > max_len) 1099 len = max_len; 1100 } 1101 1102 return len; 1103 } 1104 1105 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1106 { 1107 if (len > UINT_MAX) { 1108 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1109 (unsigned long long)len, UINT_MAX); 1110 ti->error = "Maximum size of target IO is too large"; 1111 return -EINVAL; 1112 } 1113 1114 ti->max_io_len = (uint32_t) len; 1115 1116 return 0; 1117 } 1118 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1119 1120 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1121 sector_t sector, int *srcu_idx) 1122 __acquires(md->io_barrier) 1123 { 1124 struct dm_table *map; 1125 struct dm_target *ti; 1126 1127 map = dm_get_live_table(md, srcu_idx); 1128 if (!map) 1129 return NULL; 1130 1131 ti = dm_table_find_target(map, sector); 1132 if (!ti) 1133 return NULL; 1134 1135 return ti; 1136 } 1137 1138 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1139 long nr_pages, enum dax_access_mode mode, void **kaddr, 1140 pfn_t *pfn) 1141 { 1142 struct mapped_device *md = dax_get_private(dax_dev); 1143 sector_t sector = pgoff * PAGE_SECTORS; 1144 struct dm_target *ti; 1145 long len, ret = -EIO; 1146 int srcu_idx; 1147 1148 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1149 1150 if (!ti) 1151 goto out; 1152 if (!ti->type->direct_access) 1153 goto out; 1154 len = max_io_len(ti, sector) / PAGE_SECTORS; 1155 if (len < 1) 1156 goto out; 1157 nr_pages = min(len, nr_pages); 1158 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1159 1160 out: 1161 dm_put_live_table(md, srcu_idx); 1162 1163 return ret; 1164 } 1165 1166 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1167 size_t nr_pages) 1168 { 1169 struct mapped_device *md = dax_get_private(dax_dev); 1170 sector_t sector = pgoff * PAGE_SECTORS; 1171 struct dm_target *ti; 1172 int ret = -EIO; 1173 int srcu_idx; 1174 1175 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1176 1177 if (!ti) 1178 goto out; 1179 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1180 /* 1181 * ->zero_page_range() is mandatory dax operation. If we are 1182 * here, something is wrong. 1183 */ 1184 goto out; 1185 } 1186 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1187 out: 1188 dm_put_live_table(md, srcu_idx); 1189 1190 return ret; 1191 } 1192 1193 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1194 void *addr, size_t bytes, struct iov_iter *i) 1195 { 1196 struct mapped_device *md = dax_get_private(dax_dev); 1197 sector_t sector = pgoff * PAGE_SECTORS; 1198 struct dm_target *ti; 1199 int srcu_idx; 1200 long ret = 0; 1201 1202 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1203 if (!ti || !ti->type->dax_recovery_write) 1204 goto out; 1205 1206 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1207 out: 1208 dm_put_live_table(md, srcu_idx); 1209 return ret; 1210 } 1211 1212 /* 1213 * A target may call dm_accept_partial_bio only from the map routine. It is 1214 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1215 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1216 * __send_duplicate_bios(). 1217 * 1218 * dm_accept_partial_bio informs the dm that the target only wants to process 1219 * additional n_sectors sectors of the bio and the rest of the data should be 1220 * sent in a next bio. 1221 * 1222 * A diagram that explains the arithmetics: 1223 * +--------------------+---------------+-------+ 1224 * | 1 | 2 | 3 | 1225 * +--------------------+---------------+-------+ 1226 * 1227 * <-------------- *tio->len_ptr ---------------> 1228 * <----- bio_sectors -----> 1229 * <-- n_sectors --> 1230 * 1231 * Region 1 was already iterated over with bio_advance or similar function. 1232 * (it may be empty if the target doesn't use bio_advance) 1233 * Region 2 is the remaining bio size that the target wants to process. 1234 * (it may be empty if region 1 is non-empty, although there is no reason 1235 * to make it empty) 1236 * The target requires that region 3 is to be sent in the next bio. 1237 * 1238 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1239 * the partially processed part (the sum of regions 1+2) must be the same for all 1240 * copies of the bio. 1241 */ 1242 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1243 { 1244 struct dm_target_io *tio = clone_to_tio(bio); 1245 unsigned bio_sectors = bio_sectors(bio); 1246 1247 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1248 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1249 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1250 BUG_ON(bio_sectors > *tio->len_ptr); 1251 BUG_ON(n_sectors > bio_sectors); 1252 1253 *tio->len_ptr -= bio_sectors - n_sectors; 1254 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1255 1256 /* 1257 * __split_and_process_bio() may have already saved mapped part 1258 * for accounting but it is being reduced so update accordingly. 1259 */ 1260 dm_io_set_flag(tio->io, DM_IO_WAS_SPLIT); 1261 tio->io->sectors = n_sectors; 1262 } 1263 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1264 1265 /* 1266 * @clone: clone bio that DM core passed to target's .map function 1267 * @tgt_clone: clone of @clone bio that target needs submitted 1268 * 1269 * Targets should use this interface to submit bios they take 1270 * ownership of when returning DM_MAPIO_SUBMITTED. 1271 * 1272 * Target should also enable ti->accounts_remapped_io 1273 */ 1274 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1275 { 1276 struct dm_target_io *tio = clone_to_tio(clone); 1277 struct dm_io *io = tio->io; 1278 1279 /* establish bio that will get submitted */ 1280 if (!tgt_clone) 1281 tgt_clone = clone; 1282 1283 /* 1284 * Account io->origin_bio to DM dev on behalf of target 1285 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1286 */ 1287 dm_start_io_acct(io, clone); 1288 1289 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1290 tio->old_sector); 1291 submit_bio_noacct(tgt_clone); 1292 } 1293 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1294 1295 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1296 { 1297 mutex_lock(&md->swap_bios_lock); 1298 while (latch < md->swap_bios) { 1299 cond_resched(); 1300 down(&md->swap_bios_semaphore); 1301 md->swap_bios--; 1302 } 1303 while (latch > md->swap_bios) { 1304 cond_resched(); 1305 up(&md->swap_bios_semaphore); 1306 md->swap_bios++; 1307 } 1308 mutex_unlock(&md->swap_bios_lock); 1309 } 1310 1311 static void __map_bio(struct bio *clone) 1312 { 1313 struct dm_target_io *tio = clone_to_tio(clone); 1314 struct dm_target *ti = tio->ti; 1315 struct dm_io *io = tio->io; 1316 struct mapped_device *md = io->md; 1317 int r; 1318 1319 clone->bi_end_io = clone_endio; 1320 1321 /* 1322 * Map the clone. 1323 */ 1324 tio->old_sector = clone->bi_iter.bi_sector; 1325 1326 if (static_branch_unlikely(&swap_bios_enabled) && 1327 unlikely(swap_bios_limit(ti, clone))) { 1328 int latch = get_swap_bios(); 1329 if (unlikely(latch != md->swap_bios)) 1330 __set_swap_bios_limit(md, latch); 1331 down(&md->swap_bios_semaphore); 1332 } 1333 1334 if (static_branch_unlikely(&zoned_enabled)) { 1335 /* 1336 * Check if the IO needs a special mapping due to zone append 1337 * emulation on zoned target. In this case, dm_zone_map_bio() 1338 * calls the target map operation. 1339 */ 1340 if (unlikely(dm_emulate_zone_append(md))) 1341 r = dm_zone_map_bio(tio); 1342 else 1343 r = ti->type->map(ti, clone); 1344 } else 1345 r = ti->type->map(ti, clone); 1346 1347 switch (r) { 1348 case DM_MAPIO_SUBMITTED: 1349 /* target has assumed ownership of this io */ 1350 if (!ti->accounts_remapped_io) 1351 dm_start_io_acct(io, clone); 1352 break; 1353 case DM_MAPIO_REMAPPED: 1354 dm_submit_bio_remap(clone, NULL); 1355 break; 1356 case DM_MAPIO_KILL: 1357 case DM_MAPIO_REQUEUE: 1358 if (static_branch_unlikely(&swap_bios_enabled) && 1359 unlikely(swap_bios_limit(ti, clone))) 1360 up(&md->swap_bios_semaphore); 1361 free_tio(clone); 1362 if (r == DM_MAPIO_KILL) 1363 dm_io_dec_pending(io, BLK_STS_IOERR); 1364 else 1365 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1366 break; 1367 default: 1368 DMWARN("unimplemented target map return value: %d", r); 1369 BUG(); 1370 } 1371 } 1372 1373 static void setup_split_accounting(struct clone_info *ci, unsigned len) 1374 { 1375 struct dm_io *io = ci->io; 1376 1377 if (ci->sector_count > len) { 1378 /* 1379 * Split needed, save the mapped part for accounting. 1380 * NOTE: dm_accept_partial_bio() will update accordingly. 1381 */ 1382 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1383 io->sectors = len; 1384 } 1385 1386 if (static_branch_unlikely(&stats_enabled) && 1387 unlikely(dm_stats_used(&io->md->stats))) { 1388 /* 1389 * Save bi_sector in terms of its offset from end of 1390 * original bio, only needed for DM-stats' benefit. 1391 * - saved regardless of whether split needed so that 1392 * dm_accept_partial_bio() doesn't need to. 1393 */ 1394 io->sector_offset = bio_end_sector(ci->bio) - ci->sector; 1395 } 1396 } 1397 1398 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1399 struct dm_target *ti, unsigned num_bios) 1400 { 1401 struct bio *bio; 1402 int try; 1403 1404 for (try = 0; try < 2; try++) { 1405 int bio_nr; 1406 1407 if (try) 1408 mutex_lock(&ci->io->md->table_devices_lock); 1409 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1410 bio = alloc_tio(ci, ti, bio_nr, NULL, 1411 try ? GFP_NOIO : GFP_NOWAIT); 1412 if (!bio) 1413 break; 1414 1415 bio_list_add(blist, bio); 1416 } 1417 if (try) 1418 mutex_unlock(&ci->io->md->table_devices_lock); 1419 if (bio_nr == num_bios) 1420 return; 1421 1422 while ((bio = bio_list_pop(blist))) 1423 free_tio(bio); 1424 } 1425 } 1426 1427 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1428 unsigned num_bios, unsigned *len) 1429 { 1430 struct bio_list blist = BIO_EMPTY_LIST; 1431 struct bio *clone; 1432 int ret = 0; 1433 1434 switch (num_bios) { 1435 case 0: 1436 break; 1437 case 1: 1438 if (len) 1439 setup_split_accounting(ci, *len); 1440 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1441 __map_bio(clone); 1442 ret = 1; 1443 break; 1444 default: 1445 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1446 alloc_multiple_bios(&blist, ci, ti, num_bios); 1447 while ((clone = bio_list_pop(&blist))) { 1448 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1449 __map_bio(clone); 1450 ret += 1; 1451 } 1452 break; 1453 } 1454 1455 return ret; 1456 } 1457 1458 static void __send_empty_flush(struct clone_info *ci) 1459 { 1460 unsigned target_nr = 0; 1461 struct dm_target *ti; 1462 struct bio flush_bio; 1463 1464 /* 1465 * Use an on-stack bio for this, it's safe since we don't 1466 * need to reference it after submit. It's just used as 1467 * the basis for the clone(s). 1468 */ 1469 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1470 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1471 1472 ci->bio = &flush_bio; 1473 ci->sector_count = 0; 1474 ci->io->tio.clone.bi_iter.bi_size = 0; 1475 1476 while ((ti = dm_table_get_target(ci->map, target_nr++))) { 1477 int bios; 1478 1479 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1480 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1481 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1482 } 1483 1484 /* 1485 * alloc_io() takes one extra reference for submission, so the 1486 * reference won't reach 0 without the following subtraction 1487 */ 1488 atomic_sub(1, &ci->io->io_count); 1489 1490 bio_uninit(ci->bio); 1491 } 1492 1493 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1494 unsigned num_bios) 1495 { 1496 unsigned len; 1497 int bios; 1498 1499 len = min_t(sector_t, ci->sector_count, 1500 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1501 1502 atomic_add(num_bios, &ci->io->io_count); 1503 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1504 /* 1505 * alloc_io() takes one extra reference for submission, so the 1506 * reference won't reach 0 without the following (+1) subtraction 1507 */ 1508 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1509 1510 ci->sector += len; 1511 ci->sector_count -= len; 1512 } 1513 1514 static bool is_abnormal_io(struct bio *bio) 1515 { 1516 unsigned int op = bio_op(bio); 1517 1518 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1519 switch (op) { 1520 case REQ_OP_DISCARD: 1521 case REQ_OP_SECURE_ERASE: 1522 case REQ_OP_WRITE_ZEROES: 1523 return true; 1524 default: 1525 break; 1526 } 1527 } 1528 1529 return false; 1530 } 1531 1532 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1533 struct dm_target *ti) 1534 { 1535 unsigned num_bios = 0; 1536 1537 switch (bio_op(ci->bio)) { 1538 case REQ_OP_DISCARD: 1539 num_bios = ti->num_discard_bios; 1540 break; 1541 case REQ_OP_SECURE_ERASE: 1542 num_bios = ti->num_secure_erase_bios; 1543 break; 1544 case REQ_OP_WRITE_ZEROES: 1545 num_bios = ti->num_write_zeroes_bios; 1546 break; 1547 } 1548 1549 /* 1550 * Even though the device advertised support for this type of 1551 * request, that does not mean every target supports it, and 1552 * reconfiguration might also have changed that since the 1553 * check was performed. 1554 */ 1555 if (unlikely(!num_bios)) 1556 return BLK_STS_NOTSUPP; 1557 1558 __send_changing_extent_only(ci, ti, num_bios); 1559 return BLK_STS_OK; 1560 } 1561 1562 /* 1563 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1564 * associated with this bio, and this bio's bi_private needs to be 1565 * stored in dm_io->data before the reuse. 1566 * 1567 * bio->bi_private is owned by fs or upper layer, so block layer won't 1568 * touch it after splitting. Meantime it won't be changed by anyone after 1569 * bio is submitted. So this reuse is safe. 1570 */ 1571 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1572 { 1573 return (struct dm_io **)&bio->bi_private; 1574 } 1575 1576 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1577 { 1578 struct dm_io **head = dm_poll_list_head(bio); 1579 1580 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1581 bio->bi_opf |= REQ_DM_POLL_LIST; 1582 /* 1583 * Save .bi_private into dm_io, so that we can reuse 1584 * .bi_private as dm_io list head for storing dm_io list 1585 */ 1586 io->data = bio->bi_private; 1587 1588 /* tell block layer to poll for completion */ 1589 bio->bi_cookie = ~BLK_QC_T_NONE; 1590 1591 io->next = NULL; 1592 } else { 1593 /* 1594 * bio recursed due to split, reuse original poll list, 1595 * and save bio->bi_private too. 1596 */ 1597 io->data = (*head)->data; 1598 io->next = *head; 1599 } 1600 1601 *head = io; 1602 } 1603 1604 /* 1605 * Select the correct strategy for processing a non-flush bio. 1606 */ 1607 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1608 { 1609 struct bio *clone; 1610 struct dm_target *ti; 1611 unsigned len; 1612 1613 ti = dm_table_find_target(ci->map, ci->sector); 1614 if (unlikely(!ti)) 1615 return BLK_STS_IOERR; 1616 else if (unlikely(ci->is_abnormal_io)) 1617 return __process_abnormal_io(ci, ti); 1618 1619 /* 1620 * Only support bio polling for normal IO, and the target io is 1621 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1622 */ 1623 ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED; 1624 1625 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1626 setup_split_accounting(ci, len); 1627 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1628 __map_bio(clone); 1629 1630 ci->sector += len; 1631 ci->sector_count -= len; 1632 1633 return BLK_STS_OK; 1634 } 1635 1636 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1637 struct dm_table *map, struct bio *bio, bool is_abnormal) 1638 { 1639 ci->map = map; 1640 ci->io = alloc_io(md, bio); 1641 ci->bio = bio; 1642 ci->is_abnormal_io = is_abnormal; 1643 ci->submit_as_polled = false; 1644 ci->sector = bio->bi_iter.bi_sector; 1645 ci->sector_count = bio_sectors(bio); 1646 1647 /* Shouldn't happen but sector_count was being set to 0 so... */ 1648 if (static_branch_unlikely(&zoned_enabled) && 1649 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1650 ci->sector_count = 0; 1651 } 1652 1653 /* 1654 * Entry point to split a bio into clones and submit them to the targets. 1655 */ 1656 static void dm_split_and_process_bio(struct mapped_device *md, 1657 struct dm_table *map, struct bio *bio) 1658 { 1659 struct clone_info ci; 1660 struct dm_io *io; 1661 blk_status_t error = BLK_STS_OK; 1662 bool is_abnormal; 1663 1664 is_abnormal = is_abnormal_io(bio); 1665 if (unlikely(is_abnormal)) { 1666 /* 1667 * Use blk_queue_split() for abnormal IO (e.g. discard, etc) 1668 * otherwise associated queue_limits won't be imposed. 1669 */ 1670 blk_queue_split(&bio); 1671 } 1672 1673 init_clone_info(&ci, md, map, bio, is_abnormal); 1674 io = ci.io; 1675 1676 if (bio->bi_opf & REQ_PREFLUSH) { 1677 __send_empty_flush(&ci); 1678 /* dm_io_complete submits any data associated with flush */ 1679 goto out; 1680 } 1681 1682 error = __split_and_process_bio(&ci); 1683 if (error || !ci.sector_count) 1684 goto out; 1685 /* 1686 * Remainder must be passed to submit_bio_noacct() so it gets handled 1687 * *after* bios already submitted have been completely processed. 1688 */ 1689 bio_trim(bio, io->sectors, ci.sector_count); 1690 trace_block_split(bio, bio->bi_iter.bi_sector); 1691 bio_inc_remaining(bio); 1692 submit_bio_noacct(bio); 1693 out: 1694 /* 1695 * Drop the extra reference count for non-POLLED bio, and hold one 1696 * reference for POLLED bio, which will be released in dm_poll_bio 1697 * 1698 * Add every dm_io instance into the dm_io list head which is stored 1699 * in bio->bi_private, so that dm_poll_bio can poll them all. 1700 */ 1701 if (error || !ci.submit_as_polled) { 1702 /* 1703 * In case of submission failure, the extra reference for 1704 * submitting io isn't consumed yet 1705 */ 1706 if (error) 1707 atomic_dec(&io->io_count); 1708 dm_io_dec_pending(io, error); 1709 } else 1710 dm_queue_poll_io(bio, io); 1711 } 1712 1713 static void dm_submit_bio(struct bio *bio) 1714 { 1715 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1716 int srcu_idx; 1717 struct dm_table *map; 1718 1719 map = dm_get_live_table_bio(md, &srcu_idx, bio); 1720 1721 /* If suspended, or map not yet available, queue this IO for later */ 1722 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1723 unlikely(!map)) { 1724 if (bio->bi_opf & REQ_NOWAIT) 1725 bio_wouldblock_error(bio); 1726 else if (bio->bi_opf & REQ_RAHEAD) 1727 bio_io_error(bio); 1728 else 1729 queue_io(md, bio); 1730 goto out; 1731 } 1732 1733 dm_split_and_process_bio(md, map, bio); 1734 out: 1735 dm_put_live_table_bio(md, srcu_idx, bio); 1736 } 1737 1738 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1739 unsigned int flags) 1740 { 1741 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1742 1743 /* don't poll if the mapped io is done */ 1744 if (atomic_read(&io->io_count) > 1) 1745 bio_poll(&io->tio.clone, iob, flags); 1746 1747 /* bio_poll holds the last reference */ 1748 return atomic_read(&io->io_count) == 1; 1749 } 1750 1751 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1752 unsigned int flags) 1753 { 1754 struct dm_io **head = dm_poll_list_head(bio); 1755 struct dm_io *list = *head; 1756 struct dm_io *tmp = NULL; 1757 struct dm_io *curr, *next; 1758 1759 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1760 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1761 return 0; 1762 1763 WARN_ON_ONCE(!list); 1764 1765 /* 1766 * Restore .bi_private before possibly completing dm_io. 1767 * 1768 * bio_poll() is only possible once @bio has been completely 1769 * submitted via submit_bio_noacct()'s depth-first submission. 1770 * So there is no dm_queue_poll_io() race associated with 1771 * clearing REQ_DM_POLL_LIST here. 1772 */ 1773 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1774 bio->bi_private = list->data; 1775 1776 for (curr = list, next = curr->next; curr; curr = next, next = 1777 curr ? curr->next : NULL) { 1778 if (dm_poll_dm_io(curr, iob, flags)) { 1779 /* 1780 * clone_endio() has already occurred, so no 1781 * error handling is needed here. 1782 */ 1783 __dm_io_dec_pending(curr); 1784 } else { 1785 curr->next = tmp; 1786 tmp = curr; 1787 } 1788 } 1789 1790 /* Not done? */ 1791 if (tmp) { 1792 bio->bi_opf |= REQ_DM_POLL_LIST; 1793 /* Reset bio->bi_private to dm_io list head */ 1794 *head = tmp; 1795 return 0; 1796 } 1797 return 1; 1798 } 1799 1800 /*----------------------------------------------------------------- 1801 * An IDR is used to keep track of allocated minor numbers. 1802 *---------------------------------------------------------------*/ 1803 static void free_minor(int minor) 1804 { 1805 spin_lock(&_minor_lock); 1806 idr_remove(&_minor_idr, minor); 1807 spin_unlock(&_minor_lock); 1808 } 1809 1810 /* 1811 * See if the device with a specific minor # is free. 1812 */ 1813 static int specific_minor(int minor) 1814 { 1815 int r; 1816 1817 if (minor >= (1 << MINORBITS)) 1818 return -EINVAL; 1819 1820 idr_preload(GFP_KERNEL); 1821 spin_lock(&_minor_lock); 1822 1823 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1824 1825 spin_unlock(&_minor_lock); 1826 idr_preload_end(); 1827 if (r < 0) 1828 return r == -ENOSPC ? -EBUSY : r; 1829 return 0; 1830 } 1831 1832 static int next_free_minor(int *minor) 1833 { 1834 int r; 1835 1836 idr_preload(GFP_KERNEL); 1837 spin_lock(&_minor_lock); 1838 1839 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1840 1841 spin_unlock(&_minor_lock); 1842 idr_preload_end(); 1843 if (r < 0) 1844 return r; 1845 *minor = r; 1846 return 0; 1847 } 1848 1849 static const struct block_device_operations dm_blk_dops; 1850 static const struct block_device_operations dm_rq_blk_dops; 1851 static const struct dax_operations dm_dax_ops; 1852 1853 static void dm_wq_work(struct work_struct *work); 1854 1855 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1856 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1857 { 1858 dm_destroy_crypto_profile(q->crypto_profile); 1859 } 1860 1861 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1862 1863 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1864 { 1865 } 1866 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1867 1868 static void cleanup_mapped_device(struct mapped_device *md) 1869 { 1870 if (md->wq) 1871 destroy_workqueue(md->wq); 1872 dm_free_md_mempools(md->mempools); 1873 1874 if (md->dax_dev) { 1875 dax_remove_host(md->disk); 1876 kill_dax(md->dax_dev); 1877 put_dax(md->dax_dev); 1878 md->dax_dev = NULL; 1879 } 1880 1881 dm_cleanup_zoned_dev(md); 1882 if (md->disk) { 1883 spin_lock(&_minor_lock); 1884 md->disk->private_data = NULL; 1885 spin_unlock(&_minor_lock); 1886 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1887 dm_sysfs_exit(md); 1888 del_gendisk(md->disk); 1889 } 1890 dm_queue_destroy_crypto_profile(md->queue); 1891 blk_cleanup_disk(md->disk); 1892 } 1893 1894 if (md->pending_io) { 1895 free_percpu(md->pending_io); 1896 md->pending_io = NULL; 1897 } 1898 1899 cleanup_srcu_struct(&md->io_barrier); 1900 1901 mutex_destroy(&md->suspend_lock); 1902 mutex_destroy(&md->type_lock); 1903 mutex_destroy(&md->table_devices_lock); 1904 mutex_destroy(&md->swap_bios_lock); 1905 1906 dm_mq_cleanup_mapped_device(md); 1907 } 1908 1909 /* 1910 * Allocate and initialise a blank device with a given minor. 1911 */ 1912 static struct mapped_device *alloc_dev(int minor) 1913 { 1914 int r, numa_node_id = dm_get_numa_node(); 1915 struct mapped_device *md; 1916 void *old_md; 1917 1918 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1919 if (!md) { 1920 DMWARN("unable to allocate device, out of memory."); 1921 return NULL; 1922 } 1923 1924 if (!try_module_get(THIS_MODULE)) 1925 goto bad_module_get; 1926 1927 /* get a minor number for the dev */ 1928 if (minor == DM_ANY_MINOR) 1929 r = next_free_minor(&minor); 1930 else 1931 r = specific_minor(minor); 1932 if (r < 0) 1933 goto bad_minor; 1934 1935 r = init_srcu_struct(&md->io_barrier); 1936 if (r < 0) 1937 goto bad_io_barrier; 1938 1939 md->numa_node_id = numa_node_id; 1940 md->init_tio_pdu = false; 1941 md->type = DM_TYPE_NONE; 1942 mutex_init(&md->suspend_lock); 1943 mutex_init(&md->type_lock); 1944 mutex_init(&md->table_devices_lock); 1945 spin_lock_init(&md->deferred_lock); 1946 atomic_set(&md->holders, 1); 1947 atomic_set(&md->open_count, 0); 1948 atomic_set(&md->event_nr, 0); 1949 atomic_set(&md->uevent_seq, 0); 1950 INIT_LIST_HEAD(&md->uevent_list); 1951 INIT_LIST_HEAD(&md->table_devices); 1952 spin_lock_init(&md->uevent_lock); 1953 1954 /* 1955 * default to bio-based until DM table is loaded and md->type 1956 * established. If request-based table is loaded: blk-mq will 1957 * override accordingly. 1958 */ 1959 md->disk = blk_alloc_disk(md->numa_node_id); 1960 if (!md->disk) 1961 goto bad; 1962 md->queue = md->disk->queue; 1963 1964 init_waitqueue_head(&md->wait); 1965 INIT_WORK(&md->work, dm_wq_work); 1966 init_waitqueue_head(&md->eventq); 1967 init_completion(&md->kobj_holder.completion); 1968 1969 md->swap_bios = get_swap_bios(); 1970 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1971 mutex_init(&md->swap_bios_lock); 1972 1973 md->disk->major = _major; 1974 md->disk->first_minor = minor; 1975 md->disk->minors = 1; 1976 md->disk->flags |= GENHD_FL_NO_PART; 1977 md->disk->fops = &dm_blk_dops; 1978 md->disk->queue = md->queue; 1979 md->disk->private_data = md; 1980 sprintf(md->disk->disk_name, "dm-%d", minor); 1981 1982 if (IS_ENABLED(CONFIG_FS_DAX)) { 1983 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1984 if (IS_ERR(md->dax_dev)) { 1985 md->dax_dev = NULL; 1986 goto bad; 1987 } 1988 set_dax_nocache(md->dax_dev); 1989 set_dax_nomc(md->dax_dev); 1990 if (dax_add_host(md->dax_dev, md->disk)) 1991 goto bad; 1992 } 1993 1994 format_dev_t(md->name, MKDEV(_major, minor)); 1995 1996 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 1997 if (!md->wq) 1998 goto bad; 1999 2000 md->pending_io = alloc_percpu(unsigned long); 2001 if (!md->pending_io) 2002 goto bad; 2003 2004 dm_stats_init(&md->stats); 2005 2006 /* Populate the mapping, nobody knows we exist yet */ 2007 spin_lock(&_minor_lock); 2008 old_md = idr_replace(&_minor_idr, md, minor); 2009 spin_unlock(&_minor_lock); 2010 2011 BUG_ON(old_md != MINOR_ALLOCED); 2012 2013 return md; 2014 2015 bad: 2016 cleanup_mapped_device(md); 2017 bad_io_barrier: 2018 free_minor(minor); 2019 bad_minor: 2020 module_put(THIS_MODULE); 2021 bad_module_get: 2022 kvfree(md); 2023 return NULL; 2024 } 2025 2026 static void unlock_fs(struct mapped_device *md); 2027 2028 static void free_dev(struct mapped_device *md) 2029 { 2030 int minor = MINOR(disk_devt(md->disk)); 2031 2032 unlock_fs(md); 2033 2034 cleanup_mapped_device(md); 2035 2036 free_table_devices(&md->table_devices); 2037 dm_stats_cleanup(&md->stats); 2038 free_minor(minor); 2039 2040 module_put(THIS_MODULE); 2041 kvfree(md); 2042 } 2043 2044 /* 2045 * Bind a table to the device. 2046 */ 2047 static void event_callback(void *context) 2048 { 2049 unsigned long flags; 2050 LIST_HEAD(uevents); 2051 struct mapped_device *md = (struct mapped_device *) context; 2052 2053 spin_lock_irqsave(&md->uevent_lock, flags); 2054 list_splice_init(&md->uevent_list, &uevents); 2055 spin_unlock_irqrestore(&md->uevent_lock, flags); 2056 2057 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2058 2059 atomic_inc(&md->event_nr); 2060 wake_up(&md->eventq); 2061 dm_issue_global_event(); 2062 } 2063 2064 /* 2065 * Returns old map, which caller must destroy. 2066 */ 2067 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2068 struct queue_limits *limits) 2069 { 2070 struct dm_table *old_map; 2071 sector_t size; 2072 int ret; 2073 2074 lockdep_assert_held(&md->suspend_lock); 2075 2076 size = dm_table_get_size(t); 2077 2078 /* 2079 * Wipe any geometry if the size of the table changed. 2080 */ 2081 if (size != dm_get_size(md)) 2082 memset(&md->geometry, 0, sizeof(md->geometry)); 2083 2084 if (!get_capacity(md->disk)) 2085 set_capacity(md->disk, size); 2086 else 2087 set_capacity_and_notify(md->disk, size); 2088 2089 dm_table_event_callback(t, event_callback, md); 2090 2091 if (dm_table_request_based(t)) { 2092 /* 2093 * Leverage the fact that request-based DM targets are 2094 * immutable singletons - used to optimize dm_mq_queue_rq. 2095 */ 2096 md->immutable_target = dm_table_get_immutable_target(t); 2097 2098 /* 2099 * There is no need to reload with request-based dm because the 2100 * size of front_pad doesn't change. 2101 * 2102 * Note for future: If you are to reload bioset, prep-ed 2103 * requests in the queue may refer to bio from the old bioset, 2104 * so you must walk through the queue to unprep. 2105 */ 2106 if (!md->mempools) { 2107 md->mempools = t->mempools; 2108 t->mempools = NULL; 2109 } 2110 } else { 2111 /* 2112 * The md may already have mempools that need changing. 2113 * If so, reload bioset because front_pad may have changed 2114 * because a different table was loaded. 2115 */ 2116 dm_free_md_mempools(md->mempools); 2117 md->mempools = t->mempools; 2118 t->mempools = NULL; 2119 } 2120 2121 ret = dm_table_set_restrictions(t, md->queue, limits); 2122 if (ret) { 2123 old_map = ERR_PTR(ret); 2124 goto out; 2125 } 2126 2127 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2128 rcu_assign_pointer(md->map, (void *)t); 2129 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2130 2131 if (old_map) 2132 dm_sync_table(md); 2133 out: 2134 return old_map; 2135 } 2136 2137 /* 2138 * Returns unbound table for the caller to free. 2139 */ 2140 static struct dm_table *__unbind(struct mapped_device *md) 2141 { 2142 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2143 2144 if (!map) 2145 return NULL; 2146 2147 dm_table_event_callback(map, NULL, NULL); 2148 RCU_INIT_POINTER(md->map, NULL); 2149 dm_sync_table(md); 2150 2151 return map; 2152 } 2153 2154 /* 2155 * Constructor for a new device. 2156 */ 2157 int dm_create(int minor, struct mapped_device **result) 2158 { 2159 struct mapped_device *md; 2160 2161 md = alloc_dev(minor); 2162 if (!md) 2163 return -ENXIO; 2164 2165 dm_ima_reset_data(md); 2166 2167 *result = md; 2168 return 0; 2169 } 2170 2171 /* 2172 * Functions to manage md->type. 2173 * All are required to hold md->type_lock. 2174 */ 2175 void dm_lock_md_type(struct mapped_device *md) 2176 { 2177 mutex_lock(&md->type_lock); 2178 } 2179 2180 void dm_unlock_md_type(struct mapped_device *md) 2181 { 2182 mutex_unlock(&md->type_lock); 2183 } 2184 2185 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2186 { 2187 BUG_ON(!mutex_is_locked(&md->type_lock)); 2188 md->type = type; 2189 } 2190 2191 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2192 { 2193 return md->type; 2194 } 2195 2196 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2197 { 2198 return md->immutable_target_type; 2199 } 2200 2201 /* 2202 * The queue_limits are only valid as long as you have a reference 2203 * count on 'md'. 2204 */ 2205 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2206 { 2207 BUG_ON(!atomic_read(&md->holders)); 2208 return &md->queue->limits; 2209 } 2210 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2211 2212 /* 2213 * Setup the DM device's queue based on md's type 2214 */ 2215 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2216 { 2217 enum dm_queue_mode type = dm_table_get_type(t); 2218 struct queue_limits limits; 2219 int r; 2220 2221 switch (type) { 2222 case DM_TYPE_REQUEST_BASED: 2223 md->disk->fops = &dm_rq_blk_dops; 2224 r = dm_mq_init_request_queue(md, t); 2225 if (r) { 2226 DMERR("Cannot initialize queue for request-based dm mapped device"); 2227 return r; 2228 } 2229 break; 2230 case DM_TYPE_BIO_BASED: 2231 case DM_TYPE_DAX_BIO_BASED: 2232 break; 2233 case DM_TYPE_NONE: 2234 WARN_ON_ONCE(true); 2235 break; 2236 } 2237 2238 r = dm_calculate_queue_limits(t, &limits); 2239 if (r) { 2240 DMERR("Cannot calculate initial queue limits"); 2241 return r; 2242 } 2243 r = dm_table_set_restrictions(t, md->queue, &limits); 2244 if (r) 2245 return r; 2246 2247 r = add_disk(md->disk); 2248 if (r) 2249 return r; 2250 2251 r = dm_sysfs_init(md); 2252 if (r) { 2253 del_gendisk(md->disk); 2254 return r; 2255 } 2256 md->type = type; 2257 return 0; 2258 } 2259 2260 struct mapped_device *dm_get_md(dev_t dev) 2261 { 2262 struct mapped_device *md; 2263 unsigned minor = MINOR(dev); 2264 2265 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2266 return NULL; 2267 2268 spin_lock(&_minor_lock); 2269 2270 md = idr_find(&_minor_idr, minor); 2271 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2272 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2273 md = NULL; 2274 goto out; 2275 } 2276 dm_get(md); 2277 out: 2278 spin_unlock(&_minor_lock); 2279 2280 return md; 2281 } 2282 EXPORT_SYMBOL_GPL(dm_get_md); 2283 2284 void *dm_get_mdptr(struct mapped_device *md) 2285 { 2286 return md->interface_ptr; 2287 } 2288 2289 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2290 { 2291 md->interface_ptr = ptr; 2292 } 2293 2294 void dm_get(struct mapped_device *md) 2295 { 2296 atomic_inc(&md->holders); 2297 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2298 } 2299 2300 int dm_hold(struct mapped_device *md) 2301 { 2302 spin_lock(&_minor_lock); 2303 if (test_bit(DMF_FREEING, &md->flags)) { 2304 spin_unlock(&_minor_lock); 2305 return -EBUSY; 2306 } 2307 dm_get(md); 2308 spin_unlock(&_minor_lock); 2309 return 0; 2310 } 2311 EXPORT_SYMBOL_GPL(dm_hold); 2312 2313 const char *dm_device_name(struct mapped_device *md) 2314 { 2315 return md->name; 2316 } 2317 EXPORT_SYMBOL_GPL(dm_device_name); 2318 2319 static void __dm_destroy(struct mapped_device *md, bool wait) 2320 { 2321 struct dm_table *map; 2322 int srcu_idx; 2323 2324 might_sleep(); 2325 2326 spin_lock(&_minor_lock); 2327 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2328 set_bit(DMF_FREEING, &md->flags); 2329 spin_unlock(&_minor_lock); 2330 2331 blk_mark_disk_dead(md->disk); 2332 2333 /* 2334 * Take suspend_lock so that presuspend and postsuspend methods 2335 * do not race with internal suspend. 2336 */ 2337 mutex_lock(&md->suspend_lock); 2338 map = dm_get_live_table(md, &srcu_idx); 2339 if (!dm_suspended_md(md)) { 2340 dm_table_presuspend_targets(map); 2341 set_bit(DMF_SUSPENDED, &md->flags); 2342 set_bit(DMF_POST_SUSPENDING, &md->flags); 2343 dm_table_postsuspend_targets(map); 2344 } 2345 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2346 dm_put_live_table(md, srcu_idx); 2347 mutex_unlock(&md->suspend_lock); 2348 2349 /* 2350 * Rare, but there may be I/O requests still going to complete, 2351 * for example. Wait for all references to disappear. 2352 * No one should increment the reference count of the mapped_device, 2353 * after the mapped_device state becomes DMF_FREEING. 2354 */ 2355 if (wait) 2356 while (atomic_read(&md->holders)) 2357 msleep(1); 2358 else if (atomic_read(&md->holders)) 2359 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2360 dm_device_name(md), atomic_read(&md->holders)); 2361 2362 dm_table_destroy(__unbind(md)); 2363 free_dev(md); 2364 } 2365 2366 void dm_destroy(struct mapped_device *md) 2367 { 2368 __dm_destroy(md, true); 2369 } 2370 2371 void dm_destroy_immediate(struct mapped_device *md) 2372 { 2373 __dm_destroy(md, false); 2374 } 2375 2376 void dm_put(struct mapped_device *md) 2377 { 2378 atomic_dec(&md->holders); 2379 } 2380 EXPORT_SYMBOL_GPL(dm_put); 2381 2382 static bool dm_in_flight_bios(struct mapped_device *md) 2383 { 2384 int cpu; 2385 unsigned long sum = 0; 2386 2387 for_each_possible_cpu(cpu) 2388 sum += *per_cpu_ptr(md->pending_io, cpu); 2389 2390 return sum != 0; 2391 } 2392 2393 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2394 { 2395 int r = 0; 2396 DEFINE_WAIT(wait); 2397 2398 while (true) { 2399 prepare_to_wait(&md->wait, &wait, task_state); 2400 2401 if (!dm_in_flight_bios(md)) 2402 break; 2403 2404 if (signal_pending_state(task_state, current)) { 2405 r = -EINTR; 2406 break; 2407 } 2408 2409 io_schedule(); 2410 } 2411 finish_wait(&md->wait, &wait); 2412 2413 smp_rmb(); 2414 2415 return r; 2416 } 2417 2418 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2419 { 2420 int r = 0; 2421 2422 if (!queue_is_mq(md->queue)) 2423 return dm_wait_for_bios_completion(md, task_state); 2424 2425 while (true) { 2426 if (!blk_mq_queue_inflight(md->queue)) 2427 break; 2428 2429 if (signal_pending_state(task_state, current)) { 2430 r = -EINTR; 2431 break; 2432 } 2433 2434 msleep(5); 2435 } 2436 2437 return r; 2438 } 2439 2440 /* 2441 * Process the deferred bios 2442 */ 2443 static void dm_wq_work(struct work_struct *work) 2444 { 2445 struct mapped_device *md = container_of(work, struct mapped_device, work); 2446 struct bio *bio; 2447 2448 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2449 spin_lock_irq(&md->deferred_lock); 2450 bio = bio_list_pop(&md->deferred); 2451 spin_unlock_irq(&md->deferred_lock); 2452 2453 if (!bio) 2454 break; 2455 2456 submit_bio_noacct(bio); 2457 } 2458 } 2459 2460 static void dm_queue_flush(struct mapped_device *md) 2461 { 2462 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2463 smp_mb__after_atomic(); 2464 queue_work(md->wq, &md->work); 2465 } 2466 2467 /* 2468 * Swap in a new table, returning the old one for the caller to destroy. 2469 */ 2470 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2471 { 2472 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2473 struct queue_limits limits; 2474 int r; 2475 2476 mutex_lock(&md->suspend_lock); 2477 2478 /* device must be suspended */ 2479 if (!dm_suspended_md(md)) 2480 goto out; 2481 2482 /* 2483 * If the new table has no data devices, retain the existing limits. 2484 * This helps multipath with queue_if_no_path if all paths disappear, 2485 * then new I/O is queued based on these limits, and then some paths 2486 * reappear. 2487 */ 2488 if (dm_table_has_no_data_devices(table)) { 2489 live_map = dm_get_live_table_fast(md); 2490 if (live_map) 2491 limits = md->queue->limits; 2492 dm_put_live_table_fast(md); 2493 } 2494 2495 if (!live_map) { 2496 r = dm_calculate_queue_limits(table, &limits); 2497 if (r) { 2498 map = ERR_PTR(r); 2499 goto out; 2500 } 2501 } 2502 2503 map = __bind(md, table, &limits); 2504 dm_issue_global_event(); 2505 2506 out: 2507 mutex_unlock(&md->suspend_lock); 2508 return map; 2509 } 2510 2511 /* 2512 * Functions to lock and unlock any filesystem running on the 2513 * device. 2514 */ 2515 static int lock_fs(struct mapped_device *md) 2516 { 2517 int r; 2518 2519 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2520 2521 r = freeze_bdev(md->disk->part0); 2522 if (!r) 2523 set_bit(DMF_FROZEN, &md->flags); 2524 return r; 2525 } 2526 2527 static void unlock_fs(struct mapped_device *md) 2528 { 2529 if (!test_bit(DMF_FROZEN, &md->flags)) 2530 return; 2531 thaw_bdev(md->disk->part0); 2532 clear_bit(DMF_FROZEN, &md->flags); 2533 } 2534 2535 /* 2536 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2537 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2538 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2539 * 2540 * If __dm_suspend returns 0, the device is completely quiescent 2541 * now. There is no request-processing activity. All new requests 2542 * are being added to md->deferred list. 2543 */ 2544 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2545 unsigned suspend_flags, unsigned int task_state, 2546 int dmf_suspended_flag) 2547 { 2548 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2549 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2550 int r; 2551 2552 lockdep_assert_held(&md->suspend_lock); 2553 2554 /* 2555 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2556 * This flag is cleared before dm_suspend returns. 2557 */ 2558 if (noflush) 2559 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2560 else 2561 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2562 2563 /* 2564 * This gets reverted if there's an error later and the targets 2565 * provide the .presuspend_undo hook. 2566 */ 2567 dm_table_presuspend_targets(map); 2568 2569 /* 2570 * Flush I/O to the device. 2571 * Any I/O submitted after lock_fs() may not be flushed. 2572 * noflush takes precedence over do_lockfs. 2573 * (lock_fs() flushes I/Os and waits for them to complete.) 2574 */ 2575 if (!noflush && do_lockfs) { 2576 r = lock_fs(md); 2577 if (r) { 2578 dm_table_presuspend_undo_targets(map); 2579 return r; 2580 } 2581 } 2582 2583 /* 2584 * Here we must make sure that no processes are submitting requests 2585 * to target drivers i.e. no one may be executing 2586 * dm_split_and_process_bio from dm_submit_bio. 2587 * 2588 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2589 * we take the write lock. To prevent any process from reentering 2590 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2591 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2592 * flush_workqueue(md->wq). 2593 */ 2594 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2595 if (map) 2596 synchronize_srcu(&md->io_barrier); 2597 2598 /* 2599 * Stop md->queue before flushing md->wq in case request-based 2600 * dm defers requests to md->wq from md->queue. 2601 */ 2602 if (dm_request_based(md)) 2603 dm_stop_queue(md->queue); 2604 2605 flush_workqueue(md->wq); 2606 2607 /* 2608 * At this point no more requests are entering target request routines. 2609 * We call dm_wait_for_completion to wait for all existing requests 2610 * to finish. 2611 */ 2612 r = dm_wait_for_completion(md, task_state); 2613 if (!r) 2614 set_bit(dmf_suspended_flag, &md->flags); 2615 2616 if (noflush) 2617 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2618 if (map) 2619 synchronize_srcu(&md->io_barrier); 2620 2621 /* were we interrupted ? */ 2622 if (r < 0) { 2623 dm_queue_flush(md); 2624 2625 if (dm_request_based(md)) 2626 dm_start_queue(md->queue); 2627 2628 unlock_fs(md); 2629 dm_table_presuspend_undo_targets(map); 2630 /* pushback list is already flushed, so skip flush */ 2631 } 2632 2633 return r; 2634 } 2635 2636 /* 2637 * We need to be able to change a mapping table under a mounted 2638 * filesystem. For example we might want to move some data in 2639 * the background. Before the table can be swapped with 2640 * dm_bind_table, dm_suspend must be called to flush any in 2641 * flight bios and ensure that any further io gets deferred. 2642 */ 2643 /* 2644 * Suspend mechanism in request-based dm. 2645 * 2646 * 1. Flush all I/Os by lock_fs() if needed. 2647 * 2. Stop dispatching any I/O by stopping the request_queue. 2648 * 3. Wait for all in-flight I/Os to be completed or requeued. 2649 * 2650 * To abort suspend, start the request_queue. 2651 */ 2652 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2653 { 2654 struct dm_table *map = NULL; 2655 int r = 0; 2656 2657 retry: 2658 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2659 2660 if (dm_suspended_md(md)) { 2661 r = -EINVAL; 2662 goto out_unlock; 2663 } 2664 2665 if (dm_suspended_internally_md(md)) { 2666 /* already internally suspended, wait for internal resume */ 2667 mutex_unlock(&md->suspend_lock); 2668 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2669 if (r) 2670 return r; 2671 goto retry; 2672 } 2673 2674 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2675 2676 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2677 if (r) 2678 goto out_unlock; 2679 2680 set_bit(DMF_POST_SUSPENDING, &md->flags); 2681 dm_table_postsuspend_targets(map); 2682 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2683 2684 out_unlock: 2685 mutex_unlock(&md->suspend_lock); 2686 return r; 2687 } 2688 2689 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2690 { 2691 if (map) { 2692 int r = dm_table_resume_targets(map); 2693 if (r) 2694 return r; 2695 } 2696 2697 dm_queue_flush(md); 2698 2699 /* 2700 * Flushing deferred I/Os must be done after targets are resumed 2701 * so that mapping of targets can work correctly. 2702 * Request-based dm is queueing the deferred I/Os in its request_queue. 2703 */ 2704 if (dm_request_based(md)) 2705 dm_start_queue(md->queue); 2706 2707 unlock_fs(md); 2708 2709 return 0; 2710 } 2711 2712 int dm_resume(struct mapped_device *md) 2713 { 2714 int r; 2715 struct dm_table *map = NULL; 2716 2717 retry: 2718 r = -EINVAL; 2719 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2720 2721 if (!dm_suspended_md(md)) 2722 goto out; 2723 2724 if (dm_suspended_internally_md(md)) { 2725 /* already internally suspended, wait for internal resume */ 2726 mutex_unlock(&md->suspend_lock); 2727 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2728 if (r) 2729 return r; 2730 goto retry; 2731 } 2732 2733 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2734 if (!map || !dm_table_get_size(map)) 2735 goto out; 2736 2737 r = __dm_resume(md, map); 2738 if (r) 2739 goto out; 2740 2741 clear_bit(DMF_SUSPENDED, &md->flags); 2742 out: 2743 mutex_unlock(&md->suspend_lock); 2744 2745 return r; 2746 } 2747 2748 /* 2749 * Internal suspend/resume works like userspace-driven suspend. It waits 2750 * until all bios finish and prevents issuing new bios to the target drivers. 2751 * It may be used only from the kernel. 2752 */ 2753 2754 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2755 { 2756 struct dm_table *map = NULL; 2757 2758 lockdep_assert_held(&md->suspend_lock); 2759 2760 if (md->internal_suspend_count++) 2761 return; /* nested internal suspend */ 2762 2763 if (dm_suspended_md(md)) { 2764 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2765 return; /* nest suspend */ 2766 } 2767 2768 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2769 2770 /* 2771 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2772 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2773 * would require changing .presuspend to return an error -- avoid this 2774 * until there is a need for more elaborate variants of internal suspend. 2775 */ 2776 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2777 DMF_SUSPENDED_INTERNALLY); 2778 2779 set_bit(DMF_POST_SUSPENDING, &md->flags); 2780 dm_table_postsuspend_targets(map); 2781 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2782 } 2783 2784 static void __dm_internal_resume(struct mapped_device *md) 2785 { 2786 BUG_ON(!md->internal_suspend_count); 2787 2788 if (--md->internal_suspend_count) 2789 return; /* resume from nested internal suspend */ 2790 2791 if (dm_suspended_md(md)) 2792 goto done; /* resume from nested suspend */ 2793 2794 /* 2795 * NOTE: existing callers don't need to call dm_table_resume_targets 2796 * (which may fail -- so best to avoid it for now by passing NULL map) 2797 */ 2798 (void) __dm_resume(md, NULL); 2799 2800 done: 2801 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2802 smp_mb__after_atomic(); 2803 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2804 } 2805 2806 void dm_internal_suspend_noflush(struct mapped_device *md) 2807 { 2808 mutex_lock(&md->suspend_lock); 2809 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2810 mutex_unlock(&md->suspend_lock); 2811 } 2812 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2813 2814 void dm_internal_resume(struct mapped_device *md) 2815 { 2816 mutex_lock(&md->suspend_lock); 2817 __dm_internal_resume(md); 2818 mutex_unlock(&md->suspend_lock); 2819 } 2820 EXPORT_SYMBOL_GPL(dm_internal_resume); 2821 2822 /* 2823 * Fast variants of internal suspend/resume hold md->suspend_lock, 2824 * which prevents interaction with userspace-driven suspend. 2825 */ 2826 2827 void dm_internal_suspend_fast(struct mapped_device *md) 2828 { 2829 mutex_lock(&md->suspend_lock); 2830 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2831 return; 2832 2833 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2834 synchronize_srcu(&md->io_barrier); 2835 flush_workqueue(md->wq); 2836 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2837 } 2838 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2839 2840 void dm_internal_resume_fast(struct mapped_device *md) 2841 { 2842 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2843 goto done; 2844 2845 dm_queue_flush(md); 2846 2847 done: 2848 mutex_unlock(&md->suspend_lock); 2849 } 2850 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2851 2852 /*----------------------------------------------------------------- 2853 * Event notification. 2854 *---------------------------------------------------------------*/ 2855 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2856 unsigned cookie) 2857 { 2858 int r; 2859 unsigned noio_flag; 2860 char udev_cookie[DM_COOKIE_LENGTH]; 2861 char *envp[] = { udev_cookie, NULL }; 2862 2863 noio_flag = memalloc_noio_save(); 2864 2865 if (!cookie) 2866 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2867 else { 2868 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2869 DM_COOKIE_ENV_VAR_NAME, cookie); 2870 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2871 action, envp); 2872 } 2873 2874 memalloc_noio_restore(noio_flag); 2875 2876 return r; 2877 } 2878 2879 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2880 { 2881 return atomic_add_return(1, &md->uevent_seq); 2882 } 2883 2884 uint32_t dm_get_event_nr(struct mapped_device *md) 2885 { 2886 return atomic_read(&md->event_nr); 2887 } 2888 2889 int dm_wait_event(struct mapped_device *md, int event_nr) 2890 { 2891 return wait_event_interruptible(md->eventq, 2892 (event_nr != atomic_read(&md->event_nr))); 2893 } 2894 2895 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2896 { 2897 unsigned long flags; 2898 2899 spin_lock_irqsave(&md->uevent_lock, flags); 2900 list_add(elist, &md->uevent_list); 2901 spin_unlock_irqrestore(&md->uevent_lock, flags); 2902 } 2903 2904 /* 2905 * The gendisk is only valid as long as you have a reference 2906 * count on 'md'. 2907 */ 2908 struct gendisk *dm_disk(struct mapped_device *md) 2909 { 2910 return md->disk; 2911 } 2912 EXPORT_SYMBOL_GPL(dm_disk); 2913 2914 struct kobject *dm_kobject(struct mapped_device *md) 2915 { 2916 return &md->kobj_holder.kobj; 2917 } 2918 2919 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2920 { 2921 struct mapped_device *md; 2922 2923 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2924 2925 spin_lock(&_minor_lock); 2926 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2927 md = NULL; 2928 goto out; 2929 } 2930 dm_get(md); 2931 out: 2932 spin_unlock(&_minor_lock); 2933 2934 return md; 2935 } 2936 2937 int dm_suspended_md(struct mapped_device *md) 2938 { 2939 return test_bit(DMF_SUSPENDED, &md->flags); 2940 } 2941 2942 static int dm_post_suspending_md(struct mapped_device *md) 2943 { 2944 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2945 } 2946 2947 int dm_suspended_internally_md(struct mapped_device *md) 2948 { 2949 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2950 } 2951 2952 int dm_test_deferred_remove_flag(struct mapped_device *md) 2953 { 2954 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2955 } 2956 2957 int dm_suspended(struct dm_target *ti) 2958 { 2959 return dm_suspended_md(ti->table->md); 2960 } 2961 EXPORT_SYMBOL_GPL(dm_suspended); 2962 2963 int dm_post_suspending(struct dm_target *ti) 2964 { 2965 return dm_post_suspending_md(ti->table->md); 2966 } 2967 EXPORT_SYMBOL_GPL(dm_post_suspending); 2968 2969 int dm_noflush_suspending(struct dm_target *ti) 2970 { 2971 return __noflush_suspending(ti->table->md); 2972 } 2973 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2974 2975 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2976 unsigned per_io_data_size, unsigned min_pool_size, 2977 bool integrity, bool poll) 2978 { 2979 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2980 unsigned int pool_size = 0; 2981 unsigned int front_pad, io_front_pad; 2982 int ret; 2983 2984 if (!pools) 2985 return NULL; 2986 2987 switch (type) { 2988 case DM_TYPE_BIO_BASED: 2989 case DM_TYPE_DAX_BIO_BASED: 2990 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2991 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2992 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2993 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, poll ? BIOSET_PERCPU_CACHE : 0); 2994 if (ret) 2995 goto out; 2996 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2997 goto out; 2998 break; 2999 case DM_TYPE_REQUEST_BASED: 3000 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3001 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3002 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3003 break; 3004 default: 3005 BUG(); 3006 } 3007 3008 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3009 if (ret) 3010 goto out; 3011 3012 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3013 goto out; 3014 3015 return pools; 3016 3017 out: 3018 dm_free_md_mempools(pools); 3019 3020 return NULL; 3021 } 3022 3023 void dm_free_md_mempools(struct dm_md_mempools *pools) 3024 { 3025 if (!pools) 3026 return; 3027 3028 bioset_exit(&pools->bs); 3029 bioset_exit(&pools->io_bs); 3030 3031 kfree(pools); 3032 } 3033 3034 struct dm_pr { 3035 u64 old_key; 3036 u64 new_key; 3037 u32 flags; 3038 bool fail_early; 3039 }; 3040 3041 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3042 void *data) 3043 { 3044 struct mapped_device *md = bdev->bd_disk->private_data; 3045 struct dm_table *table; 3046 struct dm_target *ti; 3047 int ret = -ENOTTY, srcu_idx; 3048 3049 table = dm_get_live_table(md, &srcu_idx); 3050 if (!table || !dm_table_get_size(table)) 3051 goto out; 3052 3053 /* We only support devices that have a single target */ 3054 if (dm_table_get_num_targets(table) != 1) 3055 goto out; 3056 ti = dm_table_get_target(table, 0); 3057 3058 ret = -EINVAL; 3059 if (!ti->type->iterate_devices) 3060 goto out; 3061 3062 ret = ti->type->iterate_devices(ti, fn, data); 3063 out: 3064 dm_put_live_table(md, srcu_idx); 3065 return ret; 3066 } 3067 3068 /* 3069 * For register / unregister we need to manually call out to every path. 3070 */ 3071 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3072 sector_t start, sector_t len, void *data) 3073 { 3074 struct dm_pr *pr = data; 3075 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3076 3077 if (!ops || !ops->pr_register) 3078 return -EOPNOTSUPP; 3079 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3080 } 3081 3082 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3083 u32 flags) 3084 { 3085 struct dm_pr pr = { 3086 .old_key = old_key, 3087 .new_key = new_key, 3088 .flags = flags, 3089 .fail_early = true, 3090 }; 3091 int ret; 3092 3093 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3094 if (ret && new_key) { 3095 /* unregister all paths if we failed to register any path */ 3096 pr.old_key = new_key; 3097 pr.new_key = 0; 3098 pr.flags = 0; 3099 pr.fail_early = false; 3100 dm_call_pr(bdev, __dm_pr_register, &pr); 3101 } 3102 3103 return ret; 3104 } 3105 3106 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3107 u32 flags) 3108 { 3109 struct mapped_device *md = bdev->bd_disk->private_data; 3110 const struct pr_ops *ops; 3111 int r, srcu_idx; 3112 3113 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3114 if (r < 0) 3115 goto out; 3116 3117 ops = bdev->bd_disk->fops->pr_ops; 3118 if (ops && ops->pr_reserve) 3119 r = ops->pr_reserve(bdev, key, type, flags); 3120 else 3121 r = -EOPNOTSUPP; 3122 out: 3123 dm_unprepare_ioctl(md, srcu_idx); 3124 return r; 3125 } 3126 3127 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3128 { 3129 struct mapped_device *md = bdev->bd_disk->private_data; 3130 const struct pr_ops *ops; 3131 int r, srcu_idx; 3132 3133 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3134 if (r < 0) 3135 goto out; 3136 3137 ops = bdev->bd_disk->fops->pr_ops; 3138 if (ops && ops->pr_release) 3139 r = ops->pr_release(bdev, key, type); 3140 else 3141 r = -EOPNOTSUPP; 3142 out: 3143 dm_unprepare_ioctl(md, srcu_idx); 3144 return r; 3145 } 3146 3147 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3148 enum pr_type type, bool abort) 3149 { 3150 struct mapped_device *md = bdev->bd_disk->private_data; 3151 const struct pr_ops *ops; 3152 int r, srcu_idx; 3153 3154 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3155 if (r < 0) 3156 goto out; 3157 3158 ops = bdev->bd_disk->fops->pr_ops; 3159 if (ops && ops->pr_preempt) 3160 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3161 else 3162 r = -EOPNOTSUPP; 3163 out: 3164 dm_unprepare_ioctl(md, srcu_idx); 3165 return r; 3166 } 3167 3168 static int dm_pr_clear(struct block_device *bdev, u64 key) 3169 { 3170 struct mapped_device *md = bdev->bd_disk->private_data; 3171 const struct pr_ops *ops; 3172 int r, srcu_idx; 3173 3174 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3175 if (r < 0) 3176 goto out; 3177 3178 ops = bdev->bd_disk->fops->pr_ops; 3179 if (ops && ops->pr_clear) 3180 r = ops->pr_clear(bdev, key); 3181 else 3182 r = -EOPNOTSUPP; 3183 out: 3184 dm_unprepare_ioctl(md, srcu_idx); 3185 return r; 3186 } 3187 3188 static const struct pr_ops dm_pr_ops = { 3189 .pr_register = dm_pr_register, 3190 .pr_reserve = dm_pr_reserve, 3191 .pr_release = dm_pr_release, 3192 .pr_preempt = dm_pr_preempt, 3193 .pr_clear = dm_pr_clear, 3194 }; 3195 3196 static const struct block_device_operations dm_blk_dops = { 3197 .submit_bio = dm_submit_bio, 3198 .poll_bio = dm_poll_bio, 3199 .open = dm_blk_open, 3200 .release = dm_blk_close, 3201 .ioctl = dm_blk_ioctl, 3202 .getgeo = dm_blk_getgeo, 3203 .report_zones = dm_blk_report_zones, 3204 .pr_ops = &dm_pr_ops, 3205 .owner = THIS_MODULE 3206 }; 3207 3208 static const struct block_device_operations dm_rq_blk_dops = { 3209 .open = dm_blk_open, 3210 .release = dm_blk_close, 3211 .ioctl = dm_blk_ioctl, 3212 .getgeo = dm_blk_getgeo, 3213 .pr_ops = &dm_pr_ops, 3214 .owner = THIS_MODULE 3215 }; 3216 3217 static const struct dax_operations dm_dax_ops = { 3218 .direct_access = dm_dax_direct_access, 3219 .zero_page_range = dm_dax_zero_page_range, 3220 .recovery_write = dm_dax_recovery_write, 3221 }; 3222 3223 /* 3224 * module hooks 3225 */ 3226 module_init(dm_init); 3227 module_exit(dm_exit); 3228 3229 module_param(major, uint, 0); 3230 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3231 3232 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3233 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3234 3235 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3236 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3237 3238 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 3239 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3240 3241 MODULE_DESCRIPTION(DM_NAME " driver"); 3242 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3243 MODULE_LICENSE("GPL"); 3244