xref: /openbmc/linux/drivers/md/dm.c (revision 27eaa14975d8b53f0bad422e53cdf8e5f6dd44ec)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 static const char *_name = DM_NAME;
28 
29 static unsigned int major = 0;
30 static unsigned int _major = 0;
31 
32 static DEFINE_SPINLOCK(_minor_lock);
33 /*
34  * For bio-based dm.
35  * One of these is allocated per bio.
36  */
37 struct dm_io {
38 	struct mapped_device *md;
39 	int error;
40 	atomic_t io_count;
41 	struct bio *bio;
42 	unsigned long start_time;
43 };
44 
45 /*
46  * For bio-based dm.
47  * One of these is allocated per target within a bio.  Hopefully
48  * this will be simplified out one day.
49  */
50 struct dm_target_io {
51 	struct dm_io *io;
52 	struct dm_target *ti;
53 	union map_info info;
54 };
55 
56 /*
57  * For request-based dm.
58  * One of these is allocated per request.
59  */
60 struct dm_rq_target_io {
61 	struct mapped_device *md;
62 	struct dm_target *ti;
63 	struct request *orig, clone;
64 	int error;
65 	union map_info info;
66 };
67 
68 /*
69  * For request-based dm.
70  * One of these is allocated per bio.
71  */
72 struct dm_rq_clone_bio_info {
73 	struct bio *orig;
74 	struct request *rq;
75 };
76 
77 union map_info *dm_get_mapinfo(struct bio *bio)
78 {
79 	if (bio && bio->bi_private)
80 		return &((struct dm_target_io *)bio->bi_private)->info;
81 	return NULL;
82 }
83 
84 #define MINOR_ALLOCED ((void *)-1)
85 
86 /*
87  * Bits for the md->flags field.
88  */
89 #define DMF_BLOCK_IO_FOR_SUSPEND 0
90 #define DMF_SUSPENDED 1
91 #define DMF_FROZEN 2
92 #define DMF_FREEING 3
93 #define DMF_DELETING 4
94 #define DMF_NOFLUSH_SUSPENDING 5
95 #define DMF_QUEUE_IO_TO_THREAD 6
96 
97 /*
98  * Work processed by per-device workqueue.
99  */
100 struct mapped_device {
101 	struct rw_semaphore io_lock;
102 	struct mutex suspend_lock;
103 	rwlock_t map_lock;
104 	atomic_t holders;
105 	atomic_t open_count;
106 
107 	unsigned long flags;
108 
109 	struct request_queue *queue;
110 	struct gendisk *disk;
111 	char name[16];
112 
113 	void *interface_ptr;
114 
115 	/*
116 	 * A list of ios that arrived while we were suspended.
117 	 */
118 	atomic_t pending;
119 	wait_queue_head_t wait;
120 	struct work_struct work;
121 	struct bio_list deferred;
122 	spinlock_t deferred_lock;
123 
124 	/*
125 	 * An error from the barrier request currently being processed.
126 	 */
127 	int barrier_error;
128 
129 	/*
130 	 * Processing queue (flush/barriers)
131 	 */
132 	struct workqueue_struct *wq;
133 
134 	/*
135 	 * The current mapping.
136 	 */
137 	struct dm_table *map;
138 
139 	/*
140 	 * io objects are allocated from here.
141 	 */
142 	mempool_t *io_pool;
143 	mempool_t *tio_pool;
144 
145 	struct bio_set *bs;
146 
147 	/*
148 	 * Event handling.
149 	 */
150 	atomic_t event_nr;
151 	wait_queue_head_t eventq;
152 	atomic_t uevent_seq;
153 	struct list_head uevent_list;
154 	spinlock_t uevent_lock; /* Protect access to uevent_list */
155 
156 	/*
157 	 * freeze/thaw support require holding onto a super block
158 	 */
159 	struct super_block *frozen_sb;
160 	struct block_device *bdev;
161 
162 	/* forced geometry settings */
163 	struct hd_geometry geometry;
164 
165 	/* sysfs handle */
166 	struct kobject kobj;
167 };
168 
169 #define MIN_IOS 256
170 static struct kmem_cache *_io_cache;
171 static struct kmem_cache *_tio_cache;
172 static struct kmem_cache *_rq_tio_cache;
173 static struct kmem_cache *_rq_bio_info_cache;
174 
175 static int __init local_init(void)
176 {
177 	int r = -ENOMEM;
178 
179 	/* allocate a slab for the dm_ios */
180 	_io_cache = KMEM_CACHE(dm_io, 0);
181 	if (!_io_cache)
182 		return r;
183 
184 	/* allocate a slab for the target ios */
185 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
186 	if (!_tio_cache)
187 		goto out_free_io_cache;
188 
189 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
190 	if (!_rq_tio_cache)
191 		goto out_free_tio_cache;
192 
193 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
194 	if (!_rq_bio_info_cache)
195 		goto out_free_rq_tio_cache;
196 
197 	r = dm_uevent_init();
198 	if (r)
199 		goto out_free_rq_bio_info_cache;
200 
201 	_major = major;
202 	r = register_blkdev(_major, _name);
203 	if (r < 0)
204 		goto out_uevent_exit;
205 
206 	if (!_major)
207 		_major = r;
208 
209 	return 0;
210 
211 out_uevent_exit:
212 	dm_uevent_exit();
213 out_free_rq_bio_info_cache:
214 	kmem_cache_destroy(_rq_bio_info_cache);
215 out_free_rq_tio_cache:
216 	kmem_cache_destroy(_rq_tio_cache);
217 out_free_tio_cache:
218 	kmem_cache_destroy(_tio_cache);
219 out_free_io_cache:
220 	kmem_cache_destroy(_io_cache);
221 
222 	return r;
223 }
224 
225 static void local_exit(void)
226 {
227 	kmem_cache_destroy(_rq_bio_info_cache);
228 	kmem_cache_destroy(_rq_tio_cache);
229 	kmem_cache_destroy(_tio_cache);
230 	kmem_cache_destroy(_io_cache);
231 	unregister_blkdev(_major, _name);
232 	dm_uevent_exit();
233 
234 	_major = 0;
235 
236 	DMINFO("cleaned up");
237 }
238 
239 static int (*_inits[])(void) __initdata = {
240 	local_init,
241 	dm_target_init,
242 	dm_linear_init,
243 	dm_stripe_init,
244 	dm_kcopyd_init,
245 	dm_interface_init,
246 };
247 
248 static void (*_exits[])(void) = {
249 	local_exit,
250 	dm_target_exit,
251 	dm_linear_exit,
252 	dm_stripe_exit,
253 	dm_kcopyd_exit,
254 	dm_interface_exit,
255 };
256 
257 static int __init dm_init(void)
258 {
259 	const int count = ARRAY_SIZE(_inits);
260 
261 	int r, i;
262 
263 	for (i = 0; i < count; i++) {
264 		r = _inits[i]();
265 		if (r)
266 			goto bad;
267 	}
268 
269 	return 0;
270 
271       bad:
272 	while (i--)
273 		_exits[i]();
274 
275 	return r;
276 }
277 
278 static void __exit dm_exit(void)
279 {
280 	int i = ARRAY_SIZE(_exits);
281 
282 	while (i--)
283 		_exits[i]();
284 }
285 
286 /*
287  * Block device functions
288  */
289 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
290 {
291 	struct mapped_device *md;
292 
293 	spin_lock(&_minor_lock);
294 
295 	md = bdev->bd_disk->private_data;
296 	if (!md)
297 		goto out;
298 
299 	if (test_bit(DMF_FREEING, &md->flags) ||
300 	    test_bit(DMF_DELETING, &md->flags)) {
301 		md = NULL;
302 		goto out;
303 	}
304 
305 	dm_get(md);
306 	atomic_inc(&md->open_count);
307 
308 out:
309 	spin_unlock(&_minor_lock);
310 
311 	return md ? 0 : -ENXIO;
312 }
313 
314 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
315 {
316 	struct mapped_device *md = disk->private_data;
317 	atomic_dec(&md->open_count);
318 	dm_put(md);
319 	return 0;
320 }
321 
322 int dm_open_count(struct mapped_device *md)
323 {
324 	return atomic_read(&md->open_count);
325 }
326 
327 /*
328  * Guarantees nothing is using the device before it's deleted.
329  */
330 int dm_lock_for_deletion(struct mapped_device *md)
331 {
332 	int r = 0;
333 
334 	spin_lock(&_minor_lock);
335 
336 	if (dm_open_count(md))
337 		r = -EBUSY;
338 	else
339 		set_bit(DMF_DELETING, &md->flags);
340 
341 	spin_unlock(&_minor_lock);
342 
343 	return r;
344 }
345 
346 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
347 {
348 	struct mapped_device *md = bdev->bd_disk->private_data;
349 
350 	return dm_get_geometry(md, geo);
351 }
352 
353 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
354 			unsigned int cmd, unsigned long arg)
355 {
356 	struct mapped_device *md = bdev->bd_disk->private_data;
357 	struct dm_table *map = dm_get_table(md);
358 	struct dm_target *tgt;
359 	int r = -ENOTTY;
360 
361 	if (!map || !dm_table_get_size(map))
362 		goto out;
363 
364 	/* We only support devices that have a single target */
365 	if (dm_table_get_num_targets(map) != 1)
366 		goto out;
367 
368 	tgt = dm_table_get_target(map, 0);
369 
370 	if (dm_suspended(md)) {
371 		r = -EAGAIN;
372 		goto out;
373 	}
374 
375 	if (tgt->type->ioctl)
376 		r = tgt->type->ioctl(tgt, cmd, arg);
377 
378 out:
379 	dm_table_put(map);
380 
381 	return r;
382 }
383 
384 static struct dm_io *alloc_io(struct mapped_device *md)
385 {
386 	return mempool_alloc(md->io_pool, GFP_NOIO);
387 }
388 
389 static void free_io(struct mapped_device *md, struct dm_io *io)
390 {
391 	mempool_free(io, md->io_pool);
392 }
393 
394 static struct dm_target_io *alloc_tio(struct mapped_device *md)
395 {
396 	return mempool_alloc(md->tio_pool, GFP_NOIO);
397 }
398 
399 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
400 {
401 	mempool_free(tio, md->tio_pool);
402 }
403 
404 static void start_io_acct(struct dm_io *io)
405 {
406 	struct mapped_device *md = io->md;
407 	int cpu;
408 
409 	io->start_time = jiffies;
410 
411 	cpu = part_stat_lock();
412 	part_round_stats(cpu, &dm_disk(md)->part0);
413 	part_stat_unlock();
414 	dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
415 }
416 
417 static void end_io_acct(struct dm_io *io)
418 {
419 	struct mapped_device *md = io->md;
420 	struct bio *bio = io->bio;
421 	unsigned long duration = jiffies - io->start_time;
422 	int pending, cpu;
423 	int rw = bio_data_dir(bio);
424 
425 	cpu = part_stat_lock();
426 	part_round_stats(cpu, &dm_disk(md)->part0);
427 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
428 	part_stat_unlock();
429 
430 	/*
431 	 * After this is decremented the bio must not be touched if it is
432 	 * a barrier.
433 	 */
434 	dm_disk(md)->part0.in_flight = pending =
435 		atomic_dec_return(&md->pending);
436 
437 	/* nudge anyone waiting on suspend queue */
438 	if (!pending)
439 		wake_up(&md->wait);
440 }
441 
442 /*
443  * Add the bio to the list of deferred io.
444  */
445 static void queue_io(struct mapped_device *md, struct bio *bio)
446 {
447 	down_write(&md->io_lock);
448 
449 	spin_lock_irq(&md->deferred_lock);
450 	bio_list_add(&md->deferred, bio);
451 	spin_unlock_irq(&md->deferred_lock);
452 
453 	if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
454 		queue_work(md->wq, &md->work);
455 
456 	up_write(&md->io_lock);
457 }
458 
459 /*
460  * Everyone (including functions in this file), should use this
461  * function to access the md->map field, and make sure they call
462  * dm_table_put() when finished.
463  */
464 struct dm_table *dm_get_table(struct mapped_device *md)
465 {
466 	struct dm_table *t;
467 
468 	read_lock(&md->map_lock);
469 	t = md->map;
470 	if (t)
471 		dm_table_get(t);
472 	read_unlock(&md->map_lock);
473 
474 	return t;
475 }
476 
477 /*
478  * Get the geometry associated with a dm device
479  */
480 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
481 {
482 	*geo = md->geometry;
483 
484 	return 0;
485 }
486 
487 /*
488  * Set the geometry of a device.
489  */
490 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
491 {
492 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
493 
494 	if (geo->start > sz) {
495 		DMWARN("Start sector is beyond the geometry limits.");
496 		return -EINVAL;
497 	}
498 
499 	md->geometry = *geo;
500 
501 	return 0;
502 }
503 
504 /*-----------------------------------------------------------------
505  * CRUD START:
506  *   A more elegant soln is in the works that uses the queue
507  *   merge fn, unfortunately there are a couple of changes to
508  *   the block layer that I want to make for this.  So in the
509  *   interests of getting something for people to use I give
510  *   you this clearly demarcated crap.
511  *---------------------------------------------------------------*/
512 
513 static int __noflush_suspending(struct mapped_device *md)
514 {
515 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
516 }
517 
518 /*
519  * Decrements the number of outstanding ios that a bio has been
520  * cloned into, completing the original io if necc.
521  */
522 static void dec_pending(struct dm_io *io, int error)
523 {
524 	unsigned long flags;
525 	int io_error;
526 	struct bio *bio;
527 	struct mapped_device *md = io->md;
528 
529 	/* Push-back supersedes any I/O errors */
530 	if (error && !(io->error > 0 && __noflush_suspending(md)))
531 		io->error = error;
532 
533 	if (atomic_dec_and_test(&io->io_count)) {
534 		if (io->error == DM_ENDIO_REQUEUE) {
535 			/*
536 			 * Target requested pushing back the I/O.
537 			 */
538 			spin_lock_irqsave(&md->deferred_lock, flags);
539 			if (__noflush_suspending(md)) {
540 				if (!bio_barrier(io->bio))
541 					bio_list_add_head(&md->deferred,
542 							  io->bio);
543 			} else
544 				/* noflush suspend was interrupted. */
545 				io->error = -EIO;
546 			spin_unlock_irqrestore(&md->deferred_lock, flags);
547 		}
548 
549 		io_error = io->error;
550 		bio = io->bio;
551 
552 		if (bio_barrier(bio)) {
553 			/*
554 			 * There can be just one barrier request so we use
555 			 * a per-device variable for error reporting.
556 			 * Note that you can't touch the bio after end_io_acct
557 			 */
558 			if (!md->barrier_error && io_error != -EOPNOTSUPP)
559 				md->barrier_error = io_error;
560 			end_io_acct(io);
561 		} else {
562 			end_io_acct(io);
563 
564 			if (io_error != DM_ENDIO_REQUEUE) {
565 				trace_block_bio_complete(md->queue, bio);
566 
567 				bio_endio(bio, io_error);
568 			}
569 		}
570 
571 		free_io(md, io);
572 	}
573 }
574 
575 static void clone_endio(struct bio *bio, int error)
576 {
577 	int r = 0;
578 	struct dm_target_io *tio = bio->bi_private;
579 	struct dm_io *io = tio->io;
580 	struct mapped_device *md = tio->io->md;
581 	dm_endio_fn endio = tio->ti->type->end_io;
582 
583 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
584 		error = -EIO;
585 
586 	if (endio) {
587 		r = endio(tio->ti, bio, error, &tio->info);
588 		if (r < 0 || r == DM_ENDIO_REQUEUE)
589 			/*
590 			 * error and requeue request are handled
591 			 * in dec_pending().
592 			 */
593 			error = r;
594 		else if (r == DM_ENDIO_INCOMPLETE)
595 			/* The target will handle the io */
596 			return;
597 		else if (r) {
598 			DMWARN("unimplemented target endio return value: %d", r);
599 			BUG();
600 		}
601 	}
602 
603 	/*
604 	 * Store md for cleanup instead of tio which is about to get freed.
605 	 */
606 	bio->bi_private = md->bs;
607 
608 	free_tio(md, tio);
609 	bio_put(bio);
610 	dec_pending(io, error);
611 }
612 
613 static sector_t max_io_len(struct mapped_device *md,
614 			   sector_t sector, struct dm_target *ti)
615 {
616 	sector_t offset = sector - ti->begin;
617 	sector_t len = ti->len - offset;
618 
619 	/*
620 	 * Does the target need to split even further ?
621 	 */
622 	if (ti->split_io) {
623 		sector_t boundary;
624 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
625 			   - offset;
626 		if (len > boundary)
627 			len = boundary;
628 	}
629 
630 	return len;
631 }
632 
633 static void __map_bio(struct dm_target *ti, struct bio *clone,
634 		      struct dm_target_io *tio)
635 {
636 	int r;
637 	sector_t sector;
638 	struct mapped_device *md;
639 
640 	clone->bi_end_io = clone_endio;
641 	clone->bi_private = tio;
642 
643 	/*
644 	 * Map the clone.  If r == 0 we don't need to do
645 	 * anything, the target has assumed ownership of
646 	 * this io.
647 	 */
648 	atomic_inc(&tio->io->io_count);
649 	sector = clone->bi_sector;
650 	r = ti->type->map(ti, clone, &tio->info);
651 	if (r == DM_MAPIO_REMAPPED) {
652 		/* the bio has been remapped so dispatch it */
653 
654 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
655 				    tio->io->bio->bi_bdev->bd_dev, sector);
656 
657 		generic_make_request(clone);
658 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
659 		/* error the io and bail out, or requeue it if needed */
660 		md = tio->io->md;
661 		dec_pending(tio->io, r);
662 		/*
663 		 * Store bio_set for cleanup.
664 		 */
665 		clone->bi_private = md->bs;
666 		bio_put(clone);
667 		free_tio(md, tio);
668 	} else if (r) {
669 		DMWARN("unimplemented target map return value: %d", r);
670 		BUG();
671 	}
672 }
673 
674 struct clone_info {
675 	struct mapped_device *md;
676 	struct dm_table *map;
677 	struct bio *bio;
678 	struct dm_io *io;
679 	sector_t sector;
680 	sector_t sector_count;
681 	unsigned short idx;
682 };
683 
684 static void dm_bio_destructor(struct bio *bio)
685 {
686 	struct bio_set *bs = bio->bi_private;
687 
688 	bio_free(bio, bs);
689 }
690 
691 /*
692  * Creates a little bio that is just does part of a bvec.
693  */
694 static struct bio *split_bvec(struct bio *bio, sector_t sector,
695 			      unsigned short idx, unsigned int offset,
696 			      unsigned int len, struct bio_set *bs)
697 {
698 	struct bio *clone;
699 	struct bio_vec *bv = bio->bi_io_vec + idx;
700 
701 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
702 	clone->bi_destructor = dm_bio_destructor;
703 	*clone->bi_io_vec = *bv;
704 
705 	clone->bi_sector = sector;
706 	clone->bi_bdev = bio->bi_bdev;
707 	clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
708 	clone->bi_vcnt = 1;
709 	clone->bi_size = to_bytes(len);
710 	clone->bi_io_vec->bv_offset = offset;
711 	clone->bi_io_vec->bv_len = clone->bi_size;
712 	clone->bi_flags |= 1 << BIO_CLONED;
713 
714 	if (bio_integrity(bio)) {
715 		bio_integrity_clone(clone, bio, GFP_NOIO);
716 		bio_integrity_trim(clone,
717 				   bio_sector_offset(bio, idx, offset), len);
718 	}
719 
720 	return clone;
721 }
722 
723 /*
724  * Creates a bio that consists of range of complete bvecs.
725  */
726 static struct bio *clone_bio(struct bio *bio, sector_t sector,
727 			     unsigned short idx, unsigned short bv_count,
728 			     unsigned int len, struct bio_set *bs)
729 {
730 	struct bio *clone;
731 
732 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
733 	__bio_clone(clone, bio);
734 	clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
735 	clone->bi_destructor = dm_bio_destructor;
736 	clone->bi_sector = sector;
737 	clone->bi_idx = idx;
738 	clone->bi_vcnt = idx + bv_count;
739 	clone->bi_size = to_bytes(len);
740 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
741 
742 	if (bio_integrity(bio)) {
743 		bio_integrity_clone(clone, bio, GFP_NOIO);
744 
745 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
746 			bio_integrity_trim(clone,
747 					   bio_sector_offset(bio, idx, 0), len);
748 	}
749 
750 	return clone;
751 }
752 
753 static int __clone_and_map(struct clone_info *ci)
754 {
755 	struct bio *clone, *bio = ci->bio;
756 	struct dm_target *ti;
757 	sector_t len = 0, max;
758 	struct dm_target_io *tio;
759 
760 	ti = dm_table_find_target(ci->map, ci->sector);
761 	if (!dm_target_is_valid(ti))
762 		return -EIO;
763 
764 	max = max_io_len(ci->md, ci->sector, ti);
765 
766 	/*
767 	 * Allocate a target io object.
768 	 */
769 	tio = alloc_tio(ci->md);
770 	tio->io = ci->io;
771 	tio->ti = ti;
772 	memset(&tio->info, 0, sizeof(tio->info));
773 
774 	if (ci->sector_count <= max) {
775 		/*
776 		 * Optimise for the simple case where we can do all of
777 		 * the remaining io with a single clone.
778 		 */
779 		clone = clone_bio(bio, ci->sector, ci->idx,
780 				  bio->bi_vcnt - ci->idx, ci->sector_count,
781 				  ci->md->bs);
782 		__map_bio(ti, clone, tio);
783 		ci->sector_count = 0;
784 
785 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
786 		/*
787 		 * There are some bvecs that don't span targets.
788 		 * Do as many of these as possible.
789 		 */
790 		int i;
791 		sector_t remaining = max;
792 		sector_t bv_len;
793 
794 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
795 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
796 
797 			if (bv_len > remaining)
798 				break;
799 
800 			remaining -= bv_len;
801 			len += bv_len;
802 		}
803 
804 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
805 				  ci->md->bs);
806 		__map_bio(ti, clone, tio);
807 
808 		ci->sector += len;
809 		ci->sector_count -= len;
810 		ci->idx = i;
811 
812 	} else {
813 		/*
814 		 * Handle a bvec that must be split between two or more targets.
815 		 */
816 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
817 		sector_t remaining = to_sector(bv->bv_len);
818 		unsigned int offset = 0;
819 
820 		do {
821 			if (offset) {
822 				ti = dm_table_find_target(ci->map, ci->sector);
823 				if (!dm_target_is_valid(ti))
824 					return -EIO;
825 
826 				max = max_io_len(ci->md, ci->sector, ti);
827 
828 				tio = alloc_tio(ci->md);
829 				tio->io = ci->io;
830 				tio->ti = ti;
831 				memset(&tio->info, 0, sizeof(tio->info));
832 			}
833 
834 			len = min(remaining, max);
835 
836 			clone = split_bvec(bio, ci->sector, ci->idx,
837 					   bv->bv_offset + offset, len,
838 					   ci->md->bs);
839 
840 			__map_bio(ti, clone, tio);
841 
842 			ci->sector += len;
843 			ci->sector_count -= len;
844 			offset += to_bytes(len);
845 		} while (remaining -= len);
846 
847 		ci->idx++;
848 	}
849 
850 	return 0;
851 }
852 
853 /*
854  * Split the bio into several clones and submit it to targets.
855  */
856 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
857 {
858 	struct clone_info ci;
859 	int error = 0;
860 
861 	ci.map = dm_get_table(md);
862 	if (unlikely(!ci.map)) {
863 		if (!bio_barrier(bio))
864 			bio_io_error(bio);
865 		else
866 			if (!md->barrier_error)
867 				md->barrier_error = -EIO;
868 		return;
869 	}
870 
871 	ci.md = md;
872 	ci.bio = bio;
873 	ci.io = alloc_io(md);
874 	ci.io->error = 0;
875 	atomic_set(&ci.io->io_count, 1);
876 	ci.io->bio = bio;
877 	ci.io->md = md;
878 	ci.sector = bio->bi_sector;
879 	ci.sector_count = bio_sectors(bio);
880 	ci.idx = bio->bi_idx;
881 
882 	start_io_acct(ci.io);
883 	while (ci.sector_count && !error)
884 		error = __clone_and_map(&ci);
885 
886 	/* drop the extra reference count */
887 	dec_pending(ci.io, error);
888 	dm_table_put(ci.map);
889 }
890 /*-----------------------------------------------------------------
891  * CRUD END
892  *---------------------------------------------------------------*/
893 
894 static int dm_merge_bvec(struct request_queue *q,
895 			 struct bvec_merge_data *bvm,
896 			 struct bio_vec *biovec)
897 {
898 	struct mapped_device *md = q->queuedata;
899 	struct dm_table *map = dm_get_table(md);
900 	struct dm_target *ti;
901 	sector_t max_sectors;
902 	int max_size = 0;
903 
904 	if (unlikely(!map))
905 		goto out;
906 
907 	ti = dm_table_find_target(map, bvm->bi_sector);
908 	if (!dm_target_is_valid(ti))
909 		goto out_table;
910 
911 	/*
912 	 * Find maximum amount of I/O that won't need splitting
913 	 */
914 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
915 			  (sector_t) BIO_MAX_SECTORS);
916 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
917 	if (max_size < 0)
918 		max_size = 0;
919 
920 	/*
921 	 * merge_bvec_fn() returns number of bytes
922 	 * it can accept at this offset
923 	 * max is precomputed maximal io size
924 	 */
925 	if (max_size && ti->type->merge)
926 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
927 	/*
928 	 * If the target doesn't support merge method and some of the devices
929 	 * provided their merge_bvec method (we know this by looking at
930 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
931 	 * entries.  So always set max_size to 0, and the code below allows
932 	 * just one page.
933 	 */
934 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
935 
936 		max_size = 0;
937 
938 out_table:
939 	dm_table_put(map);
940 
941 out:
942 	/*
943 	 * Always allow an entire first page
944 	 */
945 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
946 		max_size = biovec->bv_len;
947 
948 	return max_size;
949 }
950 
951 /*
952  * The request function that just remaps the bio built up by
953  * dm_merge_bvec.
954  */
955 static int dm_request(struct request_queue *q, struct bio *bio)
956 {
957 	int rw = bio_data_dir(bio);
958 	struct mapped_device *md = q->queuedata;
959 	int cpu;
960 
961 	down_read(&md->io_lock);
962 
963 	cpu = part_stat_lock();
964 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
965 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
966 	part_stat_unlock();
967 
968 	/*
969 	 * If we're suspended or the thread is processing barriers
970 	 * we have to queue this io for later.
971 	 */
972 	if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
973 	    unlikely(bio_barrier(bio))) {
974 		up_read(&md->io_lock);
975 
976 		if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
977 		    bio_rw(bio) == READA) {
978 			bio_io_error(bio);
979 			return 0;
980 		}
981 
982 		queue_io(md, bio);
983 
984 		return 0;
985 	}
986 
987 	__split_and_process_bio(md, bio);
988 	up_read(&md->io_lock);
989 	return 0;
990 }
991 
992 static void dm_unplug_all(struct request_queue *q)
993 {
994 	struct mapped_device *md = q->queuedata;
995 	struct dm_table *map = dm_get_table(md);
996 
997 	if (map) {
998 		dm_table_unplug_all(map);
999 		dm_table_put(map);
1000 	}
1001 }
1002 
1003 static int dm_any_congested(void *congested_data, int bdi_bits)
1004 {
1005 	int r = bdi_bits;
1006 	struct mapped_device *md = congested_data;
1007 	struct dm_table *map;
1008 
1009 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1010 		map = dm_get_table(md);
1011 		if (map) {
1012 			r = dm_table_any_congested(map, bdi_bits);
1013 			dm_table_put(map);
1014 		}
1015 	}
1016 
1017 	return r;
1018 }
1019 
1020 /*-----------------------------------------------------------------
1021  * An IDR is used to keep track of allocated minor numbers.
1022  *---------------------------------------------------------------*/
1023 static DEFINE_IDR(_minor_idr);
1024 
1025 static void free_minor(int minor)
1026 {
1027 	spin_lock(&_minor_lock);
1028 	idr_remove(&_minor_idr, minor);
1029 	spin_unlock(&_minor_lock);
1030 }
1031 
1032 /*
1033  * See if the device with a specific minor # is free.
1034  */
1035 static int specific_minor(int minor)
1036 {
1037 	int r, m;
1038 
1039 	if (minor >= (1 << MINORBITS))
1040 		return -EINVAL;
1041 
1042 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1043 	if (!r)
1044 		return -ENOMEM;
1045 
1046 	spin_lock(&_minor_lock);
1047 
1048 	if (idr_find(&_minor_idr, minor)) {
1049 		r = -EBUSY;
1050 		goto out;
1051 	}
1052 
1053 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1054 	if (r)
1055 		goto out;
1056 
1057 	if (m != minor) {
1058 		idr_remove(&_minor_idr, m);
1059 		r = -EBUSY;
1060 		goto out;
1061 	}
1062 
1063 out:
1064 	spin_unlock(&_minor_lock);
1065 	return r;
1066 }
1067 
1068 static int next_free_minor(int *minor)
1069 {
1070 	int r, m;
1071 
1072 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1073 	if (!r)
1074 		return -ENOMEM;
1075 
1076 	spin_lock(&_minor_lock);
1077 
1078 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1079 	if (r)
1080 		goto out;
1081 
1082 	if (m >= (1 << MINORBITS)) {
1083 		idr_remove(&_minor_idr, m);
1084 		r = -ENOSPC;
1085 		goto out;
1086 	}
1087 
1088 	*minor = m;
1089 
1090 out:
1091 	spin_unlock(&_minor_lock);
1092 	return r;
1093 }
1094 
1095 static struct block_device_operations dm_blk_dops;
1096 
1097 static void dm_wq_work(struct work_struct *work);
1098 
1099 /*
1100  * Allocate and initialise a blank device with a given minor.
1101  */
1102 static struct mapped_device *alloc_dev(int minor)
1103 {
1104 	int r;
1105 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1106 	void *old_md;
1107 
1108 	if (!md) {
1109 		DMWARN("unable to allocate device, out of memory.");
1110 		return NULL;
1111 	}
1112 
1113 	if (!try_module_get(THIS_MODULE))
1114 		goto bad_module_get;
1115 
1116 	/* get a minor number for the dev */
1117 	if (minor == DM_ANY_MINOR)
1118 		r = next_free_minor(&minor);
1119 	else
1120 		r = specific_minor(minor);
1121 	if (r < 0)
1122 		goto bad_minor;
1123 
1124 	init_rwsem(&md->io_lock);
1125 	mutex_init(&md->suspend_lock);
1126 	spin_lock_init(&md->deferred_lock);
1127 	rwlock_init(&md->map_lock);
1128 	atomic_set(&md->holders, 1);
1129 	atomic_set(&md->open_count, 0);
1130 	atomic_set(&md->event_nr, 0);
1131 	atomic_set(&md->uevent_seq, 0);
1132 	INIT_LIST_HEAD(&md->uevent_list);
1133 	spin_lock_init(&md->uevent_lock);
1134 
1135 	md->queue = blk_alloc_queue(GFP_KERNEL);
1136 	if (!md->queue)
1137 		goto bad_queue;
1138 
1139 	md->queue->queuedata = md;
1140 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1141 	md->queue->backing_dev_info.congested_data = md;
1142 	blk_queue_make_request(md->queue, dm_request);
1143 	blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
1144 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1145 	md->queue->unplug_fn = dm_unplug_all;
1146 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1147 
1148 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1149 	if (!md->io_pool)
1150 		goto bad_io_pool;
1151 
1152 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1153 	if (!md->tio_pool)
1154 		goto bad_tio_pool;
1155 
1156 	md->bs = bioset_create(16, 0);
1157 	if (!md->bs)
1158 		goto bad_no_bioset;
1159 
1160 	md->disk = alloc_disk(1);
1161 	if (!md->disk)
1162 		goto bad_disk;
1163 
1164 	atomic_set(&md->pending, 0);
1165 	init_waitqueue_head(&md->wait);
1166 	INIT_WORK(&md->work, dm_wq_work);
1167 	init_waitqueue_head(&md->eventq);
1168 
1169 	md->disk->major = _major;
1170 	md->disk->first_minor = minor;
1171 	md->disk->fops = &dm_blk_dops;
1172 	md->disk->queue = md->queue;
1173 	md->disk->private_data = md;
1174 	sprintf(md->disk->disk_name, "dm-%d", minor);
1175 	add_disk(md->disk);
1176 	format_dev_t(md->name, MKDEV(_major, minor));
1177 
1178 	md->wq = create_singlethread_workqueue("kdmflush");
1179 	if (!md->wq)
1180 		goto bad_thread;
1181 
1182 	md->bdev = bdget_disk(md->disk, 0);
1183 	if (!md->bdev)
1184 		goto bad_bdev;
1185 
1186 	/* Populate the mapping, nobody knows we exist yet */
1187 	spin_lock(&_minor_lock);
1188 	old_md = idr_replace(&_minor_idr, md, minor);
1189 	spin_unlock(&_minor_lock);
1190 
1191 	BUG_ON(old_md != MINOR_ALLOCED);
1192 
1193 	return md;
1194 
1195 bad_bdev:
1196 	destroy_workqueue(md->wq);
1197 bad_thread:
1198 	put_disk(md->disk);
1199 bad_disk:
1200 	bioset_free(md->bs);
1201 bad_no_bioset:
1202 	mempool_destroy(md->tio_pool);
1203 bad_tio_pool:
1204 	mempool_destroy(md->io_pool);
1205 bad_io_pool:
1206 	blk_cleanup_queue(md->queue);
1207 bad_queue:
1208 	free_minor(minor);
1209 bad_minor:
1210 	module_put(THIS_MODULE);
1211 bad_module_get:
1212 	kfree(md);
1213 	return NULL;
1214 }
1215 
1216 static void unlock_fs(struct mapped_device *md);
1217 
1218 static void free_dev(struct mapped_device *md)
1219 {
1220 	int minor = MINOR(disk_devt(md->disk));
1221 
1222 	unlock_fs(md);
1223 	bdput(md->bdev);
1224 	destroy_workqueue(md->wq);
1225 	mempool_destroy(md->tio_pool);
1226 	mempool_destroy(md->io_pool);
1227 	bioset_free(md->bs);
1228 	blk_integrity_unregister(md->disk);
1229 	del_gendisk(md->disk);
1230 	free_minor(minor);
1231 
1232 	spin_lock(&_minor_lock);
1233 	md->disk->private_data = NULL;
1234 	spin_unlock(&_minor_lock);
1235 
1236 	put_disk(md->disk);
1237 	blk_cleanup_queue(md->queue);
1238 	module_put(THIS_MODULE);
1239 	kfree(md);
1240 }
1241 
1242 /*
1243  * Bind a table to the device.
1244  */
1245 static void event_callback(void *context)
1246 {
1247 	unsigned long flags;
1248 	LIST_HEAD(uevents);
1249 	struct mapped_device *md = (struct mapped_device *) context;
1250 
1251 	spin_lock_irqsave(&md->uevent_lock, flags);
1252 	list_splice_init(&md->uevent_list, &uevents);
1253 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1254 
1255 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1256 
1257 	atomic_inc(&md->event_nr);
1258 	wake_up(&md->eventq);
1259 }
1260 
1261 static void __set_size(struct mapped_device *md, sector_t size)
1262 {
1263 	set_capacity(md->disk, size);
1264 
1265 	mutex_lock(&md->bdev->bd_inode->i_mutex);
1266 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1267 	mutex_unlock(&md->bdev->bd_inode->i_mutex);
1268 }
1269 
1270 static int __bind(struct mapped_device *md, struct dm_table *t)
1271 {
1272 	struct request_queue *q = md->queue;
1273 	sector_t size;
1274 
1275 	size = dm_table_get_size(t);
1276 
1277 	/*
1278 	 * Wipe any geometry if the size of the table changed.
1279 	 */
1280 	if (size != get_capacity(md->disk))
1281 		memset(&md->geometry, 0, sizeof(md->geometry));
1282 
1283 	__set_size(md, size);
1284 
1285 	if (!size) {
1286 		dm_table_destroy(t);
1287 		return 0;
1288 	}
1289 
1290 	dm_table_event_callback(t, event_callback, md);
1291 
1292 	write_lock(&md->map_lock);
1293 	md->map = t;
1294 	dm_table_set_restrictions(t, q);
1295 	write_unlock(&md->map_lock);
1296 
1297 	return 0;
1298 }
1299 
1300 static void __unbind(struct mapped_device *md)
1301 {
1302 	struct dm_table *map = md->map;
1303 
1304 	if (!map)
1305 		return;
1306 
1307 	dm_table_event_callback(map, NULL, NULL);
1308 	write_lock(&md->map_lock);
1309 	md->map = NULL;
1310 	write_unlock(&md->map_lock);
1311 	dm_table_destroy(map);
1312 }
1313 
1314 /*
1315  * Constructor for a new device.
1316  */
1317 int dm_create(int minor, struct mapped_device **result)
1318 {
1319 	struct mapped_device *md;
1320 
1321 	md = alloc_dev(minor);
1322 	if (!md)
1323 		return -ENXIO;
1324 
1325 	dm_sysfs_init(md);
1326 
1327 	*result = md;
1328 	return 0;
1329 }
1330 
1331 static struct mapped_device *dm_find_md(dev_t dev)
1332 {
1333 	struct mapped_device *md;
1334 	unsigned minor = MINOR(dev);
1335 
1336 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1337 		return NULL;
1338 
1339 	spin_lock(&_minor_lock);
1340 
1341 	md = idr_find(&_minor_idr, minor);
1342 	if (md && (md == MINOR_ALLOCED ||
1343 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
1344 		   test_bit(DMF_FREEING, &md->flags))) {
1345 		md = NULL;
1346 		goto out;
1347 	}
1348 
1349 out:
1350 	spin_unlock(&_minor_lock);
1351 
1352 	return md;
1353 }
1354 
1355 struct mapped_device *dm_get_md(dev_t dev)
1356 {
1357 	struct mapped_device *md = dm_find_md(dev);
1358 
1359 	if (md)
1360 		dm_get(md);
1361 
1362 	return md;
1363 }
1364 
1365 void *dm_get_mdptr(struct mapped_device *md)
1366 {
1367 	return md->interface_ptr;
1368 }
1369 
1370 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1371 {
1372 	md->interface_ptr = ptr;
1373 }
1374 
1375 void dm_get(struct mapped_device *md)
1376 {
1377 	atomic_inc(&md->holders);
1378 }
1379 
1380 const char *dm_device_name(struct mapped_device *md)
1381 {
1382 	return md->name;
1383 }
1384 EXPORT_SYMBOL_GPL(dm_device_name);
1385 
1386 void dm_put(struct mapped_device *md)
1387 {
1388 	struct dm_table *map;
1389 
1390 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1391 
1392 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1393 		map = dm_get_table(md);
1394 		idr_replace(&_minor_idr, MINOR_ALLOCED,
1395 			    MINOR(disk_devt(dm_disk(md))));
1396 		set_bit(DMF_FREEING, &md->flags);
1397 		spin_unlock(&_minor_lock);
1398 		if (!dm_suspended(md)) {
1399 			dm_table_presuspend_targets(map);
1400 			dm_table_postsuspend_targets(map);
1401 		}
1402 		dm_sysfs_exit(md);
1403 		dm_table_put(map);
1404 		__unbind(md);
1405 		free_dev(md);
1406 	}
1407 }
1408 EXPORT_SYMBOL_GPL(dm_put);
1409 
1410 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1411 {
1412 	int r = 0;
1413 	DECLARE_WAITQUEUE(wait, current);
1414 
1415 	dm_unplug_all(md->queue);
1416 
1417 	add_wait_queue(&md->wait, &wait);
1418 
1419 	while (1) {
1420 		set_current_state(interruptible);
1421 
1422 		smp_mb();
1423 		if (!atomic_read(&md->pending))
1424 			break;
1425 
1426 		if (interruptible == TASK_INTERRUPTIBLE &&
1427 		    signal_pending(current)) {
1428 			r = -EINTR;
1429 			break;
1430 		}
1431 
1432 		io_schedule();
1433 	}
1434 	set_current_state(TASK_RUNNING);
1435 
1436 	remove_wait_queue(&md->wait, &wait);
1437 
1438 	return r;
1439 }
1440 
1441 static void dm_flush(struct mapped_device *md)
1442 {
1443 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
1444 }
1445 
1446 static void process_barrier(struct mapped_device *md, struct bio *bio)
1447 {
1448 	md->barrier_error = 0;
1449 
1450 	dm_flush(md);
1451 
1452 	if (!bio_empty_barrier(bio)) {
1453 		__split_and_process_bio(md, bio);
1454 		dm_flush(md);
1455 	}
1456 
1457 	if (md->barrier_error != DM_ENDIO_REQUEUE)
1458 		bio_endio(bio, md->barrier_error);
1459 	else {
1460 		spin_lock_irq(&md->deferred_lock);
1461 		bio_list_add_head(&md->deferred, bio);
1462 		spin_unlock_irq(&md->deferred_lock);
1463 	}
1464 }
1465 
1466 /*
1467  * Process the deferred bios
1468  */
1469 static void dm_wq_work(struct work_struct *work)
1470 {
1471 	struct mapped_device *md = container_of(work, struct mapped_device,
1472 						work);
1473 	struct bio *c;
1474 
1475 	down_write(&md->io_lock);
1476 
1477 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1478 		spin_lock_irq(&md->deferred_lock);
1479 		c = bio_list_pop(&md->deferred);
1480 		spin_unlock_irq(&md->deferred_lock);
1481 
1482 		if (!c) {
1483 			clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1484 			break;
1485 		}
1486 
1487 		up_write(&md->io_lock);
1488 
1489 		if (bio_barrier(c))
1490 			process_barrier(md, c);
1491 		else
1492 			__split_and_process_bio(md, c);
1493 
1494 		down_write(&md->io_lock);
1495 	}
1496 
1497 	up_write(&md->io_lock);
1498 }
1499 
1500 static void dm_queue_flush(struct mapped_device *md)
1501 {
1502 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1503 	smp_mb__after_clear_bit();
1504 	queue_work(md->wq, &md->work);
1505 }
1506 
1507 /*
1508  * Swap in a new table (destroying old one).
1509  */
1510 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1511 {
1512 	int r = -EINVAL;
1513 
1514 	mutex_lock(&md->suspend_lock);
1515 
1516 	/* device must be suspended */
1517 	if (!dm_suspended(md))
1518 		goto out;
1519 
1520 	__unbind(md);
1521 	r = __bind(md, table);
1522 
1523 out:
1524 	mutex_unlock(&md->suspend_lock);
1525 	return r;
1526 }
1527 
1528 /*
1529  * Functions to lock and unlock any filesystem running on the
1530  * device.
1531  */
1532 static int lock_fs(struct mapped_device *md)
1533 {
1534 	int r;
1535 
1536 	WARN_ON(md->frozen_sb);
1537 
1538 	md->frozen_sb = freeze_bdev(md->bdev);
1539 	if (IS_ERR(md->frozen_sb)) {
1540 		r = PTR_ERR(md->frozen_sb);
1541 		md->frozen_sb = NULL;
1542 		return r;
1543 	}
1544 
1545 	set_bit(DMF_FROZEN, &md->flags);
1546 
1547 	return 0;
1548 }
1549 
1550 static void unlock_fs(struct mapped_device *md)
1551 {
1552 	if (!test_bit(DMF_FROZEN, &md->flags))
1553 		return;
1554 
1555 	thaw_bdev(md->bdev, md->frozen_sb);
1556 	md->frozen_sb = NULL;
1557 	clear_bit(DMF_FROZEN, &md->flags);
1558 }
1559 
1560 /*
1561  * We need to be able to change a mapping table under a mounted
1562  * filesystem.  For example we might want to move some data in
1563  * the background.  Before the table can be swapped with
1564  * dm_bind_table, dm_suspend must be called to flush any in
1565  * flight bios and ensure that any further io gets deferred.
1566  */
1567 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1568 {
1569 	struct dm_table *map = NULL;
1570 	int r = 0;
1571 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1572 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1573 
1574 	mutex_lock(&md->suspend_lock);
1575 
1576 	if (dm_suspended(md)) {
1577 		r = -EINVAL;
1578 		goto out_unlock;
1579 	}
1580 
1581 	map = dm_get_table(md);
1582 
1583 	/*
1584 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1585 	 * This flag is cleared before dm_suspend returns.
1586 	 */
1587 	if (noflush)
1588 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1589 
1590 	/* This does not get reverted if there's an error later. */
1591 	dm_table_presuspend_targets(map);
1592 
1593 	/*
1594 	 * Flush I/O to the device. noflush supersedes do_lockfs,
1595 	 * because lock_fs() needs to flush I/Os.
1596 	 */
1597 	if (!noflush && do_lockfs) {
1598 		r = lock_fs(md);
1599 		if (r)
1600 			goto out;
1601 	}
1602 
1603 	/*
1604 	 * Here we must make sure that no processes are submitting requests
1605 	 * to target drivers i.e. no one may be executing
1606 	 * __split_and_process_bio. This is called from dm_request and
1607 	 * dm_wq_work.
1608 	 *
1609 	 * To get all processes out of __split_and_process_bio in dm_request,
1610 	 * we take the write lock. To prevent any process from reentering
1611 	 * __split_and_process_bio from dm_request, we set
1612 	 * DMF_QUEUE_IO_TO_THREAD.
1613 	 *
1614 	 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
1615 	 * and call flush_workqueue(md->wq). flush_workqueue will wait until
1616 	 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
1617 	 * further calls to __split_and_process_bio from dm_wq_work.
1618 	 */
1619 	down_write(&md->io_lock);
1620 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1621 	set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1622 	up_write(&md->io_lock);
1623 
1624 	flush_workqueue(md->wq);
1625 
1626 	/*
1627 	 * At this point no more requests are entering target request routines.
1628 	 * We call dm_wait_for_completion to wait for all existing requests
1629 	 * to finish.
1630 	 */
1631 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1632 
1633 	down_write(&md->io_lock);
1634 	if (noflush)
1635 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1636 	up_write(&md->io_lock);
1637 
1638 	/* were we interrupted ? */
1639 	if (r < 0) {
1640 		dm_queue_flush(md);
1641 
1642 		unlock_fs(md);
1643 		goto out; /* pushback list is already flushed, so skip flush */
1644 	}
1645 
1646 	/*
1647 	 * If dm_wait_for_completion returned 0, the device is completely
1648 	 * quiescent now. There is no request-processing activity. All new
1649 	 * requests are being added to md->deferred list.
1650 	 */
1651 
1652 	dm_table_postsuspend_targets(map);
1653 
1654 	set_bit(DMF_SUSPENDED, &md->flags);
1655 
1656 out:
1657 	dm_table_put(map);
1658 
1659 out_unlock:
1660 	mutex_unlock(&md->suspend_lock);
1661 	return r;
1662 }
1663 
1664 int dm_resume(struct mapped_device *md)
1665 {
1666 	int r = -EINVAL;
1667 	struct dm_table *map = NULL;
1668 
1669 	mutex_lock(&md->suspend_lock);
1670 	if (!dm_suspended(md))
1671 		goto out;
1672 
1673 	map = dm_get_table(md);
1674 	if (!map || !dm_table_get_size(map))
1675 		goto out;
1676 
1677 	r = dm_table_resume_targets(map);
1678 	if (r)
1679 		goto out;
1680 
1681 	dm_queue_flush(md);
1682 
1683 	unlock_fs(md);
1684 
1685 	clear_bit(DMF_SUSPENDED, &md->flags);
1686 
1687 	dm_table_unplug_all(map);
1688 
1689 	dm_kobject_uevent(md);
1690 
1691 	r = 0;
1692 
1693 out:
1694 	dm_table_put(map);
1695 	mutex_unlock(&md->suspend_lock);
1696 
1697 	return r;
1698 }
1699 
1700 /*-----------------------------------------------------------------
1701  * Event notification.
1702  *---------------------------------------------------------------*/
1703 void dm_kobject_uevent(struct mapped_device *md)
1704 {
1705 	kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1706 }
1707 
1708 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1709 {
1710 	return atomic_add_return(1, &md->uevent_seq);
1711 }
1712 
1713 uint32_t dm_get_event_nr(struct mapped_device *md)
1714 {
1715 	return atomic_read(&md->event_nr);
1716 }
1717 
1718 int dm_wait_event(struct mapped_device *md, int event_nr)
1719 {
1720 	return wait_event_interruptible(md->eventq,
1721 			(event_nr != atomic_read(&md->event_nr)));
1722 }
1723 
1724 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1725 {
1726 	unsigned long flags;
1727 
1728 	spin_lock_irqsave(&md->uevent_lock, flags);
1729 	list_add(elist, &md->uevent_list);
1730 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1731 }
1732 
1733 /*
1734  * The gendisk is only valid as long as you have a reference
1735  * count on 'md'.
1736  */
1737 struct gendisk *dm_disk(struct mapped_device *md)
1738 {
1739 	return md->disk;
1740 }
1741 
1742 struct kobject *dm_kobject(struct mapped_device *md)
1743 {
1744 	return &md->kobj;
1745 }
1746 
1747 /*
1748  * struct mapped_device should not be exported outside of dm.c
1749  * so use this check to verify that kobj is part of md structure
1750  */
1751 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1752 {
1753 	struct mapped_device *md;
1754 
1755 	md = container_of(kobj, struct mapped_device, kobj);
1756 	if (&md->kobj != kobj)
1757 		return NULL;
1758 
1759 	if (test_bit(DMF_FREEING, &md->flags) ||
1760 	    test_bit(DMF_DELETING, &md->flags))
1761 		return NULL;
1762 
1763 	dm_get(md);
1764 	return md;
1765 }
1766 
1767 int dm_suspended(struct mapped_device *md)
1768 {
1769 	return test_bit(DMF_SUSPENDED, &md->flags);
1770 }
1771 
1772 int dm_noflush_suspending(struct dm_target *ti)
1773 {
1774 	struct mapped_device *md = dm_table_get_md(ti->table);
1775 	int r = __noflush_suspending(md);
1776 
1777 	dm_put(md);
1778 
1779 	return r;
1780 }
1781 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1782 
1783 static struct block_device_operations dm_blk_dops = {
1784 	.open = dm_blk_open,
1785 	.release = dm_blk_close,
1786 	.ioctl = dm_blk_ioctl,
1787 	.getgeo = dm_blk_getgeo,
1788 	.owner = THIS_MODULE
1789 };
1790 
1791 EXPORT_SYMBOL(dm_get_mapinfo);
1792 
1793 /*
1794  * module hooks
1795  */
1796 module_init(dm_init);
1797 module_exit(dm_exit);
1798 
1799 module_param(major, uint, 0);
1800 MODULE_PARM_DESC(major, "The major number of the device mapper");
1801 MODULE_DESCRIPTION(DM_NAME " driver");
1802 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1803 MODULE_LICENSE("GPL");
1804