1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 53 static void do_deferred_remove(struct work_struct *w); 54 55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 56 57 /* 58 * For bio-based dm. 59 * One of these is allocated per bio. 60 */ 61 struct dm_io { 62 struct mapped_device *md; 63 int error; 64 atomic_t io_count; 65 struct bio *bio; 66 unsigned long start_time; 67 spinlock_t endio_lock; 68 struct dm_stats_aux stats_aux; 69 }; 70 71 /* 72 * For request-based dm. 73 * One of these is allocated per request. 74 */ 75 struct dm_rq_target_io { 76 struct mapped_device *md; 77 struct dm_target *ti; 78 struct request *orig, clone; 79 int error; 80 union map_info info; 81 }; 82 83 /* 84 * For request-based dm - the bio clones we allocate are embedded in these 85 * structs. 86 * 87 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 88 * the bioset is created - this means the bio has to come at the end of the 89 * struct. 90 */ 91 struct dm_rq_clone_bio_info { 92 struct bio *orig; 93 struct dm_rq_target_io *tio; 94 struct bio clone; 95 }; 96 97 union map_info *dm_get_rq_mapinfo(struct request *rq) 98 { 99 if (rq && rq->end_io_data) 100 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 101 return NULL; 102 } 103 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 104 105 #define MINOR_ALLOCED ((void *)-1) 106 107 /* 108 * Bits for the md->flags field. 109 */ 110 #define DMF_BLOCK_IO_FOR_SUSPEND 0 111 #define DMF_SUSPENDED 1 112 #define DMF_FROZEN 2 113 #define DMF_FREEING 3 114 #define DMF_DELETING 4 115 #define DMF_NOFLUSH_SUSPENDING 5 116 #define DMF_MERGE_IS_OPTIONAL 6 117 #define DMF_DEFERRED_REMOVE 7 118 119 /* 120 * A dummy definition to make RCU happy. 121 * struct dm_table should never be dereferenced in this file. 122 */ 123 struct dm_table { 124 int undefined__; 125 }; 126 127 /* 128 * Work processed by per-device workqueue. 129 */ 130 struct mapped_device { 131 struct srcu_struct io_barrier; 132 struct mutex suspend_lock; 133 atomic_t holders; 134 atomic_t open_count; 135 136 /* 137 * The current mapping. 138 * Use dm_get_live_table{_fast} or take suspend_lock for 139 * dereference. 140 */ 141 struct dm_table *map; 142 143 unsigned long flags; 144 145 struct request_queue *queue; 146 unsigned type; 147 /* Protect queue and type against concurrent access. */ 148 struct mutex type_lock; 149 150 struct target_type *immutable_target_type; 151 152 struct gendisk *disk; 153 char name[16]; 154 155 void *interface_ptr; 156 157 /* 158 * A list of ios that arrived while we were suspended. 159 */ 160 atomic_t pending[2]; 161 wait_queue_head_t wait; 162 struct work_struct work; 163 struct bio_list deferred; 164 spinlock_t deferred_lock; 165 166 /* 167 * Processing queue (flush) 168 */ 169 struct workqueue_struct *wq; 170 171 /* 172 * io objects are allocated from here. 173 */ 174 mempool_t *io_pool; 175 176 struct bio_set *bs; 177 178 /* 179 * Event handling. 180 */ 181 atomic_t event_nr; 182 wait_queue_head_t eventq; 183 atomic_t uevent_seq; 184 struct list_head uevent_list; 185 spinlock_t uevent_lock; /* Protect access to uevent_list */ 186 187 /* 188 * freeze/thaw support require holding onto a super block 189 */ 190 struct super_block *frozen_sb; 191 struct block_device *bdev; 192 193 /* forced geometry settings */ 194 struct hd_geometry geometry; 195 196 /* kobject and completion */ 197 struct dm_kobject_holder kobj_holder; 198 199 /* zero-length flush that will be cloned and submitted to targets */ 200 struct bio flush_bio; 201 202 struct dm_stats stats; 203 }; 204 205 /* 206 * For mempools pre-allocation at the table loading time. 207 */ 208 struct dm_md_mempools { 209 mempool_t *io_pool; 210 struct bio_set *bs; 211 }; 212 213 #define RESERVED_BIO_BASED_IOS 16 214 #define RESERVED_REQUEST_BASED_IOS 256 215 #define RESERVED_MAX_IOS 1024 216 static struct kmem_cache *_io_cache; 217 static struct kmem_cache *_rq_tio_cache; 218 219 /* 220 * Bio-based DM's mempools' reserved IOs set by the user. 221 */ 222 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 223 224 /* 225 * Request-based DM's mempools' reserved IOs set by the user. 226 */ 227 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 228 229 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios, 230 unsigned def, unsigned max) 231 { 232 unsigned ios = ACCESS_ONCE(*reserved_ios); 233 unsigned modified_ios = 0; 234 235 if (!ios) 236 modified_ios = def; 237 else if (ios > max) 238 modified_ios = max; 239 240 if (modified_ios) { 241 (void)cmpxchg(reserved_ios, ios, modified_ios); 242 ios = modified_ios; 243 } 244 245 return ios; 246 } 247 248 unsigned dm_get_reserved_bio_based_ios(void) 249 { 250 return __dm_get_reserved_ios(&reserved_bio_based_ios, 251 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 252 } 253 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 254 255 unsigned dm_get_reserved_rq_based_ios(void) 256 { 257 return __dm_get_reserved_ios(&reserved_rq_based_ios, 258 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 259 } 260 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 261 262 static int __init local_init(void) 263 { 264 int r = -ENOMEM; 265 266 /* allocate a slab for the dm_ios */ 267 _io_cache = KMEM_CACHE(dm_io, 0); 268 if (!_io_cache) 269 return r; 270 271 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 272 if (!_rq_tio_cache) 273 goto out_free_io_cache; 274 275 r = dm_uevent_init(); 276 if (r) 277 goto out_free_rq_tio_cache; 278 279 _major = major; 280 r = register_blkdev(_major, _name); 281 if (r < 0) 282 goto out_uevent_exit; 283 284 if (!_major) 285 _major = r; 286 287 return 0; 288 289 out_uevent_exit: 290 dm_uevent_exit(); 291 out_free_rq_tio_cache: 292 kmem_cache_destroy(_rq_tio_cache); 293 out_free_io_cache: 294 kmem_cache_destroy(_io_cache); 295 296 return r; 297 } 298 299 static void local_exit(void) 300 { 301 flush_scheduled_work(); 302 303 kmem_cache_destroy(_rq_tio_cache); 304 kmem_cache_destroy(_io_cache); 305 unregister_blkdev(_major, _name); 306 dm_uevent_exit(); 307 308 _major = 0; 309 310 DMINFO("cleaned up"); 311 } 312 313 static int (*_inits[])(void) __initdata = { 314 local_init, 315 dm_target_init, 316 dm_linear_init, 317 dm_stripe_init, 318 dm_io_init, 319 dm_kcopyd_init, 320 dm_interface_init, 321 dm_statistics_init, 322 }; 323 324 static void (*_exits[])(void) = { 325 local_exit, 326 dm_target_exit, 327 dm_linear_exit, 328 dm_stripe_exit, 329 dm_io_exit, 330 dm_kcopyd_exit, 331 dm_interface_exit, 332 dm_statistics_exit, 333 }; 334 335 static int __init dm_init(void) 336 { 337 const int count = ARRAY_SIZE(_inits); 338 339 int r, i; 340 341 for (i = 0; i < count; i++) { 342 r = _inits[i](); 343 if (r) 344 goto bad; 345 } 346 347 return 0; 348 349 bad: 350 while (i--) 351 _exits[i](); 352 353 return r; 354 } 355 356 static void __exit dm_exit(void) 357 { 358 int i = ARRAY_SIZE(_exits); 359 360 while (i--) 361 _exits[i](); 362 363 /* 364 * Should be empty by this point. 365 */ 366 idr_destroy(&_minor_idr); 367 } 368 369 /* 370 * Block device functions 371 */ 372 int dm_deleting_md(struct mapped_device *md) 373 { 374 return test_bit(DMF_DELETING, &md->flags); 375 } 376 377 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 378 { 379 struct mapped_device *md; 380 381 spin_lock(&_minor_lock); 382 383 md = bdev->bd_disk->private_data; 384 if (!md) 385 goto out; 386 387 if (test_bit(DMF_FREEING, &md->flags) || 388 dm_deleting_md(md)) { 389 md = NULL; 390 goto out; 391 } 392 393 dm_get(md); 394 atomic_inc(&md->open_count); 395 396 out: 397 spin_unlock(&_minor_lock); 398 399 return md ? 0 : -ENXIO; 400 } 401 402 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 403 { 404 struct mapped_device *md = disk->private_data; 405 406 spin_lock(&_minor_lock); 407 408 if (atomic_dec_and_test(&md->open_count) && 409 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 410 schedule_work(&deferred_remove_work); 411 412 dm_put(md); 413 414 spin_unlock(&_minor_lock); 415 } 416 417 int dm_open_count(struct mapped_device *md) 418 { 419 return atomic_read(&md->open_count); 420 } 421 422 /* 423 * Guarantees nothing is using the device before it's deleted. 424 */ 425 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 426 { 427 int r = 0; 428 429 spin_lock(&_minor_lock); 430 431 if (dm_open_count(md)) { 432 r = -EBUSY; 433 if (mark_deferred) 434 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 435 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 436 r = -EEXIST; 437 else 438 set_bit(DMF_DELETING, &md->flags); 439 440 spin_unlock(&_minor_lock); 441 442 return r; 443 } 444 445 int dm_cancel_deferred_remove(struct mapped_device *md) 446 { 447 int r = 0; 448 449 spin_lock(&_minor_lock); 450 451 if (test_bit(DMF_DELETING, &md->flags)) 452 r = -EBUSY; 453 else 454 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 455 456 spin_unlock(&_minor_lock); 457 458 return r; 459 } 460 461 static void do_deferred_remove(struct work_struct *w) 462 { 463 dm_deferred_remove(); 464 } 465 466 sector_t dm_get_size(struct mapped_device *md) 467 { 468 return get_capacity(md->disk); 469 } 470 471 struct request_queue *dm_get_md_queue(struct mapped_device *md) 472 { 473 return md->queue; 474 } 475 476 struct dm_stats *dm_get_stats(struct mapped_device *md) 477 { 478 return &md->stats; 479 } 480 481 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 482 { 483 struct mapped_device *md = bdev->bd_disk->private_data; 484 485 return dm_get_geometry(md, geo); 486 } 487 488 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 489 unsigned int cmd, unsigned long arg) 490 { 491 struct mapped_device *md = bdev->bd_disk->private_data; 492 int srcu_idx; 493 struct dm_table *map; 494 struct dm_target *tgt; 495 int r = -ENOTTY; 496 497 retry: 498 map = dm_get_live_table(md, &srcu_idx); 499 500 if (!map || !dm_table_get_size(map)) 501 goto out; 502 503 /* We only support devices that have a single target */ 504 if (dm_table_get_num_targets(map) != 1) 505 goto out; 506 507 tgt = dm_table_get_target(map, 0); 508 509 if (dm_suspended_md(md)) { 510 r = -EAGAIN; 511 goto out; 512 } 513 514 if (tgt->type->ioctl) 515 r = tgt->type->ioctl(tgt, cmd, arg); 516 517 out: 518 dm_put_live_table(md, srcu_idx); 519 520 if (r == -ENOTCONN) { 521 msleep(10); 522 goto retry; 523 } 524 525 return r; 526 } 527 528 static struct dm_io *alloc_io(struct mapped_device *md) 529 { 530 return mempool_alloc(md->io_pool, GFP_NOIO); 531 } 532 533 static void free_io(struct mapped_device *md, struct dm_io *io) 534 { 535 mempool_free(io, md->io_pool); 536 } 537 538 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 539 { 540 bio_put(&tio->clone); 541 } 542 543 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 544 gfp_t gfp_mask) 545 { 546 return mempool_alloc(md->io_pool, gfp_mask); 547 } 548 549 static void free_rq_tio(struct dm_rq_target_io *tio) 550 { 551 mempool_free(tio, tio->md->io_pool); 552 } 553 554 static int md_in_flight(struct mapped_device *md) 555 { 556 return atomic_read(&md->pending[READ]) + 557 atomic_read(&md->pending[WRITE]); 558 } 559 560 static void start_io_acct(struct dm_io *io) 561 { 562 struct mapped_device *md = io->md; 563 struct bio *bio = io->bio; 564 int cpu; 565 int rw = bio_data_dir(bio); 566 567 io->start_time = jiffies; 568 569 cpu = part_stat_lock(); 570 part_round_stats(cpu, &dm_disk(md)->part0); 571 part_stat_unlock(); 572 atomic_set(&dm_disk(md)->part0.in_flight[rw], 573 atomic_inc_return(&md->pending[rw])); 574 575 if (unlikely(dm_stats_used(&md->stats))) 576 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 577 bio_sectors(bio), false, 0, &io->stats_aux); 578 } 579 580 static void end_io_acct(struct dm_io *io) 581 { 582 struct mapped_device *md = io->md; 583 struct bio *bio = io->bio; 584 unsigned long duration = jiffies - io->start_time; 585 int pending, cpu; 586 int rw = bio_data_dir(bio); 587 588 cpu = part_stat_lock(); 589 part_round_stats(cpu, &dm_disk(md)->part0); 590 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 591 part_stat_unlock(); 592 593 if (unlikely(dm_stats_used(&md->stats))) 594 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 595 bio_sectors(bio), true, duration, &io->stats_aux); 596 597 /* 598 * After this is decremented the bio must not be touched if it is 599 * a flush. 600 */ 601 pending = atomic_dec_return(&md->pending[rw]); 602 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 603 pending += atomic_read(&md->pending[rw^0x1]); 604 605 /* nudge anyone waiting on suspend queue */ 606 if (!pending) 607 wake_up(&md->wait); 608 } 609 610 /* 611 * Add the bio to the list of deferred io. 612 */ 613 static void queue_io(struct mapped_device *md, struct bio *bio) 614 { 615 unsigned long flags; 616 617 spin_lock_irqsave(&md->deferred_lock, flags); 618 bio_list_add(&md->deferred, bio); 619 spin_unlock_irqrestore(&md->deferred_lock, flags); 620 queue_work(md->wq, &md->work); 621 } 622 623 /* 624 * Everyone (including functions in this file), should use this 625 * function to access the md->map field, and make sure they call 626 * dm_put_live_table() when finished. 627 */ 628 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 629 { 630 *srcu_idx = srcu_read_lock(&md->io_barrier); 631 632 return srcu_dereference(md->map, &md->io_barrier); 633 } 634 635 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 636 { 637 srcu_read_unlock(&md->io_barrier, srcu_idx); 638 } 639 640 void dm_sync_table(struct mapped_device *md) 641 { 642 synchronize_srcu(&md->io_barrier); 643 synchronize_rcu_expedited(); 644 } 645 646 /* 647 * A fast alternative to dm_get_live_table/dm_put_live_table. 648 * The caller must not block between these two functions. 649 */ 650 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 651 { 652 rcu_read_lock(); 653 return rcu_dereference(md->map); 654 } 655 656 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 657 { 658 rcu_read_unlock(); 659 } 660 661 /* 662 * Get the geometry associated with a dm device 663 */ 664 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 665 { 666 *geo = md->geometry; 667 668 return 0; 669 } 670 671 /* 672 * Set the geometry of a device. 673 */ 674 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 675 { 676 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 677 678 if (geo->start > sz) { 679 DMWARN("Start sector is beyond the geometry limits."); 680 return -EINVAL; 681 } 682 683 md->geometry = *geo; 684 685 return 0; 686 } 687 688 /*----------------------------------------------------------------- 689 * CRUD START: 690 * A more elegant soln is in the works that uses the queue 691 * merge fn, unfortunately there are a couple of changes to 692 * the block layer that I want to make for this. So in the 693 * interests of getting something for people to use I give 694 * you this clearly demarcated crap. 695 *---------------------------------------------------------------*/ 696 697 static int __noflush_suspending(struct mapped_device *md) 698 { 699 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 700 } 701 702 /* 703 * Decrements the number of outstanding ios that a bio has been 704 * cloned into, completing the original io if necc. 705 */ 706 static void dec_pending(struct dm_io *io, int error) 707 { 708 unsigned long flags; 709 int io_error; 710 struct bio *bio; 711 struct mapped_device *md = io->md; 712 713 /* Push-back supersedes any I/O errors */ 714 if (unlikely(error)) { 715 spin_lock_irqsave(&io->endio_lock, flags); 716 if (!(io->error > 0 && __noflush_suspending(md))) 717 io->error = error; 718 spin_unlock_irqrestore(&io->endio_lock, flags); 719 } 720 721 if (atomic_dec_and_test(&io->io_count)) { 722 if (io->error == DM_ENDIO_REQUEUE) { 723 /* 724 * Target requested pushing back the I/O. 725 */ 726 spin_lock_irqsave(&md->deferred_lock, flags); 727 if (__noflush_suspending(md)) 728 bio_list_add_head(&md->deferred, io->bio); 729 else 730 /* noflush suspend was interrupted. */ 731 io->error = -EIO; 732 spin_unlock_irqrestore(&md->deferred_lock, flags); 733 } 734 735 io_error = io->error; 736 bio = io->bio; 737 end_io_acct(io); 738 free_io(md, io); 739 740 if (io_error == DM_ENDIO_REQUEUE) 741 return; 742 743 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 744 /* 745 * Preflush done for flush with data, reissue 746 * without REQ_FLUSH. 747 */ 748 bio->bi_rw &= ~REQ_FLUSH; 749 queue_io(md, bio); 750 } else { 751 /* done with normal IO or empty flush */ 752 trace_block_bio_complete(md->queue, bio, io_error); 753 bio_endio(bio, io_error); 754 } 755 } 756 } 757 758 static void clone_endio(struct bio *bio, int error) 759 { 760 int r = 0; 761 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 762 struct dm_io *io = tio->io; 763 struct mapped_device *md = tio->io->md; 764 dm_endio_fn endio = tio->ti->type->end_io; 765 766 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 767 error = -EIO; 768 769 if (endio) { 770 r = endio(tio->ti, bio, error); 771 if (r < 0 || r == DM_ENDIO_REQUEUE) 772 /* 773 * error and requeue request are handled 774 * in dec_pending(). 775 */ 776 error = r; 777 else if (r == DM_ENDIO_INCOMPLETE) 778 /* The target will handle the io */ 779 return; 780 else if (r) { 781 DMWARN("unimplemented target endio return value: %d", r); 782 BUG(); 783 } 784 } 785 786 free_tio(md, tio); 787 dec_pending(io, error); 788 } 789 790 /* 791 * Partial completion handling for request-based dm 792 */ 793 static void end_clone_bio(struct bio *clone, int error) 794 { 795 struct dm_rq_clone_bio_info *info = 796 container_of(clone, struct dm_rq_clone_bio_info, clone); 797 struct dm_rq_target_io *tio = info->tio; 798 struct bio *bio = info->orig; 799 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 800 801 bio_put(clone); 802 803 if (tio->error) 804 /* 805 * An error has already been detected on the request. 806 * Once error occurred, just let clone->end_io() handle 807 * the remainder. 808 */ 809 return; 810 else if (error) { 811 /* 812 * Don't notice the error to the upper layer yet. 813 * The error handling decision is made by the target driver, 814 * when the request is completed. 815 */ 816 tio->error = error; 817 return; 818 } 819 820 /* 821 * I/O for the bio successfully completed. 822 * Notice the data completion to the upper layer. 823 */ 824 825 /* 826 * bios are processed from the head of the list. 827 * So the completing bio should always be rq->bio. 828 * If it's not, something wrong is happening. 829 */ 830 if (tio->orig->bio != bio) 831 DMERR("bio completion is going in the middle of the request"); 832 833 /* 834 * Update the original request. 835 * Do not use blk_end_request() here, because it may complete 836 * the original request before the clone, and break the ordering. 837 */ 838 blk_update_request(tio->orig, 0, nr_bytes); 839 } 840 841 /* 842 * Don't touch any member of the md after calling this function because 843 * the md may be freed in dm_put() at the end of this function. 844 * Or do dm_get() before calling this function and dm_put() later. 845 */ 846 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 847 { 848 atomic_dec(&md->pending[rw]); 849 850 /* nudge anyone waiting on suspend queue */ 851 if (!md_in_flight(md)) 852 wake_up(&md->wait); 853 854 /* 855 * Run this off this callpath, as drivers could invoke end_io while 856 * inside their request_fn (and holding the queue lock). Calling 857 * back into ->request_fn() could deadlock attempting to grab the 858 * queue lock again. 859 */ 860 if (run_queue) 861 blk_run_queue_async(md->queue); 862 863 /* 864 * dm_put() must be at the end of this function. See the comment above 865 */ 866 dm_put(md); 867 } 868 869 static void free_rq_clone(struct request *clone) 870 { 871 struct dm_rq_target_io *tio = clone->end_io_data; 872 873 blk_rq_unprep_clone(clone); 874 free_rq_tio(tio); 875 } 876 877 /* 878 * Complete the clone and the original request. 879 * Must be called without queue lock. 880 */ 881 static void dm_end_request(struct request *clone, int error) 882 { 883 int rw = rq_data_dir(clone); 884 struct dm_rq_target_io *tio = clone->end_io_data; 885 struct mapped_device *md = tio->md; 886 struct request *rq = tio->orig; 887 888 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 889 rq->errors = clone->errors; 890 rq->resid_len = clone->resid_len; 891 892 if (rq->sense) 893 /* 894 * We are using the sense buffer of the original 895 * request. 896 * So setting the length of the sense data is enough. 897 */ 898 rq->sense_len = clone->sense_len; 899 } 900 901 free_rq_clone(clone); 902 blk_end_request_all(rq, error); 903 rq_completed(md, rw, true); 904 } 905 906 static void dm_unprep_request(struct request *rq) 907 { 908 struct request *clone = rq->special; 909 910 rq->special = NULL; 911 rq->cmd_flags &= ~REQ_DONTPREP; 912 913 free_rq_clone(clone); 914 } 915 916 /* 917 * Requeue the original request of a clone. 918 */ 919 void dm_requeue_unmapped_request(struct request *clone) 920 { 921 int rw = rq_data_dir(clone); 922 struct dm_rq_target_io *tio = clone->end_io_data; 923 struct mapped_device *md = tio->md; 924 struct request *rq = tio->orig; 925 struct request_queue *q = rq->q; 926 unsigned long flags; 927 928 dm_unprep_request(rq); 929 930 spin_lock_irqsave(q->queue_lock, flags); 931 blk_requeue_request(q, rq); 932 spin_unlock_irqrestore(q->queue_lock, flags); 933 934 rq_completed(md, rw, 0); 935 } 936 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 937 938 static void __stop_queue(struct request_queue *q) 939 { 940 blk_stop_queue(q); 941 } 942 943 static void stop_queue(struct request_queue *q) 944 { 945 unsigned long flags; 946 947 spin_lock_irqsave(q->queue_lock, flags); 948 __stop_queue(q); 949 spin_unlock_irqrestore(q->queue_lock, flags); 950 } 951 952 static void __start_queue(struct request_queue *q) 953 { 954 if (blk_queue_stopped(q)) 955 blk_start_queue(q); 956 } 957 958 static void start_queue(struct request_queue *q) 959 { 960 unsigned long flags; 961 962 spin_lock_irqsave(q->queue_lock, flags); 963 __start_queue(q); 964 spin_unlock_irqrestore(q->queue_lock, flags); 965 } 966 967 static void dm_done(struct request *clone, int error, bool mapped) 968 { 969 int r = error; 970 struct dm_rq_target_io *tio = clone->end_io_data; 971 dm_request_endio_fn rq_end_io = NULL; 972 973 if (tio->ti) { 974 rq_end_io = tio->ti->type->rq_end_io; 975 976 if (mapped && rq_end_io) 977 r = rq_end_io(tio->ti, clone, error, &tio->info); 978 } 979 980 if (r <= 0) 981 /* The target wants to complete the I/O */ 982 dm_end_request(clone, r); 983 else if (r == DM_ENDIO_INCOMPLETE) 984 /* The target will handle the I/O */ 985 return; 986 else if (r == DM_ENDIO_REQUEUE) 987 /* The target wants to requeue the I/O */ 988 dm_requeue_unmapped_request(clone); 989 else { 990 DMWARN("unimplemented target endio return value: %d", r); 991 BUG(); 992 } 993 } 994 995 /* 996 * Request completion handler for request-based dm 997 */ 998 static void dm_softirq_done(struct request *rq) 999 { 1000 bool mapped = true; 1001 struct request *clone = rq->completion_data; 1002 struct dm_rq_target_io *tio = clone->end_io_data; 1003 1004 if (rq->cmd_flags & REQ_FAILED) 1005 mapped = false; 1006 1007 dm_done(clone, tio->error, mapped); 1008 } 1009 1010 /* 1011 * Complete the clone and the original request with the error status 1012 * through softirq context. 1013 */ 1014 static void dm_complete_request(struct request *clone, int error) 1015 { 1016 struct dm_rq_target_io *tio = clone->end_io_data; 1017 struct request *rq = tio->orig; 1018 1019 tio->error = error; 1020 rq->completion_data = clone; 1021 blk_complete_request(rq); 1022 } 1023 1024 /* 1025 * Complete the not-mapped clone and the original request with the error status 1026 * through softirq context. 1027 * Target's rq_end_io() function isn't called. 1028 * This may be used when the target's map_rq() function fails. 1029 */ 1030 void dm_kill_unmapped_request(struct request *clone, int error) 1031 { 1032 struct dm_rq_target_io *tio = clone->end_io_data; 1033 struct request *rq = tio->orig; 1034 1035 rq->cmd_flags |= REQ_FAILED; 1036 dm_complete_request(clone, error); 1037 } 1038 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 1039 1040 /* 1041 * Called with the queue lock held 1042 */ 1043 static void end_clone_request(struct request *clone, int error) 1044 { 1045 /* 1046 * For just cleaning up the information of the queue in which 1047 * the clone was dispatched. 1048 * The clone is *NOT* freed actually here because it is alloced from 1049 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 1050 */ 1051 __blk_put_request(clone->q, clone); 1052 1053 /* 1054 * Actual request completion is done in a softirq context which doesn't 1055 * hold the queue lock. Otherwise, deadlock could occur because: 1056 * - another request may be submitted by the upper level driver 1057 * of the stacking during the completion 1058 * - the submission which requires queue lock may be done 1059 * against this queue 1060 */ 1061 dm_complete_request(clone, error); 1062 } 1063 1064 /* 1065 * Return maximum size of I/O possible at the supplied sector up to the current 1066 * target boundary. 1067 */ 1068 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1069 { 1070 sector_t target_offset = dm_target_offset(ti, sector); 1071 1072 return ti->len - target_offset; 1073 } 1074 1075 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1076 { 1077 sector_t len = max_io_len_target_boundary(sector, ti); 1078 sector_t offset, max_len; 1079 1080 /* 1081 * Does the target need to split even further? 1082 */ 1083 if (ti->max_io_len) { 1084 offset = dm_target_offset(ti, sector); 1085 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1086 max_len = sector_div(offset, ti->max_io_len); 1087 else 1088 max_len = offset & (ti->max_io_len - 1); 1089 max_len = ti->max_io_len - max_len; 1090 1091 if (len > max_len) 1092 len = max_len; 1093 } 1094 1095 return len; 1096 } 1097 1098 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1099 { 1100 if (len > UINT_MAX) { 1101 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1102 (unsigned long long)len, UINT_MAX); 1103 ti->error = "Maximum size of target IO is too large"; 1104 return -EINVAL; 1105 } 1106 1107 ti->max_io_len = (uint32_t) len; 1108 1109 return 0; 1110 } 1111 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1112 1113 /* 1114 * A target may call dm_accept_partial_bio only from the map routine. It is 1115 * allowed for all bio types except REQ_FLUSH. 1116 * 1117 * dm_accept_partial_bio informs the dm that the target only wants to process 1118 * additional n_sectors sectors of the bio and the rest of the data should be 1119 * sent in a next bio. 1120 * 1121 * A diagram that explains the arithmetics: 1122 * +--------------------+---------------+-------+ 1123 * | 1 | 2 | 3 | 1124 * +--------------------+---------------+-------+ 1125 * 1126 * <-------------- *tio->len_ptr ---------------> 1127 * <------- bi_size -------> 1128 * <-- n_sectors --> 1129 * 1130 * Region 1 was already iterated over with bio_advance or similar function. 1131 * (it may be empty if the target doesn't use bio_advance) 1132 * Region 2 is the remaining bio size that the target wants to process. 1133 * (it may be empty if region 1 is non-empty, although there is no reason 1134 * to make it empty) 1135 * The target requires that region 3 is to be sent in the next bio. 1136 * 1137 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1138 * the partially processed part (the sum of regions 1+2) must be the same for all 1139 * copies of the bio. 1140 */ 1141 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1142 { 1143 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1144 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1145 BUG_ON(bio->bi_rw & REQ_FLUSH); 1146 BUG_ON(bi_size > *tio->len_ptr); 1147 BUG_ON(n_sectors > bi_size); 1148 *tio->len_ptr -= bi_size - n_sectors; 1149 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1150 } 1151 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1152 1153 static void __map_bio(struct dm_target_io *tio) 1154 { 1155 int r; 1156 sector_t sector; 1157 struct mapped_device *md; 1158 struct bio *clone = &tio->clone; 1159 struct dm_target *ti = tio->ti; 1160 1161 clone->bi_end_io = clone_endio; 1162 1163 /* 1164 * Map the clone. If r == 0 we don't need to do 1165 * anything, the target has assumed ownership of 1166 * this io. 1167 */ 1168 atomic_inc(&tio->io->io_count); 1169 sector = clone->bi_iter.bi_sector; 1170 r = ti->type->map(ti, clone); 1171 if (r == DM_MAPIO_REMAPPED) { 1172 /* the bio has been remapped so dispatch it */ 1173 1174 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1175 tio->io->bio->bi_bdev->bd_dev, sector); 1176 1177 generic_make_request(clone); 1178 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1179 /* error the io and bail out, or requeue it if needed */ 1180 md = tio->io->md; 1181 dec_pending(tio->io, r); 1182 free_tio(md, tio); 1183 } else if (r) { 1184 DMWARN("unimplemented target map return value: %d", r); 1185 BUG(); 1186 } 1187 } 1188 1189 struct clone_info { 1190 struct mapped_device *md; 1191 struct dm_table *map; 1192 struct bio *bio; 1193 struct dm_io *io; 1194 sector_t sector; 1195 unsigned sector_count; 1196 }; 1197 1198 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1199 { 1200 bio->bi_iter.bi_sector = sector; 1201 bio->bi_iter.bi_size = to_bytes(len); 1202 } 1203 1204 /* 1205 * Creates a bio that consists of range of complete bvecs. 1206 */ 1207 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1208 sector_t sector, unsigned len) 1209 { 1210 struct bio *clone = &tio->clone; 1211 1212 __bio_clone_fast(clone, bio); 1213 1214 if (bio_integrity(bio)) 1215 bio_integrity_clone(clone, bio, GFP_NOIO); 1216 1217 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1218 clone->bi_iter.bi_size = to_bytes(len); 1219 1220 if (bio_integrity(bio)) 1221 bio_integrity_trim(clone, 0, len); 1222 } 1223 1224 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1225 struct dm_target *ti, int nr_iovecs, 1226 unsigned target_bio_nr) 1227 { 1228 struct dm_target_io *tio; 1229 struct bio *clone; 1230 1231 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs); 1232 tio = container_of(clone, struct dm_target_io, clone); 1233 1234 tio->io = ci->io; 1235 tio->ti = ti; 1236 tio->target_bio_nr = target_bio_nr; 1237 1238 return tio; 1239 } 1240 1241 static void __clone_and_map_simple_bio(struct clone_info *ci, 1242 struct dm_target *ti, 1243 unsigned target_bio_nr, unsigned *len) 1244 { 1245 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr); 1246 struct bio *clone = &tio->clone; 1247 1248 tio->len_ptr = len; 1249 1250 /* 1251 * Discard requests require the bio's inline iovecs be initialized. 1252 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1253 * and discard, so no need for concern about wasted bvec allocations. 1254 */ 1255 __bio_clone_fast(clone, ci->bio); 1256 if (len) 1257 bio_setup_sector(clone, ci->sector, *len); 1258 1259 __map_bio(tio); 1260 } 1261 1262 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1263 unsigned num_bios, unsigned *len) 1264 { 1265 unsigned target_bio_nr; 1266 1267 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1268 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1269 } 1270 1271 static int __send_empty_flush(struct clone_info *ci) 1272 { 1273 unsigned target_nr = 0; 1274 struct dm_target *ti; 1275 1276 BUG_ON(bio_has_data(ci->bio)); 1277 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1278 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1279 1280 return 0; 1281 } 1282 1283 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1284 sector_t sector, unsigned *len) 1285 { 1286 struct bio *bio = ci->bio; 1287 struct dm_target_io *tio; 1288 unsigned target_bio_nr; 1289 unsigned num_target_bios = 1; 1290 1291 /* 1292 * Does the target want to receive duplicate copies of the bio? 1293 */ 1294 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1295 num_target_bios = ti->num_write_bios(ti, bio); 1296 1297 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1298 tio = alloc_tio(ci, ti, 0, target_bio_nr); 1299 tio->len_ptr = len; 1300 clone_bio(tio, bio, sector, *len); 1301 __map_bio(tio); 1302 } 1303 } 1304 1305 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1306 1307 static unsigned get_num_discard_bios(struct dm_target *ti) 1308 { 1309 return ti->num_discard_bios; 1310 } 1311 1312 static unsigned get_num_write_same_bios(struct dm_target *ti) 1313 { 1314 return ti->num_write_same_bios; 1315 } 1316 1317 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1318 1319 static bool is_split_required_for_discard(struct dm_target *ti) 1320 { 1321 return ti->split_discard_bios; 1322 } 1323 1324 static int __send_changing_extent_only(struct clone_info *ci, 1325 get_num_bios_fn get_num_bios, 1326 is_split_required_fn is_split_required) 1327 { 1328 struct dm_target *ti; 1329 unsigned len; 1330 unsigned num_bios; 1331 1332 do { 1333 ti = dm_table_find_target(ci->map, ci->sector); 1334 if (!dm_target_is_valid(ti)) 1335 return -EIO; 1336 1337 /* 1338 * Even though the device advertised support for this type of 1339 * request, that does not mean every target supports it, and 1340 * reconfiguration might also have changed that since the 1341 * check was performed. 1342 */ 1343 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1344 if (!num_bios) 1345 return -EOPNOTSUPP; 1346 1347 if (is_split_required && !is_split_required(ti)) 1348 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1349 else 1350 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1351 1352 __send_duplicate_bios(ci, ti, num_bios, &len); 1353 1354 ci->sector += len; 1355 } while (ci->sector_count -= len); 1356 1357 return 0; 1358 } 1359 1360 static int __send_discard(struct clone_info *ci) 1361 { 1362 return __send_changing_extent_only(ci, get_num_discard_bios, 1363 is_split_required_for_discard); 1364 } 1365 1366 static int __send_write_same(struct clone_info *ci) 1367 { 1368 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1369 } 1370 1371 /* 1372 * Select the correct strategy for processing a non-flush bio. 1373 */ 1374 static int __split_and_process_non_flush(struct clone_info *ci) 1375 { 1376 struct bio *bio = ci->bio; 1377 struct dm_target *ti; 1378 unsigned len; 1379 1380 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1381 return __send_discard(ci); 1382 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1383 return __send_write_same(ci); 1384 1385 ti = dm_table_find_target(ci->map, ci->sector); 1386 if (!dm_target_is_valid(ti)) 1387 return -EIO; 1388 1389 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1390 1391 __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1392 1393 ci->sector += len; 1394 ci->sector_count -= len; 1395 1396 return 0; 1397 } 1398 1399 /* 1400 * Entry point to split a bio into clones and submit them to the targets. 1401 */ 1402 static void __split_and_process_bio(struct mapped_device *md, 1403 struct dm_table *map, struct bio *bio) 1404 { 1405 struct clone_info ci; 1406 int error = 0; 1407 1408 if (unlikely(!map)) { 1409 bio_io_error(bio); 1410 return; 1411 } 1412 1413 ci.map = map; 1414 ci.md = md; 1415 ci.io = alloc_io(md); 1416 ci.io->error = 0; 1417 atomic_set(&ci.io->io_count, 1); 1418 ci.io->bio = bio; 1419 ci.io->md = md; 1420 spin_lock_init(&ci.io->endio_lock); 1421 ci.sector = bio->bi_iter.bi_sector; 1422 1423 start_io_acct(ci.io); 1424 1425 if (bio->bi_rw & REQ_FLUSH) { 1426 ci.bio = &ci.md->flush_bio; 1427 ci.sector_count = 0; 1428 error = __send_empty_flush(&ci); 1429 /* dec_pending submits any data associated with flush */ 1430 } else { 1431 ci.bio = bio; 1432 ci.sector_count = bio_sectors(bio); 1433 while (ci.sector_count && !error) 1434 error = __split_and_process_non_flush(&ci); 1435 } 1436 1437 /* drop the extra reference count */ 1438 dec_pending(ci.io, error); 1439 } 1440 /*----------------------------------------------------------------- 1441 * CRUD END 1442 *---------------------------------------------------------------*/ 1443 1444 static int dm_merge_bvec(struct request_queue *q, 1445 struct bvec_merge_data *bvm, 1446 struct bio_vec *biovec) 1447 { 1448 struct mapped_device *md = q->queuedata; 1449 struct dm_table *map = dm_get_live_table_fast(md); 1450 struct dm_target *ti; 1451 sector_t max_sectors; 1452 int max_size = 0; 1453 1454 if (unlikely(!map)) 1455 goto out; 1456 1457 ti = dm_table_find_target(map, bvm->bi_sector); 1458 if (!dm_target_is_valid(ti)) 1459 goto out; 1460 1461 /* 1462 * Find maximum amount of I/O that won't need splitting 1463 */ 1464 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1465 (sector_t) BIO_MAX_SECTORS); 1466 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1467 if (max_size < 0) 1468 max_size = 0; 1469 1470 /* 1471 * merge_bvec_fn() returns number of bytes 1472 * it can accept at this offset 1473 * max is precomputed maximal io size 1474 */ 1475 if (max_size && ti->type->merge) 1476 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1477 /* 1478 * If the target doesn't support merge method and some of the devices 1479 * provided their merge_bvec method (we know this by looking at 1480 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1481 * entries. So always set max_size to 0, and the code below allows 1482 * just one page. 1483 */ 1484 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1485 1486 max_size = 0; 1487 1488 out: 1489 dm_put_live_table_fast(md); 1490 /* 1491 * Always allow an entire first page 1492 */ 1493 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1494 max_size = biovec->bv_len; 1495 1496 return max_size; 1497 } 1498 1499 /* 1500 * The request function that just remaps the bio built up by 1501 * dm_merge_bvec. 1502 */ 1503 static void _dm_request(struct request_queue *q, struct bio *bio) 1504 { 1505 int rw = bio_data_dir(bio); 1506 struct mapped_device *md = q->queuedata; 1507 int cpu; 1508 int srcu_idx; 1509 struct dm_table *map; 1510 1511 map = dm_get_live_table(md, &srcu_idx); 1512 1513 cpu = part_stat_lock(); 1514 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1515 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1516 part_stat_unlock(); 1517 1518 /* if we're suspended, we have to queue this io for later */ 1519 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1520 dm_put_live_table(md, srcu_idx); 1521 1522 if (bio_rw(bio) != READA) 1523 queue_io(md, bio); 1524 else 1525 bio_io_error(bio); 1526 return; 1527 } 1528 1529 __split_and_process_bio(md, map, bio); 1530 dm_put_live_table(md, srcu_idx); 1531 return; 1532 } 1533 1534 int dm_request_based(struct mapped_device *md) 1535 { 1536 return blk_queue_stackable(md->queue); 1537 } 1538 1539 static void dm_request(struct request_queue *q, struct bio *bio) 1540 { 1541 struct mapped_device *md = q->queuedata; 1542 1543 if (dm_request_based(md)) 1544 blk_queue_bio(q, bio); 1545 else 1546 _dm_request(q, bio); 1547 } 1548 1549 void dm_dispatch_request(struct request *rq) 1550 { 1551 int r; 1552 1553 if (blk_queue_io_stat(rq->q)) 1554 rq->cmd_flags |= REQ_IO_STAT; 1555 1556 rq->start_time = jiffies; 1557 r = blk_insert_cloned_request(rq->q, rq); 1558 if (r) 1559 dm_complete_request(rq, r); 1560 } 1561 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1562 1563 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1564 void *data) 1565 { 1566 struct dm_rq_target_io *tio = data; 1567 struct dm_rq_clone_bio_info *info = 1568 container_of(bio, struct dm_rq_clone_bio_info, clone); 1569 1570 info->orig = bio_orig; 1571 info->tio = tio; 1572 bio->bi_end_io = end_clone_bio; 1573 1574 return 0; 1575 } 1576 1577 static int setup_clone(struct request *clone, struct request *rq, 1578 struct dm_rq_target_io *tio) 1579 { 1580 int r; 1581 1582 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1583 dm_rq_bio_constructor, tio); 1584 if (r) 1585 return r; 1586 1587 clone->cmd = rq->cmd; 1588 clone->cmd_len = rq->cmd_len; 1589 clone->sense = rq->sense; 1590 clone->buffer = rq->buffer; 1591 clone->end_io = end_clone_request; 1592 clone->end_io_data = tio; 1593 1594 return 0; 1595 } 1596 1597 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1598 gfp_t gfp_mask) 1599 { 1600 struct request *clone; 1601 struct dm_rq_target_io *tio; 1602 1603 tio = alloc_rq_tio(md, gfp_mask); 1604 if (!tio) 1605 return NULL; 1606 1607 tio->md = md; 1608 tio->ti = NULL; 1609 tio->orig = rq; 1610 tio->error = 0; 1611 memset(&tio->info, 0, sizeof(tio->info)); 1612 1613 clone = &tio->clone; 1614 if (setup_clone(clone, rq, tio)) { 1615 /* -ENOMEM */ 1616 free_rq_tio(tio); 1617 return NULL; 1618 } 1619 1620 return clone; 1621 } 1622 1623 /* 1624 * Called with the queue lock held. 1625 */ 1626 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1627 { 1628 struct mapped_device *md = q->queuedata; 1629 struct request *clone; 1630 1631 if (unlikely(rq->special)) { 1632 DMWARN("Already has something in rq->special."); 1633 return BLKPREP_KILL; 1634 } 1635 1636 clone = clone_rq(rq, md, GFP_ATOMIC); 1637 if (!clone) 1638 return BLKPREP_DEFER; 1639 1640 rq->special = clone; 1641 rq->cmd_flags |= REQ_DONTPREP; 1642 1643 return BLKPREP_OK; 1644 } 1645 1646 /* 1647 * Returns: 1648 * 0 : the request has been processed (not requeued) 1649 * !0 : the request has been requeued 1650 */ 1651 static int map_request(struct dm_target *ti, struct request *clone, 1652 struct mapped_device *md) 1653 { 1654 int r, requeued = 0; 1655 struct dm_rq_target_io *tio = clone->end_io_data; 1656 1657 tio->ti = ti; 1658 r = ti->type->map_rq(ti, clone, &tio->info); 1659 switch (r) { 1660 case DM_MAPIO_SUBMITTED: 1661 /* The target has taken the I/O to submit by itself later */ 1662 break; 1663 case DM_MAPIO_REMAPPED: 1664 /* The target has remapped the I/O so dispatch it */ 1665 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1666 blk_rq_pos(tio->orig)); 1667 dm_dispatch_request(clone); 1668 break; 1669 case DM_MAPIO_REQUEUE: 1670 /* The target wants to requeue the I/O */ 1671 dm_requeue_unmapped_request(clone); 1672 requeued = 1; 1673 break; 1674 default: 1675 if (r > 0) { 1676 DMWARN("unimplemented target map return value: %d", r); 1677 BUG(); 1678 } 1679 1680 /* The target wants to complete the I/O */ 1681 dm_kill_unmapped_request(clone, r); 1682 break; 1683 } 1684 1685 return requeued; 1686 } 1687 1688 static struct request *dm_start_request(struct mapped_device *md, struct request *orig) 1689 { 1690 struct request *clone; 1691 1692 blk_start_request(orig); 1693 clone = orig->special; 1694 atomic_inc(&md->pending[rq_data_dir(clone)]); 1695 1696 /* 1697 * Hold the md reference here for the in-flight I/O. 1698 * We can't rely on the reference count by device opener, 1699 * because the device may be closed during the request completion 1700 * when all bios are completed. 1701 * See the comment in rq_completed() too. 1702 */ 1703 dm_get(md); 1704 1705 return clone; 1706 } 1707 1708 /* 1709 * q->request_fn for request-based dm. 1710 * Called with the queue lock held. 1711 */ 1712 static void dm_request_fn(struct request_queue *q) 1713 { 1714 struct mapped_device *md = q->queuedata; 1715 int srcu_idx; 1716 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 1717 struct dm_target *ti; 1718 struct request *rq, *clone; 1719 sector_t pos; 1720 1721 /* 1722 * For suspend, check blk_queue_stopped() and increment 1723 * ->pending within a single queue_lock not to increment the 1724 * number of in-flight I/Os after the queue is stopped in 1725 * dm_suspend(). 1726 */ 1727 while (!blk_queue_stopped(q)) { 1728 rq = blk_peek_request(q); 1729 if (!rq) 1730 goto delay_and_out; 1731 1732 /* always use block 0 to find the target for flushes for now */ 1733 pos = 0; 1734 if (!(rq->cmd_flags & REQ_FLUSH)) 1735 pos = blk_rq_pos(rq); 1736 1737 ti = dm_table_find_target(map, pos); 1738 if (!dm_target_is_valid(ti)) { 1739 /* 1740 * Must perform setup, that dm_done() requires, 1741 * before calling dm_kill_unmapped_request 1742 */ 1743 DMERR_LIMIT("request attempted access beyond the end of device"); 1744 clone = dm_start_request(md, rq); 1745 dm_kill_unmapped_request(clone, -EIO); 1746 continue; 1747 } 1748 1749 if (ti->type->busy && ti->type->busy(ti)) 1750 goto delay_and_out; 1751 1752 clone = dm_start_request(md, rq); 1753 1754 spin_unlock(q->queue_lock); 1755 if (map_request(ti, clone, md)) 1756 goto requeued; 1757 1758 BUG_ON(!irqs_disabled()); 1759 spin_lock(q->queue_lock); 1760 } 1761 1762 goto out; 1763 1764 requeued: 1765 BUG_ON(!irqs_disabled()); 1766 spin_lock(q->queue_lock); 1767 1768 delay_and_out: 1769 blk_delay_queue(q, HZ / 10); 1770 out: 1771 dm_put_live_table(md, srcu_idx); 1772 } 1773 1774 int dm_underlying_device_busy(struct request_queue *q) 1775 { 1776 return blk_lld_busy(q); 1777 } 1778 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1779 1780 static int dm_lld_busy(struct request_queue *q) 1781 { 1782 int r; 1783 struct mapped_device *md = q->queuedata; 1784 struct dm_table *map = dm_get_live_table_fast(md); 1785 1786 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1787 r = 1; 1788 else 1789 r = dm_table_any_busy_target(map); 1790 1791 dm_put_live_table_fast(md); 1792 1793 return r; 1794 } 1795 1796 static int dm_any_congested(void *congested_data, int bdi_bits) 1797 { 1798 int r = bdi_bits; 1799 struct mapped_device *md = congested_data; 1800 struct dm_table *map; 1801 1802 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1803 map = dm_get_live_table_fast(md); 1804 if (map) { 1805 /* 1806 * Request-based dm cares about only own queue for 1807 * the query about congestion status of request_queue 1808 */ 1809 if (dm_request_based(md)) 1810 r = md->queue->backing_dev_info.state & 1811 bdi_bits; 1812 else 1813 r = dm_table_any_congested(map, bdi_bits); 1814 } 1815 dm_put_live_table_fast(md); 1816 } 1817 1818 return r; 1819 } 1820 1821 /*----------------------------------------------------------------- 1822 * An IDR is used to keep track of allocated minor numbers. 1823 *---------------------------------------------------------------*/ 1824 static void free_minor(int minor) 1825 { 1826 spin_lock(&_minor_lock); 1827 idr_remove(&_minor_idr, minor); 1828 spin_unlock(&_minor_lock); 1829 } 1830 1831 /* 1832 * See if the device with a specific minor # is free. 1833 */ 1834 static int specific_minor(int minor) 1835 { 1836 int r; 1837 1838 if (minor >= (1 << MINORBITS)) 1839 return -EINVAL; 1840 1841 idr_preload(GFP_KERNEL); 1842 spin_lock(&_minor_lock); 1843 1844 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1845 1846 spin_unlock(&_minor_lock); 1847 idr_preload_end(); 1848 if (r < 0) 1849 return r == -ENOSPC ? -EBUSY : r; 1850 return 0; 1851 } 1852 1853 static int next_free_minor(int *minor) 1854 { 1855 int r; 1856 1857 idr_preload(GFP_KERNEL); 1858 spin_lock(&_minor_lock); 1859 1860 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1861 1862 spin_unlock(&_minor_lock); 1863 idr_preload_end(); 1864 if (r < 0) 1865 return r; 1866 *minor = r; 1867 return 0; 1868 } 1869 1870 static const struct block_device_operations dm_blk_dops; 1871 1872 static void dm_wq_work(struct work_struct *work); 1873 1874 static void dm_init_md_queue(struct mapped_device *md) 1875 { 1876 /* 1877 * Request-based dm devices cannot be stacked on top of bio-based dm 1878 * devices. The type of this dm device has not been decided yet. 1879 * The type is decided at the first table loading time. 1880 * To prevent problematic device stacking, clear the queue flag 1881 * for request stacking support until then. 1882 * 1883 * This queue is new, so no concurrency on the queue_flags. 1884 */ 1885 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1886 1887 md->queue->queuedata = md; 1888 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1889 md->queue->backing_dev_info.congested_data = md; 1890 blk_queue_make_request(md->queue, dm_request); 1891 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1892 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1893 } 1894 1895 /* 1896 * Allocate and initialise a blank device with a given minor. 1897 */ 1898 static struct mapped_device *alloc_dev(int minor) 1899 { 1900 int r; 1901 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1902 void *old_md; 1903 1904 if (!md) { 1905 DMWARN("unable to allocate device, out of memory."); 1906 return NULL; 1907 } 1908 1909 if (!try_module_get(THIS_MODULE)) 1910 goto bad_module_get; 1911 1912 /* get a minor number for the dev */ 1913 if (minor == DM_ANY_MINOR) 1914 r = next_free_minor(&minor); 1915 else 1916 r = specific_minor(minor); 1917 if (r < 0) 1918 goto bad_minor; 1919 1920 r = init_srcu_struct(&md->io_barrier); 1921 if (r < 0) 1922 goto bad_io_barrier; 1923 1924 md->type = DM_TYPE_NONE; 1925 mutex_init(&md->suspend_lock); 1926 mutex_init(&md->type_lock); 1927 spin_lock_init(&md->deferred_lock); 1928 atomic_set(&md->holders, 1); 1929 atomic_set(&md->open_count, 0); 1930 atomic_set(&md->event_nr, 0); 1931 atomic_set(&md->uevent_seq, 0); 1932 INIT_LIST_HEAD(&md->uevent_list); 1933 spin_lock_init(&md->uevent_lock); 1934 1935 md->queue = blk_alloc_queue(GFP_KERNEL); 1936 if (!md->queue) 1937 goto bad_queue; 1938 1939 dm_init_md_queue(md); 1940 1941 md->disk = alloc_disk(1); 1942 if (!md->disk) 1943 goto bad_disk; 1944 1945 atomic_set(&md->pending[0], 0); 1946 atomic_set(&md->pending[1], 0); 1947 init_waitqueue_head(&md->wait); 1948 INIT_WORK(&md->work, dm_wq_work); 1949 init_waitqueue_head(&md->eventq); 1950 init_completion(&md->kobj_holder.completion); 1951 1952 md->disk->major = _major; 1953 md->disk->first_minor = minor; 1954 md->disk->fops = &dm_blk_dops; 1955 md->disk->queue = md->queue; 1956 md->disk->private_data = md; 1957 sprintf(md->disk->disk_name, "dm-%d", minor); 1958 add_disk(md->disk); 1959 format_dev_t(md->name, MKDEV(_major, minor)); 1960 1961 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1962 if (!md->wq) 1963 goto bad_thread; 1964 1965 md->bdev = bdget_disk(md->disk, 0); 1966 if (!md->bdev) 1967 goto bad_bdev; 1968 1969 bio_init(&md->flush_bio); 1970 md->flush_bio.bi_bdev = md->bdev; 1971 md->flush_bio.bi_rw = WRITE_FLUSH; 1972 1973 dm_stats_init(&md->stats); 1974 1975 /* Populate the mapping, nobody knows we exist yet */ 1976 spin_lock(&_minor_lock); 1977 old_md = idr_replace(&_minor_idr, md, minor); 1978 spin_unlock(&_minor_lock); 1979 1980 BUG_ON(old_md != MINOR_ALLOCED); 1981 1982 return md; 1983 1984 bad_bdev: 1985 destroy_workqueue(md->wq); 1986 bad_thread: 1987 del_gendisk(md->disk); 1988 put_disk(md->disk); 1989 bad_disk: 1990 blk_cleanup_queue(md->queue); 1991 bad_queue: 1992 cleanup_srcu_struct(&md->io_barrier); 1993 bad_io_barrier: 1994 free_minor(minor); 1995 bad_minor: 1996 module_put(THIS_MODULE); 1997 bad_module_get: 1998 kfree(md); 1999 return NULL; 2000 } 2001 2002 static void unlock_fs(struct mapped_device *md); 2003 2004 static void free_dev(struct mapped_device *md) 2005 { 2006 int minor = MINOR(disk_devt(md->disk)); 2007 2008 unlock_fs(md); 2009 bdput(md->bdev); 2010 destroy_workqueue(md->wq); 2011 if (md->io_pool) 2012 mempool_destroy(md->io_pool); 2013 if (md->bs) 2014 bioset_free(md->bs); 2015 blk_integrity_unregister(md->disk); 2016 del_gendisk(md->disk); 2017 cleanup_srcu_struct(&md->io_barrier); 2018 free_minor(minor); 2019 2020 spin_lock(&_minor_lock); 2021 md->disk->private_data = NULL; 2022 spin_unlock(&_minor_lock); 2023 2024 put_disk(md->disk); 2025 blk_cleanup_queue(md->queue); 2026 dm_stats_cleanup(&md->stats); 2027 module_put(THIS_MODULE); 2028 kfree(md); 2029 } 2030 2031 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 2032 { 2033 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2034 2035 if (md->io_pool && md->bs) { 2036 /* The md already has necessary mempools. */ 2037 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 2038 /* 2039 * Reload bioset because front_pad may have changed 2040 * because a different table was loaded. 2041 */ 2042 bioset_free(md->bs); 2043 md->bs = p->bs; 2044 p->bs = NULL; 2045 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) { 2046 /* 2047 * There's no need to reload with request-based dm 2048 * because the size of front_pad doesn't change. 2049 * Note for future: If you are to reload bioset, 2050 * prep-ed requests in the queue may refer 2051 * to bio from the old bioset, so you must walk 2052 * through the queue to unprep. 2053 */ 2054 } 2055 goto out; 2056 } 2057 2058 BUG_ON(!p || md->io_pool || md->bs); 2059 2060 md->io_pool = p->io_pool; 2061 p->io_pool = NULL; 2062 md->bs = p->bs; 2063 p->bs = NULL; 2064 2065 out: 2066 /* mempool bind completed, now no need any mempools in the table */ 2067 dm_table_free_md_mempools(t); 2068 } 2069 2070 /* 2071 * Bind a table to the device. 2072 */ 2073 static void event_callback(void *context) 2074 { 2075 unsigned long flags; 2076 LIST_HEAD(uevents); 2077 struct mapped_device *md = (struct mapped_device *) context; 2078 2079 spin_lock_irqsave(&md->uevent_lock, flags); 2080 list_splice_init(&md->uevent_list, &uevents); 2081 spin_unlock_irqrestore(&md->uevent_lock, flags); 2082 2083 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2084 2085 atomic_inc(&md->event_nr); 2086 wake_up(&md->eventq); 2087 } 2088 2089 /* 2090 * Protected by md->suspend_lock obtained by dm_swap_table(). 2091 */ 2092 static void __set_size(struct mapped_device *md, sector_t size) 2093 { 2094 set_capacity(md->disk, size); 2095 2096 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2097 } 2098 2099 /* 2100 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2101 * 2102 * If this function returns 0, then the device is either a non-dm 2103 * device without a merge_bvec_fn, or it is a dm device that is 2104 * able to split any bios it receives that are too big. 2105 */ 2106 int dm_queue_merge_is_compulsory(struct request_queue *q) 2107 { 2108 struct mapped_device *dev_md; 2109 2110 if (!q->merge_bvec_fn) 2111 return 0; 2112 2113 if (q->make_request_fn == dm_request) { 2114 dev_md = q->queuedata; 2115 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2116 return 0; 2117 } 2118 2119 return 1; 2120 } 2121 2122 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2123 struct dm_dev *dev, sector_t start, 2124 sector_t len, void *data) 2125 { 2126 struct block_device *bdev = dev->bdev; 2127 struct request_queue *q = bdev_get_queue(bdev); 2128 2129 return dm_queue_merge_is_compulsory(q); 2130 } 2131 2132 /* 2133 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2134 * on the properties of the underlying devices. 2135 */ 2136 static int dm_table_merge_is_optional(struct dm_table *table) 2137 { 2138 unsigned i = 0; 2139 struct dm_target *ti; 2140 2141 while (i < dm_table_get_num_targets(table)) { 2142 ti = dm_table_get_target(table, i++); 2143 2144 if (ti->type->iterate_devices && 2145 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2146 return 0; 2147 } 2148 2149 return 1; 2150 } 2151 2152 /* 2153 * Returns old map, which caller must destroy. 2154 */ 2155 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2156 struct queue_limits *limits) 2157 { 2158 struct dm_table *old_map; 2159 struct request_queue *q = md->queue; 2160 sector_t size; 2161 int merge_is_optional; 2162 2163 size = dm_table_get_size(t); 2164 2165 /* 2166 * Wipe any geometry if the size of the table changed. 2167 */ 2168 if (size != dm_get_size(md)) 2169 memset(&md->geometry, 0, sizeof(md->geometry)); 2170 2171 __set_size(md, size); 2172 2173 dm_table_event_callback(t, event_callback, md); 2174 2175 /* 2176 * The queue hasn't been stopped yet, if the old table type wasn't 2177 * for request-based during suspension. So stop it to prevent 2178 * I/O mapping before resume. 2179 * This must be done before setting the queue restrictions, 2180 * because request-based dm may be run just after the setting. 2181 */ 2182 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2183 stop_queue(q); 2184 2185 __bind_mempools(md, t); 2186 2187 merge_is_optional = dm_table_merge_is_optional(t); 2188 2189 old_map = md->map; 2190 rcu_assign_pointer(md->map, t); 2191 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2192 2193 dm_table_set_restrictions(t, q, limits); 2194 if (merge_is_optional) 2195 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2196 else 2197 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2198 dm_sync_table(md); 2199 2200 return old_map; 2201 } 2202 2203 /* 2204 * Returns unbound table for the caller to free. 2205 */ 2206 static struct dm_table *__unbind(struct mapped_device *md) 2207 { 2208 struct dm_table *map = md->map; 2209 2210 if (!map) 2211 return NULL; 2212 2213 dm_table_event_callback(map, NULL, NULL); 2214 RCU_INIT_POINTER(md->map, NULL); 2215 dm_sync_table(md); 2216 2217 return map; 2218 } 2219 2220 /* 2221 * Constructor for a new device. 2222 */ 2223 int dm_create(int minor, struct mapped_device **result) 2224 { 2225 struct mapped_device *md; 2226 2227 md = alloc_dev(minor); 2228 if (!md) 2229 return -ENXIO; 2230 2231 dm_sysfs_init(md); 2232 2233 *result = md; 2234 return 0; 2235 } 2236 2237 /* 2238 * Functions to manage md->type. 2239 * All are required to hold md->type_lock. 2240 */ 2241 void dm_lock_md_type(struct mapped_device *md) 2242 { 2243 mutex_lock(&md->type_lock); 2244 } 2245 2246 void dm_unlock_md_type(struct mapped_device *md) 2247 { 2248 mutex_unlock(&md->type_lock); 2249 } 2250 2251 void dm_set_md_type(struct mapped_device *md, unsigned type) 2252 { 2253 BUG_ON(!mutex_is_locked(&md->type_lock)); 2254 md->type = type; 2255 } 2256 2257 unsigned dm_get_md_type(struct mapped_device *md) 2258 { 2259 BUG_ON(!mutex_is_locked(&md->type_lock)); 2260 return md->type; 2261 } 2262 2263 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2264 { 2265 return md->immutable_target_type; 2266 } 2267 2268 /* 2269 * The queue_limits are only valid as long as you have a reference 2270 * count on 'md'. 2271 */ 2272 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2273 { 2274 BUG_ON(!atomic_read(&md->holders)); 2275 return &md->queue->limits; 2276 } 2277 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2278 2279 /* 2280 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2281 */ 2282 static int dm_init_request_based_queue(struct mapped_device *md) 2283 { 2284 struct request_queue *q = NULL; 2285 2286 if (md->queue->elevator) 2287 return 1; 2288 2289 /* Fully initialize the queue */ 2290 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2291 if (!q) 2292 return 0; 2293 2294 md->queue = q; 2295 dm_init_md_queue(md); 2296 blk_queue_softirq_done(md->queue, dm_softirq_done); 2297 blk_queue_prep_rq(md->queue, dm_prep_fn); 2298 blk_queue_lld_busy(md->queue, dm_lld_busy); 2299 2300 elv_register_queue(md->queue); 2301 2302 return 1; 2303 } 2304 2305 /* 2306 * Setup the DM device's queue based on md's type 2307 */ 2308 int dm_setup_md_queue(struct mapped_device *md) 2309 { 2310 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2311 !dm_init_request_based_queue(md)) { 2312 DMWARN("Cannot initialize queue for request-based mapped device"); 2313 return -EINVAL; 2314 } 2315 2316 return 0; 2317 } 2318 2319 static struct mapped_device *dm_find_md(dev_t dev) 2320 { 2321 struct mapped_device *md; 2322 unsigned minor = MINOR(dev); 2323 2324 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2325 return NULL; 2326 2327 spin_lock(&_minor_lock); 2328 2329 md = idr_find(&_minor_idr, minor); 2330 if (md && (md == MINOR_ALLOCED || 2331 (MINOR(disk_devt(dm_disk(md))) != minor) || 2332 dm_deleting_md(md) || 2333 test_bit(DMF_FREEING, &md->flags))) { 2334 md = NULL; 2335 goto out; 2336 } 2337 2338 out: 2339 spin_unlock(&_minor_lock); 2340 2341 return md; 2342 } 2343 2344 struct mapped_device *dm_get_md(dev_t dev) 2345 { 2346 struct mapped_device *md = dm_find_md(dev); 2347 2348 if (md) 2349 dm_get(md); 2350 2351 return md; 2352 } 2353 EXPORT_SYMBOL_GPL(dm_get_md); 2354 2355 void *dm_get_mdptr(struct mapped_device *md) 2356 { 2357 return md->interface_ptr; 2358 } 2359 2360 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2361 { 2362 md->interface_ptr = ptr; 2363 } 2364 2365 void dm_get(struct mapped_device *md) 2366 { 2367 atomic_inc(&md->holders); 2368 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2369 } 2370 2371 const char *dm_device_name(struct mapped_device *md) 2372 { 2373 return md->name; 2374 } 2375 EXPORT_SYMBOL_GPL(dm_device_name); 2376 2377 static void __dm_destroy(struct mapped_device *md, bool wait) 2378 { 2379 struct dm_table *map; 2380 int srcu_idx; 2381 2382 might_sleep(); 2383 2384 spin_lock(&_minor_lock); 2385 map = dm_get_live_table(md, &srcu_idx); 2386 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2387 set_bit(DMF_FREEING, &md->flags); 2388 spin_unlock(&_minor_lock); 2389 2390 if (!dm_suspended_md(md)) { 2391 dm_table_presuspend_targets(map); 2392 dm_table_postsuspend_targets(map); 2393 } 2394 2395 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2396 dm_put_live_table(md, srcu_idx); 2397 2398 /* 2399 * Rare, but there may be I/O requests still going to complete, 2400 * for example. Wait for all references to disappear. 2401 * No one should increment the reference count of the mapped_device, 2402 * after the mapped_device state becomes DMF_FREEING. 2403 */ 2404 if (wait) 2405 while (atomic_read(&md->holders)) 2406 msleep(1); 2407 else if (atomic_read(&md->holders)) 2408 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2409 dm_device_name(md), atomic_read(&md->holders)); 2410 2411 dm_sysfs_exit(md); 2412 dm_table_destroy(__unbind(md)); 2413 free_dev(md); 2414 } 2415 2416 void dm_destroy(struct mapped_device *md) 2417 { 2418 __dm_destroy(md, true); 2419 } 2420 2421 void dm_destroy_immediate(struct mapped_device *md) 2422 { 2423 __dm_destroy(md, false); 2424 } 2425 2426 void dm_put(struct mapped_device *md) 2427 { 2428 atomic_dec(&md->holders); 2429 } 2430 EXPORT_SYMBOL_GPL(dm_put); 2431 2432 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2433 { 2434 int r = 0; 2435 DECLARE_WAITQUEUE(wait, current); 2436 2437 add_wait_queue(&md->wait, &wait); 2438 2439 while (1) { 2440 set_current_state(interruptible); 2441 2442 if (!md_in_flight(md)) 2443 break; 2444 2445 if (interruptible == TASK_INTERRUPTIBLE && 2446 signal_pending(current)) { 2447 r = -EINTR; 2448 break; 2449 } 2450 2451 io_schedule(); 2452 } 2453 set_current_state(TASK_RUNNING); 2454 2455 remove_wait_queue(&md->wait, &wait); 2456 2457 return r; 2458 } 2459 2460 /* 2461 * Process the deferred bios 2462 */ 2463 static void dm_wq_work(struct work_struct *work) 2464 { 2465 struct mapped_device *md = container_of(work, struct mapped_device, 2466 work); 2467 struct bio *c; 2468 int srcu_idx; 2469 struct dm_table *map; 2470 2471 map = dm_get_live_table(md, &srcu_idx); 2472 2473 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2474 spin_lock_irq(&md->deferred_lock); 2475 c = bio_list_pop(&md->deferred); 2476 spin_unlock_irq(&md->deferred_lock); 2477 2478 if (!c) 2479 break; 2480 2481 if (dm_request_based(md)) 2482 generic_make_request(c); 2483 else 2484 __split_and_process_bio(md, map, c); 2485 } 2486 2487 dm_put_live_table(md, srcu_idx); 2488 } 2489 2490 static void dm_queue_flush(struct mapped_device *md) 2491 { 2492 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2493 smp_mb__after_clear_bit(); 2494 queue_work(md->wq, &md->work); 2495 } 2496 2497 /* 2498 * Swap in a new table, returning the old one for the caller to destroy. 2499 */ 2500 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2501 { 2502 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2503 struct queue_limits limits; 2504 int r; 2505 2506 mutex_lock(&md->suspend_lock); 2507 2508 /* device must be suspended */ 2509 if (!dm_suspended_md(md)) 2510 goto out; 2511 2512 /* 2513 * If the new table has no data devices, retain the existing limits. 2514 * This helps multipath with queue_if_no_path if all paths disappear, 2515 * then new I/O is queued based on these limits, and then some paths 2516 * reappear. 2517 */ 2518 if (dm_table_has_no_data_devices(table)) { 2519 live_map = dm_get_live_table_fast(md); 2520 if (live_map) 2521 limits = md->queue->limits; 2522 dm_put_live_table_fast(md); 2523 } 2524 2525 if (!live_map) { 2526 r = dm_calculate_queue_limits(table, &limits); 2527 if (r) { 2528 map = ERR_PTR(r); 2529 goto out; 2530 } 2531 } 2532 2533 map = __bind(md, table, &limits); 2534 2535 out: 2536 mutex_unlock(&md->suspend_lock); 2537 return map; 2538 } 2539 2540 /* 2541 * Functions to lock and unlock any filesystem running on the 2542 * device. 2543 */ 2544 static int lock_fs(struct mapped_device *md) 2545 { 2546 int r; 2547 2548 WARN_ON(md->frozen_sb); 2549 2550 md->frozen_sb = freeze_bdev(md->bdev); 2551 if (IS_ERR(md->frozen_sb)) { 2552 r = PTR_ERR(md->frozen_sb); 2553 md->frozen_sb = NULL; 2554 return r; 2555 } 2556 2557 set_bit(DMF_FROZEN, &md->flags); 2558 2559 return 0; 2560 } 2561 2562 static void unlock_fs(struct mapped_device *md) 2563 { 2564 if (!test_bit(DMF_FROZEN, &md->flags)) 2565 return; 2566 2567 thaw_bdev(md->bdev, md->frozen_sb); 2568 md->frozen_sb = NULL; 2569 clear_bit(DMF_FROZEN, &md->flags); 2570 } 2571 2572 /* 2573 * We need to be able to change a mapping table under a mounted 2574 * filesystem. For example we might want to move some data in 2575 * the background. Before the table can be swapped with 2576 * dm_bind_table, dm_suspend must be called to flush any in 2577 * flight bios and ensure that any further io gets deferred. 2578 */ 2579 /* 2580 * Suspend mechanism in request-based dm. 2581 * 2582 * 1. Flush all I/Os by lock_fs() if needed. 2583 * 2. Stop dispatching any I/O by stopping the request_queue. 2584 * 3. Wait for all in-flight I/Os to be completed or requeued. 2585 * 2586 * To abort suspend, start the request_queue. 2587 */ 2588 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2589 { 2590 struct dm_table *map = NULL; 2591 int r = 0; 2592 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2593 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2594 2595 mutex_lock(&md->suspend_lock); 2596 2597 if (dm_suspended_md(md)) { 2598 r = -EINVAL; 2599 goto out_unlock; 2600 } 2601 2602 map = md->map; 2603 2604 /* 2605 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2606 * This flag is cleared before dm_suspend returns. 2607 */ 2608 if (noflush) 2609 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2610 2611 /* This does not get reverted if there's an error later. */ 2612 dm_table_presuspend_targets(map); 2613 2614 /* 2615 * Flush I/O to the device. 2616 * Any I/O submitted after lock_fs() may not be flushed. 2617 * noflush takes precedence over do_lockfs. 2618 * (lock_fs() flushes I/Os and waits for them to complete.) 2619 */ 2620 if (!noflush && do_lockfs) { 2621 r = lock_fs(md); 2622 if (r) 2623 goto out_unlock; 2624 } 2625 2626 /* 2627 * Here we must make sure that no processes are submitting requests 2628 * to target drivers i.e. no one may be executing 2629 * __split_and_process_bio. This is called from dm_request and 2630 * dm_wq_work. 2631 * 2632 * To get all processes out of __split_and_process_bio in dm_request, 2633 * we take the write lock. To prevent any process from reentering 2634 * __split_and_process_bio from dm_request and quiesce the thread 2635 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2636 * flush_workqueue(md->wq). 2637 */ 2638 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2639 synchronize_srcu(&md->io_barrier); 2640 2641 /* 2642 * Stop md->queue before flushing md->wq in case request-based 2643 * dm defers requests to md->wq from md->queue. 2644 */ 2645 if (dm_request_based(md)) 2646 stop_queue(md->queue); 2647 2648 flush_workqueue(md->wq); 2649 2650 /* 2651 * At this point no more requests are entering target request routines. 2652 * We call dm_wait_for_completion to wait for all existing requests 2653 * to finish. 2654 */ 2655 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2656 2657 if (noflush) 2658 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2659 synchronize_srcu(&md->io_barrier); 2660 2661 /* were we interrupted ? */ 2662 if (r < 0) { 2663 dm_queue_flush(md); 2664 2665 if (dm_request_based(md)) 2666 start_queue(md->queue); 2667 2668 unlock_fs(md); 2669 goto out_unlock; /* pushback list is already flushed, so skip flush */ 2670 } 2671 2672 /* 2673 * If dm_wait_for_completion returned 0, the device is completely 2674 * quiescent now. There is no request-processing activity. All new 2675 * requests are being added to md->deferred list. 2676 */ 2677 2678 set_bit(DMF_SUSPENDED, &md->flags); 2679 2680 dm_table_postsuspend_targets(map); 2681 2682 out_unlock: 2683 mutex_unlock(&md->suspend_lock); 2684 return r; 2685 } 2686 2687 int dm_resume(struct mapped_device *md) 2688 { 2689 int r = -EINVAL; 2690 struct dm_table *map = NULL; 2691 2692 mutex_lock(&md->suspend_lock); 2693 if (!dm_suspended_md(md)) 2694 goto out; 2695 2696 map = md->map; 2697 if (!map || !dm_table_get_size(map)) 2698 goto out; 2699 2700 r = dm_table_resume_targets(map); 2701 if (r) 2702 goto out; 2703 2704 dm_queue_flush(md); 2705 2706 /* 2707 * Flushing deferred I/Os must be done after targets are resumed 2708 * so that mapping of targets can work correctly. 2709 * Request-based dm is queueing the deferred I/Os in its request_queue. 2710 */ 2711 if (dm_request_based(md)) 2712 start_queue(md->queue); 2713 2714 unlock_fs(md); 2715 2716 clear_bit(DMF_SUSPENDED, &md->flags); 2717 2718 r = 0; 2719 out: 2720 mutex_unlock(&md->suspend_lock); 2721 2722 return r; 2723 } 2724 2725 /* 2726 * Internal suspend/resume works like userspace-driven suspend. It waits 2727 * until all bios finish and prevents issuing new bios to the target drivers. 2728 * It may be used only from the kernel. 2729 * 2730 * Internal suspend holds md->suspend_lock, which prevents interaction with 2731 * userspace-driven suspend. 2732 */ 2733 2734 void dm_internal_suspend(struct mapped_device *md) 2735 { 2736 mutex_lock(&md->suspend_lock); 2737 if (dm_suspended_md(md)) 2738 return; 2739 2740 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2741 synchronize_srcu(&md->io_barrier); 2742 flush_workqueue(md->wq); 2743 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2744 } 2745 2746 void dm_internal_resume(struct mapped_device *md) 2747 { 2748 if (dm_suspended_md(md)) 2749 goto done; 2750 2751 dm_queue_flush(md); 2752 2753 done: 2754 mutex_unlock(&md->suspend_lock); 2755 } 2756 2757 /*----------------------------------------------------------------- 2758 * Event notification. 2759 *---------------------------------------------------------------*/ 2760 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2761 unsigned cookie) 2762 { 2763 char udev_cookie[DM_COOKIE_LENGTH]; 2764 char *envp[] = { udev_cookie, NULL }; 2765 2766 if (!cookie) 2767 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2768 else { 2769 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2770 DM_COOKIE_ENV_VAR_NAME, cookie); 2771 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2772 action, envp); 2773 } 2774 } 2775 2776 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2777 { 2778 return atomic_add_return(1, &md->uevent_seq); 2779 } 2780 2781 uint32_t dm_get_event_nr(struct mapped_device *md) 2782 { 2783 return atomic_read(&md->event_nr); 2784 } 2785 2786 int dm_wait_event(struct mapped_device *md, int event_nr) 2787 { 2788 return wait_event_interruptible(md->eventq, 2789 (event_nr != atomic_read(&md->event_nr))); 2790 } 2791 2792 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2793 { 2794 unsigned long flags; 2795 2796 spin_lock_irqsave(&md->uevent_lock, flags); 2797 list_add(elist, &md->uevent_list); 2798 spin_unlock_irqrestore(&md->uevent_lock, flags); 2799 } 2800 2801 /* 2802 * The gendisk is only valid as long as you have a reference 2803 * count on 'md'. 2804 */ 2805 struct gendisk *dm_disk(struct mapped_device *md) 2806 { 2807 return md->disk; 2808 } 2809 2810 struct kobject *dm_kobject(struct mapped_device *md) 2811 { 2812 return &md->kobj_holder.kobj; 2813 } 2814 2815 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2816 { 2817 struct mapped_device *md; 2818 2819 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2820 2821 if (test_bit(DMF_FREEING, &md->flags) || 2822 dm_deleting_md(md)) 2823 return NULL; 2824 2825 dm_get(md); 2826 return md; 2827 } 2828 2829 int dm_suspended_md(struct mapped_device *md) 2830 { 2831 return test_bit(DMF_SUSPENDED, &md->flags); 2832 } 2833 2834 int dm_test_deferred_remove_flag(struct mapped_device *md) 2835 { 2836 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2837 } 2838 2839 int dm_suspended(struct dm_target *ti) 2840 { 2841 return dm_suspended_md(dm_table_get_md(ti->table)); 2842 } 2843 EXPORT_SYMBOL_GPL(dm_suspended); 2844 2845 int dm_noflush_suspending(struct dm_target *ti) 2846 { 2847 return __noflush_suspending(dm_table_get_md(ti->table)); 2848 } 2849 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2850 2851 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size) 2852 { 2853 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 2854 struct kmem_cache *cachep; 2855 unsigned int pool_size; 2856 unsigned int front_pad; 2857 2858 if (!pools) 2859 return NULL; 2860 2861 if (type == DM_TYPE_BIO_BASED) { 2862 cachep = _io_cache; 2863 pool_size = dm_get_reserved_bio_based_ios(); 2864 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2865 } else if (type == DM_TYPE_REQUEST_BASED) { 2866 cachep = _rq_tio_cache; 2867 pool_size = dm_get_reserved_rq_based_ios(); 2868 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2869 /* per_bio_data_size is not used. See __bind_mempools(). */ 2870 WARN_ON(per_bio_data_size != 0); 2871 } else 2872 goto out; 2873 2874 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 2875 if (!pools->io_pool) 2876 goto out; 2877 2878 pools->bs = bioset_create(pool_size, front_pad); 2879 if (!pools->bs) 2880 goto out; 2881 2882 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2883 goto out; 2884 2885 return pools; 2886 2887 out: 2888 dm_free_md_mempools(pools); 2889 2890 return NULL; 2891 } 2892 2893 void dm_free_md_mempools(struct dm_md_mempools *pools) 2894 { 2895 if (!pools) 2896 return; 2897 2898 if (pools->io_pool) 2899 mempool_destroy(pools->io_pool); 2900 2901 if (pools->bs) 2902 bioset_free(pools->bs); 2903 2904 kfree(pools); 2905 } 2906 2907 static const struct block_device_operations dm_blk_dops = { 2908 .open = dm_blk_open, 2909 .release = dm_blk_close, 2910 .ioctl = dm_blk_ioctl, 2911 .getgeo = dm_blk_getgeo, 2912 .owner = THIS_MODULE 2913 }; 2914 2915 /* 2916 * module hooks 2917 */ 2918 module_init(dm_init); 2919 module_exit(dm_exit); 2920 2921 module_param(major, uint, 0); 2922 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2923 2924 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2925 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2926 2927 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 2928 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 2929 2930 MODULE_DESCRIPTION(DM_NAME " driver"); 2931 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2932 MODULE_LICENSE("GPL"); 2933