xref: /openbmc/linux/drivers/md/dm.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/blkpg.h>
15 #include <linux/bio.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 
21 static const char *_name = DM_NAME;
22 
23 static unsigned int major = 0;
24 static unsigned int _major = 0;
25 
26 /*
27  * One of these is allocated per bio.
28  */
29 struct dm_io {
30 	struct mapped_device *md;
31 	int error;
32 	struct bio *bio;
33 	atomic_t io_count;
34 };
35 
36 /*
37  * One of these is allocated per target within a bio.  Hopefully
38  * this will be simplified out one day.
39  */
40 struct target_io {
41 	struct dm_io *io;
42 	struct dm_target *ti;
43 	union map_info info;
44 };
45 
46 union map_info *dm_get_mapinfo(struct bio *bio)
47 {
48         if (bio && bio->bi_private)
49                 return &((struct target_io *)bio->bi_private)->info;
50         return NULL;
51 }
52 
53 /*
54  * Bits for the md->flags field.
55  */
56 #define DMF_BLOCK_IO 0
57 #define DMF_SUSPENDED 1
58 #define DMF_FS_LOCKED 2
59 
60 struct mapped_device {
61 	struct rw_semaphore lock;
62 	rwlock_t map_lock;
63 	atomic_t holders;
64 
65 	unsigned long flags;
66 
67 	request_queue_t *queue;
68 	struct gendisk *disk;
69 
70 	void *interface_ptr;
71 
72 	/*
73 	 * A list of ios that arrived while we were suspended.
74 	 */
75 	atomic_t pending;
76 	wait_queue_head_t wait;
77  	struct bio_list deferred;
78 
79 	/*
80 	 * The current mapping.
81 	 */
82 	struct dm_table *map;
83 
84 	/*
85 	 * io objects are allocated from here.
86 	 */
87 	mempool_t *io_pool;
88 	mempool_t *tio_pool;
89 
90 	/*
91 	 * Event handling.
92 	 */
93 	atomic_t event_nr;
94 	wait_queue_head_t eventq;
95 
96 	/*
97 	 * freeze/thaw support require holding onto a super block
98 	 */
99 	struct super_block *frozen_sb;
100 };
101 
102 #define MIN_IOS 256
103 static kmem_cache_t *_io_cache;
104 static kmem_cache_t *_tio_cache;
105 
106 static struct bio_set *dm_set;
107 
108 static int __init local_init(void)
109 {
110 	int r;
111 
112 	dm_set = bioset_create(16, 16, 4);
113 	if (!dm_set)
114 		return -ENOMEM;
115 
116 	/* allocate a slab for the dm_ios */
117 	_io_cache = kmem_cache_create("dm_io",
118 				      sizeof(struct dm_io), 0, 0, NULL, NULL);
119 	if (!_io_cache)
120 		return -ENOMEM;
121 
122 	/* allocate a slab for the target ios */
123 	_tio_cache = kmem_cache_create("dm_tio", sizeof(struct target_io),
124 				       0, 0, NULL, NULL);
125 	if (!_tio_cache) {
126 		kmem_cache_destroy(_io_cache);
127 		return -ENOMEM;
128 	}
129 
130 	_major = major;
131 	r = register_blkdev(_major, _name);
132 	if (r < 0) {
133 		kmem_cache_destroy(_tio_cache);
134 		kmem_cache_destroy(_io_cache);
135 		return r;
136 	}
137 
138 	if (!_major)
139 		_major = r;
140 
141 	return 0;
142 }
143 
144 static void local_exit(void)
145 {
146 	kmem_cache_destroy(_tio_cache);
147 	kmem_cache_destroy(_io_cache);
148 
149 	bioset_free(dm_set);
150 
151 	if (unregister_blkdev(_major, _name) < 0)
152 		DMERR("devfs_unregister_blkdev failed");
153 
154 	_major = 0;
155 
156 	DMINFO("cleaned up");
157 }
158 
159 int (*_inits[])(void) __initdata = {
160 	local_init,
161 	dm_target_init,
162 	dm_linear_init,
163 	dm_stripe_init,
164 	dm_interface_init,
165 };
166 
167 void (*_exits[])(void) = {
168 	local_exit,
169 	dm_target_exit,
170 	dm_linear_exit,
171 	dm_stripe_exit,
172 	dm_interface_exit,
173 };
174 
175 static int __init dm_init(void)
176 {
177 	const int count = ARRAY_SIZE(_inits);
178 
179 	int r, i;
180 
181 	for (i = 0; i < count; i++) {
182 		r = _inits[i]();
183 		if (r)
184 			goto bad;
185 	}
186 
187 	return 0;
188 
189       bad:
190 	while (i--)
191 		_exits[i]();
192 
193 	return r;
194 }
195 
196 static void __exit dm_exit(void)
197 {
198 	int i = ARRAY_SIZE(_exits);
199 
200 	while (i--)
201 		_exits[i]();
202 }
203 
204 /*
205  * Block device functions
206  */
207 static int dm_blk_open(struct inode *inode, struct file *file)
208 {
209 	struct mapped_device *md;
210 
211 	md = inode->i_bdev->bd_disk->private_data;
212 	dm_get(md);
213 	return 0;
214 }
215 
216 static int dm_blk_close(struct inode *inode, struct file *file)
217 {
218 	struct mapped_device *md;
219 
220 	md = inode->i_bdev->bd_disk->private_data;
221 	dm_put(md);
222 	return 0;
223 }
224 
225 static inline struct dm_io *alloc_io(struct mapped_device *md)
226 {
227 	return mempool_alloc(md->io_pool, GFP_NOIO);
228 }
229 
230 static inline void free_io(struct mapped_device *md, struct dm_io *io)
231 {
232 	mempool_free(io, md->io_pool);
233 }
234 
235 static inline struct target_io *alloc_tio(struct mapped_device *md)
236 {
237 	return mempool_alloc(md->tio_pool, GFP_NOIO);
238 }
239 
240 static inline void free_tio(struct mapped_device *md, struct target_io *tio)
241 {
242 	mempool_free(tio, md->tio_pool);
243 }
244 
245 /*
246  * Add the bio to the list of deferred io.
247  */
248 static int queue_io(struct mapped_device *md, struct bio *bio)
249 {
250 	down_write(&md->lock);
251 
252 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
253 		up_write(&md->lock);
254 		return 1;
255 	}
256 
257 	bio_list_add(&md->deferred, bio);
258 
259 	up_write(&md->lock);
260 	return 0;		/* deferred successfully */
261 }
262 
263 /*
264  * Everyone (including functions in this file), should use this
265  * function to access the md->map field, and make sure they call
266  * dm_table_put() when finished.
267  */
268 struct dm_table *dm_get_table(struct mapped_device *md)
269 {
270 	struct dm_table *t;
271 
272 	read_lock(&md->map_lock);
273 	t = md->map;
274 	if (t)
275 		dm_table_get(t);
276 	read_unlock(&md->map_lock);
277 
278 	return t;
279 }
280 
281 /*-----------------------------------------------------------------
282  * CRUD START:
283  *   A more elegant soln is in the works that uses the queue
284  *   merge fn, unfortunately there are a couple of changes to
285  *   the block layer that I want to make for this.  So in the
286  *   interests of getting something for people to use I give
287  *   you this clearly demarcated crap.
288  *---------------------------------------------------------------*/
289 
290 /*
291  * Decrements the number of outstanding ios that a bio has been
292  * cloned into, completing the original io if necc.
293  */
294 static inline void dec_pending(struct dm_io *io, int error)
295 {
296 	if (error)
297 		io->error = error;
298 
299 	if (atomic_dec_and_test(&io->io_count)) {
300 		if (atomic_dec_and_test(&io->md->pending))
301 			/* nudge anyone waiting on suspend queue */
302 			wake_up(&io->md->wait);
303 
304 		bio_endio(io->bio, io->bio->bi_size, io->error);
305 		free_io(io->md, io);
306 	}
307 }
308 
309 static int clone_endio(struct bio *bio, unsigned int done, int error)
310 {
311 	int r = 0;
312 	struct target_io *tio = bio->bi_private;
313 	struct dm_io *io = tio->io;
314 	dm_endio_fn endio = tio->ti->type->end_io;
315 
316 	if (bio->bi_size)
317 		return 1;
318 
319 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
320 		error = -EIO;
321 
322 	if (endio) {
323 		r = endio(tio->ti, bio, error, &tio->info);
324 		if (r < 0)
325 			error = r;
326 
327 		else if (r > 0)
328 			/* the target wants another shot at the io */
329 			return 1;
330 	}
331 
332 	free_tio(io->md, tio);
333 	dec_pending(io, error);
334 	bio_put(bio);
335 	return r;
336 }
337 
338 static sector_t max_io_len(struct mapped_device *md,
339 			   sector_t sector, struct dm_target *ti)
340 {
341 	sector_t offset = sector - ti->begin;
342 	sector_t len = ti->len - offset;
343 
344 	/*
345 	 * Does the target need to split even further ?
346 	 */
347 	if (ti->split_io) {
348 		sector_t boundary;
349 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
350 			   - offset;
351 		if (len > boundary)
352 			len = boundary;
353 	}
354 
355 	return len;
356 }
357 
358 static void __map_bio(struct dm_target *ti, struct bio *clone,
359 		      struct target_io *tio)
360 {
361 	int r;
362 
363 	/*
364 	 * Sanity checks.
365 	 */
366 	BUG_ON(!clone->bi_size);
367 
368 	clone->bi_end_io = clone_endio;
369 	clone->bi_private = tio;
370 
371 	/*
372 	 * Map the clone.  If r == 0 we don't need to do
373 	 * anything, the target has assumed ownership of
374 	 * this io.
375 	 */
376 	atomic_inc(&tio->io->io_count);
377 	r = ti->type->map(ti, clone, &tio->info);
378 	if (r > 0)
379 		/* the bio has been remapped so dispatch it */
380 		generic_make_request(clone);
381 
382 	else if (r < 0) {
383 		/* error the io and bail out */
384 		struct dm_io *io = tio->io;
385 		free_tio(tio->io->md, tio);
386 		dec_pending(io, -EIO);
387 		bio_put(clone);
388 	}
389 }
390 
391 struct clone_info {
392 	struct mapped_device *md;
393 	struct dm_table *map;
394 	struct bio *bio;
395 	struct dm_io *io;
396 	sector_t sector;
397 	sector_t sector_count;
398 	unsigned short idx;
399 };
400 
401 /*
402  * Creates a little bio that is just does part of a bvec.
403  */
404 static struct bio *split_bvec(struct bio *bio, sector_t sector,
405 			      unsigned short idx, unsigned int offset,
406 			      unsigned int len)
407 {
408 	struct bio *clone;
409 	struct bio_vec *bv = bio->bi_io_vec + idx;
410 
411 	clone = bio_alloc_bioset(GFP_NOIO, 1, dm_set);
412 	*clone->bi_io_vec = *bv;
413 
414 	clone->bi_sector = sector;
415 	clone->bi_bdev = bio->bi_bdev;
416 	clone->bi_rw = bio->bi_rw;
417 	clone->bi_vcnt = 1;
418 	clone->bi_size = to_bytes(len);
419 	clone->bi_io_vec->bv_offset = offset;
420 	clone->bi_io_vec->bv_len = clone->bi_size;
421 
422 	return clone;
423 }
424 
425 /*
426  * Creates a bio that consists of range of complete bvecs.
427  */
428 static struct bio *clone_bio(struct bio *bio, sector_t sector,
429 			     unsigned short idx, unsigned short bv_count,
430 			     unsigned int len)
431 {
432 	struct bio *clone;
433 
434 	clone = bio_clone(bio, GFP_NOIO);
435 	clone->bi_sector = sector;
436 	clone->bi_idx = idx;
437 	clone->bi_vcnt = idx + bv_count;
438 	clone->bi_size = to_bytes(len);
439 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
440 
441 	return clone;
442 }
443 
444 static void __clone_and_map(struct clone_info *ci)
445 {
446 	struct bio *clone, *bio = ci->bio;
447 	struct dm_target *ti = dm_table_find_target(ci->map, ci->sector);
448 	sector_t len = 0, max = max_io_len(ci->md, ci->sector, ti);
449 	struct target_io *tio;
450 
451 	/*
452 	 * Allocate a target io object.
453 	 */
454 	tio = alloc_tio(ci->md);
455 	tio->io = ci->io;
456 	tio->ti = ti;
457 	memset(&tio->info, 0, sizeof(tio->info));
458 
459 	if (ci->sector_count <= max) {
460 		/*
461 		 * Optimise for the simple case where we can do all of
462 		 * the remaining io with a single clone.
463 		 */
464 		clone = clone_bio(bio, ci->sector, ci->idx,
465 				  bio->bi_vcnt - ci->idx, ci->sector_count);
466 		__map_bio(ti, clone, tio);
467 		ci->sector_count = 0;
468 
469 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
470 		/*
471 		 * There are some bvecs that don't span targets.
472 		 * Do as many of these as possible.
473 		 */
474 		int i;
475 		sector_t remaining = max;
476 		sector_t bv_len;
477 
478 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
479 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
480 
481 			if (bv_len > remaining)
482 				break;
483 
484 			remaining -= bv_len;
485 			len += bv_len;
486 		}
487 
488 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len);
489 		__map_bio(ti, clone, tio);
490 
491 		ci->sector += len;
492 		ci->sector_count -= len;
493 		ci->idx = i;
494 
495 	} else {
496 		/*
497 		 * Create two copy bios to deal with io that has
498 		 * been split across a target.
499 		 */
500 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
501 
502 		clone = split_bvec(bio, ci->sector, ci->idx,
503 				   bv->bv_offset, max);
504 		__map_bio(ti, clone, tio);
505 
506 		ci->sector += max;
507 		ci->sector_count -= max;
508 		ti = dm_table_find_target(ci->map, ci->sector);
509 
510 		len = to_sector(bv->bv_len) - max;
511 		clone = split_bvec(bio, ci->sector, ci->idx,
512 				   bv->bv_offset + to_bytes(max), len);
513 		tio = alloc_tio(ci->md);
514 		tio->io = ci->io;
515 		tio->ti = ti;
516 		memset(&tio->info, 0, sizeof(tio->info));
517 		__map_bio(ti, clone, tio);
518 
519 		ci->sector += len;
520 		ci->sector_count -= len;
521 		ci->idx++;
522 	}
523 }
524 
525 /*
526  * Split the bio into several clones.
527  */
528 static void __split_bio(struct mapped_device *md, struct bio *bio)
529 {
530 	struct clone_info ci;
531 
532 	ci.map = dm_get_table(md);
533 	if (!ci.map) {
534 		bio_io_error(bio, bio->bi_size);
535 		return;
536 	}
537 
538 	ci.md = md;
539 	ci.bio = bio;
540 	ci.io = alloc_io(md);
541 	ci.io->error = 0;
542 	atomic_set(&ci.io->io_count, 1);
543 	ci.io->bio = bio;
544 	ci.io->md = md;
545 	ci.sector = bio->bi_sector;
546 	ci.sector_count = bio_sectors(bio);
547 	ci.idx = bio->bi_idx;
548 
549 	atomic_inc(&md->pending);
550 	while (ci.sector_count)
551 		__clone_and_map(&ci);
552 
553 	/* drop the extra reference count */
554 	dec_pending(ci.io, 0);
555 	dm_table_put(ci.map);
556 }
557 /*-----------------------------------------------------------------
558  * CRUD END
559  *---------------------------------------------------------------*/
560 
561 /*
562  * The request function that just remaps the bio built up by
563  * dm_merge_bvec.
564  */
565 static int dm_request(request_queue_t *q, struct bio *bio)
566 {
567 	int r;
568 	struct mapped_device *md = q->queuedata;
569 
570 	down_read(&md->lock);
571 
572 	/*
573 	 * If we're suspended we have to queue
574 	 * this io for later.
575 	 */
576 	while (test_bit(DMF_BLOCK_IO, &md->flags)) {
577 		up_read(&md->lock);
578 
579 		if (bio_rw(bio) == READA) {
580 			bio_io_error(bio, bio->bi_size);
581 			return 0;
582 		}
583 
584 		r = queue_io(md, bio);
585 		if (r < 0) {
586 			bio_io_error(bio, bio->bi_size);
587 			return 0;
588 
589 		} else if (r == 0)
590 			return 0;	/* deferred successfully */
591 
592 		/*
593 		 * We're in a while loop, because someone could suspend
594 		 * before we get to the following read lock.
595 		 */
596 		down_read(&md->lock);
597 	}
598 
599 	__split_bio(md, bio);
600 	up_read(&md->lock);
601 	return 0;
602 }
603 
604 static int dm_flush_all(request_queue_t *q, struct gendisk *disk,
605 			sector_t *error_sector)
606 {
607 	struct mapped_device *md = q->queuedata;
608 	struct dm_table *map = dm_get_table(md);
609 	int ret = -ENXIO;
610 
611 	if (map) {
612 		ret = dm_table_flush_all(md->map);
613 		dm_table_put(map);
614 	}
615 
616 	return ret;
617 }
618 
619 static void dm_unplug_all(request_queue_t *q)
620 {
621 	struct mapped_device *md = q->queuedata;
622 	struct dm_table *map = dm_get_table(md);
623 
624 	if (map) {
625 		dm_table_unplug_all(map);
626 		dm_table_put(map);
627 	}
628 }
629 
630 static int dm_any_congested(void *congested_data, int bdi_bits)
631 {
632 	int r;
633 	struct mapped_device *md = (struct mapped_device *) congested_data;
634 	struct dm_table *map = dm_get_table(md);
635 
636 	if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
637 		r = bdi_bits;
638 	else
639 		r = dm_table_any_congested(map, bdi_bits);
640 
641 	dm_table_put(map);
642 	return r;
643 }
644 
645 /*-----------------------------------------------------------------
646  * An IDR is used to keep track of allocated minor numbers.
647  *---------------------------------------------------------------*/
648 static DECLARE_MUTEX(_minor_lock);
649 static DEFINE_IDR(_minor_idr);
650 
651 static void free_minor(unsigned int minor)
652 {
653 	down(&_minor_lock);
654 	idr_remove(&_minor_idr, minor);
655 	up(&_minor_lock);
656 }
657 
658 /*
659  * See if the device with a specific minor # is free.
660  */
661 static int specific_minor(struct mapped_device *md, unsigned int minor)
662 {
663 	int r, m;
664 
665 	if (minor >= (1 << MINORBITS))
666 		return -EINVAL;
667 
668 	down(&_minor_lock);
669 
670 	if (idr_find(&_minor_idr, minor)) {
671 		r = -EBUSY;
672 		goto out;
673 	}
674 
675 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
676 	if (!r) {
677 		r = -ENOMEM;
678 		goto out;
679 	}
680 
681 	r = idr_get_new_above(&_minor_idr, md, minor, &m);
682 	if (r) {
683 		goto out;
684 	}
685 
686 	if (m != minor) {
687 		idr_remove(&_minor_idr, m);
688 		r = -EBUSY;
689 		goto out;
690 	}
691 
692 out:
693 	up(&_minor_lock);
694 	return r;
695 }
696 
697 static int next_free_minor(struct mapped_device *md, unsigned int *minor)
698 {
699 	int r;
700 	unsigned int m;
701 
702 	down(&_minor_lock);
703 
704 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
705 	if (!r) {
706 		r = -ENOMEM;
707 		goto out;
708 	}
709 
710 	r = idr_get_new(&_minor_idr, md, &m);
711 	if (r) {
712 		goto out;
713 	}
714 
715 	if (m >= (1 << MINORBITS)) {
716 		idr_remove(&_minor_idr, m);
717 		r = -ENOSPC;
718 		goto out;
719 	}
720 
721 	*minor = m;
722 
723 out:
724 	up(&_minor_lock);
725 	return r;
726 }
727 
728 static struct block_device_operations dm_blk_dops;
729 
730 /*
731  * Allocate and initialise a blank device with a given minor.
732  */
733 static struct mapped_device *alloc_dev(unsigned int minor, int persistent)
734 {
735 	int r;
736 	struct mapped_device *md = kmalloc(sizeof(*md), GFP_KERNEL);
737 
738 	if (!md) {
739 		DMWARN("unable to allocate device, out of memory.");
740 		return NULL;
741 	}
742 
743 	/* get a minor number for the dev */
744 	r = persistent ? specific_minor(md, minor) : next_free_minor(md, &minor);
745 	if (r < 0)
746 		goto bad1;
747 
748 	memset(md, 0, sizeof(*md));
749 	init_rwsem(&md->lock);
750 	rwlock_init(&md->map_lock);
751 	atomic_set(&md->holders, 1);
752 	atomic_set(&md->event_nr, 0);
753 
754 	md->queue = blk_alloc_queue(GFP_KERNEL);
755 	if (!md->queue)
756 		goto bad1;
757 
758 	md->queue->queuedata = md;
759 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
760 	md->queue->backing_dev_info.congested_data = md;
761 	blk_queue_make_request(md->queue, dm_request);
762 	md->queue->unplug_fn = dm_unplug_all;
763 	md->queue->issue_flush_fn = dm_flush_all;
764 
765 	md->io_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
766 				     mempool_free_slab, _io_cache);
767  	if (!md->io_pool)
768  		goto bad2;
769 
770 	md->tio_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
771 				      mempool_free_slab, _tio_cache);
772 	if (!md->tio_pool)
773 		goto bad3;
774 
775 	md->disk = alloc_disk(1);
776 	if (!md->disk)
777 		goto bad4;
778 
779 	md->disk->major = _major;
780 	md->disk->first_minor = minor;
781 	md->disk->fops = &dm_blk_dops;
782 	md->disk->queue = md->queue;
783 	md->disk->private_data = md;
784 	sprintf(md->disk->disk_name, "dm-%d", minor);
785 	add_disk(md->disk);
786 
787 	atomic_set(&md->pending, 0);
788 	init_waitqueue_head(&md->wait);
789 	init_waitqueue_head(&md->eventq);
790 
791 	return md;
792 
793  bad4:
794 	mempool_destroy(md->tio_pool);
795  bad3:
796 	mempool_destroy(md->io_pool);
797  bad2:
798 	blk_put_queue(md->queue);
799 	free_minor(minor);
800  bad1:
801 	kfree(md);
802 	return NULL;
803 }
804 
805 static void free_dev(struct mapped_device *md)
806 {
807 	free_minor(md->disk->first_minor);
808 	mempool_destroy(md->tio_pool);
809 	mempool_destroy(md->io_pool);
810 	del_gendisk(md->disk);
811 	put_disk(md->disk);
812 	blk_put_queue(md->queue);
813 	kfree(md);
814 }
815 
816 /*
817  * Bind a table to the device.
818  */
819 static void event_callback(void *context)
820 {
821 	struct mapped_device *md = (struct mapped_device *) context;
822 
823 	atomic_inc(&md->event_nr);
824 	wake_up(&md->eventq);
825 }
826 
827 static void __set_size(struct gendisk *disk, sector_t size)
828 {
829 	struct block_device *bdev;
830 
831 	set_capacity(disk, size);
832 	bdev = bdget_disk(disk, 0);
833 	if (bdev) {
834 		down(&bdev->bd_inode->i_sem);
835 		i_size_write(bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
836 		up(&bdev->bd_inode->i_sem);
837 		bdput(bdev);
838 	}
839 }
840 
841 static int __bind(struct mapped_device *md, struct dm_table *t)
842 {
843 	request_queue_t *q = md->queue;
844 	sector_t size;
845 
846 	size = dm_table_get_size(t);
847 	__set_size(md->disk, size);
848 	if (size == 0)
849 		return 0;
850 
851 	write_lock(&md->map_lock);
852 	md->map = t;
853 	write_unlock(&md->map_lock);
854 
855 	dm_table_get(t);
856 	dm_table_event_callback(md->map, event_callback, md);
857 	dm_table_set_restrictions(t, q);
858 	return 0;
859 }
860 
861 static void __unbind(struct mapped_device *md)
862 {
863 	struct dm_table *map = md->map;
864 
865 	if (!map)
866 		return;
867 
868 	dm_table_event_callback(map, NULL, NULL);
869 	write_lock(&md->map_lock);
870 	md->map = NULL;
871 	write_unlock(&md->map_lock);
872 	dm_table_put(map);
873 }
874 
875 /*
876  * Constructor for a new device.
877  */
878 static int create_aux(unsigned int minor, int persistent,
879 		      struct mapped_device **result)
880 {
881 	struct mapped_device *md;
882 
883 	md = alloc_dev(minor, persistent);
884 	if (!md)
885 		return -ENXIO;
886 
887 	*result = md;
888 	return 0;
889 }
890 
891 int dm_create(struct mapped_device **result)
892 {
893 	return create_aux(0, 0, result);
894 }
895 
896 int dm_create_with_minor(unsigned int minor, struct mapped_device **result)
897 {
898 	return create_aux(minor, 1, result);
899 }
900 
901 void *dm_get_mdptr(dev_t dev)
902 {
903 	struct mapped_device *md;
904 	void *mdptr = NULL;
905 	unsigned minor = MINOR(dev);
906 
907 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
908 		return NULL;
909 
910 	down(&_minor_lock);
911 
912 	md = idr_find(&_minor_idr, minor);
913 
914 	if (md && (dm_disk(md)->first_minor == minor))
915 		mdptr = md->interface_ptr;
916 
917 	up(&_minor_lock);
918 
919 	return mdptr;
920 }
921 
922 void dm_set_mdptr(struct mapped_device *md, void *ptr)
923 {
924 	md->interface_ptr = ptr;
925 }
926 
927 void dm_get(struct mapped_device *md)
928 {
929 	atomic_inc(&md->holders);
930 }
931 
932 void dm_put(struct mapped_device *md)
933 {
934 	struct dm_table *map = dm_get_table(md);
935 
936 	if (atomic_dec_and_test(&md->holders)) {
937 		if (!test_bit(DMF_SUSPENDED, &md->flags) && map) {
938 			dm_table_presuspend_targets(map);
939 			dm_table_postsuspend_targets(map);
940 		}
941 		__unbind(md);
942 		free_dev(md);
943 	}
944 
945 	dm_table_put(map);
946 }
947 
948 /*
949  * Process the deferred bios
950  */
951 static void __flush_deferred_io(struct mapped_device *md, struct bio *c)
952 {
953 	struct bio *n;
954 
955 	while (c) {
956 		n = c->bi_next;
957 		c->bi_next = NULL;
958 		__split_bio(md, c);
959 		c = n;
960 	}
961 }
962 
963 /*
964  * Swap in a new table (destroying old one).
965  */
966 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
967 {
968 	int r;
969 
970 	down_write(&md->lock);
971 
972 	/* device must be suspended */
973 	if (!test_bit(DMF_SUSPENDED, &md->flags)) {
974 		up_write(&md->lock);
975 		return -EPERM;
976 	}
977 
978 	__unbind(md);
979 	r = __bind(md, table);
980 	if (r)
981 		return r;
982 
983 	up_write(&md->lock);
984 	return 0;
985 }
986 
987 /*
988  * Functions to lock and unlock any filesystem running on the
989  * device.
990  */
991 static int __lock_fs(struct mapped_device *md)
992 {
993 	struct block_device *bdev;
994 
995 	if (test_and_set_bit(DMF_FS_LOCKED, &md->flags))
996 		return 0;
997 
998 	bdev = bdget_disk(md->disk, 0);
999 	if (!bdev) {
1000 		DMWARN("bdget failed in __lock_fs");
1001 		return -ENOMEM;
1002 	}
1003 
1004 	WARN_ON(md->frozen_sb);
1005 	md->frozen_sb = freeze_bdev(bdev);
1006 	/* don't bdput right now, we don't want the bdev
1007 	 * to go away while it is locked.  We'll bdput
1008 	 * in __unlock_fs
1009 	 */
1010 	return 0;
1011 }
1012 
1013 static int __unlock_fs(struct mapped_device *md)
1014 {
1015 	struct block_device *bdev;
1016 
1017 	if (!test_and_clear_bit(DMF_FS_LOCKED, &md->flags))
1018 		return 0;
1019 
1020 	bdev = bdget_disk(md->disk, 0);
1021 	if (!bdev) {
1022 		DMWARN("bdget failed in __unlock_fs");
1023 		return -ENOMEM;
1024 	}
1025 
1026 	thaw_bdev(bdev, md->frozen_sb);
1027 	md->frozen_sb = NULL;
1028 	bdput(bdev);
1029 	bdput(bdev);
1030 	return 0;
1031 }
1032 
1033 /*
1034  * We need to be able to change a mapping table under a mounted
1035  * filesystem.  For example we might want to move some data in
1036  * the background.  Before the table can be swapped with
1037  * dm_bind_table, dm_suspend must be called to flush any in
1038  * flight bios and ensure that any further io gets deferred.
1039  */
1040 int dm_suspend(struct mapped_device *md)
1041 {
1042 	struct dm_table *map;
1043 	DECLARE_WAITQUEUE(wait, current);
1044 
1045 	/* Flush I/O to the device. */
1046 	down_read(&md->lock);
1047 	if (test_bit(DMF_BLOCK_IO, &md->flags)) {
1048 		up_read(&md->lock);
1049 		return -EINVAL;
1050 	}
1051 
1052 	map = dm_get_table(md);
1053 	if (map)
1054 		dm_table_presuspend_targets(map);
1055 	__lock_fs(md);
1056 
1057 	up_read(&md->lock);
1058 
1059 	/*
1060 	 * First we set the BLOCK_IO flag so no more ios will be
1061 	 * mapped.
1062 	 */
1063 	down_write(&md->lock);
1064 	if (test_bit(DMF_BLOCK_IO, &md->flags)) {
1065 		/*
1066 		 * If we get here we know another thread is
1067 		 * trying to suspend as well, so we leave the fs
1068 		 * locked for this thread.
1069 		 */
1070 		up_write(&md->lock);
1071 		return -EINVAL;
1072 	}
1073 
1074 	set_bit(DMF_BLOCK_IO, &md->flags);
1075 	add_wait_queue(&md->wait, &wait);
1076 	up_write(&md->lock);
1077 
1078 	/* unplug */
1079 	if (map) {
1080 		dm_table_unplug_all(map);
1081 		dm_table_put(map);
1082 	}
1083 
1084 	/*
1085 	 * Then we wait for the already mapped ios to
1086 	 * complete.
1087 	 */
1088 	while (1) {
1089 		set_current_state(TASK_INTERRUPTIBLE);
1090 
1091 		if (!atomic_read(&md->pending) || signal_pending(current))
1092 			break;
1093 
1094 		io_schedule();
1095 	}
1096 	set_current_state(TASK_RUNNING);
1097 
1098 	down_write(&md->lock);
1099 	remove_wait_queue(&md->wait, &wait);
1100 
1101 	/* were we interrupted ? */
1102 	if (atomic_read(&md->pending)) {
1103 		__unlock_fs(md);
1104 		clear_bit(DMF_BLOCK_IO, &md->flags);
1105 		up_write(&md->lock);
1106 		return -EINTR;
1107 	}
1108 
1109 	set_bit(DMF_SUSPENDED, &md->flags);
1110 
1111 	map = dm_get_table(md);
1112 	if (map)
1113 		dm_table_postsuspend_targets(map);
1114 	dm_table_put(map);
1115 	up_write(&md->lock);
1116 
1117 	return 0;
1118 }
1119 
1120 int dm_resume(struct mapped_device *md)
1121 {
1122 	struct bio *def;
1123 	struct dm_table *map = dm_get_table(md);
1124 
1125 	down_write(&md->lock);
1126 	if (!map ||
1127 	    !test_bit(DMF_SUSPENDED, &md->flags) ||
1128 	    !dm_table_get_size(map)) {
1129 		up_write(&md->lock);
1130 		dm_table_put(map);
1131 		return -EINVAL;
1132 	}
1133 
1134 	dm_table_resume_targets(map);
1135 	clear_bit(DMF_SUSPENDED, &md->flags);
1136 	clear_bit(DMF_BLOCK_IO, &md->flags);
1137 
1138 	def = bio_list_get(&md->deferred);
1139 	__flush_deferred_io(md, def);
1140 	up_write(&md->lock);
1141 	__unlock_fs(md);
1142 	dm_table_unplug_all(map);
1143 	dm_table_put(map);
1144 
1145 	return 0;
1146 }
1147 
1148 /*-----------------------------------------------------------------
1149  * Event notification.
1150  *---------------------------------------------------------------*/
1151 uint32_t dm_get_event_nr(struct mapped_device *md)
1152 {
1153 	return atomic_read(&md->event_nr);
1154 }
1155 
1156 int dm_wait_event(struct mapped_device *md, int event_nr)
1157 {
1158 	return wait_event_interruptible(md->eventq,
1159 			(event_nr != atomic_read(&md->event_nr)));
1160 }
1161 
1162 /*
1163  * The gendisk is only valid as long as you have a reference
1164  * count on 'md'.
1165  */
1166 struct gendisk *dm_disk(struct mapped_device *md)
1167 {
1168 	return md->disk;
1169 }
1170 
1171 int dm_suspended(struct mapped_device *md)
1172 {
1173 	return test_bit(DMF_SUSPENDED, &md->flags);
1174 }
1175 
1176 static struct block_device_operations dm_blk_dops = {
1177 	.open = dm_blk_open,
1178 	.release = dm_blk_close,
1179 	.owner = THIS_MODULE
1180 };
1181 
1182 EXPORT_SYMBOL(dm_get_mapinfo);
1183 
1184 /*
1185  * module hooks
1186  */
1187 module_init(dm_init);
1188 module_exit(dm_exit);
1189 
1190 module_param(major, uint, 0);
1191 MODULE_PARM_DESC(major, "The major number of the device mapper");
1192 MODULE_DESCRIPTION(DM_NAME " driver");
1193 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1194 MODULE_LICENSE("GPL");
1195