xref: /openbmc/linux/drivers/md/dm.c (revision 1c357a1e86a4227a6b6059f2de118ae47659cebc)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 #include <linux/pr.h>
28 
29 #include <trace/events/block.h>
30 
31 #define DM_MSG_PREFIX "core"
32 
33 #ifdef CONFIG_PRINTK
34 /*
35  * ratelimit state to be used in DMXXX_LIMIT().
36  */
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 		       DEFAULT_RATELIMIT_INTERVAL,
39 		       DEFAULT_RATELIMIT_BURST);
40 EXPORT_SYMBOL(dm_ratelimit_state);
41 #endif
42 
43 /*
44  * Cookies are numeric values sent with CHANGE and REMOVE
45  * uevents while resuming, removing or renaming the device.
46  */
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per bio.
68  */
69 struct dm_io {
70 	struct mapped_device *md;
71 	int error;
72 	atomic_t io_count;
73 	struct bio *bio;
74 	unsigned long start_time;
75 	spinlock_t endio_lock;
76 	struct dm_stats_aux stats_aux;
77 };
78 
79 /*
80  * For request-based dm.
81  * One of these is allocated per request.
82  */
83 struct dm_rq_target_io {
84 	struct mapped_device *md;
85 	struct dm_target *ti;
86 	struct request *orig, *clone;
87 	struct kthread_work work;
88 	int error;
89 	union map_info info;
90 	struct dm_stats_aux stats_aux;
91 	unsigned long duration_jiffies;
92 	unsigned n_sectors;
93 };
94 
95 /*
96  * For request-based dm - the bio clones we allocate are embedded in these
97  * structs.
98  *
99  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100  * the bioset is created - this means the bio has to come at the end of the
101  * struct.
102  */
103 struct dm_rq_clone_bio_info {
104 	struct bio *orig;
105 	struct dm_rq_target_io *tio;
106 	struct bio clone;
107 };
108 
109 #define MINOR_ALLOCED ((void *)-1)
110 
111 /*
112  * Bits for the md->flags field.
113  */
114 #define DMF_BLOCK_IO_FOR_SUSPEND 0
115 #define DMF_SUSPENDED 1
116 #define DMF_FROZEN 2
117 #define DMF_FREEING 3
118 #define DMF_DELETING 4
119 #define DMF_NOFLUSH_SUSPENDING 5
120 #define DMF_DEFERRED_REMOVE 6
121 #define DMF_SUSPENDED_INTERNALLY 7
122 
123 /*
124  * A dummy definition to make RCU happy.
125  * struct dm_table should never be dereferenced in this file.
126  */
127 struct dm_table {
128 	int undefined__;
129 };
130 
131 /*
132  * Work processed by per-device workqueue.
133  */
134 struct mapped_device {
135 	struct srcu_struct io_barrier;
136 	struct mutex suspend_lock;
137 	atomic_t holders;
138 	atomic_t open_count;
139 
140 	/*
141 	 * The current mapping.
142 	 * Use dm_get_live_table{_fast} or take suspend_lock for
143 	 * dereference.
144 	 */
145 	struct dm_table __rcu *map;
146 
147 	struct list_head table_devices;
148 	struct mutex table_devices_lock;
149 
150 	unsigned long flags;
151 
152 	struct request_queue *queue;
153 	unsigned type;
154 	/* Protect queue and type against concurrent access. */
155 	struct mutex type_lock;
156 
157 	struct dm_target *immutable_target;
158 	struct target_type *immutable_target_type;
159 
160 	struct gendisk *disk;
161 	char name[16];
162 
163 	void *interface_ptr;
164 
165 	/*
166 	 * A list of ios that arrived while we were suspended.
167 	 */
168 	atomic_t pending[2];
169 	wait_queue_head_t wait;
170 	struct work_struct work;
171 	struct bio_list deferred;
172 	spinlock_t deferred_lock;
173 
174 	/*
175 	 * Processing queue (flush)
176 	 */
177 	struct workqueue_struct *wq;
178 
179 	/*
180 	 * io objects are allocated from here.
181 	 */
182 	mempool_t *io_pool;
183 	mempool_t *rq_pool;
184 
185 	struct bio_set *bs;
186 
187 	/*
188 	 * Event handling.
189 	 */
190 	atomic_t event_nr;
191 	wait_queue_head_t eventq;
192 	atomic_t uevent_seq;
193 	struct list_head uevent_list;
194 	spinlock_t uevent_lock; /* Protect access to uevent_list */
195 
196 	/*
197 	 * freeze/thaw support require holding onto a super block
198 	 */
199 	struct super_block *frozen_sb;
200 	struct block_device *bdev;
201 
202 	/* forced geometry settings */
203 	struct hd_geometry geometry;
204 
205 	/* kobject and completion */
206 	struct dm_kobject_holder kobj_holder;
207 
208 	/* zero-length flush that will be cloned and submitted to targets */
209 	struct bio flush_bio;
210 
211 	/* the number of internal suspends */
212 	unsigned internal_suspend_count;
213 
214 	struct dm_stats stats;
215 
216 	struct kthread_worker kworker;
217 	struct task_struct *kworker_task;
218 
219 	/* for request-based merge heuristic in dm_request_fn() */
220 	unsigned seq_rq_merge_deadline_usecs;
221 	int last_rq_rw;
222 	sector_t last_rq_pos;
223 	ktime_t last_rq_start_time;
224 
225 	/* for blk-mq request-based DM support */
226 	struct blk_mq_tag_set *tag_set;
227 	bool use_blk_mq;
228 };
229 
230 #ifdef CONFIG_DM_MQ_DEFAULT
231 static bool use_blk_mq = true;
232 #else
233 static bool use_blk_mq = false;
234 #endif
235 
236 #define DM_MQ_NR_HW_QUEUES 1
237 #define DM_MQ_QUEUE_DEPTH 2048
238 
239 static unsigned dm_mq_nr_hw_queues = DM_MQ_NR_HW_QUEUES;
240 static unsigned dm_mq_queue_depth = DM_MQ_QUEUE_DEPTH;
241 
242 bool dm_use_blk_mq(struct mapped_device *md)
243 {
244 	return md->use_blk_mq;
245 }
246 
247 /*
248  * For mempools pre-allocation at the table loading time.
249  */
250 struct dm_md_mempools {
251 	mempool_t *io_pool;
252 	mempool_t *rq_pool;
253 	struct bio_set *bs;
254 };
255 
256 struct table_device {
257 	struct list_head list;
258 	atomic_t count;
259 	struct dm_dev dm_dev;
260 };
261 
262 #define RESERVED_BIO_BASED_IOS		16
263 #define RESERVED_REQUEST_BASED_IOS	256
264 #define RESERVED_MAX_IOS		1024
265 static struct kmem_cache *_io_cache;
266 static struct kmem_cache *_rq_tio_cache;
267 static struct kmem_cache *_rq_cache;
268 
269 /*
270  * Bio-based DM's mempools' reserved IOs set by the user.
271  */
272 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
273 
274 /*
275  * Request-based DM's mempools' reserved IOs set by the user.
276  */
277 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
278 
279 static unsigned __dm_get_module_param(unsigned *module_param,
280 				      unsigned def, unsigned max)
281 {
282 	unsigned param = ACCESS_ONCE(*module_param);
283 	unsigned modified_param = 0;
284 
285 	if (!param)
286 		modified_param = def;
287 	else if (param > max)
288 		modified_param = max;
289 
290 	if (modified_param) {
291 		(void)cmpxchg(module_param, param, modified_param);
292 		param = modified_param;
293 	}
294 
295 	return param;
296 }
297 
298 unsigned dm_get_reserved_bio_based_ios(void)
299 {
300 	return __dm_get_module_param(&reserved_bio_based_ios,
301 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
302 }
303 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
304 
305 unsigned dm_get_reserved_rq_based_ios(void)
306 {
307 	return __dm_get_module_param(&reserved_rq_based_ios,
308 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
309 }
310 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
311 
312 static unsigned dm_get_blk_mq_nr_hw_queues(void)
313 {
314 	return __dm_get_module_param(&dm_mq_nr_hw_queues, 1, 32);
315 }
316 
317 static unsigned dm_get_blk_mq_queue_depth(void)
318 {
319 	return __dm_get_module_param(&dm_mq_queue_depth,
320 				     DM_MQ_QUEUE_DEPTH, BLK_MQ_MAX_DEPTH);
321 }
322 
323 static int __init local_init(void)
324 {
325 	int r = -ENOMEM;
326 
327 	/* allocate a slab for the dm_ios */
328 	_io_cache = KMEM_CACHE(dm_io, 0);
329 	if (!_io_cache)
330 		return r;
331 
332 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
333 	if (!_rq_tio_cache)
334 		goto out_free_io_cache;
335 
336 	_rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
337 				      __alignof__(struct request), 0, NULL);
338 	if (!_rq_cache)
339 		goto out_free_rq_tio_cache;
340 
341 	r = dm_uevent_init();
342 	if (r)
343 		goto out_free_rq_cache;
344 
345 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
346 	if (!deferred_remove_workqueue) {
347 		r = -ENOMEM;
348 		goto out_uevent_exit;
349 	}
350 
351 	_major = major;
352 	r = register_blkdev(_major, _name);
353 	if (r < 0)
354 		goto out_free_workqueue;
355 
356 	if (!_major)
357 		_major = r;
358 
359 	return 0;
360 
361 out_free_workqueue:
362 	destroy_workqueue(deferred_remove_workqueue);
363 out_uevent_exit:
364 	dm_uevent_exit();
365 out_free_rq_cache:
366 	kmem_cache_destroy(_rq_cache);
367 out_free_rq_tio_cache:
368 	kmem_cache_destroy(_rq_tio_cache);
369 out_free_io_cache:
370 	kmem_cache_destroy(_io_cache);
371 
372 	return r;
373 }
374 
375 static void local_exit(void)
376 {
377 	flush_scheduled_work();
378 	destroy_workqueue(deferred_remove_workqueue);
379 
380 	kmem_cache_destroy(_rq_cache);
381 	kmem_cache_destroy(_rq_tio_cache);
382 	kmem_cache_destroy(_io_cache);
383 	unregister_blkdev(_major, _name);
384 	dm_uevent_exit();
385 
386 	_major = 0;
387 
388 	DMINFO("cleaned up");
389 }
390 
391 static int (*_inits[])(void) __initdata = {
392 	local_init,
393 	dm_target_init,
394 	dm_linear_init,
395 	dm_stripe_init,
396 	dm_io_init,
397 	dm_kcopyd_init,
398 	dm_interface_init,
399 	dm_statistics_init,
400 };
401 
402 static void (*_exits[])(void) = {
403 	local_exit,
404 	dm_target_exit,
405 	dm_linear_exit,
406 	dm_stripe_exit,
407 	dm_io_exit,
408 	dm_kcopyd_exit,
409 	dm_interface_exit,
410 	dm_statistics_exit,
411 };
412 
413 static int __init dm_init(void)
414 {
415 	const int count = ARRAY_SIZE(_inits);
416 
417 	int r, i;
418 
419 	for (i = 0; i < count; i++) {
420 		r = _inits[i]();
421 		if (r)
422 			goto bad;
423 	}
424 
425 	return 0;
426 
427       bad:
428 	while (i--)
429 		_exits[i]();
430 
431 	return r;
432 }
433 
434 static void __exit dm_exit(void)
435 {
436 	int i = ARRAY_SIZE(_exits);
437 
438 	while (i--)
439 		_exits[i]();
440 
441 	/*
442 	 * Should be empty by this point.
443 	 */
444 	idr_destroy(&_minor_idr);
445 }
446 
447 /*
448  * Block device functions
449  */
450 int dm_deleting_md(struct mapped_device *md)
451 {
452 	return test_bit(DMF_DELETING, &md->flags);
453 }
454 
455 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
456 {
457 	struct mapped_device *md;
458 
459 	spin_lock(&_minor_lock);
460 
461 	md = bdev->bd_disk->private_data;
462 	if (!md)
463 		goto out;
464 
465 	if (test_bit(DMF_FREEING, &md->flags) ||
466 	    dm_deleting_md(md)) {
467 		md = NULL;
468 		goto out;
469 	}
470 
471 	dm_get(md);
472 	atomic_inc(&md->open_count);
473 out:
474 	spin_unlock(&_minor_lock);
475 
476 	return md ? 0 : -ENXIO;
477 }
478 
479 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
480 {
481 	struct mapped_device *md;
482 
483 	spin_lock(&_minor_lock);
484 
485 	md = disk->private_data;
486 	if (WARN_ON(!md))
487 		goto out;
488 
489 	if (atomic_dec_and_test(&md->open_count) &&
490 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
491 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
492 
493 	dm_put(md);
494 out:
495 	spin_unlock(&_minor_lock);
496 }
497 
498 int dm_open_count(struct mapped_device *md)
499 {
500 	return atomic_read(&md->open_count);
501 }
502 
503 /*
504  * Guarantees nothing is using the device before it's deleted.
505  */
506 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
507 {
508 	int r = 0;
509 
510 	spin_lock(&_minor_lock);
511 
512 	if (dm_open_count(md)) {
513 		r = -EBUSY;
514 		if (mark_deferred)
515 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
516 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
517 		r = -EEXIST;
518 	else
519 		set_bit(DMF_DELETING, &md->flags);
520 
521 	spin_unlock(&_minor_lock);
522 
523 	return r;
524 }
525 
526 int dm_cancel_deferred_remove(struct mapped_device *md)
527 {
528 	int r = 0;
529 
530 	spin_lock(&_minor_lock);
531 
532 	if (test_bit(DMF_DELETING, &md->flags))
533 		r = -EBUSY;
534 	else
535 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
536 
537 	spin_unlock(&_minor_lock);
538 
539 	return r;
540 }
541 
542 static void do_deferred_remove(struct work_struct *w)
543 {
544 	dm_deferred_remove();
545 }
546 
547 sector_t dm_get_size(struct mapped_device *md)
548 {
549 	return get_capacity(md->disk);
550 }
551 
552 struct request_queue *dm_get_md_queue(struct mapped_device *md)
553 {
554 	return md->queue;
555 }
556 
557 struct dm_stats *dm_get_stats(struct mapped_device *md)
558 {
559 	return &md->stats;
560 }
561 
562 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
563 {
564 	struct mapped_device *md = bdev->bd_disk->private_data;
565 
566 	return dm_get_geometry(md, geo);
567 }
568 
569 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
570 				  struct block_device **bdev,
571 				  fmode_t *mode)
572 {
573 	struct dm_target *tgt;
574 	struct dm_table *map;
575 	int srcu_idx, r;
576 
577 retry:
578 	r = -ENOTTY;
579 	map = dm_get_live_table(md, &srcu_idx);
580 	if (!map || !dm_table_get_size(map))
581 		goto out;
582 
583 	/* We only support devices that have a single target */
584 	if (dm_table_get_num_targets(map) != 1)
585 		goto out;
586 
587 	tgt = dm_table_get_target(map, 0);
588 	if (!tgt->type->prepare_ioctl)
589 		goto out;
590 
591 	if (dm_suspended_md(md)) {
592 		r = -EAGAIN;
593 		goto out;
594 	}
595 
596 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
597 	if (r < 0)
598 		goto out;
599 
600 	bdgrab(*bdev);
601 	dm_put_live_table(md, srcu_idx);
602 	return r;
603 
604 out:
605 	dm_put_live_table(md, srcu_idx);
606 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
607 		msleep(10);
608 		goto retry;
609 	}
610 	return r;
611 }
612 
613 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
614 			unsigned int cmd, unsigned long arg)
615 {
616 	struct mapped_device *md = bdev->bd_disk->private_data;
617 	int r;
618 
619 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
620 	if (r < 0)
621 		return r;
622 
623 	if (r > 0) {
624 		/*
625 		 * Target determined this ioctl is being issued against
626 		 * a logical partition of the parent bdev; so extra
627 		 * validation is needed.
628 		 */
629 		r = scsi_verify_blk_ioctl(NULL, cmd);
630 		if (r)
631 			goto out;
632 	}
633 
634 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
635 out:
636 	bdput(bdev);
637 	return r;
638 }
639 
640 static struct dm_io *alloc_io(struct mapped_device *md)
641 {
642 	return mempool_alloc(md->io_pool, GFP_NOIO);
643 }
644 
645 static void free_io(struct mapped_device *md, struct dm_io *io)
646 {
647 	mempool_free(io, md->io_pool);
648 }
649 
650 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
651 {
652 	bio_put(&tio->clone);
653 }
654 
655 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
656 					    gfp_t gfp_mask)
657 {
658 	return mempool_alloc(md->io_pool, gfp_mask);
659 }
660 
661 static void free_rq_tio(struct dm_rq_target_io *tio)
662 {
663 	mempool_free(tio, tio->md->io_pool);
664 }
665 
666 static struct request *alloc_clone_request(struct mapped_device *md,
667 					   gfp_t gfp_mask)
668 {
669 	return mempool_alloc(md->rq_pool, gfp_mask);
670 }
671 
672 static void free_clone_request(struct mapped_device *md, struct request *rq)
673 {
674 	mempool_free(rq, md->rq_pool);
675 }
676 
677 static int md_in_flight(struct mapped_device *md)
678 {
679 	return atomic_read(&md->pending[READ]) +
680 	       atomic_read(&md->pending[WRITE]);
681 }
682 
683 static void start_io_acct(struct dm_io *io)
684 {
685 	struct mapped_device *md = io->md;
686 	struct bio *bio = io->bio;
687 	int cpu;
688 	int rw = bio_data_dir(bio);
689 
690 	io->start_time = jiffies;
691 
692 	cpu = part_stat_lock();
693 	part_round_stats(cpu, &dm_disk(md)->part0);
694 	part_stat_unlock();
695 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
696 		atomic_inc_return(&md->pending[rw]));
697 
698 	if (unlikely(dm_stats_used(&md->stats)))
699 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
700 				    bio_sectors(bio), false, 0, &io->stats_aux);
701 }
702 
703 static void end_io_acct(struct dm_io *io)
704 {
705 	struct mapped_device *md = io->md;
706 	struct bio *bio = io->bio;
707 	unsigned long duration = jiffies - io->start_time;
708 	int pending;
709 	int rw = bio_data_dir(bio);
710 
711 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
712 
713 	if (unlikely(dm_stats_used(&md->stats)))
714 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
715 				    bio_sectors(bio), true, duration, &io->stats_aux);
716 
717 	/*
718 	 * After this is decremented the bio must not be touched if it is
719 	 * a flush.
720 	 */
721 	pending = atomic_dec_return(&md->pending[rw]);
722 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
723 	pending += atomic_read(&md->pending[rw^0x1]);
724 
725 	/* nudge anyone waiting on suspend queue */
726 	if (!pending)
727 		wake_up(&md->wait);
728 }
729 
730 /*
731  * Add the bio to the list of deferred io.
732  */
733 static void queue_io(struct mapped_device *md, struct bio *bio)
734 {
735 	unsigned long flags;
736 
737 	spin_lock_irqsave(&md->deferred_lock, flags);
738 	bio_list_add(&md->deferred, bio);
739 	spin_unlock_irqrestore(&md->deferred_lock, flags);
740 	queue_work(md->wq, &md->work);
741 }
742 
743 /*
744  * Everyone (including functions in this file), should use this
745  * function to access the md->map field, and make sure they call
746  * dm_put_live_table() when finished.
747  */
748 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
749 {
750 	*srcu_idx = srcu_read_lock(&md->io_barrier);
751 
752 	return srcu_dereference(md->map, &md->io_barrier);
753 }
754 
755 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
756 {
757 	srcu_read_unlock(&md->io_barrier, srcu_idx);
758 }
759 
760 void dm_sync_table(struct mapped_device *md)
761 {
762 	synchronize_srcu(&md->io_barrier);
763 	synchronize_rcu_expedited();
764 }
765 
766 /*
767  * A fast alternative to dm_get_live_table/dm_put_live_table.
768  * The caller must not block between these two functions.
769  */
770 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
771 {
772 	rcu_read_lock();
773 	return rcu_dereference(md->map);
774 }
775 
776 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
777 {
778 	rcu_read_unlock();
779 }
780 
781 /*
782  * Open a table device so we can use it as a map destination.
783  */
784 static int open_table_device(struct table_device *td, dev_t dev,
785 			     struct mapped_device *md)
786 {
787 	static char *_claim_ptr = "I belong to device-mapper";
788 	struct block_device *bdev;
789 
790 	int r;
791 
792 	BUG_ON(td->dm_dev.bdev);
793 
794 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
795 	if (IS_ERR(bdev))
796 		return PTR_ERR(bdev);
797 
798 	r = bd_link_disk_holder(bdev, dm_disk(md));
799 	if (r) {
800 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
801 		return r;
802 	}
803 
804 	td->dm_dev.bdev = bdev;
805 	return 0;
806 }
807 
808 /*
809  * Close a table device that we've been using.
810  */
811 static void close_table_device(struct table_device *td, struct mapped_device *md)
812 {
813 	if (!td->dm_dev.bdev)
814 		return;
815 
816 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
817 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
818 	td->dm_dev.bdev = NULL;
819 }
820 
821 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
822 					      fmode_t mode) {
823 	struct table_device *td;
824 
825 	list_for_each_entry(td, l, list)
826 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
827 			return td;
828 
829 	return NULL;
830 }
831 
832 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
833 			struct dm_dev **result) {
834 	int r;
835 	struct table_device *td;
836 
837 	mutex_lock(&md->table_devices_lock);
838 	td = find_table_device(&md->table_devices, dev, mode);
839 	if (!td) {
840 		td = kmalloc(sizeof(*td), GFP_KERNEL);
841 		if (!td) {
842 			mutex_unlock(&md->table_devices_lock);
843 			return -ENOMEM;
844 		}
845 
846 		td->dm_dev.mode = mode;
847 		td->dm_dev.bdev = NULL;
848 
849 		if ((r = open_table_device(td, dev, md))) {
850 			mutex_unlock(&md->table_devices_lock);
851 			kfree(td);
852 			return r;
853 		}
854 
855 		format_dev_t(td->dm_dev.name, dev);
856 
857 		atomic_set(&td->count, 0);
858 		list_add(&td->list, &md->table_devices);
859 	}
860 	atomic_inc(&td->count);
861 	mutex_unlock(&md->table_devices_lock);
862 
863 	*result = &td->dm_dev;
864 	return 0;
865 }
866 EXPORT_SYMBOL_GPL(dm_get_table_device);
867 
868 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
869 {
870 	struct table_device *td = container_of(d, struct table_device, dm_dev);
871 
872 	mutex_lock(&md->table_devices_lock);
873 	if (atomic_dec_and_test(&td->count)) {
874 		close_table_device(td, md);
875 		list_del(&td->list);
876 		kfree(td);
877 	}
878 	mutex_unlock(&md->table_devices_lock);
879 }
880 EXPORT_SYMBOL(dm_put_table_device);
881 
882 static void free_table_devices(struct list_head *devices)
883 {
884 	struct list_head *tmp, *next;
885 
886 	list_for_each_safe(tmp, next, devices) {
887 		struct table_device *td = list_entry(tmp, struct table_device, list);
888 
889 		DMWARN("dm_destroy: %s still exists with %d references",
890 		       td->dm_dev.name, atomic_read(&td->count));
891 		kfree(td);
892 	}
893 }
894 
895 /*
896  * Get the geometry associated with a dm device
897  */
898 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
899 {
900 	*geo = md->geometry;
901 
902 	return 0;
903 }
904 
905 /*
906  * Set the geometry of a device.
907  */
908 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
909 {
910 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
911 
912 	if (geo->start > sz) {
913 		DMWARN("Start sector is beyond the geometry limits.");
914 		return -EINVAL;
915 	}
916 
917 	md->geometry = *geo;
918 
919 	return 0;
920 }
921 
922 /*-----------------------------------------------------------------
923  * CRUD START:
924  *   A more elegant soln is in the works that uses the queue
925  *   merge fn, unfortunately there are a couple of changes to
926  *   the block layer that I want to make for this.  So in the
927  *   interests of getting something for people to use I give
928  *   you this clearly demarcated crap.
929  *---------------------------------------------------------------*/
930 
931 static int __noflush_suspending(struct mapped_device *md)
932 {
933 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
934 }
935 
936 /*
937  * Decrements the number of outstanding ios that a bio has been
938  * cloned into, completing the original io if necc.
939  */
940 static void dec_pending(struct dm_io *io, int error)
941 {
942 	unsigned long flags;
943 	int io_error;
944 	struct bio *bio;
945 	struct mapped_device *md = io->md;
946 
947 	/* Push-back supersedes any I/O errors */
948 	if (unlikely(error)) {
949 		spin_lock_irqsave(&io->endio_lock, flags);
950 		if (!(io->error > 0 && __noflush_suspending(md)))
951 			io->error = error;
952 		spin_unlock_irqrestore(&io->endio_lock, flags);
953 	}
954 
955 	if (atomic_dec_and_test(&io->io_count)) {
956 		if (io->error == DM_ENDIO_REQUEUE) {
957 			/*
958 			 * Target requested pushing back the I/O.
959 			 */
960 			spin_lock_irqsave(&md->deferred_lock, flags);
961 			if (__noflush_suspending(md))
962 				bio_list_add_head(&md->deferred, io->bio);
963 			else
964 				/* noflush suspend was interrupted. */
965 				io->error = -EIO;
966 			spin_unlock_irqrestore(&md->deferred_lock, flags);
967 		}
968 
969 		io_error = io->error;
970 		bio = io->bio;
971 		end_io_acct(io);
972 		free_io(md, io);
973 
974 		if (io_error == DM_ENDIO_REQUEUE)
975 			return;
976 
977 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
978 			/*
979 			 * Preflush done for flush with data, reissue
980 			 * without REQ_FLUSH.
981 			 */
982 			bio->bi_rw &= ~REQ_FLUSH;
983 			queue_io(md, bio);
984 		} else {
985 			/* done with normal IO or empty flush */
986 			trace_block_bio_complete(md->queue, bio, io_error);
987 			bio->bi_error = io_error;
988 			bio_endio(bio);
989 		}
990 	}
991 }
992 
993 static void disable_write_same(struct mapped_device *md)
994 {
995 	struct queue_limits *limits = dm_get_queue_limits(md);
996 
997 	/* device doesn't really support WRITE SAME, disable it */
998 	limits->max_write_same_sectors = 0;
999 }
1000 
1001 static void clone_endio(struct bio *bio)
1002 {
1003 	int error = bio->bi_error;
1004 	int r = error;
1005 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1006 	struct dm_io *io = tio->io;
1007 	struct mapped_device *md = tio->io->md;
1008 	dm_endio_fn endio = tio->ti->type->end_io;
1009 
1010 	if (endio) {
1011 		r = endio(tio->ti, bio, error);
1012 		if (r < 0 || r == DM_ENDIO_REQUEUE)
1013 			/*
1014 			 * error and requeue request are handled
1015 			 * in dec_pending().
1016 			 */
1017 			error = r;
1018 		else if (r == DM_ENDIO_INCOMPLETE)
1019 			/* The target will handle the io */
1020 			return;
1021 		else if (r) {
1022 			DMWARN("unimplemented target endio return value: %d", r);
1023 			BUG();
1024 		}
1025 	}
1026 
1027 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1028 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1029 		disable_write_same(md);
1030 
1031 	free_tio(md, tio);
1032 	dec_pending(io, error);
1033 }
1034 
1035 /*
1036  * Partial completion handling for request-based dm
1037  */
1038 static void end_clone_bio(struct bio *clone)
1039 {
1040 	struct dm_rq_clone_bio_info *info =
1041 		container_of(clone, struct dm_rq_clone_bio_info, clone);
1042 	struct dm_rq_target_io *tio = info->tio;
1043 	struct bio *bio = info->orig;
1044 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1045 	int error = clone->bi_error;
1046 
1047 	bio_put(clone);
1048 
1049 	if (tio->error)
1050 		/*
1051 		 * An error has already been detected on the request.
1052 		 * Once error occurred, just let clone->end_io() handle
1053 		 * the remainder.
1054 		 */
1055 		return;
1056 	else if (error) {
1057 		/*
1058 		 * Don't notice the error to the upper layer yet.
1059 		 * The error handling decision is made by the target driver,
1060 		 * when the request is completed.
1061 		 */
1062 		tio->error = error;
1063 		return;
1064 	}
1065 
1066 	/*
1067 	 * I/O for the bio successfully completed.
1068 	 * Notice the data completion to the upper layer.
1069 	 */
1070 
1071 	/*
1072 	 * bios are processed from the head of the list.
1073 	 * So the completing bio should always be rq->bio.
1074 	 * If it's not, something wrong is happening.
1075 	 */
1076 	if (tio->orig->bio != bio)
1077 		DMERR("bio completion is going in the middle of the request");
1078 
1079 	/*
1080 	 * Update the original request.
1081 	 * Do not use blk_end_request() here, because it may complete
1082 	 * the original request before the clone, and break the ordering.
1083 	 */
1084 	blk_update_request(tio->orig, 0, nr_bytes);
1085 }
1086 
1087 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1088 {
1089 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1090 }
1091 
1092 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1093 {
1094 	if (unlikely(dm_stats_used(&md->stats))) {
1095 		struct dm_rq_target_io *tio = tio_from_request(orig);
1096 		tio->duration_jiffies = jiffies - tio->duration_jiffies;
1097 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1098 				    tio->n_sectors, true, tio->duration_jiffies,
1099 				    &tio->stats_aux);
1100 	}
1101 }
1102 
1103 /*
1104  * Don't touch any member of the md after calling this function because
1105  * the md may be freed in dm_put() at the end of this function.
1106  * Or do dm_get() before calling this function and dm_put() later.
1107  */
1108 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1109 {
1110 	atomic_dec(&md->pending[rw]);
1111 
1112 	/* nudge anyone waiting on suspend queue */
1113 	if (!md_in_flight(md))
1114 		wake_up(&md->wait);
1115 
1116 	/*
1117 	 * Run this off this callpath, as drivers could invoke end_io while
1118 	 * inside their request_fn (and holding the queue lock). Calling
1119 	 * back into ->request_fn() could deadlock attempting to grab the
1120 	 * queue lock again.
1121 	 */
1122 	if (!md->queue->mq_ops && run_queue)
1123 		blk_run_queue_async(md->queue);
1124 
1125 	/*
1126 	 * dm_put() must be at the end of this function. See the comment above
1127 	 */
1128 	dm_put(md);
1129 }
1130 
1131 static void free_rq_clone(struct request *clone)
1132 {
1133 	struct dm_rq_target_io *tio = clone->end_io_data;
1134 	struct mapped_device *md = tio->md;
1135 
1136 	blk_rq_unprep_clone(clone);
1137 
1138 	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1139 		/* stacked on blk-mq queue(s) */
1140 		tio->ti->type->release_clone_rq(clone);
1141 	else if (!md->queue->mq_ops)
1142 		/* request_fn queue stacked on request_fn queue(s) */
1143 		free_clone_request(md, clone);
1144 	/*
1145 	 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1146 	 * no need to call free_clone_request() because we leverage blk-mq by
1147 	 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1148 	 */
1149 
1150 	if (!md->queue->mq_ops)
1151 		free_rq_tio(tio);
1152 }
1153 
1154 /*
1155  * Complete the clone and the original request.
1156  * Must be called without clone's queue lock held,
1157  * see end_clone_request() for more details.
1158  */
1159 static void dm_end_request(struct request *clone, int error)
1160 {
1161 	int rw = rq_data_dir(clone);
1162 	struct dm_rq_target_io *tio = clone->end_io_data;
1163 	struct mapped_device *md = tio->md;
1164 	struct request *rq = tio->orig;
1165 
1166 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1167 		rq->errors = clone->errors;
1168 		rq->resid_len = clone->resid_len;
1169 
1170 		if (rq->sense)
1171 			/*
1172 			 * We are using the sense buffer of the original
1173 			 * request.
1174 			 * So setting the length of the sense data is enough.
1175 			 */
1176 			rq->sense_len = clone->sense_len;
1177 	}
1178 
1179 	free_rq_clone(clone);
1180 	rq_end_stats(md, rq);
1181 	if (!rq->q->mq_ops)
1182 		blk_end_request_all(rq, error);
1183 	else
1184 		blk_mq_end_request(rq, error);
1185 	rq_completed(md, rw, true);
1186 }
1187 
1188 static void dm_unprep_request(struct request *rq)
1189 {
1190 	struct dm_rq_target_io *tio = tio_from_request(rq);
1191 	struct request *clone = tio->clone;
1192 
1193 	if (!rq->q->mq_ops) {
1194 		rq->special = NULL;
1195 		rq->cmd_flags &= ~REQ_DONTPREP;
1196 	}
1197 
1198 	if (clone)
1199 		free_rq_clone(clone);
1200 	else if (!tio->md->queue->mq_ops)
1201 		free_rq_tio(tio);
1202 }
1203 
1204 /*
1205  * Requeue the original request of a clone.
1206  */
1207 static void old_requeue_request(struct request *rq)
1208 {
1209 	struct request_queue *q = rq->q;
1210 	unsigned long flags;
1211 
1212 	spin_lock_irqsave(q->queue_lock, flags);
1213 	blk_requeue_request(q, rq);
1214 	blk_run_queue_async(q);
1215 	spin_unlock_irqrestore(q->queue_lock, flags);
1216 }
1217 
1218 static void dm_requeue_original_request(struct mapped_device *md,
1219 					struct request *rq)
1220 {
1221 	int rw = rq_data_dir(rq);
1222 
1223 	dm_unprep_request(rq);
1224 
1225 	rq_end_stats(md, rq);
1226 	if (!rq->q->mq_ops)
1227 		old_requeue_request(rq);
1228 	else {
1229 		blk_mq_requeue_request(rq);
1230 		blk_mq_kick_requeue_list(rq->q);
1231 	}
1232 
1233 	rq_completed(md, rw, false);
1234 }
1235 
1236 static void old_stop_queue(struct request_queue *q)
1237 {
1238 	unsigned long flags;
1239 
1240 	if (blk_queue_stopped(q))
1241 		return;
1242 
1243 	spin_lock_irqsave(q->queue_lock, flags);
1244 	blk_stop_queue(q);
1245 	spin_unlock_irqrestore(q->queue_lock, flags);
1246 }
1247 
1248 static void stop_queue(struct request_queue *q)
1249 {
1250 	if (!q->mq_ops)
1251 		old_stop_queue(q);
1252 	else
1253 		blk_mq_stop_hw_queues(q);
1254 }
1255 
1256 static void old_start_queue(struct request_queue *q)
1257 {
1258 	unsigned long flags;
1259 
1260 	spin_lock_irqsave(q->queue_lock, flags);
1261 	if (blk_queue_stopped(q))
1262 		blk_start_queue(q);
1263 	spin_unlock_irqrestore(q->queue_lock, flags);
1264 }
1265 
1266 static void start_queue(struct request_queue *q)
1267 {
1268 	if (!q->mq_ops)
1269 		old_start_queue(q);
1270 	else
1271 		blk_mq_start_stopped_hw_queues(q, true);
1272 }
1273 
1274 static void dm_done(struct request *clone, int error, bool mapped)
1275 {
1276 	int r = error;
1277 	struct dm_rq_target_io *tio = clone->end_io_data;
1278 	dm_request_endio_fn rq_end_io = NULL;
1279 
1280 	if (tio->ti) {
1281 		rq_end_io = tio->ti->type->rq_end_io;
1282 
1283 		if (mapped && rq_end_io)
1284 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1285 	}
1286 
1287 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1288 		     !clone->q->limits.max_write_same_sectors))
1289 		disable_write_same(tio->md);
1290 
1291 	if (r <= 0)
1292 		/* The target wants to complete the I/O */
1293 		dm_end_request(clone, r);
1294 	else if (r == DM_ENDIO_INCOMPLETE)
1295 		/* The target will handle the I/O */
1296 		return;
1297 	else if (r == DM_ENDIO_REQUEUE)
1298 		/* The target wants to requeue the I/O */
1299 		dm_requeue_original_request(tio->md, tio->orig);
1300 	else {
1301 		DMWARN("unimplemented target endio return value: %d", r);
1302 		BUG();
1303 	}
1304 }
1305 
1306 /*
1307  * Request completion handler for request-based dm
1308  */
1309 static void dm_softirq_done(struct request *rq)
1310 {
1311 	bool mapped = true;
1312 	struct dm_rq_target_io *tio = tio_from_request(rq);
1313 	struct request *clone = tio->clone;
1314 	int rw;
1315 
1316 	if (!clone) {
1317 		rq_end_stats(tio->md, rq);
1318 		rw = rq_data_dir(rq);
1319 		if (!rq->q->mq_ops) {
1320 			blk_end_request_all(rq, tio->error);
1321 			rq_completed(tio->md, rw, false);
1322 			free_rq_tio(tio);
1323 		} else {
1324 			blk_mq_end_request(rq, tio->error);
1325 			rq_completed(tio->md, rw, false);
1326 		}
1327 		return;
1328 	}
1329 
1330 	if (rq->cmd_flags & REQ_FAILED)
1331 		mapped = false;
1332 
1333 	dm_done(clone, tio->error, mapped);
1334 }
1335 
1336 /*
1337  * Complete the clone and the original request with the error status
1338  * through softirq context.
1339  */
1340 static void dm_complete_request(struct request *rq, int error)
1341 {
1342 	struct dm_rq_target_io *tio = tio_from_request(rq);
1343 
1344 	tio->error = error;
1345 	if (!rq->q->mq_ops)
1346 		blk_complete_request(rq);
1347 	else
1348 		blk_mq_complete_request(rq, error);
1349 }
1350 
1351 /*
1352  * Complete the not-mapped clone and the original request with the error status
1353  * through softirq context.
1354  * Target's rq_end_io() function isn't called.
1355  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1356  */
1357 static void dm_kill_unmapped_request(struct request *rq, int error)
1358 {
1359 	rq->cmd_flags |= REQ_FAILED;
1360 	dm_complete_request(rq, error);
1361 }
1362 
1363 /*
1364  * Called with the clone's queue lock held (for non-blk-mq)
1365  */
1366 static void end_clone_request(struct request *clone, int error)
1367 {
1368 	struct dm_rq_target_io *tio = clone->end_io_data;
1369 
1370 	if (!clone->q->mq_ops) {
1371 		/*
1372 		 * For just cleaning up the information of the queue in which
1373 		 * the clone was dispatched.
1374 		 * The clone is *NOT* freed actually here because it is alloced
1375 		 * from dm own mempool (REQ_ALLOCED isn't set).
1376 		 */
1377 		__blk_put_request(clone->q, clone);
1378 	}
1379 
1380 	/*
1381 	 * Actual request completion is done in a softirq context which doesn't
1382 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1383 	 *     - another request may be submitted by the upper level driver
1384 	 *       of the stacking during the completion
1385 	 *     - the submission which requires queue lock may be done
1386 	 *       against this clone's queue
1387 	 */
1388 	dm_complete_request(tio->orig, error);
1389 }
1390 
1391 /*
1392  * Return maximum size of I/O possible at the supplied sector up to the current
1393  * target boundary.
1394  */
1395 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1396 {
1397 	sector_t target_offset = dm_target_offset(ti, sector);
1398 
1399 	return ti->len - target_offset;
1400 }
1401 
1402 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1403 {
1404 	sector_t len = max_io_len_target_boundary(sector, ti);
1405 	sector_t offset, max_len;
1406 
1407 	/*
1408 	 * Does the target need to split even further?
1409 	 */
1410 	if (ti->max_io_len) {
1411 		offset = dm_target_offset(ti, sector);
1412 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1413 			max_len = sector_div(offset, ti->max_io_len);
1414 		else
1415 			max_len = offset & (ti->max_io_len - 1);
1416 		max_len = ti->max_io_len - max_len;
1417 
1418 		if (len > max_len)
1419 			len = max_len;
1420 	}
1421 
1422 	return len;
1423 }
1424 
1425 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1426 {
1427 	if (len > UINT_MAX) {
1428 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1429 		      (unsigned long long)len, UINT_MAX);
1430 		ti->error = "Maximum size of target IO is too large";
1431 		return -EINVAL;
1432 	}
1433 
1434 	ti->max_io_len = (uint32_t) len;
1435 
1436 	return 0;
1437 }
1438 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1439 
1440 /*
1441  * A target may call dm_accept_partial_bio only from the map routine.  It is
1442  * allowed for all bio types except REQ_FLUSH.
1443  *
1444  * dm_accept_partial_bio informs the dm that the target only wants to process
1445  * additional n_sectors sectors of the bio and the rest of the data should be
1446  * sent in a next bio.
1447  *
1448  * A diagram that explains the arithmetics:
1449  * +--------------------+---------------+-------+
1450  * |         1          |       2       |   3   |
1451  * +--------------------+---------------+-------+
1452  *
1453  * <-------------- *tio->len_ptr --------------->
1454  *                      <------- bi_size ------->
1455  *                      <-- n_sectors -->
1456  *
1457  * Region 1 was already iterated over with bio_advance or similar function.
1458  *	(it may be empty if the target doesn't use bio_advance)
1459  * Region 2 is the remaining bio size that the target wants to process.
1460  *	(it may be empty if region 1 is non-empty, although there is no reason
1461  *	 to make it empty)
1462  * The target requires that region 3 is to be sent in the next bio.
1463  *
1464  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1465  * the partially processed part (the sum of regions 1+2) must be the same for all
1466  * copies of the bio.
1467  */
1468 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1469 {
1470 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1471 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1472 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1473 	BUG_ON(bi_size > *tio->len_ptr);
1474 	BUG_ON(n_sectors > bi_size);
1475 	*tio->len_ptr -= bi_size - n_sectors;
1476 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1477 }
1478 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1479 
1480 static void __map_bio(struct dm_target_io *tio)
1481 {
1482 	int r;
1483 	sector_t sector;
1484 	struct mapped_device *md;
1485 	struct bio *clone = &tio->clone;
1486 	struct dm_target *ti = tio->ti;
1487 
1488 	clone->bi_end_io = clone_endio;
1489 
1490 	/*
1491 	 * Map the clone.  If r == 0 we don't need to do
1492 	 * anything, the target has assumed ownership of
1493 	 * this io.
1494 	 */
1495 	atomic_inc(&tio->io->io_count);
1496 	sector = clone->bi_iter.bi_sector;
1497 	r = ti->type->map(ti, clone);
1498 	if (r == DM_MAPIO_REMAPPED) {
1499 		/* the bio has been remapped so dispatch it */
1500 
1501 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1502 				      tio->io->bio->bi_bdev->bd_dev, sector);
1503 
1504 		generic_make_request(clone);
1505 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1506 		/* error the io and bail out, or requeue it if needed */
1507 		md = tio->io->md;
1508 		dec_pending(tio->io, r);
1509 		free_tio(md, tio);
1510 	} else if (r != DM_MAPIO_SUBMITTED) {
1511 		DMWARN("unimplemented target map return value: %d", r);
1512 		BUG();
1513 	}
1514 }
1515 
1516 struct clone_info {
1517 	struct mapped_device *md;
1518 	struct dm_table *map;
1519 	struct bio *bio;
1520 	struct dm_io *io;
1521 	sector_t sector;
1522 	unsigned sector_count;
1523 };
1524 
1525 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1526 {
1527 	bio->bi_iter.bi_sector = sector;
1528 	bio->bi_iter.bi_size = to_bytes(len);
1529 }
1530 
1531 /*
1532  * Creates a bio that consists of range of complete bvecs.
1533  */
1534 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1535 		      sector_t sector, unsigned len)
1536 {
1537 	struct bio *clone = &tio->clone;
1538 
1539 	__bio_clone_fast(clone, bio);
1540 
1541 	if (bio_integrity(bio))
1542 		bio_integrity_clone(clone, bio, GFP_NOIO);
1543 
1544 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1545 	clone->bi_iter.bi_size = to_bytes(len);
1546 
1547 	if (bio_integrity(bio))
1548 		bio_integrity_trim(clone, 0, len);
1549 }
1550 
1551 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1552 				      struct dm_target *ti,
1553 				      unsigned target_bio_nr)
1554 {
1555 	struct dm_target_io *tio;
1556 	struct bio *clone;
1557 
1558 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1559 	tio = container_of(clone, struct dm_target_io, clone);
1560 
1561 	tio->io = ci->io;
1562 	tio->ti = ti;
1563 	tio->target_bio_nr = target_bio_nr;
1564 
1565 	return tio;
1566 }
1567 
1568 static void __clone_and_map_simple_bio(struct clone_info *ci,
1569 				       struct dm_target *ti,
1570 				       unsigned target_bio_nr, unsigned *len)
1571 {
1572 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1573 	struct bio *clone = &tio->clone;
1574 
1575 	tio->len_ptr = len;
1576 
1577 	__bio_clone_fast(clone, ci->bio);
1578 	if (len)
1579 		bio_setup_sector(clone, ci->sector, *len);
1580 
1581 	__map_bio(tio);
1582 }
1583 
1584 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1585 				  unsigned num_bios, unsigned *len)
1586 {
1587 	unsigned target_bio_nr;
1588 
1589 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1590 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1591 }
1592 
1593 static int __send_empty_flush(struct clone_info *ci)
1594 {
1595 	unsigned target_nr = 0;
1596 	struct dm_target *ti;
1597 
1598 	BUG_ON(bio_has_data(ci->bio));
1599 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1600 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1601 
1602 	return 0;
1603 }
1604 
1605 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1606 				     sector_t sector, unsigned *len)
1607 {
1608 	struct bio *bio = ci->bio;
1609 	struct dm_target_io *tio;
1610 	unsigned target_bio_nr;
1611 	unsigned num_target_bios = 1;
1612 
1613 	/*
1614 	 * Does the target want to receive duplicate copies of the bio?
1615 	 */
1616 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1617 		num_target_bios = ti->num_write_bios(ti, bio);
1618 
1619 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1620 		tio = alloc_tio(ci, ti, target_bio_nr);
1621 		tio->len_ptr = len;
1622 		clone_bio(tio, bio, sector, *len);
1623 		__map_bio(tio);
1624 	}
1625 }
1626 
1627 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1628 
1629 static unsigned get_num_discard_bios(struct dm_target *ti)
1630 {
1631 	return ti->num_discard_bios;
1632 }
1633 
1634 static unsigned get_num_write_same_bios(struct dm_target *ti)
1635 {
1636 	return ti->num_write_same_bios;
1637 }
1638 
1639 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1640 
1641 static bool is_split_required_for_discard(struct dm_target *ti)
1642 {
1643 	return ti->split_discard_bios;
1644 }
1645 
1646 static int __send_changing_extent_only(struct clone_info *ci,
1647 				       get_num_bios_fn get_num_bios,
1648 				       is_split_required_fn is_split_required)
1649 {
1650 	struct dm_target *ti;
1651 	unsigned len;
1652 	unsigned num_bios;
1653 
1654 	do {
1655 		ti = dm_table_find_target(ci->map, ci->sector);
1656 		if (!dm_target_is_valid(ti))
1657 			return -EIO;
1658 
1659 		/*
1660 		 * Even though the device advertised support for this type of
1661 		 * request, that does not mean every target supports it, and
1662 		 * reconfiguration might also have changed that since the
1663 		 * check was performed.
1664 		 */
1665 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1666 		if (!num_bios)
1667 			return -EOPNOTSUPP;
1668 
1669 		if (is_split_required && !is_split_required(ti))
1670 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1671 		else
1672 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1673 
1674 		__send_duplicate_bios(ci, ti, num_bios, &len);
1675 
1676 		ci->sector += len;
1677 	} while (ci->sector_count -= len);
1678 
1679 	return 0;
1680 }
1681 
1682 static int __send_discard(struct clone_info *ci)
1683 {
1684 	return __send_changing_extent_only(ci, get_num_discard_bios,
1685 					   is_split_required_for_discard);
1686 }
1687 
1688 static int __send_write_same(struct clone_info *ci)
1689 {
1690 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1691 }
1692 
1693 /*
1694  * Select the correct strategy for processing a non-flush bio.
1695  */
1696 static int __split_and_process_non_flush(struct clone_info *ci)
1697 {
1698 	struct bio *bio = ci->bio;
1699 	struct dm_target *ti;
1700 	unsigned len;
1701 
1702 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1703 		return __send_discard(ci);
1704 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1705 		return __send_write_same(ci);
1706 
1707 	ti = dm_table_find_target(ci->map, ci->sector);
1708 	if (!dm_target_is_valid(ti))
1709 		return -EIO;
1710 
1711 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1712 
1713 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1714 
1715 	ci->sector += len;
1716 	ci->sector_count -= len;
1717 
1718 	return 0;
1719 }
1720 
1721 /*
1722  * Entry point to split a bio into clones and submit them to the targets.
1723  */
1724 static void __split_and_process_bio(struct mapped_device *md,
1725 				    struct dm_table *map, struct bio *bio)
1726 {
1727 	struct clone_info ci;
1728 	int error = 0;
1729 
1730 	if (unlikely(!map)) {
1731 		bio_io_error(bio);
1732 		return;
1733 	}
1734 
1735 	ci.map = map;
1736 	ci.md = md;
1737 	ci.io = alloc_io(md);
1738 	ci.io->error = 0;
1739 	atomic_set(&ci.io->io_count, 1);
1740 	ci.io->bio = bio;
1741 	ci.io->md = md;
1742 	spin_lock_init(&ci.io->endio_lock);
1743 	ci.sector = bio->bi_iter.bi_sector;
1744 
1745 	start_io_acct(ci.io);
1746 
1747 	if (bio->bi_rw & REQ_FLUSH) {
1748 		ci.bio = &ci.md->flush_bio;
1749 		ci.sector_count = 0;
1750 		error = __send_empty_flush(&ci);
1751 		/* dec_pending submits any data associated with flush */
1752 	} else {
1753 		ci.bio = bio;
1754 		ci.sector_count = bio_sectors(bio);
1755 		while (ci.sector_count && !error)
1756 			error = __split_and_process_non_flush(&ci);
1757 	}
1758 
1759 	/* drop the extra reference count */
1760 	dec_pending(ci.io, error);
1761 }
1762 /*-----------------------------------------------------------------
1763  * CRUD END
1764  *---------------------------------------------------------------*/
1765 
1766 /*
1767  * The request function that just remaps the bio built up by
1768  * dm_merge_bvec.
1769  */
1770 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1771 {
1772 	int rw = bio_data_dir(bio);
1773 	struct mapped_device *md = q->queuedata;
1774 	int srcu_idx;
1775 	struct dm_table *map;
1776 
1777 	map = dm_get_live_table(md, &srcu_idx);
1778 
1779 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1780 
1781 	/* if we're suspended, we have to queue this io for later */
1782 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1783 		dm_put_live_table(md, srcu_idx);
1784 
1785 		if (bio_rw(bio) != READA)
1786 			queue_io(md, bio);
1787 		else
1788 			bio_io_error(bio);
1789 		return BLK_QC_T_NONE;
1790 	}
1791 
1792 	__split_and_process_bio(md, map, bio);
1793 	dm_put_live_table(md, srcu_idx);
1794 	return BLK_QC_T_NONE;
1795 }
1796 
1797 int dm_request_based(struct mapped_device *md)
1798 {
1799 	return blk_queue_stackable(md->queue);
1800 }
1801 
1802 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1803 {
1804 	int r;
1805 
1806 	if (blk_queue_io_stat(clone->q))
1807 		clone->cmd_flags |= REQ_IO_STAT;
1808 
1809 	clone->start_time = jiffies;
1810 	r = blk_insert_cloned_request(clone->q, clone);
1811 	if (r)
1812 		/* must complete clone in terms of original request */
1813 		dm_complete_request(rq, r);
1814 }
1815 
1816 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1817 				 void *data)
1818 {
1819 	struct dm_rq_target_io *tio = data;
1820 	struct dm_rq_clone_bio_info *info =
1821 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1822 
1823 	info->orig = bio_orig;
1824 	info->tio = tio;
1825 	bio->bi_end_io = end_clone_bio;
1826 
1827 	return 0;
1828 }
1829 
1830 static int setup_clone(struct request *clone, struct request *rq,
1831 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1832 {
1833 	int r;
1834 
1835 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1836 			      dm_rq_bio_constructor, tio);
1837 	if (r)
1838 		return r;
1839 
1840 	clone->cmd = rq->cmd;
1841 	clone->cmd_len = rq->cmd_len;
1842 	clone->sense = rq->sense;
1843 	clone->end_io = end_clone_request;
1844 	clone->end_io_data = tio;
1845 
1846 	tio->clone = clone;
1847 
1848 	return 0;
1849 }
1850 
1851 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1852 				struct dm_rq_target_io *tio, gfp_t gfp_mask)
1853 {
1854 	/*
1855 	 * Do not allocate a clone if tio->clone was already set
1856 	 * (see: dm_mq_queue_rq).
1857 	 */
1858 	bool alloc_clone = !tio->clone;
1859 	struct request *clone;
1860 
1861 	if (alloc_clone) {
1862 		clone = alloc_clone_request(md, gfp_mask);
1863 		if (!clone)
1864 			return NULL;
1865 	} else
1866 		clone = tio->clone;
1867 
1868 	blk_rq_init(NULL, clone);
1869 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1870 		/* -ENOMEM */
1871 		if (alloc_clone)
1872 			free_clone_request(md, clone);
1873 		return NULL;
1874 	}
1875 
1876 	return clone;
1877 }
1878 
1879 static void map_tio_request(struct kthread_work *work);
1880 
1881 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1882 		     struct mapped_device *md)
1883 {
1884 	tio->md = md;
1885 	tio->ti = NULL;
1886 	tio->clone = NULL;
1887 	tio->orig = rq;
1888 	tio->error = 0;
1889 	memset(&tio->info, 0, sizeof(tio->info));
1890 	if (md->kworker_task)
1891 		init_kthread_work(&tio->work, map_tio_request);
1892 }
1893 
1894 static struct dm_rq_target_io *prep_tio(struct request *rq,
1895 					struct mapped_device *md, gfp_t gfp_mask)
1896 {
1897 	struct dm_rq_target_io *tio;
1898 	int srcu_idx;
1899 	struct dm_table *table;
1900 
1901 	tio = alloc_rq_tio(md, gfp_mask);
1902 	if (!tio)
1903 		return NULL;
1904 
1905 	init_tio(tio, rq, md);
1906 
1907 	table = dm_get_live_table(md, &srcu_idx);
1908 	if (!dm_table_mq_request_based(table)) {
1909 		if (!clone_rq(rq, md, tio, gfp_mask)) {
1910 			dm_put_live_table(md, srcu_idx);
1911 			free_rq_tio(tio);
1912 			return NULL;
1913 		}
1914 	}
1915 	dm_put_live_table(md, srcu_idx);
1916 
1917 	return tio;
1918 }
1919 
1920 /*
1921  * Called with the queue lock held.
1922  */
1923 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1924 {
1925 	struct mapped_device *md = q->queuedata;
1926 	struct dm_rq_target_io *tio;
1927 
1928 	if (unlikely(rq->special)) {
1929 		DMWARN("Already has something in rq->special.");
1930 		return BLKPREP_KILL;
1931 	}
1932 
1933 	tio = prep_tio(rq, md, GFP_ATOMIC);
1934 	if (!tio)
1935 		return BLKPREP_DEFER;
1936 
1937 	rq->special = tio;
1938 	rq->cmd_flags |= REQ_DONTPREP;
1939 
1940 	return BLKPREP_OK;
1941 }
1942 
1943 /*
1944  * Returns:
1945  * 0                : the request has been processed
1946  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1947  * < 0              : the request was completed due to failure
1948  */
1949 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1950 		       struct mapped_device *md)
1951 {
1952 	int r;
1953 	struct dm_target *ti = tio->ti;
1954 	struct request *clone = NULL;
1955 
1956 	if (tio->clone) {
1957 		clone = tio->clone;
1958 		r = ti->type->map_rq(ti, clone, &tio->info);
1959 	} else {
1960 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1961 		if (r < 0) {
1962 			/* The target wants to complete the I/O */
1963 			dm_kill_unmapped_request(rq, r);
1964 			return r;
1965 		}
1966 		if (r != DM_MAPIO_REMAPPED)
1967 			return r;
1968 		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1969 			/* -ENOMEM */
1970 			ti->type->release_clone_rq(clone);
1971 			return DM_MAPIO_REQUEUE;
1972 		}
1973 	}
1974 
1975 	switch (r) {
1976 	case DM_MAPIO_SUBMITTED:
1977 		/* The target has taken the I/O to submit by itself later */
1978 		break;
1979 	case DM_MAPIO_REMAPPED:
1980 		/* The target has remapped the I/O so dispatch it */
1981 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1982 				     blk_rq_pos(rq));
1983 		dm_dispatch_clone_request(clone, rq);
1984 		break;
1985 	case DM_MAPIO_REQUEUE:
1986 		/* The target wants to requeue the I/O */
1987 		dm_requeue_original_request(md, tio->orig);
1988 		break;
1989 	default:
1990 		if (r > 0) {
1991 			DMWARN("unimplemented target map return value: %d", r);
1992 			BUG();
1993 		}
1994 
1995 		/* The target wants to complete the I/O */
1996 		dm_kill_unmapped_request(rq, r);
1997 		return r;
1998 	}
1999 
2000 	return 0;
2001 }
2002 
2003 static void map_tio_request(struct kthread_work *work)
2004 {
2005 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2006 	struct request *rq = tio->orig;
2007 	struct mapped_device *md = tio->md;
2008 
2009 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2010 		dm_requeue_original_request(md, rq);
2011 }
2012 
2013 static void dm_start_request(struct mapped_device *md, struct request *orig)
2014 {
2015 	if (!orig->q->mq_ops)
2016 		blk_start_request(orig);
2017 	else
2018 		blk_mq_start_request(orig);
2019 	atomic_inc(&md->pending[rq_data_dir(orig)]);
2020 
2021 	if (md->seq_rq_merge_deadline_usecs) {
2022 		md->last_rq_pos = rq_end_sector(orig);
2023 		md->last_rq_rw = rq_data_dir(orig);
2024 		md->last_rq_start_time = ktime_get();
2025 	}
2026 
2027 	if (unlikely(dm_stats_used(&md->stats))) {
2028 		struct dm_rq_target_io *tio = tio_from_request(orig);
2029 		tio->duration_jiffies = jiffies;
2030 		tio->n_sectors = blk_rq_sectors(orig);
2031 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2032 				    tio->n_sectors, false, 0, &tio->stats_aux);
2033 	}
2034 
2035 	/*
2036 	 * Hold the md reference here for the in-flight I/O.
2037 	 * We can't rely on the reference count by device opener,
2038 	 * because the device may be closed during the request completion
2039 	 * when all bios are completed.
2040 	 * See the comment in rq_completed() too.
2041 	 */
2042 	dm_get(md);
2043 }
2044 
2045 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2046 
2047 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2048 {
2049 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2050 }
2051 
2052 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2053 						     const char *buf, size_t count)
2054 {
2055 	unsigned deadline;
2056 
2057 	if (!dm_request_based(md) || md->use_blk_mq)
2058 		return count;
2059 
2060 	if (kstrtouint(buf, 10, &deadline))
2061 		return -EINVAL;
2062 
2063 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2064 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2065 
2066 	md->seq_rq_merge_deadline_usecs = deadline;
2067 
2068 	return count;
2069 }
2070 
2071 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2072 {
2073 	ktime_t kt_deadline;
2074 
2075 	if (!md->seq_rq_merge_deadline_usecs)
2076 		return false;
2077 
2078 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2079 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2080 
2081 	return !ktime_after(ktime_get(), kt_deadline);
2082 }
2083 
2084 /*
2085  * q->request_fn for request-based dm.
2086  * Called with the queue lock held.
2087  */
2088 static void dm_request_fn(struct request_queue *q)
2089 {
2090 	struct mapped_device *md = q->queuedata;
2091 	struct dm_target *ti = md->immutable_target;
2092 	struct request *rq;
2093 	struct dm_rq_target_io *tio;
2094 	sector_t pos = 0;
2095 
2096 	if (unlikely(!ti)) {
2097 		int srcu_idx;
2098 		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2099 
2100 		ti = dm_table_find_target(map, pos);
2101 		dm_put_live_table(md, srcu_idx);
2102 	}
2103 
2104 	/*
2105 	 * For suspend, check blk_queue_stopped() and increment
2106 	 * ->pending within a single queue_lock not to increment the
2107 	 * number of in-flight I/Os after the queue is stopped in
2108 	 * dm_suspend().
2109 	 */
2110 	while (!blk_queue_stopped(q)) {
2111 		rq = blk_peek_request(q);
2112 		if (!rq)
2113 			return;
2114 
2115 		/* always use block 0 to find the target for flushes for now */
2116 		pos = 0;
2117 		if (!(rq->cmd_flags & REQ_FLUSH))
2118 			pos = blk_rq_pos(rq);
2119 
2120 		if ((dm_request_peeked_before_merge_deadline(md) &&
2121 		     md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2122 		     md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) ||
2123 		    (ti->type->busy && ti->type->busy(ti))) {
2124 			blk_delay_queue(q, HZ / 100);
2125 			return;
2126 		}
2127 
2128 		dm_start_request(md, rq);
2129 
2130 		tio = tio_from_request(rq);
2131 		/* Establish tio->ti before queuing work (map_tio_request) */
2132 		tio->ti = ti;
2133 		queue_kthread_work(&md->kworker, &tio->work);
2134 		BUG_ON(!irqs_disabled());
2135 	}
2136 }
2137 
2138 static int dm_any_congested(void *congested_data, int bdi_bits)
2139 {
2140 	int r = bdi_bits;
2141 	struct mapped_device *md = congested_data;
2142 	struct dm_table *map;
2143 
2144 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2145 		if (dm_request_based(md)) {
2146 			/*
2147 			 * With request-based DM we only need to check the
2148 			 * top-level queue for congestion.
2149 			 */
2150 			r = md->queue->backing_dev_info.wb.state & bdi_bits;
2151 		} else {
2152 			map = dm_get_live_table_fast(md);
2153 			if (map)
2154 				r = dm_table_any_congested(map, bdi_bits);
2155 			dm_put_live_table_fast(md);
2156 		}
2157 	}
2158 
2159 	return r;
2160 }
2161 
2162 /*-----------------------------------------------------------------
2163  * An IDR is used to keep track of allocated minor numbers.
2164  *---------------------------------------------------------------*/
2165 static void free_minor(int minor)
2166 {
2167 	spin_lock(&_minor_lock);
2168 	idr_remove(&_minor_idr, minor);
2169 	spin_unlock(&_minor_lock);
2170 }
2171 
2172 /*
2173  * See if the device with a specific minor # is free.
2174  */
2175 static int specific_minor(int minor)
2176 {
2177 	int r;
2178 
2179 	if (minor >= (1 << MINORBITS))
2180 		return -EINVAL;
2181 
2182 	idr_preload(GFP_KERNEL);
2183 	spin_lock(&_minor_lock);
2184 
2185 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2186 
2187 	spin_unlock(&_minor_lock);
2188 	idr_preload_end();
2189 	if (r < 0)
2190 		return r == -ENOSPC ? -EBUSY : r;
2191 	return 0;
2192 }
2193 
2194 static int next_free_minor(int *minor)
2195 {
2196 	int r;
2197 
2198 	idr_preload(GFP_KERNEL);
2199 	spin_lock(&_minor_lock);
2200 
2201 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2202 
2203 	spin_unlock(&_minor_lock);
2204 	idr_preload_end();
2205 	if (r < 0)
2206 		return r;
2207 	*minor = r;
2208 	return 0;
2209 }
2210 
2211 static const struct block_device_operations dm_blk_dops;
2212 
2213 static void dm_wq_work(struct work_struct *work);
2214 
2215 static void dm_init_md_queue(struct mapped_device *md)
2216 {
2217 	/*
2218 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2219 	 * devices.  The type of this dm device may not have been decided yet.
2220 	 * The type is decided at the first table loading time.
2221 	 * To prevent problematic device stacking, clear the queue flag
2222 	 * for request stacking support until then.
2223 	 *
2224 	 * This queue is new, so no concurrency on the queue_flags.
2225 	 */
2226 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2227 
2228 	/*
2229 	 * Initialize data that will only be used by a non-blk-mq DM queue
2230 	 * - must do so here (in alloc_dev callchain) before queue is used
2231 	 */
2232 	md->queue->queuedata = md;
2233 	md->queue->backing_dev_info.congested_data = md;
2234 }
2235 
2236 static void dm_init_old_md_queue(struct mapped_device *md)
2237 {
2238 	md->use_blk_mq = false;
2239 	dm_init_md_queue(md);
2240 
2241 	/*
2242 	 * Initialize aspects of queue that aren't relevant for blk-mq
2243 	 */
2244 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2245 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2246 }
2247 
2248 static void cleanup_mapped_device(struct mapped_device *md)
2249 {
2250 	if (md->wq)
2251 		destroy_workqueue(md->wq);
2252 	if (md->kworker_task)
2253 		kthread_stop(md->kworker_task);
2254 	mempool_destroy(md->io_pool);
2255 	mempool_destroy(md->rq_pool);
2256 	if (md->bs)
2257 		bioset_free(md->bs);
2258 
2259 	cleanup_srcu_struct(&md->io_barrier);
2260 
2261 	if (md->disk) {
2262 		spin_lock(&_minor_lock);
2263 		md->disk->private_data = NULL;
2264 		spin_unlock(&_minor_lock);
2265 		del_gendisk(md->disk);
2266 		put_disk(md->disk);
2267 	}
2268 
2269 	if (md->queue)
2270 		blk_cleanup_queue(md->queue);
2271 
2272 	if (md->bdev) {
2273 		bdput(md->bdev);
2274 		md->bdev = NULL;
2275 	}
2276 }
2277 
2278 /*
2279  * Allocate and initialise a blank device with a given minor.
2280  */
2281 static struct mapped_device *alloc_dev(int minor)
2282 {
2283 	int r;
2284 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2285 	void *old_md;
2286 
2287 	if (!md) {
2288 		DMWARN("unable to allocate device, out of memory.");
2289 		return NULL;
2290 	}
2291 
2292 	if (!try_module_get(THIS_MODULE))
2293 		goto bad_module_get;
2294 
2295 	/* get a minor number for the dev */
2296 	if (minor == DM_ANY_MINOR)
2297 		r = next_free_minor(&minor);
2298 	else
2299 		r = specific_minor(minor);
2300 	if (r < 0)
2301 		goto bad_minor;
2302 
2303 	r = init_srcu_struct(&md->io_barrier);
2304 	if (r < 0)
2305 		goto bad_io_barrier;
2306 
2307 	md->use_blk_mq = use_blk_mq;
2308 	md->type = DM_TYPE_NONE;
2309 	mutex_init(&md->suspend_lock);
2310 	mutex_init(&md->type_lock);
2311 	mutex_init(&md->table_devices_lock);
2312 	spin_lock_init(&md->deferred_lock);
2313 	atomic_set(&md->holders, 1);
2314 	atomic_set(&md->open_count, 0);
2315 	atomic_set(&md->event_nr, 0);
2316 	atomic_set(&md->uevent_seq, 0);
2317 	INIT_LIST_HEAD(&md->uevent_list);
2318 	INIT_LIST_HEAD(&md->table_devices);
2319 	spin_lock_init(&md->uevent_lock);
2320 
2321 	md->queue = blk_alloc_queue(GFP_KERNEL);
2322 	if (!md->queue)
2323 		goto bad;
2324 
2325 	dm_init_md_queue(md);
2326 
2327 	md->disk = alloc_disk(1);
2328 	if (!md->disk)
2329 		goto bad;
2330 
2331 	atomic_set(&md->pending[0], 0);
2332 	atomic_set(&md->pending[1], 0);
2333 	init_waitqueue_head(&md->wait);
2334 	INIT_WORK(&md->work, dm_wq_work);
2335 	init_waitqueue_head(&md->eventq);
2336 	init_completion(&md->kobj_holder.completion);
2337 	md->kworker_task = NULL;
2338 
2339 	md->disk->major = _major;
2340 	md->disk->first_minor = minor;
2341 	md->disk->fops = &dm_blk_dops;
2342 	md->disk->queue = md->queue;
2343 	md->disk->private_data = md;
2344 	sprintf(md->disk->disk_name, "dm-%d", minor);
2345 	add_disk(md->disk);
2346 	format_dev_t(md->name, MKDEV(_major, minor));
2347 
2348 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2349 	if (!md->wq)
2350 		goto bad;
2351 
2352 	md->bdev = bdget_disk(md->disk, 0);
2353 	if (!md->bdev)
2354 		goto bad;
2355 
2356 	bio_init(&md->flush_bio);
2357 	md->flush_bio.bi_bdev = md->bdev;
2358 	md->flush_bio.bi_rw = WRITE_FLUSH;
2359 
2360 	dm_stats_init(&md->stats);
2361 
2362 	/* Populate the mapping, nobody knows we exist yet */
2363 	spin_lock(&_minor_lock);
2364 	old_md = idr_replace(&_minor_idr, md, minor);
2365 	spin_unlock(&_minor_lock);
2366 
2367 	BUG_ON(old_md != MINOR_ALLOCED);
2368 
2369 	return md;
2370 
2371 bad:
2372 	cleanup_mapped_device(md);
2373 bad_io_barrier:
2374 	free_minor(minor);
2375 bad_minor:
2376 	module_put(THIS_MODULE);
2377 bad_module_get:
2378 	kfree(md);
2379 	return NULL;
2380 }
2381 
2382 static void unlock_fs(struct mapped_device *md);
2383 
2384 static void free_dev(struct mapped_device *md)
2385 {
2386 	int minor = MINOR(disk_devt(md->disk));
2387 
2388 	unlock_fs(md);
2389 
2390 	cleanup_mapped_device(md);
2391 	if (md->tag_set) {
2392 		blk_mq_free_tag_set(md->tag_set);
2393 		kfree(md->tag_set);
2394 	}
2395 
2396 	free_table_devices(&md->table_devices);
2397 	dm_stats_cleanup(&md->stats);
2398 	free_minor(minor);
2399 
2400 	module_put(THIS_MODULE);
2401 	kfree(md);
2402 }
2403 
2404 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2405 {
2406 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2407 
2408 	if (md->bs) {
2409 		/* The md already has necessary mempools. */
2410 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2411 			/*
2412 			 * Reload bioset because front_pad may have changed
2413 			 * because a different table was loaded.
2414 			 */
2415 			bioset_free(md->bs);
2416 			md->bs = p->bs;
2417 			p->bs = NULL;
2418 		}
2419 		/*
2420 		 * There's no need to reload with request-based dm
2421 		 * because the size of front_pad doesn't change.
2422 		 * Note for future: If you are to reload bioset,
2423 		 * prep-ed requests in the queue may refer
2424 		 * to bio from the old bioset, so you must walk
2425 		 * through the queue to unprep.
2426 		 */
2427 		goto out;
2428 	}
2429 
2430 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2431 
2432 	md->io_pool = p->io_pool;
2433 	p->io_pool = NULL;
2434 	md->rq_pool = p->rq_pool;
2435 	p->rq_pool = NULL;
2436 	md->bs = p->bs;
2437 	p->bs = NULL;
2438 
2439 out:
2440 	/* mempool bind completed, no longer need any mempools in the table */
2441 	dm_table_free_md_mempools(t);
2442 }
2443 
2444 /*
2445  * Bind a table to the device.
2446  */
2447 static void event_callback(void *context)
2448 {
2449 	unsigned long flags;
2450 	LIST_HEAD(uevents);
2451 	struct mapped_device *md = (struct mapped_device *) context;
2452 
2453 	spin_lock_irqsave(&md->uevent_lock, flags);
2454 	list_splice_init(&md->uevent_list, &uevents);
2455 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2456 
2457 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2458 
2459 	atomic_inc(&md->event_nr);
2460 	wake_up(&md->eventq);
2461 }
2462 
2463 /*
2464  * Protected by md->suspend_lock obtained by dm_swap_table().
2465  */
2466 static void __set_size(struct mapped_device *md, sector_t size)
2467 {
2468 	set_capacity(md->disk, size);
2469 
2470 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2471 }
2472 
2473 /*
2474  * Returns old map, which caller must destroy.
2475  */
2476 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2477 			       struct queue_limits *limits)
2478 {
2479 	struct dm_table *old_map;
2480 	struct request_queue *q = md->queue;
2481 	sector_t size;
2482 
2483 	size = dm_table_get_size(t);
2484 
2485 	/*
2486 	 * Wipe any geometry if the size of the table changed.
2487 	 */
2488 	if (size != dm_get_size(md))
2489 		memset(&md->geometry, 0, sizeof(md->geometry));
2490 
2491 	__set_size(md, size);
2492 
2493 	dm_table_event_callback(t, event_callback, md);
2494 
2495 	/*
2496 	 * The queue hasn't been stopped yet, if the old table type wasn't
2497 	 * for request-based during suspension.  So stop it to prevent
2498 	 * I/O mapping before resume.
2499 	 * This must be done before setting the queue restrictions,
2500 	 * because request-based dm may be run just after the setting.
2501 	 */
2502 	if (dm_table_request_based(t)) {
2503 		stop_queue(q);
2504 		/*
2505 		 * Leverage the fact that request-based DM targets are
2506 		 * immutable singletons and establish md->immutable_target
2507 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
2508 		 */
2509 		md->immutable_target = dm_table_get_immutable_target(t);
2510 	}
2511 
2512 	__bind_mempools(md, t);
2513 
2514 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2515 	rcu_assign_pointer(md->map, t);
2516 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2517 
2518 	dm_table_set_restrictions(t, q, limits);
2519 	if (old_map)
2520 		dm_sync_table(md);
2521 
2522 	return old_map;
2523 }
2524 
2525 /*
2526  * Returns unbound table for the caller to free.
2527  */
2528 static struct dm_table *__unbind(struct mapped_device *md)
2529 {
2530 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2531 
2532 	if (!map)
2533 		return NULL;
2534 
2535 	dm_table_event_callback(map, NULL, NULL);
2536 	RCU_INIT_POINTER(md->map, NULL);
2537 	dm_sync_table(md);
2538 
2539 	return map;
2540 }
2541 
2542 /*
2543  * Constructor for a new device.
2544  */
2545 int dm_create(int minor, struct mapped_device **result)
2546 {
2547 	struct mapped_device *md;
2548 
2549 	md = alloc_dev(minor);
2550 	if (!md)
2551 		return -ENXIO;
2552 
2553 	dm_sysfs_init(md);
2554 
2555 	*result = md;
2556 	return 0;
2557 }
2558 
2559 /*
2560  * Functions to manage md->type.
2561  * All are required to hold md->type_lock.
2562  */
2563 void dm_lock_md_type(struct mapped_device *md)
2564 {
2565 	mutex_lock(&md->type_lock);
2566 }
2567 
2568 void dm_unlock_md_type(struct mapped_device *md)
2569 {
2570 	mutex_unlock(&md->type_lock);
2571 }
2572 
2573 void dm_set_md_type(struct mapped_device *md, unsigned type)
2574 {
2575 	BUG_ON(!mutex_is_locked(&md->type_lock));
2576 	md->type = type;
2577 }
2578 
2579 unsigned dm_get_md_type(struct mapped_device *md)
2580 {
2581 	return md->type;
2582 }
2583 
2584 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2585 {
2586 	return md->immutable_target_type;
2587 }
2588 
2589 /*
2590  * The queue_limits are only valid as long as you have a reference
2591  * count on 'md'.
2592  */
2593 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2594 {
2595 	BUG_ON(!atomic_read(&md->holders));
2596 	return &md->queue->limits;
2597 }
2598 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2599 
2600 static void init_rq_based_worker_thread(struct mapped_device *md)
2601 {
2602 	/* Initialize the request-based DM worker thread */
2603 	init_kthread_worker(&md->kworker);
2604 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2605 				       "kdmwork-%s", dm_device_name(md));
2606 }
2607 
2608 /*
2609  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2610  */
2611 static int dm_init_request_based_queue(struct mapped_device *md)
2612 {
2613 	struct request_queue *q = NULL;
2614 
2615 	/* Fully initialize the queue */
2616 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2617 	if (!q)
2618 		return -EINVAL;
2619 
2620 	/* disable dm_request_fn's merge heuristic by default */
2621 	md->seq_rq_merge_deadline_usecs = 0;
2622 
2623 	md->queue = q;
2624 	dm_init_old_md_queue(md);
2625 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2626 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2627 
2628 	init_rq_based_worker_thread(md);
2629 
2630 	elv_register_queue(md->queue);
2631 
2632 	return 0;
2633 }
2634 
2635 static int dm_mq_init_request(void *data, struct request *rq,
2636 			      unsigned int hctx_idx, unsigned int request_idx,
2637 			      unsigned int numa_node)
2638 {
2639 	struct mapped_device *md = data;
2640 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2641 
2642 	/*
2643 	 * Must initialize md member of tio, otherwise it won't
2644 	 * be available in dm_mq_queue_rq.
2645 	 */
2646 	tio->md = md;
2647 
2648 	return 0;
2649 }
2650 
2651 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2652 			  const struct blk_mq_queue_data *bd)
2653 {
2654 	struct request *rq = bd->rq;
2655 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2656 	struct mapped_device *md = tio->md;
2657 	struct dm_target *ti = md->immutable_target;
2658 
2659 	if (unlikely(!ti)) {
2660 		int srcu_idx;
2661 		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2662 
2663 		ti = dm_table_find_target(map, 0);
2664 		dm_put_live_table(md, srcu_idx);
2665 	}
2666 
2667 	if (ti->type->busy && ti->type->busy(ti))
2668 		return BLK_MQ_RQ_QUEUE_BUSY;
2669 
2670 	dm_start_request(md, rq);
2671 
2672 	/* Init tio using md established in .init_request */
2673 	init_tio(tio, rq, md);
2674 
2675 	/*
2676 	 * Establish tio->ti before queuing work (map_tio_request)
2677 	 * or making direct call to map_request().
2678 	 */
2679 	tio->ti = ti;
2680 
2681 	/*
2682 	 * Both the table and md type cannot change after initial table load
2683 	 */
2684 	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
2685 		/* clone request is allocated at the end of the pdu */
2686 		tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2687 		(void) clone_rq(rq, md, tio, GFP_ATOMIC);
2688 		queue_kthread_work(&md->kworker, &tio->work);
2689 	} else {
2690 		/* Direct call is fine since .queue_rq allows allocations */
2691 		if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2692 			/* Undo dm_start_request() before requeuing */
2693 			rq_end_stats(md, rq);
2694 			rq_completed(md, rq_data_dir(rq), false);
2695 			return BLK_MQ_RQ_QUEUE_BUSY;
2696 		}
2697 	}
2698 
2699 	return BLK_MQ_RQ_QUEUE_OK;
2700 }
2701 
2702 static struct blk_mq_ops dm_mq_ops = {
2703 	.queue_rq = dm_mq_queue_rq,
2704 	.map_queue = blk_mq_map_queue,
2705 	.complete = dm_softirq_done,
2706 	.init_request = dm_mq_init_request,
2707 };
2708 
2709 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2710 {
2711 	unsigned md_type = dm_get_md_type(md);
2712 	struct request_queue *q;
2713 	int err;
2714 
2715 	md->tag_set = kzalloc(sizeof(struct blk_mq_tag_set), GFP_KERNEL);
2716 	if (!md->tag_set)
2717 		return -ENOMEM;
2718 
2719 	md->tag_set->ops = &dm_mq_ops;
2720 	md->tag_set->queue_depth = dm_get_blk_mq_queue_depth();
2721 	md->tag_set->numa_node = NUMA_NO_NODE;
2722 	md->tag_set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2723 	md->tag_set->nr_hw_queues = dm_get_blk_mq_nr_hw_queues();
2724 	md->tag_set->driver_data = md;
2725 
2726 	md->tag_set->cmd_size = sizeof(struct dm_rq_target_io);
2727 	if (md_type == DM_TYPE_REQUEST_BASED) {
2728 		/* put the memory for non-blk-mq clone at the end of the pdu */
2729 		md->tag_set->cmd_size += sizeof(struct request);
2730 	}
2731 
2732 	err = blk_mq_alloc_tag_set(md->tag_set);
2733 	if (err)
2734 		goto out_kfree_tag_set;
2735 
2736 	q = blk_mq_init_allocated_queue(md->tag_set, md->queue);
2737 	if (IS_ERR(q)) {
2738 		err = PTR_ERR(q);
2739 		goto out_tag_set;
2740 	}
2741 	md->queue = q;
2742 	dm_init_md_queue(md);
2743 
2744 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2745 	blk_mq_register_disk(md->disk);
2746 
2747 	if (md_type == DM_TYPE_REQUEST_BASED)
2748 		init_rq_based_worker_thread(md);
2749 
2750 	return 0;
2751 
2752 out_tag_set:
2753 	blk_mq_free_tag_set(md->tag_set);
2754 out_kfree_tag_set:
2755 	kfree(md->tag_set);
2756 
2757 	return err;
2758 }
2759 
2760 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2761 {
2762 	if (type == DM_TYPE_BIO_BASED)
2763 		return type;
2764 
2765 	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2766 }
2767 
2768 /*
2769  * Setup the DM device's queue based on md's type
2770  */
2771 int dm_setup_md_queue(struct mapped_device *md)
2772 {
2773 	int r;
2774 	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2775 
2776 	switch (md_type) {
2777 	case DM_TYPE_REQUEST_BASED:
2778 		r = dm_init_request_based_queue(md);
2779 		if (r) {
2780 			DMWARN("Cannot initialize queue for request-based mapped device");
2781 			return r;
2782 		}
2783 		break;
2784 	case DM_TYPE_MQ_REQUEST_BASED:
2785 		r = dm_init_request_based_blk_mq_queue(md);
2786 		if (r) {
2787 			DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2788 			return r;
2789 		}
2790 		break;
2791 	case DM_TYPE_BIO_BASED:
2792 		dm_init_old_md_queue(md);
2793 		blk_queue_make_request(md->queue, dm_make_request);
2794 		/*
2795 		 * DM handles splitting bios as needed.  Free the bio_split bioset
2796 		 * since it won't be used (saves 1 process per bio-based DM device).
2797 		 */
2798 		bioset_free(md->queue->bio_split);
2799 		md->queue->bio_split = NULL;
2800 		break;
2801 	}
2802 
2803 	return 0;
2804 }
2805 
2806 struct mapped_device *dm_get_md(dev_t dev)
2807 {
2808 	struct mapped_device *md;
2809 	unsigned minor = MINOR(dev);
2810 
2811 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2812 		return NULL;
2813 
2814 	spin_lock(&_minor_lock);
2815 
2816 	md = idr_find(&_minor_idr, minor);
2817 	if (md) {
2818 		if ((md == MINOR_ALLOCED ||
2819 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2820 		     dm_deleting_md(md) ||
2821 		     test_bit(DMF_FREEING, &md->flags))) {
2822 			md = NULL;
2823 			goto out;
2824 		}
2825 		dm_get(md);
2826 	}
2827 
2828 out:
2829 	spin_unlock(&_minor_lock);
2830 
2831 	return md;
2832 }
2833 EXPORT_SYMBOL_GPL(dm_get_md);
2834 
2835 void *dm_get_mdptr(struct mapped_device *md)
2836 {
2837 	return md->interface_ptr;
2838 }
2839 
2840 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2841 {
2842 	md->interface_ptr = ptr;
2843 }
2844 
2845 void dm_get(struct mapped_device *md)
2846 {
2847 	atomic_inc(&md->holders);
2848 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2849 }
2850 
2851 int dm_hold(struct mapped_device *md)
2852 {
2853 	spin_lock(&_minor_lock);
2854 	if (test_bit(DMF_FREEING, &md->flags)) {
2855 		spin_unlock(&_minor_lock);
2856 		return -EBUSY;
2857 	}
2858 	dm_get(md);
2859 	spin_unlock(&_minor_lock);
2860 	return 0;
2861 }
2862 EXPORT_SYMBOL_GPL(dm_hold);
2863 
2864 const char *dm_device_name(struct mapped_device *md)
2865 {
2866 	return md->name;
2867 }
2868 EXPORT_SYMBOL_GPL(dm_device_name);
2869 
2870 static void __dm_destroy(struct mapped_device *md, bool wait)
2871 {
2872 	struct dm_table *map;
2873 	int srcu_idx;
2874 
2875 	might_sleep();
2876 
2877 	spin_lock(&_minor_lock);
2878 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2879 	set_bit(DMF_FREEING, &md->flags);
2880 	spin_unlock(&_minor_lock);
2881 
2882 	if (dm_request_based(md) && md->kworker_task)
2883 		flush_kthread_worker(&md->kworker);
2884 
2885 	/*
2886 	 * Take suspend_lock so that presuspend and postsuspend methods
2887 	 * do not race with internal suspend.
2888 	 */
2889 	mutex_lock(&md->suspend_lock);
2890 	map = dm_get_live_table(md, &srcu_idx);
2891 	if (!dm_suspended_md(md)) {
2892 		dm_table_presuspend_targets(map);
2893 		dm_table_postsuspend_targets(map);
2894 	}
2895 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2896 	dm_put_live_table(md, srcu_idx);
2897 	mutex_unlock(&md->suspend_lock);
2898 
2899 	/*
2900 	 * Rare, but there may be I/O requests still going to complete,
2901 	 * for example.  Wait for all references to disappear.
2902 	 * No one should increment the reference count of the mapped_device,
2903 	 * after the mapped_device state becomes DMF_FREEING.
2904 	 */
2905 	if (wait)
2906 		while (atomic_read(&md->holders))
2907 			msleep(1);
2908 	else if (atomic_read(&md->holders))
2909 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2910 		       dm_device_name(md), atomic_read(&md->holders));
2911 
2912 	dm_sysfs_exit(md);
2913 	dm_table_destroy(__unbind(md));
2914 	free_dev(md);
2915 }
2916 
2917 void dm_destroy(struct mapped_device *md)
2918 {
2919 	__dm_destroy(md, true);
2920 }
2921 
2922 void dm_destroy_immediate(struct mapped_device *md)
2923 {
2924 	__dm_destroy(md, false);
2925 }
2926 
2927 void dm_put(struct mapped_device *md)
2928 {
2929 	atomic_dec(&md->holders);
2930 }
2931 EXPORT_SYMBOL_GPL(dm_put);
2932 
2933 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2934 {
2935 	int r = 0;
2936 	DECLARE_WAITQUEUE(wait, current);
2937 
2938 	add_wait_queue(&md->wait, &wait);
2939 
2940 	while (1) {
2941 		set_current_state(interruptible);
2942 
2943 		if (!md_in_flight(md))
2944 			break;
2945 
2946 		if (interruptible == TASK_INTERRUPTIBLE &&
2947 		    signal_pending(current)) {
2948 			r = -EINTR;
2949 			break;
2950 		}
2951 
2952 		io_schedule();
2953 	}
2954 	set_current_state(TASK_RUNNING);
2955 
2956 	remove_wait_queue(&md->wait, &wait);
2957 
2958 	return r;
2959 }
2960 
2961 /*
2962  * Process the deferred bios
2963  */
2964 static void dm_wq_work(struct work_struct *work)
2965 {
2966 	struct mapped_device *md = container_of(work, struct mapped_device,
2967 						work);
2968 	struct bio *c;
2969 	int srcu_idx;
2970 	struct dm_table *map;
2971 
2972 	map = dm_get_live_table(md, &srcu_idx);
2973 
2974 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2975 		spin_lock_irq(&md->deferred_lock);
2976 		c = bio_list_pop(&md->deferred);
2977 		spin_unlock_irq(&md->deferred_lock);
2978 
2979 		if (!c)
2980 			break;
2981 
2982 		if (dm_request_based(md))
2983 			generic_make_request(c);
2984 		else
2985 			__split_and_process_bio(md, map, c);
2986 	}
2987 
2988 	dm_put_live_table(md, srcu_idx);
2989 }
2990 
2991 static void dm_queue_flush(struct mapped_device *md)
2992 {
2993 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2994 	smp_mb__after_atomic();
2995 	queue_work(md->wq, &md->work);
2996 }
2997 
2998 /*
2999  * Swap in a new table, returning the old one for the caller to destroy.
3000  */
3001 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3002 {
3003 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3004 	struct queue_limits limits;
3005 	int r;
3006 
3007 	mutex_lock(&md->suspend_lock);
3008 
3009 	/* device must be suspended */
3010 	if (!dm_suspended_md(md))
3011 		goto out;
3012 
3013 	/*
3014 	 * If the new table has no data devices, retain the existing limits.
3015 	 * This helps multipath with queue_if_no_path if all paths disappear,
3016 	 * then new I/O is queued based on these limits, and then some paths
3017 	 * reappear.
3018 	 */
3019 	if (dm_table_has_no_data_devices(table)) {
3020 		live_map = dm_get_live_table_fast(md);
3021 		if (live_map)
3022 			limits = md->queue->limits;
3023 		dm_put_live_table_fast(md);
3024 	}
3025 
3026 	if (!live_map) {
3027 		r = dm_calculate_queue_limits(table, &limits);
3028 		if (r) {
3029 			map = ERR_PTR(r);
3030 			goto out;
3031 		}
3032 	}
3033 
3034 	map = __bind(md, table, &limits);
3035 
3036 out:
3037 	mutex_unlock(&md->suspend_lock);
3038 	return map;
3039 }
3040 
3041 /*
3042  * Functions to lock and unlock any filesystem running on the
3043  * device.
3044  */
3045 static int lock_fs(struct mapped_device *md)
3046 {
3047 	int r;
3048 
3049 	WARN_ON(md->frozen_sb);
3050 
3051 	md->frozen_sb = freeze_bdev(md->bdev);
3052 	if (IS_ERR(md->frozen_sb)) {
3053 		r = PTR_ERR(md->frozen_sb);
3054 		md->frozen_sb = NULL;
3055 		return r;
3056 	}
3057 
3058 	set_bit(DMF_FROZEN, &md->flags);
3059 
3060 	return 0;
3061 }
3062 
3063 static void unlock_fs(struct mapped_device *md)
3064 {
3065 	if (!test_bit(DMF_FROZEN, &md->flags))
3066 		return;
3067 
3068 	thaw_bdev(md->bdev, md->frozen_sb);
3069 	md->frozen_sb = NULL;
3070 	clear_bit(DMF_FROZEN, &md->flags);
3071 }
3072 
3073 /*
3074  * If __dm_suspend returns 0, the device is completely quiescent
3075  * now. There is no request-processing activity. All new requests
3076  * are being added to md->deferred list.
3077  *
3078  * Caller must hold md->suspend_lock
3079  */
3080 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3081 			unsigned suspend_flags, int interruptible)
3082 {
3083 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3084 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3085 	int r;
3086 
3087 	/*
3088 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3089 	 * This flag is cleared before dm_suspend returns.
3090 	 */
3091 	if (noflush)
3092 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3093 
3094 	/*
3095 	 * This gets reverted if there's an error later and the targets
3096 	 * provide the .presuspend_undo hook.
3097 	 */
3098 	dm_table_presuspend_targets(map);
3099 
3100 	/*
3101 	 * Flush I/O to the device.
3102 	 * Any I/O submitted after lock_fs() may not be flushed.
3103 	 * noflush takes precedence over do_lockfs.
3104 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3105 	 */
3106 	if (!noflush && do_lockfs) {
3107 		r = lock_fs(md);
3108 		if (r) {
3109 			dm_table_presuspend_undo_targets(map);
3110 			return r;
3111 		}
3112 	}
3113 
3114 	/*
3115 	 * Here we must make sure that no processes are submitting requests
3116 	 * to target drivers i.e. no one may be executing
3117 	 * __split_and_process_bio. This is called from dm_request and
3118 	 * dm_wq_work.
3119 	 *
3120 	 * To get all processes out of __split_and_process_bio in dm_request,
3121 	 * we take the write lock. To prevent any process from reentering
3122 	 * __split_and_process_bio from dm_request and quiesce the thread
3123 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3124 	 * flush_workqueue(md->wq).
3125 	 */
3126 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3127 	if (map)
3128 		synchronize_srcu(&md->io_barrier);
3129 
3130 	/*
3131 	 * Stop md->queue before flushing md->wq in case request-based
3132 	 * dm defers requests to md->wq from md->queue.
3133 	 */
3134 	if (dm_request_based(md)) {
3135 		stop_queue(md->queue);
3136 		if (md->kworker_task)
3137 			flush_kthread_worker(&md->kworker);
3138 	}
3139 
3140 	flush_workqueue(md->wq);
3141 
3142 	/*
3143 	 * At this point no more requests are entering target request routines.
3144 	 * We call dm_wait_for_completion to wait for all existing requests
3145 	 * to finish.
3146 	 */
3147 	r = dm_wait_for_completion(md, interruptible);
3148 
3149 	if (noflush)
3150 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3151 	if (map)
3152 		synchronize_srcu(&md->io_barrier);
3153 
3154 	/* were we interrupted ? */
3155 	if (r < 0) {
3156 		dm_queue_flush(md);
3157 
3158 		if (dm_request_based(md))
3159 			start_queue(md->queue);
3160 
3161 		unlock_fs(md);
3162 		dm_table_presuspend_undo_targets(map);
3163 		/* pushback list is already flushed, so skip flush */
3164 	}
3165 
3166 	return r;
3167 }
3168 
3169 /*
3170  * We need to be able to change a mapping table under a mounted
3171  * filesystem.  For example we might want to move some data in
3172  * the background.  Before the table can be swapped with
3173  * dm_bind_table, dm_suspend must be called to flush any in
3174  * flight bios and ensure that any further io gets deferred.
3175  */
3176 /*
3177  * Suspend mechanism in request-based dm.
3178  *
3179  * 1. Flush all I/Os by lock_fs() if needed.
3180  * 2. Stop dispatching any I/O by stopping the request_queue.
3181  * 3. Wait for all in-flight I/Os to be completed or requeued.
3182  *
3183  * To abort suspend, start the request_queue.
3184  */
3185 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3186 {
3187 	struct dm_table *map = NULL;
3188 	int r = 0;
3189 
3190 retry:
3191 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3192 
3193 	if (dm_suspended_md(md)) {
3194 		r = -EINVAL;
3195 		goto out_unlock;
3196 	}
3197 
3198 	if (dm_suspended_internally_md(md)) {
3199 		/* already internally suspended, wait for internal resume */
3200 		mutex_unlock(&md->suspend_lock);
3201 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3202 		if (r)
3203 			return r;
3204 		goto retry;
3205 	}
3206 
3207 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3208 
3209 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3210 	if (r)
3211 		goto out_unlock;
3212 
3213 	set_bit(DMF_SUSPENDED, &md->flags);
3214 
3215 	dm_table_postsuspend_targets(map);
3216 
3217 out_unlock:
3218 	mutex_unlock(&md->suspend_lock);
3219 	return r;
3220 }
3221 
3222 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3223 {
3224 	if (map) {
3225 		int r = dm_table_resume_targets(map);
3226 		if (r)
3227 			return r;
3228 	}
3229 
3230 	dm_queue_flush(md);
3231 
3232 	/*
3233 	 * Flushing deferred I/Os must be done after targets are resumed
3234 	 * so that mapping of targets can work correctly.
3235 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3236 	 */
3237 	if (dm_request_based(md))
3238 		start_queue(md->queue);
3239 
3240 	unlock_fs(md);
3241 
3242 	return 0;
3243 }
3244 
3245 int dm_resume(struct mapped_device *md)
3246 {
3247 	int r = -EINVAL;
3248 	struct dm_table *map = NULL;
3249 
3250 retry:
3251 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3252 
3253 	if (!dm_suspended_md(md))
3254 		goto out;
3255 
3256 	if (dm_suspended_internally_md(md)) {
3257 		/* already internally suspended, wait for internal resume */
3258 		mutex_unlock(&md->suspend_lock);
3259 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3260 		if (r)
3261 			return r;
3262 		goto retry;
3263 	}
3264 
3265 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3266 	if (!map || !dm_table_get_size(map))
3267 		goto out;
3268 
3269 	r = __dm_resume(md, map);
3270 	if (r)
3271 		goto out;
3272 
3273 	clear_bit(DMF_SUSPENDED, &md->flags);
3274 
3275 	r = 0;
3276 out:
3277 	mutex_unlock(&md->suspend_lock);
3278 
3279 	return r;
3280 }
3281 
3282 /*
3283  * Internal suspend/resume works like userspace-driven suspend. It waits
3284  * until all bios finish and prevents issuing new bios to the target drivers.
3285  * It may be used only from the kernel.
3286  */
3287 
3288 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3289 {
3290 	struct dm_table *map = NULL;
3291 
3292 	if (md->internal_suspend_count++)
3293 		return; /* nested internal suspend */
3294 
3295 	if (dm_suspended_md(md)) {
3296 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3297 		return; /* nest suspend */
3298 	}
3299 
3300 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3301 
3302 	/*
3303 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3304 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3305 	 * would require changing .presuspend to return an error -- avoid this
3306 	 * until there is a need for more elaborate variants of internal suspend.
3307 	 */
3308 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3309 
3310 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3311 
3312 	dm_table_postsuspend_targets(map);
3313 }
3314 
3315 static void __dm_internal_resume(struct mapped_device *md)
3316 {
3317 	BUG_ON(!md->internal_suspend_count);
3318 
3319 	if (--md->internal_suspend_count)
3320 		return; /* resume from nested internal suspend */
3321 
3322 	if (dm_suspended_md(md))
3323 		goto done; /* resume from nested suspend */
3324 
3325 	/*
3326 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3327 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3328 	 */
3329 	(void) __dm_resume(md, NULL);
3330 
3331 done:
3332 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3333 	smp_mb__after_atomic();
3334 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3335 }
3336 
3337 void dm_internal_suspend_noflush(struct mapped_device *md)
3338 {
3339 	mutex_lock(&md->suspend_lock);
3340 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3341 	mutex_unlock(&md->suspend_lock);
3342 }
3343 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3344 
3345 void dm_internal_resume(struct mapped_device *md)
3346 {
3347 	mutex_lock(&md->suspend_lock);
3348 	__dm_internal_resume(md);
3349 	mutex_unlock(&md->suspend_lock);
3350 }
3351 EXPORT_SYMBOL_GPL(dm_internal_resume);
3352 
3353 /*
3354  * Fast variants of internal suspend/resume hold md->suspend_lock,
3355  * which prevents interaction with userspace-driven suspend.
3356  */
3357 
3358 void dm_internal_suspend_fast(struct mapped_device *md)
3359 {
3360 	mutex_lock(&md->suspend_lock);
3361 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3362 		return;
3363 
3364 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3365 	synchronize_srcu(&md->io_barrier);
3366 	flush_workqueue(md->wq);
3367 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3368 }
3369 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3370 
3371 void dm_internal_resume_fast(struct mapped_device *md)
3372 {
3373 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3374 		goto done;
3375 
3376 	dm_queue_flush(md);
3377 
3378 done:
3379 	mutex_unlock(&md->suspend_lock);
3380 }
3381 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3382 
3383 /*-----------------------------------------------------------------
3384  * Event notification.
3385  *---------------------------------------------------------------*/
3386 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3387 		       unsigned cookie)
3388 {
3389 	char udev_cookie[DM_COOKIE_LENGTH];
3390 	char *envp[] = { udev_cookie, NULL };
3391 
3392 	if (!cookie)
3393 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3394 	else {
3395 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3396 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3397 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3398 					  action, envp);
3399 	}
3400 }
3401 
3402 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3403 {
3404 	return atomic_add_return(1, &md->uevent_seq);
3405 }
3406 
3407 uint32_t dm_get_event_nr(struct mapped_device *md)
3408 {
3409 	return atomic_read(&md->event_nr);
3410 }
3411 
3412 int dm_wait_event(struct mapped_device *md, int event_nr)
3413 {
3414 	return wait_event_interruptible(md->eventq,
3415 			(event_nr != atomic_read(&md->event_nr)));
3416 }
3417 
3418 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3419 {
3420 	unsigned long flags;
3421 
3422 	spin_lock_irqsave(&md->uevent_lock, flags);
3423 	list_add(elist, &md->uevent_list);
3424 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3425 }
3426 
3427 /*
3428  * The gendisk is only valid as long as you have a reference
3429  * count on 'md'.
3430  */
3431 struct gendisk *dm_disk(struct mapped_device *md)
3432 {
3433 	return md->disk;
3434 }
3435 EXPORT_SYMBOL_GPL(dm_disk);
3436 
3437 struct kobject *dm_kobject(struct mapped_device *md)
3438 {
3439 	return &md->kobj_holder.kobj;
3440 }
3441 
3442 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3443 {
3444 	struct mapped_device *md;
3445 
3446 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3447 
3448 	if (test_bit(DMF_FREEING, &md->flags) ||
3449 	    dm_deleting_md(md))
3450 		return NULL;
3451 
3452 	dm_get(md);
3453 	return md;
3454 }
3455 
3456 int dm_suspended_md(struct mapped_device *md)
3457 {
3458 	return test_bit(DMF_SUSPENDED, &md->flags);
3459 }
3460 
3461 int dm_suspended_internally_md(struct mapped_device *md)
3462 {
3463 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3464 }
3465 
3466 int dm_test_deferred_remove_flag(struct mapped_device *md)
3467 {
3468 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3469 }
3470 
3471 int dm_suspended(struct dm_target *ti)
3472 {
3473 	return dm_suspended_md(dm_table_get_md(ti->table));
3474 }
3475 EXPORT_SYMBOL_GPL(dm_suspended);
3476 
3477 int dm_noflush_suspending(struct dm_target *ti)
3478 {
3479 	return __noflush_suspending(dm_table_get_md(ti->table));
3480 }
3481 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3482 
3483 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3484 					    unsigned integrity, unsigned per_bio_data_size)
3485 {
3486 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3487 	struct kmem_cache *cachep = NULL;
3488 	unsigned int pool_size = 0;
3489 	unsigned int front_pad;
3490 
3491 	if (!pools)
3492 		return NULL;
3493 
3494 	type = filter_md_type(type, md);
3495 
3496 	switch (type) {
3497 	case DM_TYPE_BIO_BASED:
3498 		cachep = _io_cache;
3499 		pool_size = dm_get_reserved_bio_based_ios();
3500 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3501 		break;
3502 	case DM_TYPE_REQUEST_BASED:
3503 		cachep = _rq_tio_cache;
3504 		pool_size = dm_get_reserved_rq_based_ios();
3505 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3506 		if (!pools->rq_pool)
3507 			goto out;
3508 		/* fall through to setup remaining rq-based pools */
3509 	case DM_TYPE_MQ_REQUEST_BASED:
3510 		if (!pool_size)
3511 			pool_size = dm_get_reserved_rq_based_ios();
3512 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3513 		/* per_bio_data_size is not used. See __bind_mempools(). */
3514 		WARN_ON(per_bio_data_size != 0);
3515 		break;
3516 	default:
3517 		BUG();
3518 	}
3519 
3520 	if (cachep) {
3521 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3522 		if (!pools->io_pool)
3523 			goto out;
3524 	}
3525 
3526 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3527 	if (!pools->bs)
3528 		goto out;
3529 
3530 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3531 		goto out;
3532 
3533 	return pools;
3534 
3535 out:
3536 	dm_free_md_mempools(pools);
3537 
3538 	return NULL;
3539 }
3540 
3541 void dm_free_md_mempools(struct dm_md_mempools *pools)
3542 {
3543 	if (!pools)
3544 		return;
3545 
3546 	mempool_destroy(pools->io_pool);
3547 	mempool_destroy(pools->rq_pool);
3548 
3549 	if (pools->bs)
3550 		bioset_free(pools->bs);
3551 
3552 	kfree(pools);
3553 }
3554 
3555 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3556 			  u32 flags)
3557 {
3558 	struct mapped_device *md = bdev->bd_disk->private_data;
3559 	const struct pr_ops *ops;
3560 	fmode_t mode;
3561 	int r;
3562 
3563 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3564 	if (r < 0)
3565 		return r;
3566 
3567 	ops = bdev->bd_disk->fops->pr_ops;
3568 	if (ops && ops->pr_register)
3569 		r = ops->pr_register(bdev, old_key, new_key, flags);
3570 	else
3571 		r = -EOPNOTSUPP;
3572 
3573 	bdput(bdev);
3574 	return r;
3575 }
3576 
3577 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3578 			 u32 flags)
3579 {
3580 	struct mapped_device *md = bdev->bd_disk->private_data;
3581 	const struct pr_ops *ops;
3582 	fmode_t mode;
3583 	int r;
3584 
3585 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3586 	if (r < 0)
3587 		return r;
3588 
3589 	ops = bdev->bd_disk->fops->pr_ops;
3590 	if (ops && ops->pr_reserve)
3591 		r = ops->pr_reserve(bdev, key, type, flags);
3592 	else
3593 		r = -EOPNOTSUPP;
3594 
3595 	bdput(bdev);
3596 	return r;
3597 }
3598 
3599 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3600 {
3601 	struct mapped_device *md = bdev->bd_disk->private_data;
3602 	const struct pr_ops *ops;
3603 	fmode_t mode;
3604 	int r;
3605 
3606 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3607 	if (r < 0)
3608 		return r;
3609 
3610 	ops = bdev->bd_disk->fops->pr_ops;
3611 	if (ops && ops->pr_release)
3612 		r = ops->pr_release(bdev, key, type);
3613 	else
3614 		r = -EOPNOTSUPP;
3615 
3616 	bdput(bdev);
3617 	return r;
3618 }
3619 
3620 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3621 			 enum pr_type type, bool abort)
3622 {
3623 	struct mapped_device *md = bdev->bd_disk->private_data;
3624 	const struct pr_ops *ops;
3625 	fmode_t mode;
3626 	int r;
3627 
3628 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3629 	if (r < 0)
3630 		return r;
3631 
3632 	ops = bdev->bd_disk->fops->pr_ops;
3633 	if (ops && ops->pr_preempt)
3634 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3635 	else
3636 		r = -EOPNOTSUPP;
3637 
3638 	bdput(bdev);
3639 	return r;
3640 }
3641 
3642 static int dm_pr_clear(struct block_device *bdev, u64 key)
3643 {
3644 	struct mapped_device *md = bdev->bd_disk->private_data;
3645 	const struct pr_ops *ops;
3646 	fmode_t mode;
3647 	int r;
3648 
3649 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3650 	if (r < 0)
3651 		return r;
3652 
3653 	ops = bdev->bd_disk->fops->pr_ops;
3654 	if (ops && ops->pr_clear)
3655 		r = ops->pr_clear(bdev, key);
3656 	else
3657 		r = -EOPNOTSUPP;
3658 
3659 	bdput(bdev);
3660 	return r;
3661 }
3662 
3663 static const struct pr_ops dm_pr_ops = {
3664 	.pr_register	= dm_pr_register,
3665 	.pr_reserve	= dm_pr_reserve,
3666 	.pr_release	= dm_pr_release,
3667 	.pr_preempt	= dm_pr_preempt,
3668 	.pr_clear	= dm_pr_clear,
3669 };
3670 
3671 static const struct block_device_operations dm_blk_dops = {
3672 	.open = dm_blk_open,
3673 	.release = dm_blk_close,
3674 	.ioctl = dm_blk_ioctl,
3675 	.getgeo = dm_blk_getgeo,
3676 	.pr_ops = &dm_pr_ops,
3677 	.owner = THIS_MODULE
3678 };
3679 
3680 /*
3681  * module hooks
3682  */
3683 module_init(dm_init);
3684 module_exit(dm_exit);
3685 
3686 module_param(major, uint, 0);
3687 MODULE_PARM_DESC(major, "The major number of the device mapper");
3688 
3689 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3690 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3691 
3692 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3693 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3694 
3695 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3696 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3697 
3698 module_param(dm_mq_nr_hw_queues, uint, S_IRUGO | S_IWUSR);
3699 MODULE_PARM_DESC(dm_mq_nr_hw_queues, "Number of hardware queues for request-based dm-mq devices");
3700 
3701 module_param(dm_mq_queue_depth, uint, S_IRUGO | S_IWUSR);
3702 MODULE_PARM_DESC(dm_mq_queue_depth, "Queue depth for request-based dm-mq devices");
3703 
3704 MODULE_DESCRIPTION(DM_NAME " driver");
3705 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3706 MODULE_LICENSE("GPL");
3707