xref: /openbmc/linux/drivers/md/dm.c (revision 11a68244e16b0c35e122dd55b4e7c595e0fb67a1)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 /*
28  * Cookies are numeric values sent with CHANGE and REMOVE
29  * uevents while resuming, removing or renaming the device.
30  */
31 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
32 #define DM_COOKIE_LENGTH 24
33 
34 static const char *_name = DM_NAME;
35 
36 static unsigned int major = 0;
37 static unsigned int _major = 0;
38 
39 static DEFINE_SPINLOCK(_minor_lock);
40 /*
41  * For bio-based dm.
42  * One of these is allocated per bio.
43  */
44 struct dm_io {
45 	struct mapped_device *md;
46 	int error;
47 	atomic_t io_count;
48 	struct bio *bio;
49 	unsigned long start_time;
50 	spinlock_t endio_lock;
51 };
52 
53 /*
54  * For bio-based dm.
55  * One of these is allocated per target within a bio.  Hopefully
56  * this will be simplified out one day.
57  */
58 struct dm_target_io {
59 	struct dm_io *io;
60 	struct dm_target *ti;
61 	union map_info info;
62 };
63 
64 /*
65  * For request-based dm.
66  * One of these is allocated per request.
67  */
68 struct dm_rq_target_io {
69 	struct mapped_device *md;
70 	struct dm_target *ti;
71 	struct request *orig, clone;
72 	int error;
73 	union map_info info;
74 };
75 
76 /*
77  * For request-based dm.
78  * One of these is allocated per bio.
79  */
80 struct dm_rq_clone_bio_info {
81 	struct bio *orig;
82 	struct dm_rq_target_io *tio;
83 };
84 
85 union map_info *dm_get_mapinfo(struct bio *bio)
86 {
87 	if (bio && bio->bi_private)
88 		return &((struct dm_target_io *)bio->bi_private)->info;
89 	return NULL;
90 }
91 
92 union map_info *dm_get_rq_mapinfo(struct request *rq)
93 {
94 	if (rq && rq->end_io_data)
95 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
96 	return NULL;
97 }
98 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
99 
100 #define MINOR_ALLOCED ((void *)-1)
101 
102 /*
103  * Bits for the md->flags field.
104  */
105 #define DMF_BLOCK_IO_FOR_SUSPEND 0
106 #define DMF_SUSPENDED 1
107 #define DMF_FROZEN 2
108 #define DMF_FREEING 3
109 #define DMF_DELETING 4
110 #define DMF_NOFLUSH_SUSPENDING 5
111 #define DMF_QUEUE_IO_TO_THREAD 6
112 
113 /*
114  * Work processed by per-device workqueue.
115  */
116 struct mapped_device {
117 	struct rw_semaphore io_lock;
118 	struct mutex suspend_lock;
119 	rwlock_t map_lock;
120 	atomic_t holders;
121 	atomic_t open_count;
122 
123 	unsigned long flags;
124 
125 	struct request_queue *queue;
126 	struct gendisk *disk;
127 	char name[16];
128 
129 	void *interface_ptr;
130 
131 	/*
132 	 * A list of ios that arrived while we were suspended.
133 	 */
134 	atomic_t pending[2];
135 	wait_queue_head_t wait;
136 	struct work_struct work;
137 	struct bio_list deferred;
138 	spinlock_t deferred_lock;
139 
140 	/*
141 	 * An error from the barrier request currently being processed.
142 	 */
143 	int barrier_error;
144 
145 	/*
146 	 * Processing queue (flush/barriers)
147 	 */
148 	struct workqueue_struct *wq;
149 
150 	/*
151 	 * The current mapping.
152 	 */
153 	struct dm_table *map;
154 
155 	/*
156 	 * io objects are allocated from here.
157 	 */
158 	mempool_t *io_pool;
159 	mempool_t *tio_pool;
160 
161 	struct bio_set *bs;
162 
163 	/*
164 	 * Event handling.
165 	 */
166 	atomic_t event_nr;
167 	wait_queue_head_t eventq;
168 	atomic_t uevent_seq;
169 	struct list_head uevent_list;
170 	spinlock_t uevent_lock; /* Protect access to uevent_list */
171 
172 	/*
173 	 * freeze/thaw support require holding onto a super block
174 	 */
175 	struct super_block *frozen_sb;
176 	struct block_device *bdev;
177 
178 	/* forced geometry settings */
179 	struct hd_geometry geometry;
180 
181 	/* For saving the address of __make_request for request based dm */
182 	make_request_fn *saved_make_request_fn;
183 
184 	/* sysfs handle */
185 	struct kobject kobj;
186 
187 	/* zero-length barrier that will be cloned and submitted to targets */
188 	struct bio barrier_bio;
189 };
190 
191 /*
192  * For mempools pre-allocation at the table loading time.
193  */
194 struct dm_md_mempools {
195 	mempool_t *io_pool;
196 	mempool_t *tio_pool;
197 	struct bio_set *bs;
198 };
199 
200 #define MIN_IOS 256
201 static struct kmem_cache *_io_cache;
202 static struct kmem_cache *_tio_cache;
203 static struct kmem_cache *_rq_tio_cache;
204 static struct kmem_cache *_rq_bio_info_cache;
205 
206 static int __init local_init(void)
207 {
208 	int r = -ENOMEM;
209 
210 	/* allocate a slab for the dm_ios */
211 	_io_cache = KMEM_CACHE(dm_io, 0);
212 	if (!_io_cache)
213 		return r;
214 
215 	/* allocate a slab for the target ios */
216 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
217 	if (!_tio_cache)
218 		goto out_free_io_cache;
219 
220 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
221 	if (!_rq_tio_cache)
222 		goto out_free_tio_cache;
223 
224 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
225 	if (!_rq_bio_info_cache)
226 		goto out_free_rq_tio_cache;
227 
228 	r = dm_uevent_init();
229 	if (r)
230 		goto out_free_rq_bio_info_cache;
231 
232 	_major = major;
233 	r = register_blkdev(_major, _name);
234 	if (r < 0)
235 		goto out_uevent_exit;
236 
237 	if (!_major)
238 		_major = r;
239 
240 	return 0;
241 
242 out_uevent_exit:
243 	dm_uevent_exit();
244 out_free_rq_bio_info_cache:
245 	kmem_cache_destroy(_rq_bio_info_cache);
246 out_free_rq_tio_cache:
247 	kmem_cache_destroy(_rq_tio_cache);
248 out_free_tio_cache:
249 	kmem_cache_destroy(_tio_cache);
250 out_free_io_cache:
251 	kmem_cache_destroy(_io_cache);
252 
253 	return r;
254 }
255 
256 static void local_exit(void)
257 {
258 	kmem_cache_destroy(_rq_bio_info_cache);
259 	kmem_cache_destroy(_rq_tio_cache);
260 	kmem_cache_destroy(_tio_cache);
261 	kmem_cache_destroy(_io_cache);
262 	unregister_blkdev(_major, _name);
263 	dm_uevent_exit();
264 
265 	_major = 0;
266 
267 	DMINFO("cleaned up");
268 }
269 
270 static int (*_inits[])(void) __initdata = {
271 	local_init,
272 	dm_target_init,
273 	dm_linear_init,
274 	dm_stripe_init,
275 	dm_io_init,
276 	dm_kcopyd_init,
277 	dm_interface_init,
278 };
279 
280 static void (*_exits[])(void) = {
281 	local_exit,
282 	dm_target_exit,
283 	dm_linear_exit,
284 	dm_stripe_exit,
285 	dm_io_exit,
286 	dm_kcopyd_exit,
287 	dm_interface_exit,
288 };
289 
290 static int __init dm_init(void)
291 {
292 	const int count = ARRAY_SIZE(_inits);
293 
294 	int r, i;
295 
296 	for (i = 0; i < count; i++) {
297 		r = _inits[i]();
298 		if (r)
299 			goto bad;
300 	}
301 
302 	return 0;
303 
304       bad:
305 	while (i--)
306 		_exits[i]();
307 
308 	return r;
309 }
310 
311 static void __exit dm_exit(void)
312 {
313 	int i = ARRAY_SIZE(_exits);
314 
315 	while (i--)
316 		_exits[i]();
317 }
318 
319 /*
320  * Block device functions
321  */
322 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
323 {
324 	struct mapped_device *md;
325 
326 	spin_lock(&_minor_lock);
327 
328 	md = bdev->bd_disk->private_data;
329 	if (!md)
330 		goto out;
331 
332 	if (test_bit(DMF_FREEING, &md->flags) ||
333 	    test_bit(DMF_DELETING, &md->flags)) {
334 		md = NULL;
335 		goto out;
336 	}
337 
338 	dm_get(md);
339 	atomic_inc(&md->open_count);
340 
341 out:
342 	spin_unlock(&_minor_lock);
343 
344 	return md ? 0 : -ENXIO;
345 }
346 
347 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
348 {
349 	struct mapped_device *md = disk->private_data;
350 	atomic_dec(&md->open_count);
351 	dm_put(md);
352 	return 0;
353 }
354 
355 int dm_open_count(struct mapped_device *md)
356 {
357 	return atomic_read(&md->open_count);
358 }
359 
360 /*
361  * Guarantees nothing is using the device before it's deleted.
362  */
363 int dm_lock_for_deletion(struct mapped_device *md)
364 {
365 	int r = 0;
366 
367 	spin_lock(&_minor_lock);
368 
369 	if (dm_open_count(md))
370 		r = -EBUSY;
371 	else
372 		set_bit(DMF_DELETING, &md->flags);
373 
374 	spin_unlock(&_minor_lock);
375 
376 	return r;
377 }
378 
379 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
380 {
381 	struct mapped_device *md = bdev->bd_disk->private_data;
382 
383 	return dm_get_geometry(md, geo);
384 }
385 
386 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
387 			unsigned int cmd, unsigned long arg)
388 {
389 	struct mapped_device *md = bdev->bd_disk->private_data;
390 	struct dm_table *map = dm_get_table(md);
391 	struct dm_target *tgt;
392 	int r = -ENOTTY;
393 
394 	if (!map || !dm_table_get_size(map))
395 		goto out;
396 
397 	/* We only support devices that have a single target */
398 	if (dm_table_get_num_targets(map) != 1)
399 		goto out;
400 
401 	tgt = dm_table_get_target(map, 0);
402 
403 	if (dm_suspended(md)) {
404 		r = -EAGAIN;
405 		goto out;
406 	}
407 
408 	if (tgt->type->ioctl)
409 		r = tgt->type->ioctl(tgt, cmd, arg);
410 
411 out:
412 	dm_table_put(map);
413 
414 	return r;
415 }
416 
417 static struct dm_io *alloc_io(struct mapped_device *md)
418 {
419 	return mempool_alloc(md->io_pool, GFP_NOIO);
420 }
421 
422 static void free_io(struct mapped_device *md, struct dm_io *io)
423 {
424 	mempool_free(io, md->io_pool);
425 }
426 
427 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
428 {
429 	mempool_free(tio, md->tio_pool);
430 }
431 
432 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
433 					    gfp_t gfp_mask)
434 {
435 	return mempool_alloc(md->tio_pool, gfp_mask);
436 }
437 
438 static void free_rq_tio(struct dm_rq_target_io *tio)
439 {
440 	mempool_free(tio, tio->md->tio_pool);
441 }
442 
443 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
444 {
445 	return mempool_alloc(md->io_pool, GFP_ATOMIC);
446 }
447 
448 static void free_bio_info(struct dm_rq_clone_bio_info *info)
449 {
450 	mempool_free(info, info->tio->md->io_pool);
451 }
452 
453 static int md_in_flight(struct mapped_device *md)
454 {
455 	return atomic_read(&md->pending[READ]) +
456 	       atomic_read(&md->pending[WRITE]);
457 }
458 
459 static void start_io_acct(struct dm_io *io)
460 {
461 	struct mapped_device *md = io->md;
462 	int cpu;
463 	int rw = bio_data_dir(io->bio);
464 
465 	io->start_time = jiffies;
466 
467 	cpu = part_stat_lock();
468 	part_round_stats(cpu, &dm_disk(md)->part0);
469 	part_stat_unlock();
470 	dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]);
471 }
472 
473 static void end_io_acct(struct dm_io *io)
474 {
475 	struct mapped_device *md = io->md;
476 	struct bio *bio = io->bio;
477 	unsigned long duration = jiffies - io->start_time;
478 	int pending, cpu;
479 	int rw = bio_data_dir(bio);
480 
481 	cpu = part_stat_lock();
482 	part_round_stats(cpu, &dm_disk(md)->part0);
483 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
484 	part_stat_unlock();
485 
486 	/*
487 	 * After this is decremented the bio must not be touched if it is
488 	 * a barrier.
489 	 */
490 	dm_disk(md)->part0.in_flight[rw] = pending =
491 		atomic_dec_return(&md->pending[rw]);
492 	pending += atomic_read(&md->pending[rw^0x1]);
493 
494 	/* nudge anyone waiting on suspend queue */
495 	if (!pending)
496 		wake_up(&md->wait);
497 }
498 
499 /*
500  * Add the bio to the list of deferred io.
501  */
502 static void queue_io(struct mapped_device *md, struct bio *bio)
503 {
504 	down_write(&md->io_lock);
505 
506 	spin_lock_irq(&md->deferred_lock);
507 	bio_list_add(&md->deferred, bio);
508 	spin_unlock_irq(&md->deferred_lock);
509 
510 	if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
511 		queue_work(md->wq, &md->work);
512 
513 	up_write(&md->io_lock);
514 }
515 
516 /*
517  * Everyone (including functions in this file), should use this
518  * function to access the md->map field, and make sure they call
519  * dm_table_put() when finished.
520  */
521 struct dm_table *dm_get_table(struct mapped_device *md)
522 {
523 	struct dm_table *t;
524 	unsigned long flags;
525 
526 	read_lock_irqsave(&md->map_lock, flags);
527 	t = md->map;
528 	if (t)
529 		dm_table_get(t);
530 	read_unlock_irqrestore(&md->map_lock, flags);
531 
532 	return t;
533 }
534 
535 /*
536  * Get the geometry associated with a dm device
537  */
538 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
539 {
540 	*geo = md->geometry;
541 
542 	return 0;
543 }
544 
545 /*
546  * Set the geometry of a device.
547  */
548 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
549 {
550 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
551 
552 	if (geo->start > sz) {
553 		DMWARN("Start sector is beyond the geometry limits.");
554 		return -EINVAL;
555 	}
556 
557 	md->geometry = *geo;
558 
559 	return 0;
560 }
561 
562 /*-----------------------------------------------------------------
563  * CRUD START:
564  *   A more elegant soln is in the works that uses the queue
565  *   merge fn, unfortunately there are a couple of changes to
566  *   the block layer that I want to make for this.  So in the
567  *   interests of getting something for people to use I give
568  *   you this clearly demarcated crap.
569  *---------------------------------------------------------------*/
570 
571 static int __noflush_suspending(struct mapped_device *md)
572 {
573 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
574 }
575 
576 /*
577  * Decrements the number of outstanding ios that a bio has been
578  * cloned into, completing the original io if necc.
579  */
580 static void dec_pending(struct dm_io *io, int error)
581 {
582 	unsigned long flags;
583 	int io_error;
584 	struct bio *bio;
585 	struct mapped_device *md = io->md;
586 
587 	/* Push-back supersedes any I/O errors */
588 	if (unlikely(error)) {
589 		spin_lock_irqsave(&io->endio_lock, flags);
590 		if (!(io->error > 0 && __noflush_suspending(md)))
591 			io->error = error;
592 		spin_unlock_irqrestore(&io->endio_lock, flags);
593 	}
594 
595 	if (atomic_dec_and_test(&io->io_count)) {
596 		if (io->error == DM_ENDIO_REQUEUE) {
597 			/*
598 			 * Target requested pushing back the I/O.
599 			 */
600 			spin_lock_irqsave(&md->deferred_lock, flags);
601 			if (__noflush_suspending(md)) {
602 				if (!bio_rw_flagged(io->bio, BIO_RW_BARRIER))
603 					bio_list_add_head(&md->deferred,
604 							  io->bio);
605 			} else
606 				/* noflush suspend was interrupted. */
607 				io->error = -EIO;
608 			spin_unlock_irqrestore(&md->deferred_lock, flags);
609 		}
610 
611 		io_error = io->error;
612 		bio = io->bio;
613 
614 		if (bio_rw_flagged(bio, BIO_RW_BARRIER)) {
615 			/*
616 			 * There can be just one barrier request so we use
617 			 * a per-device variable for error reporting.
618 			 * Note that you can't touch the bio after end_io_acct
619 			 */
620 			if (!md->barrier_error && io_error != -EOPNOTSUPP)
621 				md->barrier_error = io_error;
622 			end_io_acct(io);
623 		} else {
624 			end_io_acct(io);
625 
626 			if (io_error != DM_ENDIO_REQUEUE) {
627 				trace_block_bio_complete(md->queue, bio);
628 
629 				bio_endio(bio, io_error);
630 			}
631 		}
632 
633 		free_io(md, io);
634 	}
635 }
636 
637 static void clone_endio(struct bio *bio, int error)
638 {
639 	int r = 0;
640 	struct dm_target_io *tio = bio->bi_private;
641 	struct dm_io *io = tio->io;
642 	struct mapped_device *md = tio->io->md;
643 	dm_endio_fn endio = tio->ti->type->end_io;
644 
645 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
646 		error = -EIO;
647 
648 	if (endio) {
649 		r = endio(tio->ti, bio, error, &tio->info);
650 		if (r < 0 || r == DM_ENDIO_REQUEUE)
651 			/*
652 			 * error and requeue request are handled
653 			 * in dec_pending().
654 			 */
655 			error = r;
656 		else if (r == DM_ENDIO_INCOMPLETE)
657 			/* The target will handle the io */
658 			return;
659 		else if (r) {
660 			DMWARN("unimplemented target endio return value: %d", r);
661 			BUG();
662 		}
663 	}
664 
665 	/*
666 	 * Store md for cleanup instead of tio which is about to get freed.
667 	 */
668 	bio->bi_private = md->bs;
669 
670 	free_tio(md, tio);
671 	bio_put(bio);
672 	dec_pending(io, error);
673 }
674 
675 /*
676  * Partial completion handling for request-based dm
677  */
678 static void end_clone_bio(struct bio *clone, int error)
679 {
680 	struct dm_rq_clone_bio_info *info = clone->bi_private;
681 	struct dm_rq_target_io *tio = info->tio;
682 	struct bio *bio = info->orig;
683 	unsigned int nr_bytes = info->orig->bi_size;
684 
685 	bio_put(clone);
686 
687 	if (tio->error)
688 		/*
689 		 * An error has already been detected on the request.
690 		 * Once error occurred, just let clone->end_io() handle
691 		 * the remainder.
692 		 */
693 		return;
694 	else if (error) {
695 		/*
696 		 * Don't notice the error to the upper layer yet.
697 		 * The error handling decision is made by the target driver,
698 		 * when the request is completed.
699 		 */
700 		tio->error = error;
701 		return;
702 	}
703 
704 	/*
705 	 * I/O for the bio successfully completed.
706 	 * Notice the data completion to the upper layer.
707 	 */
708 
709 	/*
710 	 * bios are processed from the head of the list.
711 	 * So the completing bio should always be rq->bio.
712 	 * If it's not, something wrong is happening.
713 	 */
714 	if (tio->orig->bio != bio)
715 		DMERR("bio completion is going in the middle of the request");
716 
717 	/*
718 	 * Update the original request.
719 	 * Do not use blk_end_request() here, because it may complete
720 	 * the original request before the clone, and break the ordering.
721 	 */
722 	blk_update_request(tio->orig, 0, nr_bytes);
723 }
724 
725 /*
726  * Don't touch any member of the md after calling this function because
727  * the md may be freed in dm_put() at the end of this function.
728  * Or do dm_get() before calling this function and dm_put() later.
729  */
730 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
731 {
732 	atomic_dec(&md->pending[rw]);
733 
734 	/* nudge anyone waiting on suspend queue */
735 	if (!md_in_flight(md))
736 		wake_up(&md->wait);
737 
738 	if (run_queue)
739 		blk_run_queue(md->queue);
740 
741 	/*
742 	 * dm_put() must be at the end of this function. See the comment above
743 	 */
744 	dm_put(md);
745 }
746 
747 static void free_rq_clone(struct request *clone)
748 {
749 	struct dm_rq_target_io *tio = clone->end_io_data;
750 
751 	blk_rq_unprep_clone(clone);
752 	free_rq_tio(tio);
753 }
754 
755 static void dm_unprep_request(struct request *rq)
756 {
757 	struct request *clone = rq->special;
758 
759 	rq->special = NULL;
760 	rq->cmd_flags &= ~REQ_DONTPREP;
761 
762 	free_rq_clone(clone);
763 }
764 
765 /*
766  * Requeue the original request of a clone.
767  */
768 void dm_requeue_unmapped_request(struct request *clone)
769 {
770 	int rw = rq_data_dir(clone);
771 	struct dm_rq_target_io *tio = clone->end_io_data;
772 	struct mapped_device *md = tio->md;
773 	struct request *rq = tio->orig;
774 	struct request_queue *q = rq->q;
775 	unsigned long flags;
776 
777 	dm_unprep_request(rq);
778 
779 	spin_lock_irqsave(q->queue_lock, flags);
780 	if (elv_queue_empty(q))
781 		blk_plug_device(q);
782 	blk_requeue_request(q, rq);
783 	spin_unlock_irqrestore(q->queue_lock, flags);
784 
785 	rq_completed(md, rw, 0);
786 }
787 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
788 
789 static void __stop_queue(struct request_queue *q)
790 {
791 	blk_stop_queue(q);
792 }
793 
794 static void stop_queue(struct request_queue *q)
795 {
796 	unsigned long flags;
797 
798 	spin_lock_irqsave(q->queue_lock, flags);
799 	__stop_queue(q);
800 	spin_unlock_irqrestore(q->queue_lock, flags);
801 }
802 
803 static void __start_queue(struct request_queue *q)
804 {
805 	if (blk_queue_stopped(q))
806 		blk_start_queue(q);
807 }
808 
809 static void start_queue(struct request_queue *q)
810 {
811 	unsigned long flags;
812 
813 	spin_lock_irqsave(q->queue_lock, flags);
814 	__start_queue(q);
815 	spin_unlock_irqrestore(q->queue_lock, flags);
816 }
817 
818 /*
819  * Complete the clone and the original request.
820  * Must be called without queue lock.
821  */
822 static void dm_end_request(struct request *clone, int error)
823 {
824 	int rw = rq_data_dir(clone);
825 	struct dm_rq_target_io *tio = clone->end_io_data;
826 	struct mapped_device *md = tio->md;
827 	struct request *rq = tio->orig;
828 
829 	if (blk_pc_request(rq)) {
830 		rq->errors = clone->errors;
831 		rq->resid_len = clone->resid_len;
832 
833 		if (rq->sense)
834 			/*
835 			 * We are using the sense buffer of the original
836 			 * request.
837 			 * So setting the length of the sense data is enough.
838 			 */
839 			rq->sense_len = clone->sense_len;
840 	}
841 
842 	free_rq_clone(clone);
843 
844 	blk_end_request_all(rq, error);
845 
846 	rq_completed(md, rw, 1);
847 }
848 
849 static void dm_done(struct request *clone, int error, bool mapped)
850 {
851 	int r = error;
852 	struct dm_rq_target_io *tio = clone->end_io_data;
853 	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
854 
855 	if (mapped && rq_end_io)
856 		r = rq_end_io(tio->ti, clone, error, &tio->info);
857 
858 	if (r <= 0)
859 		/* The target wants to complete the I/O */
860 		dm_end_request(clone, r);
861 	else if (r == DM_ENDIO_INCOMPLETE)
862 		/* The target will handle the I/O */
863 		return;
864 	else if (r == DM_ENDIO_REQUEUE)
865 		/* The target wants to requeue the I/O */
866 		dm_requeue_unmapped_request(clone);
867 	else {
868 		DMWARN("unimplemented target endio return value: %d", r);
869 		BUG();
870 	}
871 }
872 
873 /*
874  * Request completion handler for request-based dm
875  */
876 static void dm_softirq_done(struct request *rq)
877 {
878 	bool mapped = true;
879 	struct request *clone = rq->completion_data;
880 	struct dm_rq_target_io *tio = clone->end_io_data;
881 
882 	if (rq->cmd_flags & REQ_FAILED)
883 		mapped = false;
884 
885 	dm_done(clone, tio->error, mapped);
886 }
887 
888 /*
889  * Complete the clone and the original request with the error status
890  * through softirq context.
891  */
892 static void dm_complete_request(struct request *clone, int error)
893 {
894 	struct dm_rq_target_io *tio = clone->end_io_data;
895 	struct request *rq = tio->orig;
896 
897 	tio->error = error;
898 	rq->completion_data = clone;
899 	blk_complete_request(rq);
900 }
901 
902 /*
903  * Complete the not-mapped clone and the original request with the error status
904  * through softirq context.
905  * Target's rq_end_io() function isn't called.
906  * This may be used when the target's map_rq() function fails.
907  */
908 void dm_kill_unmapped_request(struct request *clone, int error)
909 {
910 	struct dm_rq_target_io *tio = clone->end_io_data;
911 	struct request *rq = tio->orig;
912 
913 	rq->cmd_flags |= REQ_FAILED;
914 	dm_complete_request(clone, error);
915 }
916 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
917 
918 /*
919  * Called with the queue lock held
920  */
921 static void end_clone_request(struct request *clone, int error)
922 {
923 	/*
924 	 * For just cleaning up the information of the queue in which
925 	 * the clone was dispatched.
926 	 * The clone is *NOT* freed actually here because it is alloced from
927 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
928 	 */
929 	__blk_put_request(clone->q, clone);
930 
931 	/*
932 	 * Actual request completion is done in a softirq context which doesn't
933 	 * hold the queue lock.  Otherwise, deadlock could occur because:
934 	 *     - another request may be submitted by the upper level driver
935 	 *       of the stacking during the completion
936 	 *     - the submission which requires queue lock may be done
937 	 *       against this queue
938 	 */
939 	dm_complete_request(clone, error);
940 }
941 
942 static sector_t max_io_len(struct mapped_device *md,
943 			   sector_t sector, struct dm_target *ti)
944 {
945 	sector_t offset = sector - ti->begin;
946 	sector_t len = ti->len - offset;
947 
948 	/*
949 	 * Does the target need to split even further ?
950 	 */
951 	if (ti->split_io) {
952 		sector_t boundary;
953 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
954 			   - offset;
955 		if (len > boundary)
956 			len = boundary;
957 	}
958 
959 	return len;
960 }
961 
962 static void __map_bio(struct dm_target *ti, struct bio *clone,
963 		      struct dm_target_io *tio)
964 {
965 	int r;
966 	sector_t sector;
967 	struct mapped_device *md;
968 
969 	clone->bi_end_io = clone_endio;
970 	clone->bi_private = tio;
971 
972 	/*
973 	 * Map the clone.  If r == 0 we don't need to do
974 	 * anything, the target has assumed ownership of
975 	 * this io.
976 	 */
977 	atomic_inc(&tio->io->io_count);
978 	sector = clone->bi_sector;
979 	r = ti->type->map(ti, clone, &tio->info);
980 	if (r == DM_MAPIO_REMAPPED) {
981 		/* the bio has been remapped so dispatch it */
982 
983 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
984 				    tio->io->bio->bi_bdev->bd_dev, sector);
985 
986 		generic_make_request(clone);
987 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
988 		/* error the io and bail out, or requeue it if needed */
989 		md = tio->io->md;
990 		dec_pending(tio->io, r);
991 		/*
992 		 * Store bio_set for cleanup.
993 		 */
994 		clone->bi_private = md->bs;
995 		bio_put(clone);
996 		free_tio(md, tio);
997 	} else if (r) {
998 		DMWARN("unimplemented target map return value: %d", r);
999 		BUG();
1000 	}
1001 }
1002 
1003 struct clone_info {
1004 	struct mapped_device *md;
1005 	struct dm_table *map;
1006 	struct bio *bio;
1007 	struct dm_io *io;
1008 	sector_t sector;
1009 	sector_t sector_count;
1010 	unsigned short idx;
1011 };
1012 
1013 static void dm_bio_destructor(struct bio *bio)
1014 {
1015 	struct bio_set *bs = bio->bi_private;
1016 
1017 	bio_free(bio, bs);
1018 }
1019 
1020 /*
1021  * Creates a little bio that is just does part of a bvec.
1022  */
1023 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1024 			      unsigned short idx, unsigned int offset,
1025 			      unsigned int len, struct bio_set *bs)
1026 {
1027 	struct bio *clone;
1028 	struct bio_vec *bv = bio->bi_io_vec + idx;
1029 
1030 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1031 	clone->bi_destructor = dm_bio_destructor;
1032 	*clone->bi_io_vec = *bv;
1033 
1034 	clone->bi_sector = sector;
1035 	clone->bi_bdev = bio->bi_bdev;
1036 	clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
1037 	clone->bi_vcnt = 1;
1038 	clone->bi_size = to_bytes(len);
1039 	clone->bi_io_vec->bv_offset = offset;
1040 	clone->bi_io_vec->bv_len = clone->bi_size;
1041 	clone->bi_flags |= 1 << BIO_CLONED;
1042 
1043 	if (bio_integrity(bio)) {
1044 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1045 		bio_integrity_trim(clone,
1046 				   bio_sector_offset(bio, idx, offset), len);
1047 	}
1048 
1049 	return clone;
1050 }
1051 
1052 /*
1053  * Creates a bio that consists of range of complete bvecs.
1054  */
1055 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1056 			     unsigned short idx, unsigned short bv_count,
1057 			     unsigned int len, struct bio_set *bs)
1058 {
1059 	struct bio *clone;
1060 
1061 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1062 	__bio_clone(clone, bio);
1063 	clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
1064 	clone->bi_destructor = dm_bio_destructor;
1065 	clone->bi_sector = sector;
1066 	clone->bi_idx = idx;
1067 	clone->bi_vcnt = idx + bv_count;
1068 	clone->bi_size = to_bytes(len);
1069 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1070 
1071 	if (bio_integrity(bio)) {
1072 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1073 
1074 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1075 			bio_integrity_trim(clone,
1076 					   bio_sector_offset(bio, idx, 0), len);
1077 	}
1078 
1079 	return clone;
1080 }
1081 
1082 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1083 				      struct dm_target *ti)
1084 {
1085 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1086 
1087 	tio->io = ci->io;
1088 	tio->ti = ti;
1089 	memset(&tio->info, 0, sizeof(tio->info));
1090 
1091 	return tio;
1092 }
1093 
1094 static void __flush_target(struct clone_info *ci, struct dm_target *ti,
1095 			  unsigned flush_nr)
1096 {
1097 	struct dm_target_io *tio = alloc_tio(ci, ti);
1098 	struct bio *clone;
1099 
1100 	tio->info.flush_request = flush_nr;
1101 
1102 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1103 	__bio_clone(clone, ci->bio);
1104 	clone->bi_destructor = dm_bio_destructor;
1105 
1106 	__map_bio(ti, clone, tio);
1107 }
1108 
1109 static int __clone_and_map_empty_barrier(struct clone_info *ci)
1110 {
1111 	unsigned target_nr = 0, flush_nr;
1112 	struct dm_target *ti;
1113 
1114 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1115 		for (flush_nr = 0; flush_nr < ti->num_flush_requests;
1116 		     flush_nr++)
1117 			__flush_target(ci, ti, flush_nr);
1118 
1119 	ci->sector_count = 0;
1120 
1121 	return 0;
1122 }
1123 
1124 static int __clone_and_map(struct clone_info *ci)
1125 {
1126 	struct bio *clone, *bio = ci->bio;
1127 	struct dm_target *ti;
1128 	sector_t len = 0, max;
1129 	struct dm_target_io *tio;
1130 
1131 	if (unlikely(bio_empty_barrier(bio)))
1132 		return __clone_and_map_empty_barrier(ci);
1133 
1134 	ti = dm_table_find_target(ci->map, ci->sector);
1135 	if (!dm_target_is_valid(ti))
1136 		return -EIO;
1137 
1138 	max = max_io_len(ci->md, ci->sector, ti);
1139 
1140 	/*
1141 	 * Allocate a target io object.
1142 	 */
1143 	tio = alloc_tio(ci, ti);
1144 
1145 	if (ci->sector_count <= max) {
1146 		/*
1147 		 * Optimise for the simple case where we can do all of
1148 		 * the remaining io with a single clone.
1149 		 */
1150 		clone = clone_bio(bio, ci->sector, ci->idx,
1151 				  bio->bi_vcnt - ci->idx, ci->sector_count,
1152 				  ci->md->bs);
1153 		__map_bio(ti, clone, tio);
1154 		ci->sector_count = 0;
1155 
1156 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1157 		/*
1158 		 * There are some bvecs that don't span targets.
1159 		 * Do as many of these as possible.
1160 		 */
1161 		int i;
1162 		sector_t remaining = max;
1163 		sector_t bv_len;
1164 
1165 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1166 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1167 
1168 			if (bv_len > remaining)
1169 				break;
1170 
1171 			remaining -= bv_len;
1172 			len += bv_len;
1173 		}
1174 
1175 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1176 				  ci->md->bs);
1177 		__map_bio(ti, clone, tio);
1178 
1179 		ci->sector += len;
1180 		ci->sector_count -= len;
1181 		ci->idx = i;
1182 
1183 	} else {
1184 		/*
1185 		 * Handle a bvec that must be split between two or more targets.
1186 		 */
1187 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1188 		sector_t remaining = to_sector(bv->bv_len);
1189 		unsigned int offset = 0;
1190 
1191 		do {
1192 			if (offset) {
1193 				ti = dm_table_find_target(ci->map, ci->sector);
1194 				if (!dm_target_is_valid(ti))
1195 					return -EIO;
1196 
1197 				max = max_io_len(ci->md, ci->sector, ti);
1198 
1199 				tio = alloc_tio(ci, ti);
1200 			}
1201 
1202 			len = min(remaining, max);
1203 
1204 			clone = split_bvec(bio, ci->sector, ci->idx,
1205 					   bv->bv_offset + offset, len,
1206 					   ci->md->bs);
1207 
1208 			__map_bio(ti, clone, tio);
1209 
1210 			ci->sector += len;
1211 			ci->sector_count -= len;
1212 			offset += to_bytes(len);
1213 		} while (remaining -= len);
1214 
1215 		ci->idx++;
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 /*
1222  * Split the bio into several clones and submit it to targets.
1223  */
1224 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1225 {
1226 	struct clone_info ci;
1227 	int error = 0;
1228 
1229 	ci.map = dm_get_table(md);
1230 	if (unlikely(!ci.map)) {
1231 		if (!bio_rw_flagged(bio, BIO_RW_BARRIER))
1232 			bio_io_error(bio);
1233 		else
1234 			if (!md->barrier_error)
1235 				md->barrier_error = -EIO;
1236 		return;
1237 	}
1238 
1239 	ci.md = md;
1240 	ci.bio = bio;
1241 	ci.io = alloc_io(md);
1242 	ci.io->error = 0;
1243 	atomic_set(&ci.io->io_count, 1);
1244 	ci.io->bio = bio;
1245 	ci.io->md = md;
1246 	spin_lock_init(&ci.io->endio_lock);
1247 	ci.sector = bio->bi_sector;
1248 	ci.sector_count = bio_sectors(bio);
1249 	if (unlikely(bio_empty_barrier(bio)))
1250 		ci.sector_count = 1;
1251 	ci.idx = bio->bi_idx;
1252 
1253 	start_io_acct(ci.io);
1254 	while (ci.sector_count && !error)
1255 		error = __clone_and_map(&ci);
1256 
1257 	/* drop the extra reference count */
1258 	dec_pending(ci.io, error);
1259 	dm_table_put(ci.map);
1260 }
1261 /*-----------------------------------------------------------------
1262  * CRUD END
1263  *---------------------------------------------------------------*/
1264 
1265 static int dm_merge_bvec(struct request_queue *q,
1266 			 struct bvec_merge_data *bvm,
1267 			 struct bio_vec *biovec)
1268 {
1269 	struct mapped_device *md = q->queuedata;
1270 	struct dm_table *map = dm_get_table(md);
1271 	struct dm_target *ti;
1272 	sector_t max_sectors;
1273 	int max_size = 0;
1274 
1275 	if (unlikely(!map))
1276 		goto out;
1277 
1278 	ti = dm_table_find_target(map, bvm->bi_sector);
1279 	if (!dm_target_is_valid(ti))
1280 		goto out_table;
1281 
1282 	/*
1283 	 * Find maximum amount of I/O that won't need splitting
1284 	 */
1285 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
1286 			  (sector_t) BIO_MAX_SECTORS);
1287 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1288 	if (max_size < 0)
1289 		max_size = 0;
1290 
1291 	/*
1292 	 * merge_bvec_fn() returns number of bytes
1293 	 * it can accept at this offset
1294 	 * max is precomputed maximal io size
1295 	 */
1296 	if (max_size && ti->type->merge)
1297 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1298 	/*
1299 	 * If the target doesn't support merge method and some of the devices
1300 	 * provided their merge_bvec method (we know this by looking at
1301 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1302 	 * entries.  So always set max_size to 0, and the code below allows
1303 	 * just one page.
1304 	 */
1305 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1306 
1307 		max_size = 0;
1308 
1309 out_table:
1310 	dm_table_put(map);
1311 
1312 out:
1313 	/*
1314 	 * Always allow an entire first page
1315 	 */
1316 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1317 		max_size = biovec->bv_len;
1318 
1319 	return max_size;
1320 }
1321 
1322 /*
1323  * The request function that just remaps the bio built up by
1324  * dm_merge_bvec.
1325  */
1326 static int _dm_request(struct request_queue *q, struct bio *bio)
1327 {
1328 	int rw = bio_data_dir(bio);
1329 	struct mapped_device *md = q->queuedata;
1330 	int cpu;
1331 
1332 	down_read(&md->io_lock);
1333 
1334 	cpu = part_stat_lock();
1335 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1336 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1337 	part_stat_unlock();
1338 
1339 	/*
1340 	 * If we're suspended or the thread is processing barriers
1341 	 * we have to queue this io for later.
1342 	 */
1343 	if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
1344 	    unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
1345 		up_read(&md->io_lock);
1346 
1347 		if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
1348 		    bio_rw(bio) == READA) {
1349 			bio_io_error(bio);
1350 			return 0;
1351 		}
1352 
1353 		queue_io(md, bio);
1354 
1355 		return 0;
1356 	}
1357 
1358 	__split_and_process_bio(md, bio);
1359 	up_read(&md->io_lock);
1360 	return 0;
1361 }
1362 
1363 static int dm_make_request(struct request_queue *q, struct bio *bio)
1364 {
1365 	struct mapped_device *md = q->queuedata;
1366 
1367 	if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
1368 		bio_endio(bio, -EOPNOTSUPP);
1369 		return 0;
1370 	}
1371 
1372 	return md->saved_make_request_fn(q, bio); /* call __make_request() */
1373 }
1374 
1375 static int dm_request_based(struct mapped_device *md)
1376 {
1377 	return blk_queue_stackable(md->queue);
1378 }
1379 
1380 static int dm_request(struct request_queue *q, struct bio *bio)
1381 {
1382 	struct mapped_device *md = q->queuedata;
1383 
1384 	if (dm_request_based(md))
1385 		return dm_make_request(q, bio);
1386 
1387 	return _dm_request(q, bio);
1388 }
1389 
1390 void dm_dispatch_request(struct request *rq)
1391 {
1392 	int r;
1393 
1394 	if (blk_queue_io_stat(rq->q))
1395 		rq->cmd_flags |= REQ_IO_STAT;
1396 
1397 	rq->start_time = jiffies;
1398 	r = blk_insert_cloned_request(rq->q, rq);
1399 	if (r)
1400 		dm_complete_request(rq, r);
1401 }
1402 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1403 
1404 static void dm_rq_bio_destructor(struct bio *bio)
1405 {
1406 	struct dm_rq_clone_bio_info *info = bio->bi_private;
1407 	struct mapped_device *md = info->tio->md;
1408 
1409 	free_bio_info(info);
1410 	bio_free(bio, md->bs);
1411 }
1412 
1413 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1414 				 void *data)
1415 {
1416 	struct dm_rq_target_io *tio = data;
1417 	struct mapped_device *md = tio->md;
1418 	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1419 
1420 	if (!info)
1421 		return -ENOMEM;
1422 
1423 	info->orig = bio_orig;
1424 	info->tio = tio;
1425 	bio->bi_end_io = end_clone_bio;
1426 	bio->bi_private = info;
1427 	bio->bi_destructor = dm_rq_bio_destructor;
1428 
1429 	return 0;
1430 }
1431 
1432 static int setup_clone(struct request *clone, struct request *rq,
1433 		       struct dm_rq_target_io *tio)
1434 {
1435 	int r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1436 				  dm_rq_bio_constructor, tio);
1437 
1438 	if (r)
1439 		return r;
1440 
1441 	clone->cmd = rq->cmd;
1442 	clone->cmd_len = rq->cmd_len;
1443 	clone->sense = rq->sense;
1444 	clone->buffer = rq->buffer;
1445 	clone->end_io = end_clone_request;
1446 	clone->end_io_data = tio;
1447 
1448 	return 0;
1449 }
1450 
1451 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1452 				gfp_t gfp_mask)
1453 {
1454 	struct request *clone;
1455 	struct dm_rq_target_io *tio;
1456 
1457 	tio = alloc_rq_tio(md, gfp_mask);
1458 	if (!tio)
1459 		return NULL;
1460 
1461 	tio->md = md;
1462 	tio->ti = NULL;
1463 	tio->orig = rq;
1464 	tio->error = 0;
1465 	memset(&tio->info, 0, sizeof(tio->info));
1466 
1467 	clone = &tio->clone;
1468 	if (setup_clone(clone, rq, tio)) {
1469 		/* -ENOMEM */
1470 		free_rq_tio(tio);
1471 		return NULL;
1472 	}
1473 
1474 	return clone;
1475 }
1476 
1477 /*
1478  * Called with the queue lock held.
1479  */
1480 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1481 {
1482 	struct mapped_device *md = q->queuedata;
1483 	struct request *clone;
1484 
1485 	if (unlikely(rq->special)) {
1486 		DMWARN("Already has something in rq->special.");
1487 		return BLKPREP_KILL;
1488 	}
1489 
1490 	clone = clone_rq(rq, md, GFP_ATOMIC);
1491 	if (!clone)
1492 		return BLKPREP_DEFER;
1493 
1494 	rq->special = clone;
1495 	rq->cmd_flags |= REQ_DONTPREP;
1496 
1497 	return BLKPREP_OK;
1498 }
1499 
1500 static void map_request(struct dm_target *ti, struct request *clone,
1501 			struct mapped_device *md)
1502 {
1503 	int r;
1504 	struct dm_rq_target_io *tio = clone->end_io_data;
1505 
1506 	/*
1507 	 * Hold the md reference here for the in-flight I/O.
1508 	 * We can't rely on the reference count by device opener,
1509 	 * because the device may be closed during the request completion
1510 	 * when all bios are completed.
1511 	 * See the comment in rq_completed() too.
1512 	 */
1513 	dm_get(md);
1514 
1515 	tio->ti = ti;
1516 	r = ti->type->map_rq(ti, clone, &tio->info);
1517 	switch (r) {
1518 	case DM_MAPIO_SUBMITTED:
1519 		/* The target has taken the I/O to submit by itself later */
1520 		break;
1521 	case DM_MAPIO_REMAPPED:
1522 		/* The target has remapped the I/O so dispatch it */
1523 		dm_dispatch_request(clone);
1524 		break;
1525 	case DM_MAPIO_REQUEUE:
1526 		/* The target wants to requeue the I/O */
1527 		dm_requeue_unmapped_request(clone);
1528 		break;
1529 	default:
1530 		if (r > 0) {
1531 			DMWARN("unimplemented target map return value: %d", r);
1532 			BUG();
1533 		}
1534 
1535 		/* The target wants to complete the I/O */
1536 		dm_kill_unmapped_request(clone, r);
1537 		break;
1538 	}
1539 }
1540 
1541 /*
1542  * q->request_fn for request-based dm.
1543  * Called with the queue lock held.
1544  */
1545 static void dm_request_fn(struct request_queue *q)
1546 {
1547 	struct mapped_device *md = q->queuedata;
1548 	struct dm_table *map = dm_get_table(md);
1549 	struct dm_target *ti;
1550 	struct request *rq, *clone;
1551 
1552 	/*
1553 	 * For suspend, check blk_queue_stopped() and increment
1554 	 * ->pending within a single queue_lock not to increment the
1555 	 * number of in-flight I/Os after the queue is stopped in
1556 	 * dm_suspend().
1557 	 */
1558 	while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1559 		rq = blk_peek_request(q);
1560 		if (!rq)
1561 			goto plug_and_out;
1562 
1563 		ti = dm_table_find_target(map, blk_rq_pos(rq));
1564 		if (ti->type->busy && ti->type->busy(ti))
1565 			goto plug_and_out;
1566 
1567 		blk_start_request(rq);
1568 		clone = rq->special;
1569 		atomic_inc(&md->pending[rq_data_dir(clone)]);
1570 
1571 		spin_unlock(q->queue_lock);
1572 		map_request(ti, clone, md);
1573 		spin_lock_irq(q->queue_lock);
1574 	}
1575 
1576 	goto out;
1577 
1578 plug_and_out:
1579 	if (!elv_queue_empty(q))
1580 		/* Some requests still remain, retry later */
1581 		blk_plug_device(q);
1582 
1583 out:
1584 	dm_table_put(map);
1585 
1586 	return;
1587 }
1588 
1589 int dm_underlying_device_busy(struct request_queue *q)
1590 {
1591 	return blk_lld_busy(q);
1592 }
1593 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1594 
1595 static int dm_lld_busy(struct request_queue *q)
1596 {
1597 	int r;
1598 	struct mapped_device *md = q->queuedata;
1599 	struct dm_table *map = dm_get_table(md);
1600 
1601 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1602 		r = 1;
1603 	else
1604 		r = dm_table_any_busy_target(map);
1605 
1606 	dm_table_put(map);
1607 
1608 	return r;
1609 }
1610 
1611 static void dm_unplug_all(struct request_queue *q)
1612 {
1613 	struct mapped_device *md = q->queuedata;
1614 	struct dm_table *map = dm_get_table(md);
1615 
1616 	if (map) {
1617 		if (dm_request_based(md))
1618 			generic_unplug_device(q);
1619 
1620 		dm_table_unplug_all(map);
1621 		dm_table_put(map);
1622 	}
1623 }
1624 
1625 static int dm_any_congested(void *congested_data, int bdi_bits)
1626 {
1627 	int r = bdi_bits;
1628 	struct mapped_device *md = congested_data;
1629 	struct dm_table *map;
1630 
1631 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1632 		map = dm_get_table(md);
1633 		if (map) {
1634 			/*
1635 			 * Request-based dm cares about only own queue for
1636 			 * the query about congestion status of request_queue
1637 			 */
1638 			if (dm_request_based(md))
1639 				r = md->queue->backing_dev_info.state &
1640 				    bdi_bits;
1641 			else
1642 				r = dm_table_any_congested(map, bdi_bits);
1643 
1644 			dm_table_put(map);
1645 		}
1646 	}
1647 
1648 	return r;
1649 }
1650 
1651 /*-----------------------------------------------------------------
1652  * An IDR is used to keep track of allocated minor numbers.
1653  *---------------------------------------------------------------*/
1654 static DEFINE_IDR(_minor_idr);
1655 
1656 static void free_minor(int minor)
1657 {
1658 	spin_lock(&_minor_lock);
1659 	idr_remove(&_minor_idr, minor);
1660 	spin_unlock(&_minor_lock);
1661 }
1662 
1663 /*
1664  * See if the device with a specific minor # is free.
1665  */
1666 static int specific_minor(int minor)
1667 {
1668 	int r, m;
1669 
1670 	if (minor >= (1 << MINORBITS))
1671 		return -EINVAL;
1672 
1673 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1674 	if (!r)
1675 		return -ENOMEM;
1676 
1677 	spin_lock(&_minor_lock);
1678 
1679 	if (idr_find(&_minor_idr, minor)) {
1680 		r = -EBUSY;
1681 		goto out;
1682 	}
1683 
1684 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1685 	if (r)
1686 		goto out;
1687 
1688 	if (m != minor) {
1689 		idr_remove(&_minor_idr, m);
1690 		r = -EBUSY;
1691 		goto out;
1692 	}
1693 
1694 out:
1695 	spin_unlock(&_minor_lock);
1696 	return r;
1697 }
1698 
1699 static int next_free_minor(int *minor)
1700 {
1701 	int r, m;
1702 
1703 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1704 	if (!r)
1705 		return -ENOMEM;
1706 
1707 	spin_lock(&_minor_lock);
1708 
1709 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1710 	if (r)
1711 		goto out;
1712 
1713 	if (m >= (1 << MINORBITS)) {
1714 		idr_remove(&_minor_idr, m);
1715 		r = -ENOSPC;
1716 		goto out;
1717 	}
1718 
1719 	*minor = m;
1720 
1721 out:
1722 	spin_unlock(&_minor_lock);
1723 	return r;
1724 }
1725 
1726 static const struct block_device_operations dm_blk_dops;
1727 
1728 static void dm_wq_work(struct work_struct *work);
1729 
1730 /*
1731  * Allocate and initialise a blank device with a given minor.
1732  */
1733 static struct mapped_device *alloc_dev(int minor)
1734 {
1735 	int r;
1736 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1737 	void *old_md;
1738 
1739 	if (!md) {
1740 		DMWARN("unable to allocate device, out of memory.");
1741 		return NULL;
1742 	}
1743 
1744 	if (!try_module_get(THIS_MODULE))
1745 		goto bad_module_get;
1746 
1747 	/* get a minor number for the dev */
1748 	if (minor == DM_ANY_MINOR)
1749 		r = next_free_minor(&minor);
1750 	else
1751 		r = specific_minor(minor);
1752 	if (r < 0)
1753 		goto bad_minor;
1754 
1755 	init_rwsem(&md->io_lock);
1756 	mutex_init(&md->suspend_lock);
1757 	spin_lock_init(&md->deferred_lock);
1758 	rwlock_init(&md->map_lock);
1759 	atomic_set(&md->holders, 1);
1760 	atomic_set(&md->open_count, 0);
1761 	atomic_set(&md->event_nr, 0);
1762 	atomic_set(&md->uevent_seq, 0);
1763 	INIT_LIST_HEAD(&md->uevent_list);
1764 	spin_lock_init(&md->uevent_lock);
1765 
1766 	md->queue = blk_init_queue(dm_request_fn, NULL);
1767 	if (!md->queue)
1768 		goto bad_queue;
1769 
1770 	/*
1771 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1772 	 * devices.  The type of this dm device has not been decided yet,
1773 	 * although we initialized the queue using blk_init_queue().
1774 	 * The type is decided at the first table loading time.
1775 	 * To prevent problematic device stacking, clear the queue flag
1776 	 * for request stacking support until then.
1777 	 *
1778 	 * This queue is new, so no concurrency on the queue_flags.
1779 	 */
1780 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1781 	md->saved_make_request_fn = md->queue->make_request_fn;
1782 	md->queue->queuedata = md;
1783 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1784 	md->queue->backing_dev_info.congested_data = md;
1785 	blk_queue_make_request(md->queue, dm_request);
1786 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1787 	md->queue->unplug_fn = dm_unplug_all;
1788 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1789 	blk_queue_softirq_done(md->queue, dm_softirq_done);
1790 	blk_queue_prep_rq(md->queue, dm_prep_fn);
1791 	blk_queue_lld_busy(md->queue, dm_lld_busy);
1792 
1793 	md->disk = alloc_disk(1);
1794 	if (!md->disk)
1795 		goto bad_disk;
1796 
1797 	atomic_set(&md->pending[0], 0);
1798 	atomic_set(&md->pending[1], 0);
1799 	init_waitqueue_head(&md->wait);
1800 	INIT_WORK(&md->work, dm_wq_work);
1801 	init_waitqueue_head(&md->eventq);
1802 
1803 	md->disk->major = _major;
1804 	md->disk->first_minor = minor;
1805 	md->disk->fops = &dm_blk_dops;
1806 	md->disk->queue = md->queue;
1807 	md->disk->private_data = md;
1808 	sprintf(md->disk->disk_name, "dm-%d", minor);
1809 	add_disk(md->disk);
1810 	format_dev_t(md->name, MKDEV(_major, minor));
1811 
1812 	md->wq = create_singlethread_workqueue("kdmflush");
1813 	if (!md->wq)
1814 		goto bad_thread;
1815 
1816 	md->bdev = bdget_disk(md->disk, 0);
1817 	if (!md->bdev)
1818 		goto bad_bdev;
1819 
1820 	/* Populate the mapping, nobody knows we exist yet */
1821 	spin_lock(&_minor_lock);
1822 	old_md = idr_replace(&_minor_idr, md, minor);
1823 	spin_unlock(&_minor_lock);
1824 
1825 	BUG_ON(old_md != MINOR_ALLOCED);
1826 
1827 	return md;
1828 
1829 bad_bdev:
1830 	destroy_workqueue(md->wq);
1831 bad_thread:
1832 	del_gendisk(md->disk);
1833 	put_disk(md->disk);
1834 bad_disk:
1835 	blk_cleanup_queue(md->queue);
1836 bad_queue:
1837 	free_minor(minor);
1838 bad_minor:
1839 	module_put(THIS_MODULE);
1840 bad_module_get:
1841 	kfree(md);
1842 	return NULL;
1843 }
1844 
1845 static void unlock_fs(struct mapped_device *md);
1846 
1847 static void free_dev(struct mapped_device *md)
1848 {
1849 	int minor = MINOR(disk_devt(md->disk));
1850 
1851 	unlock_fs(md);
1852 	bdput(md->bdev);
1853 	destroy_workqueue(md->wq);
1854 	if (md->tio_pool)
1855 		mempool_destroy(md->tio_pool);
1856 	if (md->io_pool)
1857 		mempool_destroy(md->io_pool);
1858 	if (md->bs)
1859 		bioset_free(md->bs);
1860 	blk_integrity_unregister(md->disk);
1861 	del_gendisk(md->disk);
1862 	free_minor(minor);
1863 
1864 	spin_lock(&_minor_lock);
1865 	md->disk->private_data = NULL;
1866 	spin_unlock(&_minor_lock);
1867 
1868 	put_disk(md->disk);
1869 	blk_cleanup_queue(md->queue);
1870 	module_put(THIS_MODULE);
1871 	kfree(md);
1872 }
1873 
1874 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1875 {
1876 	struct dm_md_mempools *p;
1877 
1878 	if (md->io_pool && md->tio_pool && md->bs)
1879 		/* the md already has necessary mempools */
1880 		goto out;
1881 
1882 	p = dm_table_get_md_mempools(t);
1883 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1884 
1885 	md->io_pool = p->io_pool;
1886 	p->io_pool = NULL;
1887 	md->tio_pool = p->tio_pool;
1888 	p->tio_pool = NULL;
1889 	md->bs = p->bs;
1890 	p->bs = NULL;
1891 
1892 out:
1893 	/* mempool bind completed, now no need any mempools in the table */
1894 	dm_table_free_md_mempools(t);
1895 }
1896 
1897 /*
1898  * Bind a table to the device.
1899  */
1900 static void event_callback(void *context)
1901 {
1902 	unsigned long flags;
1903 	LIST_HEAD(uevents);
1904 	struct mapped_device *md = (struct mapped_device *) context;
1905 
1906 	spin_lock_irqsave(&md->uevent_lock, flags);
1907 	list_splice_init(&md->uevent_list, &uevents);
1908 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1909 
1910 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1911 
1912 	atomic_inc(&md->event_nr);
1913 	wake_up(&md->eventq);
1914 }
1915 
1916 static void __set_size(struct mapped_device *md, sector_t size)
1917 {
1918 	set_capacity(md->disk, size);
1919 
1920 	mutex_lock(&md->bdev->bd_inode->i_mutex);
1921 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1922 	mutex_unlock(&md->bdev->bd_inode->i_mutex);
1923 }
1924 
1925 static int __bind(struct mapped_device *md, struct dm_table *t,
1926 		  struct queue_limits *limits)
1927 {
1928 	struct request_queue *q = md->queue;
1929 	sector_t size;
1930 	unsigned long flags;
1931 
1932 	size = dm_table_get_size(t);
1933 
1934 	/*
1935 	 * Wipe any geometry if the size of the table changed.
1936 	 */
1937 	if (size != get_capacity(md->disk))
1938 		memset(&md->geometry, 0, sizeof(md->geometry));
1939 
1940 	__set_size(md, size);
1941 
1942 	if (!size) {
1943 		dm_table_destroy(t);
1944 		return 0;
1945 	}
1946 
1947 	dm_table_event_callback(t, event_callback, md);
1948 
1949 	/*
1950 	 * The queue hasn't been stopped yet, if the old table type wasn't
1951 	 * for request-based during suspension.  So stop it to prevent
1952 	 * I/O mapping before resume.
1953 	 * This must be done before setting the queue restrictions,
1954 	 * because request-based dm may be run just after the setting.
1955 	 */
1956 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
1957 		stop_queue(q);
1958 
1959 	__bind_mempools(md, t);
1960 
1961 	write_lock_irqsave(&md->map_lock, flags);
1962 	md->map = t;
1963 	dm_table_set_restrictions(t, q, limits);
1964 	write_unlock_irqrestore(&md->map_lock, flags);
1965 
1966 	return 0;
1967 }
1968 
1969 static void __unbind(struct mapped_device *md)
1970 {
1971 	struct dm_table *map = md->map;
1972 	unsigned long flags;
1973 
1974 	if (!map)
1975 		return;
1976 
1977 	dm_table_event_callback(map, NULL, NULL);
1978 	write_lock_irqsave(&md->map_lock, flags);
1979 	md->map = NULL;
1980 	write_unlock_irqrestore(&md->map_lock, flags);
1981 	dm_table_destroy(map);
1982 }
1983 
1984 /*
1985  * Constructor for a new device.
1986  */
1987 int dm_create(int minor, struct mapped_device **result)
1988 {
1989 	struct mapped_device *md;
1990 
1991 	md = alloc_dev(minor);
1992 	if (!md)
1993 		return -ENXIO;
1994 
1995 	dm_sysfs_init(md);
1996 
1997 	*result = md;
1998 	return 0;
1999 }
2000 
2001 static struct mapped_device *dm_find_md(dev_t dev)
2002 {
2003 	struct mapped_device *md;
2004 	unsigned minor = MINOR(dev);
2005 
2006 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2007 		return NULL;
2008 
2009 	spin_lock(&_minor_lock);
2010 
2011 	md = idr_find(&_minor_idr, minor);
2012 	if (md && (md == MINOR_ALLOCED ||
2013 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2014 		   test_bit(DMF_FREEING, &md->flags))) {
2015 		md = NULL;
2016 		goto out;
2017 	}
2018 
2019 out:
2020 	spin_unlock(&_minor_lock);
2021 
2022 	return md;
2023 }
2024 
2025 struct mapped_device *dm_get_md(dev_t dev)
2026 {
2027 	struct mapped_device *md = dm_find_md(dev);
2028 
2029 	if (md)
2030 		dm_get(md);
2031 
2032 	return md;
2033 }
2034 
2035 void *dm_get_mdptr(struct mapped_device *md)
2036 {
2037 	return md->interface_ptr;
2038 }
2039 
2040 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2041 {
2042 	md->interface_ptr = ptr;
2043 }
2044 
2045 void dm_get(struct mapped_device *md)
2046 {
2047 	atomic_inc(&md->holders);
2048 }
2049 
2050 const char *dm_device_name(struct mapped_device *md)
2051 {
2052 	return md->name;
2053 }
2054 EXPORT_SYMBOL_GPL(dm_device_name);
2055 
2056 void dm_put(struct mapped_device *md)
2057 {
2058 	struct dm_table *map;
2059 
2060 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2061 
2062 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
2063 		map = dm_get_table(md);
2064 		idr_replace(&_minor_idr, MINOR_ALLOCED,
2065 			    MINOR(disk_devt(dm_disk(md))));
2066 		set_bit(DMF_FREEING, &md->flags);
2067 		spin_unlock(&_minor_lock);
2068 		if (!dm_suspended(md)) {
2069 			dm_table_presuspend_targets(map);
2070 			dm_table_postsuspend_targets(map);
2071 		}
2072 		dm_sysfs_exit(md);
2073 		dm_table_put(map);
2074 		__unbind(md);
2075 		free_dev(md);
2076 	}
2077 }
2078 EXPORT_SYMBOL_GPL(dm_put);
2079 
2080 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2081 {
2082 	int r = 0;
2083 	DECLARE_WAITQUEUE(wait, current);
2084 
2085 	dm_unplug_all(md->queue);
2086 
2087 	add_wait_queue(&md->wait, &wait);
2088 
2089 	while (1) {
2090 		set_current_state(interruptible);
2091 
2092 		smp_mb();
2093 		if (!md_in_flight(md))
2094 			break;
2095 
2096 		if (interruptible == TASK_INTERRUPTIBLE &&
2097 		    signal_pending(current)) {
2098 			r = -EINTR;
2099 			break;
2100 		}
2101 
2102 		io_schedule();
2103 	}
2104 	set_current_state(TASK_RUNNING);
2105 
2106 	remove_wait_queue(&md->wait, &wait);
2107 
2108 	return r;
2109 }
2110 
2111 static void dm_flush(struct mapped_device *md)
2112 {
2113 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2114 
2115 	bio_init(&md->barrier_bio);
2116 	md->barrier_bio.bi_bdev = md->bdev;
2117 	md->barrier_bio.bi_rw = WRITE_BARRIER;
2118 	__split_and_process_bio(md, &md->barrier_bio);
2119 
2120 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2121 }
2122 
2123 static void process_barrier(struct mapped_device *md, struct bio *bio)
2124 {
2125 	md->barrier_error = 0;
2126 
2127 	dm_flush(md);
2128 
2129 	if (!bio_empty_barrier(bio)) {
2130 		__split_and_process_bio(md, bio);
2131 		dm_flush(md);
2132 	}
2133 
2134 	if (md->barrier_error != DM_ENDIO_REQUEUE)
2135 		bio_endio(bio, md->barrier_error);
2136 	else {
2137 		spin_lock_irq(&md->deferred_lock);
2138 		bio_list_add_head(&md->deferred, bio);
2139 		spin_unlock_irq(&md->deferred_lock);
2140 	}
2141 }
2142 
2143 /*
2144  * Process the deferred bios
2145  */
2146 static void dm_wq_work(struct work_struct *work)
2147 {
2148 	struct mapped_device *md = container_of(work, struct mapped_device,
2149 						work);
2150 	struct bio *c;
2151 
2152 	down_write(&md->io_lock);
2153 
2154 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2155 		spin_lock_irq(&md->deferred_lock);
2156 		c = bio_list_pop(&md->deferred);
2157 		spin_unlock_irq(&md->deferred_lock);
2158 
2159 		if (!c) {
2160 			clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2161 			break;
2162 		}
2163 
2164 		up_write(&md->io_lock);
2165 
2166 		if (dm_request_based(md))
2167 			generic_make_request(c);
2168 		else {
2169 			if (bio_rw_flagged(c, BIO_RW_BARRIER))
2170 				process_barrier(md, c);
2171 			else
2172 				__split_and_process_bio(md, c);
2173 		}
2174 
2175 		down_write(&md->io_lock);
2176 	}
2177 
2178 	up_write(&md->io_lock);
2179 }
2180 
2181 static void dm_queue_flush(struct mapped_device *md)
2182 {
2183 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2184 	smp_mb__after_clear_bit();
2185 	queue_work(md->wq, &md->work);
2186 }
2187 
2188 /*
2189  * Swap in a new table (destroying old one).
2190  */
2191 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
2192 {
2193 	struct queue_limits limits;
2194 	int r = -EINVAL;
2195 
2196 	mutex_lock(&md->suspend_lock);
2197 
2198 	/* device must be suspended */
2199 	if (!dm_suspended(md))
2200 		goto out;
2201 
2202 	r = dm_calculate_queue_limits(table, &limits);
2203 	if (r)
2204 		goto out;
2205 
2206 	/* cannot change the device type, once a table is bound */
2207 	if (md->map &&
2208 	    (dm_table_get_type(md->map) != dm_table_get_type(table))) {
2209 		DMWARN("can't change the device type after a table is bound");
2210 		goto out;
2211 	}
2212 
2213 	__unbind(md);
2214 	r = __bind(md, table, &limits);
2215 
2216 out:
2217 	mutex_unlock(&md->suspend_lock);
2218 	return r;
2219 }
2220 
2221 /*
2222  * Functions to lock and unlock any filesystem running on the
2223  * device.
2224  */
2225 static int lock_fs(struct mapped_device *md)
2226 {
2227 	int r;
2228 
2229 	WARN_ON(md->frozen_sb);
2230 
2231 	md->frozen_sb = freeze_bdev(md->bdev);
2232 	if (IS_ERR(md->frozen_sb)) {
2233 		r = PTR_ERR(md->frozen_sb);
2234 		md->frozen_sb = NULL;
2235 		return r;
2236 	}
2237 
2238 	set_bit(DMF_FROZEN, &md->flags);
2239 
2240 	return 0;
2241 }
2242 
2243 static void unlock_fs(struct mapped_device *md)
2244 {
2245 	if (!test_bit(DMF_FROZEN, &md->flags))
2246 		return;
2247 
2248 	thaw_bdev(md->bdev, md->frozen_sb);
2249 	md->frozen_sb = NULL;
2250 	clear_bit(DMF_FROZEN, &md->flags);
2251 }
2252 
2253 /*
2254  * We need to be able to change a mapping table under a mounted
2255  * filesystem.  For example we might want to move some data in
2256  * the background.  Before the table can be swapped with
2257  * dm_bind_table, dm_suspend must be called to flush any in
2258  * flight bios and ensure that any further io gets deferred.
2259  */
2260 /*
2261  * Suspend mechanism in request-based dm.
2262  *
2263  * 1. Flush all I/Os by lock_fs() if needed.
2264  * 2. Stop dispatching any I/O by stopping the request_queue.
2265  * 3. Wait for all in-flight I/Os to be completed or requeued.
2266  *
2267  * To abort suspend, start the request_queue.
2268  */
2269 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2270 {
2271 	struct dm_table *map = NULL;
2272 	int r = 0;
2273 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2274 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2275 
2276 	mutex_lock(&md->suspend_lock);
2277 
2278 	if (dm_suspended(md)) {
2279 		r = -EINVAL;
2280 		goto out_unlock;
2281 	}
2282 
2283 	map = dm_get_table(md);
2284 
2285 	/*
2286 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2287 	 * This flag is cleared before dm_suspend returns.
2288 	 */
2289 	if (noflush)
2290 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2291 
2292 	/* This does not get reverted if there's an error later. */
2293 	dm_table_presuspend_targets(map);
2294 
2295 	/*
2296 	 * Flush I/O to the device.
2297 	 * Any I/O submitted after lock_fs() may not be flushed.
2298 	 * noflush takes precedence over do_lockfs.
2299 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2300 	 */
2301 	if (!noflush && do_lockfs) {
2302 		r = lock_fs(md);
2303 		if (r)
2304 			goto out;
2305 	}
2306 
2307 	/*
2308 	 * Here we must make sure that no processes are submitting requests
2309 	 * to target drivers i.e. no one may be executing
2310 	 * __split_and_process_bio. This is called from dm_request and
2311 	 * dm_wq_work.
2312 	 *
2313 	 * To get all processes out of __split_and_process_bio in dm_request,
2314 	 * we take the write lock. To prevent any process from reentering
2315 	 * __split_and_process_bio from dm_request, we set
2316 	 * DMF_QUEUE_IO_TO_THREAD.
2317 	 *
2318 	 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
2319 	 * and call flush_workqueue(md->wq). flush_workqueue will wait until
2320 	 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
2321 	 * further calls to __split_and_process_bio from dm_wq_work.
2322 	 */
2323 	down_write(&md->io_lock);
2324 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2325 	set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2326 	up_write(&md->io_lock);
2327 
2328 	flush_workqueue(md->wq);
2329 
2330 	if (dm_request_based(md))
2331 		stop_queue(md->queue);
2332 
2333 	/*
2334 	 * At this point no more requests are entering target request routines.
2335 	 * We call dm_wait_for_completion to wait for all existing requests
2336 	 * to finish.
2337 	 */
2338 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2339 
2340 	down_write(&md->io_lock);
2341 	if (noflush)
2342 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2343 	up_write(&md->io_lock);
2344 
2345 	/* were we interrupted ? */
2346 	if (r < 0) {
2347 		dm_queue_flush(md);
2348 
2349 		if (dm_request_based(md))
2350 			start_queue(md->queue);
2351 
2352 		unlock_fs(md);
2353 		goto out; /* pushback list is already flushed, so skip flush */
2354 	}
2355 
2356 	/*
2357 	 * If dm_wait_for_completion returned 0, the device is completely
2358 	 * quiescent now. There is no request-processing activity. All new
2359 	 * requests are being added to md->deferred list.
2360 	 */
2361 
2362 	dm_table_postsuspend_targets(map);
2363 
2364 	set_bit(DMF_SUSPENDED, &md->flags);
2365 
2366 out:
2367 	dm_table_put(map);
2368 
2369 out_unlock:
2370 	mutex_unlock(&md->suspend_lock);
2371 	return r;
2372 }
2373 
2374 int dm_resume(struct mapped_device *md)
2375 {
2376 	int r = -EINVAL;
2377 	struct dm_table *map = NULL;
2378 
2379 	mutex_lock(&md->suspend_lock);
2380 	if (!dm_suspended(md))
2381 		goto out;
2382 
2383 	map = dm_get_table(md);
2384 	if (!map || !dm_table_get_size(map))
2385 		goto out;
2386 
2387 	r = dm_table_resume_targets(map);
2388 	if (r)
2389 		goto out;
2390 
2391 	dm_queue_flush(md);
2392 
2393 	/*
2394 	 * Flushing deferred I/Os must be done after targets are resumed
2395 	 * so that mapping of targets can work correctly.
2396 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2397 	 */
2398 	if (dm_request_based(md))
2399 		start_queue(md->queue);
2400 
2401 	unlock_fs(md);
2402 
2403 	clear_bit(DMF_SUSPENDED, &md->flags);
2404 
2405 	dm_table_unplug_all(map);
2406 	r = 0;
2407 out:
2408 	dm_table_put(map);
2409 	mutex_unlock(&md->suspend_lock);
2410 
2411 	return r;
2412 }
2413 
2414 /*-----------------------------------------------------------------
2415  * Event notification.
2416  *---------------------------------------------------------------*/
2417 void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2418 		       unsigned cookie)
2419 {
2420 	char udev_cookie[DM_COOKIE_LENGTH];
2421 	char *envp[] = { udev_cookie, NULL };
2422 
2423 	if (!cookie)
2424 		kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2425 	else {
2426 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2427 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2428 		kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2429 	}
2430 }
2431 
2432 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2433 {
2434 	return atomic_add_return(1, &md->uevent_seq);
2435 }
2436 
2437 uint32_t dm_get_event_nr(struct mapped_device *md)
2438 {
2439 	return atomic_read(&md->event_nr);
2440 }
2441 
2442 int dm_wait_event(struct mapped_device *md, int event_nr)
2443 {
2444 	return wait_event_interruptible(md->eventq,
2445 			(event_nr != atomic_read(&md->event_nr)));
2446 }
2447 
2448 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2449 {
2450 	unsigned long flags;
2451 
2452 	spin_lock_irqsave(&md->uevent_lock, flags);
2453 	list_add(elist, &md->uevent_list);
2454 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2455 }
2456 
2457 /*
2458  * The gendisk is only valid as long as you have a reference
2459  * count on 'md'.
2460  */
2461 struct gendisk *dm_disk(struct mapped_device *md)
2462 {
2463 	return md->disk;
2464 }
2465 
2466 struct kobject *dm_kobject(struct mapped_device *md)
2467 {
2468 	return &md->kobj;
2469 }
2470 
2471 /*
2472  * struct mapped_device should not be exported outside of dm.c
2473  * so use this check to verify that kobj is part of md structure
2474  */
2475 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2476 {
2477 	struct mapped_device *md;
2478 
2479 	md = container_of(kobj, struct mapped_device, kobj);
2480 	if (&md->kobj != kobj)
2481 		return NULL;
2482 
2483 	if (test_bit(DMF_FREEING, &md->flags) ||
2484 	    test_bit(DMF_DELETING, &md->flags))
2485 		return NULL;
2486 
2487 	dm_get(md);
2488 	return md;
2489 }
2490 
2491 int dm_suspended(struct mapped_device *md)
2492 {
2493 	return test_bit(DMF_SUSPENDED, &md->flags);
2494 }
2495 
2496 int dm_noflush_suspending(struct dm_target *ti)
2497 {
2498 	struct mapped_device *md = dm_table_get_md(ti->table);
2499 	int r = __noflush_suspending(md);
2500 
2501 	dm_put(md);
2502 
2503 	return r;
2504 }
2505 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2506 
2507 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2508 {
2509 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2510 
2511 	if (!pools)
2512 		return NULL;
2513 
2514 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2515 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2516 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2517 	if (!pools->io_pool)
2518 		goto free_pools_and_out;
2519 
2520 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2521 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2522 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2523 	if (!pools->tio_pool)
2524 		goto free_io_pool_and_out;
2525 
2526 	pools->bs = (type == DM_TYPE_BIO_BASED) ?
2527 		    bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2528 	if (!pools->bs)
2529 		goto free_tio_pool_and_out;
2530 
2531 	return pools;
2532 
2533 free_tio_pool_and_out:
2534 	mempool_destroy(pools->tio_pool);
2535 
2536 free_io_pool_and_out:
2537 	mempool_destroy(pools->io_pool);
2538 
2539 free_pools_and_out:
2540 	kfree(pools);
2541 
2542 	return NULL;
2543 }
2544 
2545 void dm_free_md_mempools(struct dm_md_mempools *pools)
2546 {
2547 	if (!pools)
2548 		return;
2549 
2550 	if (pools->io_pool)
2551 		mempool_destroy(pools->io_pool);
2552 
2553 	if (pools->tio_pool)
2554 		mempool_destroy(pools->tio_pool);
2555 
2556 	if (pools->bs)
2557 		bioset_free(pools->bs);
2558 
2559 	kfree(pools);
2560 }
2561 
2562 static const struct block_device_operations dm_blk_dops = {
2563 	.open = dm_blk_open,
2564 	.release = dm_blk_close,
2565 	.ioctl = dm_blk_ioctl,
2566 	.getgeo = dm_blk_getgeo,
2567 	.owner = THIS_MODULE
2568 };
2569 
2570 EXPORT_SYMBOL(dm_get_mapinfo);
2571 
2572 /*
2573  * module hooks
2574  */
2575 module_init(dm_init);
2576 module_exit(dm_exit);
2577 
2578 module_param(major, uint, 0);
2579 MODULE_PARM_DESC(major, "The major number of the device mapper");
2580 MODULE_DESCRIPTION(DM_NAME " driver");
2581 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2582 MODULE_LICENSE("GPL");
2583