1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/kthread.h> 24 #include <linux/ktime.h> 25 #include <linux/elevator.h> /* for rq_end_sector() */ 26 #include <linux/blk-mq.h> 27 #include <linux/pr.h> 28 29 #include <trace/events/block.h> 30 31 #define DM_MSG_PREFIX "core" 32 33 #ifdef CONFIG_PRINTK 34 /* 35 * ratelimit state to be used in DMXXX_LIMIT(). 36 */ 37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 38 DEFAULT_RATELIMIT_INTERVAL, 39 DEFAULT_RATELIMIT_BURST); 40 EXPORT_SYMBOL(dm_ratelimit_state); 41 #endif 42 43 /* 44 * Cookies are numeric values sent with CHANGE and REMOVE 45 * uevents while resuming, removing or renaming the device. 46 */ 47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 48 #define DM_COOKIE_LENGTH 24 49 50 static const char *_name = DM_NAME; 51 52 static unsigned int major = 0; 53 static unsigned int _major = 0; 54 55 static DEFINE_IDR(_minor_idr); 56 57 static DEFINE_SPINLOCK(_minor_lock); 58 59 static void do_deferred_remove(struct work_struct *w); 60 61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 62 63 static struct workqueue_struct *deferred_remove_workqueue; 64 65 /* 66 * For bio-based dm. 67 * One of these is allocated per bio. 68 */ 69 struct dm_io { 70 struct mapped_device *md; 71 int error; 72 atomic_t io_count; 73 struct bio *bio; 74 unsigned long start_time; 75 spinlock_t endio_lock; 76 struct dm_stats_aux stats_aux; 77 }; 78 79 /* 80 * For request-based dm. 81 * One of these is allocated per request. 82 */ 83 struct dm_rq_target_io { 84 struct mapped_device *md; 85 struct dm_target *ti; 86 struct request *orig, *clone; 87 struct kthread_work work; 88 int error; 89 union map_info info; 90 struct dm_stats_aux stats_aux; 91 unsigned long duration_jiffies; 92 unsigned n_sectors; 93 }; 94 95 /* 96 * For request-based dm - the bio clones we allocate are embedded in these 97 * structs. 98 * 99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 100 * the bioset is created - this means the bio has to come at the end of the 101 * struct. 102 */ 103 struct dm_rq_clone_bio_info { 104 struct bio *orig; 105 struct dm_rq_target_io *tio; 106 struct bio clone; 107 }; 108 109 #define MINOR_ALLOCED ((void *)-1) 110 111 /* 112 * Bits for the md->flags field. 113 */ 114 #define DMF_BLOCK_IO_FOR_SUSPEND 0 115 #define DMF_SUSPENDED 1 116 #define DMF_FROZEN 2 117 #define DMF_FREEING 3 118 #define DMF_DELETING 4 119 #define DMF_NOFLUSH_SUSPENDING 5 120 #define DMF_DEFERRED_REMOVE 6 121 #define DMF_SUSPENDED_INTERNALLY 7 122 123 /* 124 * Work processed by per-device workqueue. 125 */ 126 struct mapped_device { 127 struct srcu_struct io_barrier; 128 struct mutex suspend_lock; 129 atomic_t holders; 130 atomic_t open_count; 131 132 /* 133 * The current mapping (struct dm_table *). 134 * Use dm_get_live_table{_fast} or take suspend_lock for 135 * dereference. 136 */ 137 void __rcu *map; 138 139 struct list_head table_devices; 140 struct mutex table_devices_lock; 141 142 unsigned long flags; 143 144 struct request_queue *queue; 145 int numa_node_id; 146 147 unsigned type; 148 /* Protect queue and type against concurrent access. */ 149 struct mutex type_lock; 150 151 struct dm_target *immutable_target; 152 struct target_type *immutable_target_type; 153 154 struct gendisk *disk; 155 char name[16]; 156 157 void *interface_ptr; 158 159 /* 160 * A list of ios that arrived while we were suspended. 161 */ 162 atomic_t pending[2]; 163 wait_queue_head_t wait; 164 struct work_struct work; 165 struct bio_list deferred; 166 spinlock_t deferred_lock; 167 168 /* 169 * Processing queue (flush) 170 */ 171 struct workqueue_struct *wq; 172 173 /* 174 * io objects are allocated from here. 175 */ 176 mempool_t *io_pool; 177 mempool_t *rq_pool; 178 179 struct bio_set *bs; 180 181 /* 182 * Event handling. 183 */ 184 atomic_t event_nr; 185 wait_queue_head_t eventq; 186 atomic_t uevent_seq; 187 struct list_head uevent_list; 188 spinlock_t uevent_lock; /* Protect access to uevent_list */ 189 190 /* 191 * freeze/thaw support require holding onto a super block 192 */ 193 struct super_block *frozen_sb; 194 struct block_device *bdev; 195 196 /* forced geometry settings */ 197 struct hd_geometry geometry; 198 199 /* kobject and completion */ 200 struct dm_kobject_holder kobj_holder; 201 202 /* zero-length flush that will be cloned and submitted to targets */ 203 struct bio flush_bio; 204 205 /* the number of internal suspends */ 206 unsigned internal_suspend_count; 207 208 struct dm_stats stats; 209 210 struct kthread_worker kworker; 211 struct task_struct *kworker_task; 212 213 /* for request-based merge heuristic in dm_request_fn() */ 214 unsigned seq_rq_merge_deadline_usecs; 215 int last_rq_rw; 216 sector_t last_rq_pos; 217 ktime_t last_rq_start_time; 218 219 /* for blk-mq request-based DM support */ 220 struct blk_mq_tag_set *tag_set; 221 bool use_blk_mq:1; 222 bool init_tio_pdu:1; 223 }; 224 225 #ifdef CONFIG_DM_MQ_DEFAULT 226 static bool use_blk_mq = true; 227 #else 228 static bool use_blk_mq = false; 229 #endif 230 231 #define DM_MQ_NR_HW_QUEUES 1 232 #define DM_MQ_QUEUE_DEPTH 2048 233 #define DM_NUMA_NODE NUMA_NO_NODE 234 235 static unsigned dm_mq_nr_hw_queues = DM_MQ_NR_HW_QUEUES; 236 static unsigned dm_mq_queue_depth = DM_MQ_QUEUE_DEPTH; 237 static int dm_numa_node = DM_NUMA_NODE; 238 239 bool dm_use_blk_mq(struct mapped_device *md) 240 { 241 return md->use_blk_mq; 242 } 243 EXPORT_SYMBOL_GPL(dm_use_blk_mq); 244 245 /* 246 * For mempools pre-allocation at the table loading time. 247 */ 248 struct dm_md_mempools { 249 mempool_t *io_pool; 250 mempool_t *rq_pool; 251 struct bio_set *bs; 252 }; 253 254 struct table_device { 255 struct list_head list; 256 atomic_t count; 257 struct dm_dev dm_dev; 258 }; 259 260 #define RESERVED_BIO_BASED_IOS 16 261 #define RESERVED_REQUEST_BASED_IOS 256 262 #define RESERVED_MAX_IOS 1024 263 static struct kmem_cache *_io_cache; 264 static struct kmem_cache *_rq_tio_cache; 265 static struct kmem_cache *_rq_cache; 266 267 /* 268 * Bio-based DM's mempools' reserved IOs set by the user. 269 */ 270 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 271 272 /* 273 * Request-based DM's mempools' reserved IOs set by the user. 274 */ 275 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 276 277 static int __dm_get_module_param_int(int *module_param, int min, int max) 278 { 279 int param = ACCESS_ONCE(*module_param); 280 int modified_param = 0; 281 bool modified = true; 282 283 if (param < min) 284 modified_param = min; 285 else if (param > max) 286 modified_param = max; 287 else 288 modified = false; 289 290 if (modified) { 291 (void)cmpxchg(module_param, param, modified_param); 292 param = modified_param; 293 } 294 295 return param; 296 } 297 298 static unsigned __dm_get_module_param(unsigned *module_param, 299 unsigned def, unsigned max) 300 { 301 unsigned param = ACCESS_ONCE(*module_param); 302 unsigned modified_param = 0; 303 304 if (!param) 305 modified_param = def; 306 else if (param > max) 307 modified_param = max; 308 309 if (modified_param) { 310 (void)cmpxchg(module_param, param, modified_param); 311 param = modified_param; 312 } 313 314 return param; 315 } 316 317 unsigned dm_get_reserved_bio_based_ios(void) 318 { 319 return __dm_get_module_param(&reserved_bio_based_ios, 320 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 321 } 322 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 323 324 unsigned dm_get_reserved_rq_based_ios(void) 325 { 326 return __dm_get_module_param(&reserved_rq_based_ios, 327 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 328 } 329 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 330 331 static unsigned dm_get_blk_mq_nr_hw_queues(void) 332 { 333 return __dm_get_module_param(&dm_mq_nr_hw_queues, 1, 32); 334 } 335 336 static unsigned dm_get_blk_mq_queue_depth(void) 337 { 338 return __dm_get_module_param(&dm_mq_queue_depth, 339 DM_MQ_QUEUE_DEPTH, BLK_MQ_MAX_DEPTH); 340 } 341 342 static unsigned dm_get_numa_node(void) 343 { 344 return __dm_get_module_param_int(&dm_numa_node, 345 DM_NUMA_NODE, num_online_nodes() - 1); 346 } 347 348 static int __init local_init(void) 349 { 350 int r = -ENOMEM; 351 352 /* allocate a slab for the dm_ios */ 353 _io_cache = KMEM_CACHE(dm_io, 0); 354 if (!_io_cache) 355 return r; 356 357 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 358 if (!_rq_tio_cache) 359 goto out_free_io_cache; 360 361 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 362 __alignof__(struct request), 0, NULL); 363 if (!_rq_cache) 364 goto out_free_rq_tio_cache; 365 366 r = dm_uevent_init(); 367 if (r) 368 goto out_free_rq_cache; 369 370 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 371 if (!deferred_remove_workqueue) { 372 r = -ENOMEM; 373 goto out_uevent_exit; 374 } 375 376 _major = major; 377 r = register_blkdev(_major, _name); 378 if (r < 0) 379 goto out_free_workqueue; 380 381 if (!_major) 382 _major = r; 383 384 return 0; 385 386 out_free_workqueue: 387 destroy_workqueue(deferred_remove_workqueue); 388 out_uevent_exit: 389 dm_uevent_exit(); 390 out_free_rq_cache: 391 kmem_cache_destroy(_rq_cache); 392 out_free_rq_tio_cache: 393 kmem_cache_destroy(_rq_tio_cache); 394 out_free_io_cache: 395 kmem_cache_destroy(_io_cache); 396 397 return r; 398 } 399 400 static void local_exit(void) 401 { 402 flush_scheduled_work(); 403 destroy_workqueue(deferred_remove_workqueue); 404 405 kmem_cache_destroy(_rq_cache); 406 kmem_cache_destroy(_rq_tio_cache); 407 kmem_cache_destroy(_io_cache); 408 unregister_blkdev(_major, _name); 409 dm_uevent_exit(); 410 411 _major = 0; 412 413 DMINFO("cleaned up"); 414 } 415 416 static int (*_inits[])(void) __initdata = { 417 local_init, 418 dm_target_init, 419 dm_linear_init, 420 dm_stripe_init, 421 dm_io_init, 422 dm_kcopyd_init, 423 dm_interface_init, 424 dm_statistics_init, 425 }; 426 427 static void (*_exits[])(void) = { 428 local_exit, 429 dm_target_exit, 430 dm_linear_exit, 431 dm_stripe_exit, 432 dm_io_exit, 433 dm_kcopyd_exit, 434 dm_interface_exit, 435 dm_statistics_exit, 436 }; 437 438 static int __init dm_init(void) 439 { 440 const int count = ARRAY_SIZE(_inits); 441 442 int r, i; 443 444 for (i = 0; i < count; i++) { 445 r = _inits[i](); 446 if (r) 447 goto bad; 448 } 449 450 return 0; 451 452 bad: 453 while (i--) 454 _exits[i](); 455 456 return r; 457 } 458 459 static void __exit dm_exit(void) 460 { 461 int i = ARRAY_SIZE(_exits); 462 463 while (i--) 464 _exits[i](); 465 466 /* 467 * Should be empty by this point. 468 */ 469 idr_destroy(&_minor_idr); 470 } 471 472 /* 473 * Block device functions 474 */ 475 int dm_deleting_md(struct mapped_device *md) 476 { 477 return test_bit(DMF_DELETING, &md->flags); 478 } 479 480 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 481 { 482 struct mapped_device *md; 483 484 spin_lock(&_minor_lock); 485 486 md = bdev->bd_disk->private_data; 487 if (!md) 488 goto out; 489 490 if (test_bit(DMF_FREEING, &md->flags) || 491 dm_deleting_md(md)) { 492 md = NULL; 493 goto out; 494 } 495 496 dm_get(md); 497 atomic_inc(&md->open_count); 498 out: 499 spin_unlock(&_minor_lock); 500 501 return md ? 0 : -ENXIO; 502 } 503 504 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 505 { 506 struct mapped_device *md; 507 508 spin_lock(&_minor_lock); 509 510 md = disk->private_data; 511 if (WARN_ON(!md)) 512 goto out; 513 514 if (atomic_dec_and_test(&md->open_count) && 515 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 516 queue_work(deferred_remove_workqueue, &deferred_remove_work); 517 518 dm_put(md); 519 out: 520 spin_unlock(&_minor_lock); 521 } 522 523 int dm_open_count(struct mapped_device *md) 524 { 525 return atomic_read(&md->open_count); 526 } 527 528 /* 529 * Guarantees nothing is using the device before it's deleted. 530 */ 531 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 532 { 533 int r = 0; 534 535 spin_lock(&_minor_lock); 536 537 if (dm_open_count(md)) { 538 r = -EBUSY; 539 if (mark_deferred) 540 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 541 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 542 r = -EEXIST; 543 else 544 set_bit(DMF_DELETING, &md->flags); 545 546 spin_unlock(&_minor_lock); 547 548 return r; 549 } 550 551 int dm_cancel_deferred_remove(struct mapped_device *md) 552 { 553 int r = 0; 554 555 spin_lock(&_minor_lock); 556 557 if (test_bit(DMF_DELETING, &md->flags)) 558 r = -EBUSY; 559 else 560 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 561 562 spin_unlock(&_minor_lock); 563 564 return r; 565 } 566 567 static void do_deferred_remove(struct work_struct *w) 568 { 569 dm_deferred_remove(); 570 } 571 572 sector_t dm_get_size(struct mapped_device *md) 573 { 574 return get_capacity(md->disk); 575 } 576 577 struct request_queue *dm_get_md_queue(struct mapped_device *md) 578 { 579 return md->queue; 580 } 581 582 struct dm_stats *dm_get_stats(struct mapped_device *md) 583 { 584 return &md->stats; 585 } 586 587 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 588 { 589 struct mapped_device *md = bdev->bd_disk->private_data; 590 591 return dm_get_geometry(md, geo); 592 } 593 594 static int dm_grab_bdev_for_ioctl(struct mapped_device *md, 595 struct block_device **bdev, 596 fmode_t *mode) 597 { 598 struct dm_target *tgt; 599 struct dm_table *map; 600 int srcu_idx, r; 601 602 retry: 603 r = -ENOTTY; 604 map = dm_get_live_table(md, &srcu_idx); 605 if (!map || !dm_table_get_size(map)) 606 goto out; 607 608 /* We only support devices that have a single target */ 609 if (dm_table_get_num_targets(map) != 1) 610 goto out; 611 612 tgt = dm_table_get_target(map, 0); 613 if (!tgt->type->prepare_ioctl) 614 goto out; 615 616 if (dm_suspended_md(md)) { 617 r = -EAGAIN; 618 goto out; 619 } 620 621 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 622 if (r < 0) 623 goto out; 624 625 bdgrab(*bdev); 626 dm_put_live_table(md, srcu_idx); 627 return r; 628 629 out: 630 dm_put_live_table(md, srcu_idx); 631 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 632 msleep(10); 633 goto retry; 634 } 635 return r; 636 } 637 638 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 639 unsigned int cmd, unsigned long arg) 640 { 641 struct mapped_device *md = bdev->bd_disk->private_data; 642 int r; 643 644 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 645 if (r < 0) 646 return r; 647 648 if (r > 0) { 649 /* 650 * Target determined this ioctl is being issued against 651 * a logical partition of the parent bdev; so extra 652 * validation is needed. 653 */ 654 r = scsi_verify_blk_ioctl(NULL, cmd); 655 if (r) 656 goto out; 657 } 658 659 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 660 out: 661 bdput(bdev); 662 return r; 663 } 664 665 static struct dm_io *alloc_io(struct mapped_device *md) 666 { 667 return mempool_alloc(md->io_pool, GFP_NOIO); 668 } 669 670 static void free_io(struct mapped_device *md, struct dm_io *io) 671 { 672 mempool_free(io, md->io_pool); 673 } 674 675 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 676 { 677 bio_put(&tio->clone); 678 } 679 680 static struct dm_rq_target_io *alloc_old_rq_tio(struct mapped_device *md, 681 gfp_t gfp_mask) 682 { 683 return mempool_alloc(md->io_pool, gfp_mask); 684 } 685 686 static void free_old_rq_tio(struct dm_rq_target_io *tio) 687 { 688 mempool_free(tio, tio->md->io_pool); 689 } 690 691 static struct request *alloc_old_clone_request(struct mapped_device *md, 692 gfp_t gfp_mask) 693 { 694 return mempool_alloc(md->rq_pool, gfp_mask); 695 } 696 697 static void free_old_clone_request(struct mapped_device *md, struct request *rq) 698 { 699 mempool_free(rq, md->rq_pool); 700 } 701 702 static int md_in_flight(struct mapped_device *md) 703 { 704 return atomic_read(&md->pending[READ]) + 705 atomic_read(&md->pending[WRITE]); 706 } 707 708 static void start_io_acct(struct dm_io *io) 709 { 710 struct mapped_device *md = io->md; 711 struct bio *bio = io->bio; 712 int cpu; 713 int rw = bio_data_dir(bio); 714 715 io->start_time = jiffies; 716 717 cpu = part_stat_lock(); 718 part_round_stats(cpu, &dm_disk(md)->part0); 719 part_stat_unlock(); 720 atomic_set(&dm_disk(md)->part0.in_flight[rw], 721 atomic_inc_return(&md->pending[rw])); 722 723 if (unlikely(dm_stats_used(&md->stats))) 724 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 725 bio_sectors(bio), false, 0, &io->stats_aux); 726 } 727 728 static void end_io_acct(struct dm_io *io) 729 { 730 struct mapped_device *md = io->md; 731 struct bio *bio = io->bio; 732 unsigned long duration = jiffies - io->start_time; 733 int pending; 734 int rw = bio_data_dir(bio); 735 736 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 737 738 if (unlikely(dm_stats_used(&md->stats))) 739 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 740 bio_sectors(bio), true, duration, &io->stats_aux); 741 742 /* 743 * After this is decremented the bio must not be touched if it is 744 * a flush. 745 */ 746 pending = atomic_dec_return(&md->pending[rw]); 747 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 748 pending += atomic_read(&md->pending[rw^0x1]); 749 750 /* nudge anyone waiting on suspend queue */ 751 if (!pending) 752 wake_up(&md->wait); 753 } 754 755 /* 756 * Add the bio to the list of deferred io. 757 */ 758 static void queue_io(struct mapped_device *md, struct bio *bio) 759 { 760 unsigned long flags; 761 762 spin_lock_irqsave(&md->deferred_lock, flags); 763 bio_list_add(&md->deferred, bio); 764 spin_unlock_irqrestore(&md->deferred_lock, flags); 765 queue_work(md->wq, &md->work); 766 } 767 768 /* 769 * Everyone (including functions in this file), should use this 770 * function to access the md->map field, and make sure they call 771 * dm_put_live_table() when finished. 772 */ 773 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 774 { 775 *srcu_idx = srcu_read_lock(&md->io_barrier); 776 777 return srcu_dereference(md->map, &md->io_barrier); 778 } 779 780 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 781 { 782 srcu_read_unlock(&md->io_barrier, srcu_idx); 783 } 784 785 void dm_sync_table(struct mapped_device *md) 786 { 787 synchronize_srcu(&md->io_barrier); 788 synchronize_rcu_expedited(); 789 } 790 791 /* 792 * A fast alternative to dm_get_live_table/dm_put_live_table. 793 * The caller must not block between these two functions. 794 */ 795 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 796 { 797 rcu_read_lock(); 798 return rcu_dereference(md->map); 799 } 800 801 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 802 { 803 rcu_read_unlock(); 804 } 805 806 /* 807 * Open a table device so we can use it as a map destination. 808 */ 809 static int open_table_device(struct table_device *td, dev_t dev, 810 struct mapped_device *md) 811 { 812 static char *_claim_ptr = "I belong to device-mapper"; 813 struct block_device *bdev; 814 815 int r; 816 817 BUG_ON(td->dm_dev.bdev); 818 819 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 820 if (IS_ERR(bdev)) 821 return PTR_ERR(bdev); 822 823 r = bd_link_disk_holder(bdev, dm_disk(md)); 824 if (r) { 825 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 826 return r; 827 } 828 829 td->dm_dev.bdev = bdev; 830 return 0; 831 } 832 833 /* 834 * Close a table device that we've been using. 835 */ 836 static void close_table_device(struct table_device *td, struct mapped_device *md) 837 { 838 if (!td->dm_dev.bdev) 839 return; 840 841 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 842 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 843 td->dm_dev.bdev = NULL; 844 } 845 846 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 847 fmode_t mode) { 848 struct table_device *td; 849 850 list_for_each_entry(td, l, list) 851 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 852 return td; 853 854 return NULL; 855 } 856 857 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 858 struct dm_dev **result) { 859 int r; 860 struct table_device *td; 861 862 mutex_lock(&md->table_devices_lock); 863 td = find_table_device(&md->table_devices, dev, mode); 864 if (!td) { 865 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 866 if (!td) { 867 mutex_unlock(&md->table_devices_lock); 868 return -ENOMEM; 869 } 870 871 td->dm_dev.mode = mode; 872 td->dm_dev.bdev = NULL; 873 874 if ((r = open_table_device(td, dev, md))) { 875 mutex_unlock(&md->table_devices_lock); 876 kfree(td); 877 return r; 878 } 879 880 format_dev_t(td->dm_dev.name, dev); 881 882 atomic_set(&td->count, 0); 883 list_add(&td->list, &md->table_devices); 884 } 885 atomic_inc(&td->count); 886 mutex_unlock(&md->table_devices_lock); 887 888 *result = &td->dm_dev; 889 return 0; 890 } 891 EXPORT_SYMBOL_GPL(dm_get_table_device); 892 893 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 894 { 895 struct table_device *td = container_of(d, struct table_device, dm_dev); 896 897 mutex_lock(&md->table_devices_lock); 898 if (atomic_dec_and_test(&td->count)) { 899 close_table_device(td, md); 900 list_del(&td->list); 901 kfree(td); 902 } 903 mutex_unlock(&md->table_devices_lock); 904 } 905 EXPORT_SYMBOL(dm_put_table_device); 906 907 static void free_table_devices(struct list_head *devices) 908 { 909 struct list_head *tmp, *next; 910 911 list_for_each_safe(tmp, next, devices) { 912 struct table_device *td = list_entry(tmp, struct table_device, list); 913 914 DMWARN("dm_destroy: %s still exists with %d references", 915 td->dm_dev.name, atomic_read(&td->count)); 916 kfree(td); 917 } 918 } 919 920 /* 921 * Get the geometry associated with a dm device 922 */ 923 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 924 { 925 *geo = md->geometry; 926 927 return 0; 928 } 929 930 /* 931 * Set the geometry of a device. 932 */ 933 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 934 { 935 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 936 937 if (geo->start > sz) { 938 DMWARN("Start sector is beyond the geometry limits."); 939 return -EINVAL; 940 } 941 942 md->geometry = *geo; 943 944 return 0; 945 } 946 947 /*----------------------------------------------------------------- 948 * CRUD START: 949 * A more elegant soln is in the works that uses the queue 950 * merge fn, unfortunately there are a couple of changes to 951 * the block layer that I want to make for this. So in the 952 * interests of getting something for people to use I give 953 * you this clearly demarcated crap. 954 *---------------------------------------------------------------*/ 955 956 static int __noflush_suspending(struct mapped_device *md) 957 { 958 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 959 } 960 961 /* 962 * Decrements the number of outstanding ios that a bio has been 963 * cloned into, completing the original io if necc. 964 */ 965 static void dec_pending(struct dm_io *io, int error) 966 { 967 unsigned long flags; 968 int io_error; 969 struct bio *bio; 970 struct mapped_device *md = io->md; 971 972 /* Push-back supersedes any I/O errors */ 973 if (unlikely(error)) { 974 spin_lock_irqsave(&io->endio_lock, flags); 975 if (!(io->error > 0 && __noflush_suspending(md))) 976 io->error = error; 977 spin_unlock_irqrestore(&io->endio_lock, flags); 978 } 979 980 if (atomic_dec_and_test(&io->io_count)) { 981 if (io->error == DM_ENDIO_REQUEUE) { 982 /* 983 * Target requested pushing back the I/O. 984 */ 985 spin_lock_irqsave(&md->deferred_lock, flags); 986 if (__noflush_suspending(md)) 987 bio_list_add_head(&md->deferred, io->bio); 988 else 989 /* noflush suspend was interrupted. */ 990 io->error = -EIO; 991 spin_unlock_irqrestore(&md->deferred_lock, flags); 992 } 993 994 io_error = io->error; 995 bio = io->bio; 996 end_io_acct(io); 997 free_io(md, io); 998 999 if (io_error == DM_ENDIO_REQUEUE) 1000 return; 1001 1002 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 1003 /* 1004 * Preflush done for flush with data, reissue 1005 * without REQ_FLUSH. 1006 */ 1007 bio->bi_rw &= ~REQ_FLUSH; 1008 queue_io(md, bio); 1009 } else { 1010 /* done with normal IO or empty flush */ 1011 trace_block_bio_complete(md->queue, bio, io_error); 1012 bio->bi_error = io_error; 1013 bio_endio(bio); 1014 } 1015 } 1016 } 1017 1018 static void disable_write_same(struct mapped_device *md) 1019 { 1020 struct queue_limits *limits = dm_get_queue_limits(md); 1021 1022 /* device doesn't really support WRITE SAME, disable it */ 1023 limits->max_write_same_sectors = 0; 1024 } 1025 1026 static void clone_endio(struct bio *bio) 1027 { 1028 int error = bio->bi_error; 1029 int r = error; 1030 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1031 struct dm_io *io = tio->io; 1032 struct mapped_device *md = tio->io->md; 1033 dm_endio_fn endio = tio->ti->type->end_io; 1034 1035 if (endio) { 1036 r = endio(tio->ti, bio, error); 1037 if (r < 0 || r == DM_ENDIO_REQUEUE) 1038 /* 1039 * error and requeue request are handled 1040 * in dec_pending(). 1041 */ 1042 error = r; 1043 else if (r == DM_ENDIO_INCOMPLETE) 1044 /* The target will handle the io */ 1045 return; 1046 else if (r) { 1047 DMWARN("unimplemented target endio return value: %d", r); 1048 BUG(); 1049 } 1050 } 1051 1052 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) && 1053 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 1054 disable_write_same(md); 1055 1056 free_tio(md, tio); 1057 dec_pending(io, error); 1058 } 1059 1060 /* 1061 * Partial completion handling for request-based dm 1062 */ 1063 static void end_clone_bio(struct bio *clone) 1064 { 1065 struct dm_rq_clone_bio_info *info = 1066 container_of(clone, struct dm_rq_clone_bio_info, clone); 1067 struct dm_rq_target_io *tio = info->tio; 1068 struct bio *bio = info->orig; 1069 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 1070 int error = clone->bi_error; 1071 1072 bio_put(clone); 1073 1074 if (tio->error) 1075 /* 1076 * An error has already been detected on the request. 1077 * Once error occurred, just let clone->end_io() handle 1078 * the remainder. 1079 */ 1080 return; 1081 else if (error) { 1082 /* 1083 * Don't notice the error to the upper layer yet. 1084 * The error handling decision is made by the target driver, 1085 * when the request is completed. 1086 */ 1087 tio->error = error; 1088 return; 1089 } 1090 1091 /* 1092 * I/O for the bio successfully completed. 1093 * Notice the data completion to the upper layer. 1094 */ 1095 1096 /* 1097 * bios are processed from the head of the list. 1098 * So the completing bio should always be rq->bio. 1099 * If it's not, something wrong is happening. 1100 */ 1101 if (tio->orig->bio != bio) 1102 DMERR("bio completion is going in the middle of the request"); 1103 1104 /* 1105 * Update the original request. 1106 * Do not use blk_end_request() here, because it may complete 1107 * the original request before the clone, and break the ordering. 1108 */ 1109 blk_update_request(tio->orig, 0, nr_bytes); 1110 } 1111 1112 static struct dm_rq_target_io *tio_from_request(struct request *rq) 1113 { 1114 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special); 1115 } 1116 1117 static void rq_end_stats(struct mapped_device *md, struct request *orig) 1118 { 1119 if (unlikely(dm_stats_used(&md->stats))) { 1120 struct dm_rq_target_io *tio = tio_from_request(orig); 1121 tio->duration_jiffies = jiffies - tio->duration_jiffies; 1122 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig), 1123 tio->n_sectors, true, tio->duration_jiffies, 1124 &tio->stats_aux); 1125 } 1126 } 1127 1128 /* 1129 * Don't touch any member of the md after calling this function because 1130 * the md may be freed in dm_put() at the end of this function. 1131 * Or do dm_get() before calling this function and dm_put() later. 1132 */ 1133 static void rq_completed(struct mapped_device *md, int rw, bool run_queue) 1134 { 1135 atomic_dec(&md->pending[rw]); 1136 1137 /* nudge anyone waiting on suspend queue */ 1138 if (!md_in_flight(md)) 1139 wake_up(&md->wait); 1140 1141 /* 1142 * Run this off this callpath, as drivers could invoke end_io while 1143 * inside their request_fn (and holding the queue lock). Calling 1144 * back into ->request_fn() could deadlock attempting to grab the 1145 * queue lock again. 1146 */ 1147 if (!md->queue->mq_ops && run_queue) 1148 blk_run_queue_async(md->queue); 1149 1150 /* 1151 * dm_put() must be at the end of this function. See the comment above 1152 */ 1153 dm_put(md); 1154 } 1155 1156 static void free_rq_clone(struct request *clone) 1157 { 1158 struct dm_rq_target_io *tio = clone->end_io_data; 1159 struct mapped_device *md = tio->md; 1160 1161 blk_rq_unprep_clone(clone); 1162 1163 if (md->type == DM_TYPE_MQ_REQUEST_BASED) 1164 /* stacked on blk-mq queue(s) */ 1165 tio->ti->type->release_clone_rq(clone); 1166 else if (!md->queue->mq_ops) 1167 /* request_fn queue stacked on request_fn queue(s) */ 1168 free_old_clone_request(md, clone); 1169 1170 if (!md->queue->mq_ops) 1171 free_old_rq_tio(tio); 1172 } 1173 1174 /* 1175 * Complete the clone and the original request. 1176 * Must be called without clone's queue lock held, 1177 * see end_clone_request() for more details. 1178 */ 1179 static void dm_end_request(struct request *clone, int error) 1180 { 1181 int rw = rq_data_dir(clone); 1182 struct dm_rq_target_io *tio = clone->end_io_data; 1183 struct mapped_device *md = tio->md; 1184 struct request *rq = tio->orig; 1185 1186 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 1187 rq->errors = clone->errors; 1188 rq->resid_len = clone->resid_len; 1189 1190 if (rq->sense) 1191 /* 1192 * We are using the sense buffer of the original 1193 * request. 1194 * So setting the length of the sense data is enough. 1195 */ 1196 rq->sense_len = clone->sense_len; 1197 } 1198 1199 free_rq_clone(clone); 1200 rq_end_stats(md, rq); 1201 if (!rq->q->mq_ops) 1202 blk_end_request_all(rq, error); 1203 else 1204 blk_mq_end_request(rq, error); 1205 rq_completed(md, rw, true); 1206 } 1207 1208 static void dm_unprep_request(struct request *rq) 1209 { 1210 struct dm_rq_target_io *tio = tio_from_request(rq); 1211 struct request *clone = tio->clone; 1212 1213 if (!rq->q->mq_ops) { 1214 rq->special = NULL; 1215 rq->cmd_flags &= ~REQ_DONTPREP; 1216 } 1217 1218 if (clone) 1219 free_rq_clone(clone); 1220 else if (!tio->md->queue->mq_ops) 1221 free_old_rq_tio(tio); 1222 } 1223 1224 /* 1225 * Requeue the original request of a clone. 1226 */ 1227 static void dm_old_requeue_request(struct request *rq) 1228 { 1229 struct request_queue *q = rq->q; 1230 unsigned long flags; 1231 1232 spin_lock_irqsave(q->queue_lock, flags); 1233 blk_requeue_request(q, rq); 1234 blk_run_queue_async(q); 1235 spin_unlock_irqrestore(q->queue_lock, flags); 1236 } 1237 1238 static void dm_mq_requeue_request(struct request *rq) 1239 { 1240 struct request_queue *q = rq->q; 1241 unsigned long flags; 1242 1243 blk_mq_requeue_request(rq); 1244 spin_lock_irqsave(q->queue_lock, flags); 1245 if (!blk_queue_stopped(q)) 1246 blk_mq_kick_requeue_list(q); 1247 spin_unlock_irqrestore(q->queue_lock, flags); 1248 } 1249 1250 static void dm_requeue_original_request(struct mapped_device *md, 1251 struct request *rq) 1252 { 1253 int rw = rq_data_dir(rq); 1254 1255 dm_unprep_request(rq); 1256 1257 rq_end_stats(md, rq); 1258 if (!rq->q->mq_ops) 1259 dm_old_requeue_request(rq); 1260 else 1261 dm_mq_requeue_request(rq); 1262 1263 rq_completed(md, rw, false); 1264 } 1265 1266 static void dm_old_stop_queue(struct request_queue *q) 1267 { 1268 unsigned long flags; 1269 1270 spin_lock_irqsave(q->queue_lock, flags); 1271 if (blk_queue_stopped(q)) { 1272 spin_unlock_irqrestore(q->queue_lock, flags); 1273 return; 1274 } 1275 1276 blk_stop_queue(q); 1277 spin_unlock_irqrestore(q->queue_lock, flags); 1278 } 1279 1280 static void dm_stop_queue(struct request_queue *q) 1281 { 1282 if (!q->mq_ops) 1283 dm_old_stop_queue(q); 1284 else 1285 blk_mq_stop_hw_queues(q); 1286 } 1287 1288 static void dm_old_start_queue(struct request_queue *q) 1289 { 1290 unsigned long flags; 1291 1292 spin_lock_irqsave(q->queue_lock, flags); 1293 if (blk_queue_stopped(q)) 1294 blk_start_queue(q); 1295 spin_unlock_irqrestore(q->queue_lock, flags); 1296 } 1297 1298 static void dm_start_queue(struct request_queue *q) 1299 { 1300 if (!q->mq_ops) 1301 dm_old_start_queue(q); 1302 else { 1303 blk_mq_start_stopped_hw_queues(q, true); 1304 blk_mq_kick_requeue_list(q); 1305 } 1306 } 1307 1308 static void dm_done(struct request *clone, int error, bool mapped) 1309 { 1310 int r = error; 1311 struct dm_rq_target_io *tio = clone->end_io_data; 1312 dm_request_endio_fn rq_end_io = NULL; 1313 1314 if (tio->ti) { 1315 rq_end_io = tio->ti->type->rq_end_io; 1316 1317 if (mapped && rq_end_io) 1318 r = rq_end_io(tio->ti, clone, error, &tio->info); 1319 } 1320 1321 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) && 1322 !clone->q->limits.max_write_same_sectors)) 1323 disable_write_same(tio->md); 1324 1325 if (r <= 0) 1326 /* The target wants to complete the I/O */ 1327 dm_end_request(clone, r); 1328 else if (r == DM_ENDIO_INCOMPLETE) 1329 /* The target will handle the I/O */ 1330 return; 1331 else if (r == DM_ENDIO_REQUEUE) 1332 /* The target wants to requeue the I/O */ 1333 dm_requeue_original_request(tio->md, tio->orig); 1334 else { 1335 DMWARN("unimplemented target endio return value: %d", r); 1336 BUG(); 1337 } 1338 } 1339 1340 /* 1341 * Request completion handler for request-based dm 1342 */ 1343 static void dm_softirq_done(struct request *rq) 1344 { 1345 bool mapped = true; 1346 struct dm_rq_target_io *tio = tio_from_request(rq); 1347 struct request *clone = tio->clone; 1348 int rw; 1349 1350 if (!clone) { 1351 rq_end_stats(tio->md, rq); 1352 rw = rq_data_dir(rq); 1353 if (!rq->q->mq_ops) { 1354 blk_end_request_all(rq, tio->error); 1355 rq_completed(tio->md, rw, false); 1356 free_old_rq_tio(tio); 1357 } else { 1358 blk_mq_end_request(rq, tio->error); 1359 rq_completed(tio->md, rw, false); 1360 } 1361 return; 1362 } 1363 1364 if (rq->cmd_flags & REQ_FAILED) 1365 mapped = false; 1366 1367 dm_done(clone, tio->error, mapped); 1368 } 1369 1370 /* 1371 * Complete the clone and the original request with the error status 1372 * through softirq context. 1373 */ 1374 static void dm_complete_request(struct request *rq, int error) 1375 { 1376 struct dm_rq_target_io *tio = tio_from_request(rq); 1377 1378 tio->error = error; 1379 if (!rq->q->mq_ops) 1380 blk_complete_request(rq); 1381 else 1382 blk_mq_complete_request(rq, error); 1383 } 1384 1385 /* 1386 * Complete the not-mapped clone and the original request with the error status 1387 * through softirq context. 1388 * Target's rq_end_io() function isn't called. 1389 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail. 1390 */ 1391 static void dm_kill_unmapped_request(struct request *rq, int error) 1392 { 1393 rq->cmd_flags |= REQ_FAILED; 1394 dm_complete_request(rq, error); 1395 } 1396 1397 /* 1398 * Called with the clone's queue lock held (in the case of .request_fn) 1399 */ 1400 static void end_clone_request(struct request *clone, int error) 1401 { 1402 struct dm_rq_target_io *tio = clone->end_io_data; 1403 1404 if (!clone->q->mq_ops) { 1405 /* 1406 * For just cleaning up the information of the queue in which 1407 * the clone was dispatched. 1408 * The clone is *NOT* freed actually here because it is alloced 1409 * from dm own mempool (REQ_ALLOCED isn't set). 1410 */ 1411 __blk_put_request(clone->q, clone); 1412 } 1413 1414 /* 1415 * Actual request completion is done in a softirq context which doesn't 1416 * hold the clone's queue lock. Otherwise, deadlock could occur because: 1417 * - another request may be submitted by the upper level driver 1418 * of the stacking during the completion 1419 * - the submission which requires queue lock may be done 1420 * against this clone's queue 1421 */ 1422 dm_complete_request(tio->orig, error); 1423 } 1424 1425 /* 1426 * Return maximum size of I/O possible at the supplied sector up to the current 1427 * target boundary. 1428 */ 1429 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1430 { 1431 sector_t target_offset = dm_target_offset(ti, sector); 1432 1433 return ti->len - target_offset; 1434 } 1435 1436 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1437 { 1438 sector_t len = max_io_len_target_boundary(sector, ti); 1439 sector_t offset, max_len; 1440 1441 /* 1442 * Does the target need to split even further? 1443 */ 1444 if (ti->max_io_len) { 1445 offset = dm_target_offset(ti, sector); 1446 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1447 max_len = sector_div(offset, ti->max_io_len); 1448 else 1449 max_len = offset & (ti->max_io_len - 1); 1450 max_len = ti->max_io_len - max_len; 1451 1452 if (len > max_len) 1453 len = max_len; 1454 } 1455 1456 return len; 1457 } 1458 1459 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1460 { 1461 if (len > UINT_MAX) { 1462 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1463 (unsigned long long)len, UINT_MAX); 1464 ti->error = "Maximum size of target IO is too large"; 1465 return -EINVAL; 1466 } 1467 1468 ti->max_io_len = (uint32_t) len; 1469 1470 return 0; 1471 } 1472 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1473 1474 /* 1475 * A target may call dm_accept_partial_bio only from the map routine. It is 1476 * allowed for all bio types except REQ_FLUSH. 1477 * 1478 * dm_accept_partial_bio informs the dm that the target only wants to process 1479 * additional n_sectors sectors of the bio and the rest of the data should be 1480 * sent in a next bio. 1481 * 1482 * A diagram that explains the arithmetics: 1483 * +--------------------+---------------+-------+ 1484 * | 1 | 2 | 3 | 1485 * +--------------------+---------------+-------+ 1486 * 1487 * <-------------- *tio->len_ptr ---------------> 1488 * <------- bi_size -------> 1489 * <-- n_sectors --> 1490 * 1491 * Region 1 was already iterated over with bio_advance or similar function. 1492 * (it may be empty if the target doesn't use bio_advance) 1493 * Region 2 is the remaining bio size that the target wants to process. 1494 * (it may be empty if region 1 is non-empty, although there is no reason 1495 * to make it empty) 1496 * The target requires that region 3 is to be sent in the next bio. 1497 * 1498 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1499 * the partially processed part (the sum of regions 1+2) must be the same for all 1500 * copies of the bio. 1501 */ 1502 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1503 { 1504 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1505 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1506 BUG_ON(bio->bi_rw & REQ_FLUSH); 1507 BUG_ON(bi_size > *tio->len_ptr); 1508 BUG_ON(n_sectors > bi_size); 1509 *tio->len_ptr -= bi_size - n_sectors; 1510 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1511 } 1512 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1513 1514 static void __map_bio(struct dm_target_io *tio) 1515 { 1516 int r; 1517 sector_t sector; 1518 struct mapped_device *md; 1519 struct bio *clone = &tio->clone; 1520 struct dm_target *ti = tio->ti; 1521 1522 clone->bi_end_io = clone_endio; 1523 1524 /* 1525 * Map the clone. If r == 0 we don't need to do 1526 * anything, the target has assumed ownership of 1527 * this io. 1528 */ 1529 atomic_inc(&tio->io->io_count); 1530 sector = clone->bi_iter.bi_sector; 1531 r = ti->type->map(ti, clone); 1532 if (r == DM_MAPIO_REMAPPED) { 1533 /* the bio has been remapped so dispatch it */ 1534 1535 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1536 tio->io->bio->bi_bdev->bd_dev, sector); 1537 1538 generic_make_request(clone); 1539 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1540 /* error the io and bail out, or requeue it if needed */ 1541 md = tio->io->md; 1542 dec_pending(tio->io, r); 1543 free_tio(md, tio); 1544 } else if (r != DM_MAPIO_SUBMITTED) { 1545 DMWARN("unimplemented target map return value: %d", r); 1546 BUG(); 1547 } 1548 } 1549 1550 struct clone_info { 1551 struct mapped_device *md; 1552 struct dm_table *map; 1553 struct bio *bio; 1554 struct dm_io *io; 1555 sector_t sector; 1556 unsigned sector_count; 1557 }; 1558 1559 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1560 { 1561 bio->bi_iter.bi_sector = sector; 1562 bio->bi_iter.bi_size = to_bytes(len); 1563 } 1564 1565 /* 1566 * Creates a bio that consists of range of complete bvecs. 1567 */ 1568 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1569 sector_t sector, unsigned len) 1570 { 1571 struct bio *clone = &tio->clone; 1572 1573 __bio_clone_fast(clone, bio); 1574 1575 if (bio_integrity(bio)) 1576 bio_integrity_clone(clone, bio, GFP_NOIO); 1577 1578 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1579 clone->bi_iter.bi_size = to_bytes(len); 1580 1581 if (bio_integrity(bio)) 1582 bio_integrity_trim(clone, 0, len); 1583 } 1584 1585 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1586 struct dm_target *ti, 1587 unsigned target_bio_nr) 1588 { 1589 struct dm_target_io *tio; 1590 struct bio *clone; 1591 1592 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1593 tio = container_of(clone, struct dm_target_io, clone); 1594 1595 tio->io = ci->io; 1596 tio->ti = ti; 1597 tio->target_bio_nr = target_bio_nr; 1598 1599 return tio; 1600 } 1601 1602 static void __clone_and_map_simple_bio(struct clone_info *ci, 1603 struct dm_target *ti, 1604 unsigned target_bio_nr, unsigned *len) 1605 { 1606 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1607 struct bio *clone = &tio->clone; 1608 1609 tio->len_ptr = len; 1610 1611 __bio_clone_fast(clone, ci->bio); 1612 if (len) 1613 bio_setup_sector(clone, ci->sector, *len); 1614 1615 __map_bio(tio); 1616 } 1617 1618 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1619 unsigned num_bios, unsigned *len) 1620 { 1621 unsigned target_bio_nr; 1622 1623 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1624 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1625 } 1626 1627 static int __send_empty_flush(struct clone_info *ci) 1628 { 1629 unsigned target_nr = 0; 1630 struct dm_target *ti; 1631 1632 BUG_ON(bio_has_data(ci->bio)); 1633 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1634 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1635 1636 return 0; 1637 } 1638 1639 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1640 sector_t sector, unsigned *len) 1641 { 1642 struct bio *bio = ci->bio; 1643 struct dm_target_io *tio; 1644 unsigned target_bio_nr; 1645 unsigned num_target_bios = 1; 1646 1647 /* 1648 * Does the target want to receive duplicate copies of the bio? 1649 */ 1650 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1651 num_target_bios = ti->num_write_bios(ti, bio); 1652 1653 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1654 tio = alloc_tio(ci, ti, target_bio_nr); 1655 tio->len_ptr = len; 1656 clone_bio(tio, bio, sector, *len); 1657 __map_bio(tio); 1658 } 1659 } 1660 1661 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1662 1663 static unsigned get_num_discard_bios(struct dm_target *ti) 1664 { 1665 return ti->num_discard_bios; 1666 } 1667 1668 static unsigned get_num_write_same_bios(struct dm_target *ti) 1669 { 1670 return ti->num_write_same_bios; 1671 } 1672 1673 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1674 1675 static bool is_split_required_for_discard(struct dm_target *ti) 1676 { 1677 return ti->split_discard_bios; 1678 } 1679 1680 static int __send_changing_extent_only(struct clone_info *ci, 1681 get_num_bios_fn get_num_bios, 1682 is_split_required_fn is_split_required) 1683 { 1684 struct dm_target *ti; 1685 unsigned len; 1686 unsigned num_bios; 1687 1688 do { 1689 ti = dm_table_find_target(ci->map, ci->sector); 1690 if (!dm_target_is_valid(ti)) 1691 return -EIO; 1692 1693 /* 1694 * Even though the device advertised support for this type of 1695 * request, that does not mean every target supports it, and 1696 * reconfiguration might also have changed that since the 1697 * check was performed. 1698 */ 1699 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1700 if (!num_bios) 1701 return -EOPNOTSUPP; 1702 1703 if (is_split_required && !is_split_required(ti)) 1704 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1705 else 1706 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1707 1708 __send_duplicate_bios(ci, ti, num_bios, &len); 1709 1710 ci->sector += len; 1711 } while (ci->sector_count -= len); 1712 1713 return 0; 1714 } 1715 1716 static int __send_discard(struct clone_info *ci) 1717 { 1718 return __send_changing_extent_only(ci, get_num_discard_bios, 1719 is_split_required_for_discard); 1720 } 1721 1722 static int __send_write_same(struct clone_info *ci) 1723 { 1724 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1725 } 1726 1727 /* 1728 * Select the correct strategy for processing a non-flush bio. 1729 */ 1730 static int __split_and_process_non_flush(struct clone_info *ci) 1731 { 1732 struct bio *bio = ci->bio; 1733 struct dm_target *ti; 1734 unsigned len; 1735 1736 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1737 return __send_discard(ci); 1738 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1739 return __send_write_same(ci); 1740 1741 ti = dm_table_find_target(ci->map, ci->sector); 1742 if (!dm_target_is_valid(ti)) 1743 return -EIO; 1744 1745 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1746 1747 __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1748 1749 ci->sector += len; 1750 ci->sector_count -= len; 1751 1752 return 0; 1753 } 1754 1755 /* 1756 * Entry point to split a bio into clones and submit them to the targets. 1757 */ 1758 static void __split_and_process_bio(struct mapped_device *md, 1759 struct dm_table *map, struct bio *bio) 1760 { 1761 struct clone_info ci; 1762 int error = 0; 1763 1764 if (unlikely(!map)) { 1765 bio_io_error(bio); 1766 return; 1767 } 1768 1769 ci.map = map; 1770 ci.md = md; 1771 ci.io = alloc_io(md); 1772 ci.io->error = 0; 1773 atomic_set(&ci.io->io_count, 1); 1774 ci.io->bio = bio; 1775 ci.io->md = md; 1776 spin_lock_init(&ci.io->endio_lock); 1777 ci.sector = bio->bi_iter.bi_sector; 1778 1779 start_io_acct(ci.io); 1780 1781 if (bio->bi_rw & REQ_FLUSH) { 1782 ci.bio = &ci.md->flush_bio; 1783 ci.sector_count = 0; 1784 error = __send_empty_flush(&ci); 1785 /* dec_pending submits any data associated with flush */ 1786 } else { 1787 ci.bio = bio; 1788 ci.sector_count = bio_sectors(bio); 1789 while (ci.sector_count && !error) 1790 error = __split_and_process_non_flush(&ci); 1791 } 1792 1793 /* drop the extra reference count */ 1794 dec_pending(ci.io, error); 1795 } 1796 /*----------------------------------------------------------------- 1797 * CRUD END 1798 *---------------------------------------------------------------*/ 1799 1800 /* 1801 * The request function that just remaps the bio built up by 1802 * dm_merge_bvec. 1803 */ 1804 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1805 { 1806 int rw = bio_data_dir(bio); 1807 struct mapped_device *md = q->queuedata; 1808 int srcu_idx; 1809 struct dm_table *map; 1810 1811 map = dm_get_live_table(md, &srcu_idx); 1812 1813 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1814 1815 /* if we're suspended, we have to queue this io for later */ 1816 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1817 dm_put_live_table(md, srcu_idx); 1818 1819 if (bio_rw(bio) != READA) 1820 queue_io(md, bio); 1821 else 1822 bio_io_error(bio); 1823 return BLK_QC_T_NONE; 1824 } 1825 1826 __split_and_process_bio(md, map, bio); 1827 dm_put_live_table(md, srcu_idx); 1828 return BLK_QC_T_NONE; 1829 } 1830 1831 int dm_request_based(struct mapped_device *md) 1832 { 1833 return blk_queue_stackable(md->queue); 1834 } 1835 1836 static void dm_dispatch_clone_request(struct request *clone, struct request *rq) 1837 { 1838 int r; 1839 1840 if (blk_queue_io_stat(clone->q)) 1841 clone->cmd_flags |= REQ_IO_STAT; 1842 1843 clone->start_time = jiffies; 1844 r = blk_insert_cloned_request(clone->q, clone); 1845 if (r) 1846 /* must complete clone in terms of original request */ 1847 dm_complete_request(rq, r); 1848 } 1849 1850 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1851 void *data) 1852 { 1853 struct dm_rq_target_io *tio = data; 1854 struct dm_rq_clone_bio_info *info = 1855 container_of(bio, struct dm_rq_clone_bio_info, clone); 1856 1857 info->orig = bio_orig; 1858 info->tio = tio; 1859 bio->bi_end_io = end_clone_bio; 1860 1861 return 0; 1862 } 1863 1864 static int setup_clone(struct request *clone, struct request *rq, 1865 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1866 { 1867 int r; 1868 1869 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask, 1870 dm_rq_bio_constructor, tio); 1871 if (r) 1872 return r; 1873 1874 clone->cmd = rq->cmd; 1875 clone->cmd_len = rq->cmd_len; 1876 clone->sense = rq->sense; 1877 clone->end_io = end_clone_request; 1878 clone->end_io_data = tio; 1879 1880 tio->clone = clone; 1881 1882 return 0; 1883 } 1884 1885 static struct request *clone_old_rq(struct request *rq, struct mapped_device *md, 1886 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1887 { 1888 /* 1889 * Create clone for use with .request_fn request_queue 1890 */ 1891 struct request *clone; 1892 1893 clone = alloc_old_clone_request(md, gfp_mask); 1894 if (!clone) 1895 return NULL; 1896 1897 blk_rq_init(NULL, clone); 1898 if (setup_clone(clone, rq, tio, gfp_mask)) { 1899 /* -ENOMEM */ 1900 free_old_clone_request(md, clone); 1901 return NULL; 1902 } 1903 1904 return clone; 1905 } 1906 1907 static void map_tio_request(struct kthread_work *work); 1908 1909 static void init_tio(struct dm_rq_target_io *tio, struct request *rq, 1910 struct mapped_device *md) 1911 { 1912 tio->md = md; 1913 tio->ti = NULL; 1914 tio->clone = NULL; 1915 tio->orig = rq; 1916 tio->error = 0; 1917 /* 1918 * Avoid initializing info for blk-mq; it passes 1919 * target-specific data through info.ptr 1920 * (see: dm_mq_init_request) 1921 */ 1922 if (!md->init_tio_pdu) 1923 memset(&tio->info, 0, sizeof(tio->info)); 1924 if (md->kworker_task) 1925 init_kthread_work(&tio->work, map_tio_request); 1926 } 1927 1928 static struct dm_rq_target_io *dm_old_prep_tio(struct request *rq, 1929 struct mapped_device *md, 1930 gfp_t gfp_mask) 1931 { 1932 struct dm_rq_target_io *tio; 1933 int srcu_idx; 1934 struct dm_table *table; 1935 1936 tio = alloc_old_rq_tio(md, gfp_mask); 1937 if (!tio) 1938 return NULL; 1939 1940 init_tio(tio, rq, md); 1941 1942 table = dm_get_live_table(md, &srcu_idx); 1943 /* 1944 * Must clone a request if this .request_fn DM device 1945 * is stacked on .request_fn device(s). 1946 */ 1947 if (!dm_table_mq_request_based(table)) { 1948 if (!clone_old_rq(rq, md, tio, gfp_mask)) { 1949 dm_put_live_table(md, srcu_idx); 1950 free_old_rq_tio(tio); 1951 return NULL; 1952 } 1953 } 1954 dm_put_live_table(md, srcu_idx); 1955 1956 return tio; 1957 } 1958 1959 /* 1960 * Called with the queue lock held. 1961 */ 1962 static int dm_old_prep_fn(struct request_queue *q, struct request *rq) 1963 { 1964 struct mapped_device *md = q->queuedata; 1965 struct dm_rq_target_io *tio; 1966 1967 if (unlikely(rq->special)) { 1968 DMWARN("Already has something in rq->special."); 1969 return BLKPREP_KILL; 1970 } 1971 1972 tio = dm_old_prep_tio(rq, md, GFP_ATOMIC); 1973 if (!tio) 1974 return BLKPREP_DEFER; 1975 1976 rq->special = tio; 1977 rq->cmd_flags |= REQ_DONTPREP; 1978 1979 return BLKPREP_OK; 1980 } 1981 1982 /* 1983 * Returns: 1984 * 0 : the request has been processed 1985 * DM_MAPIO_REQUEUE : the original request needs to be requeued 1986 * < 0 : the request was completed due to failure 1987 */ 1988 static int map_request(struct dm_rq_target_io *tio, struct request *rq, 1989 struct mapped_device *md) 1990 { 1991 int r; 1992 struct dm_target *ti = tio->ti; 1993 struct request *clone = NULL; 1994 1995 if (tio->clone) { 1996 clone = tio->clone; 1997 r = ti->type->map_rq(ti, clone, &tio->info); 1998 } else { 1999 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone); 2000 if (r < 0) { 2001 /* The target wants to complete the I/O */ 2002 dm_kill_unmapped_request(rq, r); 2003 return r; 2004 } 2005 if (r != DM_MAPIO_REMAPPED) 2006 return r; 2007 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) { 2008 /* -ENOMEM */ 2009 ti->type->release_clone_rq(clone); 2010 return DM_MAPIO_REQUEUE; 2011 } 2012 } 2013 2014 switch (r) { 2015 case DM_MAPIO_SUBMITTED: 2016 /* The target has taken the I/O to submit by itself later */ 2017 break; 2018 case DM_MAPIO_REMAPPED: 2019 /* The target has remapped the I/O so dispatch it */ 2020 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 2021 blk_rq_pos(rq)); 2022 dm_dispatch_clone_request(clone, rq); 2023 break; 2024 case DM_MAPIO_REQUEUE: 2025 /* The target wants to requeue the I/O */ 2026 dm_requeue_original_request(md, tio->orig); 2027 break; 2028 default: 2029 if (r > 0) { 2030 DMWARN("unimplemented target map return value: %d", r); 2031 BUG(); 2032 } 2033 2034 /* The target wants to complete the I/O */ 2035 dm_kill_unmapped_request(rq, r); 2036 return r; 2037 } 2038 2039 return 0; 2040 } 2041 2042 static void map_tio_request(struct kthread_work *work) 2043 { 2044 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work); 2045 struct request *rq = tio->orig; 2046 struct mapped_device *md = tio->md; 2047 2048 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) 2049 dm_requeue_original_request(md, rq); 2050 } 2051 2052 static void dm_start_request(struct mapped_device *md, struct request *orig) 2053 { 2054 if (!orig->q->mq_ops) 2055 blk_start_request(orig); 2056 else 2057 blk_mq_start_request(orig); 2058 atomic_inc(&md->pending[rq_data_dir(orig)]); 2059 2060 if (md->seq_rq_merge_deadline_usecs) { 2061 md->last_rq_pos = rq_end_sector(orig); 2062 md->last_rq_rw = rq_data_dir(orig); 2063 md->last_rq_start_time = ktime_get(); 2064 } 2065 2066 if (unlikely(dm_stats_used(&md->stats))) { 2067 struct dm_rq_target_io *tio = tio_from_request(orig); 2068 tio->duration_jiffies = jiffies; 2069 tio->n_sectors = blk_rq_sectors(orig); 2070 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig), 2071 tio->n_sectors, false, 0, &tio->stats_aux); 2072 } 2073 2074 /* 2075 * Hold the md reference here for the in-flight I/O. 2076 * We can't rely on the reference count by device opener, 2077 * because the device may be closed during the request completion 2078 * when all bios are completed. 2079 * See the comment in rq_completed() too. 2080 */ 2081 dm_get(md); 2082 } 2083 2084 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000 2085 2086 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf) 2087 { 2088 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs); 2089 } 2090 2091 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md, 2092 const char *buf, size_t count) 2093 { 2094 unsigned deadline; 2095 2096 if (!dm_request_based(md) || md->use_blk_mq) 2097 return count; 2098 2099 if (kstrtouint(buf, 10, &deadline)) 2100 return -EINVAL; 2101 2102 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS) 2103 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS; 2104 2105 md->seq_rq_merge_deadline_usecs = deadline; 2106 2107 return count; 2108 } 2109 2110 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md) 2111 { 2112 ktime_t kt_deadline; 2113 2114 if (!md->seq_rq_merge_deadline_usecs) 2115 return false; 2116 2117 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC); 2118 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline); 2119 2120 return !ktime_after(ktime_get(), kt_deadline); 2121 } 2122 2123 /* 2124 * q->request_fn for request-based dm. 2125 * Called with the queue lock held. 2126 */ 2127 static void dm_request_fn(struct request_queue *q) 2128 { 2129 struct mapped_device *md = q->queuedata; 2130 struct dm_target *ti = md->immutable_target; 2131 struct request *rq; 2132 struct dm_rq_target_io *tio; 2133 sector_t pos = 0; 2134 2135 if (unlikely(!ti)) { 2136 int srcu_idx; 2137 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2138 2139 ti = dm_table_find_target(map, pos); 2140 dm_put_live_table(md, srcu_idx); 2141 } 2142 2143 /* 2144 * For suspend, check blk_queue_stopped() and increment 2145 * ->pending within a single queue_lock not to increment the 2146 * number of in-flight I/Os after the queue is stopped in 2147 * dm_suspend(). 2148 */ 2149 while (!blk_queue_stopped(q)) { 2150 rq = blk_peek_request(q); 2151 if (!rq) 2152 return; 2153 2154 /* always use block 0 to find the target for flushes for now */ 2155 pos = 0; 2156 if (!(rq->cmd_flags & REQ_FLUSH)) 2157 pos = blk_rq_pos(rq); 2158 2159 if ((dm_request_peeked_before_merge_deadline(md) && 2160 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 && 2161 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) || 2162 (ti->type->busy && ti->type->busy(ti))) { 2163 blk_delay_queue(q, HZ / 100); 2164 return; 2165 } 2166 2167 dm_start_request(md, rq); 2168 2169 tio = tio_from_request(rq); 2170 /* Establish tio->ti before queuing work (map_tio_request) */ 2171 tio->ti = ti; 2172 queue_kthread_work(&md->kworker, &tio->work); 2173 BUG_ON(!irqs_disabled()); 2174 } 2175 } 2176 2177 static int dm_any_congested(void *congested_data, int bdi_bits) 2178 { 2179 int r = bdi_bits; 2180 struct mapped_device *md = congested_data; 2181 struct dm_table *map; 2182 2183 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2184 if (dm_request_based(md)) { 2185 /* 2186 * With request-based DM we only need to check the 2187 * top-level queue for congestion. 2188 */ 2189 r = md->queue->backing_dev_info.wb.state & bdi_bits; 2190 } else { 2191 map = dm_get_live_table_fast(md); 2192 if (map) 2193 r = dm_table_any_congested(map, bdi_bits); 2194 dm_put_live_table_fast(md); 2195 } 2196 } 2197 2198 return r; 2199 } 2200 2201 /*----------------------------------------------------------------- 2202 * An IDR is used to keep track of allocated minor numbers. 2203 *---------------------------------------------------------------*/ 2204 static void free_minor(int minor) 2205 { 2206 spin_lock(&_minor_lock); 2207 idr_remove(&_minor_idr, minor); 2208 spin_unlock(&_minor_lock); 2209 } 2210 2211 /* 2212 * See if the device with a specific minor # is free. 2213 */ 2214 static int specific_minor(int minor) 2215 { 2216 int r; 2217 2218 if (minor >= (1 << MINORBITS)) 2219 return -EINVAL; 2220 2221 idr_preload(GFP_KERNEL); 2222 spin_lock(&_minor_lock); 2223 2224 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2225 2226 spin_unlock(&_minor_lock); 2227 idr_preload_end(); 2228 if (r < 0) 2229 return r == -ENOSPC ? -EBUSY : r; 2230 return 0; 2231 } 2232 2233 static int next_free_minor(int *minor) 2234 { 2235 int r; 2236 2237 idr_preload(GFP_KERNEL); 2238 spin_lock(&_minor_lock); 2239 2240 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2241 2242 spin_unlock(&_minor_lock); 2243 idr_preload_end(); 2244 if (r < 0) 2245 return r; 2246 *minor = r; 2247 return 0; 2248 } 2249 2250 static const struct block_device_operations dm_blk_dops; 2251 2252 static void dm_wq_work(struct work_struct *work); 2253 2254 static void dm_init_md_queue(struct mapped_device *md) 2255 { 2256 /* 2257 * Request-based dm devices cannot be stacked on top of bio-based dm 2258 * devices. The type of this dm device may not have been decided yet. 2259 * The type is decided at the first table loading time. 2260 * To prevent problematic device stacking, clear the queue flag 2261 * for request stacking support until then. 2262 * 2263 * This queue is new, so no concurrency on the queue_flags. 2264 */ 2265 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 2266 2267 /* 2268 * Initialize data that will only be used by a non-blk-mq DM queue 2269 * - must do so here (in alloc_dev callchain) before queue is used 2270 */ 2271 md->queue->queuedata = md; 2272 md->queue->backing_dev_info.congested_data = md; 2273 } 2274 2275 static void dm_init_normal_md_queue(struct mapped_device *md) 2276 { 2277 md->use_blk_mq = false; 2278 dm_init_md_queue(md); 2279 2280 /* 2281 * Initialize aspects of queue that aren't relevant for blk-mq 2282 */ 2283 md->queue->backing_dev_info.congested_fn = dm_any_congested; 2284 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 2285 } 2286 2287 static void cleanup_mapped_device(struct mapped_device *md) 2288 { 2289 if (md->wq) 2290 destroy_workqueue(md->wq); 2291 if (md->kworker_task) 2292 kthread_stop(md->kworker_task); 2293 mempool_destroy(md->io_pool); 2294 mempool_destroy(md->rq_pool); 2295 if (md->bs) 2296 bioset_free(md->bs); 2297 2298 cleanup_srcu_struct(&md->io_barrier); 2299 2300 if (md->disk) { 2301 spin_lock(&_minor_lock); 2302 md->disk->private_data = NULL; 2303 spin_unlock(&_minor_lock); 2304 del_gendisk(md->disk); 2305 put_disk(md->disk); 2306 } 2307 2308 if (md->queue) 2309 blk_cleanup_queue(md->queue); 2310 2311 if (md->bdev) { 2312 bdput(md->bdev); 2313 md->bdev = NULL; 2314 } 2315 } 2316 2317 /* 2318 * Allocate and initialise a blank device with a given minor. 2319 */ 2320 static struct mapped_device *alloc_dev(int minor) 2321 { 2322 int r, numa_node_id = dm_get_numa_node(); 2323 struct mapped_device *md; 2324 void *old_md; 2325 2326 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2327 if (!md) { 2328 DMWARN("unable to allocate device, out of memory."); 2329 return NULL; 2330 } 2331 2332 if (!try_module_get(THIS_MODULE)) 2333 goto bad_module_get; 2334 2335 /* get a minor number for the dev */ 2336 if (minor == DM_ANY_MINOR) 2337 r = next_free_minor(&minor); 2338 else 2339 r = specific_minor(minor); 2340 if (r < 0) 2341 goto bad_minor; 2342 2343 r = init_srcu_struct(&md->io_barrier); 2344 if (r < 0) 2345 goto bad_io_barrier; 2346 2347 md->numa_node_id = numa_node_id; 2348 md->use_blk_mq = use_blk_mq; 2349 md->init_tio_pdu = false; 2350 md->type = DM_TYPE_NONE; 2351 mutex_init(&md->suspend_lock); 2352 mutex_init(&md->type_lock); 2353 mutex_init(&md->table_devices_lock); 2354 spin_lock_init(&md->deferred_lock); 2355 atomic_set(&md->holders, 1); 2356 atomic_set(&md->open_count, 0); 2357 atomic_set(&md->event_nr, 0); 2358 atomic_set(&md->uevent_seq, 0); 2359 INIT_LIST_HEAD(&md->uevent_list); 2360 INIT_LIST_HEAD(&md->table_devices); 2361 spin_lock_init(&md->uevent_lock); 2362 2363 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 2364 if (!md->queue) 2365 goto bad; 2366 2367 dm_init_md_queue(md); 2368 2369 md->disk = alloc_disk_node(1, numa_node_id); 2370 if (!md->disk) 2371 goto bad; 2372 2373 atomic_set(&md->pending[0], 0); 2374 atomic_set(&md->pending[1], 0); 2375 init_waitqueue_head(&md->wait); 2376 INIT_WORK(&md->work, dm_wq_work); 2377 init_waitqueue_head(&md->eventq); 2378 init_completion(&md->kobj_holder.completion); 2379 md->kworker_task = NULL; 2380 2381 md->disk->major = _major; 2382 md->disk->first_minor = minor; 2383 md->disk->fops = &dm_blk_dops; 2384 md->disk->queue = md->queue; 2385 md->disk->private_data = md; 2386 sprintf(md->disk->disk_name, "dm-%d", minor); 2387 add_disk(md->disk); 2388 format_dev_t(md->name, MKDEV(_major, minor)); 2389 2390 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2391 if (!md->wq) 2392 goto bad; 2393 2394 md->bdev = bdget_disk(md->disk, 0); 2395 if (!md->bdev) 2396 goto bad; 2397 2398 bio_init(&md->flush_bio); 2399 md->flush_bio.bi_bdev = md->bdev; 2400 md->flush_bio.bi_rw = WRITE_FLUSH; 2401 2402 dm_stats_init(&md->stats); 2403 2404 /* Populate the mapping, nobody knows we exist yet */ 2405 spin_lock(&_minor_lock); 2406 old_md = idr_replace(&_minor_idr, md, minor); 2407 spin_unlock(&_minor_lock); 2408 2409 BUG_ON(old_md != MINOR_ALLOCED); 2410 2411 return md; 2412 2413 bad: 2414 cleanup_mapped_device(md); 2415 bad_io_barrier: 2416 free_minor(minor); 2417 bad_minor: 2418 module_put(THIS_MODULE); 2419 bad_module_get: 2420 kfree(md); 2421 return NULL; 2422 } 2423 2424 static void unlock_fs(struct mapped_device *md); 2425 2426 static void free_dev(struct mapped_device *md) 2427 { 2428 int minor = MINOR(disk_devt(md->disk)); 2429 2430 unlock_fs(md); 2431 2432 cleanup_mapped_device(md); 2433 if (md->tag_set) { 2434 blk_mq_free_tag_set(md->tag_set); 2435 kfree(md->tag_set); 2436 } 2437 2438 free_table_devices(&md->table_devices); 2439 dm_stats_cleanup(&md->stats); 2440 free_minor(minor); 2441 2442 module_put(THIS_MODULE); 2443 kfree(md); 2444 } 2445 2446 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 2447 { 2448 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2449 2450 if (md->bs) { 2451 /* The md already has necessary mempools. */ 2452 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 2453 /* 2454 * Reload bioset because front_pad may have changed 2455 * because a different table was loaded. 2456 */ 2457 bioset_free(md->bs); 2458 md->bs = p->bs; 2459 p->bs = NULL; 2460 } 2461 /* 2462 * There's no need to reload with request-based dm 2463 * because the size of front_pad doesn't change. 2464 * Note for future: If you are to reload bioset, 2465 * prep-ed requests in the queue may refer 2466 * to bio from the old bioset, so you must walk 2467 * through the queue to unprep. 2468 */ 2469 goto out; 2470 } 2471 2472 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs); 2473 2474 md->io_pool = p->io_pool; 2475 p->io_pool = NULL; 2476 md->rq_pool = p->rq_pool; 2477 p->rq_pool = NULL; 2478 md->bs = p->bs; 2479 p->bs = NULL; 2480 2481 out: 2482 /* mempool bind completed, no longer need any mempools in the table */ 2483 dm_table_free_md_mempools(t); 2484 } 2485 2486 /* 2487 * Bind a table to the device. 2488 */ 2489 static void event_callback(void *context) 2490 { 2491 unsigned long flags; 2492 LIST_HEAD(uevents); 2493 struct mapped_device *md = (struct mapped_device *) context; 2494 2495 spin_lock_irqsave(&md->uevent_lock, flags); 2496 list_splice_init(&md->uevent_list, &uevents); 2497 spin_unlock_irqrestore(&md->uevent_lock, flags); 2498 2499 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2500 2501 atomic_inc(&md->event_nr); 2502 wake_up(&md->eventq); 2503 } 2504 2505 /* 2506 * Protected by md->suspend_lock obtained by dm_swap_table(). 2507 */ 2508 static void __set_size(struct mapped_device *md, sector_t size) 2509 { 2510 set_capacity(md->disk, size); 2511 2512 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2513 } 2514 2515 /* 2516 * Returns old map, which caller must destroy. 2517 */ 2518 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2519 struct queue_limits *limits) 2520 { 2521 struct dm_table *old_map; 2522 struct request_queue *q = md->queue; 2523 sector_t size; 2524 2525 size = dm_table_get_size(t); 2526 2527 /* 2528 * Wipe any geometry if the size of the table changed. 2529 */ 2530 if (size != dm_get_size(md)) 2531 memset(&md->geometry, 0, sizeof(md->geometry)); 2532 2533 __set_size(md, size); 2534 2535 dm_table_event_callback(t, event_callback, md); 2536 2537 /* 2538 * The queue hasn't been stopped yet, if the old table type wasn't 2539 * for request-based during suspension. So stop it to prevent 2540 * I/O mapping before resume. 2541 * This must be done before setting the queue restrictions, 2542 * because request-based dm may be run just after the setting. 2543 */ 2544 if (dm_table_request_based(t)) { 2545 dm_stop_queue(q); 2546 /* 2547 * Leverage the fact that request-based DM targets are 2548 * immutable singletons and establish md->immutable_target 2549 * - used to optimize both dm_request_fn and dm_mq_queue_rq 2550 */ 2551 md->immutable_target = dm_table_get_immutable_target(t); 2552 } 2553 2554 __bind_mempools(md, t); 2555 2556 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2557 rcu_assign_pointer(md->map, (void *)t); 2558 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2559 2560 dm_table_set_restrictions(t, q, limits); 2561 if (old_map) 2562 dm_sync_table(md); 2563 2564 return old_map; 2565 } 2566 2567 /* 2568 * Returns unbound table for the caller to free. 2569 */ 2570 static struct dm_table *__unbind(struct mapped_device *md) 2571 { 2572 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2573 2574 if (!map) 2575 return NULL; 2576 2577 dm_table_event_callback(map, NULL, NULL); 2578 RCU_INIT_POINTER(md->map, NULL); 2579 dm_sync_table(md); 2580 2581 return map; 2582 } 2583 2584 /* 2585 * Constructor for a new device. 2586 */ 2587 int dm_create(int minor, struct mapped_device **result) 2588 { 2589 struct mapped_device *md; 2590 2591 md = alloc_dev(minor); 2592 if (!md) 2593 return -ENXIO; 2594 2595 dm_sysfs_init(md); 2596 2597 *result = md; 2598 return 0; 2599 } 2600 2601 /* 2602 * Functions to manage md->type. 2603 * All are required to hold md->type_lock. 2604 */ 2605 void dm_lock_md_type(struct mapped_device *md) 2606 { 2607 mutex_lock(&md->type_lock); 2608 } 2609 2610 void dm_unlock_md_type(struct mapped_device *md) 2611 { 2612 mutex_unlock(&md->type_lock); 2613 } 2614 2615 void dm_set_md_type(struct mapped_device *md, unsigned type) 2616 { 2617 BUG_ON(!mutex_is_locked(&md->type_lock)); 2618 md->type = type; 2619 } 2620 2621 unsigned dm_get_md_type(struct mapped_device *md) 2622 { 2623 return md->type; 2624 } 2625 2626 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2627 { 2628 return md->immutable_target_type; 2629 } 2630 2631 /* 2632 * The queue_limits are only valid as long as you have a reference 2633 * count on 'md'. 2634 */ 2635 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2636 { 2637 BUG_ON(!atomic_read(&md->holders)); 2638 return &md->queue->limits; 2639 } 2640 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2641 2642 static void dm_old_init_rq_based_worker_thread(struct mapped_device *md) 2643 { 2644 /* Initialize the request-based DM worker thread */ 2645 init_kthread_worker(&md->kworker); 2646 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker, 2647 "kdmwork-%s", dm_device_name(md)); 2648 } 2649 2650 /* 2651 * Fully initialize a .request_fn request-based queue. 2652 */ 2653 static int dm_old_init_request_queue(struct mapped_device *md) 2654 { 2655 struct request_queue *q = NULL; 2656 2657 /* Fully initialize the queue */ 2658 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2659 if (!q) 2660 return -EINVAL; 2661 2662 /* disable dm_request_fn's merge heuristic by default */ 2663 md->seq_rq_merge_deadline_usecs = 0; 2664 2665 md->queue = q; 2666 dm_init_normal_md_queue(md); 2667 blk_queue_softirq_done(md->queue, dm_softirq_done); 2668 blk_queue_prep_rq(md->queue, dm_old_prep_fn); 2669 2670 dm_old_init_rq_based_worker_thread(md); 2671 2672 elv_register_queue(md->queue); 2673 2674 return 0; 2675 } 2676 2677 static int dm_mq_init_request(void *data, struct request *rq, 2678 unsigned int hctx_idx, unsigned int request_idx, 2679 unsigned int numa_node) 2680 { 2681 struct mapped_device *md = data; 2682 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2683 2684 /* 2685 * Must initialize md member of tio, otherwise it won't 2686 * be available in dm_mq_queue_rq. 2687 */ 2688 tio->md = md; 2689 2690 if (md->init_tio_pdu) { 2691 /* target-specific per-io data is immediately after the tio */ 2692 tio->info.ptr = tio + 1; 2693 } 2694 2695 return 0; 2696 } 2697 2698 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 2699 const struct blk_mq_queue_data *bd) 2700 { 2701 struct request *rq = bd->rq; 2702 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2703 struct mapped_device *md = tio->md; 2704 struct dm_target *ti = md->immutable_target; 2705 2706 if (unlikely(!ti)) { 2707 int srcu_idx; 2708 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2709 2710 ti = dm_table_find_target(map, 0); 2711 dm_put_live_table(md, srcu_idx); 2712 } 2713 2714 if (ti->type->busy && ti->type->busy(ti)) 2715 return BLK_MQ_RQ_QUEUE_BUSY; 2716 2717 dm_start_request(md, rq); 2718 2719 /* Init tio using md established in .init_request */ 2720 init_tio(tio, rq, md); 2721 2722 /* 2723 * Establish tio->ti before queuing work (map_tio_request) 2724 * or making direct call to map_request(). 2725 */ 2726 tio->ti = ti; 2727 2728 /* Direct call is fine since .queue_rq allows allocations */ 2729 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) { 2730 /* Undo dm_start_request() before requeuing */ 2731 rq_end_stats(md, rq); 2732 rq_completed(md, rq_data_dir(rq), false); 2733 return BLK_MQ_RQ_QUEUE_BUSY; 2734 } 2735 2736 return BLK_MQ_RQ_QUEUE_OK; 2737 } 2738 2739 static struct blk_mq_ops dm_mq_ops = { 2740 .queue_rq = dm_mq_queue_rq, 2741 .map_queue = blk_mq_map_queue, 2742 .complete = dm_softirq_done, 2743 .init_request = dm_mq_init_request, 2744 }; 2745 2746 static int dm_mq_init_request_queue(struct mapped_device *md, 2747 struct dm_target *immutable_tgt) 2748 { 2749 struct request_queue *q; 2750 int err; 2751 2752 if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) { 2753 DMERR("request-based dm-mq may only be stacked on blk-mq device(s)"); 2754 return -EINVAL; 2755 } 2756 2757 md->tag_set = kzalloc_node(sizeof(struct blk_mq_tag_set), GFP_KERNEL, md->numa_node_id); 2758 if (!md->tag_set) 2759 return -ENOMEM; 2760 2761 md->tag_set->ops = &dm_mq_ops; 2762 md->tag_set->queue_depth = dm_get_blk_mq_queue_depth(); 2763 md->tag_set->numa_node = md->numa_node_id; 2764 md->tag_set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2765 md->tag_set->nr_hw_queues = dm_get_blk_mq_nr_hw_queues(); 2766 md->tag_set->driver_data = md; 2767 2768 md->tag_set->cmd_size = sizeof(struct dm_rq_target_io); 2769 if (immutable_tgt && immutable_tgt->per_io_data_size) { 2770 /* any target-specific per-io data is immediately after the tio */ 2771 md->tag_set->cmd_size += immutable_tgt->per_io_data_size; 2772 md->init_tio_pdu = true; 2773 } 2774 2775 err = blk_mq_alloc_tag_set(md->tag_set); 2776 if (err) 2777 goto out_kfree_tag_set; 2778 2779 q = blk_mq_init_allocated_queue(md->tag_set, md->queue); 2780 if (IS_ERR(q)) { 2781 err = PTR_ERR(q); 2782 goto out_tag_set; 2783 } 2784 md->queue = q; 2785 dm_init_md_queue(md); 2786 2787 /* backfill 'mq' sysfs registration normally done in blk_register_queue */ 2788 blk_mq_register_disk(md->disk); 2789 2790 return 0; 2791 2792 out_tag_set: 2793 blk_mq_free_tag_set(md->tag_set); 2794 out_kfree_tag_set: 2795 kfree(md->tag_set); 2796 2797 return err; 2798 } 2799 2800 static unsigned filter_md_type(unsigned type, struct mapped_device *md) 2801 { 2802 if (type == DM_TYPE_BIO_BASED) 2803 return type; 2804 2805 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED; 2806 } 2807 2808 /* 2809 * Setup the DM device's queue based on md's type 2810 */ 2811 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2812 { 2813 int r; 2814 unsigned md_type = filter_md_type(dm_get_md_type(md), md); 2815 2816 switch (md_type) { 2817 case DM_TYPE_REQUEST_BASED: 2818 r = dm_old_init_request_queue(md); 2819 if (r) { 2820 DMERR("Cannot initialize queue for request-based mapped device"); 2821 return r; 2822 } 2823 break; 2824 case DM_TYPE_MQ_REQUEST_BASED: 2825 r = dm_mq_init_request_queue(md, dm_table_get_immutable_target(t)); 2826 if (r) { 2827 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2828 return r; 2829 } 2830 break; 2831 case DM_TYPE_BIO_BASED: 2832 dm_init_normal_md_queue(md); 2833 blk_queue_make_request(md->queue, dm_make_request); 2834 /* 2835 * DM handles splitting bios as needed. Free the bio_split bioset 2836 * since it won't be used (saves 1 process per bio-based DM device). 2837 */ 2838 bioset_free(md->queue->bio_split); 2839 md->queue->bio_split = NULL; 2840 break; 2841 } 2842 2843 return 0; 2844 } 2845 2846 struct mapped_device *dm_get_md(dev_t dev) 2847 { 2848 struct mapped_device *md; 2849 unsigned minor = MINOR(dev); 2850 2851 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2852 return NULL; 2853 2854 spin_lock(&_minor_lock); 2855 2856 md = idr_find(&_minor_idr, minor); 2857 if (md) { 2858 if ((md == MINOR_ALLOCED || 2859 (MINOR(disk_devt(dm_disk(md))) != minor) || 2860 dm_deleting_md(md) || 2861 test_bit(DMF_FREEING, &md->flags))) { 2862 md = NULL; 2863 goto out; 2864 } 2865 dm_get(md); 2866 } 2867 2868 out: 2869 spin_unlock(&_minor_lock); 2870 2871 return md; 2872 } 2873 EXPORT_SYMBOL_GPL(dm_get_md); 2874 2875 void *dm_get_mdptr(struct mapped_device *md) 2876 { 2877 return md->interface_ptr; 2878 } 2879 2880 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2881 { 2882 md->interface_ptr = ptr; 2883 } 2884 2885 void dm_get(struct mapped_device *md) 2886 { 2887 atomic_inc(&md->holders); 2888 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2889 } 2890 2891 int dm_hold(struct mapped_device *md) 2892 { 2893 spin_lock(&_minor_lock); 2894 if (test_bit(DMF_FREEING, &md->flags)) { 2895 spin_unlock(&_minor_lock); 2896 return -EBUSY; 2897 } 2898 dm_get(md); 2899 spin_unlock(&_minor_lock); 2900 return 0; 2901 } 2902 EXPORT_SYMBOL_GPL(dm_hold); 2903 2904 const char *dm_device_name(struct mapped_device *md) 2905 { 2906 return md->name; 2907 } 2908 EXPORT_SYMBOL_GPL(dm_device_name); 2909 2910 static void __dm_destroy(struct mapped_device *md, bool wait) 2911 { 2912 struct dm_table *map; 2913 int srcu_idx; 2914 2915 might_sleep(); 2916 2917 spin_lock(&_minor_lock); 2918 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2919 set_bit(DMF_FREEING, &md->flags); 2920 spin_unlock(&_minor_lock); 2921 2922 if (dm_request_based(md) && md->kworker_task) 2923 flush_kthread_worker(&md->kworker); 2924 2925 /* 2926 * Take suspend_lock so that presuspend and postsuspend methods 2927 * do not race with internal suspend. 2928 */ 2929 mutex_lock(&md->suspend_lock); 2930 map = dm_get_live_table(md, &srcu_idx); 2931 if (!dm_suspended_md(md)) { 2932 dm_table_presuspend_targets(map); 2933 dm_table_postsuspend_targets(map); 2934 } 2935 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2936 dm_put_live_table(md, srcu_idx); 2937 mutex_unlock(&md->suspend_lock); 2938 2939 /* 2940 * Rare, but there may be I/O requests still going to complete, 2941 * for example. Wait for all references to disappear. 2942 * No one should increment the reference count of the mapped_device, 2943 * after the mapped_device state becomes DMF_FREEING. 2944 */ 2945 if (wait) 2946 while (atomic_read(&md->holders)) 2947 msleep(1); 2948 else if (atomic_read(&md->holders)) 2949 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2950 dm_device_name(md), atomic_read(&md->holders)); 2951 2952 dm_sysfs_exit(md); 2953 dm_table_destroy(__unbind(md)); 2954 free_dev(md); 2955 } 2956 2957 void dm_destroy(struct mapped_device *md) 2958 { 2959 __dm_destroy(md, true); 2960 } 2961 2962 void dm_destroy_immediate(struct mapped_device *md) 2963 { 2964 __dm_destroy(md, false); 2965 } 2966 2967 void dm_put(struct mapped_device *md) 2968 { 2969 atomic_dec(&md->holders); 2970 } 2971 EXPORT_SYMBOL_GPL(dm_put); 2972 2973 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2974 { 2975 int r = 0; 2976 DECLARE_WAITQUEUE(wait, current); 2977 2978 add_wait_queue(&md->wait, &wait); 2979 2980 while (1) { 2981 set_current_state(interruptible); 2982 2983 if (!md_in_flight(md)) 2984 break; 2985 2986 if (interruptible == TASK_INTERRUPTIBLE && 2987 signal_pending(current)) { 2988 r = -EINTR; 2989 break; 2990 } 2991 2992 io_schedule(); 2993 } 2994 set_current_state(TASK_RUNNING); 2995 2996 remove_wait_queue(&md->wait, &wait); 2997 2998 return r; 2999 } 3000 3001 /* 3002 * Process the deferred bios 3003 */ 3004 static void dm_wq_work(struct work_struct *work) 3005 { 3006 struct mapped_device *md = container_of(work, struct mapped_device, 3007 work); 3008 struct bio *c; 3009 int srcu_idx; 3010 struct dm_table *map; 3011 3012 map = dm_get_live_table(md, &srcu_idx); 3013 3014 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 3015 spin_lock_irq(&md->deferred_lock); 3016 c = bio_list_pop(&md->deferred); 3017 spin_unlock_irq(&md->deferred_lock); 3018 3019 if (!c) 3020 break; 3021 3022 if (dm_request_based(md)) 3023 generic_make_request(c); 3024 else 3025 __split_and_process_bio(md, map, c); 3026 } 3027 3028 dm_put_live_table(md, srcu_idx); 3029 } 3030 3031 static void dm_queue_flush(struct mapped_device *md) 3032 { 3033 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3034 smp_mb__after_atomic(); 3035 queue_work(md->wq, &md->work); 3036 } 3037 3038 /* 3039 * Swap in a new table, returning the old one for the caller to destroy. 3040 */ 3041 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 3042 { 3043 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 3044 struct queue_limits limits; 3045 int r; 3046 3047 mutex_lock(&md->suspend_lock); 3048 3049 /* device must be suspended */ 3050 if (!dm_suspended_md(md)) 3051 goto out; 3052 3053 /* 3054 * If the new table has no data devices, retain the existing limits. 3055 * This helps multipath with queue_if_no_path if all paths disappear, 3056 * then new I/O is queued based on these limits, and then some paths 3057 * reappear. 3058 */ 3059 if (dm_table_has_no_data_devices(table)) { 3060 live_map = dm_get_live_table_fast(md); 3061 if (live_map) 3062 limits = md->queue->limits; 3063 dm_put_live_table_fast(md); 3064 } 3065 3066 if (!live_map) { 3067 r = dm_calculate_queue_limits(table, &limits); 3068 if (r) { 3069 map = ERR_PTR(r); 3070 goto out; 3071 } 3072 } 3073 3074 map = __bind(md, table, &limits); 3075 3076 out: 3077 mutex_unlock(&md->suspend_lock); 3078 return map; 3079 } 3080 3081 /* 3082 * Functions to lock and unlock any filesystem running on the 3083 * device. 3084 */ 3085 static int lock_fs(struct mapped_device *md) 3086 { 3087 int r; 3088 3089 WARN_ON(md->frozen_sb); 3090 3091 md->frozen_sb = freeze_bdev(md->bdev); 3092 if (IS_ERR(md->frozen_sb)) { 3093 r = PTR_ERR(md->frozen_sb); 3094 md->frozen_sb = NULL; 3095 return r; 3096 } 3097 3098 set_bit(DMF_FROZEN, &md->flags); 3099 3100 return 0; 3101 } 3102 3103 static void unlock_fs(struct mapped_device *md) 3104 { 3105 if (!test_bit(DMF_FROZEN, &md->flags)) 3106 return; 3107 3108 thaw_bdev(md->bdev, md->frozen_sb); 3109 md->frozen_sb = NULL; 3110 clear_bit(DMF_FROZEN, &md->flags); 3111 } 3112 3113 /* 3114 * If __dm_suspend returns 0, the device is completely quiescent 3115 * now. There is no request-processing activity. All new requests 3116 * are being added to md->deferred list. 3117 * 3118 * Caller must hold md->suspend_lock 3119 */ 3120 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 3121 unsigned suspend_flags, int interruptible) 3122 { 3123 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 3124 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 3125 int r; 3126 3127 /* 3128 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 3129 * This flag is cleared before dm_suspend returns. 3130 */ 3131 if (noflush) 3132 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3133 3134 /* 3135 * This gets reverted if there's an error later and the targets 3136 * provide the .presuspend_undo hook. 3137 */ 3138 dm_table_presuspend_targets(map); 3139 3140 /* 3141 * Flush I/O to the device. 3142 * Any I/O submitted after lock_fs() may not be flushed. 3143 * noflush takes precedence over do_lockfs. 3144 * (lock_fs() flushes I/Os and waits for them to complete.) 3145 */ 3146 if (!noflush && do_lockfs) { 3147 r = lock_fs(md); 3148 if (r) { 3149 dm_table_presuspend_undo_targets(map); 3150 return r; 3151 } 3152 } 3153 3154 /* 3155 * Here we must make sure that no processes are submitting requests 3156 * to target drivers i.e. no one may be executing 3157 * __split_and_process_bio. This is called from dm_request and 3158 * dm_wq_work. 3159 * 3160 * To get all processes out of __split_and_process_bio in dm_request, 3161 * we take the write lock. To prevent any process from reentering 3162 * __split_and_process_bio from dm_request and quiesce the thread 3163 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 3164 * flush_workqueue(md->wq). 3165 */ 3166 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3167 if (map) 3168 synchronize_srcu(&md->io_barrier); 3169 3170 /* 3171 * Stop md->queue before flushing md->wq in case request-based 3172 * dm defers requests to md->wq from md->queue. 3173 */ 3174 if (dm_request_based(md)) { 3175 dm_stop_queue(md->queue); 3176 if (md->kworker_task) 3177 flush_kthread_worker(&md->kworker); 3178 } 3179 3180 flush_workqueue(md->wq); 3181 3182 /* 3183 * At this point no more requests are entering target request routines. 3184 * We call dm_wait_for_completion to wait for all existing requests 3185 * to finish. 3186 */ 3187 r = dm_wait_for_completion(md, interruptible); 3188 3189 if (noflush) 3190 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3191 if (map) 3192 synchronize_srcu(&md->io_barrier); 3193 3194 /* were we interrupted ? */ 3195 if (r < 0) { 3196 dm_queue_flush(md); 3197 3198 if (dm_request_based(md)) 3199 dm_start_queue(md->queue); 3200 3201 unlock_fs(md); 3202 dm_table_presuspend_undo_targets(map); 3203 /* pushback list is already flushed, so skip flush */ 3204 } 3205 3206 return r; 3207 } 3208 3209 /* 3210 * We need to be able to change a mapping table under a mounted 3211 * filesystem. For example we might want to move some data in 3212 * the background. Before the table can be swapped with 3213 * dm_bind_table, dm_suspend must be called to flush any in 3214 * flight bios and ensure that any further io gets deferred. 3215 */ 3216 /* 3217 * Suspend mechanism in request-based dm. 3218 * 3219 * 1. Flush all I/Os by lock_fs() if needed. 3220 * 2. Stop dispatching any I/O by stopping the request_queue. 3221 * 3. Wait for all in-flight I/Os to be completed or requeued. 3222 * 3223 * To abort suspend, start the request_queue. 3224 */ 3225 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 3226 { 3227 struct dm_table *map = NULL; 3228 int r = 0; 3229 3230 retry: 3231 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3232 3233 if (dm_suspended_md(md)) { 3234 r = -EINVAL; 3235 goto out_unlock; 3236 } 3237 3238 if (dm_suspended_internally_md(md)) { 3239 /* already internally suspended, wait for internal resume */ 3240 mutex_unlock(&md->suspend_lock); 3241 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3242 if (r) 3243 return r; 3244 goto retry; 3245 } 3246 3247 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3248 3249 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE); 3250 if (r) 3251 goto out_unlock; 3252 3253 set_bit(DMF_SUSPENDED, &md->flags); 3254 3255 dm_table_postsuspend_targets(map); 3256 3257 out_unlock: 3258 mutex_unlock(&md->suspend_lock); 3259 return r; 3260 } 3261 3262 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 3263 { 3264 if (map) { 3265 int r = dm_table_resume_targets(map); 3266 if (r) 3267 return r; 3268 } 3269 3270 dm_queue_flush(md); 3271 3272 /* 3273 * Flushing deferred I/Os must be done after targets are resumed 3274 * so that mapping of targets can work correctly. 3275 * Request-based dm is queueing the deferred I/Os in its request_queue. 3276 */ 3277 if (dm_request_based(md)) 3278 dm_start_queue(md->queue); 3279 3280 unlock_fs(md); 3281 3282 return 0; 3283 } 3284 3285 int dm_resume(struct mapped_device *md) 3286 { 3287 int r = -EINVAL; 3288 struct dm_table *map = NULL; 3289 3290 retry: 3291 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3292 3293 if (!dm_suspended_md(md)) 3294 goto out; 3295 3296 if (dm_suspended_internally_md(md)) { 3297 /* already internally suspended, wait for internal resume */ 3298 mutex_unlock(&md->suspend_lock); 3299 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3300 if (r) 3301 return r; 3302 goto retry; 3303 } 3304 3305 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3306 if (!map || !dm_table_get_size(map)) 3307 goto out; 3308 3309 r = __dm_resume(md, map); 3310 if (r) 3311 goto out; 3312 3313 clear_bit(DMF_SUSPENDED, &md->flags); 3314 3315 r = 0; 3316 out: 3317 mutex_unlock(&md->suspend_lock); 3318 3319 return r; 3320 } 3321 3322 /* 3323 * Internal suspend/resume works like userspace-driven suspend. It waits 3324 * until all bios finish and prevents issuing new bios to the target drivers. 3325 * It may be used only from the kernel. 3326 */ 3327 3328 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 3329 { 3330 struct dm_table *map = NULL; 3331 3332 if (md->internal_suspend_count++) 3333 return; /* nested internal suspend */ 3334 3335 if (dm_suspended_md(md)) { 3336 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3337 return; /* nest suspend */ 3338 } 3339 3340 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3341 3342 /* 3343 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3344 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3345 * would require changing .presuspend to return an error -- avoid this 3346 * until there is a need for more elaborate variants of internal suspend. 3347 */ 3348 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE); 3349 3350 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3351 3352 dm_table_postsuspend_targets(map); 3353 } 3354 3355 static void __dm_internal_resume(struct mapped_device *md) 3356 { 3357 BUG_ON(!md->internal_suspend_count); 3358 3359 if (--md->internal_suspend_count) 3360 return; /* resume from nested internal suspend */ 3361 3362 if (dm_suspended_md(md)) 3363 goto done; /* resume from nested suspend */ 3364 3365 /* 3366 * NOTE: existing callers don't need to call dm_table_resume_targets 3367 * (which may fail -- so best to avoid it for now by passing NULL map) 3368 */ 3369 (void) __dm_resume(md, NULL); 3370 3371 done: 3372 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3373 smp_mb__after_atomic(); 3374 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3375 } 3376 3377 void dm_internal_suspend_noflush(struct mapped_device *md) 3378 { 3379 mutex_lock(&md->suspend_lock); 3380 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3381 mutex_unlock(&md->suspend_lock); 3382 } 3383 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3384 3385 void dm_internal_resume(struct mapped_device *md) 3386 { 3387 mutex_lock(&md->suspend_lock); 3388 __dm_internal_resume(md); 3389 mutex_unlock(&md->suspend_lock); 3390 } 3391 EXPORT_SYMBOL_GPL(dm_internal_resume); 3392 3393 /* 3394 * Fast variants of internal suspend/resume hold md->suspend_lock, 3395 * which prevents interaction with userspace-driven suspend. 3396 */ 3397 3398 void dm_internal_suspend_fast(struct mapped_device *md) 3399 { 3400 mutex_lock(&md->suspend_lock); 3401 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3402 return; 3403 3404 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3405 synchronize_srcu(&md->io_barrier); 3406 flush_workqueue(md->wq); 3407 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3408 } 3409 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3410 3411 void dm_internal_resume_fast(struct mapped_device *md) 3412 { 3413 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3414 goto done; 3415 3416 dm_queue_flush(md); 3417 3418 done: 3419 mutex_unlock(&md->suspend_lock); 3420 } 3421 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3422 3423 /*----------------------------------------------------------------- 3424 * Event notification. 3425 *---------------------------------------------------------------*/ 3426 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3427 unsigned cookie) 3428 { 3429 char udev_cookie[DM_COOKIE_LENGTH]; 3430 char *envp[] = { udev_cookie, NULL }; 3431 3432 if (!cookie) 3433 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 3434 else { 3435 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3436 DM_COOKIE_ENV_VAR_NAME, cookie); 3437 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 3438 action, envp); 3439 } 3440 } 3441 3442 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3443 { 3444 return atomic_add_return(1, &md->uevent_seq); 3445 } 3446 3447 uint32_t dm_get_event_nr(struct mapped_device *md) 3448 { 3449 return atomic_read(&md->event_nr); 3450 } 3451 3452 int dm_wait_event(struct mapped_device *md, int event_nr) 3453 { 3454 return wait_event_interruptible(md->eventq, 3455 (event_nr != atomic_read(&md->event_nr))); 3456 } 3457 3458 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3459 { 3460 unsigned long flags; 3461 3462 spin_lock_irqsave(&md->uevent_lock, flags); 3463 list_add(elist, &md->uevent_list); 3464 spin_unlock_irqrestore(&md->uevent_lock, flags); 3465 } 3466 3467 /* 3468 * The gendisk is only valid as long as you have a reference 3469 * count on 'md'. 3470 */ 3471 struct gendisk *dm_disk(struct mapped_device *md) 3472 { 3473 return md->disk; 3474 } 3475 EXPORT_SYMBOL_GPL(dm_disk); 3476 3477 struct kobject *dm_kobject(struct mapped_device *md) 3478 { 3479 return &md->kobj_holder.kobj; 3480 } 3481 3482 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3483 { 3484 struct mapped_device *md; 3485 3486 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3487 3488 if (test_bit(DMF_FREEING, &md->flags) || 3489 dm_deleting_md(md)) 3490 return NULL; 3491 3492 dm_get(md); 3493 return md; 3494 } 3495 3496 int dm_suspended_md(struct mapped_device *md) 3497 { 3498 return test_bit(DMF_SUSPENDED, &md->flags); 3499 } 3500 3501 int dm_suspended_internally_md(struct mapped_device *md) 3502 { 3503 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3504 } 3505 3506 int dm_test_deferred_remove_flag(struct mapped_device *md) 3507 { 3508 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3509 } 3510 3511 int dm_suspended(struct dm_target *ti) 3512 { 3513 return dm_suspended_md(dm_table_get_md(ti->table)); 3514 } 3515 EXPORT_SYMBOL_GPL(dm_suspended); 3516 3517 int dm_noflush_suspending(struct dm_target *ti) 3518 { 3519 return __noflush_suspending(dm_table_get_md(ti->table)); 3520 } 3521 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3522 3523 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type, 3524 unsigned integrity, unsigned per_io_data_size) 3525 { 3526 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 3527 struct kmem_cache *cachep = NULL; 3528 unsigned int pool_size = 0; 3529 unsigned int front_pad; 3530 3531 if (!pools) 3532 return NULL; 3533 3534 type = filter_md_type(type, md); 3535 3536 switch (type) { 3537 case DM_TYPE_BIO_BASED: 3538 cachep = _io_cache; 3539 pool_size = dm_get_reserved_bio_based_ios(); 3540 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3541 break; 3542 case DM_TYPE_REQUEST_BASED: 3543 cachep = _rq_tio_cache; 3544 pool_size = dm_get_reserved_rq_based_ios(); 3545 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache); 3546 if (!pools->rq_pool) 3547 goto out; 3548 /* fall through to setup remaining rq-based pools */ 3549 case DM_TYPE_MQ_REQUEST_BASED: 3550 if (!pool_size) 3551 pool_size = dm_get_reserved_rq_based_ios(); 3552 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3553 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3554 break; 3555 default: 3556 BUG(); 3557 } 3558 3559 if (cachep) { 3560 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 3561 if (!pools->io_pool) 3562 goto out; 3563 } 3564 3565 pools->bs = bioset_create_nobvec(pool_size, front_pad); 3566 if (!pools->bs) 3567 goto out; 3568 3569 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 3570 goto out; 3571 3572 return pools; 3573 3574 out: 3575 dm_free_md_mempools(pools); 3576 3577 return NULL; 3578 } 3579 3580 void dm_free_md_mempools(struct dm_md_mempools *pools) 3581 { 3582 if (!pools) 3583 return; 3584 3585 mempool_destroy(pools->io_pool); 3586 mempool_destroy(pools->rq_pool); 3587 3588 if (pools->bs) 3589 bioset_free(pools->bs); 3590 3591 kfree(pools); 3592 } 3593 3594 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3595 u32 flags) 3596 { 3597 struct mapped_device *md = bdev->bd_disk->private_data; 3598 const struct pr_ops *ops; 3599 fmode_t mode; 3600 int r; 3601 3602 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3603 if (r < 0) 3604 return r; 3605 3606 ops = bdev->bd_disk->fops->pr_ops; 3607 if (ops && ops->pr_register) 3608 r = ops->pr_register(bdev, old_key, new_key, flags); 3609 else 3610 r = -EOPNOTSUPP; 3611 3612 bdput(bdev); 3613 return r; 3614 } 3615 3616 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3617 u32 flags) 3618 { 3619 struct mapped_device *md = bdev->bd_disk->private_data; 3620 const struct pr_ops *ops; 3621 fmode_t mode; 3622 int r; 3623 3624 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3625 if (r < 0) 3626 return r; 3627 3628 ops = bdev->bd_disk->fops->pr_ops; 3629 if (ops && ops->pr_reserve) 3630 r = ops->pr_reserve(bdev, key, type, flags); 3631 else 3632 r = -EOPNOTSUPP; 3633 3634 bdput(bdev); 3635 return r; 3636 } 3637 3638 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3639 { 3640 struct mapped_device *md = bdev->bd_disk->private_data; 3641 const struct pr_ops *ops; 3642 fmode_t mode; 3643 int r; 3644 3645 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3646 if (r < 0) 3647 return r; 3648 3649 ops = bdev->bd_disk->fops->pr_ops; 3650 if (ops && ops->pr_release) 3651 r = ops->pr_release(bdev, key, type); 3652 else 3653 r = -EOPNOTSUPP; 3654 3655 bdput(bdev); 3656 return r; 3657 } 3658 3659 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3660 enum pr_type type, bool abort) 3661 { 3662 struct mapped_device *md = bdev->bd_disk->private_data; 3663 const struct pr_ops *ops; 3664 fmode_t mode; 3665 int r; 3666 3667 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3668 if (r < 0) 3669 return r; 3670 3671 ops = bdev->bd_disk->fops->pr_ops; 3672 if (ops && ops->pr_preempt) 3673 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3674 else 3675 r = -EOPNOTSUPP; 3676 3677 bdput(bdev); 3678 return r; 3679 } 3680 3681 static int dm_pr_clear(struct block_device *bdev, u64 key) 3682 { 3683 struct mapped_device *md = bdev->bd_disk->private_data; 3684 const struct pr_ops *ops; 3685 fmode_t mode; 3686 int r; 3687 3688 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3689 if (r < 0) 3690 return r; 3691 3692 ops = bdev->bd_disk->fops->pr_ops; 3693 if (ops && ops->pr_clear) 3694 r = ops->pr_clear(bdev, key); 3695 else 3696 r = -EOPNOTSUPP; 3697 3698 bdput(bdev); 3699 return r; 3700 } 3701 3702 static const struct pr_ops dm_pr_ops = { 3703 .pr_register = dm_pr_register, 3704 .pr_reserve = dm_pr_reserve, 3705 .pr_release = dm_pr_release, 3706 .pr_preempt = dm_pr_preempt, 3707 .pr_clear = dm_pr_clear, 3708 }; 3709 3710 static const struct block_device_operations dm_blk_dops = { 3711 .open = dm_blk_open, 3712 .release = dm_blk_close, 3713 .ioctl = dm_blk_ioctl, 3714 .getgeo = dm_blk_getgeo, 3715 .pr_ops = &dm_pr_ops, 3716 .owner = THIS_MODULE 3717 }; 3718 3719 /* 3720 * module hooks 3721 */ 3722 module_init(dm_init); 3723 module_exit(dm_exit); 3724 3725 module_param(major, uint, 0); 3726 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3727 3728 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3729 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3730 3731 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 3732 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 3733 3734 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR); 3735 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices"); 3736 3737 module_param(dm_mq_nr_hw_queues, uint, S_IRUGO | S_IWUSR); 3738 MODULE_PARM_DESC(dm_mq_nr_hw_queues, "Number of hardware queues for request-based dm-mq devices"); 3739 3740 module_param(dm_mq_queue_depth, uint, S_IRUGO | S_IWUSR); 3741 MODULE_PARM_DESC(dm_mq_queue_depth, "Queue depth for request-based dm-mq devices"); 3742 3743 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3744 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3745 3746 MODULE_DESCRIPTION(DM_NAME " driver"); 3747 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3748 MODULE_LICENSE("GPL"); 3749