xref: /openbmc/linux/drivers/md/dm.c (revision 29dec90a0f1d961b93f34f910e9319d8cb23edbd)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 /*
44  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45  * dm_io into one list, and reuse bio->bi_private as the list head. Before
46  * ending this fs bio, we will recover its ->bi_private.
47  */
48 #define REQ_DM_POLL_LIST	REQ_DRV
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67 
68 void dm_issue_global_event(void)
69 {
70 	atomic_inc(&dm_global_event_nr);
71 	wake_up(&dm_global_eventq);
72 }
73 
74 DEFINE_STATIC_KEY_FALSE(stats_enabled);
75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
76 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
77 
78 /*
79  * One of these is allocated (on-stack) per original bio.
80  */
81 struct clone_info {
82 	struct dm_table *map;
83 	struct bio *bio;
84 	struct dm_io *io;
85 	sector_t sector;
86 	unsigned sector_count;
87 	bool is_abnormal_io:1;
88 	bool submit_as_polled:1;
89 };
90 
91 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
92 #define DM_IO_BIO_OFFSET \
93 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
94 
95 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
96 {
97 	return container_of(clone, struct dm_target_io, clone);
98 }
99 
100 void *dm_per_bio_data(struct bio *bio, size_t data_size)
101 {
102 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
103 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
104 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
105 }
106 EXPORT_SYMBOL_GPL(dm_per_bio_data);
107 
108 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
109 {
110 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
111 	if (io->magic == DM_IO_MAGIC)
112 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
113 	BUG_ON(io->magic != DM_TIO_MAGIC);
114 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
115 }
116 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
117 
118 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
119 {
120 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
123 
124 #define MINOR_ALLOCED ((void *)-1)
125 
126 #define DM_NUMA_NODE NUMA_NO_NODE
127 static int dm_numa_node = DM_NUMA_NODE;
128 
129 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
130 static int swap_bios = DEFAULT_SWAP_BIOS;
131 static int get_swap_bios(void)
132 {
133 	int latch = READ_ONCE(swap_bios);
134 	if (unlikely(latch <= 0))
135 		latch = DEFAULT_SWAP_BIOS;
136 	return latch;
137 }
138 
139 struct table_device {
140 	struct list_head list;
141 	refcount_t count;
142 	struct dm_dev dm_dev;
143 };
144 
145 /*
146  * Bio-based DM's mempools' reserved IOs set by the user.
147  */
148 #define RESERVED_BIO_BASED_IOS		16
149 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150 
151 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 {
153 	int param = READ_ONCE(*module_param);
154 	int modified_param = 0;
155 	bool modified = true;
156 
157 	if (param < min)
158 		modified_param = min;
159 	else if (param > max)
160 		modified_param = max;
161 	else
162 		modified = false;
163 
164 	if (modified) {
165 		(void)cmpxchg(module_param, param, modified_param);
166 		param = modified_param;
167 	}
168 
169 	return param;
170 }
171 
172 unsigned __dm_get_module_param(unsigned *module_param,
173 			       unsigned def, unsigned max)
174 {
175 	unsigned param = READ_ONCE(*module_param);
176 	unsigned modified_param = 0;
177 
178 	if (!param)
179 		modified_param = def;
180 	else if (param > max)
181 		modified_param = max;
182 
183 	if (modified_param) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
191 unsigned dm_get_reserved_bio_based_ios(void)
192 {
193 	return __dm_get_module_param(&reserved_bio_based_ios,
194 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
195 }
196 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
197 
198 static unsigned dm_get_numa_node(void)
199 {
200 	return __dm_get_module_param_int(&dm_numa_node,
201 					 DM_NUMA_NODE, num_online_nodes() - 1);
202 }
203 
204 static int __init local_init(void)
205 {
206 	int r;
207 
208 	r = dm_uevent_init();
209 	if (r)
210 		return r;
211 
212 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
213 	if (!deferred_remove_workqueue) {
214 		r = -ENOMEM;
215 		goto out_uevent_exit;
216 	}
217 
218 	_major = major;
219 	r = register_blkdev(_major, _name);
220 	if (r < 0)
221 		goto out_free_workqueue;
222 
223 	if (!_major)
224 		_major = r;
225 
226 	return 0;
227 
228 out_free_workqueue:
229 	destroy_workqueue(deferred_remove_workqueue);
230 out_uevent_exit:
231 	dm_uevent_exit();
232 
233 	return r;
234 }
235 
236 static void local_exit(void)
237 {
238 	flush_scheduled_work();
239 	destroy_workqueue(deferred_remove_workqueue);
240 
241 	unregister_blkdev(_major, _name);
242 	dm_uevent_exit();
243 
244 	_major = 0;
245 
246 	DMINFO("cleaned up");
247 }
248 
249 static int (*_inits[])(void) __initdata = {
250 	local_init,
251 	dm_target_init,
252 	dm_linear_init,
253 	dm_stripe_init,
254 	dm_io_init,
255 	dm_kcopyd_init,
256 	dm_interface_init,
257 	dm_statistics_init,
258 };
259 
260 static void (*_exits[])(void) = {
261 	local_exit,
262 	dm_target_exit,
263 	dm_linear_exit,
264 	dm_stripe_exit,
265 	dm_io_exit,
266 	dm_kcopyd_exit,
267 	dm_interface_exit,
268 	dm_statistics_exit,
269 };
270 
271 static int __init dm_init(void)
272 {
273 	const int count = ARRAY_SIZE(_inits);
274 	int r, i;
275 
276 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
277 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
278 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
279 #endif
280 
281 	for (i = 0; i < count; i++) {
282 		r = _inits[i]();
283 		if (r)
284 			goto bad;
285 	}
286 
287 	return 0;
288 bad:
289 	while (i--)
290 		_exits[i]();
291 
292 	return r;
293 }
294 
295 static void __exit dm_exit(void)
296 {
297 	int i = ARRAY_SIZE(_exits);
298 
299 	while (i--)
300 		_exits[i]();
301 
302 	/*
303 	 * Should be empty by this point.
304 	 */
305 	idr_destroy(&_minor_idr);
306 }
307 
308 /*
309  * Block device functions
310  */
311 int dm_deleting_md(struct mapped_device *md)
312 {
313 	return test_bit(DMF_DELETING, &md->flags);
314 }
315 
316 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
317 {
318 	struct mapped_device *md;
319 
320 	spin_lock(&_minor_lock);
321 
322 	md = bdev->bd_disk->private_data;
323 	if (!md)
324 		goto out;
325 
326 	if (test_bit(DMF_FREEING, &md->flags) ||
327 	    dm_deleting_md(md)) {
328 		md = NULL;
329 		goto out;
330 	}
331 
332 	dm_get(md);
333 	atomic_inc(&md->open_count);
334 out:
335 	spin_unlock(&_minor_lock);
336 
337 	return md ? 0 : -ENXIO;
338 }
339 
340 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
341 {
342 	struct mapped_device *md;
343 
344 	spin_lock(&_minor_lock);
345 
346 	md = disk->private_data;
347 	if (WARN_ON(!md))
348 		goto out;
349 
350 	if (atomic_dec_and_test(&md->open_count) &&
351 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
352 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
353 
354 	dm_put(md);
355 out:
356 	spin_unlock(&_minor_lock);
357 }
358 
359 int dm_open_count(struct mapped_device *md)
360 {
361 	return atomic_read(&md->open_count);
362 }
363 
364 /*
365  * Guarantees nothing is using the device before it's deleted.
366  */
367 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
368 {
369 	int r = 0;
370 
371 	spin_lock(&_minor_lock);
372 
373 	if (dm_open_count(md)) {
374 		r = -EBUSY;
375 		if (mark_deferred)
376 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
377 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
378 		r = -EEXIST;
379 	else
380 		set_bit(DMF_DELETING, &md->flags);
381 
382 	spin_unlock(&_minor_lock);
383 
384 	return r;
385 }
386 
387 int dm_cancel_deferred_remove(struct mapped_device *md)
388 {
389 	int r = 0;
390 
391 	spin_lock(&_minor_lock);
392 
393 	if (test_bit(DMF_DELETING, &md->flags))
394 		r = -EBUSY;
395 	else
396 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
397 
398 	spin_unlock(&_minor_lock);
399 
400 	return r;
401 }
402 
403 static void do_deferred_remove(struct work_struct *w)
404 {
405 	dm_deferred_remove();
406 }
407 
408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 {
410 	struct mapped_device *md = bdev->bd_disk->private_data;
411 
412 	return dm_get_geometry(md, geo);
413 }
414 
415 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
416 			    struct block_device **bdev)
417 {
418 	struct dm_target *tgt;
419 	struct dm_table *map;
420 	int r;
421 
422 retry:
423 	r = -ENOTTY;
424 	map = dm_get_live_table(md, srcu_idx);
425 	if (!map || !dm_table_get_size(map))
426 		return r;
427 
428 	/* We only support devices that have a single target */
429 	if (dm_table_get_num_targets(map) != 1)
430 		return r;
431 
432 	tgt = dm_table_get_target(map, 0);
433 	if (!tgt->type->prepare_ioctl)
434 		return r;
435 
436 	if (dm_suspended_md(md))
437 		return -EAGAIN;
438 
439 	r = tgt->type->prepare_ioctl(tgt, bdev);
440 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
441 		dm_put_live_table(md, *srcu_idx);
442 		msleep(10);
443 		goto retry;
444 	}
445 
446 	return r;
447 }
448 
449 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
450 {
451 	dm_put_live_table(md, srcu_idx);
452 }
453 
454 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
455 			unsigned int cmd, unsigned long arg)
456 {
457 	struct mapped_device *md = bdev->bd_disk->private_data;
458 	int r, srcu_idx;
459 
460 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
461 	if (r < 0)
462 		goto out;
463 
464 	if (r > 0) {
465 		/*
466 		 * Target determined this ioctl is being issued against a
467 		 * subset of the parent bdev; require extra privileges.
468 		 */
469 		if (!capable(CAP_SYS_RAWIO)) {
470 			DMDEBUG_LIMIT(
471 	"%s: sending ioctl %x to DM device without required privilege.",
472 				current->comm, cmd);
473 			r = -ENOIOCTLCMD;
474 			goto out;
475 		}
476 	}
477 
478 	if (!bdev->bd_disk->fops->ioctl)
479 		r = -ENOTTY;
480 	else
481 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
482 out:
483 	dm_unprepare_ioctl(md, srcu_idx);
484 	return r;
485 }
486 
487 u64 dm_start_time_ns_from_clone(struct bio *bio)
488 {
489 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
490 }
491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
492 
493 static bool bio_is_flush_with_data(struct bio *bio)
494 {
495 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
496 }
497 
498 static void dm_io_acct(struct dm_io *io, bool end)
499 {
500 	struct dm_stats_aux *stats_aux = &io->stats_aux;
501 	unsigned long start_time = io->start_time;
502 	struct mapped_device *md = io->md;
503 	struct bio *bio = io->orig_bio;
504 	unsigned int sectors;
505 
506 	/*
507 	 * If REQ_PREFLUSH set, don't account payload, it will be
508 	 * submitted (and accounted) after this flush completes.
509 	 */
510 	if (bio_is_flush_with_data(bio))
511 		sectors = 0;
512 	else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
513 		sectors = bio_sectors(bio);
514 	else
515 		sectors = io->sectors;
516 
517 	if (!end)
518 		bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
519 				   start_time);
520 	else
521 		bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
522 
523 	if (static_branch_unlikely(&stats_enabled) &&
524 	    unlikely(dm_stats_used(&md->stats))) {
525 		sector_t sector;
526 
527 		if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
528 			sector = bio->bi_iter.bi_sector;
529 		else
530 			sector = bio_end_sector(bio) - io->sector_offset;
531 
532 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
533 				    sector, sectors,
534 				    end, start_time, stats_aux);
535 	}
536 }
537 
538 static void __dm_start_io_acct(struct dm_io *io)
539 {
540 	dm_io_acct(io, false);
541 }
542 
543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
544 {
545 	/*
546 	 * Ensure IO accounting is only ever started once.
547 	 */
548 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
549 		return;
550 
551 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
552 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
553 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
554 	} else {
555 		unsigned long flags;
556 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
557 		spin_lock_irqsave(&io->lock, flags);
558 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
559 		spin_unlock_irqrestore(&io->lock, flags);
560 	}
561 
562 	__dm_start_io_acct(io);
563 }
564 
565 static void dm_end_io_acct(struct dm_io *io)
566 {
567 	dm_io_acct(io, true);
568 }
569 
570 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
571 {
572 	struct dm_io *io;
573 	struct dm_target_io *tio;
574 	struct bio *clone;
575 
576 	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
577 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
578 	clone->bi_bdev = md->disk->part0;
579 
580 	tio = clone_to_tio(clone);
581 	tio->flags = 0;
582 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
583 	tio->io = NULL;
584 
585 	io = container_of(tio, struct dm_io, tio);
586 	io->magic = DM_IO_MAGIC;
587 	io->status = BLK_STS_OK;
588 
589 	/* one ref is for submission, the other is for completion */
590 	atomic_set(&io->io_count, 2);
591 	this_cpu_inc(*md->pending_io);
592 	io->orig_bio = bio;
593 	io->md = md;
594 	spin_lock_init(&io->lock);
595 	io->start_time = jiffies;
596 	io->flags = 0;
597 
598 	if (static_branch_unlikely(&stats_enabled))
599 		dm_stats_record_start(&md->stats, &io->stats_aux);
600 
601 	return io;
602 }
603 
604 static void free_io(struct dm_io *io)
605 {
606 	bio_put(&io->tio.clone);
607 }
608 
609 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
610 			     unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
611 {
612 	struct dm_target_io *tio;
613 	struct bio *clone;
614 
615 	if (!ci->io->tio.io) {
616 		/* the dm_target_io embedded in ci->io is available */
617 		tio = &ci->io->tio;
618 		/* alloc_io() already initialized embedded clone */
619 		clone = &tio->clone;
620 	} else {
621 		struct mapped_device *md = ci->io->md;
622 
623 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
624 					&md->mempools->bs);
625 		if (!clone)
626 			return NULL;
627 		/* Set default bdev, but target must bio_set_dev() before issuing IO */
628 		clone->bi_bdev = md->disk->part0;
629 
630 		/* REQ_DM_POLL_LIST shouldn't be inherited */
631 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
632 
633 		tio = clone_to_tio(clone);
634 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
635 	}
636 
637 	tio->magic = DM_TIO_MAGIC;
638 	tio->io = ci->io;
639 	tio->ti = ti;
640 	tio->target_bio_nr = target_bio_nr;
641 	tio->len_ptr = len;
642 	tio->old_sector = 0;
643 
644 	if (len) {
645 		clone->bi_iter.bi_size = to_bytes(*len);
646 		if (bio_integrity(clone))
647 			bio_integrity_trim(clone);
648 	}
649 
650 	return clone;
651 }
652 
653 static void free_tio(struct bio *clone)
654 {
655 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
656 		return;
657 	bio_put(clone);
658 }
659 
660 /*
661  * Add the bio to the list of deferred io.
662  */
663 static void queue_io(struct mapped_device *md, struct bio *bio)
664 {
665 	unsigned long flags;
666 
667 	spin_lock_irqsave(&md->deferred_lock, flags);
668 	bio_list_add(&md->deferred, bio);
669 	spin_unlock_irqrestore(&md->deferred_lock, flags);
670 	queue_work(md->wq, &md->work);
671 }
672 
673 /*
674  * Everyone (including functions in this file), should use this
675  * function to access the md->map field, and make sure they call
676  * dm_put_live_table() when finished.
677  */
678 struct dm_table *dm_get_live_table(struct mapped_device *md,
679 				   int *srcu_idx) __acquires(md->io_barrier)
680 {
681 	*srcu_idx = srcu_read_lock(&md->io_barrier);
682 
683 	return srcu_dereference(md->map, &md->io_barrier);
684 }
685 
686 void dm_put_live_table(struct mapped_device *md,
687 		       int srcu_idx) __releases(md->io_barrier)
688 {
689 	srcu_read_unlock(&md->io_barrier, srcu_idx);
690 }
691 
692 void dm_sync_table(struct mapped_device *md)
693 {
694 	synchronize_srcu(&md->io_barrier);
695 	synchronize_rcu_expedited();
696 }
697 
698 /*
699  * A fast alternative to dm_get_live_table/dm_put_live_table.
700  * The caller must not block between these two functions.
701  */
702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
703 {
704 	rcu_read_lock();
705 	return rcu_dereference(md->map);
706 }
707 
708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
709 {
710 	rcu_read_unlock();
711 }
712 
713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
714 						     int *srcu_idx, struct bio *bio)
715 {
716 	if (bio->bi_opf & REQ_NOWAIT)
717 		return dm_get_live_table_fast(md);
718 	else
719 		return dm_get_live_table(md, srcu_idx);
720 }
721 
722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
723 					 struct bio *bio)
724 {
725 	if (bio->bi_opf & REQ_NOWAIT)
726 		dm_put_live_table_fast(md);
727 	else
728 		dm_put_live_table(md, srcu_idx);
729 }
730 
731 static char *_dm_claim_ptr = "I belong to device-mapper";
732 
733 /*
734  * Open a table device so we can use it as a map destination.
735  */
736 static int open_table_device(struct table_device *td, dev_t dev,
737 			     struct mapped_device *md)
738 {
739 	struct block_device *bdev;
740 	u64 part_off;
741 	int r;
742 
743 	BUG_ON(td->dm_dev.bdev);
744 
745 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
746 	if (IS_ERR(bdev))
747 		return PTR_ERR(bdev);
748 
749 	r = bd_link_disk_holder(bdev, dm_disk(md));
750 	if (r) {
751 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
752 		return r;
753 	}
754 
755 	td->dm_dev.bdev = bdev;
756 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
757 	return 0;
758 }
759 
760 /*
761  * Close a table device that we've been using.
762  */
763 static void close_table_device(struct table_device *td, struct mapped_device *md)
764 {
765 	if (!td->dm_dev.bdev)
766 		return;
767 
768 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
769 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
770 	put_dax(td->dm_dev.dax_dev);
771 	td->dm_dev.bdev = NULL;
772 	td->dm_dev.dax_dev = NULL;
773 }
774 
775 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
776 					      fmode_t mode)
777 {
778 	struct table_device *td;
779 
780 	list_for_each_entry(td, l, list)
781 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
782 			return td;
783 
784 	return NULL;
785 }
786 
787 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
788 			struct dm_dev **result)
789 {
790 	int r;
791 	struct table_device *td;
792 
793 	mutex_lock(&md->table_devices_lock);
794 	td = find_table_device(&md->table_devices, dev, mode);
795 	if (!td) {
796 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
797 		if (!td) {
798 			mutex_unlock(&md->table_devices_lock);
799 			return -ENOMEM;
800 		}
801 
802 		td->dm_dev.mode = mode;
803 		td->dm_dev.bdev = NULL;
804 
805 		if ((r = open_table_device(td, dev, md))) {
806 			mutex_unlock(&md->table_devices_lock);
807 			kfree(td);
808 			return r;
809 		}
810 
811 		format_dev_t(td->dm_dev.name, dev);
812 
813 		refcount_set(&td->count, 1);
814 		list_add(&td->list, &md->table_devices);
815 	} else {
816 		refcount_inc(&td->count);
817 	}
818 	mutex_unlock(&md->table_devices_lock);
819 
820 	*result = &td->dm_dev;
821 	return 0;
822 }
823 
824 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
825 {
826 	struct table_device *td = container_of(d, struct table_device, dm_dev);
827 
828 	mutex_lock(&md->table_devices_lock);
829 	if (refcount_dec_and_test(&td->count)) {
830 		close_table_device(td, md);
831 		list_del(&td->list);
832 		kfree(td);
833 	}
834 	mutex_unlock(&md->table_devices_lock);
835 }
836 
837 static void free_table_devices(struct list_head *devices)
838 {
839 	struct list_head *tmp, *next;
840 
841 	list_for_each_safe(tmp, next, devices) {
842 		struct table_device *td = list_entry(tmp, struct table_device, list);
843 
844 		DMWARN("dm_destroy: %s still exists with %d references",
845 		       td->dm_dev.name, refcount_read(&td->count));
846 		kfree(td);
847 	}
848 }
849 
850 /*
851  * Get the geometry associated with a dm device
852  */
853 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
854 {
855 	*geo = md->geometry;
856 
857 	return 0;
858 }
859 
860 /*
861  * Set the geometry of a device.
862  */
863 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
864 {
865 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
866 
867 	if (geo->start > sz) {
868 		DMWARN("Start sector is beyond the geometry limits.");
869 		return -EINVAL;
870 	}
871 
872 	md->geometry = *geo;
873 
874 	return 0;
875 }
876 
877 static int __noflush_suspending(struct mapped_device *md)
878 {
879 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
880 }
881 
882 static void dm_io_complete(struct dm_io *io)
883 {
884 	blk_status_t io_error;
885 	struct mapped_device *md = io->md;
886 	struct bio *bio = io->orig_bio;
887 
888 	if (io->status == BLK_STS_DM_REQUEUE) {
889 		unsigned long flags;
890 		/*
891 		 * Target requested pushing back the I/O.
892 		 */
893 		spin_lock_irqsave(&md->deferred_lock, flags);
894 		if (__noflush_suspending(md) &&
895 		    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
896 			/* NOTE early return due to BLK_STS_DM_REQUEUE below */
897 			bio_list_add_head(&md->deferred, bio);
898 		} else {
899 			/*
900 			 * noflush suspend was interrupted or this is
901 			 * a write to a zoned target.
902 			 */
903 			io->status = BLK_STS_IOERR;
904 		}
905 		spin_unlock_irqrestore(&md->deferred_lock, flags);
906 	}
907 
908 	io_error = io->status;
909 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
910 		dm_end_io_acct(io);
911 	else if (!io_error) {
912 		/*
913 		 * Must handle target that DM_MAPIO_SUBMITTED only to
914 		 * then bio_endio() rather than dm_submit_bio_remap()
915 		 */
916 		__dm_start_io_acct(io);
917 		dm_end_io_acct(io);
918 	}
919 	free_io(io);
920 	smp_wmb();
921 	this_cpu_dec(*md->pending_io);
922 
923 	/* nudge anyone waiting on suspend queue */
924 	if (unlikely(wq_has_sleeper(&md->wait)))
925 		wake_up(&md->wait);
926 
927 	if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) {
928 		if (bio->bi_opf & REQ_POLLED) {
929 			/*
930 			 * Upper layer won't help us poll split bio (io->orig_bio
931 			 * may only reflect a subset of the pre-split original)
932 			 * so clear REQ_POLLED in case of requeue.
933 			 */
934 			bio_clear_polled(bio);
935 			if (io_error == BLK_STS_AGAIN) {
936 				/* io_uring doesn't handle BLK_STS_AGAIN (yet) */
937 				queue_io(md, bio);
938 			}
939 		}
940 		return;
941 	}
942 
943 	if (bio_is_flush_with_data(bio)) {
944 		/*
945 		 * Preflush done for flush with data, reissue
946 		 * without REQ_PREFLUSH.
947 		 */
948 		bio->bi_opf &= ~REQ_PREFLUSH;
949 		queue_io(md, bio);
950 	} else {
951 		/* done with normal IO or empty flush */
952 		if (io_error)
953 			bio->bi_status = io_error;
954 		bio_endio(bio);
955 	}
956 }
957 
958 /*
959  * Decrements the number of outstanding ios that a bio has been
960  * cloned into, completing the original io if necc.
961  */
962 static inline void __dm_io_dec_pending(struct dm_io *io)
963 {
964 	if (atomic_dec_and_test(&io->io_count))
965 		dm_io_complete(io);
966 }
967 
968 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
969 {
970 	unsigned long flags;
971 
972 	/* Push-back supersedes any I/O errors */
973 	spin_lock_irqsave(&io->lock, flags);
974 	if (!(io->status == BLK_STS_DM_REQUEUE &&
975 	      __noflush_suspending(io->md))) {
976 		io->status = error;
977 	}
978 	spin_unlock_irqrestore(&io->lock, flags);
979 }
980 
981 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
982 {
983 	if (unlikely(error))
984 		dm_io_set_error(io, error);
985 
986 	__dm_io_dec_pending(io);
987 }
988 
989 void disable_discard(struct mapped_device *md)
990 {
991 	struct queue_limits *limits = dm_get_queue_limits(md);
992 
993 	/* device doesn't really support DISCARD, disable it */
994 	limits->max_discard_sectors = 0;
995 }
996 
997 void disable_write_zeroes(struct mapped_device *md)
998 {
999 	struct queue_limits *limits = dm_get_queue_limits(md);
1000 
1001 	/* device doesn't really support WRITE ZEROES, disable it */
1002 	limits->max_write_zeroes_sectors = 0;
1003 }
1004 
1005 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1006 {
1007 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1008 }
1009 
1010 static void clone_endio(struct bio *bio)
1011 {
1012 	blk_status_t error = bio->bi_status;
1013 	struct dm_target_io *tio = clone_to_tio(bio);
1014 	struct dm_target *ti = tio->ti;
1015 	dm_endio_fn endio = ti->type->end_io;
1016 	struct dm_io *io = tio->io;
1017 	struct mapped_device *md = io->md;
1018 
1019 	if (likely(bio->bi_bdev != md->disk->part0)) {
1020 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1021 
1022 		if (unlikely(error == BLK_STS_TARGET)) {
1023 			if (bio_op(bio) == REQ_OP_DISCARD &&
1024 			    !bdev_max_discard_sectors(bio->bi_bdev))
1025 				disable_discard(md);
1026 			else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1027 				 !q->limits.max_write_zeroes_sectors)
1028 				disable_write_zeroes(md);
1029 		}
1030 
1031 		if (static_branch_unlikely(&zoned_enabled) &&
1032 		    unlikely(blk_queue_is_zoned(q)))
1033 			dm_zone_endio(io, bio);
1034 	}
1035 
1036 	if (endio) {
1037 		int r = endio(ti, bio, &error);
1038 		switch (r) {
1039 		case DM_ENDIO_REQUEUE:
1040 			if (static_branch_unlikely(&zoned_enabled)) {
1041 				/*
1042 				 * Requeuing writes to a sequential zone of a zoned
1043 				 * target will break the sequential write pattern:
1044 				 * fail such IO.
1045 				 */
1046 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1047 					error = BLK_STS_IOERR;
1048 				else
1049 					error = BLK_STS_DM_REQUEUE;
1050 			} else
1051 				error = BLK_STS_DM_REQUEUE;
1052 			fallthrough;
1053 		case DM_ENDIO_DONE:
1054 			break;
1055 		case DM_ENDIO_INCOMPLETE:
1056 			/* The target will handle the io */
1057 			return;
1058 		default:
1059 			DMWARN("unimplemented target endio return value: %d", r);
1060 			BUG();
1061 		}
1062 	}
1063 
1064 	if (static_branch_unlikely(&swap_bios_enabled) &&
1065 	    unlikely(swap_bios_limit(ti, bio)))
1066 		up(&md->swap_bios_semaphore);
1067 
1068 	free_tio(bio);
1069 	dm_io_dec_pending(io, error);
1070 }
1071 
1072 /*
1073  * Return maximum size of I/O possible at the supplied sector up to the current
1074  * target boundary.
1075  */
1076 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1077 						  sector_t target_offset)
1078 {
1079 	return ti->len - target_offset;
1080 }
1081 
1082 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1083 {
1084 	sector_t target_offset = dm_target_offset(ti, sector);
1085 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1086 	sector_t max_len;
1087 
1088 	/*
1089 	 * Does the target need to split IO even further?
1090 	 * - varied (per target) IO splitting is a tenet of DM; this
1091 	 *   explains why stacked chunk_sectors based splitting via
1092 	 *   blk_max_size_offset() isn't possible here. So pass in
1093 	 *   ti->max_io_len to override stacked chunk_sectors.
1094 	 */
1095 	if (ti->max_io_len) {
1096 		max_len = blk_max_size_offset(ti->table->md->queue,
1097 					      target_offset, ti->max_io_len);
1098 		if (len > max_len)
1099 			len = max_len;
1100 	}
1101 
1102 	return len;
1103 }
1104 
1105 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1106 {
1107 	if (len > UINT_MAX) {
1108 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1109 		      (unsigned long long)len, UINT_MAX);
1110 		ti->error = "Maximum size of target IO is too large";
1111 		return -EINVAL;
1112 	}
1113 
1114 	ti->max_io_len = (uint32_t) len;
1115 
1116 	return 0;
1117 }
1118 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1119 
1120 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1121 						sector_t sector, int *srcu_idx)
1122 	__acquires(md->io_barrier)
1123 {
1124 	struct dm_table *map;
1125 	struct dm_target *ti;
1126 
1127 	map = dm_get_live_table(md, srcu_idx);
1128 	if (!map)
1129 		return NULL;
1130 
1131 	ti = dm_table_find_target(map, sector);
1132 	if (!ti)
1133 		return NULL;
1134 
1135 	return ti;
1136 }
1137 
1138 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1139 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1140 		pfn_t *pfn)
1141 {
1142 	struct mapped_device *md = dax_get_private(dax_dev);
1143 	sector_t sector = pgoff * PAGE_SECTORS;
1144 	struct dm_target *ti;
1145 	long len, ret = -EIO;
1146 	int srcu_idx;
1147 
1148 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1149 
1150 	if (!ti)
1151 		goto out;
1152 	if (!ti->type->direct_access)
1153 		goto out;
1154 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1155 	if (len < 1)
1156 		goto out;
1157 	nr_pages = min(len, nr_pages);
1158 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1159 
1160  out:
1161 	dm_put_live_table(md, srcu_idx);
1162 
1163 	return ret;
1164 }
1165 
1166 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1167 				  size_t nr_pages)
1168 {
1169 	struct mapped_device *md = dax_get_private(dax_dev);
1170 	sector_t sector = pgoff * PAGE_SECTORS;
1171 	struct dm_target *ti;
1172 	int ret = -EIO;
1173 	int srcu_idx;
1174 
1175 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1176 
1177 	if (!ti)
1178 		goto out;
1179 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1180 		/*
1181 		 * ->zero_page_range() is mandatory dax operation. If we are
1182 		 *  here, something is wrong.
1183 		 */
1184 		goto out;
1185 	}
1186 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1187  out:
1188 	dm_put_live_table(md, srcu_idx);
1189 
1190 	return ret;
1191 }
1192 
1193 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1194 		void *addr, size_t bytes, struct iov_iter *i)
1195 {
1196 	struct mapped_device *md = dax_get_private(dax_dev);
1197 	sector_t sector = pgoff * PAGE_SECTORS;
1198 	struct dm_target *ti;
1199 	int srcu_idx;
1200 	long ret = 0;
1201 
1202 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1203 	if (!ti || !ti->type->dax_recovery_write)
1204 		goto out;
1205 
1206 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1207 out:
1208 	dm_put_live_table(md, srcu_idx);
1209 	return ret;
1210 }
1211 
1212 /*
1213  * A target may call dm_accept_partial_bio only from the map routine.  It is
1214  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1215  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1216  * __send_duplicate_bios().
1217  *
1218  * dm_accept_partial_bio informs the dm that the target only wants to process
1219  * additional n_sectors sectors of the bio and the rest of the data should be
1220  * sent in a next bio.
1221  *
1222  * A diagram that explains the arithmetics:
1223  * +--------------------+---------------+-------+
1224  * |         1          |       2       |   3   |
1225  * +--------------------+---------------+-------+
1226  *
1227  * <-------------- *tio->len_ptr --------------->
1228  *                      <----- bio_sectors ----->
1229  *                      <-- n_sectors -->
1230  *
1231  * Region 1 was already iterated over with bio_advance or similar function.
1232  *	(it may be empty if the target doesn't use bio_advance)
1233  * Region 2 is the remaining bio size that the target wants to process.
1234  *	(it may be empty if region 1 is non-empty, although there is no reason
1235  *	 to make it empty)
1236  * The target requires that region 3 is to be sent in the next bio.
1237  *
1238  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1239  * the partially processed part (the sum of regions 1+2) must be the same for all
1240  * copies of the bio.
1241  */
1242 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1243 {
1244 	struct dm_target_io *tio = clone_to_tio(bio);
1245 	unsigned bio_sectors = bio_sectors(bio);
1246 
1247 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1248 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1249 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1250 	BUG_ON(bio_sectors > *tio->len_ptr);
1251 	BUG_ON(n_sectors > bio_sectors);
1252 
1253 	*tio->len_ptr -= bio_sectors - n_sectors;
1254 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1255 
1256 	/*
1257 	 * __split_and_process_bio() may have already saved mapped part
1258 	 * for accounting but it is being reduced so update accordingly.
1259 	 */
1260 	dm_io_set_flag(tio->io, DM_IO_WAS_SPLIT);
1261 	tio->io->sectors = n_sectors;
1262 }
1263 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1264 
1265 /*
1266  * @clone: clone bio that DM core passed to target's .map function
1267  * @tgt_clone: clone of @clone bio that target needs submitted
1268  *
1269  * Targets should use this interface to submit bios they take
1270  * ownership of when returning DM_MAPIO_SUBMITTED.
1271  *
1272  * Target should also enable ti->accounts_remapped_io
1273  */
1274 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1275 {
1276 	struct dm_target_io *tio = clone_to_tio(clone);
1277 	struct dm_io *io = tio->io;
1278 
1279 	/* establish bio that will get submitted */
1280 	if (!tgt_clone)
1281 		tgt_clone = clone;
1282 
1283 	/*
1284 	 * Account io->origin_bio to DM dev on behalf of target
1285 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1286 	 */
1287 	dm_start_io_acct(io, clone);
1288 
1289 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1290 			      tio->old_sector);
1291 	submit_bio_noacct(tgt_clone);
1292 }
1293 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1294 
1295 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1296 {
1297 	mutex_lock(&md->swap_bios_lock);
1298 	while (latch < md->swap_bios) {
1299 		cond_resched();
1300 		down(&md->swap_bios_semaphore);
1301 		md->swap_bios--;
1302 	}
1303 	while (latch > md->swap_bios) {
1304 		cond_resched();
1305 		up(&md->swap_bios_semaphore);
1306 		md->swap_bios++;
1307 	}
1308 	mutex_unlock(&md->swap_bios_lock);
1309 }
1310 
1311 static void __map_bio(struct bio *clone)
1312 {
1313 	struct dm_target_io *tio = clone_to_tio(clone);
1314 	struct dm_target *ti = tio->ti;
1315 	struct dm_io *io = tio->io;
1316 	struct mapped_device *md = io->md;
1317 	int r;
1318 
1319 	clone->bi_end_io = clone_endio;
1320 
1321 	/*
1322 	 * Map the clone.
1323 	 */
1324 	tio->old_sector = clone->bi_iter.bi_sector;
1325 
1326 	if (static_branch_unlikely(&swap_bios_enabled) &&
1327 	    unlikely(swap_bios_limit(ti, clone))) {
1328 		int latch = get_swap_bios();
1329 		if (unlikely(latch != md->swap_bios))
1330 			__set_swap_bios_limit(md, latch);
1331 		down(&md->swap_bios_semaphore);
1332 	}
1333 
1334 	if (static_branch_unlikely(&zoned_enabled)) {
1335 		/*
1336 		 * Check if the IO needs a special mapping due to zone append
1337 		 * emulation on zoned target. In this case, dm_zone_map_bio()
1338 		 * calls the target map operation.
1339 		 */
1340 		if (unlikely(dm_emulate_zone_append(md)))
1341 			r = dm_zone_map_bio(tio);
1342 		else
1343 			r = ti->type->map(ti, clone);
1344 	} else
1345 		r = ti->type->map(ti, clone);
1346 
1347 	switch (r) {
1348 	case DM_MAPIO_SUBMITTED:
1349 		/* target has assumed ownership of this io */
1350 		if (!ti->accounts_remapped_io)
1351 			dm_start_io_acct(io, clone);
1352 		break;
1353 	case DM_MAPIO_REMAPPED:
1354 		dm_submit_bio_remap(clone, NULL);
1355 		break;
1356 	case DM_MAPIO_KILL:
1357 	case DM_MAPIO_REQUEUE:
1358 		if (static_branch_unlikely(&swap_bios_enabled) &&
1359 		    unlikely(swap_bios_limit(ti, clone)))
1360 			up(&md->swap_bios_semaphore);
1361 		free_tio(clone);
1362 		if (r == DM_MAPIO_KILL)
1363 			dm_io_dec_pending(io, BLK_STS_IOERR);
1364 		else
1365 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1366 		break;
1367 	default:
1368 		DMWARN("unimplemented target map return value: %d", r);
1369 		BUG();
1370 	}
1371 }
1372 
1373 static void setup_split_accounting(struct clone_info *ci, unsigned len)
1374 {
1375 	struct dm_io *io = ci->io;
1376 
1377 	if (ci->sector_count > len) {
1378 		/*
1379 		 * Split needed, save the mapped part for accounting.
1380 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1381 		 */
1382 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1383 		io->sectors = len;
1384 	}
1385 
1386 	if (static_branch_unlikely(&stats_enabled) &&
1387 	    unlikely(dm_stats_used(&io->md->stats))) {
1388 		/*
1389 		 * Save bi_sector in terms of its offset from end of
1390 		 * original bio, only needed for DM-stats' benefit.
1391 		 * - saved regardless of whether split needed so that
1392 		 *   dm_accept_partial_bio() doesn't need to.
1393 		 */
1394 		io->sector_offset = bio_end_sector(ci->bio) - ci->sector;
1395 	}
1396 }
1397 
1398 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1399 				struct dm_target *ti, unsigned num_bios)
1400 {
1401 	struct bio *bio;
1402 	int try;
1403 
1404 	for (try = 0; try < 2; try++) {
1405 		int bio_nr;
1406 
1407 		if (try)
1408 			mutex_lock(&ci->io->md->table_devices_lock);
1409 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1410 			bio = alloc_tio(ci, ti, bio_nr, NULL,
1411 					try ? GFP_NOIO : GFP_NOWAIT);
1412 			if (!bio)
1413 				break;
1414 
1415 			bio_list_add(blist, bio);
1416 		}
1417 		if (try)
1418 			mutex_unlock(&ci->io->md->table_devices_lock);
1419 		if (bio_nr == num_bios)
1420 			return;
1421 
1422 		while ((bio = bio_list_pop(blist)))
1423 			free_tio(bio);
1424 	}
1425 }
1426 
1427 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1428 				  unsigned num_bios, unsigned *len)
1429 {
1430 	struct bio_list blist = BIO_EMPTY_LIST;
1431 	struct bio *clone;
1432 	int ret = 0;
1433 
1434 	switch (num_bios) {
1435 	case 0:
1436 		break;
1437 	case 1:
1438 		if (len)
1439 			setup_split_accounting(ci, *len);
1440 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1441 		__map_bio(clone);
1442 		ret = 1;
1443 		break;
1444 	default:
1445 		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1446 		alloc_multiple_bios(&blist, ci, ti, num_bios);
1447 		while ((clone = bio_list_pop(&blist))) {
1448 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1449 			__map_bio(clone);
1450 			ret += 1;
1451 		}
1452 		break;
1453 	}
1454 
1455 	return ret;
1456 }
1457 
1458 static void __send_empty_flush(struct clone_info *ci)
1459 {
1460 	unsigned target_nr = 0;
1461 	struct dm_target *ti;
1462 	struct bio flush_bio;
1463 
1464 	/*
1465 	 * Use an on-stack bio for this, it's safe since we don't
1466 	 * need to reference it after submit. It's just used as
1467 	 * the basis for the clone(s).
1468 	 */
1469 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1470 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1471 
1472 	ci->bio = &flush_bio;
1473 	ci->sector_count = 0;
1474 	ci->io->tio.clone.bi_iter.bi_size = 0;
1475 
1476 	while ((ti = dm_table_get_target(ci->map, target_nr++))) {
1477 		int bios;
1478 
1479 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1480 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1481 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1482 	}
1483 
1484 	/*
1485 	 * alloc_io() takes one extra reference for submission, so the
1486 	 * reference won't reach 0 without the following subtraction
1487 	 */
1488 	atomic_sub(1, &ci->io->io_count);
1489 
1490 	bio_uninit(ci->bio);
1491 }
1492 
1493 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1494 					unsigned num_bios)
1495 {
1496 	unsigned len;
1497 	int bios;
1498 
1499 	len = min_t(sector_t, ci->sector_count,
1500 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1501 
1502 	atomic_add(num_bios, &ci->io->io_count);
1503 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1504 	/*
1505 	 * alloc_io() takes one extra reference for submission, so the
1506 	 * reference won't reach 0 without the following (+1) subtraction
1507 	 */
1508 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1509 
1510 	ci->sector += len;
1511 	ci->sector_count -= len;
1512 }
1513 
1514 static bool is_abnormal_io(struct bio *bio)
1515 {
1516 	unsigned int op = bio_op(bio);
1517 
1518 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1519 		switch (op) {
1520 		case REQ_OP_DISCARD:
1521 		case REQ_OP_SECURE_ERASE:
1522 		case REQ_OP_WRITE_ZEROES:
1523 			return true;
1524 		default:
1525 			break;
1526 		}
1527 	}
1528 
1529 	return false;
1530 }
1531 
1532 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1533 					  struct dm_target *ti)
1534 {
1535 	unsigned num_bios = 0;
1536 
1537 	switch (bio_op(ci->bio)) {
1538 	case REQ_OP_DISCARD:
1539 		num_bios = ti->num_discard_bios;
1540 		break;
1541 	case REQ_OP_SECURE_ERASE:
1542 		num_bios = ti->num_secure_erase_bios;
1543 		break;
1544 	case REQ_OP_WRITE_ZEROES:
1545 		num_bios = ti->num_write_zeroes_bios;
1546 		break;
1547 	}
1548 
1549 	/*
1550 	 * Even though the device advertised support for this type of
1551 	 * request, that does not mean every target supports it, and
1552 	 * reconfiguration might also have changed that since the
1553 	 * check was performed.
1554 	 */
1555 	if (unlikely(!num_bios))
1556 		return BLK_STS_NOTSUPP;
1557 
1558 	__send_changing_extent_only(ci, ti, num_bios);
1559 	return BLK_STS_OK;
1560 }
1561 
1562 /*
1563  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1564  * associated with this bio, and this bio's bi_private needs to be
1565  * stored in dm_io->data before the reuse.
1566  *
1567  * bio->bi_private is owned by fs or upper layer, so block layer won't
1568  * touch it after splitting. Meantime it won't be changed by anyone after
1569  * bio is submitted. So this reuse is safe.
1570  */
1571 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1572 {
1573 	return (struct dm_io **)&bio->bi_private;
1574 }
1575 
1576 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1577 {
1578 	struct dm_io **head = dm_poll_list_head(bio);
1579 
1580 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1581 		bio->bi_opf |= REQ_DM_POLL_LIST;
1582 		/*
1583 		 * Save .bi_private into dm_io, so that we can reuse
1584 		 * .bi_private as dm_io list head for storing dm_io list
1585 		 */
1586 		io->data = bio->bi_private;
1587 
1588 		/* tell block layer to poll for completion */
1589 		bio->bi_cookie = ~BLK_QC_T_NONE;
1590 
1591 		io->next = NULL;
1592 	} else {
1593 		/*
1594 		 * bio recursed due to split, reuse original poll list,
1595 		 * and save bio->bi_private too.
1596 		 */
1597 		io->data = (*head)->data;
1598 		io->next = *head;
1599 	}
1600 
1601 	*head = io;
1602 }
1603 
1604 /*
1605  * Select the correct strategy for processing a non-flush bio.
1606  */
1607 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1608 {
1609 	struct bio *clone;
1610 	struct dm_target *ti;
1611 	unsigned len;
1612 
1613 	ti = dm_table_find_target(ci->map, ci->sector);
1614 	if (unlikely(!ti))
1615 		return BLK_STS_IOERR;
1616 	else if (unlikely(ci->is_abnormal_io))
1617 		return __process_abnormal_io(ci, ti);
1618 
1619 	/*
1620 	 * Only support bio polling for normal IO, and the target io is
1621 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1622 	 */
1623 	ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED;
1624 
1625 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1626 	setup_split_accounting(ci, len);
1627 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1628 	__map_bio(clone);
1629 
1630 	ci->sector += len;
1631 	ci->sector_count -= len;
1632 
1633 	return BLK_STS_OK;
1634 }
1635 
1636 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1637 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1638 {
1639 	ci->map = map;
1640 	ci->io = alloc_io(md, bio);
1641 	ci->bio = bio;
1642 	ci->is_abnormal_io = is_abnormal;
1643 	ci->submit_as_polled = false;
1644 	ci->sector = bio->bi_iter.bi_sector;
1645 	ci->sector_count = bio_sectors(bio);
1646 
1647 	/* Shouldn't happen but sector_count was being set to 0 so... */
1648 	if (static_branch_unlikely(&zoned_enabled) &&
1649 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1650 		ci->sector_count = 0;
1651 }
1652 
1653 /*
1654  * Entry point to split a bio into clones and submit them to the targets.
1655  */
1656 static void dm_split_and_process_bio(struct mapped_device *md,
1657 				     struct dm_table *map, struct bio *bio)
1658 {
1659 	struct clone_info ci;
1660 	struct dm_io *io;
1661 	blk_status_t error = BLK_STS_OK;
1662 	bool is_abnormal;
1663 
1664 	is_abnormal = is_abnormal_io(bio);
1665 	if (unlikely(is_abnormal)) {
1666 		/*
1667 		 * Use blk_queue_split() for abnormal IO (e.g. discard, etc)
1668 		 * otherwise associated queue_limits won't be imposed.
1669 		 */
1670 		blk_queue_split(&bio);
1671 	}
1672 
1673 	init_clone_info(&ci, md, map, bio, is_abnormal);
1674 	io = ci.io;
1675 
1676 	if (bio->bi_opf & REQ_PREFLUSH) {
1677 		__send_empty_flush(&ci);
1678 		/* dm_io_complete submits any data associated with flush */
1679 		goto out;
1680 	}
1681 
1682 	error = __split_and_process_bio(&ci);
1683 	if (error || !ci.sector_count)
1684 		goto out;
1685 	/*
1686 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1687 	 * *after* bios already submitted have been completely processed.
1688 	 */
1689 	bio_trim(bio, io->sectors, ci.sector_count);
1690 	trace_block_split(bio, bio->bi_iter.bi_sector);
1691 	bio_inc_remaining(bio);
1692 	submit_bio_noacct(bio);
1693 out:
1694 	/*
1695 	 * Drop the extra reference count for non-POLLED bio, and hold one
1696 	 * reference for POLLED bio, which will be released in dm_poll_bio
1697 	 *
1698 	 * Add every dm_io instance into the dm_io list head which is stored
1699 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1700 	 */
1701 	if (error || !ci.submit_as_polled) {
1702 		/*
1703 		 * In case of submission failure, the extra reference for
1704 		 * submitting io isn't consumed yet
1705 		 */
1706 		if (error)
1707 			atomic_dec(&io->io_count);
1708 		dm_io_dec_pending(io, error);
1709 	} else
1710 		dm_queue_poll_io(bio, io);
1711 }
1712 
1713 static void dm_submit_bio(struct bio *bio)
1714 {
1715 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1716 	int srcu_idx;
1717 	struct dm_table *map;
1718 
1719 	map = dm_get_live_table_bio(md, &srcu_idx, bio);
1720 
1721 	/* If suspended, or map not yet available, queue this IO for later */
1722 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1723 	    unlikely(!map)) {
1724 		if (bio->bi_opf & REQ_NOWAIT)
1725 			bio_wouldblock_error(bio);
1726 		else if (bio->bi_opf & REQ_RAHEAD)
1727 			bio_io_error(bio);
1728 		else
1729 			queue_io(md, bio);
1730 		goto out;
1731 	}
1732 
1733 	dm_split_and_process_bio(md, map, bio);
1734 out:
1735 	dm_put_live_table_bio(md, srcu_idx, bio);
1736 }
1737 
1738 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1739 			  unsigned int flags)
1740 {
1741 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1742 
1743 	/* don't poll if the mapped io is done */
1744 	if (atomic_read(&io->io_count) > 1)
1745 		bio_poll(&io->tio.clone, iob, flags);
1746 
1747 	/* bio_poll holds the last reference */
1748 	return atomic_read(&io->io_count) == 1;
1749 }
1750 
1751 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1752 		       unsigned int flags)
1753 {
1754 	struct dm_io **head = dm_poll_list_head(bio);
1755 	struct dm_io *list = *head;
1756 	struct dm_io *tmp = NULL;
1757 	struct dm_io *curr, *next;
1758 
1759 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1760 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1761 		return 0;
1762 
1763 	WARN_ON_ONCE(!list);
1764 
1765 	/*
1766 	 * Restore .bi_private before possibly completing dm_io.
1767 	 *
1768 	 * bio_poll() is only possible once @bio has been completely
1769 	 * submitted via submit_bio_noacct()'s depth-first submission.
1770 	 * So there is no dm_queue_poll_io() race associated with
1771 	 * clearing REQ_DM_POLL_LIST here.
1772 	 */
1773 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1774 	bio->bi_private = list->data;
1775 
1776 	for (curr = list, next = curr->next; curr; curr = next, next =
1777 			curr ? curr->next : NULL) {
1778 		if (dm_poll_dm_io(curr, iob, flags)) {
1779 			/*
1780 			 * clone_endio() has already occurred, so no
1781 			 * error handling is needed here.
1782 			 */
1783 			__dm_io_dec_pending(curr);
1784 		} else {
1785 			curr->next = tmp;
1786 			tmp = curr;
1787 		}
1788 	}
1789 
1790 	/* Not done? */
1791 	if (tmp) {
1792 		bio->bi_opf |= REQ_DM_POLL_LIST;
1793 		/* Reset bio->bi_private to dm_io list head */
1794 		*head = tmp;
1795 		return 0;
1796 	}
1797 	return 1;
1798 }
1799 
1800 /*-----------------------------------------------------------------
1801  * An IDR is used to keep track of allocated minor numbers.
1802  *---------------------------------------------------------------*/
1803 static void free_minor(int minor)
1804 {
1805 	spin_lock(&_minor_lock);
1806 	idr_remove(&_minor_idr, minor);
1807 	spin_unlock(&_minor_lock);
1808 }
1809 
1810 /*
1811  * See if the device with a specific minor # is free.
1812  */
1813 static int specific_minor(int minor)
1814 {
1815 	int r;
1816 
1817 	if (minor >= (1 << MINORBITS))
1818 		return -EINVAL;
1819 
1820 	idr_preload(GFP_KERNEL);
1821 	spin_lock(&_minor_lock);
1822 
1823 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1824 
1825 	spin_unlock(&_minor_lock);
1826 	idr_preload_end();
1827 	if (r < 0)
1828 		return r == -ENOSPC ? -EBUSY : r;
1829 	return 0;
1830 }
1831 
1832 static int next_free_minor(int *minor)
1833 {
1834 	int r;
1835 
1836 	idr_preload(GFP_KERNEL);
1837 	spin_lock(&_minor_lock);
1838 
1839 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1840 
1841 	spin_unlock(&_minor_lock);
1842 	idr_preload_end();
1843 	if (r < 0)
1844 		return r;
1845 	*minor = r;
1846 	return 0;
1847 }
1848 
1849 static const struct block_device_operations dm_blk_dops;
1850 static const struct block_device_operations dm_rq_blk_dops;
1851 static const struct dax_operations dm_dax_ops;
1852 
1853 static void dm_wq_work(struct work_struct *work);
1854 
1855 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1856 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1857 {
1858 	dm_destroy_crypto_profile(q->crypto_profile);
1859 }
1860 
1861 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1862 
1863 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1864 {
1865 }
1866 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1867 
1868 static void cleanup_mapped_device(struct mapped_device *md)
1869 {
1870 	if (md->wq)
1871 		destroy_workqueue(md->wq);
1872 	dm_free_md_mempools(md->mempools);
1873 
1874 	if (md->dax_dev) {
1875 		dax_remove_host(md->disk);
1876 		kill_dax(md->dax_dev);
1877 		put_dax(md->dax_dev);
1878 		md->dax_dev = NULL;
1879 	}
1880 
1881 	dm_cleanup_zoned_dev(md);
1882 	if (md->disk) {
1883 		spin_lock(&_minor_lock);
1884 		md->disk->private_data = NULL;
1885 		spin_unlock(&_minor_lock);
1886 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1887 			dm_sysfs_exit(md);
1888 			del_gendisk(md->disk);
1889 		}
1890 		dm_queue_destroy_crypto_profile(md->queue);
1891 		blk_cleanup_disk(md->disk);
1892 	}
1893 
1894 	if (md->pending_io) {
1895 		free_percpu(md->pending_io);
1896 		md->pending_io = NULL;
1897 	}
1898 
1899 	cleanup_srcu_struct(&md->io_barrier);
1900 
1901 	mutex_destroy(&md->suspend_lock);
1902 	mutex_destroy(&md->type_lock);
1903 	mutex_destroy(&md->table_devices_lock);
1904 	mutex_destroy(&md->swap_bios_lock);
1905 
1906 	dm_mq_cleanup_mapped_device(md);
1907 }
1908 
1909 /*
1910  * Allocate and initialise a blank device with a given minor.
1911  */
1912 static struct mapped_device *alloc_dev(int minor)
1913 {
1914 	int r, numa_node_id = dm_get_numa_node();
1915 	struct mapped_device *md;
1916 	void *old_md;
1917 
1918 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1919 	if (!md) {
1920 		DMWARN("unable to allocate device, out of memory.");
1921 		return NULL;
1922 	}
1923 
1924 	if (!try_module_get(THIS_MODULE))
1925 		goto bad_module_get;
1926 
1927 	/* get a minor number for the dev */
1928 	if (minor == DM_ANY_MINOR)
1929 		r = next_free_minor(&minor);
1930 	else
1931 		r = specific_minor(minor);
1932 	if (r < 0)
1933 		goto bad_minor;
1934 
1935 	r = init_srcu_struct(&md->io_barrier);
1936 	if (r < 0)
1937 		goto bad_io_barrier;
1938 
1939 	md->numa_node_id = numa_node_id;
1940 	md->init_tio_pdu = false;
1941 	md->type = DM_TYPE_NONE;
1942 	mutex_init(&md->suspend_lock);
1943 	mutex_init(&md->type_lock);
1944 	mutex_init(&md->table_devices_lock);
1945 	spin_lock_init(&md->deferred_lock);
1946 	atomic_set(&md->holders, 1);
1947 	atomic_set(&md->open_count, 0);
1948 	atomic_set(&md->event_nr, 0);
1949 	atomic_set(&md->uevent_seq, 0);
1950 	INIT_LIST_HEAD(&md->uevent_list);
1951 	INIT_LIST_HEAD(&md->table_devices);
1952 	spin_lock_init(&md->uevent_lock);
1953 
1954 	/*
1955 	 * default to bio-based until DM table is loaded and md->type
1956 	 * established. If request-based table is loaded: blk-mq will
1957 	 * override accordingly.
1958 	 */
1959 	md->disk = blk_alloc_disk(md->numa_node_id);
1960 	if (!md->disk)
1961 		goto bad;
1962 	md->queue = md->disk->queue;
1963 
1964 	init_waitqueue_head(&md->wait);
1965 	INIT_WORK(&md->work, dm_wq_work);
1966 	init_waitqueue_head(&md->eventq);
1967 	init_completion(&md->kobj_holder.completion);
1968 
1969 	md->swap_bios = get_swap_bios();
1970 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1971 	mutex_init(&md->swap_bios_lock);
1972 
1973 	md->disk->major = _major;
1974 	md->disk->first_minor = minor;
1975 	md->disk->minors = 1;
1976 	md->disk->flags |= GENHD_FL_NO_PART;
1977 	md->disk->fops = &dm_blk_dops;
1978 	md->disk->queue = md->queue;
1979 	md->disk->private_data = md;
1980 	sprintf(md->disk->disk_name, "dm-%d", minor);
1981 
1982 	if (IS_ENABLED(CONFIG_FS_DAX)) {
1983 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
1984 		if (IS_ERR(md->dax_dev)) {
1985 			md->dax_dev = NULL;
1986 			goto bad;
1987 		}
1988 		set_dax_nocache(md->dax_dev);
1989 		set_dax_nomc(md->dax_dev);
1990 		if (dax_add_host(md->dax_dev, md->disk))
1991 			goto bad;
1992 	}
1993 
1994 	format_dev_t(md->name, MKDEV(_major, minor));
1995 
1996 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
1997 	if (!md->wq)
1998 		goto bad;
1999 
2000 	md->pending_io = alloc_percpu(unsigned long);
2001 	if (!md->pending_io)
2002 		goto bad;
2003 
2004 	dm_stats_init(&md->stats);
2005 
2006 	/* Populate the mapping, nobody knows we exist yet */
2007 	spin_lock(&_minor_lock);
2008 	old_md = idr_replace(&_minor_idr, md, minor);
2009 	spin_unlock(&_minor_lock);
2010 
2011 	BUG_ON(old_md != MINOR_ALLOCED);
2012 
2013 	return md;
2014 
2015 bad:
2016 	cleanup_mapped_device(md);
2017 bad_io_barrier:
2018 	free_minor(minor);
2019 bad_minor:
2020 	module_put(THIS_MODULE);
2021 bad_module_get:
2022 	kvfree(md);
2023 	return NULL;
2024 }
2025 
2026 static void unlock_fs(struct mapped_device *md);
2027 
2028 static void free_dev(struct mapped_device *md)
2029 {
2030 	int minor = MINOR(disk_devt(md->disk));
2031 
2032 	unlock_fs(md);
2033 
2034 	cleanup_mapped_device(md);
2035 
2036 	free_table_devices(&md->table_devices);
2037 	dm_stats_cleanup(&md->stats);
2038 	free_minor(minor);
2039 
2040 	module_put(THIS_MODULE);
2041 	kvfree(md);
2042 }
2043 
2044 /*
2045  * Bind a table to the device.
2046  */
2047 static void event_callback(void *context)
2048 {
2049 	unsigned long flags;
2050 	LIST_HEAD(uevents);
2051 	struct mapped_device *md = (struct mapped_device *) context;
2052 
2053 	spin_lock_irqsave(&md->uevent_lock, flags);
2054 	list_splice_init(&md->uevent_list, &uevents);
2055 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2056 
2057 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2058 
2059 	atomic_inc(&md->event_nr);
2060 	wake_up(&md->eventq);
2061 	dm_issue_global_event();
2062 }
2063 
2064 /*
2065  * Returns old map, which caller must destroy.
2066  */
2067 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2068 			       struct queue_limits *limits)
2069 {
2070 	struct dm_table *old_map;
2071 	sector_t size;
2072 	int ret;
2073 
2074 	lockdep_assert_held(&md->suspend_lock);
2075 
2076 	size = dm_table_get_size(t);
2077 
2078 	/*
2079 	 * Wipe any geometry if the size of the table changed.
2080 	 */
2081 	if (size != dm_get_size(md))
2082 		memset(&md->geometry, 0, sizeof(md->geometry));
2083 
2084 	if (!get_capacity(md->disk))
2085 		set_capacity(md->disk, size);
2086 	else
2087 		set_capacity_and_notify(md->disk, size);
2088 
2089 	dm_table_event_callback(t, event_callback, md);
2090 
2091 	if (dm_table_request_based(t)) {
2092 		/*
2093 		 * Leverage the fact that request-based DM targets are
2094 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2095 		 */
2096 		md->immutable_target = dm_table_get_immutable_target(t);
2097 
2098 		/*
2099 		 * There is no need to reload with request-based dm because the
2100 		 * size of front_pad doesn't change.
2101 		 *
2102 		 * Note for future: If you are to reload bioset, prep-ed
2103 		 * requests in the queue may refer to bio from the old bioset,
2104 		 * so you must walk through the queue to unprep.
2105 		 */
2106 		if (!md->mempools) {
2107 			md->mempools = t->mempools;
2108 			t->mempools = NULL;
2109 		}
2110 	} else {
2111 		/*
2112 		 * The md may already have mempools that need changing.
2113 		 * If so, reload bioset because front_pad may have changed
2114 		 * because a different table was loaded.
2115 		 */
2116 		dm_free_md_mempools(md->mempools);
2117 		md->mempools = t->mempools;
2118 		t->mempools = NULL;
2119 	}
2120 
2121 	ret = dm_table_set_restrictions(t, md->queue, limits);
2122 	if (ret) {
2123 		old_map = ERR_PTR(ret);
2124 		goto out;
2125 	}
2126 
2127 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2128 	rcu_assign_pointer(md->map, (void *)t);
2129 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2130 
2131 	if (old_map)
2132 		dm_sync_table(md);
2133 out:
2134 	return old_map;
2135 }
2136 
2137 /*
2138  * Returns unbound table for the caller to free.
2139  */
2140 static struct dm_table *__unbind(struct mapped_device *md)
2141 {
2142 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2143 
2144 	if (!map)
2145 		return NULL;
2146 
2147 	dm_table_event_callback(map, NULL, NULL);
2148 	RCU_INIT_POINTER(md->map, NULL);
2149 	dm_sync_table(md);
2150 
2151 	return map;
2152 }
2153 
2154 /*
2155  * Constructor for a new device.
2156  */
2157 int dm_create(int minor, struct mapped_device **result)
2158 {
2159 	struct mapped_device *md;
2160 
2161 	md = alloc_dev(minor);
2162 	if (!md)
2163 		return -ENXIO;
2164 
2165 	dm_ima_reset_data(md);
2166 
2167 	*result = md;
2168 	return 0;
2169 }
2170 
2171 /*
2172  * Functions to manage md->type.
2173  * All are required to hold md->type_lock.
2174  */
2175 void dm_lock_md_type(struct mapped_device *md)
2176 {
2177 	mutex_lock(&md->type_lock);
2178 }
2179 
2180 void dm_unlock_md_type(struct mapped_device *md)
2181 {
2182 	mutex_unlock(&md->type_lock);
2183 }
2184 
2185 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2186 {
2187 	BUG_ON(!mutex_is_locked(&md->type_lock));
2188 	md->type = type;
2189 }
2190 
2191 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2192 {
2193 	return md->type;
2194 }
2195 
2196 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2197 {
2198 	return md->immutable_target_type;
2199 }
2200 
2201 /*
2202  * The queue_limits are only valid as long as you have a reference
2203  * count on 'md'.
2204  */
2205 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2206 {
2207 	BUG_ON(!atomic_read(&md->holders));
2208 	return &md->queue->limits;
2209 }
2210 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2211 
2212 /*
2213  * Setup the DM device's queue based on md's type
2214  */
2215 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2216 {
2217 	enum dm_queue_mode type = dm_table_get_type(t);
2218 	struct queue_limits limits;
2219 	int r;
2220 
2221 	switch (type) {
2222 	case DM_TYPE_REQUEST_BASED:
2223 		md->disk->fops = &dm_rq_blk_dops;
2224 		r = dm_mq_init_request_queue(md, t);
2225 		if (r) {
2226 			DMERR("Cannot initialize queue for request-based dm mapped device");
2227 			return r;
2228 		}
2229 		break;
2230 	case DM_TYPE_BIO_BASED:
2231 	case DM_TYPE_DAX_BIO_BASED:
2232 		break;
2233 	case DM_TYPE_NONE:
2234 		WARN_ON_ONCE(true);
2235 		break;
2236 	}
2237 
2238 	r = dm_calculate_queue_limits(t, &limits);
2239 	if (r) {
2240 		DMERR("Cannot calculate initial queue limits");
2241 		return r;
2242 	}
2243 	r = dm_table_set_restrictions(t, md->queue, &limits);
2244 	if (r)
2245 		return r;
2246 
2247 	r = add_disk(md->disk);
2248 	if (r)
2249 		return r;
2250 
2251 	r = dm_sysfs_init(md);
2252 	if (r) {
2253 		del_gendisk(md->disk);
2254 		return r;
2255 	}
2256 	md->type = type;
2257 	return 0;
2258 }
2259 
2260 struct mapped_device *dm_get_md(dev_t dev)
2261 {
2262 	struct mapped_device *md;
2263 	unsigned minor = MINOR(dev);
2264 
2265 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2266 		return NULL;
2267 
2268 	spin_lock(&_minor_lock);
2269 
2270 	md = idr_find(&_minor_idr, minor);
2271 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2272 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2273 		md = NULL;
2274 		goto out;
2275 	}
2276 	dm_get(md);
2277 out:
2278 	spin_unlock(&_minor_lock);
2279 
2280 	return md;
2281 }
2282 EXPORT_SYMBOL_GPL(dm_get_md);
2283 
2284 void *dm_get_mdptr(struct mapped_device *md)
2285 {
2286 	return md->interface_ptr;
2287 }
2288 
2289 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2290 {
2291 	md->interface_ptr = ptr;
2292 }
2293 
2294 void dm_get(struct mapped_device *md)
2295 {
2296 	atomic_inc(&md->holders);
2297 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2298 }
2299 
2300 int dm_hold(struct mapped_device *md)
2301 {
2302 	spin_lock(&_minor_lock);
2303 	if (test_bit(DMF_FREEING, &md->flags)) {
2304 		spin_unlock(&_minor_lock);
2305 		return -EBUSY;
2306 	}
2307 	dm_get(md);
2308 	spin_unlock(&_minor_lock);
2309 	return 0;
2310 }
2311 EXPORT_SYMBOL_GPL(dm_hold);
2312 
2313 const char *dm_device_name(struct mapped_device *md)
2314 {
2315 	return md->name;
2316 }
2317 EXPORT_SYMBOL_GPL(dm_device_name);
2318 
2319 static void __dm_destroy(struct mapped_device *md, bool wait)
2320 {
2321 	struct dm_table *map;
2322 	int srcu_idx;
2323 
2324 	might_sleep();
2325 
2326 	spin_lock(&_minor_lock);
2327 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2328 	set_bit(DMF_FREEING, &md->flags);
2329 	spin_unlock(&_minor_lock);
2330 
2331 	blk_mark_disk_dead(md->disk);
2332 
2333 	/*
2334 	 * Take suspend_lock so that presuspend and postsuspend methods
2335 	 * do not race with internal suspend.
2336 	 */
2337 	mutex_lock(&md->suspend_lock);
2338 	map = dm_get_live_table(md, &srcu_idx);
2339 	if (!dm_suspended_md(md)) {
2340 		dm_table_presuspend_targets(map);
2341 		set_bit(DMF_SUSPENDED, &md->flags);
2342 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2343 		dm_table_postsuspend_targets(map);
2344 	}
2345 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2346 	dm_put_live_table(md, srcu_idx);
2347 	mutex_unlock(&md->suspend_lock);
2348 
2349 	/*
2350 	 * Rare, but there may be I/O requests still going to complete,
2351 	 * for example.  Wait for all references to disappear.
2352 	 * No one should increment the reference count of the mapped_device,
2353 	 * after the mapped_device state becomes DMF_FREEING.
2354 	 */
2355 	if (wait)
2356 		while (atomic_read(&md->holders))
2357 			msleep(1);
2358 	else if (atomic_read(&md->holders))
2359 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2360 		       dm_device_name(md), atomic_read(&md->holders));
2361 
2362 	dm_table_destroy(__unbind(md));
2363 	free_dev(md);
2364 }
2365 
2366 void dm_destroy(struct mapped_device *md)
2367 {
2368 	__dm_destroy(md, true);
2369 }
2370 
2371 void dm_destroy_immediate(struct mapped_device *md)
2372 {
2373 	__dm_destroy(md, false);
2374 }
2375 
2376 void dm_put(struct mapped_device *md)
2377 {
2378 	atomic_dec(&md->holders);
2379 }
2380 EXPORT_SYMBOL_GPL(dm_put);
2381 
2382 static bool dm_in_flight_bios(struct mapped_device *md)
2383 {
2384 	int cpu;
2385 	unsigned long sum = 0;
2386 
2387 	for_each_possible_cpu(cpu)
2388 		sum += *per_cpu_ptr(md->pending_io, cpu);
2389 
2390 	return sum != 0;
2391 }
2392 
2393 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2394 {
2395 	int r = 0;
2396 	DEFINE_WAIT(wait);
2397 
2398 	while (true) {
2399 		prepare_to_wait(&md->wait, &wait, task_state);
2400 
2401 		if (!dm_in_flight_bios(md))
2402 			break;
2403 
2404 		if (signal_pending_state(task_state, current)) {
2405 			r = -EINTR;
2406 			break;
2407 		}
2408 
2409 		io_schedule();
2410 	}
2411 	finish_wait(&md->wait, &wait);
2412 
2413 	smp_rmb();
2414 
2415 	return r;
2416 }
2417 
2418 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2419 {
2420 	int r = 0;
2421 
2422 	if (!queue_is_mq(md->queue))
2423 		return dm_wait_for_bios_completion(md, task_state);
2424 
2425 	while (true) {
2426 		if (!blk_mq_queue_inflight(md->queue))
2427 			break;
2428 
2429 		if (signal_pending_state(task_state, current)) {
2430 			r = -EINTR;
2431 			break;
2432 		}
2433 
2434 		msleep(5);
2435 	}
2436 
2437 	return r;
2438 }
2439 
2440 /*
2441  * Process the deferred bios
2442  */
2443 static void dm_wq_work(struct work_struct *work)
2444 {
2445 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2446 	struct bio *bio;
2447 
2448 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2449 		spin_lock_irq(&md->deferred_lock);
2450 		bio = bio_list_pop(&md->deferred);
2451 		spin_unlock_irq(&md->deferred_lock);
2452 
2453 		if (!bio)
2454 			break;
2455 
2456 		submit_bio_noacct(bio);
2457 	}
2458 }
2459 
2460 static void dm_queue_flush(struct mapped_device *md)
2461 {
2462 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2463 	smp_mb__after_atomic();
2464 	queue_work(md->wq, &md->work);
2465 }
2466 
2467 /*
2468  * Swap in a new table, returning the old one for the caller to destroy.
2469  */
2470 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2471 {
2472 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2473 	struct queue_limits limits;
2474 	int r;
2475 
2476 	mutex_lock(&md->suspend_lock);
2477 
2478 	/* device must be suspended */
2479 	if (!dm_suspended_md(md))
2480 		goto out;
2481 
2482 	/*
2483 	 * If the new table has no data devices, retain the existing limits.
2484 	 * This helps multipath with queue_if_no_path if all paths disappear,
2485 	 * then new I/O is queued based on these limits, and then some paths
2486 	 * reappear.
2487 	 */
2488 	if (dm_table_has_no_data_devices(table)) {
2489 		live_map = dm_get_live_table_fast(md);
2490 		if (live_map)
2491 			limits = md->queue->limits;
2492 		dm_put_live_table_fast(md);
2493 	}
2494 
2495 	if (!live_map) {
2496 		r = dm_calculate_queue_limits(table, &limits);
2497 		if (r) {
2498 			map = ERR_PTR(r);
2499 			goto out;
2500 		}
2501 	}
2502 
2503 	map = __bind(md, table, &limits);
2504 	dm_issue_global_event();
2505 
2506 out:
2507 	mutex_unlock(&md->suspend_lock);
2508 	return map;
2509 }
2510 
2511 /*
2512  * Functions to lock and unlock any filesystem running on the
2513  * device.
2514  */
2515 static int lock_fs(struct mapped_device *md)
2516 {
2517 	int r;
2518 
2519 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2520 
2521 	r = freeze_bdev(md->disk->part0);
2522 	if (!r)
2523 		set_bit(DMF_FROZEN, &md->flags);
2524 	return r;
2525 }
2526 
2527 static void unlock_fs(struct mapped_device *md)
2528 {
2529 	if (!test_bit(DMF_FROZEN, &md->flags))
2530 		return;
2531 	thaw_bdev(md->disk->part0);
2532 	clear_bit(DMF_FROZEN, &md->flags);
2533 }
2534 
2535 /*
2536  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2537  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2538  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2539  *
2540  * If __dm_suspend returns 0, the device is completely quiescent
2541  * now. There is no request-processing activity. All new requests
2542  * are being added to md->deferred list.
2543  */
2544 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2545 			unsigned suspend_flags, unsigned int task_state,
2546 			int dmf_suspended_flag)
2547 {
2548 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2549 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2550 	int r;
2551 
2552 	lockdep_assert_held(&md->suspend_lock);
2553 
2554 	/*
2555 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2556 	 * This flag is cleared before dm_suspend returns.
2557 	 */
2558 	if (noflush)
2559 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2560 	else
2561 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2562 
2563 	/*
2564 	 * This gets reverted if there's an error later and the targets
2565 	 * provide the .presuspend_undo hook.
2566 	 */
2567 	dm_table_presuspend_targets(map);
2568 
2569 	/*
2570 	 * Flush I/O to the device.
2571 	 * Any I/O submitted after lock_fs() may not be flushed.
2572 	 * noflush takes precedence over do_lockfs.
2573 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2574 	 */
2575 	if (!noflush && do_lockfs) {
2576 		r = lock_fs(md);
2577 		if (r) {
2578 			dm_table_presuspend_undo_targets(map);
2579 			return r;
2580 		}
2581 	}
2582 
2583 	/*
2584 	 * Here we must make sure that no processes are submitting requests
2585 	 * to target drivers i.e. no one may be executing
2586 	 * dm_split_and_process_bio from dm_submit_bio.
2587 	 *
2588 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2589 	 * we take the write lock. To prevent any process from reentering
2590 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2591 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2592 	 * flush_workqueue(md->wq).
2593 	 */
2594 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2595 	if (map)
2596 		synchronize_srcu(&md->io_barrier);
2597 
2598 	/*
2599 	 * Stop md->queue before flushing md->wq in case request-based
2600 	 * dm defers requests to md->wq from md->queue.
2601 	 */
2602 	if (dm_request_based(md))
2603 		dm_stop_queue(md->queue);
2604 
2605 	flush_workqueue(md->wq);
2606 
2607 	/*
2608 	 * At this point no more requests are entering target request routines.
2609 	 * We call dm_wait_for_completion to wait for all existing requests
2610 	 * to finish.
2611 	 */
2612 	r = dm_wait_for_completion(md, task_state);
2613 	if (!r)
2614 		set_bit(dmf_suspended_flag, &md->flags);
2615 
2616 	if (noflush)
2617 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2618 	if (map)
2619 		synchronize_srcu(&md->io_barrier);
2620 
2621 	/* were we interrupted ? */
2622 	if (r < 0) {
2623 		dm_queue_flush(md);
2624 
2625 		if (dm_request_based(md))
2626 			dm_start_queue(md->queue);
2627 
2628 		unlock_fs(md);
2629 		dm_table_presuspend_undo_targets(map);
2630 		/* pushback list is already flushed, so skip flush */
2631 	}
2632 
2633 	return r;
2634 }
2635 
2636 /*
2637  * We need to be able to change a mapping table under a mounted
2638  * filesystem.  For example we might want to move some data in
2639  * the background.  Before the table can be swapped with
2640  * dm_bind_table, dm_suspend must be called to flush any in
2641  * flight bios and ensure that any further io gets deferred.
2642  */
2643 /*
2644  * Suspend mechanism in request-based dm.
2645  *
2646  * 1. Flush all I/Os by lock_fs() if needed.
2647  * 2. Stop dispatching any I/O by stopping the request_queue.
2648  * 3. Wait for all in-flight I/Os to be completed or requeued.
2649  *
2650  * To abort suspend, start the request_queue.
2651  */
2652 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2653 {
2654 	struct dm_table *map = NULL;
2655 	int r = 0;
2656 
2657 retry:
2658 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2659 
2660 	if (dm_suspended_md(md)) {
2661 		r = -EINVAL;
2662 		goto out_unlock;
2663 	}
2664 
2665 	if (dm_suspended_internally_md(md)) {
2666 		/* already internally suspended, wait for internal resume */
2667 		mutex_unlock(&md->suspend_lock);
2668 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2669 		if (r)
2670 			return r;
2671 		goto retry;
2672 	}
2673 
2674 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2675 
2676 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2677 	if (r)
2678 		goto out_unlock;
2679 
2680 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2681 	dm_table_postsuspend_targets(map);
2682 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2683 
2684 out_unlock:
2685 	mutex_unlock(&md->suspend_lock);
2686 	return r;
2687 }
2688 
2689 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2690 {
2691 	if (map) {
2692 		int r = dm_table_resume_targets(map);
2693 		if (r)
2694 			return r;
2695 	}
2696 
2697 	dm_queue_flush(md);
2698 
2699 	/*
2700 	 * Flushing deferred I/Os must be done after targets are resumed
2701 	 * so that mapping of targets can work correctly.
2702 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2703 	 */
2704 	if (dm_request_based(md))
2705 		dm_start_queue(md->queue);
2706 
2707 	unlock_fs(md);
2708 
2709 	return 0;
2710 }
2711 
2712 int dm_resume(struct mapped_device *md)
2713 {
2714 	int r;
2715 	struct dm_table *map = NULL;
2716 
2717 retry:
2718 	r = -EINVAL;
2719 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2720 
2721 	if (!dm_suspended_md(md))
2722 		goto out;
2723 
2724 	if (dm_suspended_internally_md(md)) {
2725 		/* already internally suspended, wait for internal resume */
2726 		mutex_unlock(&md->suspend_lock);
2727 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2728 		if (r)
2729 			return r;
2730 		goto retry;
2731 	}
2732 
2733 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2734 	if (!map || !dm_table_get_size(map))
2735 		goto out;
2736 
2737 	r = __dm_resume(md, map);
2738 	if (r)
2739 		goto out;
2740 
2741 	clear_bit(DMF_SUSPENDED, &md->flags);
2742 out:
2743 	mutex_unlock(&md->suspend_lock);
2744 
2745 	return r;
2746 }
2747 
2748 /*
2749  * Internal suspend/resume works like userspace-driven suspend. It waits
2750  * until all bios finish and prevents issuing new bios to the target drivers.
2751  * It may be used only from the kernel.
2752  */
2753 
2754 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2755 {
2756 	struct dm_table *map = NULL;
2757 
2758 	lockdep_assert_held(&md->suspend_lock);
2759 
2760 	if (md->internal_suspend_count++)
2761 		return; /* nested internal suspend */
2762 
2763 	if (dm_suspended_md(md)) {
2764 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2765 		return; /* nest suspend */
2766 	}
2767 
2768 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2769 
2770 	/*
2771 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2772 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2773 	 * would require changing .presuspend to return an error -- avoid this
2774 	 * until there is a need for more elaborate variants of internal suspend.
2775 	 */
2776 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2777 			    DMF_SUSPENDED_INTERNALLY);
2778 
2779 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2780 	dm_table_postsuspend_targets(map);
2781 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2782 }
2783 
2784 static void __dm_internal_resume(struct mapped_device *md)
2785 {
2786 	BUG_ON(!md->internal_suspend_count);
2787 
2788 	if (--md->internal_suspend_count)
2789 		return; /* resume from nested internal suspend */
2790 
2791 	if (dm_suspended_md(md))
2792 		goto done; /* resume from nested suspend */
2793 
2794 	/*
2795 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2796 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2797 	 */
2798 	(void) __dm_resume(md, NULL);
2799 
2800 done:
2801 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2802 	smp_mb__after_atomic();
2803 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2804 }
2805 
2806 void dm_internal_suspend_noflush(struct mapped_device *md)
2807 {
2808 	mutex_lock(&md->suspend_lock);
2809 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2810 	mutex_unlock(&md->suspend_lock);
2811 }
2812 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2813 
2814 void dm_internal_resume(struct mapped_device *md)
2815 {
2816 	mutex_lock(&md->suspend_lock);
2817 	__dm_internal_resume(md);
2818 	mutex_unlock(&md->suspend_lock);
2819 }
2820 EXPORT_SYMBOL_GPL(dm_internal_resume);
2821 
2822 /*
2823  * Fast variants of internal suspend/resume hold md->suspend_lock,
2824  * which prevents interaction with userspace-driven suspend.
2825  */
2826 
2827 void dm_internal_suspend_fast(struct mapped_device *md)
2828 {
2829 	mutex_lock(&md->suspend_lock);
2830 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2831 		return;
2832 
2833 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2834 	synchronize_srcu(&md->io_barrier);
2835 	flush_workqueue(md->wq);
2836 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2837 }
2838 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2839 
2840 void dm_internal_resume_fast(struct mapped_device *md)
2841 {
2842 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2843 		goto done;
2844 
2845 	dm_queue_flush(md);
2846 
2847 done:
2848 	mutex_unlock(&md->suspend_lock);
2849 }
2850 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2851 
2852 /*-----------------------------------------------------------------
2853  * Event notification.
2854  *---------------------------------------------------------------*/
2855 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2856 		       unsigned cookie)
2857 {
2858 	int r;
2859 	unsigned noio_flag;
2860 	char udev_cookie[DM_COOKIE_LENGTH];
2861 	char *envp[] = { udev_cookie, NULL };
2862 
2863 	noio_flag = memalloc_noio_save();
2864 
2865 	if (!cookie)
2866 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2867 	else {
2868 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2869 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2870 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2871 				       action, envp);
2872 	}
2873 
2874 	memalloc_noio_restore(noio_flag);
2875 
2876 	return r;
2877 }
2878 
2879 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2880 {
2881 	return atomic_add_return(1, &md->uevent_seq);
2882 }
2883 
2884 uint32_t dm_get_event_nr(struct mapped_device *md)
2885 {
2886 	return atomic_read(&md->event_nr);
2887 }
2888 
2889 int dm_wait_event(struct mapped_device *md, int event_nr)
2890 {
2891 	return wait_event_interruptible(md->eventq,
2892 			(event_nr != atomic_read(&md->event_nr)));
2893 }
2894 
2895 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2896 {
2897 	unsigned long flags;
2898 
2899 	spin_lock_irqsave(&md->uevent_lock, flags);
2900 	list_add(elist, &md->uevent_list);
2901 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2902 }
2903 
2904 /*
2905  * The gendisk is only valid as long as you have a reference
2906  * count on 'md'.
2907  */
2908 struct gendisk *dm_disk(struct mapped_device *md)
2909 {
2910 	return md->disk;
2911 }
2912 EXPORT_SYMBOL_GPL(dm_disk);
2913 
2914 struct kobject *dm_kobject(struct mapped_device *md)
2915 {
2916 	return &md->kobj_holder.kobj;
2917 }
2918 
2919 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2920 {
2921 	struct mapped_device *md;
2922 
2923 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2924 
2925 	spin_lock(&_minor_lock);
2926 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2927 		md = NULL;
2928 		goto out;
2929 	}
2930 	dm_get(md);
2931 out:
2932 	spin_unlock(&_minor_lock);
2933 
2934 	return md;
2935 }
2936 
2937 int dm_suspended_md(struct mapped_device *md)
2938 {
2939 	return test_bit(DMF_SUSPENDED, &md->flags);
2940 }
2941 
2942 static int dm_post_suspending_md(struct mapped_device *md)
2943 {
2944 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2945 }
2946 
2947 int dm_suspended_internally_md(struct mapped_device *md)
2948 {
2949 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2950 }
2951 
2952 int dm_test_deferred_remove_flag(struct mapped_device *md)
2953 {
2954 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2955 }
2956 
2957 int dm_suspended(struct dm_target *ti)
2958 {
2959 	return dm_suspended_md(ti->table->md);
2960 }
2961 EXPORT_SYMBOL_GPL(dm_suspended);
2962 
2963 int dm_post_suspending(struct dm_target *ti)
2964 {
2965 	return dm_post_suspending_md(ti->table->md);
2966 }
2967 EXPORT_SYMBOL_GPL(dm_post_suspending);
2968 
2969 int dm_noflush_suspending(struct dm_target *ti)
2970 {
2971 	return __noflush_suspending(ti->table->md);
2972 }
2973 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2974 
2975 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2976 					    unsigned per_io_data_size, unsigned min_pool_size,
2977 					    bool integrity, bool poll)
2978 {
2979 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2980 	unsigned int pool_size = 0;
2981 	unsigned int front_pad, io_front_pad;
2982 	int ret;
2983 
2984 	if (!pools)
2985 		return NULL;
2986 
2987 	switch (type) {
2988 	case DM_TYPE_BIO_BASED:
2989 	case DM_TYPE_DAX_BIO_BASED:
2990 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2991 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2992 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2993 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, poll ? BIOSET_PERCPU_CACHE : 0);
2994 		if (ret)
2995 			goto out;
2996 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2997 			goto out;
2998 		break;
2999 	case DM_TYPE_REQUEST_BASED:
3000 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3001 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3002 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3003 		break;
3004 	default:
3005 		BUG();
3006 	}
3007 
3008 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3009 	if (ret)
3010 		goto out;
3011 
3012 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3013 		goto out;
3014 
3015 	return pools;
3016 
3017 out:
3018 	dm_free_md_mempools(pools);
3019 
3020 	return NULL;
3021 }
3022 
3023 void dm_free_md_mempools(struct dm_md_mempools *pools)
3024 {
3025 	if (!pools)
3026 		return;
3027 
3028 	bioset_exit(&pools->bs);
3029 	bioset_exit(&pools->io_bs);
3030 
3031 	kfree(pools);
3032 }
3033 
3034 struct dm_pr {
3035 	u64	old_key;
3036 	u64	new_key;
3037 	u32	flags;
3038 	bool	fail_early;
3039 };
3040 
3041 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3042 		      void *data)
3043 {
3044 	struct mapped_device *md = bdev->bd_disk->private_data;
3045 	struct dm_table *table;
3046 	struct dm_target *ti;
3047 	int ret = -ENOTTY, srcu_idx;
3048 
3049 	table = dm_get_live_table(md, &srcu_idx);
3050 	if (!table || !dm_table_get_size(table))
3051 		goto out;
3052 
3053 	/* We only support devices that have a single target */
3054 	if (dm_table_get_num_targets(table) != 1)
3055 		goto out;
3056 	ti = dm_table_get_target(table, 0);
3057 
3058 	ret = -EINVAL;
3059 	if (!ti->type->iterate_devices)
3060 		goto out;
3061 
3062 	ret = ti->type->iterate_devices(ti, fn, data);
3063 out:
3064 	dm_put_live_table(md, srcu_idx);
3065 	return ret;
3066 }
3067 
3068 /*
3069  * For register / unregister we need to manually call out to every path.
3070  */
3071 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3072 			    sector_t start, sector_t len, void *data)
3073 {
3074 	struct dm_pr *pr = data;
3075 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3076 
3077 	if (!ops || !ops->pr_register)
3078 		return -EOPNOTSUPP;
3079 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3080 }
3081 
3082 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3083 			  u32 flags)
3084 {
3085 	struct dm_pr pr = {
3086 		.old_key	= old_key,
3087 		.new_key	= new_key,
3088 		.flags		= flags,
3089 		.fail_early	= true,
3090 	};
3091 	int ret;
3092 
3093 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3094 	if (ret && new_key) {
3095 		/* unregister all paths if we failed to register any path */
3096 		pr.old_key = new_key;
3097 		pr.new_key = 0;
3098 		pr.flags = 0;
3099 		pr.fail_early = false;
3100 		dm_call_pr(bdev, __dm_pr_register, &pr);
3101 	}
3102 
3103 	return ret;
3104 }
3105 
3106 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3107 			 u32 flags)
3108 {
3109 	struct mapped_device *md = bdev->bd_disk->private_data;
3110 	const struct pr_ops *ops;
3111 	int r, srcu_idx;
3112 
3113 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3114 	if (r < 0)
3115 		goto out;
3116 
3117 	ops = bdev->bd_disk->fops->pr_ops;
3118 	if (ops && ops->pr_reserve)
3119 		r = ops->pr_reserve(bdev, key, type, flags);
3120 	else
3121 		r = -EOPNOTSUPP;
3122 out:
3123 	dm_unprepare_ioctl(md, srcu_idx);
3124 	return r;
3125 }
3126 
3127 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3128 {
3129 	struct mapped_device *md = bdev->bd_disk->private_data;
3130 	const struct pr_ops *ops;
3131 	int r, srcu_idx;
3132 
3133 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3134 	if (r < 0)
3135 		goto out;
3136 
3137 	ops = bdev->bd_disk->fops->pr_ops;
3138 	if (ops && ops->pr_release)
3139 		r = ops->pr_release(bdev, key, type);
3140 	else
3141 		r = -EOPNOTSUPP;
3142 out:
3143 	dm_unprepare_ioctl(md, srcu_idx);
3144 	return r;
3145 }
3146 
3147 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3148 			 enum pr_type type, bool abort)
3149 {
3150 	struct mapped_device *md = bdev->bd_disk->private_data;
3151 	const struct pr_ops *ops;
3152 	int r, srcu_idx;
3153 
3154 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3155 	if (r < 0)
3156 		goto out;
3157 
3158 	ops = bdev->bd_disk->fops->pr_ops;
3159 	if (ops && ops->pr_preempt)
3160 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3161 	else
3162 		r = -EOPNOTSUPP;
3163 out:
3164 	dm_unprepare_ioctl(md, srcu_idx);
3165 	return r;
3166 }
3167 
3168 static int dm_pr_clear(struct block_device *bdev, u64 key)
3169 {
3170 	struct mapped_device *md = bdev->bd_disk->private_data;
3171 	const struct pr_ops *ops;
3172 	int r, srcu_idx;
3173 
3174 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3175 	if (r < 0)
3176 		goto out;
3177 
3178 	ops = bdev->bd_disk->fops->pr_ops;
3179 	if (ops && ops->pr_clear)
3180 		r = ops->pr_clear(bdev, key);
3181 	else
3182 		r = -EOPNOTSUPP;
3183 out:
3184 	dm_unprepare_ioctl(md, srcu_idx);
3185 	return r;
3186 }
3187 
3188 static const struct pr_ops dm_pr_ops = {
3189 	.pr_register	= dm_pr_register,
3190 	.pr_reserve	= dm_pr_reserve,
3191 	.pr_release	= dm_pr_release,
3192 	.pr_preempt	= dm_pr_preempt,
3193 	.pr_clear	= dm_pr_clear,
3194 };
3195 
3196 static const struct block_device_operations dm_blk_dops = {
3197 	.submit_bio = dm_submit_bio,
3198 	.poll_bio = dm_poll_bio,
3199 	.open = dm_blk_open,
3200 	.release = dm_blk_close,
3201 	.ioctl = dm_blk_ioctl,
3202 	.getgeo = dm_blk_getgeo,
3203 	.report_zones = dm_blk_report_zones,
3204 	.pr_ops = &dm_pr_ops,
3205 	.owner = THIS_MODULE
3206 };
3207 
3208 static const struct block_device_operations dm_rq_blk_dops = {
3209 	.open = dm_blk_open,
3210 	.release = dm_blk_close,
3211 	.ioctl = dm_blk_ioctl,
3212 	.getgeo = dm_blk_getgeo,
3213 	.pr_ops = &dm_pr_ops,
3214 	.owner = THIS_MODULE
3215 };
3216 
3217 static const struct dax_operations dm_dax_ops = {
3218 	.direct_access = dm_dax_direct_access,
3219 	.zero_page_range = dm_dax_zero_page_range,
3220 	.recovery_write = dm_dax_recovery_write,
3221 };
3222 
3223 /*
3224  * module hooks
3225  */
3226 module_init(dm_init);
3227 module_exit(dm_exit);
3228 
3229 module_param(major, uint, 0);
3230 MODULE_PARM_DESC(major, "The major number of the device mapper");
3231 
3232 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3233 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3234 
3235 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3236 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3237 
3238 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3239 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3240 
3241 MODULE_DESCRIPTION(DM_NAME " driver");
3242 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3243 MODULE_LICENSE("GPL");
3244