1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/signal.h> 19 #include <linux/blkpg.h> 20 #include <linux/bio.h> 21 #include <linux/mempool.h> 22 #include <linux/dax.h> 23 #include <linux/slab.h> 24 #include <linux/idr.h> 25 #include <linux/uio.h> 26 #include <linux/hdreg.h> 27 #include <linux/delay.h> 28 #include <linux/wait.h> 29 #include <linux/pr.h> 30 #include <linux/refcount.h> 31 #include <linux/part_stat.h> 32 #include <linux/blk-crypto.h> 33 #include <linux/blk-crypto-profile.h> 34 35 #define DM_MSG_PREFIX "core" 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 /* 45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 46 * dm_io into one list, and reuse bio->bi_private as the list head. Before 47 * ending this fs bio, we will recover its ->bi_private. 48 */ 49 #define REQ_DM_POLL_LIST REQ_DRV 50 51 static const char *_name = DM_NAME; 52 53 static unsigned int major; 54 static unsigned int _major; 55 56 static DEFINE_IDR(_minor_idr); 57 58 static DEFINE_SPINLOCK(_minor_lock); 59 60 static void do_deferred_remove(struct work_struct *w); 61 62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 63 64 static struct workqueue_struct *deferred_remove_workqueue; 65 66 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 68 69 void dm_issue_global_event(void) 70 { 71 atomic_inc(&dm_global_event_nr); 72 wake_up(&dm_global_eventq); 73 } 74 75 DEFINE_STATIC_KEY_FALSE(stats_enabled); 76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 77 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 78 79 /* 80 * One of these is allocated (on-stack) per original bio. 81 */ 82 struct clone_info { 83 struct dm_table *map; 84 struct bio *bio; 85 struct dm_io *io; 86 sector_t sector; 87 unsigned int sector_count; 88 bool is_abnormal_io:1; 89 bool submit_as_polled:1; 90 }; 91 92 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 93 { 94 return container_of(clone, struct dm_target_io, clone); 95 } 96 97 void *dm_per_bio_data(struct bio *bio, size_t data_size) 98 { 99 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 100 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 101 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 102 } 103 EXPORT_SYMBOL_GPL(dm_per_bio_data); 104 105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 106 { 107 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 108 109 if (io->magic == DM_IO_MAGIC) 110 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 111 BUG_ON(io->magic != DM_TIO_MAGIC); 112 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 113 } 114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 115 116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 117 { 118 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 119 } 120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 121 122 #define MINOR_ALLOCED ((void *)-1) 123 124 #define DM_NUMA_NODE NUMA_NO_NODE 125 static int dm_numa_node = DM_NUMA_NODE; 126 127 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 128 static int swap_bios = DEFAULT_SWAP_BIOS; 129 static int get_swap_bios(void) 130 { 131 int latch = READ_ONCE(swap_bios); 132 133 if (unlikely(latch <= 0)) 134 latch = DEFAULT_SWAP_BIOS; 135 return latch; 136 } 137 138 struct table_device { 139 struct list_head list; 140 refcount_t count; 141 struct dm_dev dm_dev; 142 }; 143 144 /* 145 * Bio-based DM's mempools' reserved IOs set by the user. 146 */ 147 #define RESERVED_BIO_BASED_IOS 16 148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 149 150 static int __dm_get_module_param_int(int *module_param, int min, int max) 151 { 152 int param = READ_ONCE(*module_param); 153 int modified_param = 0; 154 bool modified = true; 155 156 if (param < min) 157 modified_param = min; 158 else if (param > max) 159 modified_param = max; 160 else 161 modified = false; 162 163 if (modified) { 164 (void)cmpxchg(module_param, param, modified_param); 165 param = modified_param; 166 } 167 168 return param; 169 } 170 171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 172 { 173 unsigned int param = READ_ONCE(*module_param); 174 unsigned int modified_param = 0; 175 176 if (!param) 177 modified_param = def; 178 else if (param > max) 179 modified_param = max; 180 181 if (modified_param) { 182 (void)cmpxchg(module_param, param, modified_param); 183 param = modified_param; 184 } 185 186 return param; 187 } 188 189 unsigned int dm_get_reserved_bio_based_ios(void) 190 { 191 return __dm_get_module_param(&reserved_bio_based_ios, 192 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 193 } 194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 195 196 static unsigned int dm_get_numa_node(void) 197 { 198 return __dm_get_module_param_int(&dm_numa_node, 199 DM_NUMA_NODE, num_online_nodes() - 1); 200 } 201 202 static int __init local_init(void) 203 { 204 int r; 205 206 r = dm_uevent_init(); 207 if (r) 208 return r; 209 210 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 211 if (!deferred_remove_workqueue) { 212 r = -ENOMEM; 213 goto out_uevent_exit; 214 } 215 216 _major = major; 217 r = register_blkdev(_major, _name); 218 if (r < 0) 219 goto out_free_workqueue; 220 221 if (!_major) 222 _major = r; 223 224 return 0; 225 226 out_free_workqueue: 227 destroy_workqueue(deferred_remove_workqueue); 228 out_uevent_exit: 229 dm_uevent_exit(); 230 231 return r; 232 } 233 234 static void local_exit(void) 235 { 236 destroy_workqueue(deferred_remove_workqueue); 237 238 unregister_blkdev(_major, _name); 239 dm_uevent_exit(); 240 241 _major = 0; 242 243 DMINFO("cleaned up"); 244 } 245 246 static int (*_inits[])(void) __initdata = { 247 local_init, 248 dm_target_init, 249 dm_linear_init, 250 dm_stripe_init, 251 dm_io_init, 252 dm_kcopyd_init, 253 dm_interface_init, 254 dm_statistics_init, 255 }; 256 257 static void (*_exits[])(void) = { 258 local_exit, 259 dm_target_exit, 260 dm_linear_exit, 261 dm_stripe_exit, 262 dm_io_exit, 263 dm_kcopyd_exit, 264 dm_interface_exit, 265 dm_statistics_exit, 266 }; 267 268 static int __init dm_init(void) 269 { 270 const int count = ARRAY_SIZE(_inits); 271 int r, i; 272 273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 274 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 275 " Duplicate IMA measurements will not be recorded in the IMA log."); 276 #endif 277 278 for (i = 0; i < count; i++) { 279 r = _inits[i](); 280 if (r) 281 goto bad; 282 } 283 284 return 0; 285 bad: 286 while (i--) 287 _exits[i](); 288 289 return r; 290 } 291 292 static void __exit dm_exit(void) 293 { 294 int i = ARRAY_SIZE(_exits); 295 296 while (i--) 297 _exits[i](); 298 299 /* 300 * Should be empty by this point. 301 */ 302 idr_destroy(&_minor_idr); 303 } 304 305 /* 306 * Block device functions 307 */ 308 int dm_deleting_md(struct mapped_device *md) 309 { 310 return test_bit(DMF_DELETING, &md->flags); 311 } 312 313 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 314 { 315 struct mapped_device *md; 316 317 spin_lock(&_minor_lock); 318 319 md = bdev->bd_disk->private_data; 320 if (!md) 321 goto out; 322 323 if (test_bit(DMF_FREEING, &md->flags) || 324 dm_deleting_md(md)) { 325 md = NULL; 326 goto out; 327 } 328 329 dm_get(md); 330 atomic_inc(&md->open_count); 331 out: 332 spin_unlock(&_minor_lock); 333 334 return md ? 0 : -ENXIO; 335 } 336 337 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 338 { 339 struct mapped_device *md; 340 341 spin_lock(&_minor_lock); 342 343 md = disk->private_data; 344 if (WARN_ON(!md)) 345 goto out; 346 347 if (atomic_dec_and_test(&md->open_count) && 348 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 349 queue_work(deferred_remove_workqueue, &deferred_remove_work); 350 351 dm_put(md); 352 out: 353 spin_unlock(&_minor_lock); 354 } 355 356 int dm_open_count(struct mapped_device *md) 357 { 358 return atomic_read(&md->open_count); 359 } 360 361 /* 362 * Guarantees nothing is using the device before it's deleted. 363 */ 364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 365 { 366 int r = 0; 367 368 spin_lock(&_minor_lock); 369 370 if (dm_open_count(md)) { 371 r = -EBUSY; 372 if (mark_deferred) 373 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 374 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 375 r = -EEXIST; 376 else 377 set_bit(DMF_DELETING, &md->flags); 378 379 spin_unlock(&_minor_lock); 380 381 return r; 382 } 383 384 int dm_cancel_deferred_remove(struct mapped_device *md) 385 { 386 int r = 0; 387 388 spin_lock(&_minor_lock); 389 390 if (test_bit(DMF_DELETING, &md->flags)) 391 r = -EBUSY; 392 else 393 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 static void do_deferred_remove(struct work_struct *w) 401 { 402 dm_deferred_remove(); 403 } 404 405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 406 { 407 struct mapped_device *md = bdev->bd_disk->private_data; 408 409 return dm_get_geometry(md, geo); 410 } 411 412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 413 struct block_device **bdev) 414 { 415 struct dm_target *ti; 416 struct dm_table *map; 417 int r; 418 419 retry: 420 r = -ENOTTY; 421 map = dm_get_live_table(md, srcu_idx); 422 if (!map || !dm_table_get_size(map)) 423 return r; 424 425 /* We only support devices that have a single target */ 426 if (map->num_targets != 1) 427 return r; 428 429 ti = dm_table_get_target(map, 0); 430 if (!ti->type->prepare_ioctl) 431 return r; 432 433 if (dm_suspended_md(md)) 434 return -EAGAIN; 435 436 r = ti->type->prepare_ioctl(ti, bdev); 437 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 438 dm_put_live_table(md, *srcu_idx); 439 fsleep(10000); 440 goto retry; 441 } 442 443 return r; 444 } 445 446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 447 { 448 dm_put_live_table(md, srcu_idx); 449 } 450 451 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 452 unsigned int cmd, unsigned long arg) 453 { 454 struct mapped_device *md = bdev->bd_disk->private_data; 455 int r, srcu_idx; 456 457 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 458 if (r < 0) 459 goto out; 460 461 if (r > 0) { 462 /* 463 * Target determined this ioctl is being issued against a 464 * subset of the parent bdev; require extra privileges. 465 */ 466 if (!capable(CAP_SYS_RAWIO)) { 467 DMDEBUG_LIMIT( 468 "%s: sending ioctl %x to DM device without required privilege.", 469 current->comm, cmd); 470 r = -ENOIOCTLCMD; 471 goto out; 472 } 473 } 474 475 if (!bdev->bd_disk->fops->ioctl) 476 r = -ENOTTY; 477 else 478 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 479 out: 480 dm_unprepare_ioctl(md, srcu_idx); 481 return r; 482 } 483 484 u64 dm_start_time_ns_from_clone(struct bio *bio) 485 { 486 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 487 } 488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 489 490 static bool bio_is_flush_with_data(struct bio *bio) 491 { 492 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 493 } 494 495 static void dm_io_acct(struct dm_io *io, bool end) 496 { 497 struct dm_stats_aux *stats_aux = &io->stats_aux; 498 unsigned long start_time = io->start_time; 499 struct mapped_device *md = io->md; 500 struct bio *bio = io->orig_bio; 501 unsigned int sectors; 502 503 /* 504 * If REQ_PREFLUSH set, don't account payload, it will be 505 * submitted (and accounted) after this flush completes. 506 */ 507 if (bio_is_flush_with_data(bio)) 508 sectors = 0; 509 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT)))) 510 sectors = bio_sectors(bio); 511 else 512 sectors = io->sectors; 513 514 if (!end) 515 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), start_time); 516 else 517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), sectors, 518 start_time); 519 520 if (static_branch_unlikely(&stats_enabled) && 521 unlikely(dm_stats_used(&md->stats))) { 522 sector_t sector; 523 524 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT))) 525 sector = bio->bi_iter.bi_sector; 526 else 527 sector = bio_end_sector(bio) - io->sector_offset; 528 529 dm_stats_account_io(&md->stats, bio_data_dir(bio), 530 sector, sectors, 531 end, start_time, stats_aux); 532 } 533 } 534 535 static void __dm_start_io_acct(struct dm_io *io) 536 { 537 dm_io_acct(io, false); 538 } 539 540 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 541 { 542 /* 543 * Ensure IO accounting is only ever started once. 544 */ 545 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 546 return; 547 548 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 549 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 550 dm_io_set_flag(io, DM_IO_ACCOUNTED); 551 } else { 552 unsigned long flags; 553 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 554 spin_lock_irqsave(&io->lock, flags); 555 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 556 spin_unlock_irqrestore(&io->lock, flags); 557 return; 558 } 559 dm_io_set_flag(io, DM_IO_ACCOUNTED); 560 spin_unlock_irqrestore(&io->lock, flags); 561 } 562 563 __dm_start_io_acct(io); 564 } 565 566 static void dm_end_io_acct(struct dm_io *io) 567 { 568 dm_io_acct(io, true); 569 } 570 571 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 572 { 573 struct dm_io *io; 574 struct dm_target_io *tio; 575 struct bio *clone; 576 577 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs); 578 tio = clone_to_tio(clone); 579 tio->flags = 0; 580 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 581 tio->io = NULL; 582 583 io = container_of(tio, struct dm_io, tio); 584 io->magic = DM_IO_MAGIC; 585 io->status = BLK_STS_OK; 586 587 /* one ref is for submission, the other is for completion */ 588 atomic_set(&io->io_count, 2); 589 this_cpu_inc(*md->pending_io); 590 io->orig_bio = bio; 591 io->md = md; 592 spin_lock_init(&io->lock); 593 io->start_time = jiffies; 594 io->flags = 0; 595 596 if (static_branch_unlikely(&stats_enabled)) 597 dm_stats_record_start(&md->stats, &io->stats_aux); 598 599 return io; 600 } 601 602 static void free_io(struct dm_io *io) 603 { 604 bio_put(&io->tio.clone); 605 } 606 607 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 608 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 609 { 610 struct mapped_device *md = ci->io->md; 611 struct dm_target_io *tio; 612 struct bio *clone; 613 614 if (!ci->io->tio.io) { 615 /* the dm_target_io embedded in ci->io is available */ 616 tio = &ci->io->tio; 617 /* alloc_io() already initialized embedded clone */ 618 clone = &tio->clone; 619 } else { 620 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 621 &md->mempools->bs); 622 if (!clone) 623 return NULL; 624 625 /* REQ_DM_POLL_LIST shouldn't be inherited */ 626 clone->bi_opf &= ~REQ_DM_POLL_LIST; 627 628 tio = clone_to_tio(clone); 629 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 630 } 631 632 tio->magic = DM_TIO_MAGIC; 633 tio->io = ci->io; 634 tio->ti = ti; 635 tio->target_bio_nr = target_bio_nr; 636 tio->len_ptr = len; 637 tio->old_sector = 0; 638 639 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 640 clone->bi_bdev = md->disk->part0; 641 if (unlikely(ti->needs_bio_set_dev)) 642 bio_set_dev(clone, md->disk->part0); 643 644 if (len) { 645 clone->bi_iter.bi_size = to_bytes(*len); 646 if (bio_integrity(clone)) 647 bio_integrity_trim(clone); 648 } 649 650 return clone; 651 } 652 653 static void free_tio(struct bio *clone) 654 { 655 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 656 return; 657 bio_put(clone); 658 } 659 660 /* 661 * Add the bio to the list of deferred io. 662 */ 663 static void queue_io(struct mapped_device *md, struct bio *bio) 664 { 665 unsigned long flags; 666 667 spin_lock_irqsave(&md->deferred_lock, flags); 668 bio_list_add(&md->deferred, bio); 669 spin_unlock_irqrestore(&md->deferred_lock, flags); 670 queue_work(md->wq, &md->work); 671 } 672 673 /* 674 * Everyone (including functions in this file), should use this 675 * function to access the md->map field, and make sure they call 676 * dm_put_live_table() when finished. 677 */ 678 struct dm_table *dm_get_live_table(struct mapped_device *md, 679 int *srcu_idx) __acquires(md->io_barrier) 680 { 681 *srcu_idx = srcu_read_lock(&md->io_barrier); 682 683 return srcu_dereference(md->map, &md->io_barrier); 684 } 685 686 void dm_put_live_table(struct mapped_device *md, 687 int srcu_idx) __releases(md->io_barrier) 688 { 689 srcu_read_unlock(&md->io_barrier, srcu_idx); 690 } 691 692 void dm_sync_table(struct mapped_device *md) 693 { 694 synchronize_srcu(&md->io_barrier); 695 synchronize_rcu_expedited(); 696 } 697 698 /* 699 * A fast alternative to dm_get_live_table/dm_put_live_table. 700 * The caller must not block between these two functions. 701 */ 702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 703 { 704 rcu_read_lock(); 705 return rcu_dereference(md->map); 706 } 707 708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 709 { 710 rcu_read_unlock(); 711 } 712 713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md, 714 int *srcu_idx, blk_opf_t bio_opf) 715 { 716 if (bio_opf & REQ_NOWAIT) 717 return dm_get_live_table_fast(md); 718 else 719 return dm_get_live_table(md, srcu_idx); 720 } 721 722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx, 723 blk_opf_t bio_opf) 724 { 725 if (bio_opf & REQ_NOWAIT) 726 dm_put_live_table_fast(md); 727 else 728 dm_put_live_table(md, srcu_idx); 729 } 730 731 static char *_dm_claim_ptr = "I belong to device-mapper"; 732 733 /* 734 * Open a table device so we can use it as a map destination. 735 */ 736 static struct table_device *open_table_device(struct mapped_device *md, 737 dev_t dev, fmode_t mode) 738 { 739 struct table_device *td; 740 struct block_device *bdev; 741 u64 part_off; 742 int r; 743 744 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 745 if (!td) 746 return ERR_PTR(-ENOMEM); 747 refcount_set(&td->count, 1); 748 749 bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr); 750 if (IS_ERR(bdev)) { 751 r = PTR_ERR(bdev); 752 goto out_free_td; 753 } 754 755 /* 756 * We can be called before the dm disk is added. In that case we can't 757 * register the holder relation here. It will be done once add_disk was 758 * called. 759 */ 760 if (md->disk->slave_dir) { 761 r = bd_link_disk_holder(bdev, md->disk); 762 if (r) 763 goto out_blkdev_put; 764 } 765 766 td->dm_dev.mode = mode; 767 td->dm_dev.bdev = bdev; 768 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL); 769 format_dev_t(td->dm_dev.name, dev); 770 list_add(&td->list, &md->table_devices); 771 return td; 772 773 out_blkdev_put: 774 blkdev_put(bdev, mode | FMODE_EXCL); 775 out_free_td: 776 kfree(td); 777 return ERR_PTR(r); 778 } 779 780 /* 781 * Close a table device that we've been using. 782 */ 783 static void close_table_device(struct table_device *td, struct mapped_device *md) 784 { 785 if (md->disk->slave_dir) 786 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 787 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 788 put_dax(td->dm_dev.dax_dev); 789 list_del(&td->list); 790 kfree(td); 791 } 792 793 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 794 fmode_t mode) 795 { 796 struct table_device *td; 797 798 list_for_each_entry(td, l, list) 799 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 800 return td; 801 802 return NULL; 803 } 804 805 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 806 struct dm_dev **result) 807 { 808 struct table_device *td; 809 810 mutex_lock(&md->table_devices_lock); 811 td = find_table_device(&md->table_devices, dev, mode); 812 if (!td) { 813 td = open_table_device(md, dev, mode); 814 if (IS_ERR(td)) { 815 mutex_unlock(&md->table_devices_lock); 816 return PTR_ERR(td); 817 } 818 } else { 819 refcount_inc(&td->count); 820 } 821 mutex_unlock(&md->table_devices_lock); 822 823 *result = &td->dm_dev; 824 return 0; 825 } 826 827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 828 { 829 struct table_device *td = container_of(d, struct table_device, dm_dev); 830 831 mutex_lock(&md->table_devices_lock); 832 if (refcount_dec_and_test(&td->count)) 833 close_table_device(td, md); 834 mutex_unlock(&md->table_devices_lock); 835 } 836 837 /* 838 * Get the geometry associated with a dm device 839 */ 840 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 841 { 842 *geo = md->geometry; 843 844 return 0; 845 } 846 847 /* 848 * Set the geometry of a device. 849 */ 850 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 851 { 852 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 853 854 if (geo->start > sz) { 855 DMERR("Start sector is beyond the geometry limits."); 856 return -EINVAL; 857 } 858 859 md->geometry = *geo; 860 861 return 0; 862 } 863 864 static int __noflush_suspending(struct mapped_device *md) 865 { 866 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 867 } 868 869 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 870 { 871 struct mapped_device *md = io->md; 872 873 if (first_stage) { 874 struct dm_io *next = md->requeue_list; 875 876 md->requeue_list = io; 877 io->next = next; 878 } else { 879 bio_list_add_head(&md->deferred, io->orig_bio); 880 } 881 } 882 883 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 884 { 885 if (first_stage) 886 queue_work(md->wq, &md->requeue_work); 887 else 888 queue_work(md->wq, &md->work); 889 } 890 891 /* 892 * Return true if the dm_io's original bio is requeued. 893 * io->status is updated with error if requeue disallowed. 894 */ 895 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 896 { 897 struct bio *bio = io->orig_bio; 898 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 899 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 900 (bio->bi_opf & REQ_POLLED)); 901 struct mapped_device *md = io->md; 902 bool requeued = false; 903 904 if (handle_requeue || handle_polled_eagain) { 905 unsigned long flags; 906 907 if (bio->bi_opf & REQ_POLLED) { 908 /* 909 * Upper layer won't help us poll split bio 910 * (io->orig_bio may only reflect a subset of the 911 * pre-split original) so clear REQ_POLLED. 912 */ 913 bio_clear_polled(bio); 914 } 915 916 /* 917 * Target requested pushing back the I/O or 918 * polled IO hit BLK_STS_AGAIN. 919 */ 920 spin_lock_irqsave(&md->deferred_lock, flags); 921 if ((__noflush_suspending(md) && 922 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 923 handle_polled_eagain || first_stage) { 924 dm_requeue_add_io(io, first_stage); 925 requeued = true; 926 } else { 927 /* 928 * noflush suspend was interrupted or this is 929 * a write to a zoned target. 930 */ 931 io->status = BLK_STS_IOERR; 932 } 933 spin_unlock_irqrestore(&md->deferred_lock, flags); 934 } 935 936 if (requeued) 937 dm_kick_requeue(md, first_stage); 938 939 return requeued; 940 } 941 942 static void __dm_io_complete(struct dm_io *io, bool first_stage) 943 { 944 struct bio *bio = io->orig_bio; 945 struct mapped_device *md = io->md; 946 blk_status_t io_error; 947 bool requeued; 948 949 requeued = dm_handle_requeue(io, first_stage); 950 if (requeued && first_stage) 951 return; 952 953 io_error = io->status; 954 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 955 dm_end_io_acct(io); 956 else if (!io_error) { 957 /* 958 * Must handle target that DM_MAPIO_SUBMITTED only to 959 * then bio_endio() rather than dm_submit_bio_remap() 960 */ 961 __dm_start_io_acct(io); 962 dm_end_io_acct(io); 963 } 964 free_io(io); 965 smp_wmb(); 966 this_cpu_dec(*md->pending_io); 967 968 /* nudge anyone waiting on suspend queue */ 969 if (unlikely(wq_has_sleeper(&md->wait))) 970 wake_up(&md->wait); 971 972 /* Return early if the original bio was requeued */ 973 if (requeued) 974 return; 975 976 if (bio_is_flush_with_data(bio)) { 977 /* 978 * Preflush done for flush with data, reissue 979 * without REQ_PREFLUSH. 980 */ 981 bio->bi_opf &= ~REQ_PREFLUSH; 982 queue_io(md, bio); 983 } else { 984 /* done with normal IO or empty flush */ 985 if (io_error) 986 bio->bi_status = io_error; 987 bio_endio(bio); 988 } 989 } 990 991 static void dm_wq_requeue_work(struct work_struct *work) 992 { 993 struct mapped_device *md = container_of(work, struct mapped_device, 994 requeue_work); 995 unsigned long flags; 996 struct dm_io *io; 997 998 /* reuse deferred lock to simplify dm_handle_requeue */ 999 spin_lock_irqsave(&md->deferred_lock, flags); 1000 io = md->requeue_list; 1001 md->requeue_list = NULL; 1002 spin_unlock_irqrestore(&md->deferred_lock, flags); 1003 1004 while (io) { 1005 struct dm_io *next = io->next; 1006 1007 dm_io_rewind(io, &md->disk->bio_split); 1008 1009 io->next = NULL; 1010 __dm_io_complete(io, false); 1011 io = next; 1012 cond_resched(); 1013 } 1014 } 1015 1016 /* 1017 * Two staged requeue: 1018 * 1019 * 1) io->orig_bio points to the real original bio, and the part mapped to 1020 * this io must be requeued, instead of other parts of the original bio. 1021 * 1022 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1023 */ 1024 static void dm_io_complete(struct dm_io *io) 1025 { 1026 bool first_requeue; 1027 1028 /* 1029 * Only dm_io that has been split needs two stage requeue, otherwise 1030 * we may run into long bio clone chain during suspend and OOM could 1031 * be triggered. 1032 * 1033 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1034 * also aren't handled via the first stage requeue. 1035 */ 1036 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1037 first_requeue = true; 1038 else 1039 first_requeue = false; 1040 1041 __dm_io_complete(io, first_requeue); 1042 } 1043 1044 /* 1045 * Decrements the number of outstanding ios that a bio has been 1046 * cloned into, completing the original io if necc. 1047 */ 1048 static inline void __dm_io_dec_pending(struct dm_io *io) 1049 { 1050 if (atomic_dec_and_test(&io->io_count)) 1051 dm_io_complete(io); 1052 } 1053 1054 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1055 { 1056 unsigned long flags; 1057 1058 /* Push-back supersedes any I/O errors */ 1059 spin_lock_irqsave(&io->lock, flags); 1060 if (!(io->status == BLK_STS_DM_REQUEUE && 1061 __noflush_suspending(io->md))) { 1062 io->status = error; 1063 } 1064 spin_unlock_irqrestore(&io->lock, flags); 1065 } 1066 1067 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1068 { 1069 if (unlikely(error)) 1070 dm_io_set_error(io, error); 1071 1072 __dm_io_dec_pending(io); 1073 } 1074 1075 void disable_discard(struct mapped_device *md) 1076 { 1077 struct queue_limits *limits = dm_get_queue_limits(md); 1078 1079 /* device doesn't really support DISCARD, disable it */ 1080 limits->max_discard_sectors = 0; 1081 } 1082 1083 void disable_write_zeroes(struct mapped_device *md) 1084 { 1085 struct queue_limits *limits = dm_get_queue_limits(md); 1086 1087 /* device doesn't really support WRITE ZEROES, disable it */ 1088 limits->max_write_zeroes_sectors = 0; 1089 } 1090 1091 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1092 { 1093 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1094 } 1095 1096 static void clone_endio(struct bio *bio) 1097 { 1098 blk_status_t error = bio->bi_status; 1099 struct dm_target_io *tio = clone_to_tio(bio); 1100 struct dm_target *ti = tio->ti; 1101 dm_endio_fn endio = ti->type->end_io; 1102 struct dm_io *io = tio->io; 1103 struct mapped_device *md = io->md; 1104 1105 if (unlikely(error == BLK_STS_TARGET)) { 1106 if (bio_op(bio) == REQ_OP_DISCARD && 1107 !bdev_max_discard_sectors(bio->bi_bdev)) 1108 disable_discard(md); 1109 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1110 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1111 disable_write_zeroes(md); 1112 } 1113 1114 if (static_branch_unlikely(&zoned_enabled) && 1115 unlikely(bdev_is_zoned(bio->bi_bdev))) 1116 dm_zone_endio(io, bio); 1117 1118 if (endio) { 1119 int r = endio(ti, bio, &error); 1120 1121 switch (r) { 1122 case DM_ENDIO_REQUEUE: 1123 if (static_branch_unlikely(&zoned_enabled)) { 1124 /* 1125 * Requeuing writes to a sequential zone of a zoned 1126 * target will break the sequential write pattern: 1127 * fail such IO. 1128 */ 1129 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1130 error = BLK_STS_IOERR; 1131 else 1132 error = BLK_STS_DM_REQUEUE; 1133 } else 1134 error = BLK_STS_DM_REQUEUE; 1135 fallthrough; 1136 case DM_ENDIO_DONE: 1137 break; 1138 case DM_ENDIO_INCOMPLETE: 1139 /* The target will handle the io */ 1140 return; 1141 default: 1142 DMCRIT("unimplemented target endio return value: %d", r); 1143 BUG(); 1144 } 1145 } 1146 1147 if (static_branch_unlikely(&swap_bios_enabled) && 1148 unlikely(swap_bios_limit(ti, bio))) 1149 up(&md->swap_bios_semaphore); 1150 1151 free_tio(bio); 1152 dm_io_dec_pending(io, error); 1153 } 1154 1155 /* 1156 * Return maximum size of I/O possible at the supplied sector up to the current 1157 * target boundary. 1158 */ 1159 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1160 sector_t target_offset) 1161 { 1162 return ti->len - target_offset; 1163 } 1164 1165 static sector_t __max_io_len(struct dm_target *ti, sector_t sector, 1166 unsigned int max_granularity) 1167 { 1168 sector_t target_offset = dm_target_offset(ti, sector); 1169 sector_t len = max_io_len_target_boundary(ti, target_offset); 1170 1171 /* 1172 * Does the target need to split IO even further? 1173 * - varied (per target) IO splitting is a tenet of DM; this 1174 * explains why stacked chunk_sectors based splitting via 1175 * bio_split_to_limits() isn't possible here. 1176 */ 1177 if (!max_granularity) 1178 return len; 1179 return min_t(sector_t, len, 1180 min(queue_max_sectors(ti->table->md->queue), 1181 blk_chunk_sectors_left(target_offset, max_granularity))); 1182 } 1183 1184 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) 1185 { 1186 return __max_io_len(ti, sector, ti->max_io_len); 1187 } 1188 1189 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1190 { 1191 if (len > UINT_MAX) { 1192 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1193 (unsigned long long)len, UINT_MAX); 1194 ti->error = "Maximum size of target IO is too large"; 1195 return -EINVAL; 1196 } 1197 1198 ti->max_io_len = (uint32_t) len; 1199 1200 return 0; 1201 } 1202 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1203 1204 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1205 sector_t sector, int *srcu_idx) 1206 __acquires(md->io_barrier) 1207 { 1208 struct dm_table *map; 1209 struct dm_target *ti; 1210 1211 map = dm_get_live_table(md, srcu_idx); 1212 if (!map) 1213 return NULL; 1214 1215 ti = dm_table_find_target(map, sector); 1216 if (!ti) 1217 return NULL; 1218 1219 return ti; 1220 } 1221 1222 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1223 long nr_pages, enum dax_access_mode mode, void **kaddr, 1224 pfn_t *pfn) 1225 { 1226 struct mapped_device *md = dax_get_private(dax_dev); 1227 sector_t sector = pgoff * PAGE_SECTORS; 1228 struct dm_target *ti; 1229 long len, ret = -EIO; 1230 int srcu_idx; 1231 1232 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1233 1234 if (!ti) 1235 goto out; 1236 if (!ti->type->direct_access) 1237 goto out; 1238 len = max_io_len(ti, sector) / PAGE_SECTORS; 1239 if (len < 1) 1240 goto out; 1241 nr_pages = min(len, nr_pages); 1242 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1243 1244 out: 1245 dm_put_live_table(md, srcu_idx); 1246 1247 return ret; 1248 } 1249 1250 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1251 size_t nr_pages) 1252 { 1253 struct mapped_device *md = dax_get_private(dax_dev); 1254 sector_t sector = pgoff * PAGE_SECTORS; 1255 struct dm_target *ti; 1256 int ret = -EIO; 1257 int srcu_idx; 1258 1259 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1260 1261 if (!ti) 1262 goto out; 1263 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1264 /* 1265 * ->zero_page_range() is mandatory dax operation. If we are 1266 * here, something is wrong. 1267 */ 1268 goto out; 1269 } 1270 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1271 out: 1272 dm_put_live_table(md, srcu_idx); 1273 1274 return ret; 1275 } 1276 1277 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1278 void *addr, size_t bytes, struct iov_iter *i) 1279 { 1280 struct mapped_device *md = dax_get_private(dax_dev); 1281 sector_t sector = pgoff * PAGE_SECTORS; 1282 struct dm_target *ti; 1283 int srcu_idx; 1284 long ret = 0; 1285 1286 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1287 if (!ti || !ti->type->dax_recovery_write) 1288 goto out; 1289 1290 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1291 out: 1292 dm_put_live_table(md, srcu_idx); 1293 return ret; 1294 } 1295 1296 /* 1297 * A target may call dm_accept_partial_bio only from the map routine. It is 1298 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1299 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1300 * __send_duplicate_bios(). 1301 * 1302 * dm_accept_partial_bio informs the dm that the target only wants to process 1303 * additional n_sectors sectors of the bio and the rest of the data should be 1304 * sent in a next bio. 1305 * 1306 * A diagram that explains the arithmetics: 1307 * +--------------------+---------------+-------+ 1308 * | 1 | 2 | 3 | 1309 * +--------------------+---------------+-------+ 1310 * 1311 * <-------------- *tio->len_ptr ---------------> 1312 * <----- bio_sectors -----> 1313 * <-- n_sectors --> 1314 * 1315 * Region 1 was already iterated over with bio_advance or similar function. 1316 * (it may be empty if the target doesn't use bio_advance) 1317 * Region 2 is the remaining bio size that the target wants to process. 1318 * (it may be empty if region 1 is non-empty, although there is no reason 1319 * to make it empty) 1320 * The target requires that region 3 is to be sent in the next bio. 1321 * 1322 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1323 * the partially processed part (the sum of regions 1+2) must be the same for all 1324 * copies of the bio. 1325 */ 1326 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1327 { 1328 struct dm_target_io *tio = clone_to_tio(bio); 1329 struct dm_io *io = tio->io; 1330 unsigned int bio_sectors = bio_sectors(bio); 1331 1332 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1333 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1334 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1335 BUG_ON(bio_sectors > *tio->len_ptr); 1336 BUG_ON(n_sectors > bio_sectors); 1337 1338 *tio->len_ptr -= bio_sectors - n_sectors; 1339 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1340 1341 /* 1342 * __split_and_process_bio() may have already saved mapped part 1343 * for accounting but it is being reduced so update accordingly. 1344 */ 1345 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1346 io->sectors = n_sectors; 1347 io->sector_offset = bio_sectors(io->orig_bio); 1348 } 1349 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1350 1351 /* 1352 * @clone: clone bio that DM core passed to target's .map function 1353 * @tgt_clone: clone of @clone bio that target needs submitted 1354 * 1355 * Targets should use this interface to submit bios they take 1356 * ownership of when returning DM_MAPIO_SUBMITTED. 1357 * 1358 * Target should also enable ti->accounts_remapped_io 1359 */ 1360 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1361 { 1362 struct dm_target_io *tio = clone_to_tio(clone); 1363 struct dm_io *io = tio->io; 1364 1365 /* establish bio that will get submitted */ 1366 if (!tgt_clone) 1367 tgt_clone = clone; 1368 1369 /* 1370 * Account io->origin_bio to DM dev on behalf of target 1371 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1372 */ 1373 dm_start_io_acct(io, clone); 1374 1375 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1376 tio->old_sector); 1377 submit_bio_noacct(tgt_clone); 1378 } 1379 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1380 1381 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1382 { 1383 mutex_lock(&md->swap_bios_lock); 1384 while (latch < md->swap_bios) { 1385 cond_resched(); 1386 down(&md->swap_bios_semaphore); 1387 md->swap_bios--; 1388 } 1389 while (latch > md->swap_bios) { 1390 cond_resched(); 1391 up(&md->swap_bios_semaphore); 1392 md->swap_bios++; 1393 } 1394 mutex_unlock(&md->swap_bios_lock); 1395 } 1396 1397 static void __map_bio(struct bio *clone) 1398 { 1399 struct dm_target_io *tio = clone_to_tio(clone); 1400 struct dm_target *ti = tio->ti; 1401 struct dm_io *io = tio->io; 1402 struct mapped_device *md = io->md; 1403 int r; 1404 1405 clone->bi_end_io = clone_endio; 1406 1407 /* 1408 * Map the clone. 1409 */ 1410 tio->old_sector = clone->bi_iter.bi_sector; 1411 1412 if (static_branch_unlikely(&swap_bios_enabled) && 1413 unlikely(swap_bios_limit(ti, clone))) { 1414 int latch = get_swap_bios(); 1415 1416 if (unlikely(latch != md->swap_bios)) 1417 __set_swap_bios_limit(md, latch); 1418 down(&md->swap_bios_semaphore); 1419 } 1420 1421 if (static_branch_unlikely(&zoned_enabled)) { 1422 /* 1423 * Check if the IO needs a special mapping due to zone append 1424 * emulation on zoned target. In this case, dm_zone_map_bio() 1425 * calls the target map operation. 1426 */ 1427 if (unlikely(dm_emulate_zone_append(md))) 1428 r = dm_zone_map_bio(tio); 1429 else 1430 r = ti->type->map(ti, clone); 1431 } else 1432 r = ti->type->map(ti, clone); 1433 1434 switch (r) { 1435 case DM_MAPIO_SUBMITTED: 1436 /* target has assumed ownership of this io */ 1437 if (!ti->accounts_remapped_io) 1438 dm_start_io_acct(io, clone); 1439 break; 1440 case DM_MAPIO_REMAPPED: 1441 dm_submit_bio_remap(clone, NULL); 1442 break; 1443 case DM_MAPIO_KILL: 1444 case DM_MAPIO_REQUEUE: 1445 if (static_branch_unlikely(&swap_bios_enabled) && 1446 unlikely(swap_bios_limit(ti, clone))) 1447 up(&md->swap_bios_semaphore); 1448 free_tio(clone); 1449 if (r == DM_MAPIO_KILL) 1450 dm_io_dec_pending(io, BLK_STS_IOERR); 1451 else 1452 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1453 break; 1454 default: 1455 DMCRIT("unimplemented target map return value: %d", r); 1456 BUG(); 1457 } 1458 } 1459 1460 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1461 { 1462 struct dm_io *io = ci->io; 1463 1464 if (ci->sector_count > len) { 1465 /* 1466 * Split needed, save the mapped part for accounting. 1467 * NOTE: dm_accept_partial_bio() will update accordingly. 1468 */ 1469 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1470 io->sectors = len; 1471 io->sector_offset = bio_sectors(ci->bio); 1472 } 1473 } 1474 1475 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1476 struct dm_target *ti, unsigned int num_bios, 1477 unsigned *len) 1478 { 1479 struct bio *bio; 1480 int try; 1481 1482 for (try = 0; try < 2; try++) { 1483 int bio_nr; 1484 1485 if (try) 1486 mutex_lock(&ci->io->md->table_devices_lock); 1487 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1488 bio = alloc_tio(ci, ti, bio_nr, len, 1489 try ? GFP_NOIO : GFP_NOWAIT); 1490 if (!bio) 1491 break; 1492 1493 bio_list_add(blist, bio); 1494 } 1495 if (try) 1496 mutex_unlock(&ci->io->md->table_devices_lock); 1497 if (bio_nr == num_bios) 1498 return; 1499 1500 while ((bio = bio_list_pop(blist))) 1501 free_tio(bio); 1502 } 1503 } 1504 1505 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1506 unsigned int num_bios, unsigned int *len) 1507 { 1508 struct bio_list blist = BIO_EMPTY_LIST; 1509 struct bio *clone; 1510 unsigned int ret = 0; 1511 1512 switch (num_bios) { 1513 case 0: 1514 break; 1515 case 1: 1516 if (len) 1517 setup_split_accounting(ci, *len); 1518 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1519 __map_bio(clone); 1520 ret = 1; 1521 break; 1522 default: 1523 if (len) 1524 setup_split_accounting(ci, *len); 1525 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1526 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1527 while ((clone = bio_list_pop(&blist))) { 1528 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1529 __map_bio(clone); 1530 ret += 1; 1531 } 1532 break; 1533 } 1534 1535 return ret; 1536 } 1537 1538 static void __send_empty_flush(struct clone_info *ci) 1539 { 1540 struct dm_table *t = ci->map; 1541 struct bio flush_bio; 1542 1543 /* 1544 * Use an on-stack bio for this, it's safe since we don't 1545 * need to reference it after submit. It's just used as 1546 * the basis for the clone(s). 1547 */ 1548 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1549 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1550 1551 ci->bio = &flush_bio; 1552 ci->sector_count = 0; 1553 ci->io->tio.clone.bi_iter.bi_size = 0; 1554 1555 for (unsigned int i = 0; i < t->num_targets; i++) { 1556 unsigned int bios; 1557 struct dm_target *ti = dm_table_get_target(t, i); 1558 1559 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1560 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1561 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1562 } 1563 1564 /* 1565 * alloc_io() takes one extra reference for submission, so the 1566 * reference won't reach 0 without the following subtraction 1567 */ 1568 atomic_sub(1, &ci->io->io_count); 1569 1570 bio_uninit(ci->bio); 1571 } 1572 1573 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1574 unsigned int num_bios, 1575 unsigned int max_granularity) 1576 { 1577 unsigned int len, bios; 1578 1579 len = min_t(sector_t, ci->sector_count, 1580 __max_io_len(ti, ci->sector, max_granularity)); 1581 1582 atomic_add(num_bios, &ci->io->io_count); 1583 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1584 /* 1585 * alloc_io() takes one extra reference for submission, so the 1586 * reference won't reach 0 without the following (+1) subtraction 1587 */ 1588 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1589 1590 ci->sector += len; 1591 ci->sector_count -= len; 1592 } 1593 1594 static bool is_abnormal_io(struct bio *bio) 1595 { 1596 enum req_op op = bio_op(bio); 1597 1598 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1599 switch (op) { 1600 case REQ_OP_DISCARD: 1601 case REQ_OP_SECURE_ERASE: 1602 case REQ_OP_WRITE_ZEROES: 1603 return true; 1604 default: 1605 break; 1606 } 1607 } 1608 1609 return false; 1610 } 1611 1612 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1613 struct dm_target *ti) 1614 { 1615 unsigned int num_bios = 0; 1616 unsigned int max_granularity = 0; 1617 struct queue_limits *limits = dm_get_queue_limits(ti->table->md); 1618 1619 switch (bio_op(ci->bio)) { 1620 case REQ_OP_DISCARD: 1621 num_bios = ti->num_discard_bios; 1622 if (ti->max_discard_granularity) 1623 max_granularity = limits->max_discard_sectors; 1624 break; 1625 case REQ_OP_SECURE_ERASE: 1626 num_bios = ti->num_secure_erase_bios; 1627 if (ti->max_secure_erase_granularity) 1628 max_granularity = limits->max_secure_erase_sectors; 1629 break; 1630 case REQ_OP_WRITE_ZEROES: 1631 num_bios = ti->num_write_zeroes_bios; 1632 if (ti->max_write_zeroes_granularity) 1633 max_granularity = limits->max_write_zeroes_sectors; 1634 break; 1635 default: 1636 break; 1637 } 1638 1639 /* 1640 * Even though the device advertised support for this type of 1641 * request, that does not mean every target supports it, and 1642 * reconfiguration might also have changed that since the 1643 * check was performed. 1644 */ 1645 if (unlikely(!num_bios)) 1646 return BLK_STS_NOTSUPP; 1647 1648 __send_changing_extent_only(ci, ti, num_bios, max_granularity); 1649 return BLK_STS_OK; 1650 } 1651 1652 /* 1653 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1654 * associated with this bio, and this bio's bi_private needs to be 1655 * stored in dm_io->data before the reuse. 1656 * 1657 * bio->bi_private is owned by fs or upper layer, so block layer won't 1658 * touch it after splitting. Meantime it won't be changed by anyone after 1659 * bio is submitted. So this reuse is safe. 1660 */ 1661 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1662 { 1663 return (struct dm_io **)&bio->bi_private; 1664 } 1665 1666 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1667 { 1668 struct dm_io **head = dm_poll_list_head(bio); 1669 1670 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1671 bio->bi_opf |= REQ_DM_POLL_LIST; 1672 /* 1673 * Save .bi_private into dm_io, so that we can reuse 1674 * .bi_private as dm_io list head for storing dm_io list 1675 */ 1676 io->data = bio->bi_private; 1677 1678 /* tell block layer to poll for completion */ 1679 bio->bi_cookie = ~BLK_QC_T_NONE; 1680 1681 io->next = NULL; 1682 } else { 1683 /* 1684 * bio recursed due to split, reuse original poll list, 1685 * and save bio->bi_private too. 1686 */ 1687 io->data = (*head)->data; 1688 io->next = *head; 1689 } 1690 1691 *head = io; 1692 } 1693 1694 /* 1695 * Select the correct strategy for processing a non-flush bio. 1696 */ 1697 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1698 { 1699 struct bio *clone; 1700 struct dm_target *ti; 1701 unsigned int len; 1702 1703 ti = dm_table_find_target(ci->map, ci->sector); 1704 if (unlikely(!ti)) 1705 return BLK_STS_IOERR; 1706 1707 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) && 1708 unlikely(!dm_target_supports_nowait(ti->type))) 1709 return BLK_STS_NOTSUPP; 1710 1711 if (unlikely(ci->is_abnormal_io)) 1712 return __process_abnormal_io(ci, ti); 1713 1714 /* 1715 * Only support bio polling for normal IO, and the target io is 1716 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1717 */ 1718 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1719 1720 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1721 setup_split_accounting(ci, len); 1722 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1723 __map_bio(clone); 1724 1725 ci->sector += len; 1726 ci->sector_count -= len; 1727 1728 return BLK_STS_OK; 1729 } 1730 1731 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1732 struct dm_table *map, struct bio *bio, bool is_abnormal) 1733 { 1734 ci->map = map; 1735 ci->io = alloc_io(md, bio); 1736 ci->bio = bio; 1737 ci->is_abnormal_io = is_abnormal; 1738 ci->submit_as_polled = false; 1739 ci->sector = bio->bi_iter.bi_sector; 1740 ci->sector_count = bio_sectors(bio); 1741 1742 /* Shouldn't happen but sector_count was being set to 0 so... */ 1743 if (static_branch_unlikely(&zoned_enabled) && 1744 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1745 ci->sector_count = 0; 1746 } 1747 1748 /* 1749 * Entry point to split a bio into clones and submit them to the targets. 1750 */ 1751 static void dm_split_and_process_bio(struct mapped_device *md, 1752 struct dm_table *map, struct bio *bio) 1753 { 1754 struct clone_info ci; 1755 struct dm_io *io; 1756 blk_status_t error = BLK_STS_OK; 1757 bool is_abnormal; 1758 1759 is_abnormal = is_abnormal_io(bio); 1760 if (unlikely(is_abnormal)) { 1761 /* 1762 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1763 * otherwise associated queue_limits won't be imposed. 1764 */ 1765 bio = bio_split_to_limits(bio); 1766 if (!bio) 1767 return; 1768 } 1769 1770 init_clone_info(&ci, md, map, bio, is_abnormal); 1771 io = ci.io; 1772 1773 if (bio->bi_opf & REQ_PREFLUSH) { 1774 __send_empty_flush(&ci); 1775 /* dm_io_complete submits any data associated with flush */ 1776 goto out; 1777 } 1778 1779 error = __split_and_process_bio(&ci); 1780 if (error || !ci.sector_count) 1781 goto out; 1782 /* 1783 * Remainder must be passed to submit_bio_noacct() so it gets handled 1784 * *after* bios already submitted have been completely processed. 1785 */ 1786 bio_trim(bio, io->sectors, ci.sector_count); 1787 trace_block_split(bio, bio->bi_iter.bi_sector); 1788 bio_inc_remaining(bio); 1789 submit_bio_noacct(bio); 1790 out: 1791 /* 1792 * Drop the extra reference count for non-POLLED bio, and hold one 1793 * reference for POLLED bio, which will be released in dm_poll_bio 1794 * 1795 * Add every dm_io instance into the dm_io list head which is stored 1796 * in bio->bi_private, so that dm_poll_bio can poll them all. 1797 */ 1798 if (error || !ci.submit_as_polled) { 1799 /* 1800 * In case of submission failure, the extra reference for 1801 * submitting io isn't consumed yet 1802 */ 1803 if (error) 1804 atomic_dec(&io->io_count); 1805 dm_io_dec_pending(io, error); 1806 } else 1807 dm_queue_poll_io(bio, io); 1808 } 1809 1810 static void dm_submit_bio(struct bio *bio) 1811 { 1812 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1813 int srcu_idx; 1814 struct dm_table *map; 1815 blk_opf_t bio_opf = bio->bi_opf; 1816 1817 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf); 1818 1819 /* If suspended, or map not yet available, queue this IO for later */ 1820 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1821 unlikely(!map)) { 1822 if (bio->bi_opf & REQ_NOWAIT) 1823 bio_wouldblock_error(bio); 1824 else if (bio->bi_opf & REQ_RAHEAD) 1825 bio_io_error(bio); 1826 else 1827 queue_io(md, bio); 1828 goto out; 1829 } 1830 1831 dm_split_and_process_bio(md, map, bio); 1832 out: 1833 dm_put_live_table_bio(md, srcu_idx, bio_opf); 1834 } 1835 1836 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1837 unsigned int flags) 1838 { 1839 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1840 1841 /* don't poll if the mapped io is done */ 1842 if (atomic_read(&io->io_count) > 1) 1843 bio_poll(&io->tio.clone, iob, flags); 1844 1845 /* bio_poll holds the last reference */ 1846 return atomic_read(&io->io_count) == 1; 1847 } 1848 1849 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1850 unsigned int flags) 1851 { 1852 struct dm_io **head = dm_poll_list_head(bio); 1853 struct dm_io *list = *head; 1854 struct dm_io *tmp = NULL; 1855 struct dm_io *curr, *next; 1856 1857 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1858 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1859 return 0; 1860 1861 WARN_ON_ONCE(!list); 1862 1863 /* 1864 * Restore .bi_private before possibly completing dm_io. 1865 * 1866 * bio_poll() is only possible once @bio has been completely 1867 * submitted via submit_bio_noacct()'s depth-first submission. 1868 * So there is no dm_queue_poll_io() race associated with 1869 * clearing REQ_DM_POLL_LIST here. 1870 */ 1871 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1872 bio->bi_private = list->data; 1873 1874 for (curr = list, next = curr->next; curr; curr = next, next = 1875 curr ? curr->next : NULL) { 1876 if (dm_poll_dm_io(curr, iob, flags)) { 1877 /* 1878 * clone_endio() has already occurred, so no 1879 * error handling is needed here. 1880 */ 1881 __dm_io_dec_pending(curr); 1882 } else { 1883 curr->next = tmp; 1884 tmp = curr; 1885 } 1886 } 1887 1888 /* Not done? */ 1889 if (tmp) { 1890 bio->bi_opf |= REQ_DM_POLL_LIST; 1891 /* Reset bio->bi_private to dm_io list head */ 1892 *head = tmp; 1893 return 0; 1894 } 1895 return 1; 1896 } 1897 1898 /* 1899 *--------------------------------------------------------------- 1900 * An IDR is used to keep track of allocated minor numbers. 1901 *--------------------------------------------------------------- 1902 */ 1903 static void free_minor(int minor) 1904 { 1905 spin_lock(&_minor_lock); 1906 idr_remove(&_minor_idr, minor); 1907 spin_unlock(&_minor_lock); 1908 } 1909 1910 /* 1911 * See if the device with a specific minor # is free. 1912 */ 1913 static int specific_minor(int minor) 1914 { 1915 int r; 1916 1917 if (minor >= (1 << MINORBITS)) 1918 return -EINVAL; 1919 1920 idr_preload(GFP_KERNEL); 1921 spin_lock(&_minor_lock); 1922 1923 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1924 1925 spin_unlock(&_minor_lock); 1926 idr_preload_end(); 1927 if (r < 0) 1928 return r == -ENOSPC ? -EBUSY : r; 1929 return 0; 1930 } 1931 1932 static int next_free_minor(int *minor) 1933 { 1934 int r; 1935 1936 idr_preload(GFP_KERNEL); 1937 spin_lock(&_minor_lock); 1938 1939 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1940 1941 spin_unlock(&_minor_lock); 1942 idr_preload_end(); 1943 if (r < 0) 1944 return r; 1945 *minor = r; 1946 return 0; 1947 } 1948 1949 static const struct block_device_operations dm_blk_dops; 1950 static const struct block_device_operations dm_rq_blk_dops; 1951 static const struct dax_operations dm_dax_ops; 1952 1953 static void dm_wq_work(struct work_struct *work); 1954 1955 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1956 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1957 { 1958 dm_destroy_crypto_profile(q->crypto_profile); 1959 } 1960 1961 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1962 1963 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1964 { 1965 } 1966 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1967 1968 static void cleanup_mapped_device(struct mapped_device *md) 1969 { 1970 if (md->wq) 1971 destroy_workqueue(md->wq); 1972 dm_free_md_mempools(md->mempools); 1973 1974 if (md->dax_dev) { 1975 dax_remove_host(md->disk); 1976 kill_dax(md->dax_dev); 1977 put_dax(md->dax_dev); 1978 md->dax_dev = NULL; 1979 } 1980 1981 dm_cleanup_zoned_dev(md); 1982 if (md->disk) { 1983 spin_lock(&_minor_lock); 1984 md->disk->private_data = NULL; 1985 spin_unlock(&_minor_lock); 1986 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1987 struct table_device *td; 1988 1989 dm_sysfs_exit(md); 1990 list_for_each_entry(td, &md->table_devices, list) { 1991 bd_unlink_disk_holder(td->dm_dev.bdev, 1992 md->disk); 1993 } 1994 1995 /* 1996 * Hold lock to make sure del_gendisk() won't concurrent 1997 * with open/close_table_device(). 1998 */ 1999 mutex_lock(&md->table_devices_lock); 2000 del_gendisk(md->disk); 2001 mutex_unlock(&md->table_devices_lock); 2002 } 2003 dm_queue_destroy_crypto_profile(md->queue); 2004 put_disk(md->disk); 2005 } 2006 2007 if (md->pending_io) { 2008 free_percpu(md->pending_io); 2009 md->pending_io = NULL; 2010 } 2011 2012 cleanup_srcu_struct(&md->io_barrier); 2013 2014 mutex_destroy(&md->suspend_lock); 2015 mutex_destroy(&md->type_lock); 2016 mutex_destroy(&md->table_devices_lock); 2017 mutex_destroy(&md->swap_bios_lock); 2018 2019 dm_mq_cleanup_mapped_device(md); 2020 } 2021 2022 /* 2023 * Allocate and initialise a blank device with a given minor. 2024 */ 2025 static struct mapped_device *alloc_dev(int minor) 2026 { 2027 int r, numa_node_id = dm_get_numa_node(); 2028 struct mapped_device *md; 2029 void *old_md; 2030 2031 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2032 if (!md) { 2033 DMERR("unable to allocate device, out of memory."); 2034 return NULL; 2035 } 2036 2037 if (!try_module_get(THIS_MODULE)) 2038 goto bad_module_get; 2039 2040 /* get a minor number for the dev */ 2041 if (minor == DM_ANY_MINOR) 2042 r = next_free_minor(&minor); 2043 else 2044 r = specific_minor(minor); 2045 if (r < 0) 2046 goto bad_minor; 2047 2048 r = init_srcu_struct(&md->io_barrier); 2049 if (r < 0) 2050 goto bad_io_barrier; 2051 2052 md->numa_node_id = numa_node_id; 2053 md->init_tio_pdu = false; 2054 md->type = DM_TYPE_NONE; 2055 mutex_init(&md->suspend_lock); 2056 mutex_init(&md->type_lock); 2057 mutex_init(&md->table_devices_lock); 2058 spin_lock_init(&md->deferred_lock); 2059 atomic_set(&md->holders, 1); 2060 atomic_set(&md->open_count, 0); 2061 atomic_set(&md->event_nr, 0); 2062 atomic_set(&md->uevent_seq, 0); 2063 INIT_LIST_HEAD(&md->uevent_list); 2064 INIT_LIST_HEAD(&md->table_devices); 2065 spin_lock_init(&md->uevent_lock); 2066 2067 /* 2068 * default to bio-based until DM table is loaded and md->type 2069 * established. If request-based table is loaded: blk-mq will 2070 * override accordingly. 2071 */ 2072 md->disk = blk_alloc_disk(md->numa_node_id); 2073 if (!md->disk) 2074 goto bad; 2075 md->queue = md->disk->queue; 2076 2077 init_waitqueue_head(&md->wait); 2078 INIT_WORK(&md->work, dm_wq_work); 2079 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2080 init_waitqueue_head(&md->eventq); 2081 init_completion(&md->kobj_holder.completion); 2082 2083 md->requeue_list = NULL; 2084 md->swap_bios = get_swap_bios(); 2085 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2086 mutex_init(&md->swap_bios_lock); 2087 2088 md->disk->major = _major; 2089 md->disk->first_minor = minor; 2090 md->disk->minors = 1; 2091 md->disk->flags |= GENHD_FL_NO_PART; 2092 md->disk->fops = &dm_blk_dops; 2093 md->disk->private_data = md; 2094 sprintf(md->disk->disk_name, "dm-%d", minor); 2095 2096 if (IS_ENABLED(CONFIG_FS_DAX)) { 2097 md->dax_dev = alloc_dax(md, &dm_dax_ops); 2098 if (IS_ERR(md->dax_dev)) { 2099 md->dax_dev = NULL; 2100 goto bad; 2101 } 2102 set_dax_nocache(md->dax_dev); 2103 set_dax_nomc(md->dax_dev); 2104 if (dax_add_host(md->dax_dev, md->disk)) 2105 goto bad; 2106 } 2107 2108 format_dev_t(md->name, MKDEV(_major, minor)); 2109 2110 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2111 if (!md->wq) 2112 goto bad; 2113 2114 md->pending_io = alloc_percpu(unsigned long); 2115 if (!md->pending_io) 2116 goto bad; 2117 2118 r = dm_stats_init(&md->stats); 2119 if (r < 0) 2120 goto bad; 2121 2122 /* Populate the mapping, nobody knows we exist yet */ 2123 spin_lock(&_minor_lock); 2124 old_md = idr_replace(&_minor_idr, md, minor); 2125 spin_unlock(&_minor_lock); 2126 2127 BUG_ON(old_md != MINOR_ALLOCED); 2128 2129 return md; 2130 2131 bad: 2132 cleanup_mapped_device(md); 2133 bad_io_barrier: 2134 free_minor(minor); 2135 bad_minor: 2136 module_put(THIS_MODULE); 2137 bad_module_get: 2138 kvfree(md); 2139 return NULL; 2140 } 2141 2142 static void unlock_fs(struct mapped_device *md); 2143 2144 static void free_dev(struct mapped_device *md) 2145 { 2146 int minor = MINOR(disk_devt(md->disk)); 2147 2148 unlock_fs(md); 2149 2150 cleanup_mapped_device(md); 2151 2152 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2153 dm_stats_cleanup(&md->stats); 2154 free_minor(minor); 2155 2156 module_put(THIS_MODULE); 2157 kvfree(md); 2158 } 2159 2160 /* 2161 * Bind a table to the device. 2162 */ 2163 static void event_callback(void *context) 2164 { 2165 unsigned long flags; 2166 LIST_HEAD(uevents); 2167 struct mapped_device *md = context; 2168 2169 spin_lock_irqsave(&md->uevent_lock, flags); 2170 list_splice_init(&md->uevent_list, &uevents); 2171 spin_unlock_irqrestore(&md->uevent_lock, flags); 2172 2173 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2174 2175 atomic_inc(&md->event_nr); 2176 wake_up(&md->eventq); 2177 dm_issue_global_event(); 2178 } 2179 2180 /* 2181 * Returns old map, which caller must destroy. 2182 */ 2183 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2184 struct queue_limits *limits) 2185 { 2186 struct dm_table *old_map; 2187 sector_t size; 2188 int ret; 2189 2190 lockdep_assert_held(&md->suspend_lock); 2191 2192 size = dm_table_get_size(t); 2193 2194 /* 2195 * Wipe any geometry if the size of the table changed. 2196 */ 2197 if (size != dm_get_size(md)) 2198 memset(&md->geometry, 0, sizeof(md->geometry)); 2199 2200 set_capacity(md->disk, size); 2201 2202 dm_table_event_callback(t, event_callback, md); 2203 2204 if (dm_table_request_based(t)) { 2205 /* 2206 * Leverage the fact that request-based DM targets are 2207 * immutable singletons - used to optimize dm_mq_queue_rq. 2208 */ 2209 md->immutable_target = dm_table_get_immutable_target(t); 2210 2211 /* 2212 * There is no need to reload with request-based dm because the 2213 * size of front_pad doesn't change. 2214 * 2215 * Note for future: If you are to reload bioset, prep-ed 2216 * requests in the queue may refer to bio from the old bioset, 2217 * so you must walk through the queue to unprep. 2218 */ 2219 if (!md->mempools) { 2220 md->mempools = t->mempools; 2221 t->mempools = NULL; 2222 } 2223 } else { 2224 /* 2225 * The md may already have mempools that need changing. 2226 * If so, reload bioset because front_pad may have changed 2227 * because a different table was loaded. 2228 */ 2229 dm_free_md_mempools(md->mempools); 2230 md->mempools = t->mempools; 2231 t->mempools = NULL; 2232 } 2233 2234 ret = dm_table_set_restrictions(t, md->queue, limits); 2235 if (ret) { 2236 old_map = ERR_PTR(ret); 2237 goto out; 2238 } 2239 2240 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2241 rcu_assign_pointer(md->map, (void *)t); 2242 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2243 2244 if (old_map) 2245 dm_sync_table(md); 2246 out: 2247 return old_map; 2248 } 2249 2250 /* 2251 * Returns unbound table for the caller to free. 2252 */ 2253 static struct dm_table *__unbind(struct mapped_device *md) 2254 { 2255 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2256 2257 if (!map) 2258 return NULL; 2259 2260 dm_table_event_callback(map, NULL, NULL); 2261 RCU_INIT_POINTER(md->map, NULL); 2262 dm_sync_table(md); 2263 2264 return map; 2265 } 2266 2267 /* 2268 * Constructor for a new device. 2269 */ 2270 int dm_create(int minor, struct mapped_device **result) 2271 { 2272 struct mapped_device *md; 2273 2274 md = alloc_dev(minor); 2275 if (!md) 2276 return -ENXIO; 2277 2278 dm_ima_reset_data(md); 2279 2280 *result = md; 2281 return 0; 2282 } 2283 2284 /* 2285 * Functions to manage md->type. 2286 * All are required to hold md->type_lock. 2287 */ 2288 void dm_lock_md_type(struct mapped_device *md) 2289 { 2290 mutex_lock(&md->type_lock); 2291 } 2292 2293 void dm_unlock_md_type(struct mapped_device *md) 2294 { 2295 mutex_unlock(&md->type_lock); 2296 } 2297 2298 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2299 { 2300 BUG_ON(!mutex_is_locked(&md->type_lock)); 2301 md->type = type; 2302 } 2303 2304 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2305 { 2306 return md->type; 2307 } 2308 2309 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2310 { 2311 return md->immutable_target_type; 2312 } 2313 2314 /* 2315 * The queue_limits are only valid as long as you have a reference 2316 * count on 'md'. 2317 */ 2318 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2319 { 2320 BUG_ON(!atomic_read(&md->holders)); 2321 return &md->queue->limits; 2322 } 2323 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2324 2325 /* 2326 * Setup the DM device's queue based on md's type 2327 */ 2328 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2329 { 2330 enum dm_queue_mode type = dm_table_get_type(t); 2331 struct queue_limits limits; 2332 struct table_device *td; 2333 int r; 2334 2335 switch (type) { 2336 case DM_TYPE_REQUEST_BASED: 2337 md->disk->fops = &dm_rq_blk_dops; 2338 r = dm_mq_init_request_queue(md, t); 2339 if (r) { 2340 DMERR("Cannot initialize queue for request-based dm mapped device"); 2341 return r; 2342 } 2343 break; 2344 case DM_TYPE_BIO_BASED: 2345 case DM_TYPE_DAX_BIO_BASED: 2346 break; 2347 case DM_TYPE_NONE: 2348 WARN_ON_ONCE(true); 2349 break; 2350 } 2351 2352 r = dm_calculate_queue_limits(t, &limits); 2353 if (r) { 2354 DMERR("Cannot calculate initial queue limits"); 2355 return r; 2356 } 2357 r = dm_table_set_restrictions(t, md->queue, &limits); 2358 if (r) 2359 return r; 2360 2361 /* 2362 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2363 * with open_table_device() and close_table_device(). 2364 */ 2365 mutex_lock(&md->table_devices_lock); 2366 r = add_disk(md->disk); 2367 mutex_unlock(&md->table_devices_lock); 2368 if (r) 2369 return r; 2370 2371 /* 2372 * Register the holder relationship for devices added before the disk 2373 * was live. 2374 */ 2375 list_for_each_entry(td, &md->table_devices, list) { 2376 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2377 if (r) 2378 goto out_undo_holders; 2379 } 2380 2381 r = dm_sysfs_init(md); 2382 if (r) 2383 goto out_undo_holders; 2384 2385 md->type = type; 2386 return 0; 2387 2388 out_undo_holders: 2389 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2390 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2391 mutex_lock(&md->table_devices_lock); 2392 del_gendisk(md->disk); 2393 mutex_unlock(&md->table_devices_lock); 2394 return r; 2395 } 2396 2397 struct mapped_device *dm_get_md(dev_t dev) 2398 { 2399 struct mapped_device *md; 2400 unsigned int minor = MINOR(dev); 2401 2402 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2403 return NULL; 2404 2405 spin_lock(&_minor_lock); 2406 2407 md = idr_find(&_minor_idr, minor); 2408 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2409 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2410 md = NULL; 2411 goto out; 2412 } 2413 dm_get(md); 2414 out: 2415 spin_unlock(&_minor_lock); 2416 2417 return md; 2418 } 2419 EXPORT_SYMBOL_GPL(dm_get_md); 2420 2421 void *dm_get_mdptr(struct mapped_device *md) 2422 { 2423 return md->interface_ptr; 2424 } 2425 2426 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2427 { 2428 md->interface_ptr = ptr; 2429 } 2430 2431 void dm_get(struct mapped_device *md) 2432 { 2433 atomic_inc(&md->holders); 2434 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2435 } 2436 2437 int dm_hold(struct mapped_device *md) 2438 { 2439 spin_lock(&_minor_lock); 2440 if (test_bit(DMF_FREEING, &md->flags)) { 2441 spin_unlock(&_minor_lock); 2442 return -EBUSY; 2443 } 2444 dm_get(md); 2445 spin_unlock(&_minor_lock); 2446 return 0; 2447 } 2448 EXPORT_SYMBOL_GPL(dm_hold); 2449 2450 const char *dm_device_name(struct mapped_device *md) 2451 { 2452 return md->name; 2453 } 2454 EXPORT_SYMBOL_GPL(dm_device_name); 2455 2456 static void __dm_destroy(struct mapped_device *md, bool wait) 2457 { 2458 struct dm_table *map; 2459 int srcu_idx; 2460 2461 might_sleep(); 2462 2463 spin_lock(&_minor_lock); 2464 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2465 set_bit(DMF_FREEING, &md->flags); 2466 spin_unlock(&_minor_lock); 2467 2468 blk_mark_disk_dead(md->disk); 2469 2470 /* 2471 * Take suspend_lock so that presuspend and postsuspend methods 2472 * do not race with internal suspend. 2473 */ 2474 mutex_lock(&md->suspend_lock); 2475 map = dm_get_live_table(md, &srcu_idx); 2476 if (!dm_suspended_md(md)) { 2477 dm_table_presuspend_targets(map); 2478 set_bit(DMF_SUSPENDED, &md->flags); 2479 set_bit(DMF_POST_SUSPENDING, &md->flags); 2480 dm_table_postsuspend_targets(map); 2481 } 2482 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2483 dm_put_live_table(md, srcu_idx); 2484 mutex_unlock(&md->suspend_lock); 2485 2486 /* 2487 * Rare, but there may be I/O requests still going to complete, 2488 * for example. Wait for all references to disappear. 2489 * No one should increment the reference count of the mapped_device, 2490 * after the mapped_device state becomes DMF_FREEING. 2491 */ 2492 if (wait) 2493 while (atomic_read(&md->holders)) 2494 fsleep(1000); 2495 else if (atomic_read(&md->holders)) 2496 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2497 dm_device_name(md), atomic_read(&md->holders)); 2498 2499 dm_table_destroy(__unbind(md)); 2500 free_dev(md); 2501 } 2502 2503 void dm_destroy(struct mapped_device *md) 2504 { 2505 __dm_destroy(md, true); 2506 } 2507 2508 void dm_destroy_immediate(struct mapped_device *md) 2509 { 2510 __dm_destroy(md, false); 2511 } 2512 2513 void dm_put(struct mapped_device *md) 2514 { 2515 atomic_dec(&md->holders); 2516 } 2517 EXPORT_SYMBOL_GPL(dm_put); 2518 2519 static bool dm_in_flight_bios(struct mapped_device *md) 2520 { 2521 int cpu; 2522 unsigned long sum = 0; 2523 2524 for_each_possible_cpu(cpu) 2525 sum += *per_cpu_ptr(md->pending_io, cpu); 2526 2527 return sum != 0; 2528 } 2529 2530 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2531 { 2532 int r = 0; 2533 DEFINE_WAIT(wait); 2534 2535 while (true) { 2536 prepare_to_wait(&md->wait, &wait, task_state); 2537 2538 if (!dm_in_flight_bios(md)) 2539 break; 2540 2541 if (signal_pending_state(task_state, current)) { 2542 r = -EINTR; 2543 break; 2544 } 2545 2546 io_schedule(); 2547 } 2548 finish_wait(&md->wait, &wait); 2549 2550 smp_rmb(); 2551 2552 return r; 2553 } 2554 2555 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2556 { 2557 int r = 0; 2558 2559 if (!queue_is_mq(md->queue)) 2560 return dm_wait_for_bios_completion(md, task_state); 2561 2562 while (true) { 2563 if (!blk_mq_queue_inflight(md->queue)) 2564 break; 2565 2566 if (signal_pending_state(task_state, current)) { 2567 r = -EINTR; 2568 break; 2569 } 2570 2571 fsleep(5000); 2572 } 2573 2574 return r; 2575 } 2576 2577 /* 2578 * Process the deferred bios 2579 */ 2580 static void dm_wq_work(struct work_struct *work) 2581 { 2582 struct mapped_device *md = container_of(work, struct mapped_device, work); 2583 struct bio *bio; 2584 2585 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2586 spin_lock_irq(&md->deferred_lock); 2587 bio = bio_list_pop(&md->deferred); 2588 spin_unlock_irq(&md->deferred_lock); 2589 2590 if (!bio) 2591 break; 2592 2593 submit_bio_noacct(bio); 2594 cond_resched(); 2595 } 2596 } 2597 2598 static void dm_queue_flush(struct mapped_device *md) 2599 { 2600 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2601 smp_mb__after_atomic(); 2602 queue_work(md->wq, &md->work); 2603 } 2604 2605 /* 2606 * Swap in a new table, returning the old one for the caller to destroy. 2607 */ 2608 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2609 { 2610 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2611 struct queue_limits limits; 2612 int r; 2613 2614 mutex_lock(&md->suspend_lock); 2615 2616 /* device must be suspended */ 2617 if (!dm_suspended_md(md)) 2618 goto out; 2619 2620 /* 2621 * If the new table has no data devices, retain the existing limits. 2622 * This helps multipath with queue_if_no_path if all paths disappear, 2623 * then new I/O is queued based on these limits, and then some paths 2624 * reappear. 2625 */ 2626 if (dm_table_has_no_data_devices(table)) { 2627 live_map = dm_get_live_table_fast(md); 2628 if (live_map) 2629 limits = md->queue->limits; 2630 dm_put_live_table_fast(md); 2631 } 2632 2633 if (!live_map) { 2634 r = dm_calculate_queue_limits(table, &limits); 2635 if (r) { 2636 map = ERR_PTR(r); 2637 goto out; 2638 } 2639 } 2640 2641 map = __bind(md, table, &limits); 2642 dm_issue_global_event(); 2643 2644 out: 2645 mutex_unlock(&md->suspend_lock); 2646 return map; 2647 } 2648 2649 /* 2650 * Functions to lock and unlock any filesystem running on the 2651 * device. 2652 */ 2653 static int lock_fs(struct mapped_device *md) 2654 { 2655 int r; 2656 2657 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2658 2659 r = freeze_bdev(md->disk->part0); 2660 if (!r) 2661 set_bit(DMF_FROZEN, &md->flags); 2662 return r; 2663 } 2664 2665 static void unlock_fs(struct mapped_device *md) 2666 { 2667 if (!test_bit(DMF_FROZEN, &md->flags)) 2668 return; 2669 thaw_bdev(md->disk->part0); 2670 clear_bit(DMF_FROZEN, &md->flags); 2671 } 2672 2673 /* 2674 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2675 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2676 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2677 * 2678 * If __dm_suspend returns 0, the device is completely quiescent 2679 * now. There is no request-processing activity. All new requests 2680 * are being added to md->deferred list. 2681 */ 2682 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2683 unsigned int suspend_flags, unsigned int task_state, 2684 int dmf_suspended_flag) 2685 { 2686 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2687 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2688 int r; 2689 2690 lockdep_assert_held(&md->suspend_lock); 2691 2692 /* 2693 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2694 * This flag is cleared before dm_suspend returns. 2695 */ 2696 if (noflush) 2697 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2698 else 2699 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2700 2701 /* 2702 * This gets reverted if there's an error later and the targets 2703 * provide the .presuspend_undo hook. 2704 */ 2705 dm_table_presuspend_targets(map); 2706 2707 /* 2708 * Flush I/O to the device. 2709 * Any I/O submitted after lock_fs() may not be flushed. 2710 * noflush takes precedence over do_lockfs. 2711 * (lock_fs() flushes I/Os and waits for them to complete.) 2712 */ 2713 if (!noflush && do_lockfs) { 2714 r = lock_fs(md); 2715 if (r) { 2716 dm_table_presuspend_undo_targets(map); 2717 return r; 2718 } 2719 } 2720 2721 /* 2722 * Here we must make sure that no processes are submitting requests 2723 * to target drivers i.e. no one may be executing 2724 * dm_split_and_process_bio from dm_submit_bio. 2725 * 2726 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2727 * we take the write lock. To prevent any process from reentering 2728 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2729 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2730 * flush_workqueue(md->wq). 2731 */ 2732 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2733 if (map) 2734 synchronize_srcu(&md->io_barrier); 2735 2736 /* 2737 * Stop md->queue before flushing md->wq in case request-based 2738 * dm defers requests to md->wq from md->queue. 2739 */ 2740 if (dm_request_based(md)) 2741 dm_stop_queue(md->queue); 2742 2743 flush_workqueue(md->wq); 2744 2745 /* 2746 * At this point no more requests are entering target request routines. 2747 * We call dm_wait_for_completion to wait for all existing requests 2748 * to finish. 2749 */ 2750 r = dm_wait_for_completion(md, task_state); 2751 if (!r) 2752 set_bit(dmf_suspended_flag, &md->flags); 2753 2754 if (noflush) 2755 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2756 if (map) 2757 synchronize_srcu(&md->io_barrier); 2758 2759 /* were we interrupted ? */ 2760 if (r < 0) { 2761 dm_queue_flush(md); 2762 2763 if (dm_request_based(md)) 2764 dm_start_queue(md->queue); 2765 2766 unlock_fs(md); 2767 dm_table_presuspend_undo_targets(map); 2768 /* pushback list is already flushed, so skip flush */ 2769 } 2770 2771 return r; 2772 } 2773 2774 /* 2775 * We need to be able to change a mapping table under a mounted 2776 * filesystem. For example we might want to move some data in 2777 * the background. Before the table can be swapped with 2778 * dm_bind_table, dm_suspend must be called to flush any in 2779 * flight bios and ensure that any further io gets deferred. 2780 */ 2781 /* 2782 * Suspend mechanism in request-based dm. 2783 * 2784 * 1. Flush all I/Os by lock_fs() if needed. 2785 * 2. Stop dispatching any I/O by stopping the request_queue. 2786 * 3. Wait for all in-flight I/Os to be completed or requeued. 2787 * 2788 * To abort suspend, start the request_queue. 2789 */ 2790 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 2791 { 2792 struct dm_table *map = NULL; 2793 int r = 0; 2794 2795 retry: 2796 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2797 2798 if (dm_suspended_md(md)) { 2799 r = -EINVAL; 2800 goto out_unlock; 2801 } 2802 2803 if (dm_suspended_internally_md(md)) { 2804 /* already internally suspended, wait for internal resume */ 2805 mutex_unlock(&md->suspend_lock); 2806 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2807 if (r) 2808 return r; 2809 goto retry; 2810 } 2811 2812 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2813 2814 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2815 if (r) 2816 goto out_unlock; 2817 2818 set_bit(DMF_POST_SUSPENDING, &md->flags); 2819 dm_table_postsuspend_targets(map); 2820 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2821 2822 out_unlock: 2823 mutex_unlock(&md->suspend_lock); 2824 return r; 2825 } 2826 2827 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2828 { 2829 if (map) { 2830 int r = dm_table_resume_targets(map); 2831 2832 if (r) 2833 return r; 2834 } 2835 2836 dm_queue_flush(md); 2837 2838 /* 2839 * Flushing deferred I/Os must be done after targets are resumed 2840 * so that mapping of targets can work correctly. 2841 * Request-based dm is queueing the deferred I/Os in its request_queue. 2842 */ 2843 if (dm_request_based(md)) 2844 dm_start_queue(md->queue); 2845 2846 unlock_fs(md); 2847 2848 return 0; 2849 } 2850 2851 int dm_resume(struct mapped_device *md) 2852 { 2853 int r; 2854 struct dm_table *map = NULL; 2855 2856 retry: 2857 r = -EINVAL; 2858 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2859 2860 if (!dm_suspended_md(md)) 2861 goto out; 2862 2863 if (dm_suspended_internally_md(md)) { 2864 /* already internally suspended, wait for internal resume */ 2865 mutex_unlock(&md->suspend_lock); 2866 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2867 if (r) 2868 return r; 2869 goto retry; 2870 } 2871 2872 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2873 if (!map || !dm_table_get_size(map)) 2874 goto out; 2875 2876 r = __dm_resume(md, map); 2877 if (r) 2878 goto out; 2879 2880 clear_bit(DMF_SUSPENDED, &md->flags); 2881 out: 2882 mutex_unlock(&md->suspend_lock); 2883 2884 return r; 2885 } 2886 2887 /* 2888 * Internal suspend/resume works like userspace-driven suspend. It waits 2889 * until all bios finish and prevents issuing new bios to the target drivers. 2890 * It may be used only from the kernel. 2891 */ 2892 2893 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 2894 { 2895 struct dm_table *map = NULL; 2896 2897 lockdep_assert_held(&md->suspend_lock); 2898 2899 if (md->internal_suspend_count++) 2900 return; /* nested internal suspend */ 2901 2902 if (dm_suspended_md(md)) { 2903 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2904 return; /* nest suspend */ 2905 } 2906 2907 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2908 2909 /* 2910 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2911 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2912 * would require changing .presuspend to return an error -- avoid this 2913 * until there is a need for more elaborate variants of internal suspend. 2914 */ 2915 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2916 DMF_SUSPENDED_INTERNALLY); 2917 2918 set_bit(DMF_POST_SUSPENDING, &md->flags); 2919 dm_table_postsuspend_targets(map); 2920 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2921 } 2922 2923 static void __dm_internal_resume(struct mapped_device *md) 2924 { 2925 BUG_ON(!md->internal_suspend_count); 2926 2927 if (--md->internal_suspend_count) 2928 return; /* resume from nested internal suspend */ 2929 2930 if (dm_suspended_md(md)) 2931 goto done; /* resume from nested suspend */ 2932 2933 /* 2934 * NOTE: existing callers don't need to call dm_table_resume_targets 2935 * (which may fail -- so best to avoid it for now by passing NULL map) 2936 */ 2937 (void) __dm_resume(md, NULL); 2938 2939 done: 2940 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2941 smp_mb__after_atomic(); 2942 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2943 } 2944 2945 void dm_internal_suspend_noflush(struct mapped_device *md) 2946 { 2947 mutex_lock(&md->suspend_lock); 2948 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2949 mutex_unlock(&md->suspend_lock); 2950 } 2951 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2952 2953 void dm_internal_resume(struct mapped_device *md) 2954 { 2955 mutex_lock(&md->suspend_lock); 2956 __dm_internal_resume(md); 2957 mutex_unlock(&md->suspend_lock); 2958 } 2959 EXPORT_SYMBOL_GPL(dm_internal_resume); 2960 2961 /* 2962 * Fast variants of internal suspend/resume hold md->suspend_lock, 2963 * which prevents interaction with userspace-driven suspend. 2964 */ 2965 2966 void dm_internal_suspend_fast(struct mapped_device *md) 2967 { 2968 mutex_lock(&md->suspend_lock); 2969 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2970 return; 2971 2972 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2973 synchronize_srcu(&md->io_barrier); 2974 flush_workqueue(md->wq); 2975 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2976 } 2977 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2978 2979 void dm_internal_resume_fast(struct mapped_device *md) 2980 { 2981 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2982 goto done; 2983 2984 dm_queue_flush(md); 2985 2986 done: 2987 mutex_unlock(&md->suspend_lock); 2988 } 2989 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2990 2991 /* 2992 *--------------------------------------------------------------- 2993 * Event notification. 2994 *--------------------------------------------------------------- 2995 */ 2996 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2997 unsigned int cookie, bool need_resize_uevent) 2998 { 2999 int r; 3000 unsigned int noio_flag; 3001 char udev_cookie[DM_COOKIE_LENGTH]; 3002 char *envp[3] = { NULL, NULL, NULL }; 3003 char **envpp = envp; 3004 if (cookie) { 3005 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3006 DM_COOKIE_ENV_VAR_NAME, cookie); 3007 *envpp++ = udev_cookie; 3008 } 3009 if (need_resize_uevent) { 3010 *envpp++ = "RESIZE=1"; 3011 } 3012 3013 noio_flag = memalloc_noio_save(); 3014 3015 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 3016 3017 memalloc_noio_restore(noio_flag); 3018 3019 return r; 3020 } 3021 3022 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3023 { 3024 return atomic_add_return(1, &md->uevent_seq); 3025 } 3026 3027 uint32_t dm_get_event_nr(struct mapped_device *md) 3028 { 3029 return atomic_read(&md->event_nr); 3030 } 3031 3032 int dm_wait_event(struct mapped_device *md, int event_nr) 3033 { 3034 return wait_event_interruptible(md->eventq, 3035 (event_nr != atomic_read(&md->event_nr))); 3036 } 3037 3038 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3039 { 3040 unsigned long flags; 3041 3042 spin_lock_irqsave(&md->uevent_lock, flags); 3043 list_add(elist, &md->uevent_list); 3044 spin_unlock_irqrestore(&md->uevent_lock, flags); 3045 } 3046 3047 /* 3048 * The gendisk is only valid as long as you have a reference 3049 * count on 'md'. 3050 */ 3051 struct gendisk *dm_disk(struct mapped_device *md) 3052 { 3053 return md->disk; 3054 } 3055 EXPORT_SYMBOL_GPL(dm_disk); 3056 3057 struct kobject *dm_kobject(struct mapped_device *md) 3058 { 3059 return &md->kobj_holder.kobj; 3060 } 3061 3062 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3063 { 3064 struct mapped_device *md; 3065 3066 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3067 3068 spin_lock(&_minor_lock); 3069 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3070 md = NULL; 3071 goto out; 3072 } 3073 dm_get(md); 3074 out: 3075 spin_unlock(&_minor_lock); 3076 3077 return md; 3078 } 3079 3080 int dm_suspended_md(struct mapped_device *md) 3081 { 3082 return test_bit(DMF_SUSPENDED, &md->flags); 3083 } 3084 3085 static int dm_post_suspending_md(struct mapped_device *md) 3086 { 3087 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3088 } 3089 3090 int dm_suspended_internally_md(struct mapped_device *md) 3091 { 3092 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3093 } 3094 3095 int dm_test_deferred_remove_flag(struct mapped_device *md) 3096 { 3097 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3098 } 3099 3100 int dm_suspended(struct dm_target *ti) 3101 { 3102 return dm_suspended_md(ti->table->md); 3103 } 3104 EXPORT_SYMBOL_GPL(dm_suspended); 3105 3106 int dm_post_suspending(struct dm_target *ti) 3107 { 3108 return dm_post_suspending_md(ti->table->md); 3109 } 3110 EXPORT_SYMBOL_GPL(dm_post_suspending); 3111 3112 int dm_noflush_suspending(struct dm_target *ti) 3113 { 3114 return __noflush_suspending(ti->table->md); 3115 } 3116 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3117 3118 void dm_free_md_mempools(struct dm_md_mempools *pools) 3119 { 3120 if (!pools) 3121 return; 3122 3123 bioset_exit(&pools->bs); 3124 bioset_exit(&pools->io_bs); 3125 3126 kfree(pools); 3127 } 3128 3129 struct dm_pr { 3130 u64 old_key; 3131 u64 new_key; 3132 u32 flags; 3133 bool abort; 3134 bool fail_early; 3135 int ret; 3136 enum pr_type type; 3137 }; 3138 3139 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3140 struct dm_pr *pr) 3141 { 3142 struct mapped_device *md = bdev->bd_disk->private_data; 3143 struct dm_table *table; 3144 struct dm_target *ti; 3145 int ret = -ENOTTY, srcu_idx; 3146 3147 table = dm_get_live_table(md, &srcu_idx); 3148 if (!table || !dm_table_get_size(table)) 3149 goto out; 3150 3151 /* We only support devices that have a single target */ 3152 if (table->num_targets != 1) 3153 goto out; 3154 ti = dm_table_get_target(table, 0); 3155 3156 if (dm_suspended_md(md)) { 3157 ret = -EAGAIN; 3158 goto out; 3159 } 3160 3161 ret = -EINVAL; 3162 if (!ti->type->iterate_devices) 3163 goto out; 3164 3165 ti->type->iterate_devices(ti, fn, pr); 3166 ret = 0; 3167 out: 3168 dm_put_live_table(md, srcu_idx); 3169 return ret; 3170 } 3171 3172 /* 3173 * For register / unregister we need to manually call out to every path. 3174 */ 3175 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3176 sector_t start, sector_t len, void *data) 3177 { 3178 struct dm_pr *pr = data; 3179 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3180 int ret; 3181 3182 if (!ops || !ops->pr_register) { 3183 pr->ret = -EOPNOTSUPP; 3184 return -1; 3185 } 3186 3187 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3188 if (!ret) 3189 return 0; 3190 3191 if (!pr->ret) 3192 pr->ret = ret; 3193 3194 if (pr->fail_early) 3195 return -1; 3196 3197 return 0; 3198 } 3199 3200 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3201 u32 flags) 3202 { 3203 struct dm_pr pr = { 3204 .old_key = old_key, 3205 .new_key = new_key, 3206 .flags = flags, 3207 .fail_early = true, 3208 .ret = 0, 3209 }; 3210 int ret; 3211 3212 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3213 if (ret) { 3214 /* Didn't even get to register a path */ 3215 return ret; 3216 } 3217 3218 if (!pr.ret) 3219 return 0; 3220 ret = pr.ret; 3221 3222 if (!new_key) 3223 return ret; 3224 3225 /* unregister all paths if we failed to register any path */ 3226 pr.old_key = new_key; 3227 pr.new_key = 0; 3228 pr.flags = 0; 3229 pr.fail_early = false; 3230 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3231 return ret; 3232 } 3233 3234 3235 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3236 sector_t start, sector_t len, void *data) 3237 { 3238 struct dm_pr *pr = data; 3239 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3240 3241 if (!ops || !ops->pr_reserve) { 3242 pr->ret = -EOPNOTSUPP; 3243 return -1; 3244 } 3245 3246 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3247 if (!pr->ret) 3248 return -1; 3249 3250 return 0; 3251 } 3252 3253 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3254 u32 flags) 3255 { 3256 struct dm_pr pr = { 3257 .old_key = key, 3258 .flags = flags, 3259 .type = type, 3260 .fail_early = false, 3261 .ret = 0, 3262 }; 3263 int ret; 3264 3265 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3266 if (ret) 3267 return ret; 3268 3269 return pr.ret; 3270 } 3271 3272 /* 3273 * If there is a non-All Registrants type of reservation, the release must be 3274 * sent down the holding path. For the cases where there is no reservation or 3275 * the path is not the holder the device will also return success, so we must 3276 * try each path to make sure we got the correct path. 3277 */ 3278 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3279 sector_t start, sector_t len, void *data) 3280 { 3281 struct dm_pr *pr = data; 3282 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3283 3284 if (!ops || !ops->pr_release) { 3285 pr->ret = -EOPNOTSUPP; 3286 return -1; 3287 } 3288 3289 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3290 if (pr->ret) 3291 return -1; 3292 3293 return 0; 3294 } 3295 3296 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3297 { 3298 struct dm_pr pr = { 3299 .old_key = key, 3300 .type = type, 3301 .fail_early = false, 3302 }; 3303 int ret; 3304 3305 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3306 if (ret) 3307 return ret; 3308 3309 return pr.ret; 3310 } 3311 3312 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3313 sector_t start, sector_t len, void *data) 3314 { 3315 struct dm_pr *pr = data; 3316 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3317 3318 if (!ops || !ops->pr_preempt) { 3319 pr->ret = -EOPNOTSUPP; 3320 return -1; 3321 } 3322 3323 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3324 pr->abort); 3325 if (!pr->ret) 3326 return -1; 3327 3328 return 0; 3329 } 3330 3331 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3332 enum pr_type type, bool abort) 3333 { 3334 struct dm_pr pr = { 3335 .new_key = new_key, 3336 .old_key = old_key, 3337 .type = type, 3338 .fail_early = false, 3339 }; 3340 int ret; 3341 3342 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3343 if (ret) 3344 return ret; 3345 3346 return pr.ret; 3347 } 3348 3349 static int dm_pr_clear(struct block_device *bdev, u64 key) 3350 { 3351 struct mapped_device *md = bdev->bd_disk->private_data; 3352 const struct pr_ops *ops; 3353 int r, srcu_idx; 3354 3355 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3356 if (r < 0) 3357 goto out; 3358 3359 ops = bdev->bd_disk->fops->pr_ops; 3360 if (ops && ops->pr_clear) 3361 r = ops->pr_clear(bdev, key); 3362 else 3363 r = -EOPNOTSUPP; 3364 out: 3365 dm_unprepare_ioctl(md, srcu_idx); 3366 return r; 3367 } 3368 3369 static const struct pr_ops dm_pr_ops = { 3370 .pr_register = dm_pr_register, 3371 .pr_reserve = dm_pr_reserve, 3372 .pr_release = dm_pr_release, 3373 .pr_preempt = dm_pr_preempt, 3374 .pr_clear = dm_pr_clear, 3375 }; 3376 3377 static const struct block_device_operations dm_blk_dops = { 3378 .submit_bio = dm_submit_bio, 3379 .poll_bio = dm_poll_bio, 3380 .open = dm_blk_open, 3381 .release = dm_blk_close, 3382 .ioctl = dm_blk_ioctl, 3383 .getgeo = dm_blk_getgeo, 3384 .report_zones = dm_blk_report_zones, 3385 .pr_ops = &dm_pr_ops, 3386 .owner = THIS_MODULE 3387 }; 3388 3389 static const struct block_device_operations dm_rq_blk_dops = { 3390 .open = dm_blk_open, 3391 .release = dm_blk_close, 3392 .ioctl = dm_blk_ioctl, 3393 .getgeo = dm_blk_getgeo, 3394 .pr_ops = &dm_pr_ops, 3395 .owner = THIS_MODULE 3396 }; 3397 3398 static const struct dax_operations dm_dax_ops = { 3399 .direct_access = dm_dax_direct_access, 3400 .zero_page_range = dm_dax_zero_page_range, 3401 .recovery_write = dm_dax_recovery_write, 3402 }; 3403 3404 /* 3405 * module hooks 3406 */ 3407 module_init(dm_init); 3408 module_exit(dm_exit); 3409 3410 module_param(major, uint, 0); 3411 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3412 3413 module_param(reserved_bio_based_ios, uint, 0644); 3414 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3415 3416 module_param(dm_numa_node, int, 0644); 3417 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3418 3419 module_param(swap_bios, int, 0644); 3420 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3421 3422 MODULE_DESCRIPTION(DM_NAME " driver"); 3423 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3424 MODULE_LICENSE("GPL"); 3425