1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/kthread.h> 24 #include <linux/ktime.h> 25 #include <linux/elevator.h> /* for rq_end_sector() */ 26 #include <linux/blk-mq.h> 27 #include <linux/pr.h> 28 29 #include <trace/events/block.h> 30 31 #define DM_MSG_PREFIX "core" 32 33 #ifdef CONFIG_PRINTK 34 /* 35 * ratelimit state to be used in DMXXX_LIMIT(). 36 */ 37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 38 DEFAULT_RATELIMIT_INTERVAL, 39 DEFAULT_RATELIMIT_BURST); 40 EXPORT_SYMBOL(dm_ratelimit_state); 41 #endif 42 43 /* 44 * Cookies are numeric values sent with CHANGE and REMOVE 45 * uevents while resuming, removing or renaming the device. 46 */ 47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 48 #define DM_COOKIE_LENGTH 24 49 50 static const char *_name = DM_NAME; 51 52 static unsigned int major = 0; 53 static unsigned int _major = 0; 54 55 static DEFINE_IDR(_minor_idr); 56 57 static DEFINE_SPINLOCK(_minor_lock); 58 59 static void do_deferred_remove(struct work_struct *w); 60 61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 62 63 static struct workqueue_struct *deferred_remove_workqueue; 64 65 /* 66 * For bio-based dm. 67 * One of these is allocated per bio. 68 */ 69 struct dm_io { 70 struct mapped_device *md; 71 int error; 72 atomic_t io_count; 73 struct bio *bio; 74 unsigned long start_time; 75 spinlock_t endio_lock; 76 struct dm_stats_aux stats_aux; 77 }; 78 79 /* 80 * For request-based dm. 81 * One of these is allocated per request. 82 */ 83 struct dm_rq_target_io { 84 struct mapped_device *md; 85 struct dm_target *ti; 86 struct request *orig, *clone; 87 struct kthread_work work; 88 int error; 89 union map_info info; 90 struct dm_stats_aux stats_aux; 91 unsigned long duration_jiffies; 92 unsigned n_sectors; 93 }; 94 95 /* 96 * For request-based dm - the bio clones we allocate are embedded in these 97 * structs. 98 * 99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 100 * the bioset is created - this means the bio has to come at the end of the 101 * struct. 102 */ 103 struct dm_rq_clone_bio_info { 104 struct bio *orig; 105 struct dm_rq_target_io *tio; 106 struct bio clone; 107 }; 108 109 #define MINOR_ALLOCED ((void *)-1) 110 111 /* 112 * Bits for the md->flags field. 113 */ 114 #define DMF_BLOCK_IO_FOR_SUSPEND 0 115 #define DMF_SUSPENDED 1 116 #define DMF_FROZEN 2 117 #define DMF_FREEING 3 118 #define DMF_DELETING 4 119 #define DMF_NOFLUSH_SUSPENDING 5 120 #define DMF_DEFERRED_REMOVE 6 121 #define DMF_SUSPENDED_INTERNALLY 7 122 123 /* 124 * A dummy definition to make RCU happy. 125 * struct dm_table should never be dereferenced in this file. 126 */ 127 struct dm_table { 128 int undefined__; 129 }; 130 131 /* 132 * Work processed by per-device workqueue. 133 */ 134 struct mapped_device { 135 struct srcu_struct io_barrier; 136 struct mutex suspend_lock; 137 atomic_t holders; 138 atomic_t open_count; 139 140 /* 141 * The current mapping. 142 * Use dm_get_live_table{_fast} or take suspend_lock for 143 * dereference. 144 */ 145 struct dm_table __rcu *map; 146 147 struct list_head table_devices; 148 struct mutex table_devices_lock; 149 150 unsigned long flags; 151 152 struct request_queue *queue; 153 unsigned type; 154 /* Protect queue and type against concurrent access. */ 155 struct mutex type_lock; 156 157 struct dm_target *immutable_target; 158 struct target_type *immutable_target_type; 159 160 struct gendisk *disk; 161 char name[16]; 162 163 void *interface_ptr; 164 165 /* 166 * A list of ios that arrived while we were suspended. 167 */ 168 atomic_t pending[2]; 169 wait_queue_head_t wait; 170 struct work_struct work; 171 struct bio_list deferred; 172 spinlock_t deferred_lock; 173 174 /* 175 * Processing queue (flush) 176 */ 177 struct workqueue_struct *wq; 178 179 /* 180 * io objects are allocated from here. 181 */ 182 mempool_t *io_pool; 183 mempool_t *rq_pool; 184 185 struct bio_set *bs; 186 187 /* 188 * Event handling. 189 */ 190 atomic_t event_nr; 191 wait_queue_head_t eventq; 192 atomic_t uevent_seq; 193 struct list_head uevent_list; 194 spinlock_t uevent_lock; /* Protect access to uevent_list */ 195 196 /* 197 * freeze/thaw support require holding onto a super block 198 */ 199 struct super_block *frozen_sb; 200 struct block_device *bdev; 201 202 /* forced geometry settings */ 203 struct hd_geometry geometry; 204 205 /* kobject and completion */ 206 struct dm_kobject_holder kobj_holder; 207 208 /* zero-length flush that will be cloned and submitted to targets */ 209 struct bio flush_bio; 210 211 /* the number of internal suspends */ 212 unsigned internal_suspend_count; 213 214 struct dm_stats stats; 215 216 struct kthread_worker kworker; 217 struct task_struct *kworker_task; 218 219 /* for request-based merge heuristic in dm_request_fn() */ 220 unsigned seq_rq_merge_deadline_usecs; 221 int last_rq_rw; 222 sector_t last_rq_pos; 223 ktime_t last_rq_start_time; 224 225 /* for blk-mq request-based DM support */ 226 struct blk_mq_tag_set *tag_set; 227 bool use_blk_mq; 228 }; 229 230 #ifdef CONFIG_DM_MQ_DEFAULT 231 static bool use_blk_mq = true; 232 #else 233 static bool use_blk_mq = false; 234 #endif 235 236 #define DM_MQ_NR_HW_QUEUES 1 237 #define DM_MQ_QUEUE_DEPTH 2048 238 239 static unsigned dm_mq_nr_hw_queues = DM_MQ_NR_HW_QUEUES; 240 static unsigned dm_mq_queue_depth = DM_MQ_QUEUE_DEPTH; 241 242 bool dm_use_blk_mq(struct mapped_device *md) 243 { 244 return md->use_blk_mq; 245 } 246 247 /* 248 * For mempools pre-allocation at the table loading time. 249 */ 250 struct dm_md_mempools { 251 mempool_t *io_pool; 252 mempool_t *rq_pool; 253 struct bio_set *bs; 254 }; 255 256 struct table_device { 257 struct list_head list; 258 atomic_t count; 259 struct dm_dev dm_dev; 260 }; 261 262 #define RESERVED_BIO_BASED_IOS 16 263 #define RESERVED_REQUEST_BASED_IOS 256 264 #define RESERVED_MAX_IOS 1024 265 static struct kmem_cache *_io_cache; 266 static struct kmem_cache *_rq_tio_cache; 267 static struct kmem_cache *_rq_cache; 268 269 /* 270 * Bio-based DM's mempools' reserved IOs set by the user. 271 */ 272 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 273 274 /* 275 * Request-based DM's mempools' reserved IOs set by the user. 276 */ 277 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 278 279 static unsigned __dm_get_module_param(unsigned *module_param, 280 unsigned def, unsigned max) 281 { 282 unsigned param = ACCESS_ONCE(*module_param); 283 unsigned modified_param = 0; 284 285 if (!param) 286 modified_param = def; 287 else if (param > max) 288 modified_param = max; 289 290 if (modified_param) { 291 (void)cmpxchg(module_param, param, modified_param); 292 param = modified_param; 293 } 294 295 return param; 296 } 297 298 unsigned dm_get_reserved_bio_based_ios(void) 299 { 300 return __dm_get_module_param(&reserved_bio_based_ios, 301 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 302 } 303 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 304 305 unsigned dm_get_reserved_rq_based_ios(void) 306 { 307 return __dm_get_module_param(&reserved_rq_based_ios, 308 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 309 } 310 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 311 312 static unsigned dm_get_blk_mq_nr_hw_queues(void) 313 { 314 return __dm_get_module_param(&dm_mq_nr_hw_queues, 1, 32); 315 } 316 317 static unsigned dm_get_blk_mq_queue_depth(void) 318 { 319 return __dm_get_module_param(&dm_mq_queue_depth, 320 DM_MQ_QUEUE_DEPTH, BLK_MQ_MAX_DEPTH); 321 } 322 323 static int __init local_init(void) 324 { 325 int r = -ENOMEM; 326 327 /* allocate a slab for the dm_ios */ 328 _io_cache = KMEM_CACHE(dm_io, 0); 329 if (!_io_cache) 330 return r; 331 332 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 333 if (!_rq_tio_cache) 334 goto out_free_io_cache; 335 336 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request), 337 __alignof__(struct request), 0, NULL); 338 if (!_rq_cache) 339 goto out_free_rq_tio_cache; 340 341 r = dm_uevent_init(); 342 if (r) 343 goto out_free_rq_cache; 344 345 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 346 if (!deferred_remove_workqueue) { 347 r = -ENOMEM; 348 goto out_uevent_exit; 349 } 350 351 _major = major; 352 r = register_blkdev(_major, _name); 353 if (r < 0) 354 goto out_free_workqueue; 355 356 if (!_major) 357 _major = r; 358 359 return 0; 360 361 out_free_workqueue: 362 destroy_workqueue(deferred_remove_workqueue); 363 out_uevent_exit: 364 dm_uevent_exit(); 365 out_free_rq_cache: 366 kmem_cache_destroy(_rq_cache); 367 out_free_rq_tio_cache: 368 kmem_cache_destroy(_rq_tio_cache); 369 out_free_io_cache: 370 kmem_cache_destroy(_io_cache); 371 372 return r; 373 } 374 375 static void local_exit(void) 376 { 377 flush_scheduled_work(); 378 destroy_workqueue(deferred_remove_workqueue); 379 380 kmem_cache_destroy(_rq_cache); 381 kmem_cache_destroy(_rq_tio_cache); 382 kmem_cache_destroy(_io_cache); 383 unregister_blkdev(_major, _name); 384 dm_uevent_exit(); 385 386 _major = 0; 387 388 DMINFO("cleaned up"); 389 } 390 391 static int (*_inits[])(void) __initdata = { 392 local_init, 393 dm_target_init, 394 dm_linear_init, 395 dm_stripe_init, 396 dm_io_init, 397 dm_kcopyd_init, 398 dm_interface_init, 399 dm_statistics_init, 400 }; 401 402 static void (*_exits[])(void) = { 403 local_exit, 404 dm_target_exit, 405 dm_linear_exit, 406 dm_stripe_exit, 407 dm_io_exit, 408 dm_kcopyd_exit, 409 dm_interface_exit, 410 dm_statistics_exit, 411 }; 412 413 static int __init dm_init(void) 414 { 415 const int count = ARRAY_SIZE(_inits); 416 417 int r, i; 418 419 for (i = 0; i < count; i++) { 420 r = _inits[i](); 421 if (r) 422 goto bad; 423 } 424 425 return 0; 426 427 bad: 428 while (i--) 429 _exits[i](); 430 431 return r; 432 } 433 434 static void __exit dm_exit(void) 435 { 436 int i = ARRAY_SIZE(_exits); 437 438 while (i--) 439 _exits[i](); 440 441 /* 442 * Should be empty by this point. 443 */ 444 idr_destroy(&_minor_idr); 445 } 446 447 /* 448 * Block device functions 449 */ 450 int dm_deleting_md(struct mapped_device *md) 451 { 452 return test_bit(DMF_DELETING, &md->flags); 453 } 454 455 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 456 { 457 struct mapped_device *md; 458 459 spin_lock(&_minor_lock); 460 461 md = bdev->bd_disk->private_data; 462 if (!md) 463 goto out; 464 465 if (test_bit(DMF_FREEING, &md->flags) || 466 dm_deleting_md(md)) { 467 md = NULL; 468 goto out; 469 } 470 471 dm_get(md); 472 atomic_inc(&md->open_count); 473 out: 474 spin_unlock(&_minor_lock); 475 476 return md ? 0 : -ENXIO; 477 } 478 479 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 480 { 481 struct mapped_device *md; 482 483 spin_lock(&_minor_lock); 484 485 md = disk->private_data; 486 if (WARN_ON(!md)) 487 goto out; 488 489 if (atomic_dec_and_test(&md->open_count) && 490 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 491 queue_work(deferred_remove_workqueue, &deferred_remove_work); 492 493 dm_put(md); 494 out: 495 spin_unlock(&_minor_lock); 496 } 497 498 int dm_open_count(struct mapped_device *md) 499 { 500 return atomic_read(&md->open_count); 501 } 502 503 /* 504 * Guarantees nothing is using the device before it's deleted. 505 */ 506 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 507 { 508 int r = 0; 509 510 spin_lock(&_minor_lock); 511 512 if (dm_open_count(md)) { 513 r = -EBUSY; 514 if (mark_deferred) 515 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 516 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 517 r = -EEXIST; 518 else 519 set_bit(DMF_DELETING, &md->flags); 520 521 spin_unlock(&_minor_lock); 522 523 return r; 524 } 525 526 int dm_cancel_deferred_remove(struct mapped_device *md) 527 { 528 int r = 0; 529 530 spin_lock(&_minor_lock); 531 532 if (test_bit(DMF_DELETING, &md->flags)) 533 r = -EBUSY; 534 else 535 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 536 537 spin_unlock(&_minor_lock); 538 539 return r; 540 } 541 542 static void do_deferred_remove(struct work_struct *w) 543 { 544 dm_deferred_remove(); 545 } 546 547 sector_t dm_get_size(struct mapped_device *md) 548 { 549 return get_capacity(md->disk); 550 } 551 552 struct request_queue *dm_get_md_queue(struct mapped_device *md) 553 { 554 return md->queue; 555 } 556 557 struct dm_stats *dm_get_stats(struct mapped_device *md) 558 { 559 return &md->stats; 560 } 561 562 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 563 { 564 struct mapped_device *md = bdev->bd_disk->private_data; 565 566 return dm_get_geometry(md, geo); 567 } 568 569 static int dm_grab_bdev_for_ioctl(struct mapped_device *md, 570 struct block_device **bdev, 571 fmode_t *mode) 572 { 573 struct dm_target *tgt; 574 struct dm_table *map; 575 int srcu_idx, r; 576 577 retry: 578 r = -ENOTTY; 579 map = dm_get_live_table(md, &srcu_idx); 580 if (!map || !dm_table_get_size(map)) 581 goto out; 582 583 /* We only support devices that have a single target */ 584 if (dm_table_get_num_targets(map) != 1) 585 goto out; 586 587 tgt = dm_table_get_target(map, 0); 588 if (!tgt->type->prepare_ioctl) 589 goto out; 590 591 if (dm_suspended_md(md)) { 592 r = -EAGAIN; 593 goto out; 594 } 595 596 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 597 if (r < 0) 598 goto out; 599 600 bdgrab(*bdev); 601 dm_put_live_table(md, srcu_idx); 602 return r; 603 604 out: 605 dm_put_live_table(md, srcu_idx); 606 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 607 msleep(10); 608 goto retry; 609 } 610 return r; 611 } 612 613 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 614 unsigned int cmd, unsigned long arg) 615 { 616 struct mapped_device *md = bdev->bd_disk->private_data; 617 int r; 618 619 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 620 if (r < 0) 621 return r; 622 623 if (r > 0) { 624 /* 625 * Target determined this ioctl is being issued against 626 * a logical partition of the parent bdev; so extra 627 * validation is needed. 628 */ 629 r = scsi_verify_blk_ioctl(NULL, cmd); 630 if (r) 631 goto out; 632 } 633 634 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 635 out: 636 bdput(bdev); 637 return r; 638 } 639 640 static struct dm_io *alloc_io(struct mapped_device *md) 641 { 642 return mempool_alloc(md->io_pool, GFP_NOIO); 643 } 644 645 static void free_io(struct mapped_device *md, struct dm_io *io) 646 { 647 mempool_free(io, md->io_pool); 648 } 649 650 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 651 { 652 bio_put(&tio->clone); 653 } 654 655 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 656 gfp_t gfp_mask) 657 { 658 return mempool_alloc(md->io_pool, gfp_mask); 659 } 660 661 static void free_rq_tio(struct dm_rq_target_io *tio) 662 { 663 mempool_free(tio, tio->md->io_pool); 664 } 665 666 static struct request *alloc_clone_request(struct mapped_device *md, 667 gfp_t gfp_mask) 668 { 669 return mempool_alloc(md->rq_pool, gfp_mask); 670 } 671 672 static void free_clone_request(struct mapped_device *md, struct request *rq) 673 { 674 mempool_free(rq, md->rq_pool); 675 } 676 677 static int md_in_flight(struct mapped_device *md) 678 { 679 return atomic_read(&md->pending[READ]) + 680 atomic_read(&md->pending[WRITE]); 681 } 682 683 static void start_io_acct(struct dm_io *io) 684 { 685 struct mapped_device *md = io->md; 686 struct bio *bio = io->bio; 687 int cpu; 688 int rw = bio_data_dir(bio); 689 690 io->start_time = jiffies; 691 692 cpu = part_stat_lock(); 693 part_round_stats(cpu, &dm_disk(md)->part0); 694 part_stat_unlock(); 695 atomic_set(&dm_disk(md)->part0.in_flight[rw], 696 atomic_inc_return(&md->pending[rw])); 697 698 if (unlikely(dm_stats_used(&md->stats))) 699 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 700 bio_sectors(bio), false, 0, &io->stats_aux); 701 } 702 703 static void end_io_acct(struct dm_io *io) 704 { 705 struct mapped_device *md = io->md; 706 struct bio *bio = io->bio; 707 unsigned long duration = jiffies - io->start_time; 708 int pending; 709 int rw = bio_data_dir(bio); 710 711 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 712 713 if (unlikely(dm_stats_used(&md->stats))) 714 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 715 bio_sectors(bio), true, duration, &io->stats_aux); 716 717 /* 718 * After this is decremented the bio must not be touched if it is 719 * a flush. 720 */ 721 pending = atomic_dec_return(&md->pending[rw]); 722 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 723 pending += atomic_read(&md->pending[rw^0x1]); 724 725 /* nudge anyone waiting on suspend queue */ 726 if (!pending) 727 wake_up(&md->wait); 728 } 729 730 /* 731 * Add the bio to the list of deferred io. 732 */ 733 static void queue_io(struct mapped_device *md, struct bio *bio) 734 { 735 unsigned long flags; 736 737 spin_lock_irqsave(&md->deferred_lock, flags); 738 bio_list_add(&md->deferred, bio); 739 spin_unlock_irqrestore(&md->deferred_lock, flags); 740 queue_work(md->wq, &md->work); 741 } 742 743 /* 744 * Everyone (including functions in this file), should use this 745 * function to access the md->map field, and make sure they call 746 * dm_put_live_table() when finished. 747 */ 748 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 749 { 750 *srcu_idx = srcu_read_lock(&md->io_barrier); 751 752 return srcu_dereference(md->map, &md->io_barrier); 753 } 754 755 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 756 { 757 srcu_read_unlock(&md->io_barrier, srcu_idx); 758 } 759 760 void dm_sync_table(struct mapped_device *md) 761 { 762 synchronize_srcu(&md->io_barrier); 763 synchronize_rcu_expedited(); 764 } 765 766 /* 767 * A fast alternative to dm_get_live_table/dm_put_live_table. 768 * The caller must not block between these two functions. 769 */ 770 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 771 { 772 rcu_read_lock(); 773 return rcu_dereference(md->map); 774 } 775 776 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 777 { 778 rcu_read_unlock(); 779 } 780 781 /* 782 * Open a table device so we can use it as a map destination. 783 */ 784 static int open_table_device(struct table_device *td, dev_t dev, 785 struct mapped_device *md) 786 { 787 static char *_claim_ptr = "I belong to device-mapper"; 788 struct block_device *bdev; 789 790 int r; 791 792 BUG_ON(td->dm_dev.bdev); 793 794 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 795 if (IS_ERR(bdev)) 796 return PTR_ERR(bdev); 797 798 r = bd_link_disk_holder(bdev, dm_disk(md)); 799 if (r) { 800 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 801 return r; 802 } 803 804 td->dm_dev.bdev = bdev; 805 return 0; 806 } 807 808 /* 809 * Close a table device that we've been using. 810 */ 811 static void close_table_device(struct table_device *td, struct mapped_device *md) 812 { 813 if (!td->dm_dev.bdev) 814 return; 815 816 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 817 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 818 td->dm_dev.bdev = NULL; 819 } 820 821 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 822 fmode_t mode) { 823 struct table_device *td; 824 825 list_for_each_entry(td, l, list) 826 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 827 return td; 828 829 return NULL; 830 } 831 832 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 833 struct dm_dev **result) { 834 int r; 835 struct table_device *td; 836 837 mutex_lock(&md->table_devices_lock); 838 td = find_table_device(&md->table_devices, dev, mode); 839 if (!td) { 840 td = kmalloc(sizeof(*td), GFP_KERNEL); 841 if (!td) { 842 mutex_unlock(&md->table_devices_lock); 843 return -ENOMEM; 844 } 845 846 td->dm_dev.mode = mode; 847 td->dm_dev.bdev = NULL; 848 849 if ((r = open_table_device(td, dev, md))) { 850 mutex_unlock(&md->table_devices_lock); 851 kfree(td); 852 return r; 853 } 854 855 format_dev_t(td->dm_dev.name, dev); 856 857 atomic_set(&td->count, 0); 858 list_add(&td->list, &md->table_devices); 859 } 860 atomic_inc(&td->count); 861 mutex_unlock(&md->table_devices_lock); 862 863 *result = &td->dm_dev; 864 return 0; 865 } 866 EXPORT_SYMBOL_GPL(dm_get_table_device); 867 868 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 869 { 870 struct table_device *td = container_of(d, struct table_device, dm_dev); 871 872 mutex_lock(&md->table_devices_lock); 873 if (atomic_dec_and_test(&td->count)) { 874 close_table_device(td, md); 875 list_del(&td->list); 876 kfree(td); 877 } 878 mutex_unlock(&md->table_devices_lock); 879 } 880 EXPORT_SYMBOL(dm_put_table_device); 881 882 static void free_table_devices(struct list_head *devices) 883 { 884 struct list_head *tmp, *next; 885 886 list_for_each_safe(tmp, next, devices) { 887 struct table_device *td = list_entry(tmp, struct table_device, list); 888 889 DMWARN("dm_destroy: %s still exists with %d references", 890 td->dm_dev.name, atomic_read(&td->count)); 891 kfree(td); 892 } 893 } 894 895 /* 896 * Get the geometry associated with a dm device 897 */ 898 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 899 { 900 *geo = md->geometry; 901 902 return 0; 903 } 904 905 /* 906 * Set the geometry of a device. 907 */ 908 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 909 { 910 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 911 912 if (geo->start > sz) { 913 DMWARN("Start sector is beyond the geometry limits."); 914 return -EINVAL; 915 } 916 917 md->geometry = *geo; 918 919 return 0; 920 } 921 922 /*----------------------------------------------------------------- 923 * CRUD START: 924 * A more elegant soln is in the works that uses the queue 925 * merge fn, unfortunately there are a couple of changes to 926 * the block layer that I want to make for this. So in the 927 * interests of getting something for people to use I give 928 * you this clearly demarcated crap. 929 *---------------------------------------------------------------*/ 930 931 static int __noflush_suspending(struct mapped_device *md) 932 { 933 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 934 } 935 936 /* 937 * Decrements the number of outstanding ios that a bio has been 938 * cloned into, completing the original io if necc. 939 */ 940 static void dec_pending(struct dm_io *io, int error) 941 { 942 unsigned long flags; 943 int io_error; 944 struct bio *bio; 945 struct mapped_device *md = io->md; 946 947 /* Push-back supersedes any I/O errors */ 948 if (unlikely(error)) { 949 spin_lock_irqsave(&io->endio_lock, flags); 950 if (!(io->error > 0 && __noflush_suspending(md))) 951 io->error = error; 952 spin_unlock_irqrestore(&io->endio_lock, flags); 953 } 954 955 if (atomic_dec_and_test(&io->io_count)) { 956 if (io->error == DM_ENDIO_REQUEUE) { 957 /* 958 * Target requested pushing back the I/O. 959 */ 960 spin_lock_irqsave(&md->deferred_lock, flags); 961 if (__noflush_suspending(md)) 962 bio_list_add_head(&md->deferred, io->bio); 963 else 964 /* noflush suspend was interrupted. */ 965 io->error = -EIO; 966 spin_unlock_irqrestore(&md->deferred_lock, flags); 967 } 968 969 io_error = io->error; 970 bio = io->bio; 971 end_io_acct(io); 972 free_io(md, io); 973 974 if (io_error == DM_ENDIO_REQUEUE) 975 return; 976 977 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 978 /* 979 * Preflush done for flush with data, reissue 980 * without REQ_FLUSH. 981 */ 982 bio->bi_rw &= ~REQ_FLUSH; 983 queue_io(md, bio); 984 } else { 985 /* done with normal IO or empty flush */ 986 trace_block_bio_complete(md->queue, bio, io_error); 987 bio->bi_error = io_error; 988 bio_endio(bio); 989 } 990 } 991 } 992 993 static void disable_write_same(struct mapped_device *md) 994 { 995 struct queue_limits *limits = dm_get_queue_limits(md); 996 997 /* device doesn't really support WRITE SAME, disable it */ 998 limits->max_write_same_sectors = 0; 999 } 1000 1001 static void clone_endio(struct bio *bio) 1002 { 1003 int error = bio->bi_error; 1004 int r = error; 1005 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1006 struct dm_io *io = tio->io; 1007 struct mapped_device *md = tio->io->md; 1008 dm_endio_fn endio = tio->ti->type->end_io; 1009 1010 if (endio) { 1011 r = endio(tio->ti, bio, error); 1012 if (r < 0 || r == DM_ENDIO_REQUEUE) 1013 /* 1014 * error and requeue request are handled 1015 * in dec_pending(). 1016 */ 1017 error = r; 1018 else if (r == DM_ENDIO_INCOMPLETE) 1019 /* The target will handle the io */ 1020 return; 1021 else if (r) { 1022 DMWARN("unimplemented target endio return value: %d", r); 1023 BUG(); 1024 } 1025 } 1026 1027 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) && 1028 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 1029 disable_write_same(md); 1030 1031 free_tio(md, tio); 1032 dec_pending(io, error); 1033 } 1034 1035 /* 1036 * Partial completion handling for request-based dm 1037 */ 1038 static void end_clone_bio(struct bio *clone) 1039 { 1040 struct dm_rq_clone_bio_info *info = 1041 container_of(clone, struct dm_rq_clone_bio_info, clone); 1042 struct dm_rq_target_io *tio = info->tio; 1043 struct bio *bio = info->orig; 1044 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 1045 int error = clone->bi_error; 1046 1047 bio_put(clone); 1048 1049 if (tio->error) 1050 /* 1051 * An error has already been detected on the request. 1052 * Once error occurred, just let clone->end_io() handle 1053 * the remainder. 1054 */ 1055 return; 1056 else if (error) { 1057 /* 1058 * Don't notice the error to the upper layer yet. 1059 * The error handling decision is made by the target driver, 1060 * when the request is completed. 1061 */ 1062 tio->error = error; 1063 return; 1064 } 1065 1066 /* 1067 * I/O for the bio successfully completed. 1068 * Notice the data completion to the upper layer. 1069 */ 1070 1071 /* 1072 * bios are processed from the head of the list. 1073 * So the completing bio should always be rq->bio. 1074 * If it's not, something wrong is happening. 1075 */ 1076 if (tio->orig->bio != bio) 1077 DMERR("bio completion is going in the middle of the request"); 1078 1079 /* 1080 * Update the original request. 1081 * Do not use blk_end_request() here, because it may complete 1082 * the original request before the clone, and break the ordering. 1083 */ 1084 blk_update_request(tio->orig, 0, nr_bytes); 1085 } 1086 1087 static struct dm_rq_target_io *tio_from_request(struct request *rq) 1088 { 1089 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special); 1090 } 1091 1092 static void rq_end_stats(struct mapped_device *md, struct request *orig) 1093 { 1094 if (unlikely(dm_stats_used(&md->stats))) { 1095 struct dm_rq_target_io *tio = tio_from_request(orig); 1096 tio->duration_jiffies = jiffies - tio->duration_jiffies; 1097 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig), 1098 tio->n_sectors, true, tio->duration_jiffies, 1099 &tio->stats_aux); 1100 } 1101 } 1102 1103 /* 1104 * Don't touch any member of the md after calling this function because 1105 * the md may be freed in dm_put() at the end of this function. 1106 * Or do dm_get() before calling this function and dm_put() later. 1107 */ 1108 static void rq_completed(struct mapped_device *md, int rw, bool run_queue) 1109 { 1110 atomic_dec(&md->pending[rw]); 1111 1112 /* nudge anyone waiting on suspend queue */ 1113 if (!md_in_flight(md)) 1114 wake_up(&md->wait); 1115 1116 /* 1117 * Run this off this callpath, as drivers could invoke end_io while 1118 * inside their request_fn (and holding the queue lock). Calling 1119 * back into ->request_fn() could deadlock attempting to grab the 1120 * queue lock again. 1121 */ 1122 if (!md->queue->mq_ops && run_queue) 1123 blk_run_queue_async(md->queue); 1124 1125 /* 1126 * dm_put() must be at the end of this function. See the comment above 1127 */ 1128 dm_put(md); 1129 } 1130 1131 static void free_rq_clone(struct request *clone) 1132 { 1133 struct dm_rq_target_io *tio = clone->end_io_data; 1134 struct mapped_device *md = tio->md; 1135 1136 blk_rq_unprep_clone(clone); 1137 1138 if (md->type == DM_TYPE_MQ_REQUEST_BASED) 1139 /* stacked on blk-mq queue(s) */ 1140 tio->ti->type->release_clone_rq(clone); 1141 else if (!md->queue->mq_ops) 1142 /* request_fn queue stacked on request_fn queue(s) */ 1143 free_clone_request(md, clone); 1144 /* 1145 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case: 1146 * no need to call free_clone_request() because we leverage blk-mq by 1147 * allocating the clone at the end of the blk-mq pdu (see: clone_rq) 1148 */ 1149 1150 if (!md->queue->mq_ops) 1151 free_rq_tio(tio); 1152 } 1153 1154 /* 1155 * Complete the clone and the original request. 1156 * Must be called without clone's queue lock held, 1157 * see end_clone_request() for more details. 1158 */ 1159 static void dm_end_request(struct request *clone, int error) 1160 { 1161 int rw = rq_data_dir(clone); 1162 struct dm_rq_target_io *tio = clone->end_io_data; 1163 struct mapped_device *md = tio->md; 1164 struct request *rq = tio->orig; 1165 1166 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 1167 rq->errors = clone->errors; 1168 rq->resid_len = clone->resid_len; 1169 1170 if (rq->sense) 1171 /* 1172 * We are using the sense buffer of the original 1173 * request. 1174 * So setting the length of the sense data is enough. 1175 */ 1176 rq->sense_len = clone->sense_len; 1177 } 1178 1179 free_rq_clone(clone); 1180 rq_end_stats(md, rq); 1181 if (!rq->q->mq_ops) 1182 blk_end_request_all(rq, error); 1183 else 1184 blk_mq_end_request(rq, error); 1185 rq_completed(md, rw, true); 1186 } 1187 1188 static void dm_unprep_request(struct request *rq) 1189 { 1190 struct dm_rq_target_io *tio = tio_from_request(rq); 1191 struct request *clone = tio->clone; 1192 1193 if (!rq->q->mq_ops) { 1194 rq->special = NULL; 1195 rq->cmd_flags &= ~REQ_DONTPREP; 1196 } 1197 1198 if (clone) 1199 free_rq_clone(clone); 1200 else if (!tio->md->queue->mq_ops) 1201 free_rq_tio(tio); 1202 } 1203 1204 /* 1205 * Requeue the original request of a clone. 1206 */ 1207 static void old_requeue_request(struct request *rq) 1208 { 1209 struct request_queue *q = rq->q; 1210 unsigned long flags; 1211 1212 spin_lock_irqsave(q->queue_lock, flags); 1213 blk_requeue_request(q, rq); 1214 blk_run_queue_async(q); 1215 spin_unlock_irqrestore(q->queue_lock, flags); 1216 } 1217 1218 static void dm_requeue_original_request(struct mapped_device *md, 1219 struct request *rq) 1220 { 1221 int rw = rq_data_dir(rq); 1222 1223 dm_unprep_request(rq); 1224 1225 rq_end_stats(md, rq); 1226 if (!rq->q->mq_ops) 1227 old_requeue_request(rq); 1228 else { 1229 blk_mq_requeue_request(rq); 1230 blk_mq_kick_requeue_list(rq->q); 1231 } 1232 1233 rq_completed(md, rw, false); 1234 } 1235 1236 static void old_stop_queue(struct request_queue *q) 1237 { 1238 unsigned long flags; 1239 1240 if (blk_queue_stopped(q)) 1241 return; 1242 1243 spin_lock_irqsave(q->queue_lock, flags); 1244 blk_stop_queue(q); 1245 spin_unlock_irqrestore(q->queue_lock, flags); 1246 } 1247 1248 static void stop_queue(struct request_queue *q) 1249 { 1250 if (!q->mq_ops) 1251 old_stop_queue(q); 1252 else 1253 blk_mq_stop_hw_queues(q); 1254 } 1255 1256 static void old_start_queue(struct request_queue *q) 1257 { 1258 unsigned long flags; 1259 1260 spin_lock_irqsave(q->queue_lock, flags); 1261 if (blk_queue_stopped(q)) 1262 blk_start_queue(q); 1263 spin_unlock_irqrestore(q->queue_lock, flags); 1264 } 1265 1266 static void start_queue(struct request_queue *q) 1267 { 1268 if (!q->mq_ops) 1269 old_start_queue(q); 1270 else 1271 blk_mq_start_stopped_hw_queues(q, true); 1272 } 1273 1274 static void dm_done(struct request *clone, int error, bool mapped) 1275 { 1276 int r = error; 1277 struct dm_rq_target_io *tio = clone->end_io_data; 1278 dm_request_endio_fn rq_end_io = NULL; 1279 1280 if (tio->ti) { 1281 rq_end_io = tio->ti->type->rq_end_io; 1282 1283 if (mapped && rq_end_io) 1284 r = rq_end_io(tio->ti, clone, error, &tio->info); 1285 } 1286 1287 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) && 1288 !clone->q->limits.max_write_same_sectors)) 1289 disable_write_same(tio->md); 1290 1291 if (r <= 0) 1292 /* The target wants to complete the I/O */ 1293 dm_end_request(clone, r); 1294 else if (r == DM_ENDIO_INCOMPLETE) 1295 /* The target will handle the I/O */ 1296 return; 1297 else if (r == DM_ENDIO_REQUEUE) 1298 /* The target wants to requeue the I/O */ 1299 dm_requeue_original_request(tio->md, tio->orig); 1300 else { 1301 DMWARN("unimplemented target endio return value: %d", r); 1302 BUG(); 1303 } 1304 } 1305 1306 /* 1307 * Request completion handler for request-based dm 1308 */ 1309 static void dm_softirq_done(struct request *rq) 1310 { 1311 bool mapped = true; 1312 struct dm_rq_target_io *tio = tio_from_request(rq); 1313 struct request *clone = tio->clone; 1314 int rw; 1315 1316 if (!clone) { 1317 rq_end_stats(tio->md, rq); 1318 rw = rq_data_dir(rq); 1319 if (!rq->q->mq_ops) { 1320 blk_end_request_all(rq, tio->error); 1321 rq_completed(tio->md, rw, false); 1322 free_rq_tio(tio); 1323 } else { 1324 blk_mq_end_request(rq, tio->error); 1325 rq_completed(tio->md, rw, false); 1326 } 1327 return; 1328 } 1329 1330 if (rq->cmd_flags & REQ_FAILED) 1331 mapped = false; 1332 1333 dm_done(clone, tio->error, mapped); 1334 } 1335 1336 /* 1337 * Complete the clone and the original request with the error status 1338 * through softirq context. 1339 */ 1340 static void dm_complete_request(struct request *rq, int error) 1341 { 1342 struct dm_rq_target_io *tio = tio_from_request(rq); 1343 1344 tio->error = error; 1345 if (!rq->q->mq_ops) 1346 blk_complete_request(rq); 1347 else 1348 blk_mq_complete_request(rq, error); 1349 } 1350 1351 /* 1352 * Complete the not-mapped clone and the original request with the error status 1353 * through softirq context. 1354 * Target's rq_end_io() function isn't called. 1355 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail. 1356 */ 1357 static void dm_kill_unmapped_request(struct request *rq, int error) 1358 { 1359 rq->cmd_flags |= REQ_FAILED; 1360 dm_complete_request(rq, error); 1361 } 1362 1363 /* 1364 * Called with the clone's queue lock held (for non-blk-mq) 1365 */ 1366 static void end_clone_request(struct request *clone, int error) 1367 { 1368 struct dm_rq_target_io *tio = clone->end_io_data; 1369 1370 if (!clone->q->mq_ops) { 1371 /* 1372 * For just cleaning up the information of the queue in which 1373 * the clone was dispatched. 1374 * The clone is *NOT* freed actually here because it is alloced 1375 * from dm own mempool (REQ_ALLOCED isn't set). 1376 */ 1377 __blk_put_request(clone->q, clone); 1378 } 1379 1380 /* 1381 * Actual request completion is done in a softirq context which doesn't 1382 * hold the clone's queue lock. Otherwise, deadlock could occur because: 1383 * - another request may be submitted by the upper level driver 1384 * of the stacking during the completion 1385 * - the submission which requires queue lock may be done 1386 * against this clone's queue 1387 */ 1388 dm_complete_request(tio->orig, error); 1389 } 1390 1391 /* 1392 * Return maximum size of I/O possible at the supplied sector up to the current 1393 * target boundary. 1394 */ 1395 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1396 { 1397 sector_t target_offset = dm_target_offset(ti, sector); 1398 1399 return ti->len - target_offset; 1400 } 1401 1402 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1403 { 1404 sector_t len = max_io_len_target_boundary(sector, ti); 1405 sector_t offset, max_len; 1406 1407 /* 1408 * Does the target need to split even further? 1409 */ 1410 if (ti->max_io_len) { 1411 offset = dm_target_offset(ti, sector); 1412 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1413 max_len = sector_div(offset, ti->max_io_len); 1414 else 1415 max_len = offset & (ti->max_io_len - 1); 1416 max_len = ti->max_io_len - max_len; 1417 1418 if (len > max_len) 1419 len = max_len; 1420 } 1421 1422 return len; 1423 } 1424 1425 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1426 { 1427 if (len > UINT_MAX) { 1428 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1429 (unsigned long long)len, UINT_MAX); 1430 ti->error = "Maximum size of target IO is too large"; 1431 return -EINVAL; 1432 } 1433 1434 ti->max_io_len = (uint32_t) len; 1435 1436 return 0; 1437 } 1438 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1439 1440 /* 1441 * A target may call dm_accept_partial_bio only from the map routine. It is 1442 * allowed for all bio types except REQ_FLUSH. 1443 * 1444 * dm_accept_partial_bio informs the dm that the target only wants to process 1445 * additional n_sectors sectors of the bio and the rest of the data should be 1446 * sent in a next bio. 1447 * 1448 * A diagram that explains the arithmetics: 1449 * +--------------------+---------------+-------+ 1450 * | 1 | 2 | 3 | 1451 * +--------------------+---------------+-------+ 1452 * 1453 * <-------------- *tio->len_ptr ---------------> 1454 * <------- bi_size -------> 1455 * <-- n_sectors --> 1456 * 1457 * Region 1 was already iterated over with bio_advance or similar function. 1458 * (it may be empty if the target doesn't use bio_advance) 1459 * Region 2 is the remaining bio size that the target wants to process. 1460 * (it may be empty if region 1 is non-empty, although there is no reason 1461 * to make it empty) 1462 * The target requires that region 3 is to be sent in the next bio. 1463 * 1464 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1465 * the partially processed part (the sum of regions 1+2) must be the same for all 1466 * copies of the bio. 1467 */ 1468 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1469 { 1470 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1471 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1472 BUG_ON(bio->bi_rw & REQ_FLUSH); 1473 BUG_ON(bi_size > *tio->len_ptr); 1474 BUG_ON(n_sectors > bi_size); 1475 *tio->len_ptr -= bi_size - n_sectors; 1476 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1477 } 1478 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1479 1480 static void __map_bio(struct dm_target_io *tio) 1481 { 1482 int r; 1483 sector_t sector; 1484 struct mapped_device *md; 1485 struct bio *clone = &tio->clone; 1486 struct dm_target *ti = tio->ti; 1487 1488 clone->bi_end_io = clone_endio; 1489 1490 /* 1491 * Map the clone. If r == 0 we don't need to do 1492 * anything, the target has assumed ownership of 1493 * this io. 1494 */ 1495 atomic_inc(&tio->io->io_count); 1496 sector = clone->bi_iter.bi_sector; 1497 r = ti->type->map(ti, clone); 1498 if (r == DM_MAPIO_REMAPPED) { 1499 /* the bio has been remapped so dispatch it */ 1500 1501 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1502 tio->io->bio->bi_bdev->bd_dev, sector); 1503 1504 generic_make_request(clone); 1505 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1506 /* error the io and bail out, or requeue it if needed */ 1507 md = tio->io->md; 1508 dec_pending(tio->io, r); 1509 free_tio(md, tio); 1510 } else if (r != DM_MAPIO_SUBMITTED) { 1511 DMWARN("unimplemented target map return value: %d", r); 1512 BUG(); 1513 } 1514 } 1515 1516 struct clone_info { 1517 struct mapped_device *md; 1518 struct dm_table *map; 1519 struct bio *bio; 1520 struct dm_io *io; 1521 sector_t sector; 1522 unsigned sector_count; 1523 }; 1524 1525 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1526 { 1527 bio->bi_iter.bi_sector = sector; 1528 bio->bi_iter.bi_size = to_bytes(len); 1529 } 1530 1531 /* 1532 * Creates a bio that consists of range of complete bvecs. 1533 */ 1534 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1535 sector_t sector, unsigned len) 1536 { 1537 struct bio *clone = &tio->clone; 1538 1539 __bio_clone_fast(clone, bio); 1540 1541 if (bio_integrity(bio)) 1542 bio_integrity_clone(clone, bio, GFP_NOIO); 1543 1544 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1545 clone->bi_iter.bi_size = to_bytes(len); 1546 1547 if (bio_integrity(bio)) 1548 bio_integrity_trim(clone, 0, len); 1549 } 1550 1551 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1552 struct dm_target *ti, 1553 unsigned target_bio_nr) 1554 { 1555 struct dm_target_io *tio; 1556 struct bio *clone; 1557 1558 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1559 tio = container_of(clone, struct dm_target_io, clone); 1560 1561 tio->io = ci->io; 1562 tio->ti = ti; 1563 tio->target_bio_nr = target_bio_nr; 1564 1565 return tio; 1566 } 1567 1568 static void __clone_and_map_simple_bio(struct clone_info *ci, 1569 struct dm_target *ti, 1570 unsigned target_bio_nr, unsigned *len) 1571 { 1572 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1573 struct bio *clone = &tio->clone; 1574 1575 tio->len_ptr = len; 1576 1577 __bio_clone_fast(clone, ci->bio); 1578 if (len) 1579 bio_setup_sector(clone, ci->sector, *len); 1580 1581 __map_bio(tio); 1582 } 1583 1584 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1585 unsigned num_bios, unsigned *len) 1586 { 1587 unsigned target_bio_nr; 1588 1589 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1590 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1591 } 1592 1593 static int __send_empty_flush(struct clone_info *ci) 1594 { 1595 unsigned target_nr = 0; 1596 struct dm_target *ti; 1597 1598 BUG_ON(bio_has_data(ci->bio)); 1599 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1600 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1601 1602 return 0; 1603 } 1604 1605 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1606 sector_t sector, unsigned *len) 1607 { 1608 struct bio *bio = ci->bio; 1609 struct dm_target_io *tio; 1610 unsigned target_bio_nr; 1611 unsigned num_target_bios = 1; 1612 1613 /* 1614 * Does the target want to receive duplicate copies of the bio? 1615 */ 1616 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1617 num_target_bios = ti->num_write_bios(ti, bio); 1618 1619 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1620 tio = alloc_tio(ci, ti, target_bio_nr); 1621 tio->len_ptr = len; 1622 clone_bio(tio, bio, sector, *len); 1623 __map_bio(tio); 1624 } 1625 } 1626 1627 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1628 1629 static unsigned get_num_discard_bios(struct dm_target *ti) 1630 { 1631 return ti->num_discard_bios; 1632 } 1633 1634 static unsigned get_num_write_same_bios(struct dm_target *ti) 1635 { 1636 return ti->num_write_same_bios; 1637 } 1638 1639 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1640 1641 static bool is_split_required_for_discard(struct dm_target *ti) 1642 { 1643 return ti->split_discard_bios; 1644 } 1645 1646 static int __send_changing_extent_only(struct clone_info *ci, 1647 get_num_bios_fn get_num_bios, 1648 is_split_required_fn is_split_required) 1649 { 1650 struct dm_target *ti; 1651 unsigned len; 1652 unsigned num_bios; 1653 1654 do { 1655 ti = dm_table_find_target(ci->map, ci->sector); 1656 if (!dm_target_is_valid(ti)) 1657 return -EIO; 1658 1659 /* 1660 * Even though the device advertised support for this type of 1661 * request, that does not mean every target supports it, and 1662 * reconfiguration might also have changed that since the 1663 * check was performed. 1664 */ 1665 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1666 if (!num_bios) 1667 return -EOPNOTSUPP; 1668 1669 if (is_split_required && !is_split_required(ti)) 1670 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1671 else 1672 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1673 1674 __send_duplicate_bios(ci, ti, num_bios, &len); 1675 1676 ci->sector += len; 1677 } while (ci->sector_count -= len); 1678 1679 return 0; 1680 } 1681 1682 static int __send_discard(struct clone_info *ci) 1683 { 1684 return __send_changing_extent_only(ci, get_num_discard_bios, 1685 is_split_required_for_discard); 1686 } 1687 1688 static int __send_write_same(struct clone_info *ci) 1689 { 1690 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1691 } 1692 1693 /* 1694 * Select the correct strategy for processing a non-flush bio. 1695 */ 1696 static int __split_and_process_non_flush(struct clone_info *ci) 1697 { 1698 struct bio *bio = ci->bio; 1699 struct dm_target *ti; 1700 unsigned len; 1701 1702 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1703 return __send_discard(ci); 1704 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1705 return __send_write_same(ci); 1706 1707 ti = dm_table_find_target(ci->map, ci->sector); 1708 if (!dm_target_is_valid(ti)) 1709 return -EIO; 1710 1711 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1712 1713 __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1714 1715 ci->sector += len; 1716 ci->sector_count -= len; 1717 1718 return 0; 1719 } 1720 1721 /* 1722 * Entry point to split a bio into clones and submit them to the targets. 1723 */ 1724 static void __split_and_process_bio(struct mapped_device *md, 1725 struct dm_table *map, struct bio *bio) 1726 { 1727 struct clone_info ci; 1728 int error = 0; 1729 1730 if (unlikely(!map)) { 1731 bio_io_error(bio); 1732 return; 1733 } 1734 1735 ci.map = map; 1736 ci.md = md; 1737 ci.io = alloc_io(md); 1738 ci.io->error = 0; 1739 atomic_set(&ci.io->io_count, 1); 1740 ci.io->bio = bio; 1741 ci.io->md = md; 1742 spin_lock_init(&ci.io->endio_lock); 1743 ci.sector = bio->bi_iter.bi_sector; 1744 1745 start_io_acct(ci.io); 1746 1747 if (bio->bi_rw & REQ_FLUSH) { 1748 ci.bio = &ci.md->flush_bio; 1749 ci.sector_count = 0; 1750 error = __send_empty_flush(&ci); 1751 /* dec_pending submits any data associated with flush */ 1752 } else { 1753 ci.bio = bio; 1754 ci.sector_count = bio_sectors(bio); 1755 while (ci.sector_count && !error) 1756 error = __split_and_process_non_flush(&ci); 1757 } 1758 1759 /* drop the extra reference count */ 1760 dec_pending(ci.io, error); 1761 } 1762 /*----------------------------------------------------------------- 1763 * CRUD END 1764 *---------------------------------------------------------------*/ 1765 1766 /* 1767 * The request function that just remaps the bio built up by 1768 * dm_merge_bvec. 1769 */ 1770 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1771 { 1772 int rw = bio_data_dir(bio); 1773 struct mapped_device *md = q->queuedata; 1774 int srcu_idx; 1775 struct dm_table *map; 1776 1777 map = dm_get_live_table(md, &srcu_idx); 1778 1779 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1780 1781 /* if we're suspended, we have to queue this io for later */ 1782 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1783 dm_put_live_table(md, srcu_idx); 1784 1785 if (bio_rw(bio) != READA) 1786 queue_io(md, bio); 1787 else 1788 bio_io_error(bio); 1789 return BLK_QC_T_NONE; 1790 } 1791 1792 __split_and_process_bio(md, map, bio); 1793 dm_put_live_table(md, srcu_idx); 1794 return BLK_QC_T_NONE; 1795 } 1796 1797 int dm_request_based(struct mapped_device *md) 1798 { 1799 return blk_queue_stackable(md->queue); 1800 } 1801 1802 static void dm_dispatch_clone_request(struct request *clone, struct request *rq) 1803 { 1804 int r; 1805 1806 if (blk_queue_io_stat(clone->q)) 1807 clone->cmd_flags |= REQ_IO_STAT; 1808 1809 clone->start_time = jiffies; 1810 r = blk_insert_cloned_request(clone->q, clone); 1811 if (r) 1812 /* must complete clone in terms of original request */ 1813 dm_complete_request(rq, r); 1814 } 1815 1816 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1817 void *data) 1818 { 1819 struct dm_rq_target_io *tio = data; 1820 struct dm_rq_clone_bio_info *info = 1821 container_of(bio, struct dm_rq_clone_bio_info, clone); 1822 1823 info->orig = bio_orig; 1824 info->tio = tio; 1825 bio->bi_end_io = end_clone_bio; 1826 1827 return 0; 1828 } 1829 1830 static int setup_clone(struct request *clone, struct request *rq, 1831 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1832 { 1833 int r; 1834 1835 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask, 1836 dm_rq_bio_constructor, tio); 1837 if (r) 1838 return r; 1839 1840 clone->cmd = rq->cmd; 1841 clone->cmd_len = rq->cmd_len; 1842 clone->sense = rq->sense; 1843 clone->end_io = end_clone_request; 1844 clone->end_io_data = tio; 1845 1846 tio->clone = clone; 1847 1848 return 0; 1849 } 1850 1851 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1852 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1853 { 1854 /* 1855 * Do not allocate a clone if tio->clone was already set 1856 * (see: dm_mq_queue_rq). 1857 */ 1858 bool alloc_clone = !tio->clone; 1859 struct request *clone; 1860 1861 if (alloc_clone) { 1862 clone = alloc_clone_request(md, gfp_mask); 1863 if (!clone) 1864 return NULL; 1865 } else 1866 clone = tio->clone; 1867 1868 blk_rq_init(NULL, clone); 1869 if (setup_clone(clone, rq, tio, gfp_mask)) { 1870 /* -ENOMEM */ 1871 if (alloc_clone) 1872 free_clone_request(md, clone); 1873 return NULL; 1874 } 1875 1876 return clone; 1877 } 1878 1879 static void map_tio_request(struct kthread_work *work); 1880 1881 static void init_tio(struct dm_rq_target_io *tio, struct request *rq, 1882 struct mapped_device *md) 1883 { 1884 tio->md = md; 1885 tio->ti = NULL; 1886 tio->clone = NULL; 1887 tio->orig = rq; 1888 tio->error = 0; 1889 memset(&tio->info, 0, sizeof(tio->info)); 1890 if (md->kworker_task) 1891 init_kthread_work(&tio->work, map_tio_request); 1892 } 1893 1894 static struct dm_rq_target_io *prep_tio(struct request *rq, 1895 struct mapped_device *md, gfp_t gfp_mask) 1896 { 1897 struct dm_rq_target_io *tio; 1898 int srcu_idx; 1899 struct dm_table *table; 1900 1901 tio = alloc_rq_tio(md, gfp_mask); 1902 if (!tio) 1903 return NULL; 1904 1905 init_tio(tio, rq, md); 1906 1907 table = dm_get_live_table(md, &srcu_idx); 1908 if (!dm_table_mq_request_based(table)) { 1909 if (!clone_rq(rq, md, tio, gfp_mask)) { 1910 dm_put_live_table(md, srcu_idx); 1911 free_rq_tio(tio); 1912 return NULL; 1913 } 1914 } 1915 dm_put_live_table(md, srcu_idx); 1916 1917 return tio; 1918 } 1919 1920 /* 1921 * Called with the queue lock held. 1922 */ 1923 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1924 { 1925 struct mapped_device *md = q->queuedata; 1926 struct dm_rq_target_io *tio; 1927 1928 if (unlikely(rq->special)) { 1929 DMWARN("Already has something in rq->special."); 1930 return BLKPREP_KILL; 1931 } 1932 1933 tio = prep_tio(rq, md, GFP_ATOMIC); 1934 if (!tio) 1935 return BLKPREP_DEFER; 1936 1937 rq->special = tio; 1938 rq->cmd_flags |= REQ_DONTPREP; 1939 1940 return BLKPREP_OK; 1941 } 1942 1943 /* 1944 * Returns: 1945 * 0 : the request has been processed 1946 * DM_MAPIO_REQUEUE : the original request needs to be requeued 1947 * < 0 : the request was completed due to failure 1948 */ 1949 static int map_request(struct dm_rq_target_io *tio, struct request *rq, 1950 struct mapped_device *md) 1951 { 1952 int r; 1953 struct dm_target *ti = tio->ti; 1954 struct request *clone = NULL; 1955 1956 if (tio->clone) { 1957 clone = tio->clone; 1958 r = ti->type->map_rq(ti, clone, &tio->info); 1959 } else { 1960 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone); 1961 if (r < 0) { 1962 /* The target wants to complete the I/O */ 1963 dm_kill_unmapped_request(rq, r); 1964 return r; 1965 } 1966 if (r != DM_MAPIO_REMAPPED) 1967 return r; 1968 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) { 1969 /* -ENOMEM */ 1970 ti->type->release_clone_rq(clone); 1971 return DM_MAPIO_REQUEUE; 1972 } 1973 } 1974 1975 switch (r) { 1976 case DM_MAPIO_SUBMITTED: 1977 /* The target has taken the I/O to submit by itself later */ 1978 break; 1979 case DM_MAPIO_REMAPPED: 1980 /* The target has remapped the I/O so dispatch it */ 1981 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1982 blk_rq_pos(rq)); 1983 dm_dispatch_clone_request(clone, rq); 1984 break; 1985 case DM_MAPIO_REQUEUE: 1986 /* The target wants to requeue the I/O */ 1987 dm_requeue_original_request(md, tio->orig); 1988 break; 1989 default: 1990 if (r > 0) { 1991 DMWARN("unimplemented target map return value: %d", r); 1992 BUG(); 1993 } 1994 1995 /* The target wants to complete the I/O */ 1996 dm_kill_unmapped_request(rq, r); 1997 return r; 1998 } 1999 2000 return 0; 2001 } 2002 2003 static void map_tio_request(struct kthread_work *work) 2004 { 2005 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work); 2006 struct request *rq = tio->orig; 2007 struct mapped_device *md = tio->md; 2008 2009 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) 2010 dm_requeue_original_request(md, rq); 2011 } 2012 2013 static void dm_start_request(struct mapped_device *md, struct request *orig) 2014 { 2015 if (!orig->q->mq_ops) 2016 blk_start_request(orig); 2017 else 2018 blk_mq_start_request(orig); 2019 atomic_inc(&md->pending[rq_data_dir(orig)]); 2020 2021 if (md->seq_rq_merge_deadline_usecs) { 2022 md->last_rq_pos = rq_end_sector(orig); 2023 md->last_rq_rw = rq_data_dir(orig); 2024 md->last_rq_start_time = ktime_get(); 2025 } 2026 2027 if (unlikely(dm_stats_used(&md->stats))) { 2028 struct dm_rq_target_io *tio = tio_from_request(orig); 2029 tio->duration_jiffies = jiffies; 2030 tio->n_sectors = blk_rq_sectors(orig); 2031 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig), 2032 tio->n_sectors, false, 0, &tio->stats_aux); 2033 } 2034 2035 /* 2036 * Hold the md reference here for the in-flight I/O. 2037 * We can't rely on the reference count by device opener, 2038 * because the device may be closed during the request completion 2039 * when all bios are completed. 2040 * See the comment in rq_completed() too. 2041 */ 2042 dm_get(md); 2043 } 2044 2045 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000 2046 2047 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf) 2048 { 2049 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs); 2050 } 2051 2052 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md, 2053 const char *buf, size_t count) 2054 { 2055 unsigned deadline; 2056 2057 if (!dm_request_based(md) || md->use_blk_mq) 2058 return count; 2059 2060 if (kstrtouint(buf, 10, &deadline)) 2061 return -EINVAL; 2062 2063 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS) 2064 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS; 2065 2066 md->seq_rq_merge_deadline_usecs = deadline; 2067 2068 return count; 2069 } 2070 2071 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md) 2072 { 2073 ktime_t kt_deadline; 2074 2075 if (!md->seq_rq_merge_deadline_usecs) 2076 return false; 2077 2078 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC); 2079 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline); 2080 2081 return !ktime_after(ktime_get(), kt_deadline); 2082 } 2083 2084 /* 2085 * q->request_fn for request-based dm. 2086 * Called with the queue lock held. 2087 */ 2088 static void dm_request_fn(struct request_queue *q) 2089 { 2090 struct mapped_device *md = q->queuedata; 2091 struct dm_target *ti = md->immutable_target; 2092 struct request *rq; 2093 struct dm_rq_target_io *tio; 2094 sector_t pos = 0; 2095 2096 if (unlikely(!ti)) { 2097 int srcu_idx; 2098 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2099 2100 ti = dm_table_find_target(map, pos); 2101 dm_put_live_table(md, srcu_idx); 2102 } 2103 2104 /* 2105 * For suspend, check blk_queue_stopped() and increment 2106 * ->pending within a single queue_lock not to increment the 2107 * number of in-flight I/Os after the queue is stopped in 2108 * dm_suspend(). 2109 */ 2110 while (!blk_queue_stopped(q)) { 2111 rq = blk_peek_request(q); 2112 if (!rq) 2113 return; 2114 2115 /* always use block 0 to find the target for flushes for now */ 2116 pos = 0; 2117 if (!(rq->cmd_flags & REQ_FLUSH)) 2118 pos = blk_rq_pos(rq); 2119 2120 if ((dm_request_peeked_before_merge_deadline(md) && 2121 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 && 2122 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) || 2123 (ti->type->busy && ti->type->busy(ti))) { 2124 blk_delay_queue(q, HZ / 100); 2125 return; 2126 } 2127 2128 dm_start_request(md, rq); 2129 2130 tio = tio_from_request(rq); 2131 /* Establish tio->ti before queuing work (map_tio_request) */ 2132 tio->ti = ti; 2133 queue_kthread_work(&md->kworker, &tio->work); 2134 BUG_ON(!irqs_disabled()); 2135 } 2136 } 2137 2138 static int dm_any_congested(void *congested_data, int bdi_bits) 2139 { 2140 int r = bdi_bits; 2141 struct mapped_device *md = congested_data; 2142 struct dm_table *map; 2143 2144 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2145 if (dm_request_based(md)) { 2146 /* 2147 * With request-based DM we only need to check the 2148 * top-level queue for congestion. 2149 */ 2150 r = md->queue->backing_dev_info.wb.state & bdi_bits; 2151 } else { 2152 map = dm_get_live_table_fast(md); 2153 if (map) 2154 r = dm_table_any_congested(map, bdi_bits); 2155 dm_put_live_table_fast(md); 2156 } 2157 } 2158 2159 return r; 2160 } 2161 2162 /*----------------------------------------------------------------- 2163 * An IDR is used to keep track of allocated minor numbers. 2164 *---------------------------------------------------------------*/ 2165 static void free_minor(int minor) 2166 { 2167 spin_lock(&_minor_lock); 2168 idr_remove(&_minor_idr, minor); 2169 spin_unlock(&_minor_lock); 2170 } 2171 2172 /* 2173 * See if the device with a specific minor # is free. 2174 */ 2175 static int specific_minor(int minor) 2176 { 2177 int r; 2178 2179 if (minor >= (1 << MINORBITS)) 2180 return -EINVAL; 2181 2182 idr_preload(GFP_KERNEL); 2183 spin_lock(&_minor_lock); 2184 2185 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2186 2187 spin_unlock(&_minor_lock); 2188 idr_preload_end(); 2189 if (r < 0) 2190 return r == -ENOSPC ? -EBUSY : r; 2191 return 0; 2192 } 2193 2194 static int next_free_minor(int *minor) 2195 { 2196 int r; 2197 2198 idr_preload(GFP_KERNEL); 2199 spin_lock(&_minor_lock); 2200 2201 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2202 2203 spin_unlock(&_minor_lock); 2204 idr_preload_end(); 2205 if (r < 0) 2206 return r; 2207 *minor = r; 2208 return 0; 2209 } 2210 2211 static const struct block_device_operations dm_blk_dops; 2212 2213 static void dm_wq_work(struct work_struct *work); 2214 2215 static void dm_init_md_queue(struct mapped_device *md) 2216 { 2217 /* 2218 * Request-based dm devices cannot be stacked on top of bio-based dm 2219 * devices. The type of this dm device may not have been decided yet. 2220 * The type is decided at the first table loading time. 2221 * To prevent problematic device stacking, clear the queue flag 2222 * for request stacking support until then. 2223 * 2224 * This queue is new, so no concurrency on the queue_flags. 2225 */ 2226 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 2227 2228 /* 2229 * Initialize data that will only be used by a non-blk-mq DM queue 2230 * - must do so here (in alloc_dev callchain) before queue is used 2231 */ 2232 md->queue->queuedata = md; 2233 md->queue->backing_dev_info.congested_data = md; 2234 } 2235 2236 static void dm_init_old_md_queue(struct mapped_device *md) 2237 { 2238 md->use_blk_mq = false; 2239 dm_init_md_queue(md); 2240 2241 /* 2242 * Initialize aspects of queue that aren't relevant for blk-mq 2243 */ 2244 md->queue->backing_dev_info.congested_fn = dm_any_congested; 2245 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 2246 } 2247 2248 static void cleanup_mapped_device(struct mapped_device *md) 2249 { 2250 if (md->wq) 2251 destroy_workqueue(md->wq); 2252 if (md->kworker_task) 2253 kthread_stop(md->kworker_task); 2254 mempool_destroy(md->io_pool); 2255 mempool_destroy(md->rq_pool); 2256 if (md->bs) 2257 bioset_free(md->bs); 2258 2259 cleanup_srcu_struct(&md->io_barrier); 2260 2261 if (md->disk) { 2262 spin_lock(&_minor_lock); 2263 md->disk->private_data = NULL; 2264 spin_unlock(&_minor_lock); 2265 del_gendisk(md->disk); 2266 put_disk(md->disk); 2267 } 2268 2269 if (md->queue) 2270 blk_cleanup_queue(md->queue); 2271 2272 if (md->bdev) { 2273 bdput(md->bdev); 2274 md->bdev = NULL; 2275 } 2276 } 2277 2278 /* 2279 * Allocate and initialise a blank device with a given minor. 2280 */ 2281 static struct mapped_device *alloc_dev(int minor) 2282 { 2283 int r; 2284 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 2285 void *old_md; 2286 2287 if (!md) { 2288 DMWARN("unable to allocate device, out of memory."); 2289 return NULL; 2290 } 2291 2292 if (!try_module_get(THIS_MODULE)) 2293 goto bad_module_get; 2294 2295 /* get a minor number for the dev */ 2296 if (minor == DM_ANY_MINOR) 2297 r = next_free_minor(&minor); 2298 else 2299 r = specific_minor(minor); 2300 if (r < 0) 2301 goto bad_minor; 2302 2303 r = init_srcu_struct(&md->io_barrier); 2304 if (r < 0) 2305 goto bad_io_barrier; 2306 2307 md->use_blk_mq = use_blk_mq; 2308 md->type = DM_TYPE_NONE; 2309 mutex_init(&md->suspend_lock); 2310 mutex_init(&md->type_lock); 2311 mutex_init(&md->table_devices_lock); 2312 spin_lock_init(&md->deferred_lock); 2313 atomic_set(&md->holders, 1); 2314 atomic_set(&md->open_count, 0); 2315 atomic_set(&md->event_nr, 0); 2316 atomic_set(&md->uevent_seq, 0); 2317 INIT_LIST_HEAD(&md->uevent_list); 2318 INIT_LIST_HEAD(&md->table_devices); 2319 spin_lock_init(&md->uevent_lock); 2320 2321 md->queue = blk_alloc_queue(GFP_KERNEL); 2322 if (!md->queue) 2323 goto bad; 2324 2325 dm_init_md_queue(md); 2326 2327 md->disk = alloc_disk(1); 2328 if (!md->disk) 2329 goto bad; 2330 2331 atomic_set(&md->pending[0], 0); 2332 atomic_set(&md->pending[1], 0); 2333 init_waitqueue_head(&md->wait); 2334 INIT_WORK(&md->work, dm_wq_work); 2335 init_waitqueue_head(&md->eventq); 2336 init_completion(&md->kobj_holder.completion); 2337 md->kworker_task = NULL; 2338 2339 md->disk->major = _major; 2340 md->disk->first_minor = minor; 2341 md->disk->fops = &dm_blk_dops; 2342 md->disk->queue = md->queue; 2343 md->disk->private_data = md; 2344 sprintf(md->disk->disk_name, "dm-%d", minor); 2345 add_disk(md->disk); 2346 format_dev_t(md->name, MKDEV(_major, minor)); 2347 2348 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2349 if (!md->wq) 2350 goto bad; 2351 2352 md->bdev = bdget_disk(md->disk, 0); 2353 if (!md->bdev) 2354 goto bad; 2355 2356 bio_init(&md->flush_bio); 2357 md->flush_bio.bi_bdev = md->bdev; 2358 md->flush_bio.bi_rw = WRITE_FLUSH; 2359 2360 dm_stats_init(&md->stats); 2361 2362 /* Populate the mapping, nobody knows we exist yet */ 2363 spin_lock(&_minor_lock); 2364 old_md = idr_replace(&_minor_idr, md, minor); 2365 spin_unlock(&_minor_lock); 2366 2367 BUG_ON(old_md != MINOR_ALLOCED); 2368 2369 return md; 2370 2371 bad: 2372 cleanup_mapped_device(md); 2373 bad_io_barrier: 2374 free_minor(minor); 2375 bad_minor: 2376 module_put(THIS_MODULE); 2377 bad_module_get: 2378 kfree(md); 2379 return NULL; 2380 } 2381 2382 static void unlock_fs(struct mapped_device *md); 2383 2384 static void free_dev(struct mapped_device *md) 2385 { 2386 int minor = MINOR(disk_devt(md->disk)); 2387 2388 unlock_fs(md); 2389 2390 cleanup_mapped_device(md); 2391 if (md->tag_set) { 2392 blk_mq_free_tag_set(md->tag_set); 2393 kfree(md->tag_set); 2394 } 2395 2396 free_table_devices(&md->table_devices); 2397 dm_stats_cleanup(&md->stats); 2398 free_minor(minor); 2399 2400 module_put(THIS_MODULE); 2401 kfree(md); 2402 } 2403 2404 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 2405 { 2406 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2407 2408 if (md->bs) { 2409 /* The md already has necessary mempools. */ 2410 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 2411 /* 2412 * Reload bioset because front_pad may have changed 2413 * because a different table was loaded. 2414 */ 2415 bioset_free(md->bs); 2416 md->bs = p->bs; 2417 p->bs = NULL; 2418 } 2419 /* 2420 * There's no need to reload with request-based dm 2421 * because the size of front_pad doesn't change. 2422 * Note for future: If you are to reload bioset, 2423 * prep-ed requests in the queue may refer 2424 * to bio from the old bioset, so you must walk 2425 * through the queue to unprep. 2426 */ 2427 goto out; 2428 } 2429 2430 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs); 2431 2432 md->io_pool = p->io_pool; 2433 p->io_pool = NULL; 2434 md->rq_pool = p->rq_pool; 2435 p->rq_pool = NULL; 2436 md->bs = p->bs; 2437 p->bs = NULL; 2438 2439 out: 2440 /* mempool bind completed, no longer need any mempools in the table */ 2441 dm_table_free_md_mempools(t); 2442 } 2443 2444 /* 2445 * Bind a table to the device. 2446 */ 2447 static void event_callback(void *context) 2448 { 2449 unsigned long flags; 2450 LIST_HEAD(uevents); 2451 struct mapped_device *md = (struct mapped_device *) context; 2452 2453 spin_lock_irqsave(&md->uevent_lock, flags); 2454 list_splice_init(&md->uevent_list, &uevents); 2455 spin_unlock_irqrestore(&md->uevent_lock, flags); 2456 2457 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2458 2459 atomic_inc(&md->event_nr); 2460 wake_up(&md->eventq); 2461 } 2462 2463 /* 2464 * Protected by md->suspend_lock obtained by dm_swap_table(). 2465 */ 2466 static void __set_size(struct mapped_device *md, sector_t size) 2467 { 2468 set_capacity(md->disk, size); 2469 2470 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2471 } 2472 2473 /* 2474 * Returns old map, which caller must destroy. 2475 */ 2476 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2477 struct queue_limits *limits) 2478 { 2479 struct dm_table *old_map; 2480 struct request_queue *q = md->queue; 2481 sector_t size; 2482 2483 size = dm_table_get_size(t); 2484 2485 /* 2486 * Wipe any geometry if the size of the table changed. 2487 */ 2488 if (size != dm_get_size(md)) 2489 memset(&md->geometry, 0, sizeof(md->geometry)); 2490 2491 __set_size(md, size); 2492 2493 dm_table_event_callback(t, event_callback, md); 2494 2495 /* 2496 * The queue hasn't been stopped yet, if the old table type wasn't 2497 * for request-based during suspension. So stop it to prevent 2498 * I/O mapping before resume. 2499 * This must be done before setting the queue restrictions, 2500 * because request-based dm may be run just after the setting. 2501 */ 2502 if (dm_table_request_based(t)) { 2503 stop_queue(q); 2504 /* 2505 * Leverage the fact that request-based DM targets are 2506 * immutable singletons and establish md->immutable_target 2507 * - used to optimize both dm_request_fn and dm_mq_queue_rq 2508 */ 2509 md->immutable_target = dm_table_get_immutable_target(t); 2510 } 2511 2512 __bind_mempools(md, t); 2513 2514 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2515 rcu_assign_pointer(md->map, t); 2516 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2517 2518 dm_table_set_restrictions(t, q, limits); 2519 if (old_map) 2520 dm_sync_table(md); 2521 2522 return old_map; 2523 } 2524 2525 /* 2526 * Returns unbound table for the caller to free. 2527 */ 2528 static struct dm_table *__unbind(struct mapped_device *md) 2529 { 2530 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2531 2532 if (!map) 2533 return NULL; 2534 2535 dm_table_event_callback(map, NULL, NULL); 2536 RCU_INIT_POINTER(md->map, NULL); 2537 dm_sync_table(md); 2538 2539 return map; 2540 } 2541 2542 /* 2543 * Constructor for a new device. 2544 */ 2545 int dm_create(int minor, struct mapped_device **result) 2546 { 2547 struct mapped_device *md; 2548 2549 md = alloc_dev(minor); 2550 if (!md) 2551 return -ENXIO; 2552 2553 dm_sysfs_init(md); 2554 2555 *result = md; 2556 return 0; 2557 } 2558 2559 /* 2560 * Functions to manage md->type. 2561 * All are required to hold md->type_lock. 2562 */ 2563 void dm_lock_md_type(struct mapped_device *md) 2564 { 2565 mutex_lock(&md->type_lock); 2566 } 2567 2568 void dm_unlock_md_type(struct mapped_device *md) 2569 { 2570 mutex_unlock(&md->type_lock); 2571 } 2572 2573 void dm_set_md_type(struct mapped_device *md, unsigned type) 2574 { 2575 BUG_ON(!mutex_is_locked(&md->type_lock)); 2576 md->type = type; 2577 } 2578 2579 unsigned dm_get_md_type(struct mapped_device *md) 2580 { 2581 return md->type; 2582 } 2583 2584 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2585 { 2586 return md->immutable_target_type; 2587 } 2588 2589 /* 2590 * The queue_limits are only valid as long as you have a reference 2591 * count on 'md'. 2592 */ 2593 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2594 { 2595 BUG_ON(!atomic_read(&md->holders)); 2596 return &md->queue->limits; 2597 } 2598 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2599 2600 static void init_rq_based_worker_thread(struct mapped_device *md) 2601 { 2602 /* Initialize the request-based DM worker thread */ 2603 init_kthread_worker(&md->kworker); 2604 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker, 2605 "kdmwork-%s", dm_device_name(md)); 2606 } 2607 2608 /* 2609 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2610 */ 2611 static int dm_init_request_based_queue(struct mapped_device *md) 2612 { 2613 struct request_queue *q = NULL; 2614 2615 /* Fully initialize the queue */ 2616 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2617 if (!q) 2618 return -EINVAL; 2619 2620 /* disable dm_request_fn's merge heuristic by default */ 2621 md->seq_rq_merge_deadline_usecs = 0; 2622 2623 md->queue = q; 2624 dm_init_old_md_queue(md); 2625 blk_queue_softirq_done(md->queue, dm_softirq_done); 2626 blk_queue_prep_rq(md->queue, dm_prep_fn); 2627 2628 init_rq_based_worker_thread(md); 2629 2630 elv_register_queue(md->queue); 2631 2632 return 0; 2633 } 2634 2635 static int dm_mq_init_request(void *data, struct request *rq, 2636 unsigned int hctx_idx, unsigned int request_idx, 2637 unsigned int numa_node) 2638 { 2639 struct mapped_device *md = data; 2640 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2641 2642 /* 2643 * Must initialize md member of tio, otherwise it won't 2644 * be available in dm_mq_queue_rq. 2645 */ 2646 tio->md = md; 2647 2648 return 0; 2649 } 2650 2651 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 2652 const struct blk_mq_queue_data *bd) 2653 { 2654 struct request *rq = bd->rq; 2655 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2656 struct mapped_device *md = tio->md; 2657 struct dm_target *ti = md->immutable_target; 2658 2659 if (unlikely(!ti)) { 2660 int srcu_idx; 2661 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2662 2663 ti = dm_table_find_target(map, 0); 2664 dm_put_live_table(md, srcu_idx); 2665 } 2666 2667 if (ti->type->busy && ti->type->busy(ti)) 2668 return BLK_MQ_RQ_QUEUE_BUSY; 2669 2670 dm_start_request(md, rq); 2671 2672 /* Init tio using md established in .init_request */ 2673 init_tio(tio, rq, md); 2674 2675 /* 2676 * Establish tio->ti before queuing work (map_tio_request) 2677 * or making direct call to map_request(). 2678 */ 2679 tio->ti = ti; 2680 2681 /* 2682 * Both the table and md type cannot change after initial table load 2683 */ 2684 if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) { 2685 /* clone request is allocated at the end of the pdu */ 2686 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io); 2687 (void) clone_rq(rq, md, tio, GFP_ATOMIC); 2688 queue_kthread_work(&md->kworker, &tio->work); 2689 } else { 2690 /* Direct call is fine since .queue_rq allows allocations */ 2691 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) { 2692 /* Undo dm_start_request() before requeuing */ 2693 rq_end_stats(md, rq); 2694 rq_completed(md, rq_data_dir(rq), false); 2695 return BLK_MQ_RQ_QUEUE_BUSY; 2696 } 2697 } 2698 2699 return BLK_MQ_RQ_QUEUE_OK; 2700 } 2701 2702 static struct blk_mq_ops dm_mq_ops = { 2703 .queue_rq = dm_mq_queue_rq, 2704 .map_queue = blk_mq_map_queue, 2705 .complete = dm_softirq_done, 2706 .init_request = dm_mq_init_request, 2707 }; 2708 2709 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md) 2710 { 2711 unsigned md_type = dm_get_md_type(md); 2712 struct request_queue *q; 2713 int err; 2714 2715 md->tag_set = kzalloc(sizeof(struct blk_mq_tag_set), GFP_KERNEL); 2716 if (!md->tag_set) 2717 return -ENOMEM; 2718 2719 md->tag_set->ops = &dm_mq_ops; 2720 md->tag_set->queue_depth = dm_get_blk_mq_queue_depth(); 2721 md->tag_set->numa_node = NUMA_NO_NODE; 2722 md->tag_set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2723 md->tag_set->nr_hw_queues = dm_get_blk_mq_nr_hw_queues(); 2724 md->tag_set->driver_data = md; 2725 2726 md->tag_set->cmd_size = sizeof(struct dm_rq_target_io); 2727 if (md_type == DM_TYPE_REQUEST_BASED) { 2728 /* put the memory for non-blk-mq clone at the end of the pdu */ 2729 md->tag_set->cmd_size += sizeof(struct request); 2730 } 2731 2732 err = blk_mq_alloc_tag_set(md->tag_set); 2733 if (err) 2734 goto out_kfree_tag_set; 2735 2736 q = blk_mq_init_allocated_queue(md->tag_set, md->queue); 2737 if (IS_ERR(q)) { 2738 err = PTR_ERR(q); 2739 goto out_tag_set; 2740 } 2741 md->queue = q; 2742 dm_init_md_queue(md); 2743 2744 /* backfill 'mq' sysfs registration normally done in blk_register_queue */ 2745 blk_mq_register_disk(md->disk); 2746 2747 if (md_type == DM_TYPE_REQUEST_BASED) 2748 init_rq_based_worker_thread(md); 2749 2750 return 0; 2751 2752 out_tag_set: 2753 blk_mq_free_tag_set(md->tag_set); 2754 out_kfree_tag_set: 2755 kfree(md->tag_set); 2756 2757 return err; 2758 } 2759 2760 static unsigned filter_md_type(unsigned type, struct mapped_device *md) 2761 { 2762 if (type == DM_TYPE_BIO_BASED) 2763 return type; 2764 2765 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED; 2766 } 2767 2768 /* 2769 * Setup the DM device's queue based on md's type 2770 */ 2771 int dm_setup_md_queue(struct mapped_device *md) 2772 { 2773 int r; 2774 unsigned md_type = filter_md_type(dm_get_md_type(md), md); 2775 2776 switch (md_type) { 2777 case DM_TYPE_REQUEST_BASED: 2778 r = dm_init_request_based_queue(md); 2779 if (r) { 2780 DMWARN("Cannot initialize queue for request-based mapped device"); 2781 return r; 2782 } 2783 break; 2784 case DM_TYPE_MQ_REQUEST_BASED: 2785 r = dm_init_request_based_blk_mq_queue(md); 2786 if (r) { 2787 DMWARN("Cannot initialize queue for request-based blk-mq mapped device"); 2788 return r; 2789 } 2790 break; 2791 case DM_TYPE_BIO_BASED: 2792 dm_init_old_md_queue(md); 2793 blk_queue_make_request(md->queue, dm_make_request); 2794 /* 2795 * DM handles splitting bios as needed. Free the bio_split bioset 2796 * since it won't be used (saves 1 process per bio-based DM device). 2797 */ 2798 bioset_free(md->queue->bio_split); 2799 md->queue->bio_split = NULL; 2800 break; 2801 } 2802 2803 return 0; 2804 } 2805 2806 struct mapped_device *dm_get_md(dev_t dev) 2807 { 2808 struct mapped_device *md; 2809 unsigned minor = MINOR(dev); 2810 2811 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2812 return NULL; 2813 2814 spin_lock(&_minor_lock); 2815 2816 md = idr_find(&_minor_idr, minor); 2817 if (md) { 2818 if ((md == MINOR_ALLOCED || 2819 (MINOR(disk_devt(dm_disk(md))) != minor) || 2820 dm_deleting_md(md) || 2821 test_bit(DMF_FREEING, &md->flags))) { 2822 md = NULL; 2823 goto out; 2824 } 2825 dm_get(md); 2826 } 2827 2828 out: 2829 spin_unlock(&_minor_lock); 2830 2831 return md; 2832 } 2833 EXPORT_SYMBOL_GPL(dm_get_md); 2834 2835 void *dm_get_mdptr(struct mapped_device *md) 2836 { 2837 return md->interface_ptr; 2838 } 2839 2840 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2841 { 2842 md->interface_ptr = ptr; 2843 } 2844 2845 void dm_get(struct mapped_device *md) 2846 { 2847 atomic_inc(&md->holders); 2848 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2849 } 2850 2851 int dm_hold(struct mapped_device *md) 2852 { 2853 spin_lock(&_minor_lock); 2854 if (test_bit(DMF_FREEING, &md->flags)) { 2855 spin_unlock(&_minor_lock); 2856 return -EBUSY; 2857 } 2858 dm_get(md); 2859 spin_unlock(&_minor_lock); 2860 return 0; 2861 } 2862 EXPORT_SYMBOL_GPL(dm_hold); 2863 2864 const char *dm_device_name(struct mapped_device *md) 2865 { 2866 return md->name; 2867 } 2868 EXPORT_SYMBOL_GPL(dm_device_name); 2869 2870 static void __dm_destroy(struct mapped_device *md, bool wait) 2871 { 2872 struct dm_table *map; 2873 int srcu_idx; 2874 2875 might_sleep(); 2876 2877 spin_lock(&_minor_lock); 2878 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2879 set_bit(DMF_FREEING, &md->flags); 2880 spin_unlock(&_minor_lock); 2881 2882 if (dm_request_based(md) && md->kworker_task) 2883 flush_kthread_worker(&md->kworker); 2884 2885 /* 2886 * Take suspend_lock so that presuspend and postsuspend methods 2887 * do not race with internal suspend. 2888 */ 2889 mutex_lock(&md->suspend_lock); 2890 map = dm_get_live_table(md, &srcu_idx); 2891 if (!dm_suspended_md(md)) { 2892 dm_table_presuspend_targets(map); 2893 dm_table_postsuspend_targets(map); 2894 } 2895 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2896 dm_put_live_table(md, srcu_idx); 2897 mutex_unlock(&md->suspend_lock); 2898 2899 /* 2900 * Rare, but there may be I/O requests still going to complete, 2901 * for example. Wait for all references to disappear. 2902 * No one should increment the reference count of the mapped_device, 2903 * after the mapped_device state becomes DMF_FREEING. 2904 */ 2905 if (wait) 2906 while (atomic_read(&md->holders)) 2907 msleep(1); 2908 else if (atomic_read(&md->holders)) 2909 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2910 dm_device_name(md), atomic_read(&md->holders)); 2911 2912 dm_sysfs_exit(md); 2913 dm_table_destroy(__unbind(md)); 2914 free_dev(md); 2915 } 2916 2917 void dm_destroy(struct mapped_device *md) 2918 { 2919 __dm_destroy(md, true); 2920 } 2921 2922 void dm_destroy_immediate(struct mapped_device *md) 2923 { 2924 __dm_destroy(md, false); 2925 } 2926 2927 void dm_put(struct mapped_device *md) 2928 { 2929 atomic_dec(&md->holders); 2930 } 2931 EXPORT_SYMBOL_GPL(dm_put); 2932 2933 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2934 { 2935 int r = 0; 2936 DECLARE_WAITQUEUE(wait, current); 2937 2938 add_wait_queue(&md->wait, &wait); 2939 2940 while (1) { 2941 set_current_state(interruptible); 2942 2943 if (!md_in_flight(md)) 2944 break; 2945 2946 if (interruptible == TASK_INTERRUPTIBLE && 2947 signal_pending(current)) { 2948 r = -EINTR; 2949 break; 2950 } 2951 2952 io_schedule(); 2953 } 2954 set_current_state(TASK_RUNNING); 2955 2956 remove_wait_queue(&md->wait, &wait); 2957 2958 return r; 2959 } 2960 2961 /* 2962 * Process the deferred bios 2963 */ 2964 static void dm_wq_work(struct work_struct *work) 2965 { 2966 struct mapped_device *md = container_of(work, struct mapped_device, 2967 work); 2968 struct bio *c; 2969 int srcu_idx; 2970 struct dm_table *map; 2971 2972 map = dm_get_live_table(md, &srcu_idx); 2973 2974 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2975 spin_lock_irq(&md->deferred_lock); 2976 c = bio_list_pop(&md->deferred); 2977 spin_unlock_irq(&md->deferred_lock); 2978 2979 if (!c) 2980 break; 2981 2982 if (dm_request_based(md)) 2983 generic_make_request(c); 2984 else 2985 __split_and_process_bio(md, map, c); 2986 } 2987 2988 dm_put_live_table(md, srcu_idx); 2989 } 2990 2991 static void dm_queue_flush(struct mapped_device *md) 2992 { 2993 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2994 smp_mb__after_atomic(); 2995 queue_work(md->wq, &md->work); 2996 } 2997 2998 /* 2999 * Swap in a new table, returning the old one for the caller to destroy. 3000 */ 3001 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 3002 { 3003 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 3004 struct queue_limits limits; 3005 int r; 3006 3007 mutex_lock(&md->suspend_lock); 3008 3009 /* device must be suspended */ 3010 if (!dm_suspended_md(md)) 3011 goto out; 3012 3013 /* 3014 * If the new table has no data devices, retain the existing limits. 3015 * This helps multipath with queue_if_no_path if all paths disappear, 3016 * then new I/O is queued based on these limits, and then some paths 3017 * reappear. 3018 */ 3019 if (dm_table_has_no_data_devices(table)) { 3020 live_map = dm_get_live_table_fast(md); 3021 if (live_map) 3022 limits = md->queue->limits; 3023 dm_put_live_table_fast(md); 3024 } 3025 3026 if (!live_map) { 3027 r = dm_calculate_queue_limits(table, &limits); 3028 if (r) { 3029 map = ERR_PTR(r); 3030 goto out; 3031 } 3032 } 3033 3034 map = __bind(md, table, &limits); 3035 3036 out: 3037 mutex_unlock(&md->suspend_lock); 3038 return map; 3039 } 3040 3041 /* 3042 * Functions to lock and unlock any filesystem running on the 3043 * device. 3044 */ 3045 static int lock_fs(struct mapped_device *md) 3046 { 3047 int r; 3048 3049 WARN_ON(md->frozen_sb); 3050 3051 md->frozen_sb = freeze_bdev(md->bdev); 3052 if (IS_ERR(md->frozen_sb)) { 3053 r = PTR_ERR(md->frozen_sb); 3054 md->frozen_sb = NULL; 3055 return r; 3056 } 3057 3058 set_bit(DMF_FROZEN, &md->flags); 3059 3060 return 0; 3061 } 3062 3063 static void unlock_fs(struct mapped_device *md) 3064 { 3065 if (!test_bit(DMF_FROZEN, &md->flags)) 3066 return; 3067 3068 thaw_bdev(md->bdev, md->frozen_sb); 3069 md->frozen_sb = NULL; 3070 clear_bit(DMF_FROZEN, &md->flags); 3071 } 3072 3073 /* 3074 * If __dm_suspend returns 0, the device is completely quiescent 3075 * now. There is no request-processing activity. All new requests 3076 * are being added to md->deferred list. 3077 * 3078 * Caller must hold md->suspend_lock 3079 */ 3080 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 3081 unsigned suspend_flags, int interruptible) 3082 { 3083 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 3084 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 3085 int r; 3086 3087 /* 3088 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 3089 * This flag is cleared before dm_suspend returns. 3090 */ 3091 if (noflush) 3092 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3093 3094 /* 3095 * This gets reverted if there's an error later and the targets 3096 * provide the .presuspend_undo hook. 3097 */ 3098 dm_table_presuspend_targets(map); 3099 3100 /* 3101 * Flush I/O to the device. 3102 * Any I/O submitted after lock_fs() may not be flushed. 3103 * noflush takes precedence over do_lockfs. 3104 * (lock_fs() flushes I/Os and waits for them to complete.) 3105 */ 3106 if (!noflush && do_lockfs) { 3107 r = lock_fs(md); 3108 if (r) { 3109 dm_table_presuspend_undo_targets(map); 3110 return r; 3111 } 3112 } 3113 3114 /* 3115 * Here we must make sure that no processes are submitting requests 3116 * to target drivers i.e. no one may be executing 3117 * __split_and_process_bio. This is called from dm_request and 3118 * dm_wq_work. 3119 * 3120 * To get all processes out of __split_and_process_bio in dm_request, 3121 * we take the write lock. To prevent any process from reentering 3122 * __split_and_process_bio from dm_request and quiesce the thread 3123 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 3124 * flush_workqueue(md->wq). 3125 */ 3126 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3127 if (map) 3128 synchronize_srcu(&md->io_barrier); 3129 3130 /* 3131 * Stop md->queue before flushing md->wq in case request-based 3132 * dm defers requests to md->wq from md->queue. 3133 */ 3134 if (dm_request_based(md)) { 3135 stop_queue(md->queue); 3136 if (md->kworker_task) 3137 flush_kthread_worker(&md->kworker); 3138 } 3139 3140 flush_workqueue(md->wq); 3141 3142 /* 3143 * At this point no more requests are entering target request routines. 3144 * We call dm_wait_for_completion to wait for all existing requests 3145 * to finish. 3146 */ 3147 r = dm_wait_for_completion(md, interruptible); 3148 3149 if (noflush) 3150 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3151 if (map) 3152 synchronize_srcu(&md->io_barrier); 3153 3154 /* were we interrupted ? */ 3155 if (r < 0) { 3156 dm_queue_flush(md); 3157 3158 if (dm_request_based(md)) 3159 start_queue(md->queue); 3160 3161 unlock_fs(md); 3162 dm_table_presuspend_undo_targets(map); 3163 /* pushback list is already flushed, so skip flush */ 3164 } 3165 3166 return r; 3167 } 3168 3169 /* 3170 * We need to be able to change a mapping table under a mounted 3171 * filesystem. For example we might want to move some data in 3172 * the background. Before the table can be swapped with 3173 * dm_bind_table, dm_suspend must be called to flush any in 3174 * flight bios and ensure that any further io gets deferred. 3175 */ 3176 /* 3177 * Suspend mechanism in request-based dm. 3178 * 3179 * 1. Flush all I/Os by lock_fs() if needed. 3180 * 2. Stop dispatching any I/O by stopping the request_queue. 3181 * 3. Wait for all in-flight I/Os to be completed or requeued. 3182 * 3183 * To abort suspend, start the request_queue. 3184 */ 3185 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 3186 { 3187 struct dm_table *map = NULL; 3188 int r = 0; 3189 3190 retry: 3191 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3192 3193 if (dm_suspended_md(md)) { 3194 r = -EINVAL; 3195 goto out_unlock; 3196 } 3197 3198 if (dm_suspended_internally_md(md)) { 3199 /* already internally suspended, wait for internal resume */ 3200 mutex_unlock(&md->suspend_lock); 3201 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3202 if (r) 3203 return r; 3204 goto retry; 3205 } 3206 3207 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3208 3209 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE); 3210 if (r) 3211 goto out_unlock; 3212 3213 set_bit(DMF_SUSPENDED, &md->flags); 3214 3215 dm_table_postsuspend_targets(map); 3216 3217 out_unlock: 3218 mutex_unlock(&md->suspend_lock); 3219 return r; 3220 } 3221 3222 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 3223 { 3224 if (map) { 3225 int r = dm_table_resume_targets(map); 3226 if (r) 3227 return r; 3228 } 3229 3230 dm_queue_flush(md); 3231 3232 /* 3233 * Flushing deferred I/Os must be done after targets are resumed 3234 * so that mapping of targets can work correctly. 3235 * Request-based dm is queueing the deferred I/Os in its request_queue. 3236 */ 3237 if (dm_request_based(md)) 3238 start_queue(md->queue); 3239 3240 unlock_fs(md); 3241 3242 return 0; 3243 } 3244 3245 int dm_resume(struct mapped_device *md) 3246 { 3247 int r = -EINVAL; 3248 struct dm_table *map = NULL; 3249 3250 retry: 3251 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3252 3253 if (!dm_suspended_md(md)) 3254 goto out; 3255 3256 if (dm_suspended_internally_md(md)) { 3257 /* already internally suspended, wait for internal resume */ 3258 mutex_unlock(&md->suspend_lock); 3259 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3260 if (r) 3261 return r; 3262 goto retry; 3263 } 3264 3265 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3266 if (!map || !dm_table_get_size(map)) 3267 goto out; 3268 3269 r = __dm_resume(md, map); 3270 if (r) 3271 goto out; 3272 3273 clear_bit(DMF_SUSPENDED, &md->flags); 3274 3275 r = 0; 3276 out: 3277 mutex_unlock(&md->suspend_lock); 3278 3279 return r; 3280 } 3281 3282 /* 3283 * Internal suspend/resume works like userspace-driven suspend. It waits 3284 * until all bios finish and prevents issuing new bios to the target drivers. 3285 * It may be used only from the kernel. 3286 */ 3287 3288 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 3289 { 3290 struct dm_table *map = NULL; 3291 3292 if (md->internal_suspend_count++) 3293 return; /* nested internal suspend */ 3294 3295 if (dm_suspended_md(md)) { 3296 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3297 return; /* nest suspend */ 3298 } 3299 3300 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3301 3302 /* 3303 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3304 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3305 * would require changing .presuspend to return an error -- avoid this 3306 * until there is a need for more elaborate variants of internal suspend. 3307 */ 3308 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE); 3309 3310 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3311 3312 dm_table_postsuspend_targets(map); 3313 } 3314 3315 static void __dm_internal_resume(struct mapped_device *md) 3316 { 3317 BUG_ON(!md->internal_suspend_count); 3318 3319 if (--md->internal_suspend_count) 3320 return; /* resume from nested internal suspend */ 3321 3322 if (dm_suspended_md(md)) 3323 goto done; /* resume from nested suspend */ 3324 3325 /* 3326 * NOTE: existing callers don't need to call dm_table_resume_targets 3327 * (which may fail -- so best to avoid it for now by passing NULL map) 3328 */ 3329 (void) __dm_resume(md, NULL); 3330 3331 done: 3332 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3333 smp_mb__after_atomic(); 3334 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3335 } 3336 3337 void dm_internal_suspend_noflush(struct mapped_device *md) 3338 { 3339 mutex_lock(&md->suspend_lock); 3340 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3341 mutex_unlock(&md->suspend_lock); 3342 } 3343 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3344 3345 void dm_internal_resume(struct mapped_device *md) 3346 { 3347 mutex_lock(&md->suspend_lock); 3348 __dm_internal_resume(md); 3349 mutex_unlock(&md->suspend_lock); 3350 } 3351 EXPORT_SYMBOL_GPL(dm_internal_resume); 3352 3353 /* 3354 * Fast variants of internal suspend/resume hold md->suspend_lock, 3355 * which prevents interaction with userspace-driven suspend. 3356 */ 3357 3358 void dm_internal_suspend_fast(struct mapped_device *md) 3359 { 3360 mutex_lock(&md->suspend_lock); 3361 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3362 return; 3363 3364 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3365 synchronize_srcu(&md->io_barrier); 3366 flush_workqueue(md->wq); 3367 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3368 } 3369 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3370 3371 void dm_internal_resume_fast(struct mapped_device *md) 3372 { 3373 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3374 goto done; 3375 3376 dm_queue_flush(md); 3377 3378 done: 3379 mutex_unlock(&md->suspend_lock); 3380 } 3381 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3382 3383 /*----------------------------------------------------------------- 3384 * Event notification. 3385 *---------------------------------------------------------------*/ 3386 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3387 unsigned cookie) 3388 { 3389 char udev_cookie[DM_COOKIE_LENGTH]; 3390 char *envp[] = { udev_cookie, NULL }; 3391 3392 if (!cookie) 3393 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 3394 else { 3395 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3396 DM_COOKIE_ENV_VAR_NAME, cookie); 3397 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 3398 action, envp); 3399 } 3400 } 3401 3402 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3403 { 3404 return atomic_add_return(1, &md->uevent_seq); 3405 } 3406 3407 uint32_t dm_get_event_nr(struct mapped_device *md) 3408 { 3409 return atomic_read(&md->event_nr); 3410 } 3411 3412 int dm_wait_event(struct mapped_device *md, int event_nr) 3413 { 3414 return wait_event_interruptible(md->eventq, 3415 (event_nr != atomic_read(&md->event_nr))); 3416 } 3417 3418 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3419 { 3420 unsigned long flags; 3421 3422 spin_lock_irqsave(&md->uevent_lock, flags); 3423 list_add(elist, &md->uevent_list); 3424 spin_unlock_irqrestore(&md->uevent_lock, flags); 3425 } 3426 3427 /* 3428 * The gendisk is only valid as long as you have a reference 3429 * count on 'md'. 3430 */ 3431 struct gendisk *dm_disk(struct mapped_device *md) 3432 { 3433 return md->disk; 3434 } 3435 EXPORT_SYMBOL_GPL(dm_disk); 3436 3437 struct kobject *dm_kobject(struct mapped_device *md) 3438 { 3439 return &md->kobj_holder.kobj; 3440 } 3441 3442 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3443 { 3444 struct mapped_device *md; 3445 3446 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3447 3448 if (test_bit(DMF_FREEING, &md->flags) || 3449 dm_deleting_md(md)) 3450 return NULL; 3451 3452 dm_get(md); 3453 return md; 3454 } 3455 3456 int dm_suspended_md(struct mapped_device *md) 3457 { 3458 return test_bit(DMF_SUSPENDED, &md->flags); 3459 } 3460 3461 int dm_suspended_internally_md(struct mapped_device *md) 3462 { 3463 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3464 } 3465 3466 int dm_test_deferred_remove_flag(struct mapped_device *md) 3467 { 3468 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3469 } 3470 3471 int dm_suspended(struct dm_target *ti) 3472 { 3473 return dm_suspended_md(dm_table_get_md(ti->table)); 3474 } 3475 EXPORT_SYMBOL_GPL(dm_suspended); 3476 3477 int dm_noflush_suspending(struct dm_target *ti) 3478 { 3479 return __noflush_suspending(dm_table_get_md(ti->table)); 3480 } 3481 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3482 3483 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type, 3484 unsigned integrity, unsigned per_bio_data_size) 3485 { 3486 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 3487 struct kmem_cache *cachep = NULL; 3488 unsigned int pool_size = 0; 3489 unsigned int front_pad; 3490 3491 if (!pools) 3492 return NULL; 3493 3494 type = filter_md_type(type, md); 3495 3496 switch (type) { 3497 case DM_TYPE_BIO_BASED: 3498 cachep = _io_cache; 3499 pool_size = dm_get_reserved_bio_based_ios(); 3500 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3501 break; 3502 case DM_TYPE_REQUEST_BASED: 3503 cachep = _rq_tio_cache; 3504 pool_size = dm_get_reserved_rq_based_ios(); 3505 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache); 3506 if (!pools->rq_pool) 3507 goto out; 3508 /* fall through to setup remaining rq-based pools */ 3509 case DM_TYPE_MQ_REQUEST_BASED: 3510 if (!pool_size) 3511 pool_size = dm_get_reserved_rq_based_ios(); 3512 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3513 /* per_bio_data_size is not used. See __bind_mempools(). */ 3514 WARN_ON(per_bio_data_size != 0); 3515 break; 3516 default: 3517 BUG(); 3518 } 3519 3520 if (cachep) { 3521 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 3522 if (!pools->io_pool) 3523 goto out; 3524 } 3525 3526 pools->bs = bioset_create_nobvec(pool_size, front_pad); 3527 if (!pools->bs) 3528 goto out; 3529 3530 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 3531 goto out; 3532 3533 return pools; 3534 3535 out: 3536 dm_free_md_mempools(pools); 3537 3538 return NULL; 3539 } 3540 3541 void dm_free_md_mempools(struct dm_md_mempools *pools) 3542 { 3543 if (!pools) 3544 return; 3545 3546 mempool_destroy(pools->io_pool); 3547 mempool_destroy(pools->rq_pool); 3548 3549 if (pools->bs) 3550 bioset_free(pools->bs); 3551 3552 kfree(pools); 3553 } 3554 3555 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3556 u32 flags) 3557 { 3558 struct mapped_device *md = bdev->bd_disk->private_data; 3559 const struct pr_ops *ops; 3560 fmode_t mode; 3561 int r; 3562 3563 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3564 if (r < 0) 3565 return r; 3566 3567 ops = bdev->bd_disk->fops->pr_ops; 3568 if (ops && ops->pr_register) 3569 r = ops->pr_register(bdev, old_key, new_key, flags); 3570 else 3571 r = -EOPNOTSUPP; 3572 3573 bdput(bdev); 3574 return r; 3575 } 3576 3577 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3578 u32 flags) 3579 { 3580 struct mapped_device *md = bdev->bd_disk->private_data; 3581 const struct pr_ops *ops; 3582 fmode_t mode; 3583 int r; 3584 3585 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3586 if (r < 0) 3587 return r; 3588 3589 ops = bdev->bd_disk->fops->pr_ops; 3590 if (ops && ops->pr_reserve) 3591 r = ops->pr_reserve(bdev, key, type, flags); 3592 else 3593 r = -EOPNOTSUPP; 3594 3595 bdput(bdev); 3596 return r; 3597 } 3598 3599 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3600 { 3601 struct mapped_device *md = bdev->bd_disk->private_data; 3602 const struct pr_ops *ops; 3603 fmode_t mode; 3604 int r; 3605 3606 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3607 if (r < 0) 3608 return r; 3609 3610 ops = bdev->bd_disk->fops->pr_ops; 3611 if (ops && ops->pr_release) 3612 r = ops->pr_release(bdev, key, type); 3613 else 3614 r = -EOPNOTSUPP; 3615 3616 bdput(bdev); 3617 return r; 3618 } 3619 3620 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3621 enum pr_type type, bool abort) 3622 { 3623 struct mapped_device *md = bdev->bd_disk->private_data; 3624 const struct pr_ops *ops; 3625 fmode_t mode; 3626 int r; 3627 3628 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3629 if (r < 0) 3630 return r; 3631 3632 ops = bdev->bd_disk->fops->pr_ops; 3633 if (ops && ops->pr_preempt) 3634 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3635 else 3636 r = -EOPNOTSUPP; 3637 3638 bdput(bdev); 3639 return r; 3640 } 3641 3642 static int dm_pr_clear(struct block_device *bdev, u64 key) 3643 { 3644 struct mapped_device *md = bdev->bd_disk->private_data; 3645 const struct pr_ops *ops; 3646 fmode_t mode; 3647 int r; 3648 3649 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3650 if (r < 0) 3651 return r; 3652 3653 ops = bdev->bd_disk->fops->pr_ops; 3654 if (ops && ops->pr_clear) 3655 r = ops->pr_clear(bdev, key); 3656 else 3657 r = -EOPNOTSUPP; 3658 3659 bdput(bdev); 3660 return r; 3661 } 3662 3663 static const struct pr_ops dm_pr_ops = { 3664 .pr_register = dm_pr_register, 3665 .pr_reserve = dm_pr_reserve, 3666 .pr_release = dm_pr_release, 3667 .pr_preempt = dm_pr_preempt, 3668 .pr_clear = dm_pr_clear, 3669 }; 3670 3671 static const struct block_device_operations dm_blk_dops = { 3672 .open = dm_blk_open, 3673 .release = dm_blk_close, 3674 .ioctl = dm_blk_ioctl, 3675 .getgeo = dm_blk_getgeo, 3676 .pr_ops = &dm_pr_ops, 3677 .owner = THIS_MODULE 3678 }; 3679 3680 /* 3681 * module hooks 3682 */ 3683 module_init(dm_init); 3684 module_exit(dm_exit); 3685 3686 module_param(major, uint, 0); 3687 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3688 3689 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3690 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3691 3692 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 3693 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 3694 3695 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR); 3696 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices"); 3697 3698 module_param(dm_mq_nr_hw_queues, uint, S_IRUGO | S_IWUSR); 3699 MODULE_PARM_DESC(dm_mq_nr_hw_queues, "Number of hardware queues for request-based dm-mq devices"); 3700 3701 module_param(dm_mq_queue_depth, uint, S_IRUGO | S_IWUSR); 3702 MODULE_PARM_DESC(dm_mq_queue_depth, "Queue depth for request-based dm-mq devices"); 3703 3704 MODULE_DESCRIPTION(DM_NAME " driver"); 3705 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3706 MODULE_LICENSE("GPL"); 3707