xref: /openbmc/linux/drivers/md/dm.c (revision 13f6facf3faeed34ca381aef4c9b153c7aed3972)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13 
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/signal.h>
19 #include <linux/blkpg.h>
20 #include <linux/bio.h>
21 #include <linux/mempool.h>
22 #include <linux/dax.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/uio.h>
26 #include <linux/hdreg.h>
27 #include <linux/delay.h>
28 #include <linux/wait.h>
29 #include <linux/pr.h>
30 #include <linux/refcount.h>
31 #include <linux/part_stat.h>
32 #include <linux/blk-crypto.h>
33 #include <linux/blk-crypto-profile.h>
34 
35 #define DM_MSG_PREFIX "core"
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 /*
45  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46  * dm_io into one list, and reuse bio->bi_private as the list head. Before
47  * ending this fs bio, we will recover its ->bi_private.
48  */
49 #define REQ_DM_POLL_LIST	REQ_DRV
50 
51 static const char *_name = DM_NAME;
52 
53 static unsigned int major;
54 static unsigned int _major;
55 
56 static DEFINE_IDR(_minor_idr);
57 
58 static DEFINE_SPINLOCK(_minor_lock);
59 
60 static void do_deferred_remove(struct work_struct *w);
61 
62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63 
64 static struct workqueue_struct *deferred_remove_workqueue;
65 
66 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68 
69 void dm_issue_global_event(void)
70 {
71 	atomic_inc(&dm_global_event_nr);
72 	wake_up(&dm_global_eventq);
73 }
74 
75 DEFINE_STATIC_KEY_FALSE(stats_enabled);
76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78 
79 /*
80  * One of these is allocated (on-stack) per original bio.
81  */
82 struct clone_info {
83 	struct dm_table *map;
84 	struct bio *bio;
85 	struct dm_io *io;
86 	sector_t sector;
87 	unsigned int sector_count;
88 	bool is_abnormal_io:1;
89 	bool submit_as_polled:1;
90 };
91 
92 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93 {
94 	return container_of(clone, struct dm_target_io, clone);
95 }
96 
97 void *dm_per_bio_data(struct bio *bio, size_t data_size)
98 {
99 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102 }
103 EXPORT_SYMBOL_GPL(dm_per_bio_data);
104 
105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106 {
107 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108 
109 	if (io->magic == DM_IO_MAGIC)
110 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111 	BUG_ON(io->magic != DM_TIO_MAGIC);
112 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113 }
114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115 
116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117 {
118 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119 }
120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121 
122 #define MINOR_ALLOCED ((void *)-1)
123 
124 #define DM_NUMA_NODE NUMA_NO_NODE
125 static int dm_numa_node = DM_NUMA_NODE;
126 
127 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
128 static int swap_bios = DEFAULT_SWAP_BIOS;
129 static int get_swap_bios(void)
130 {
131 	int latch = READ_ONCE(swap_bios);
132 
133 	if (unlikely(latch <= 0))
134 		latch = DEFAULT_SWAP_BIOS;
135 	return latch;
136 }
137 
138 struct table_device {
139 	struct list_head list;
140 	refcount_t count;
141 	struct dm_dev dm_dev;
142 };
143 
144 /*
145  * Bio-based DM's mempools' reserved IOs set by the user.
146  */
147 #define RESERVED_BIO_BASED_IOS		16
148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149 
150 static int __dm_get_module_param_int(int *module_param, int min, int max)
151 {
152 	int param = READ_ONCE(*module_param);
153 	int modified_param = 0;
154 	bool modified = true;
155 
156 	if (param < min)
157 		modified_param = min;
158 	else if (param > max)
159 		modified_param = max;
160 	else
161 		modified = false;
162 
163 	if (modified) {
164 		(void)cmpxchg(module_param, param, modified_param);
165 		param = modified_param;
166 	}
167 
168 	return param;
169 }
170 
171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172 {
173 	unsigned int param = READ_ONCE(*module_param);
174 	unsigned int modified_param = 0;
175 
176 	if (!param)
177 		modified_param = def;
178 	else if (param > max)
179 		modified_param = max;
180 
181 	if (modified_param) {
182 		(void)cmpxchg(module_param, param, modified_param);
183 		param = modified_param;
184 	}
185 
186 	return param;
187 }
188 
189 unsigned int dm_get_reserved_bio_based_ios(void)
190 {
191 	return __dm_get_module_param(&reserved_bio_based_ios,
192 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193 }
194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195 
196 static unsigned int dm_get_numa_node(void)
197 {
198 	return __dm_get_module_param_int(&dm_numa_node,
199 					 DM_NUMA_NODE, num_online_nodes() - 1);
200 }
201 
202 static int __init local_init(void)
203 {
204 	int r;
205 
206 	r = dm_uevent_init();
207 	if (r)
208 		return r;
209 
210 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
211 	if (!deferred_remove_workqueue) {
212 		r = -ENOMEM;
213 		goto out_uevent_exit;
214 	}
215 
216 	_major = major;
217 	r = register_blkdev(_major, _name);
218 	if (r < 0)
219 		goto out_free_workqueue;
220 
221 	if (!_major)
222 		_major = r;
223 
224 	return 0;
225 
226 out_free_workqueue:
227 	destroy_workqueue(deferred_remove_workqueue);
228 out_uevent_exit:
229 	dm_uevent_exit();
230 
231 	return r;
232 }
233 
234 static void local_exit(void)
235 {
236 	destroy_workqueue(deferred_remove_workqueue);
237 
238 	unregister_blkdev(_major, _name);
239 	dm_uevent_exit();
240 
241 	_major = 0;
242 
243 	DMINFO("cleaned up");
244 }
245 
246 static int (*_inits[])(void) __initdata = {
247 	local_init,
248 	dm_target_init,
249 	dm_linear_init,
250 	dm_stripe_init,
251 	dm_io_init,
252 	dm_kcopyd_init,
253 	dm_interface_init,
254 	dm_statistics_init,
255 };
256 
257 static void (*_exits[])(void) = {
258 	local_exit,
259 	dm_target_exit,
260 	dm_linear_exit,
261 	dm_stripe_exit,
262 	dm_io_exit,
263 	dm_kcopyd_exit,
264 	dm_interface_exit,
265 	dm_statistics_exit,
266 };
267 
268 static int __init dm_init(void)
269 {
270 	const int count = ARRAY_SIZE(_inits);
271 	int r, i;
272 
273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
276 #endif
277 
278 	for (i = 0; i < count; i++) {
279 		r = _inits[i]();
280 		if (r)
281 			goto bad;
282 	}
283 
284 	return 0;
285 bad:
286 	while (i--)
287 		_exits[i]();
288 
289 	return r;
290 }
291 
292 static void __exit dm_exit(void)
293 {
294 	int i = ARRAY_SIZE(_exits);
295 
296 	while (i--)
297 		_exits[i]();
298 
299 	/*
300 	 * Should be empty by this point.
301 	 */
302 	idr_destroy(&_minor_idr);
303 }
304 
305 /*
306  * Block device functions
307  */
308 int dm_deleting_md(struct mapped_device *md)
309 {
310 	return test_bit(DMF_DELETING, &md->flags);
311 }
312 
313 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
314 {
315 	struct mapped_device *md;
316 
317 	spin_lock(&_minor_lock);
318 
319 	md = bdev->bd_disk->private_data;
320 	if (!md)
321 		goto out;
322 
323 	if (test_bit(DMF_FREEING, &md->flags) ||
324 	    dm_deleting_md(md)) {
325 		md = NULL;
326 		goto out;
327 	}
328 
329 	dm_get(md);
330 	atomic_inc(&md->open_count);
331 out:
332 	spin_unlock(&_minor_lock);
333 
334 	return md ? 0 : -ENXIO;
335 }
336 
337 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
338 {
339 	struct mapped_device *md;
340 
341 	spin_lock(&_minor_lock);
342 
343 	md = disk->private_data;
344 	if (WARN_ON(!md))
345 		goto out;
346 
347 	if (atomic_dec_and_test(&md->open_count) &&
348 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
350 
351 	dm_put(md);
352 out:
353 	spin_unlock(&_minor_lock);
354 }
355 
356 int dm_open_count(struct mapped_device *md)
357 {
358 	return atomic_read(&md->open_count);
359 }
360 
361 /*
362  * Guarantees nothing is using the device before it's deleted.
363  */
364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365 {
366 	int r = 0;
367 
368 	spin_lock(&_minor_lock);
369 
370 	if (dm_open_count(md)) {
371 		r = -EBUSY;
372 		if (mark_deferred)
373 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375 		r = -EEXIST;
376 	else
377 		set_bit(DMF_DELETING, &md->flags);
378 
379 	spin_unlock(&_minor_lock);
380 
381 	return r;
382 }
383 
384 int dm_cancel_deferred_remove(struct mapped_device *md)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (test_bit(DMF_DELETING, &md->flags))
391 		r = -EBUSY;
392 	else
393 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 static void do_deferred_remove(struct work_struct *w)
401 {
402 	dm_deferred_remove();
403 }
404 
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406 {
407 	struct mapped_device *md = bdev->bd_disk->private_data;
408 
409 	return dm_get_geometry(md, geo);
410 }
411 
412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413 			    struct block_device **bdev)
414 {
415 	struct dm_target *ti;
416 	struct dm_table *map;
417 	int r;
418 
419 retry:
420 	r = -ENOTTY;
421 	map = dm_get_live_table(md, srcu_idx);
422 	if (!map || !dm_table_get_size(map))
423 		return r;
424 
425 	/* We only support devices that have a single target */
426 	if (map->num_targets != 1)
427 		return r;
428 
429 	ti = dm_table_get_target(map, 0);
430 	if (!ti->type->prepare_ioctl)
431 		return r;
432 
433 	if (dm_suspended_md(md))
434 		return -EAGAIN;
435 
436 	r = ti->type->prepare_ioctl(ti, bdev);
437 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438 		dm_put_live_table(md, *srcu_idx);
439 		fsleep(10000);
440 		goto retry;
441 	}
442 
443 	return r;
444 }
445 
446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447 {
448 	dm_put_live_table(md, srcu_idx);
449 }
450 
451 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
452 			unsigned int cmd, unsigned long arg)
453 {
454 	struct mapped_device *md = bdev->bd_disk->private_data;
455 	int r, srcu_idx;
456 
457 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458 	if (r < 0)
459 		goto out;
460 
461 	if (r > 0) {
462 		/*
463 		 * Target determined this ioctl is being issued against a
464 		 * subset of the parent bdev; require extra privileges.
465 		 */
466 		if (!capable(CAP_SYS_RAWIO)) {
467 			DMDEBUG_LIMIT(
468 	"%s: sending ioctl %x to DM device without required privilege.",
469 				current->comm, cmd);
470 			r = -ENOIOCTLCMD;
471 			goto out;
472 		}
473 	}
474 
475 	if (!bdev->bd_disk->fops->ioctl)
476 		r = -ENOTTY;
477 	else
478 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479 out:
480 	dm_unprepare_ioctl(md, srcu_idx);
481 	return r;
482 }
483 
484 u64 dm_start_time_ns_from_clone(struct bio *bio)
485 {
486 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487 }
488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489 
490 static bool bio_is_flush_with_data(struct bio *bio)
491 {
492 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493 }
494 
495 static void dm_io_acct(struct dm_io *io, bool end)
496 {
497 	struct dm_stats_aux *stats_aux = &io->stats_aux;
498 	unsigned long start_time = io->start_time;
499 	struct mapped_device *md = io->md;
500 	struct bio *bio = io->orig_bio;
501 	unsigned int sectors;
502 
503 	/*
504 	 * If REQ_PREFLUSH set, don't account payload, it will be
505 	 * submitted (and accounted) after this flush completes.
506 	 */
507 	if (bio_is_flush_with_data(bio))
508 		sectors = 0;
509 	else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
510 		sectors = bio_sectors(bio);
511 	else
512 		sectors = io->sectors;
513 
514 	if (!end)
515 		bdev_start_io_acct(bio->bi_bdev, bio_op(bio), start_time);
516 	else
517 		bdev_end_io_acct(bio->bi_bdev, bio_op(bio), sectors,
518 				 start_time);
519 
520 	if (static_branch_unlikely(&stats_enabled) &&
521 	    unlikely(dm_stats_used(&md->stats))) {
522 		sector_t sector;
523 
524 		if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
525 			sector = bio->bi_iter.bi_sector;
526 		else
527 			sector = bio_end_sector(bio) - io->sector_offset;
528 
529 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
530 				    sector, sectors,
531 				    end, start_time, stats_aux);
532 	}
533 }
534 
535 static void __dm_start_io_acct(struct dm_io *io)
536 {
537 	dm_io_acct(io, false);
538 }
539 
540 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
541 {
542 	/*
543 	 * Ensure IO accounting is only ever started once.
544 	 */
545 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
546 		return;
547 
548 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
549 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
550 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
551 	} else {
552 		unsigned long flags;
553 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
554 		spin_lock_irqsave(&io->lock, flags);
555 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
556 			spin_unlock_irqrestore(&io->lock, flags);
557 			return;
558 		}
559 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
560 		spin_unlock_irqrestore(&io->lock, flags);
561 	}
562 
563 	__dm_start_io_acct(io);
564 }
565 
566 static void dm_end_io_acct(struct dm_io *io)
567 {
568 	dm_io_acct(io, true);
569 }
570 
571 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
572 {
573 	struct dm_io *io;
574 	struct dm_target_io *tio;
575 	struct bio *clone;
576 
577 	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
578 	tio = clone_to_tio(clone);
579 	tio->flags = 0;
580 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
581 	tio->io = NULL;
582 
583 	io = container_of(tio, struct dm_io, tio);
584 	io->magic = DM_IO_MAGIC;
585 	io->status = BLK_STS_OK;
586 
587 	/* one ref is for submission, the other is for completion */
588 	atomic_set(&io->io_count, 2);
589 	this_cpu_inc(*md->pending_io);
590 	io->orig_bio = bio;
591 	io->md = md;
592 	spin_lock_init(&io->lock);
593 	io->start_time = jiffies;
594 	io->flags = 0;
595 
596 	if (static_branch_unlikely(&stats_enabled))
597 		dm_stats_record_start(&md->stats, &io->stats_aux);
598 
599 	return io;
600 }
601 
602 static void free_io(struct dm_io *io)
603 {
604 	bio_put(&io->tio.clone);
605 }
606 
607 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
608 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
609 {
610 	struct mapped_device *md = ci->io->md;
611 	struct dm_target_io *tio;
612 	struct bio *clone;
613 
614 	if (!ci->io->tio.io) {
615 		/* the dm_target_io embedded in ci->io is available */
616 		tio = &ci->io->tio;
617 		/* alloc_io() already initialized embedded clone */
618 		clone = &tio->clone;
619 	} else {
620 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
621 					&md->mempools->bs);
622 		if (!clone)
623 			return NULL;
624 
625 		/* REQ_DM_POLL_LIST shouldn't be inherited */
626 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
627 
628 		tio = clone_to_tio(clone);
629 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
630 	}
631 
632 	tio->magic = DM_TIO_MAGIC;
633 	tio->io = ci->io;
634 	tio->ti = ti;
635 	tio->target_bio_nr = target_bio_nr;
636 	tio->len_ptr = len;
637 	tio->old_sector = 0;
638 
639 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
640 	clone->bi_bdev = md->disk->part0;
641 	if (unlikely(ti->needs_bio_set_dev))
642 		bio_set_dev(clone, md->disk->part0);
643 
644 	if (len) {
645 		clone->bi_iter.bi_size = to_bytes(*len);
646 		if (bio_integrity(clone))
647 			bio_integrity_trim(clone);
648 	}
649 
650 	return clone;
651 }
652 
653 static void free_tio(struct bio *clone)
654 {
655 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
656 		return;
657 	bio_put(clone);
658 }
659 
660 /*
661  * Add the bio to the list of deferred io.
662  */
663 static void queue_io(struct mapped_device *md, struct bio *bio)
664 {
665 	unsigned long flags;
666 
667 	spin_lock_irqsave(&md->deferred_lock, flags);
668 	bio_list_add(&md->deferred, bio);
669 	spin_unlock_irqrestore(&md->deferred_lock, flags);
670 	queue_work(md->wq, &md->work);
671 }
672 
673 /*
674  * Everyone (including functions in this file), should use this
675  * function to access the md->map field, and make sure they call
676  * dm_put_live_table() when finished.
677  */
678 struct dm_table *dm_get_live_table(struct mapped_device *md,
679 				   int *srcu_idx) __acquires(md->io_barrier)
680 {
681 	*srcu_idx = srcu_read_lock(&md->io_barrier);
682 
683 	return srcu_dereference(md->map, &md->io_barrier);
684 }
685 
686 void dm_put_live_table(struct mapped_device *md,
687 		       int srcu_idx) __releases(md->io_barrier)
688 {
689 	srcu_read_unlock(&md->io_barrier, srcu_idx);
690 }
691 
692 void dm_sync_table(struct mapped_device *md)
693 {
694 	synchronize_srcu(&md->io_barrier);
695 	synchronize_rcu_expedited();
696 }
697 
698 /*
699  * A fast alternative to dm_get_live_table/dm_put_live_table.
700  * The caller must not block between these two functions.
701  */
702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
703 {
704 	rcu_read_lock();
705 	return rcu_dereference(md->map);
706 }
707 
708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
709 {
710 	rcu_read_unlock();
711 }
712 
713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
714 					int *srcu_idx, blk_opf_t bio_opf)
715 {
716 	if (bio_opf & REQ_NOWAIT)
717 		return dm_get_live_table_fast(md);
718 	else
719 		return dm_get_live_table(md, srcu_idx);
720 }
721 
722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
723 					 blk_opf_t bio_opf)
724 {
725 	if (bio_opf & REQ_NOWAIT)
726 		dm_put_live_table_fast(md);
727 	else
728 		dm_put_live_table(md, srcu_idx);
729 }
730 
731 static char *_dm_claim_ptr = "I belong to device-mapper";
732 
733 /*
734  * Open a table device so we can use it as a map destination.
735  */
736 static struct table_device *open_table_device(struct mapped_device *md,
737 		dev_t dev, fmode_t mode)
738 {
739 	struct table_device *td;
740 	struct block_device *bdev;
741 	u64 part_off;
742 	int r;
743 
744 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
745 	if (!td)
746 		return ERR_PTR(-ENOMEM);
747 	refcount_set(&td->count, 1);
748 
749 	bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr);
750 	if (IS_ERR(bdev)) {
751 		r = PTR_ERR(bdev);
752 		goto out_free_td;
753 	}
754 
755 	/*
756 	 * We can be called before the dm disk is added.  In that case we can't
757 	 * register the holder relation here.  It will be done once add_disk was
758 	 * called.
759 	 */
760 	if (md->disk->slave_dir) {
761 		r = bd_link_disk_holder(bdev, md->disk);
762 		if (r)
763 			goto out_blkdev_put;
764 	}
765 
766 	td->dm_dev.mode = mode;
767 	td->dm_dev.bdev = bdev;
768 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
769 	format_dev_t(td->dm_dev.name, dev);
770 	list_add(&td->list, &md->table_devices);
771 	return td;
772 
773 out_blkdev_put:
774 	blkdev_put(bdev, mode | FMODE_EXCL);
775 out_free_td:
776 	kfree(td);
777 	return ERR_PTR(r);
778 }
779 
780 /*
781  * Close a table device that we've been using.
782  */
783 static void close_table_device(struct table_device *td, struct mapped_device *md)
784 {
785 	if (md->disk->slave_dir)
786 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
787 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
788 	put_dax(td->dm_dev.dax_dev);
789 	list_del(&td->list);
790 	kfree(td);
791 }
792 
793 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
794 					      fmode_t mode)
795 {
796 	struct table_device *td;
797 
798 	list_for_each_entry(td, l, list)
799 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
800 			return td;
801 
802 	return NULL;
803 }
804 
805 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
806 			struct dm_dev **result)
807 {
808 	struct table_device *td;
809 
810 	mutex_lock(&md->table_devices_lock);
811 	td = find_table_device(&md->table_devices, dev, mode);
812 	if (!td) {
813 		td = open_table_device(md, dev, mode);
814 		if (IS_ERR(td)) {
815 			mutex_unlock(&md->table_devices_lock);
816 			return PTR_ERR(td);
817 		}
818 	} else {
819 		refcount_inc(&td->count);
820 	}
821 	mutex_unlock(&md->table_devices_lock);
822 
823 	*result = &td->dm_dev;
824 	return 0;
825 }
826 
827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828 {
829 	struct table_device *td = container_of(d, struct table_device, dm_dev);
830 
831 	mutex_lock(&md->table_devices_lock);
832 	if (refcount_dec_and_test(&td->count))
833 		close_table_device(td, md);
834 	mutex_unlock(&md->table_devices_lock);
835 }
836 
837 /*
838  * Get the geometry associated with a dm device
839  */
840 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
841 {
842 	*geo = md->geometry;
843 
844 	return 0;
845 }
846 
847 /*
848  * Set the geometry of a device.
849  */
850 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
851 {
852 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
853 
854 	if (geo->start > sz) {
855 		DMERR("Start sector is beyond the geometry limits.");
856 		return -EINVAL;
857 	}
858 
859 	md->geometry = *geo;
860 
861 	return 0;
862 }
863 
864 static int __noflush_suspending(struct mapped_device *md)
865 {
866 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
867 }
868 
869 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
870 {
871 	struct mapped_device *md = io->md;
872 
873 	if (first_stage) {
874 		struct dm_io *next = md->requeue_list;
875 
876 		md->requeue_list = io;
877 		io->next = next;
878 	} else {
879 		bio_list_add_head(&md->deferred, io->orig_bio);
880 	}
881 }
882 
883 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
884 {
885 	if (first_stage)
886 		queue_work(md->wq, &md->requeue_work);
887 	else
888 		queue_work(md->wq, &md->work);
889 }
890 
891 /*
892  * Return true if the dm_io's original bio is requeued.
893  * io->status is updated with error if requeue disallowed.
894  */
895 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
896 {
897 	struct bio *bio = io->orig_bio;
898 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
899 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
900 				     (bio->bi_opf & REQ_POLLED));
901 	struct mapped_device *md = io->md;
902 	bool requeued = false;
903 
904 	if (handle_requeue || handle_polled_eagain) {
905 		unsigned long flags;
906 
907 		if (bio->bi_opf & REQ_POLLED) {
908 			/*
909 			 * Upper layer won't help us poll split bio
910 			 * (io->orig_bio may only reflect a subset of the
911 			 * pre-split original) so clear REQ_POLLED.
912 			 */
913 			bio_clear_polled(bio);
914 		}
915 
916 		/*
917 		 * Target requested pushing back the I/O or
918 		 * polled IO hit BLK_STS_AGAIN.
919 		 */
920 		spin_lock_irqsave(&md->deferred_lock, flags);
921 		if ((__noflush_suspending(md) &&
922 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
923 		    handle_polled_eagain || first_stage) {
924 			dm_requeue_add_io(io, first_stage);
925 			requeued = true;
926 		} else {
927 			/*
928 			 * noflush suspend was interrupted or this is
929 			 * a write to a zoned target.
930 			 */
931 			io->status = BLK_STS_IOERR;
932 		}
933 		spin_unlock_irqrestore(&md->deferred_lock, flags);
934 	}
935 
936 	if (requeued)
937 		dm_kick_requeue(md, first_stage);
938 
939 	return requeued;
940 }
941 
942 static void __dm_io_complete(struct dm_io *io, bool first_stage)
943 {
944 	struct bio *bio = io->orig_bio;
945 	struct mapped_device *md = io->md;
946 	blk_status_t io_error;
947 	bool requeued;
948 
949 	requeued = dm_handle_requeue(io, first_stage);
950 	if (requeued && first_stage)
951 		return;
952 
953 	io_error = io->status;
954 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
955 		dm_end_io_acct(io);
956 	else if (!io_error) {
957 		/*
958 		 * Must handle target that DM_MAPIO_SUBMITTED only to
959 		 * then bio_endio() rather than dm_submit_bio_remap()
960 		 */
961 		__dm_start_io_acct(io);
962 		dm_end_io_acct(io);
963 	}
964 	free_io(io);
965 	smp_wmb();
966 	this_cpu_dec(*md->pending_io);
967 
968 	/* nudge anyone waiting on suspend queue */
969 	if (unlikely(wq_has_sleeper(&md->wait)))
970 		wake_up(&md->wait);
971 
972 	/* Return early if the original bio was requeued */
973 	if (requeued)
974 		return;
975 
976 	if (bio_is_flush_with_data(bio)) {
977 		/*
978 		 * Preflush done for flush with data, reissue
979 		 * without REQ_PREFLUSH.
980 		 */
981 		bio->bi_opf &= ~REQ_PREFLUSH;
982 		queue_io(md, bio);
983 	} else {
984 		/* done with normal IO or empty flush */
985 		if (io_error)
986 			bio->bi_status = io_error;
987 		bio_endio(bio);
988 	}
989 }
990 
991 static void dm_wq_requeue_work(struct work_struct *work)
992 {
993 	struct mapped_device *md = container_of(work, struct mapped_device,
994 						requeue_work);
995 	unsigned long flags;
996 	struct dm_io *io;
997 
998 	/* reuse deferred lock to simplify dm_handle_requeue */
999 	spin_lock_irqsave(&md->deferred_lock, flags);
1000 	io = md->requeue_list;
1001 	md->requeue_list = NULL;
1002 	spin_unlock_irqrestore(&md->deferred_lock, flags);
1003 
1004 	while (io) {
1005 		struct dm_io *next = io->next;
1006 
1007 		dm_io_rewind(io, &md->disk->bio_split);
1008 
1009 		io->next = NULL;
1010 		__dm_io_complete(io, false);
1011 		io = next;
1012 		cond_resched();
1013 	}
1014 }
1015 
1016 /*
1017  * Two staged requeue:
1018  *
1019  * 1) io->orig_bio points to the real original bio, and the part mapped to
1020  *    this io must be requeued, instead of other parts of the original bio.
1021  *
1022  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1023  */
1024 static void dm_io_complete(struct dm_io *io)
1025 {
1026 	bool first_requeue;
1027 
1028 	/*
1029 	 * Only dm_io that has been split needs two stage requeue, otherwise
1030 	 * we may run into long bio clone chain during suspend and OOM could
1031 	 * be triggered.
1032 	 *
1033 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1034 	 * also aren't handled via the first stage requeue.
1035 	 */
1036 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1037 		first_requeue = true;
1038 	else
1039 		first_requeue = false;
1040 
1041 	__dm_io_complete(io, first_requeue);
1042 }
1043 
1044 /*
1045  * Decrements the number of outstanding ios that a bio has been
1046  * cloned into, completing the original io if necc.
1047  */
1048 static inline void __dm_io_dec_pending(struct dm_io *io)
1049 {
1050 	if (atomic_dec_and_test(&io->io_count))
1051 		dm_io_complete(io);
1052 }
1053 
1054 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1055 {
1056 	unsigned long flags;
1057 
1058 	/* Push-back supersedes any I/O errors */
1059 	spin_lock_irqsave(&io->lock, flags);
1060 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1061 	      __noflush_suspending(io->md))) {
1062 		io->status = error;
1063 	}
1064 	spin_unlock_irqrestore(&io->lock, flags);
1065 }
1066 
1067 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1068 {
1069 	if (unlikely(error))
1070 		dm_io_set_error(io, error);
1071 
1072 	__dm_io_dec_pending(io);
1073 }
1074 
1075 void disable_discard(struct mapped_device *md)
1076 {
1077 	struct queue_limits *limits = dm_get_queue_limits(md);
1078 
1079 	/* device doesn't really support DISCARD, disable it */
1080 	limits->max_discard_sectors = 0;
1081 }
1082 
1083 void disable_write_zeroes(struct mapped_device *md)
1084 {
1085 	struct queue_limits *limits = dm_get_queue_limits(md);
1086 
1087 	/* device doesn't really support WRITE ZEROES, disable it */
1088 	limits->max_write_zeroes_sectors = 0;
1089 }
1090 
1091 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1092 {
1093 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1094 }
1095 
1096 static void clone_endio(struct bio *bio)
1097 {
1098 	blk_status_t error = bio->bi_status;
1099 	struct dm_target_io *tio = clone_to_tio(bio);
1100 	struct dm_target *ti = tio->ti;
1101 	dm_endio_fn endio = ti->type->end_io;
1102 	struct dm_io *io = tio->io;
1103 	struct mapped_device *md = io->md;
1104 
1105 	if (unlikely(error == BLK_STS_TARGET)) {
1106 		if (bio_op(bio) == REQ_OP_DISCARD &&
1107 		    !bdev_max_discard_sectors(bio->bi_bdev))
1108 			disable_discard(md);
1109 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1110 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1111 			disable_write_zeroes(md);
1112 	}
1113 
1114 	if (static_branch_unlikely(&zoned_enabled) &&
1115 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1116 		dm_zone_endio(io, bio);
1117 
1118 	if (endio) {
1119 		int r = endio(ti, bio, &error);
1120 
1121 		switch (r) {
1122 		case DM_ENDIO_REQUEUE:
1123 			if (static_branch_unlikely(&zoned_enabled)) {
1124 				/*
1125 				 * Requeuing writes to a sequential zone of a zoned
1126 				 * target will break the sequential write pattern:
1127 				 * fail such IO.
1128 				 */
1129 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1130 					error = BLK_STS_IOERR;
1131 				else
1132 					error = BLK_STS_DM_REQUEUE;
1133 			} else
1134 				error = BLK_STS_DM_REQUEUE;
1135 			fallthrough;
1136 		case DM_ENDIO_DONE:
1137 			break;
1138 		case DM_ENDIO_INCOMPLETE:
1139 			/* The target will handle the io */
1140 			return;
1141 		default:
1142 			DMCRIT("unimplemented target endio return value: %d", r);
1143 			BUG();
1144 		}
1145 	}
1146 
1147 	if (static_branch_unlikely(&swap_bios_enabled) &&
1148 	    unlikely(swap_bios_limit(ti, bio)))
1149 		up(&md->swap_bios_semaphore);
1150 
1151 	free_tio(bio);
1152 	dm_io_dec_pending(io, error);
1153 }
1154 
1155 /*
1156  * Return maximum size of I/O possible at the supplied sector up to the current
1157  * target boundary.
1158  */
1159 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1160 						  sector_t target_offset)
1161 {
1162 	return ti->len - target_offset;
1163 }
1164 
1165 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1166 			     unsigned int max_granularity)
1167 {
1168 	sector_t target_offset = dm_target_offset(ti, sector);
1169 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1170 
1171 	/*
1172 	 * Does the target need to split IO even further?
1173 	 * - varied (per target) IO splitting is a tenet of DM; this
1174 	 *   explains why stacked chunk_sectors based splitting via
1175 	 *   bio_split_to_limits() isn't possible here.
1176 	 */
1177 	if (!max_granularity)
1178 		return len;
1179 	return min_t(sector_t, len,
1180 		min(queue_max_sectors(ti->table->md->queue),
1181 		    blk_chunk_sectors_left(target_offset, max_granularity)));
1182 }
1183 
1184 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1185 {
1186 	return __max_io_len(ti, sector, ti->max_io_len);
1187 }
1188 
1189 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1190 {
1191 	if (len > UINT_MAX) {
1192 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1193 		      (unsigned long long)len, UINT_MAX);
1194 		ti->error = "Maximum size of target IO is too large";
1195 		return -EINVAL;
1196 	}
1197 
1198 	ti->max_io_len = (uint32_t) len;
1199 
1200 	return 0;
1201 }
1202 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1203 
1204 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1205 						sector_t sector, int *srcu_idx)
1206 	__acquires(md->io_barrier)
1207 {
1208 	struct dm_table *map;
1209 	struct dm_target *ti;
1210 
1211 	map = dm_get_live_table(md, srcu_idx);
1212 	if (!map)
1213 		return NULL;
1214 
1215 	ti = dm_table_find_target(map, sector);
1216 	if (!ti)
1217 		return NULL;
1218 
1219 	return ti;
1220 }
1221 
1222 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1223 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1224 		pfn_t *pfn)
1225 {
1226 	struct mapped_device *md = dax_get_private(dax_dev);
1227 	sector_t sector = pgoff * PAGE_SECTORS;
1228 	struct dm_target *ti;
1229 	long len, ret = -EIO;
1230 	int srcu_idx;
1231 
1232 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1233 
1234 	if (!ti)
1235 		goto out;
1236 	if (!ti->type->direct_access)
1237 		goto out;
1238 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1239 	if (len < 1)
1240 		goto out;
1241 	nr_pages = min(len, nr_pages);
1242 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1243 
1244  out:
1245 	dm_put_live_table(md, srcu_idx);
1246 
1247 	return ret;
1248 }
1249 
1250 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1251 				  size_t nr_pages)
1252 {
1253 	struct mapped_device *md = dax_get_private(dax_dev);
1254 	sector_t sector = pgoff * PAGE_SECTORS;
1255 	struct dm_target *ti;
1256 	int ret = -EIO;
1257 	int srcu_idx;
1258 
1259 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1260 
1261 	if (!ti)
1262 		goto out;
1263 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1264 		/*
1265 		 * ->zero_page_range() is mandatory dax operation. If we are
1266 		 *  here, something is wrong.
1267 		 */
1268 		goto out;
1269 	}
1270 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1271  out:
1272 	dm_put_live_table(md, srcu_idx);
1273 
1274 	return ret;
1275 }
1276 
1277 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1278 		void *addr, size_t bytes, struct iov_iter *i)
1279 {
1280 	struct mapped_device *md = dax_get_private(dax_dev);
1281 	sector_t sector = pgoff * PAGE_SECTORS;
1282 	struct dm_target *ti;
1283 	int srcu_idx;
1284 	long ret = 0;
1285 
1286 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1287 	if (!ti || !ti->type->dax_recovery_write)
1288 		goto out;
1289 
1290 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1291 out:
1292 	dm_put_live_table(md, srcu_idx);
1293 	return ret;
1294 }
1295 
1296 /*
1297  * A target may call dm_accept_partial_bio only from the map routine.  It is
1298  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1299  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1300  * __send_duplicate_bios().
1301  *
1302  * dm_accept_partial_bio informs the dm that the target only wants to process
1303  * additional n_sectors sectors of the bio and the rest of the data should be
1304  * sent in a next bio.
1305  *
1306  * A diagram that explains the arithmetics:
1307  * +--------------------+---------------+-------+
1308  * |         1          |       2       |   3   |
1309  * +--------------------+---------------+-------+
1310  *
1311  * <-------------- *tio->len_ptr --------------->
1312  *                      <----- bio_sectors ----->
1313  *                      <-- n_sectors -->
1314  *
1315  * Region 1 was already iterated over with bio_advance or similar function.
1316  *	(it may be empty if the target doesn't use bio_advance)
1317  * Region 2 is the remaining bio size that the target wants to process.
1318  *	(it may be empty if region 1 is non-empty, although there is no reason
1319  *	 to make it empty)
1320  * The target requires that region 3 is to be sent in the next bio.
1321  *
1322  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1323  * the partially processed part (the sum of regions 1+2) must be the same for all
1324  * copies of the bio.
1325  */
1326 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1327 {
1328 	struct dm_target_io *tio = clone_to_tio(bio);
1329 	struct dm_io *io = tio->io;
1330 	unsigned int bio_sectors = bio_sectors(bio);
1331 
1332 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1333 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1334 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1335 	BUG_ON(bio_sectors > *tio->len_ptr);
1336 	BUG_ON(n_sectors > bio_sectors);
1337 
1338 	*tio->len_ptr -= bio_sectors - n_sectors;
1339 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1340 
1341 	/*
1342 	 * __split_and_process_bio() may have already saved mapped part
1343 	 * for accounting but it is being reduced so update accordingly.
1344 	 */
1345 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1346 	io->sectors = n_sectors;
1347 	io->sector_offset = bio_sectors(io->orig_bio);
1348 }
1349 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1350 
1351 /*
1352  * @clone: clone bio that DM core passed to target's .map function
1353  * @tgt_clone: clone of @clone bio that target needs submitted
1354  *
1355  * Targets should use this interface to submit bios they take
1356  * ownership of when returning DM_MAPIO_SUBMITTED.
1357  *
1358  * Target should also enable ti->accounts_remapped_io
1359  */
1360 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1361 {
1362 	struct dm_target_io *tio = clone_to_tio(clone);
1363 	struct dm_io *io = tio->io;
1364 
1365 	/* establish bio that will get submitted */
1366 	if (!tgt_clone)
1367 		tgt_clone = clone;
1368 
1369 	/*
1370 	 * Account io->origin_bio to DM dev on behalf of target
1371 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1372 	 */
1373 	dm_start_io_acct(io, clone);
1374 
1375 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1376 			      tio->old_sector);
1377 	submit_bio_noacct(tgt_clone);
1378 }
1379 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1380 
1381 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1382 {
1383 	mutex_lock(&md->swap_bios_lock);
1384 	while (latch < md->swap_bios) {
1385 		cond_resched();
1386 		down(&md->swap_bios_semaphore);
1387 		md->swap_bios--;
1388 	}
1389 	while (latch > md->swap_bios) {
1390 		cond_resched();
1391 		up(&md->swap_bios_semaphore);
1392 		md->swap_bios++;
1393 	}
1394 	mutex_unlock(&md->swap_bios_lock);
1395 }
1396 
1397 static void __map_bio(struct bio *clone)
1398 {
1399 	struct dm_target_io *tio = clone_to_tio(clone);
1400 	struct dm_target *ti = tio->ti;
1401 	struct dm_io *io = tio->io;
1402 	struct mapped_device *md = io->md;
1403 	int r;
1404 
1405 	clone->bi_end_io = clone_endio;
1406 
1407 	/*
1408 	 * Map the clone.
1409 	 */
1410 	tio->old_sector = clone->bi_iter.bi_sector;
1411 
1412 	if (static_branch_unlikely(&swap_bios_enabled) &&
1413 	    unlikely(swap_bios_limit(ti, clone))) {
1414 		int latch = get_swap_bios();
1415 
1416 		if (unlikely(latch != md->swap_bios))
1417 			__set_swap_bios_limit(md, latch);
1418 		down(&md->swap_bios_semaphore);
1419 	}
1420 
1421 	if (static_branch_unlikely(&zoned_enabled)) {
1422 		/*
1423 		 * Check if the IO needs a special mapping due to zone append
1424 		 * emulation on zoned target. In this case, dm_zone_map_bio()
1425 		 * calls the target map operation.
1426 		 */
1427 		if (unlikely(dm_emulate_zone_append(md)))
1428 			r = dm_zone_map_bio(tio);
1429 		else
1430 			r = ti->type->map(ti, clone);
1431 	} else
1432 		r = ti->type->map(ti, clone);
1433 
1434 	switch (r) {
1435 	case DM_MAPIO_SUBMITTED:
1436 		/* target has assumed ownership of this io */
1437 		if (!ti->accounts_remapped_io)
1438 			dm_start_io_acct(io, clone);
1439 		break;
1440 	case DM_MAPIO_REMAPPED:
1441 		dm_submit_bio_remap(clone, NULL);
1442 		break;
1443 	case DM_MAPIO_KILL:
1444 	case DM_MAPIO_REQUEUE:
1445 		if (static_branch_unlikely(&swap_bios_enabled) &&
1446 		    unlikely(swap_bios_limit(ti, clone)))
1447 			up(&md->swap_bios_semaphore);
1448 		free_tio(clone);
1449 		if (r == DM_MAPIO_KILL)
1450 			dm_io_dec_pending(io, BLK_STS_IOERR);
1451 		else
1452 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1453 		break;
1454 	default:
1455 		DMCRIT("unimplemented target map return value: %d", r);
1456 		BUG();
1457 	}
1458 }
1459 
1460 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1461 {
1462 	struct dm_io *io = ci->io;
1463 
1464 	if (ci->sector_count > len) {
1465 		/*
1466 		 * Split needed, save the mapped part for accounting.
1467 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1468 		 */
1469 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1470 		io->sectors = len;
1471 		io->sector_offset = bio_sectors(ci->bio);
1472 	}
1473 }
1474 
1475 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1476 				struct dm_target *ti, unsigned int num_bios,
1477 				unsigned *len)
1478 {
1479 	struct bio *bio;
1480 	int try;
1481 
1482 	for (try = 0; try < 2; try++) {
1483 		int bio_nr;
1484 
1485 		if (try)
1486 			mutex_lock(&ci->io->md->table_devices_lock);
1487 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1488 			bio = alloc_tio(ci, ti, bio_nr, len,
1489 					try ? GFP_NOIO : GFP_NOWAIT);
1490 			if (!bio)
1491 				break;
1492 
1493 			bio_list_add(blist, bio);
1494 		}
1495 		if (try)
1496 			mutex_unlock(&ci->io->md->table_devices_lock);
1497 		if (bio_nr == num_bios)
1498 			return;
1499 
1500 		while ((bio = bio_list_pop(blist)))
1501 			free_tio(bio);
1502 	}
1503 }
1504 
1505 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1506 				 unsigned int num_bios, unsigned int *len)
1507 {
1508 	struct bio_list blist = BIO_EMPTY_LIST;
1509 	struct bio *clone;
1510 	unsigned int ret = 0;
1511 
1512 	switch (num_bios) {
1513 	case 0:
1514 		break;
1515 	case 1:
1516 		if (len)
1517 			setup_split_accounting(ci, *len);
1518 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1519 		__map_bio(clone);
1520 		ret = 1;
1521 		break;
1522 	default:
1523 		if (len)
1524 			setup_split_accounting(ci, *len);
1525 		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1526 		alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1527 		while ((clone = bio_list_pop(&blist))) {
1528 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1529 			__map_bio(clone);
1530 			ret += 1;
1531 		}
1532 		break;
1533 	}
1534 
1535 	return ret;
1536 }
1537 
1538 static void __send_empty_flush(struct clone_info *ci)
1539 {
1540 	struct dm_table *t = ci->map;
1541 	struct bio flush_bio;
1542 
1543 	/*
1544 	 * Use an on-stack bio for this, it's safe since we don't
1545 	 * need to reference it after submit. It's just used as
1546 	 * the basis for the clone(s).
1547 	 */
1548 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1549 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1550 
1551 	ci->bio = &flush_bio;
1552 	ci->sector_count = 0;
1553 	ci->io->tio.clone.bi_iter.bi_size = 0;
1554 
1555 	for (unsigned int i = 0; i < t->num_targets; i++) {
1556 		unsigned int bios;
1557 		struct dm_target *ti = dm_table_get_target(t, i);
1558 
1559 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1560 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1561 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1562 	}
1563 
1564 	/*
1565 	 * alloc_io() takes one extra reference for submission, so the
1566 	 * reference won't reach 0 without the following subtraction
1567 	 */
1568 	atomic_sub(1, &ci->io->io_count);
1569 
1570 	bio_uninit(ci->bio);
1571 }
1572 
1573 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1574 					unsigned int num_bios,
1575 					unsigned int max_granularity)
1576 {
1577 	unsigned int len, bios;
1578 
1579 	len = min_t(sector_t, ci->sector_count,
1580 		    __max_io_len(ti, ci->sector, max_granularity));
1581 
1582 	atomic_add(num_bios, &ci->io->io_count);
1583 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1584 	/*
1585 	 * alloc_io() takes one extra reference for submission, so the
1586 	 * reference won't reach 0 without the following (+1) subtraction
1587 	 */
1588 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1589 
1590 	ci->sector += len;
1591 	ci->sector_count -= len;
1592 }
1593 
1594 static bool is_abnormal_io(struct bio *bio)
1595 {
1596 	enum req_op op = bio_op(bio);
1597 
1598 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1599 		switch (op) {
1600 		case REQ_OP_DISCARD:
1601 		case REQ_OP_SECURE_ERASE:
1602 		case REQ_OP_WRITE_ZEROES:
1603 			return true;
1604 		default:
1605 			break;
1606 		}
1607 	}
1608 
1609 	return false;
1610 }
1611 
1612 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1613 					  struct dm_target *ti)
1614 {
1615 	unsigned int num_bios = 0;
1616 	unsigned int max_granularity = 0;
1617 	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1618 
1619 	switch (bio_op(ci->bio)) {
1620 	case REQ_OP_DISCARD:
1621 		num_bios = ti->num_discard_bios;
1622 		if (ti->max_discard_granularity)
1623 			max_granularity = limits->max_discard_sectors;
1624 		break;
1625 	case REQ_OP_SECURE_ERASE:
1626 		num_bios = ti->num_secure_erase_bios;
1627 		if (ti->max_secure_erase_granularity)
1628 			max_granularity = limits->max_secure_erase_sectors;
1629 		break;
1630 	case REQ_OP_WRITE_ZEROES:
1631 		num_bios = ti->num_write_zeroes_bios;
1632 		if (ti->max_write_zeroes_granularity)
1633 			max_granularity = limits->max_write_zeroes_sectors;
1634 		break;
1635 	default:
1636 		break;
1637 	}
1638 
1639 	/*
1640 	 * Even though the device advertised support for this type of
1641 	 * request, that does not mean every target supports it, and
1642 	 * reconfiguration might also have changed that since the
1643 	 * check was performed.
1644 	 */
1645 	if (unlikely(!num_bios))
1646 		return BLK_STS_NOTSUPP;
1647 
1648 	__send_changing_extent_only(ci, ti, num_bios, max_granularity);
1649 	return BLK_STS_OK;
1650 }
1651 
1652 /*
1653  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1654  * associated with this bio, and this bio's bi_private needs to be
1655  * stored in dm_io->data before the reuse.
1656  *
1657  * bio->bi_private is owned by fs or upper layer, so block layer won't
1658  * touch it after splitting. Meantime it won't be changed by anyone after
1659  * bio is submitted. So this reuse is safe.
1660  */
1661 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1662 {
1663 	return (struct dm_io **)&bio->bi_private;
1664 }
1665 
1666 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1667 {
1668 	struct dm_io **head = dm_poll_list_head(bio);
1669 
1670 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1671 		bio->bi_opf |= REQ_DM_POLL_LIST;
1672 		/*
1673 		 * Save .bi_private into dm_io, so that we can reuse
1674 		 * .bi_private as dm_io list head for storing dm_io list
1675 		 */
1676 		io->data = bio->bi_private;
1677 
1678 		/* tell block layer to poll for completion */
1679 		bio->bi_cookie = ~BLK_QC_T_NONE;
1680 
1681 		io->next = NULL;
1682 	} else {
1683 		/*
1684 		 * bio recursed due to split, reuse original poll list,
1685 		 * and save bio->bi_private too.
1686 		 */
1687 		io->data = (*head)->data;
1688 		io->next = *head;
1689 	}
1690 
1691 	*head = io;
1692 }
1693 
1694 /*
1695  * Select the correct strategy for processing a non-flush bio.
1696  */
1697 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1698 {
1699 	struct bio *clone;
1700 	struct dm_target *ti;
1701 	unsigned int len;
1702 
1703 	ti = dm_table_find_target(ci->map, ci->sector);
1704 	if (unlikely(!ti))
1705 		return BLK_STS_IOERR;
1706 
1707 	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1708 	    unlikely(!dm_target_supports_nowait(ti->type)))
1709 		return BLK_STS_NOTSUPP;
1710 
1711 	if (unlikely(ci->is_abnormal_io))
1712 		return __process_abnormal_io(ci, ti);
1713 
1714 	/*
1715 	 * Only support bio polling for normal IO, and the target io is
1716 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1717 	 */
1718 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1719 
1720 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1721 	setup_split_accounting(ci, len);
1722 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1723 	__map_bio(clone);
1724 
1725 	ci->sector += len;
1726 	ci->sector_count -= len;
1727 
1728 	return BLK_STS_OK;
1729 }
1730 
1731 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1732 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1733 {
1734 	ci->map = map;
1735 	ci->io = alloc_io(md, bio);
1736 	ci->bio = bio;
1737 	ci->is_abnormal_io = is_abnormal;
1738 	ci->submit_as_polled = false;
1739 	ci->sector = bio->bi_iter.bi_sector;
1740 	ci->sector_count = bio_sectors(bio);
1741 
1742 	/* Shouldn't happen but sector_count was being set to 0 so... */
1743 	if (static_branch_unlikely(&zoned_enabled) &&
1744 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1745 		ci->sector_count = 0;
1746 }
1747 
1748 /*
1749  * Entry point to split a bio into clones and submit them to the targets.
1750  */
1751 static void dm_split_and_process_bio(struct mapped_device *md,
1752 				     struct dm_table *map, struct bio *bio)
1753 {
1754 	struct clone_info ci;
1755 	struct dm_io *io;
1756 	blk_status_t error = BLK_STS_OK;
1757 	bool is_abnormal;
1758 
1759 	is_abnormal = is_abnormal_io(bio);
1760 	if (unlikely(is_abnormal)) {
1761 		/*
1762 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1763 		 * otherwise associated queue_limits won't be imposed.
1764 		 */
1765 		bio = bio_split_to_limits(bio);
1766 		if (!bio)
1767 			return;
1768 	}
1769 
1770 	init_clone_info(&ci, md, map, bio, is_abnormal);
1771 	io = ci.io;
1772 
1773 	if (bio->bi_opf & REQ_PREFLUSH) {
1774 		__send_empty_flush(&ci);
1775 		/* dm_io_complete submits any data associated with flush */
1776 		goto out;
1777 	}
1778 
1779 	error = __split_and_process_bio(&ci);
1780 	if (error || !ci.sector_count)
1781 		goto out;
1782 	/*
1783 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1784 	 * *after* bios already submitted have been completely processed.
1785 	 */
1786 	bio_trim(bio, io->sectors, ci.sector_count);
1787 	trace_block_split(bio, bio->bi_iter.bi_sector);
1788 	bio_inc_remaining(bio);
1789 	submit_bio_noacct(bio);
1790 out:
1791 	/*
1792 	 * Drop the extra reference count for non-POLLED bio, and hold one
1793 	 * reference for POLLED bio, which will be released in dm_poll_bio
1794 	 *
1795 	 * Add every dm_io instance into the dm_io list head which is stored
1796 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1797 	 */
1798 	if (error || !ci.submit_as_polled) {
1799 		/*
1800 		 * In case of submission failure, the extra reference for
1801 		 * submitting io isn't consumed yet
1802 		 */
1803 		if (error)
1804 			atomic_dec(&io->io_count);
1805 		dm_io_dec_pending(io, error);
1806 	} else
1807 		dm_queue_poll_io(bio, io);
1808 }
1809 
1810 static void dm_submit_bio(struct bio *bio)
1811 {
1812 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1813 	int srcu_idx;
1814 	struct dm_table *map;
1815 	blk_opf_t bio_opf = bio->bi_opf;
1816 
1817 	map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1818 
1819 	/* If suspended, or map not yet available, queue this IO for later */
1820 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1821 	    unlikely(!map)) {
1822 		if (bio->bi_opf & REQ_NOWAIT)
1823 			bio_wouldblock_error(bio);
1824 		else if (bio->bi_opf & REQ_RAHEAD)
1825 			bio_io_error(bio);
1826 		else
1827 			queue_io(md, bio);
1828 		goto out;
1829 	}
1830 
1831 	dm_split_and_process_bio(md, map, bio);
1832 out:
1833 	dm_put_live_table_bio(md, srcu_idx, bio_opf);
1834 }
1835 
1836 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1837 			  unsigned int flags)
1838 {
1839 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1840 
1841 	/* don't poll if the mapped io is done */
1842 	if (atomic_read(&io->io_count) > 1)
1843 		bio_poll(&io->tio.clone, iob, flags);
1844 
1845 	/* bio_poll holds the last reference */
1846 	return atomic_read(&io->io_count) == 1;
1847 }
1848 
1849 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1850 		       unsigned int flags)
1851 {
1852 	struct dm_io **head = dm_poll_list_head(bio);
1853 	struct dm_io *list = *head;
1854 	struct dm_io *tmp = NULL;
1855 	struct dm_io *curr, *next;
1856 
1857 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1858 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1859 		return 0;
1860 
1861 	WARN_ON_ONCE(!list);
1862 
1863 	/*
1864 	 * Restore .bi_private before possibly completing dm_io.
1865 	 *
1866 	 * bio_poll() is only possible once @bio has been completely
1867 	 * submitted via submit_bio_noacct()'s depth-first submission.
1868 	 * So there is no dm_queue_poll_io() race associated with
1869 	 * clearing REQ_DM_POLL_LIST here.
1870 	 */
1871 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1872 	bio->bi_private = list->data;
1873 
1874 	for (curr = list, next = curr->next; curr; curr = next, next =
1875 			curr ? curr->next : NULL) {
1876 		if (dm_poll_dm_io(curr, iob, flags)) {
1877 			/*
1878 			 * clone_endio() has already occurred, so no
1879 			 * error handling is needed here.
1880 			 */
1881 			__dm_io_dec_pending(curr);
1882 		} else {
1883 			curr->next = tmp;
1884 			tmp = curr;
1885 		}
1886 	}
1887 
1888 	/* Not done? */
1889 	if (tmp) {
1890 		bio->bi_opf |= REQ_DM_POLL_LIST;
1891 		/* Reset bio->bi_private to dm_io list head */
1892 		*head = tmp;
1893 		return 0;
1894 	}
1895 	return 1;
1896 }
1897 
1898 /*
1899  *---------------------------------------------------------------
1900  * An IDR is used to keep track of allocated minor numbers.
1901  *---------------------------------------------------------------
1902  */
1903 static void free_minor(int minor)
1904 {
1905 	spin_lock(&_minor_lock);
1906 	idr_remove(&_minor_idr, minor);
1907 	spin_unlock(&_minor_lock);
1908 }
1909 
1910 /*
1911  * See if the device with a specific minor # is free.
1912  */
1913 static int specific_minor(int minor)
1914 {
1915 	int r;
1916 
1917 	if (minor >= (1 << MINORBITS))
1918 		return -EINVAL;
1919 
1920 	idr_preload(GFP_KERNEL);
1921 	spin_lock(&_minor_lock);
1922 
1923 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1924 
1925 	spin_unlock(&_minor_lock);
1926 	idr_preload_end();
1927 	if (r < 0)
1928 		return r == -ENOSPC ? -EBUSY : r;
1929 	return 0;
1930 }
1931 
1932 static int next_free_minor(int *minor)
1933 {
1934 	int r;
1935 
1936 	idr_preload(GFP_KERNEL);
1937 	spin_lock(&_minor_lock);
1938 
1939 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1940 
1941 	spin_unlock(&_minor_lock);
1942 	idr_preload_end();
1943 	if (r < 0)
1944 		return r;
1945 	*minor = r;
1946 	return 0;
1947 }
1948 
1949 static const struct block_device_operations dm_blk_dops;
1950 static const struct block_device_operations dm_rq_blk_dops;
1951 static const struct dax_operations dm_dax_ops;
1952 
1953 static void dm_wq_work(struct work_struct *work);
1954 
1955 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1956 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1957 {
1958 	dm_destroy_crypto_profile(q->crypto_profile);
1959 }
1960 
1961 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1962 
1963 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1964 {
1965 }
1966 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1967 
1968 static void cleanup_mapped_device(struct mapped_device *md)
1969 {
1970 	if (md->wq)
1971 		destroy_workqueue(md->wq);
1972 	dm_free_md_mempools(md->mempools);
1973 
1974 	if (md->dax_dev) {
1975 		dax_remove_host(md->disk);
1976 		kill_dax(md->dax_dev);
1977 		put_dax(md->dax_dev);
1978 		md->dax_dev = NULL;
1979 	}
1980 
1981 	dm_cleanup_zoned_dev(md);
1982 	if (md->disk) {
1983 		spin_lock(&_minor_lock);
1984 		md->disk->private_data = NULL;
1985 		spin_unlock(&_minor_lock);
1986 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1987 			struct table_device *td;
1988 
1989 			dm_sysfs_exit(md);
1990 			list_for_each_entry(td, &md->table_devices, list) {
1991 				bd_unlink_disk_holder(td->dm_dev.bdev,
1992 						      md->disk);
1993 			}
1994 
1995 			/*
1996 			 * Hold lock to make sure del_gendisk() won't concurrent
1997 			 * with open/close_table_device().
1998 			 */
1999 			mutex_lock(&md->table_devices_lock);
2000 			del_gendisk(md->disk);
2001 			mutex_unlock(&md->table_devices_lock);
2002 		}
2003 		dm_queue_destroy_crypto_profile(md->queue);
2004 		put_disk(md->disk);
2005 	}
2006 
2007 	if (md->pending_io) {
2008 		free_percpu(md->pending_io);
2009 		md->pending_io = NULL;
2010 	}
2011 
2012 	cleanup_srcu_struct(&md->io_barrier);
2013 
2014 	mutex_destroy(&md->suspend_lock);
2015 	mutex_destroy(&md->type_lock);
2016 	mutex_destroy(&md->table_devices_lock);
2017 	mutex_destroy(&md->swap_bios_lock);
2018 
2019 	dm_mq_cleanup_mapped_device(md);
2020 }
2021 
2022 /*
2023  * Allocate and initialise a blank device with a given minor.
2024  */
2025 static struct mapped_device *alloc_dev(int minor)
2026 {
2027 	int r, numa_node_id = dm_get_numa_node();
2028 	struct mapped_device *md;
2029 	void *old_md;
2030 
2031 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2032 	if (!md) {
2033 		DMERR("unable to allocate device, out of memory.");
2034 		return NULL;
2035 	}
2036 
2037 	if (!try_module_get(THIS_MODULE))
2038 		goto bad_module_get;
2039 
2040 	/* get a minor number for the dev */
2041 	if (minor == DM_ANY_MINOR)
2042 		r = next_free_minor(&minor);
2043 	else
2044 		r = specific_minor(minor);
2045 	if (r < 0)
2046 		goto bad_minor;
2047 
2048 	r = init_srcu_struct(&md->io_barrier);
2049 	if (r < 0)
2050 		goto bad_io_barrier;
2051 
2052 	md->numa_node_id = numa_node_id;
2053 	md->init_tio_pdu = false;
2054 	md->type = DM_TYPE_NONE;
2055 	mutex_init(&md->suspend_lock);
2056 	mutex_init(&md->type_lock);
2057 	mutex_init(&md->table_devices_lock);
2058 	spin_lock_init(&md->deferred_lock);
2059 	atomic_set(&md->holders, 1);
2060 	atomic_set(&md->open_count, 0);
2061 	atomic_set(&md->event_nr, 0);
2062 	atomic_set(&md->uevent_seq, 0);
2063 	INIT_LIST_HEAD(&md->uevent_list);
2064 	INIT_LIST_HEAD(&md->table_devices);
2065 	spin_lock_init(&md->uevent_lock);
2066 
2067 	/*
2068 	 * default to bio-based until DM table is loaded and md->type
2069 	 * established. If request-based table is loaded: blk-mq will
2070 	 * override accordingly.
2071 	 */
2072 	md->disk = blk_alloc_disk(md->numa_node_id);
2073 	if (!md->disk)
2074 		goto bad;
2075 	md->queue = md->disk->queue;
2076 
2077 	init_waitqueue_head(&md->wait);
2078 	INIT_WORK(&md->work, dm_wq_work);
2079 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2080 	init_waitqueue_head(&md->eventq);
2081 	init_completion(&md->kobj_holder.completion);
2082 
2083 	md->requeue_list = NULL;
2084 	md->swap_bios = get_swap_bios();
2085 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2086 	mutex_init(&md->swap_bios_lock);
2087 
2088 	md->disk->major = _major;
2089 	md->disk->first_minor = minor;
2090 	md->disk->minors = 1;
2091 	md->disk->flags |= GENHD_FL_NO_PART;
2092 	md->disk->fops = &dm_blk_dops;
2093 	md->disk->private_data = md;
2094 	sprintf(md->disk->disk_name, "dm-%d", minor);
2095 
2096 	if (IS_ENABLED(CONFIG_FS_DAX)) {
2097 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2098 		if (IS_ERR(md->dax_dev)) {
2099 			md->dax_dev = NULL;
2100 			goto bad;
2101 		}
2102 		set_dax_nocache(md->dax_dev);
2103 		set_dax_nomc(md->dax_dev);
2104 		if (dax_add_host(md->dax_dev, md->disk))
2105 			goto bad;
2106 	}
2107 
2108 	format_dev_t(md->name, MKDEV(_major, minor));
2109 
2110 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2111 	if (!md->wq)
2112 		goto bad;
2113 
2114 	md->pending_io = alloc_percpu(unsigned long);
2115 	if (!md->pending_io)
2116 		goto bad;
2117 
2118 	r = dm_stats_init(&md->stats);
2119 	if (r < 0)
2120 		goto bad;
2121 
2122 	/* Populate the mapping, nobody knows we exist yet */
2123 	spin_lock(&_minor_lock);
2124 	old_md = idr_replace(&_minor_idr, md, minor);
2125 	spin_unlock(&_minor_lock);
2126 
2127 	BUG_ON(old_md != MINOR_ALLOCED);
2128 
2129 	return md;
2130 
2131 bad:
2132 	cleanup_mapped_device(md);
2133 bad_io_barrier:
2134 	free_minor(minor);
2135 bad_minor:
2136 	module_put(THIS_MODULE);
2137 bad_module_get:
2138 	kvfree(md);
2139 	return NULL;
2140 }
2141 
2142 static void unlock_fs(struct mapped_device *md);
2143 
2144 static void free_dev(struct mapped_device *md)
2145 {
2146 	int minor = MINOR(disk_devt(md->disk));
2147 
2148 	unlock_fs(md);
2149 
2150 	cleanup_mapped_device(md);
2151 
2152 	WARN_ON_ONCE(!list_empty(&md->table_devices));
2153 	dm_stats_cleanup(&md->stats);
2154 	free_minor(minor);
2155 
2156 	module_put(THIS_MODULE);
2157 	kvfree(md);
2158 }
2159 
2160 /*
2161  * Bind a table to the device.
2162  */
2163 static void event_callback(void *context)
2164 {
2165 	unsigned long flags;
2166 	LIST_HEAD(uevents);
2167 	struct mapped_device *md = context;
2168 
2169 	spin_lock_irqsave(&md->uevent_lock, flags);
2170 	list_splice_init(&md->uevent_list, &uevents);
2171 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2172 
2173 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2174 
2175 	atomic_inc(&md->event_nr);
2176 	wake_up(&md->eventq);
2177 	dm_issue_global_event();
2178 }
2179 
2180 /*
2181  * Returns old map, which caller must destroy.
2182  */
2183 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2184 			       struct queue_limits *limits)
2185 {
2186 	struct dm_table *old_map;
2187 	sector_t size;
2188 	int ret;
2189 
2190 	lockdep_assert_held(&md->suspend_lock);
2191 
2192 	size = dm_table_get_size(t);
2193 
2194 	/*
2195 	 * Wipe any geometry if the size of the table changed.
2196 	 */
2197 	if (size != dm_get_size(md))
2198 		memset(&md->geometry, 0, sizeof(md->geometry));
2199 
2200 	set_capacity(md->disk, size);
2201 
2202 	dm_table_event_callback(t, event_callback, md);
2203 
2204 	if (dm_table_request_based(t)) {
2205 		/*
2206 		 * Leverage the fact that request-based DM targets are
2207 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2208 		 */
2209 		md->immutable_target = dm_table_get_immutable_target(t);
2210 
2211 		/*
2212 		 * There is no need to reload with request-based dm because the
2213 		 * size of front_pad doesn't change.
2214 		 *
2215 		 * Note for future: If you are to reload bioset, prep-ed
2216 		 * requests in the queue may refer to bio from the old bioset,
2217 		 * so you must walk through the queue to unprep.
2218 		 */
2219 		if (!md->mempools) {
2220 			md->mempools = t->mempools;
2221 			t->mempools = NULL;
2222 		}
2223 	} else {
2224 		/*
2225 		 * The md may already have mempools that need changing.
2226 		 * If so, reload bioset because front_pad may have changed
2227 		 * because a different table was loaded.
2228 		 */
2229 		dm_free_md_mempools(md->mempools);
2230 		md->mempools = t->mempools;
2231 		t->mempools = NULL;
2232 	}
2233 
2234 	ret = dm_table_set_restrictions(t, md->queue, limits);
2235 	if (ret) {
2236 		old_map = ERR_PTR(ret);
2237 		goto out;
2238 	}
2239 
2240 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2241 	rcu_assign_pointer(md->map, (void *)t);
2242 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2243 
2244 	if (old_map)
2245 		dm_sync_table(md);
2246 out:
2247 	return old_map;
2248 }
2249 
2250 /*
2251  * Returns unbound table for the caller to free.
2252  */
2253 static struct dm_table *__unbind(struct mapped_device *md)
2254 {
2255 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2256 
2257 	if (!map)
2258 		return NULL;
2259 
2260 	dm_table_event_callback(map, NULL, NULL);
2261 	RCU_INIT_POINTER(md->map, NULL);
2262 	dm_sync_table(md);
2263 
2264 	return map;
2265 }
2266 
2267 /*
2268  * Constructor for a new device.
2269  */
2270 int dm_create(int minor, struct mapped_device **result)
2271 {
2272 	struct mapped_device *md;
2273 
2274 	md = alloc_dev(minor);
2275 	if (!md)
2276 		return -ENXIO;
2277 
2278 	dm_ima_reset_data(md);
2279 
2280 	*result = md;
2281 	return 0;
2282 }
2283 
2284 /*
2285  * Functions to manage md->type.
2286  * All are required to hold md->type_lock.
2287  */
2288 void dm_lock_md_type(struct mapped_device *md)
2289 {
2290 	mutex_lock(&md->type_lock);
2291 }
2292 
2293 void dm_unlock_md_type(struct mapped_device *md)
2294 {
2295 	mutex_unlock(&md->type_lock);
2296 }
2297 
2298 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2299 {
2300 	BUG_ON(!mutex_is_locked(&md->type_lock));
2301 	md->type = type;
2302 }
2303 
2304 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2305 {
2306 	return md->type;
2307 }
2308 
2309 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2310 {
2311 	return md->immutable_target_type;
2312 }
2313 
2314 /*
2315  * The queue_limits are only valid as long as you have a reference
2316  * count on 'md'.
2317  */
2318 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2319 {
2320 	BUG_ON(!atomic_read(&md->holders));
2321 	return &md->queue->limits;
2322 }
2323 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2324 
2325 /*
2326  * Setup the DM device's queue based on md's type
2327  */
2328 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2329 {
2330 	enum dm_queue_mode type = dm_table_get_type(t);
2331 	struct queue_limits limits;
2332 	struct table_device *td;
2333 	int r;
2334 
2335 	switch (type) {
2336 	case DM_TYPE_REQUEST_BASED:
2337 		md->disk->fops = &dm_rq_blk_dops;
2338 		r = dm_mq_init_request_queue(md, t);
2339 		if (r) {
2340 			DMERR("Cannot initialize queue for request-based dm mapped device");
2341 			return r;
2342 		}
2343 		break;
2344 	case DM_TYPE_BIO_BASED:
2345 	case DM_TYPE_DAX_BIO_BASED:
2346 		break;
2347 	case DM_TYPE_NONE:
2348 		WARN_ON_ONCE(true);
2349 		break;
2350 	}
2351 
2352 	r = dm_calculate_queue_limits(t, &limits);
2353 	if (r) {
2354 		DMERR("Cannot calculate initial queue limits");
2355 		return r;
2356 	}
2357 	r = dm_table_set_restrictions(t, md->queue, &limits);
2358 	if (r)
2359 		return r;
2360 
2361 	/*
2362 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2363 	 * with open_table_device() and close_table_device().
2364 	 */
2365 	mutex_lock(&md->table_devices_lock);
2366 	r = add_disk(md->disk);
2367 	mutex_unlock(&md->table_devices_lock);
2368 	if (r)
2369 		return r;
2370 
2371 	/*
2372 	 * Register the holder relationship for devices added before the disk
2373 	 * was live.
2374 	 */
2375 	list_for_each_entry(td, &md->table_devices, list) {
2376 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2377 		if (r)
2378 			goto out_undo_holders;
2379 	}
2380 
2381 	r = dm_sysfs_init(md);
2382 	if (r)
2383 		goto out_undo_holders;
2384 
2385 	md->type = type;
2386 	return 0;
2387 
2388 out_undo_holders:
2389 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2390 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2391 	mutex_lock(&md->table_devices_lock);
2392 	del_gendisk(md->disk);
2393 	mutex_unlock(&md->table_devices_lock);
2394 	return r;
2395 }
2396 
2397 struct mapped_device *dm_get_md(dev_t dev)
2398 {
2399 	struct mapped_device *md;
2400 	unsigned int minor = MINOR(dev);
2401 
2402 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2403 		return NULL;
2404 
2405 	spin_lock(&_minor_lock);
2406 
2407 	md = idr_find(&_minor_idr, minor);
2408 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2409 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2410 		md = NULL;
2411 		goto out;
2412 	}
2413 	dm_get(md);
2414 out:
2415 	spin_unlock(&_minor_lock);
2416 
2417 	return md;
2418 }
2419 EXPORT_SYMBOL_GPL(dm_get_md);
2420 
2421 void *dm_get_mdptr(struct mapped_device *md)
2422 {
2423 	return md->interface_ptr;
2424 }
2425 
2426 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2427 {
2428 	md->interface_ptr = ptr;
2429 }
2430 
2431 void dm_get(struct mapped_device *md)
2432 {
2433 	atomic_inc(&md->holders);
2434 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2435 }
2436 
2437 int dm_hold(struct mapped_device *md)
2438 {
2439 	spin_lock(&_minor_lock);
2440 	if (test_bit(DMF_FREEING, &md->flags)) {
2441 		spin_unlock(&_minor_lock);
2442 		return -EBUSY;
2443 	}
2444 	dm_get(md);
2445 	spin_unlock(&_minor_lock);
2446 	return 0;
2447 }
2448 EXPORT_SYMBOL_GPL(dm_hold);
2449 
2450 const char *dm_device_name(struct mapped_device *md)
2451 {
2452 	return md->name;
2453 }
2454 EXPORT_SYMBOL_GPL(dm_device_name);
2455 
2456 static void __dm_destroy(struct mapped_device *md, bool wait)
2457 {
2458 	struct dm_table *map;
2459 	int srcu_idx;
2460 
2461 	might_sleep();
2462 
2463 	spin_lock(&_minor_lock);
2464 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2465 	set_bit(DMF_FREEING, &md->flags);
2466 	spin_unlock(&_minor_lock);
2467 
2468 	blk_mark_disk_dead(md->disk);
2469 
2470 	/*
2471 	 * Take suspend_lock so that presuspend and postsuspend methods
2472 	 * do not race with internal suspend.
2473 	 */
2474 	mutex_lock(&md->suspend_lock);
2475 	map = dm_get_live_table(md, &srcu_idx);
2476 	if (!dm_suspended_md(md)) {
2477 		dm_table_presuspend_targets(map);
2478 		set_bit(DMF_SUSPENDED, &md->flags);
2479 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2480 		dm_table_postsuspend_targets(map);
2481 	}
2482 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2483 	dm_put_live_table(md, srcu_idx);
2484 	mutex_unlock(&md->suspend_lock);
2485 
2486 	/*
2487 	 * Rare, but there may be I/O requests still going to complete,
2488 	 * for example.  Wait for all references to disappear.
2489 	 * No one should increment the reference count of the mapped_device,
2490 	 * after the mapped_device state becomes DMF_FREEING.
2491 	 */
2492 	if (wait)
2493 		while (atomic_read(&md->holders))
2494 			fsleep(1000);
2495 	else if (atomic_read(&md->holders))
2496 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2497 		       dm_device_name(md), atomic_read(&md->holders));
2498 
2499 	dm_table_destroy(__unbind(md));
2500 	free_dev(md);
2501 }
2502 
2503 void dm_destroy(struct mapped_device *md)
2504 {
2505 	__dm_destroy(md, true);
2506 }
2507 
2508 void dm_destroy_immediate(struct mapped_device *md)
2509 {
2510 	__dm_destroy(md, false);
2511 }
2512 
2513 void dm_put(struct mapped_device *md)
2514 {
2515 	atomic_dec(&md->holders);
2516 }
2517 EXPORT_SYMBOL_GPL(dm_put);
2518 
2519 static bool dm_in_flight_bios(struct mapped_device *md)
2520 {
2521 	int cpu;
2522 	unsigned long sum = 0;
2523 
2524 	for_each_possible_cpu(cpu)
2525 		sum += *per_cpu_ptr(md->pending_io, cpu);
2526 
2527 	return sum != 0;
2528 }
2529 
2530 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2531 {
2532 	int r = 0;
2533 	DEFINE_WAIT(wait);
2534 
2535 	while (true) {
2536 		prepare_to_wait(&md->wait, &wait, task_state);
2537 
2538 		if (!dm_in_flight_bios(md))
2539 			break;
2540 
2541 		if (signal_pending_state(task_state, current)) {
2542 			r = -EINTR;
2543 			break;
2544 		}
2545 
2546 		io_schedule();
2547 	}
2548 	finish_wait(&md->wait, &wait);
2549 
2550 	smp_rmb();
2551 
2552 	return r;
2553 }
2554 
2555 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2556 {
2557 	int r = 0;
2558 
2559 	if (!queue_is_mq(md->queue))
2560 		return dm_wait_for_bios_completion(md, task_state);
2561 
2562 	while (true) {
2563 		if (!blk_mq_queue_inflight(md->queue))
2564 			break;
2565 
2566 		if (signal_pending_state(task_state, current)) {
2567 			r = -EINTR;
2568 			break;
2569 		}
2570 
2571 		fsleep(5000);
2572 	}
2573 
2574 	return r;
2575 }
2576 
2577 /*
2578  * Process the deferred bios
2579  */
2580 static void dm_wq_work(struct work_struct *work)
2581 {
2582 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2583 	struct bio *bio;
2584 
2585 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2586 		spin_lock_irq(&md->deferred_lock);
2587 		bio = bio_list_pop(&md->deferred);
2588 		spin_unlock_irq(&md->deferred_lock);
2589 
2590 		if (!bio)
2591 			break;
2592 
2593 		submit_bio_noacct(bio);
2594 		cond_resched();
2595 	}
2596 }
2597 
2598 static void dm_queue_flush(struct mapped_device *md)
2599 {
2600 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2601 	smp_mb__after_atomic();
2602 	queue_work(md->wq, &md->work);
2603 }
2604 
2605 /*
2606  * Swap in a new table, returning the old one for the caller to destroy.
2607  */
2608 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2609 {
2610 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2611 	struct queue_limits limits;
2612 	int r;
2613 
2614 	mutex_lock(&md->suspend_lock);
2615 
2616 	/* device must be suspended */
2617 	if (!dm_suspended_md(md))
2618 		goto out;
2619 
2620 	/*
2621 	 * If the new table has no data devices, retain the existing limits.
2622 	 * This helps multipath with queue_if_no_path if all paths disappear,
2623 	 * then new I/O is queued based on these limits, and then some paths
2624 	 * reappear.
2625 	 */
2626 	if (dm_table_has_no_data_devices(table)) {
2627 		live_map = dm_get_live_table_fast(md);
2628 		if (live_map)
2629 			limits = md->queue->limits;
2630 		dm_put_live_table_fast(md);
2631 	}
2632 
2633 	if (!live_map) {
2634 		r = dm_calculate_queue_limits(table, &limits);
2635 		if (r) {
2636 			map = ERR_PTR(r);
2637 			goto out;
2638 		}
2639 	}
2640 
2641 	map = __bind(md, table, &limits);
2642 	dm_issue_global_event();
2643 
2644 out:
2645 	mutex_unlock(&md->suspend_lock);
2646 	return map;
2647 }
2648 
2649 /*
2650  * Functions to lock and unlock any filesystem running on the
2651  * device.
2652  */
2653 static int lock_fs(struct mapped_device *md)
2654 {
2655 	int r;
2656 
2657 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2658 
2659 	r = freeze_bdev(md->disk->part0);
2660 	if (!r)
2661 		set_bit(DMF_FROZEN, &md->flags);
2662 	return r;
2663 }
2664 
2665 static void unlock_fs(struct mapped_device *md)
2666 {
2667 	if (!test_bit(DMF_FROZEN, &md->flags))
2668 		return;
2669 	thaw_bdev(md->disk->part0);
2670 	clear_bit(DMF_FROZEN, &md->flags);
2671 }
2672 
2673 /*
2674  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2675  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2676  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2677  *
2678  * If __dm_suspend returns 0, the device is completely quiescent
2679  * now. There is no request-processing activity. All new requests
2680  * are being added to md->deferred list.
2681  */
2682 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2683 			unsigned int suspend_flags, unsigned int task_state,
2684 			int dmf_suspended_flag)
2685 {
2686 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2687 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2688 	int r;
2689 
2690 	lockdep_assert_held(&md->suspend_lock);
2691 
2692 	/*
2693 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2694 	 * This flag is cleared before dm_suspend returns.
2695 	 */
2696 	if (noflush)
2697 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2698 	else
2699 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2700 
2701 	/*
2702 	 * This gets reverted if there's an error later and the targets
2703 	 * provide the .presuspend_undo hook.
2704 	 */
2705 	dm_table_presuspend_targets(map);
2706 
2707 	/*
2708 	 * Flush I/O to the device.
2709 	 * Any I/O submitted after lock_fs() may not be flushed.
2710 	 * noflush takes precedence over do_lockfs.
2711 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2712 	 */
2713 	if (!noflush && do_lockfs) {
2714 		r = lock_fs(md);
2715 		if (r) {
2716 			dm_table_presuspend_undo_targets(map);
2717 			return r;
2718 		}
2719 	}
2720 
2721 	/*
2722 	 * Here we must make sure that no processes are submitting requests
2723 	 * to target drivers i.e. no one may be executing
2724 	 * dm_split_and_process_bio from dm_submit_bio.
2725 	 *
2726 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2727 	 * we take the write lock. To prevent any process from reentering
2728 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2729 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2730 	 * flush_workqueue(md->wq).
2731 	 */
2732 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2733 	if (map)
2734 		synchronize_srcu(&md->io_barrier);
2735 
2736 	/*
2737 	 * Stop md->queue before flushing md->wq in case request-based
2738 	 * dm defers requests to md->wq from md->queue.
2739 	 */
2740 	if (dm_request_based(md))
2741 		dm_stop_queue(md->queue);
2742 
2743 	flush_workqueue(md->wq);
2744 
2745 	/*
2746 	 * At this point no more requests are entering target request routines.
2747 	 * We call dm_wait_for_completion to wait for all existing requests
2748 	 * to finish.
2749 	 */
2750 	r = dm_wait_for_completion(md, task_state);
2751 	if (!r)
2752 		set_bit(dmf_suspended_flag, &md->flags);
2753 
2754 	if (noflush)
2755 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2756 	if (map)
2757 		synchronize_srcu(&md->io_barrier);
2758 
2759 	/* were we interrupted ? */
2760 	if (r < 0) {
2761 		dm_queue_flush(md);
2762 
2763 		if (dm_request_based(md))
2764 			dm_start_queue(md->queue);
2765 
2766 		unlock_fs(md);
2767 		dm_table_presuspend_undo_targets(map);
2768 		/* pushback list is already flushed, so skip flush */
2769 	}
2770 
2771 	return r;
2772 }
2773 
2774 /*
2775  * We need to be able to change a mapping table under a mounted
2776  * filesystem.  For example we might want to move some data in
2777  * the background.  Before the table can be swapped with
2778  * dm_bind_table, dm_suspend must be called to flush any in
2779  * flight bios and ensure that any further io gets deferred.
2780  */
2781 /*
2782  * Suspend mechanism in request-based dm.
2783  *
2784  * 1. Flush all I/Os by lock_fs() if needed.
2785  * 2. Stop dispatching any I/O by stopping the request_queue.
2786  * 3. Wait for all in-flight I/Os to be completed or requeued.
2787  *
2788  * To abort suspend, start the request_queue.
2789  */
2790 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2791 {
2792 	struct dm_table *map = NULL;
2793 	int r = 0;
2794 
2795 retry:
2796 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2797 
2798 	if (dm_suspended_md(md)) {
2799 		r = -EINVAL;
2800 		goto out_unlock;
2801 	}
2802 
2803 	if (dm_suspended_internally_md(md)) {
2804 		/* already internally suspended, wait for internal resume */
2805 		mutex_unlock(&md->suspend_lock);
2806 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2807 		if (r)
2808 			return r;
2809 		goto retry;
2810 	}
2811 
2812 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2813 
2814 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2815 	if (r)
2816 		goto out_unlock;
2817 
2818 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2819 	dm_table_postsuspend_targets(map);
2820 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2821 
2822 out_unlock:
2823 	mutex_unlock(&md->suspend_lock);
2824 	return r;
2825 }
2826 
2827 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2828 {
2829 	if (map) {
2830 		int r = dm_table_resume_targets(map);
2831 
2832 		if (r)
2833 			return r;
2834 	}
2835 
2836 	dm_queue_flush(md);
2837 
2838 	/*
2839 	 * Flushing deferred I/Os must be done after targets are resumed
2840 	 * so that mapping of targets can work correctly.
2841 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2842 	 */
2843 	if (dm_request_based(md))
2844 		dm_start_queue(md->queue);
2845 
2846 	unlock_fs(md);
2847 
2848 	return 0;
2849 }
2850 
2851 int dm_resume(struct mapped_device *md)
2852 {
2853 	int r;
2854 	struct dm_table *map = NULL;
2855 
2856 retry:
2857 	r = -EINVAL;
2858 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2859 
2860 	if (!dm_suspended_md(md))
2861 		goto out;
2862 
2863 	if (dm_suspended_internally_md(md)) {
2864 		/* already internally suspended, wait for internal resume */
2865 		mutex_unlock(&md->suspend_lock);
2866 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2867 		if (r)
2868 			return r;
2869 		goto retry;
2870 	}
2871 
2872 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2873 	if (!map || !dm_table_get_size(map))
2874 		goto out;
2875 
2876 	r = __dm_resume(md, map);
2877 	if (r)
2878 		goto out;
2879 
2880 	clear_bit(DMF_SUSPENDED, &md->flags);
2881 out:
2882 	mutex_unlock(&md->suspend_lock);
2883 
2884 	return r;
2885 }
2886 
2887 /*
2888  * Internal suspend/resume works like userspace-driven suspend. It waits
2889  * until all bios finish and prevents issuing new bios to the target drivers.
2890  * It may be used only from the kernel.
2891  */
2892 
2893 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2894 {
2895 	struct dm_table *map = NULL;
2896 
2897 	lockdep_assert_held(&md->suspend_lock);
2898 
2899 	if (md->internal_suspend_count++)
2900 		return; /* nested internal suspend */
2901 
2902 	if (dm_suspended_md(md)) {
2903 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2904 		return; /* nest suspend */
2905 	}
2906 
2907 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2908 
2909 	/*
2910 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2911 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2912 	 * would require changing .presuspend to return an error -- avoid this
2913 	 * until there is a need for more elaborate variants of internal suspend.
2914 	 */
2915 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2916 			    DMF_SUSPENDED_INTERNALLY);
2917 
2918 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2919 	dm_table_postsuspend_targets(map);
2920 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2921 }
2922 
2923 static void __dm_internal_resume(struct mapped_device *md)
2924 {
2925 	BUG_ON(!md->internal_suspend_count);
2926 
2927 	if (--md->internal_suspend_count)
2928 		return; /* resume from nested internal suspend */
2929 
2930 	if (dm_suspended_md(md))
2931 		goto done; /* resume from nested suspend */
2932 
2933 	/*
2934 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2935 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2936 	 */
2937 	(void) __dm_resume(md, NULL);
2938 
2939 done:
2940 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2941 	smp_mb__after_atomic();
2942 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2943 }
2944 
2945 void dm_internal_suspend_noflush(struct mapped_device *md)
2946 {
2947 	mutex_lock(&md->suspend_lock);
2948 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2949 	mutex_unlock(&md->suspend_lock);
2950 }
2951 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2952 
2953 void dm_internal_resume(struct mapped_device *md)
2954 {
2955 	mutex_lock(&md->suspend_lock);
2956 	__dm_internal_resume(md);
2957 	mutex_unlock(&md->suspend_lock);
2958 }
2959 EXPORT_SYMBOL_GPL(dm_internal_resume);
2960 
2961 /*
2962  * Fast variants of internal suspend/resume hold md->suspend_lock,
2963  * which prevents interaction with userspace-driven suspend.
2964  */
2965 
2966 void dm_internal_suspend_fast(struct mapped_device *md)
2967 {
2968 	mutex_lock(&md->suspend_lock);
2969 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2970 		return;
2971 
2972 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2973 	synchronize_srcu(&md->io_barrier);
2974 	flush_workqueue(md->wq);
2975 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2976 }
2977 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2978 
2979 void dm_internal_resume_fast(struct mapped_device *md)
2980 {
2981 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2982 		goto done;
2983 
2984 	dm_queue_flush(md);
2985 
2986 done:
2987 	mutex_unlock(&md->suspend_lock);
2988 }
2989 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2990 
2991 /*
2992  *---------------------------------------------------------------
2993  * Event notification.
2994  *---------------------------------------------------------------
2995  */
2996 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2997 		      unsigned int cookie, bool need_resize_uevent)
2998 {
2999 	int r;
3000 	unsigned int noio_flag;
3001 	char udev_cookie[DM_COOKIE_LENGTH];
3002 	char *envp[3] = { NULL, NULL, NULL };
3003 	char **envpp = envp;
3004 	if (cookie) {
3005 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3006 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3007 		*envpp++ = udev_cookie;
3008 	}
3009 	if (need_resize_uevent) {
3010 		*envpp++ = "RESIZE=1";
3011 	}
3012 
3013 	noio_flag = memalloc_noio_save();
3014 
3015 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3016 
3017 	memalloc_noio_restore(noio_flag);
3018 
3019 	return r;
3020 }
3021 
3022 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3023 {
3024 	return atomic_add_return(1, &md->uevent_seq);
3025 }
3026 
3027 uint32_t dm_get_event_nr(struct mapped_device *md)
3028 {
3029 	return atomic_read(&md->event_nr);
3030 }
3031 
3032 int dm_wait_event(struct mapped_device *md, int event_nr)
3033 {
3034 	return wait_event_interruptible(md->eventq,
3035 			(event_nr != atomic_read(&md->event_nr)));
3036 }
3037 
3038 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3039 {
3040 	unsigned long flags;
3041 
3042 	spin_lock_irqsave(&md->uevent_lock, flags);
3043 	list_add(elist, &md->uevent_list);
3044 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3045 }
3046 
3047 /*
3048  * The gendisk is only valid as long as you have a reference
3049  * count on 'md'.
3050  */
3051 struct gendisk *dm_disk(struct mapped_device *md)
3052 {
3053 	return md->disk;
3054 }
3055 EXPORT_SYMBOL_GPL(dm_disk);
3056 
3057 struct kobject *dm_kobject(struct mapped_device *md)
3058 {
3059 	return &md->kobj_holder.kobj;
3060 }
3061 
3062 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3063 {
3064 	struct mapped_device *md;
3065 
3066 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3067 
3068 	spin_lock(&_minor_lock);
3069 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3070 		md = NULL;
3071 		goto out;
3072 	}
3073 	dm_get(md);
3074 out:
3075 	spin_unlock(&_minor_lock);
3076 
3077 	return md;
3078 }
3079 
3080 int dm_suspended_md(struct mapped_device *md)
3081 {
3082 	return test_bit(DMF_SUSPENDED, &md->flags);
3083 }
3084 
3085 static int dm_post_suspending_md(struct mapped_device *md)
3086 {
3087 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3088 }
3089 
3090 int dm_suspended_internally_md(struct mapped_device *md)
3091 {
3092 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3093 }
3094 
3095 int dm_test_deferred_remove_flag(struct mapped_device *md)
3096 {
3097 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3098 }
3099 
3100 int dm_suspended(struct dm_target *ti)
3101 {
3102 	return dm_suspended_md(ti->table->md);
3103 }
3104 EXPORT_SYMBOL_GPL(dm_suspended);
3105 
3106 int dm_post_suspending(struct dm_target *ti)
3107 {
3108 	return dm_post_suspending_md(ti->table->md);
3109 }
3110 EXPORT_SYMBOL_GPL(dm_post_suspending);
3111 
3112 int dm_noflush_suspending(struct dm_target *ti)
3113 {
3114 	return __noflush_suspending(ti->table->md);
3115 }
3116 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3117 
3118 void dm_free_md_mempools(struct dm_md_mempools *pools)
3119 {
3120 	if (!pools)
3121 		return;
3122 
3123 	bioset_exit(&pools->bs);
3124 	bioset_exit(&pools->io_bs);
3125 
3126 	kfree(pools);
3127 }
3128 
3129 struct dm_pr {
3130 	u64	old_key;
3131 	u64	new_key;
3132 	u32	flags;
3133 	bool	abort;
3134 	bool	fail_early;
3135 	int	ret;
3136 	enum pr_type type;
3137 };
3138 
3139 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3140 		      struct dm_pr *pr)
3141 {
3142 	struct mapped_device *md = bdev->bd_disk->private_data;
3143 	struct dm_table *table;
3144 	struct dm_target *ti;
3145 	int ret = -ENOTTY, srcu_idx;
3146 
3147 	table = dm_get_live_table(md, &srcu_idx);
3148 	if (!table || !dm_table_get_size(table))
3149 		goto out;
3150 
3151 	/* We only support devices that have a single target */
3152 	if (table->num_targets != 1)
3153 		goto out;
3154 	ti = dm_table_get_target(table, 0);
3155 
3156 	if (dm_suspended_md(md)) {
3157 		ret = -EAGAIN;
3158 		goto out;
3159 	}
3160 
3161 	ret = -EINVAL;
3162 	if (!ti->type->iterate_devices)
3163 		goto out;
3164 
3165 	ti->type->iterate_devices(ti, fn, pr);
3166 	ret = 0;
3167 out:
3168 	dm_put_live_table(md, srcu_idx);
3169 	return ret;
3170 }
3171 
3172 /*
3173  * For register / unregister we need to manually call out to every path.
3174  */
3175 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3176 			    sector_t start, sector_t len, void *data)
3177 {
3178 	struct dm_pr *pr = data;
3179 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3180 	int ret;
3181 
3182 	if (!ops || !ops->pr_register) {
3183 		pr->ret = -EOPNOTSUPP;
3184 		return -1;
3185 	}
3186 
3187 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3188 	if (!ret)
3189 		return 0;
3190 
3191 	if (!pr->ret)
3192 		pr->ret = ret;
3193 
3194 	if (pr->fail_early)
3195 		return -1;
3196 
3197 	return 0;
3198 }
3199 
3200 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3201 			  u32 flags)
3202 {
3203 	struct dm_pr pr = {
3204 		.old_key	= old_key,
3205 		.new_key	= new_key,
3206 		.flags		= flags,
3207 		.fail_early	= true,
3208 		.ret		= 0,
3209 	};
3210 	int ret;
3211 
3212 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3213 	if (ret) {
3214 		/* Didn't even get to register a path */
3215 		return ret;
3216 	}
3217 
3218 	if (!pr.ret)
3219 		return 0;
3220 	ret = pr.ret;
3221 
3222 	if (!new_key)
3223 		return ret;
3224 
3225 	/* unregister all paths if we failed to register any path */
3226 	pr.old_key = new_key;
3227 	pr.new_key = 0;
3228 	pr.flags = 0;
3229 	pr.fail_early = false;
3230 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3231 	return ret;
3232 }
3233 
3234 
3235 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3236 			   sector_t start, sector_t len, void *data)
3237 {
3238 	struct dm_pr *pr = data;
3239 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3240 
3241 	if (!ops || !ops->pr_reserve) {
3242 		pr->ret = -EOPNOTSUPP;
3243 		return -1;
3244 	}
3245 
3246 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3247 	if (!pr->ret)
3248 		return -1;
3249 
3250 	return 0;
3251 }
3252 
3253 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3254 			 u32 flags)
3255 {
3256 	struct dm_pr pr = {
3257 		.old_key	= key,
3258 		.flags		= flags,
3259 		.type		= type,
3260 		.fail_early	= false,
3261 		.ret		= 0,
3262 	};
3263 	int ret;
3264 
3265 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3266 	if (ret)
3267 		return ret;
3268 
3269 	return pr.ret;
3270 }
3271 
3272 /*
3273  * If there is a non-All Registrants type of reservation, the release must be
3274  * sent down the holding path. For the cases where there is no reservation or
3275  * the path is not the holder the device will also return success, so we must
3276  * try each path to make sure we got the correct path.
3277  */
3278 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3279 			   sector_t start, sector_t len, void *data)
3280 {
3281 	struct dm_pr *pr = data;
3282 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3283 
3284 	if (!ops || !ops->pr_release) {
3285 		pr->ret = -EOPNOTSUPP;
3286 		return -1;
3287 	}
3288 
3289 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3290 	if (pr->ret)
3291 		return -1;
3292 
3293 	return 0;
3294 }
3295 
3296 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3297 {
3298 	struct dm_pr pr = {
3299 		.old_key	= key,
3300 		.type		= type,
3301 		.fail_early	= false,
3302 	};
3303 	int ret;
3304 
3305 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3306 	if (ret)
3307 		return ret;
3308 
3309 	return pr.ret;
3310 }
3311 
3312 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3313 			   sector_t start, sector_t len, void *data)
3314 {
3315 	struct dm_pr *pr = data;
3316 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3317 
3318 	if (!ops || !ops->pr_preempt) {
3319 		pr->ret = -EOPNOTSUPP;
3320 		return -1;
3321 	}
3322 
3323 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3324 				  pr->abort);
3325 	if (!pr->ret)
3326 		return -1;
3327 
3328 	return 0;
3329 }
3330 
3331 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3332 			 enum pr_type type, bool abort)
3333 {
3334 	struct dm_pr pr = {
3335 		.new_key	= new_key,
3336 		.old_key	= old_key,
3337 		.type		= type,
3338 		.fail_early	= false,
3339 	};
3340 	int ret;
3341 
3342 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3343 	if (ret)
3344 		return ret;
3345 
3346 	return pr.ret;
3347 }
3348 
3349 static int dm_pr_clear(struct block_device *bdev, u64 key)
3350 {
3351 	struct mapped_device *md = bdev->bd_disk->private_data;
3352 	const struct pr_ops *ops;
3353 	int r, srcu_idx;
3354 
3355 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3356 	if (r < 0)
3357 		goto out;
3358 
3359 	ops = bdev->bd_disk->fops->pr_ops;
3360 	if (ops && ops->pr_clear)
3361 		r = ops->pr_clear(bdev, key);
3362 	else
3363 		r = -EOPNOTSUPP;
3364 out:
3365 	dm_unprepare_ioctl(md, srcu_idx);
3366 	return r;
3367 }
3368 
3369 static const struct pr_ops dm_pr_ops = {
3370 	.pr_register	= dm_pr_register,
3371 	.pr_reserve	= dm_pr_reserve,
3372 	.pr_release	= dm_pr_release,
3373 	.pr_preempt	= dm_pr_preempt,
3374 	.pr_clear	= dm_pr_clear,
3375 };
3376 
3377 static const struct block_device_operations dm_blk_dops = {
3378 	.submit_bio = dm_submit_bio,
3379 	.poll_bio = dm_poll_bio,
3380 	.open = dm_blk_open,
3381 	.release = dm_blk_close,
3382 	.ioctl = dm_blk_ioctl,
3383 	.getgeo = dm_blk_getgeo,
3384 	.report_zones = dm_blk_report_zones,
3385 	.pr_ops = &dm_pr_ops,
3386 	.owner = THIS_MODULE
3387 };
3388 
3389 static const struct block_device_operations dm_rq_blk_dops = {
3390 	.open = dm_blk_open,
3391 	.release = dm_blk_close,
3392 	.ioctl = dm_blk_ioctl,
3393 	.getgeo = dm_blk_getgeo,
3394 	.pr_ops = &dm_pr_ops,
3395 	.owner = THIS_MODULE
3396 };
3397 
3398 static const struct dax_operations dm_dax_ops = {
3399 	.direct_access = dm_dax_direct_access,
3400 	.zero_page_range = dm_dax_zero_page_range,
3401 	.recovery_write = dm_dax_recovery_write,
3402 };
3403 
3404 /*
3405  * module hooks
3406  */
3407 module_init(dm_init);
3408 module_exit(dm_exit);
3409 
3410 module_param(major, uint, 0);
3411 MODULE_PARM_DESC(major, "The major number of the device mapper");
3412 
3413 module_param(reserved_bio_based_ios, uint, 0644);
3414 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3415 
3416 module_param(dm_numa_node, int, 0644);
3417 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3418 
3419 module_param(swap_bios, int, 0644);
3420 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3421 
3422 MODULE_DESCRIPTION(DM_NAME " driver");
3423 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3424 MODULE_LICENSE("GPL");
3425