1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/buffer_head.h> 18 #include <linux/mempool.h> 19 #include <linux/slab.h> 20 #include <linux/idr.h> 21 #include <linux/hdreg.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 /* 28 * Cookies are numeric values sent with CHANGE and REMOVE 29 * uevents while resuming, removing or renaming the device. 30 */ 31 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 32 #define DM_COOKIE_LENGTH 24 33 34 static const char *_name = DM_NAME; 35 36 static unsigned int major = 0; 37 static unsigned int _major = 0; 38 39 static DEFINE_SPINLOCK(_minor_lock); 40 /* 41 * For bio-based dm. 42 * One of these is allocated per bio. 43 */ 44 struct dm_io { 45 struct mapped_device *md; 46 int error; 47 atomic_t io_count; 48 struct bio *bio; 49 unsigned long start_time; 50 spinlock_t endio_lock; 51 }; 52 53 /* 54 * For bio-based dm. 55 * One of these is allocated per target within a bio. Hopefully 56 * this will be simplified out one day. 57 */ 58 struct dm_target_io { 59 struct dm_io *io; 60 struct dm_target *ti; 61 union map_info info; 62 }; 63 64 /* 65 * For request-based dm. 66 * One of these is allocated per request. 67 */ 68 struct dm_rq_target_io { 69 struct mapped_device *md; 70 struct dm_target *ti; 71 struct request *orig, clone; 72 int error; 73 union map_info info; 74 }; 75 76 /* 77 * For request-based dm. 78 * One of these is allocated per bio. 79 */ 80 struct dm_rq_clone_bio_info { 81 struct bio *orig; 82 struct dm_rq_target_io *tio; 83 }; 84 85 union map_info *dm_get_mapinfo(struct bio *bio) 86 { 87 if (bio && bio->bi_private) 88 return &((struct dm_target_io *)bio->bi_private)->info; 89 return NULL; 90 } 91 92 union map_info *dm_get_rq_mapinfo(struct request *rq) 93 { 94 if (rq && rq->end_io_data) 95 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 96 return NULL; 97 } 98 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 99 100 #define MINOR_ALLOCED ((void *)-1) 101 102 /* 103 * Bits for the md->flags field. 104 */ 105 #define DMF_BLOCK_IO_FOR_SUSPEND 0 106 #define DMF_SUSPENDED 1 107 #define DMF_FROZEN 2 108 #define DMF_FREEING 3 109 #define DMF_DELETING 4 110 #define DMF_NOFLUSH_SUSPENDING 5 111 #define DMF_QUEUE_IO_TO_THREAD 6 112 113 /* 114 * Work processed by per-device workqueue. 115 */ 116 struct mapped_device { 117 struct rw_semaphore io_lock; 118 struct mutex suspend_lock; 119 rwlock_t map_lock; 120 atomic_t holders; 121 atomic_t open_count; 122 123 unsigned long flags; 124 125 struct request_queue *queue; 126 struct gendisk *disk; 127 char name[16]; 128 129 void *interface_ptr; 130 131 /* 132 * A list of ios that arrived while we were suspended. 133 */ 134 atomic_t pending[2]; 135 wait_queue_head_t wait; 136 struct work_struct work; 137 struct bio_list deferred; 138 spinlock_t deferred_lock; 139 140 /* 141 * An error from the barrier request currently being processed. 142 */ 143 int barrier_error; 144 145 /* 146 * Processing queue (flush/barriers) 147 */ 148 struct workqueue_struct *wq; 149 150 /* 151 * The current mapping. 152 */ 153 struct dm_table *map; 154 155 /* 156 * io objects are allocated from here. 157 */ 158 mempool_t *io_pool; 159 mempool_t *tio_pool; 160 161 struct bio_set *bs; 162 163 /* 164 * Event handling. 165 */ 166 atomic_t event_nr; 167 wait_queue_head_t eventq; 168 atomic_t uevent_seq; 169 struct list_head uevent_list; 170 spinlock_t uevent_lock; /* Protect access to uevent_list */ 171 172 /* 173 * freeze/thaw support require holding onto a super block 174 */ 175 struct super_block *frozen_sb; 176 struct block_device *bdev; 177 178 /* forced geometry settings */ 179 struct hd_geometry geometry; 180 181 /* For saving the address of __make_request for request based dm */ 182 make_request_fn *saved_make_request_fn; 183 184 /* sysfs handle */ 185 struct kobject kobj; 186 187 /* zero-length barrier that will be cloned and submitted to targets */ 188 struct bio barrier_bio; 189 }; 190 191 /* 192 * For mempools pre-allocation at the table loading time. 193 */ 194 struct dm_md_mempools { 195 mempool_t *io_pool; 196 mempool_t *tio_pool; 197 struct bio_set *bs; 198 }; 199 200 #define MIN_IOS 256 201 static struct kmem_cache *_io_cache; 202 static struct kmem_cache *_tio_cache; 203 static struct kmem_cache *_rq_tio_cache; 204 static struct kmem_cache *_rq_bio_info_cache; 205 206 static int __init local_init(void) 207 { 208 int r = -ENOMEM; 209 210 /* allocate a slab for the dm_ios */ 211 _io_cache = KMEM_CACHE(dm_io, 0); 212 if (!_io_cache) 213 return r; 214 215 /* allocate a slab for the target ios */ 216 _tio_cache = KMEM_CACHE(dm_target_io, 0); 217 if (!_tio_cache) 218 goto out_free_io_cache; 219 220 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 221 if (!_rq_tio_cache) 222 goto out_free_tio_cache; 223 224 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0); 225 if (!_rq_bio_info_cache) 226 goto out_free_rq_tio_cache; 227 228 r = dm_uevent_init(); 229 if (r) 230 goto out_free_rq_bio_info_cache; 231 232 _major = major; 233 r = register_blkdev(_major, _name); 234 if (r < 0) 235 goto out_uevent_exit; 236 237 if (!_major) 238 _major = r; 239 240 return 0; 241 242 out_uevent_exit: 243 dm_uevent_exit(); 244 out_free_rq_bio_info_cache: 245 kmem_cache_destroy(_rq_bio_info_cache); 246 out_free_rq_tio_cache: 247 kmem_cache_destroy(_rq_tio_cache); 248 out_free_tio_cache: 249 kmem_cache_destroy(_tio_cache); 250 out_free_io_cache: 251 kmem_cache_destroy(_io_cache); 252 253 return r; 254 } 255 256 static void local_exit(void) 257 { 258 kmem_cache_destroy(_rq_bio_info_cache); 259 kmem_cache_destroy(_rq_tio_cache); 260 kmem_cache_destroy(_tio_cache); 261 kmem_cache_destroy(_io_cache); 262 unregister_blkdev(_major, _name); 263 dm_uevent_exit(); 264 265 _major = 0; 266 267 DMINFO("cleaned up"); 268 } 269 270 static int (*_inits[])(void) __initdata = { 271 local_init, 272 dm_target_init, 273 dm_linear_init, 274 dm_stripe_init, 275 dm_io_init, 276 dm_kcopyd_init, 277 dm_interface_init, 278 }; 279 280 static void (*_exits[])(void) = { 281 local_exit, 282 dm_target_exit, 283 dm_linear_exit, 284 dm_stripe_exit, 285 dm_io_exit, 286 dm_kcopyd_exit, 287 dm_interface_exit, 288 }; 289 290 static int __init dm_init(void) 291 { 292 const int count = ARRAY_SIZE(_inits); 293 294 int r, i; 295 296 for (i = 0; i < count; i++) { 297 r = _inits[i](); 298 if (r) 299 goto bad; 300 } 301 302 return 0; 303 304 bad: 305 while (i--) 306 _exits[i](); 307 308 return r; 309 } 310 311 static void __exit dm_exit(void) 312 { 313 int i = ARRAY_SIZE(_exits); 314 315 while (i--) 316 _exits[i](); 317 } 318 319 /* 320 * Block device functions 321 */ 322 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 323 { 324 struct mapped_device *md; 325 326 spin_lock(&_minor_lock); 327 328 md = bdev->bd_disk->private_data; 329 if (!md) 330 goto out; 331 332 if (test_bit(DMF_FREEING, &md->flags) || 333 test_bit(DMF_DELETING, &md->flags)) { 334 md = NULL; 335 goto out; 336 } 337 338 dm_get(md); 339 atomic_inc(&md->open_count); 340 341 out: 342 spin_unlock(&_minor_lock); 343 344 return md ? 0 : -ENXIO; 345 } 346 347 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 348 { 349 struct mapped_device *md = disk->private_data; 350 atomic_dec(&md->open_count); 351 dm_put(md); 352 return 0; 353 } 354 355 int dm_open_count(struct mapped_device *md) 356 { 357 return atomic_read(&md->open_count); 358 } 359 360 /* 361 * Guarantees nothing is using the device before it's deleted. 362 */ 363 int dm_lock_for_deletion(struct mapped_device *md) 364 { 365 int r = 0; 366 367 spin_lock(&_minor_lock); 368 369 if (dm_open_count(md)) 370 r = -EBUSY; 371 else 372 set_bit(DMF_DELETING, &md->flags); 373 374 spin_unlock(&_minor_lock); 375 376 return r; 377 } 378 379 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 380 { 381 struct mapped_device *md = bdev->bd_disk->private_data; 382 383 return dm_get_geometry(md, geo); 384 } 385 386 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 387 unsigned int cmd, unsigned long arg) 388 { 389 struct mapped_device *md = bdev->bd_disk->private_data; 390 struct dm_table *map = dm_get_table(md); 391 struct dm_target *tgt; 392 int r = -ENOTTY; 393 394 if (!map || !dm_table_get_size(map)) 395 goto out; 396 397 /* We only support devices that have a single target */ 398 if (dm_table_get_num_targets(map) != 1) 399 goto out; 400 401 tgt = dm_table_get_target(map, 0); 402 403 if (dm_suspended(md)) { 404 r = -EAGAIN; 405 goto out; 406 } 407 408 if (tgt->type->ioctl) 409 r = tgt->type->ioctl(tgt, cmd, arg); 410 411 out: 412 dm_table_put(map); 413 414 return r; 415 } 416 417 static struct dm_io *alloc_io(struct mapped_device *md) 418 { 419 return mempool_alloc(md->io_pool, GFP_NOIO); 420 } 421 422 static void free_io(struct mapped_device *md, struct dm_io *io) 423 { 424 mempool_free(io, md->io_pool); 425 } 426 427 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 428 { 429 mempool_free(tio, md->tio_pool); 430 } 431 432 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 433 gfp_t gfp_mask) 434 { 435 return mempool_alloc(md->tio_pool, gfp_mask); 436 } 437 438 static void free_rq_tio(struct dm_rq_target_io *tio) 439 { 440 mempool_free(tio, tio->md->tio_pool); 441 } 442 443 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md) 444 { 445 return mempool_alloc(md->io_pool, GFP_ATOMIC); 446 } 447 448 static void free_bio_info(struct dm_rq_clone_bio_info *info) 449 { 450 mempool_free(info, info->tio->md->io_pool); 451 } 452 453 static int md_in_flight(struct mapped_device *md) 454 { 455 return atomic_read(&md->pending[READ]) + 456 atomic_read(&md->pending[WRITE]); 457 } 458 459 static void start_io_acct(struct dm_io *io) 460 { 461 struct mapped_device *md = io->md; 462 int cpu; 463 int rw = bio_data_dir(io->bio); 464 465 io->start_time = jiffies; 466 467 cpu = part_stat_lock(); 468 part_round_stats(cpu, &dm_disk(md)->part0); 469 part_stat_unlock(); 470 dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]); 471 } 472 473 static void end_io_acct(struct dm_io *io) 474 { 475 struct mapped_device *md = io->md; 476 struct bio *bio = io->bio; 477 unsigned long duration = jiffies - io->start_time; 478 int pending, cpu; 479 int rw = bio_data_dir(bio); 480 481 cpu = part_stat_lock(); 482 part_round_stats(cpu, &dm_disk(md)->part0); 483 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 484 part_stat_unlock(); 485 486 /* 487 * After this is decremented the bio must not be touched if it is 488 * a barrier. 489 */ 490 dm_disk(md)->part0.in_flight[rw] = pending = 491 atomic_dec_return(&md->pending[rw]); 492 pending += atomic_read(&md->pending[rw^0x1]); 493 494 /* nudge anyone waiting on suspend queue */ 495 if (!pending) 496 wake_up(&md->wait); 497 } 498 499 /* 500 * Add the bio to the list of deferred io. 501 */ 502 static void queue_io(struct mapped_device *md, struct bio *bio) 503 { 504 down_write(&md->io_lock); 505 506 spin_lock_irq(&md->deferred_lock); 507 bio_list_add(&md->deferred, bio); 508 spin_unlock_irq(&md->deferred_lock); 509 510 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) 511 queue_work(md->wq, &md->work); 512 513 up_write(&md->io_lock); 514 } 515 516 /* 517 * Everyone (including functions in this file), should use this 518 * function to access the md->map field, and make sure they call 519 * dm_table_put() when finished. 520 */ 521 struct dm_table *dm_get_table(struct mapped_device *md) 522 { 523 struct dm_table *t; 524 unsigned long flags; 525 526 read_lock_irqsave(&md->map_lock, flags); 527 t = md->map; 528 if (t) 529 dm_table_get(t); 530 read_unlock_irqrestore(&md->map_lock, flags); 531 532 return t; 533 } 534 535 /* 536 * Get the geometry associated with a dm device 537 */ 538 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 539 { 540 *geo = md->geometry; 541 542 return 0; 543 } 544 545 /* 546 * Set the geometry of a device. 547 */ 548 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 549 { 550 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 551 552 if (geo->start > sz) { 553 DMWARN("Start sector is beyond the geometry limits."); 554 return -EINVAL; 555 } 556 557 md->geometry = *geo; 558 559 return 0; 560 } 561 562 /*----------------------------------------------------------------- 563 * CRUD START: 564 * A more elegant soln is in the works that uses the queue 565 * merge fn, unfortunately there are a couple of changes to 566 * the block layer that I want to make for this. So in the 567 * interests of getting something for people to use I give 568 * you this clearly demarcated crap. 569 *---------------------------------------------------------------*/ 570 571 static int __noflush_suspending(struct mapped_device *md) 572 { 573 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 574 } 575 576 /* 577 * Decrements the number of outstanding ios that a bio has been 578 * cloned into, completing the original io if necc. 579 */ 580 static void dec_pending(struct dm_io *io, int error) 581 { 582 unsigned long flags; 583 int io_error; 584 struct bio *bio; 585 struct mapped_device *md = io->md; 586 587 /* Push-back supersedes any I/O errors */ 588 if (unlikely(error)) { 589 spin_lock_irqsave(&io->endio_lock, flags); 590 if (!(io->error > 0 && __noflush_suspending(md))) 591 io->error = error; 592 spin_unlock_irqrestore(&io->endio_lock, flags); 593 } 594 595 if (atomic_dec_and_test(&io->io_count)) { 596 if (io->error == DM_ENDIO_REQUEUE) { 597 /* 598 * Target requested pushing back the I/O. 599 */ 600 spin_lock_irqsave(&md->deferred_lock, flags); 601 if (__noflush_suspending(md)) { 602 if (!bio_rw_flagged(io->bio, BIO_RW_BARRIER)) 603 bio_list_add_head(&md->deferred, 604 io->bio); 605 } else 606 /* noflush suspend was interrupted. */ 607 io->error = -EIO; 608 spin_unlock_irqrestore(&md->deferred_lock, flags); 609 } 610 611 io_error = io->error; 612 bio = io->bio; 613 614 if (bio_rw_flagged(bio, BIO_RW_BARRIER)) { 615 /* 616 * There can be just one barrier request so we use 617 * a per-device variable for error reporting. 618 * Note that you can't touch the bio after end_io_acct 619 */ 620 if (!md->barrier_error && io_error != -EOPNOTSUPP) 621 md->barrier_error = io_error; 622 end_io_acct(io); 623 } else { 624 end_io_acct(io); 625 626 if (io_error != DM_ENDIO_REQUEUE) { 627 trace_block_bio_complete(md->queue, bio); 628 629 bio_endio(bio, io_error); 630 } 631 } 632 633 free_io(md, io); 634 } 635 } 636 637 static void clone_endio(struct bio *bio, int error) 638 { 639 int r = 0; 640 struct dm_target_io *tio = bio->bi_private; 641 struct dm_io *io = tio->io; 642 struct mapped_device *md = tio->io->md; 643 dm_endio_fn endio = tio->ti->type->end_io; 644 645 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 646 error = -EIO; 647 648 if (endio) { 649 r = endio(tio->ti, bio, error, &tio->info); 650 if (r < 0 || r == DM_ENDIO_REQUEUE) 651 /* 652 * error and requeue request are handled 653 * in dec_pending(). 654 */ 655 error = r; 656 else if (r == DM_ENDIO_INCOMPLETE) 657 /* The target will handle the io */ 658 return; 659 else if (r) { 660 DMWARN("unimplemented target endio return value: %d", r); 661 BUG(); 662 } 663 } 664 665 /* 666 * Store md for cleanup instead of tio which is about to get freed. 667 */ 668 bio->bi_private = md->bs; 669 670 free_tio(md, tio); 671 bio_put(bio); 672 dec_pending(io, error); 673 } 674 675 /* 676 * Partial completion handling for request-based dm 677 */ 678 static void end_clone_bio(struct bio *clone, int error) 679 { 680 struct dm_rq_clone_bio_info *info = clone->bi_private; 681 struct dm_rq_target_io *tio = info->tio; 682 struct bio *bio = info->orig; 683 unsigned int nr_bytes = info->orig->bi_size; 684 685 bio_put(clone); 686 687 if (tio->error) 688 /* 689 * An error has already been detected on the request. 690 * Once error occurred, just let clone->end_io() handle 691 * the remainder. 692 */ 693 return; 694 else if (error) { 695 /* 696 * Don't notice the error to the upper layer yet. 697 * The error handling decision is made by the target driver, 698 * when the request is completed. 699 */ 700 tio->error = error; 701 return; 702 } 703 704 /* 705 * I/O for the bio successfully completed. 706 * Notice the data completion to the upper layer. 707 */ 708 709 /* 710 * bios are processed from the head of the list. 711 * So the completing bio should always be rq->bio. 712 * If it's not, something wrong is happening. 713 */ 714 if (tio->orig->bio != bio) 715 DMERR("bio completion is going in the middle of the request"); 716 717 /* 718 * Update the original request. 719 * Do not use blk_end_request() here, because it may complete 720 * the original request before the clone, and break the ordering. 721 */ 722 blk_update_request(tio->orig, 0, nr_bytes); 723 } 724 725 /* 726 * Don't touch any member of the md after calling this function because 727 * the md may be freed in dm_put() at the end of this function. 728 * Or do dm_get() before calling this function and dm_put() later. 729 */ 730 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 731 { 732 atomic_dec(&md->pending[rw]); 733 734 /* nudge anyone waiting on suspend queue */ 735 if (!md_in_flight(md)) 736 wake_up(&md->wait); 737 738 if (run_queue) 739 blk_run_queue(md->queue); 740 741 /* 742 * dm_put() must be at the end of this function. See the comment above 743 */ 744 dm_put(md); 745 } 746 747 static void free_rq_clone(struct request *clone) 748 { 749 struct dm_rq_target_io *tio = clone->end_io_data; 750 751 blk_rq_unprep_clone(clone); 752 free_rq_tio(tio); 753 } 754 755 static void dm_unprep_request(struct request *rq) 756 { 757 struct request *clone = rq->special; 758 759 rq->special = NULL; 760 rq->cmd_flags &= ~REQ_DONTPREP; 761 762 free_rq_clone(clone); 763 } 764 765 /* 766 * Requeue the original request of a clone. 767 */ 768 void dm_requeue_unmapped_request(struct request *clone) 769 { 770 int rw = rq_data_dir(clone); 771 struct dm_rq_target_io *tio = clone->end_io_data; 772 struct mapped_device *md = tio->md; 773 struct request *rq = tio->orig; 774 struct request_queue *q = rq->q; 775 unsigned long flags; 776 777 dm_unprep_request(rq); 778 779 spin_lock_irqsave(q->queue_lock, flags); 780 if (elv_queue_empty(q)) 781 blk_plug_device(q); 782 blk_requeue_request(q, rq); 783 spin_unlock_irqrestore(q->queue_lock, flags); 784 785 rq_completed(md, rw, 0); 786 } 787 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 788 789 static void __stop_queue(struct request_queue *q) 790 { 791 blk_stop_queue(q); 792 } 793 794 static void stop_queue(struct request_queue *q) 795 { 796 unsigned long flags; 797 798 spin_lock_irqsave(q->queue_lock, flags); 799 __stop_queue(q); 800 spin_unlock_irqrestore(q->queue_lock, flags); 801 } 802 803 static void __start_queue(struct request_queue *q) 804 { 805 if (blk_queue_stopped(q)) 806 blk_start_queue(q); 807 } 808 809 static void start_queue(struct request_queue *q) 810 { 811 unsigned long flags; 812 813 spin_lock_irqsave(q->queue_lock, flags); 814 __start_queue(q); 815 spin_unlock_irqrestore(q->queue_lock, flags); 816 } 817 818 /* 819 * Complete the clone and the original request. 820 * Must be called without queue lock. 821 */ 822 static void dm_end_request(struct request *clone, int error) 823 { 824 int rw = rq_data_dir(clone); 825 struct dm_rq_target_io *tio = clone->end_io_data; 826 struct mapped_device *md = tio->md; 827 struct request *rq = tio->orig; 828 829 if (blk_pc_request(rq)) { 830 rq->errors = clone->errors; 831 rq->resid_len = clone->resid_len; 832 833 if (rq->sense) 834 /* 835 * We are using the sense buffer of the original 836 * request. 837 * So setting the length of the sense data is enough. 838 */ 839 rq->sense_len = clone->sense_len; 840 } 841 842 free_rq_clone(clone); 843 844 blk_end_request_all(rq, error); 845 846 rq_completed(md, rw, 1); 847 } 848 849 static void dm_done(struct request *clone, int error, bool mapped) 850 { 851 int r = error; 852 struct dm_rq_target_io *tio = clone->end_io_data; 853 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io; 854 855 if (mapped && rq_end_io) 856 r = rq_end_io(tio->ti, clone, error, &tio->info); 857 858 if (r <= 0) 859 /* The target wants to complete the I/O */ 860 dm_end_request(clone, r); 861 else if (r == DM_ENDIO_INCOMPLETE) 862 /* The target will handle the I/O */ 863 return; 864 else if (r == DM_ENDIO_REQUEUE) 865 /* The target wants to requeue the I/O */ 866 dm_requeue_unmapped_request(clone); 867 else { 868 DMWARN("unimplemented target endio return value: %d", r); 869 BUG(); 870 } 871 } 872 873 /* 874 * Request completion handler for request-based dm 875 */ 876 static void dm_softirq_done(struct request *rq) 877 { 878 bool mapped = true; 879 struct request *clone = rq->completion_data; 880 struct dm_rq_target_io *tio = clone->end_io_data; 881 882 if (rq->cmd_flags & REQ_FAILED) 883 mapped = false; 884 885 dm_done(clone, tio->error, mapped); 886 } 887 888 /* 889 * Complete the clone and the original request with the error status 890 * through softirq context. 891 */ 892 static void dm_complete_request(struct request *clone, int error) 893 { 894 struct dm_rq_target_io *tio = clone->end_io_data; 895 struct request *rq = tio->orig; 896 897 tio->error = error; 898 rq->completion_data = clone; 899 blk_complete_request(rq); 900 } 901 902 /* 903 * Complete the not-mapped clone and the original request with the error status 904 * through softirq context. 905 * Target's rq_end_io() function isn't called. 906 * This may be used when the target's map_rq() function fails. 907 */ 908 void dm_kill_unmapped_request(struct request *clone, int error) 909 { 910 struct dm_rq_target_io *tio = clone->end_io_data; 911 struct request *rq = tio->orig; 912 913 rq->cmd_flags |= REQ_FAILED; 914 dm_complete_request(clone, error); 915 } 916 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 917 918 /* 919 * Called with the queue lock held 920 */ 921 static void end_clone_request(struct request *clone, int error) 922 { 923 /* 924 * For just cleaning up the information of the queue in which 925 * the clone was dispatched. 926 * The clone is *NOT* freed actually here because it is alloced from 927 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 928 */ 929 __blk_put_request(clone->q, clone); 930 931 /* 932 * Actual request completion is done in a softirq context which doesn't 933 * hold the queue lock. Otherwise, deadlock could occur because: 934 * - another request may be submitted by the upper level driver 935 * of the stacking during the completion 936 * - the submission which requires queue lock may be done 937 * against this queue 938 */ 939 dm_complete_request(clone, error); 940 } 941 942 static sector_t max_io_len(struct mapped_device *md, 943 sector_t sector, struct dm_target *ti) 944 { 945 sector_t offset = sector - ti->begin; 946 sector_t len = ti->len - offset; 947 948 /* 949 * Does the target need to split even further ? 950 */ 951 if (ti->split_io) { 952 sector_t boundary; 953 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1)) 954 - offset; 955 if (len > boundary) 956 len = boundary; 957 } 958 959 return len; 960 } 961 962 static void __map_bio(struct dm_target *ti, struct bio *clone, 963 struct dm_target_io *tio) 964 { 965 int r; 966 sector_t sector; 967 struct mapped_device *md; 968 969 clone->bi_end_io = clone_endio; 970 clone->bi_private = tio; 971 972 /* 973 * Map the clone. If r == 0 we don't need to do 974 * anything, the target has assumed ownership of 975 * this io. 976 */ 977 atomic_inc(&tio->io->io_count); 978 sector = clone->bi_sector; 979 r = ti->type->map(ti, clone, &tio->info); 980 if (r == DM_MAPIO_REMAPPED) { 981 /* the bio has been remapped so dispatch it */ 982 983 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone, 984 tio->io->bio->bi_bdev->bd_dev, sector); 985 986 generic_make_request(clone); 987 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 988 /* error the io and bail out, or requeue it if needed */ 989 md = tio->io->md; 990 dec_pending(tio->io, r); 991 /* 992 * Store bio_set for cleanup. 993 */ 994 clone->bi_private = md->bs; 995 bio_put(clone); 996 free_tio(md, tio); 997 } else if (r) { 998 DMWARN("unimplemented target map return value: %d", r); 999 BUG(); 1000 } 1001 } 1002 1003 struct clone_info { 1004 struct mapped_device *md; 1005 struct dm_table *map; 1006 struct bio *bio; 1007 struct dm_io *io; 1008 sector_t sector; 1009 sector_t sector_count; 1010 unsigned short idx; 1011 }; 1012 1013 static void dm_bio_destructor(struct bio *bio) 1014 { 1015 struct bio_set *bs = bio->bi_private; 1016 1017 bio_free(bio, bs); 1018 } 1019 1020 /* 1021 * Creates a little bio that is just does part of a bvec. 1022 */ 1023 static struct bio *split_bvec(struct bio *bio, sector_t sector, 1024 unsigned short idx, unsigned int offset, 1025 unsigned int len, struct bio_set *bs) 1026 { 1027 struct bio *clone; 1028 struct bio_vec *bv = bio->bi_io_vec + idx; 1029 1030 clone = bio_alloc_bioset(GFP_NOIO, 1, bs); 1031 clone->bi_destructor = dm_bio_destructor; 1032 *clone->bi_io_vec = *bv; 1033 1034 clone->bi_sector = sector; 1035 clone->bi_bdev = bio->bi_bdev; 1036 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER); 1037 clone->bi_vcnt = 1; 1038 clone->bi_size = to_bytes(len); 1039 clone->bi_io_vec->bv_offset = offset; 1040 clone->bi_io_vec->bv_len = clone->bi_size; 1041 clone->bi_flags |= 1 << BIO_CLONED; 1042 1043 if (bio_integrity(bio)) { 1044 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1045 bio_integrity_trim(clone, 1046 bio_sector_offset(bio, idx, offset), len); 1047 } 1048 1049 return clone; 1050 } 1051 1052 /* 1053 * Creates a bio that consists of range of complete bvecs. 1054 */ 1055 static struct bio *clone_bio(struct bio *bio, sector_t sector, 1056 unsigned short idx, unsigned short bv_count, 1057 unsigned int len, struct bio_set *bs) 1058 { 1059 struct bio *clone; 1060 1061 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs); 1062 __bio_clone(clone, bio); 1063 clone->bi_rw &= ~(1 << BIO_RW_BARRIER); 1064 clone->bi_destructor = dm_bio_destructor; 1065 clone->bi_sector = sector; 1066 clone->bi_idx = idx; 1067 clone->bi_vcnt = idx + bv_count; 1068 clone->bi_size = to_bytes(len); 1069 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 1070 1071 if (bio_integrity(bio)) { 1072 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1073 1074 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1075 bio_integrity_trim(clone, 1076 bio_sector_offset(bio, idx, 0), len); 1077 } 1078 1079 return clone; 1080 } 1081 1082 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1083 struct dm_target *ti) 1084 { 1085 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO); 1086 1087 tio->io = ci->io; 1088 tio->ti = ti; 1089 memset(&tio->info, 0, sizeof(tio->info)); 1090 1091 return tio; 1092 } 1093 1094 static void __flush_target(struct clone_info *ci, struct dm_target *ti, 1095 unsigned flush_nr) 1096 { 1097 struct dm_target_io *tio = alloc_tio(ci, ti); 1098 struct bio *clone; 1099 1100 tio->info.flush_request = flush_nr; 1101 1102 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1103 __bio_clone(clone, ci->bio); 1104 clone->bi_destructor = dm_bio_destructor; 1105 1106 __map_bio(ti, clone, tio); 1107 } 1108 1109 static int __clone_and_map_empty_barrier(struct clone_info *ci) 1110 { 1111 unsigned target_nr = 0, flush_nr; 1112 struct dm_target *ti; 1113 1114 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1115 for (flush_nr = 0; flush_nr < ti->num_flush_requests; 1116 flush_nr++) 1117 __flush_target(ci, ti, flush_nr); 1118 1119 ci->sector_count = 0; 1120 1121 return 0; 1122 } 1123 1124 static int __clone_and_map(struct clone_info *ci) 1125 { 1126 struct bio *clone, *bio = ci->bio; 1127 struct dm_target *ti; 1128 sector_t len = 0, max; 1129 struct dm_target_io *tio; 1130 1131 if (unlikely(bio_empty_barrier(bio))) 1132 return __clone_and_map_empty_barrier(ci); 1133 1134 ti = dm_table_find_target(ci->map, ci->sector); 1135 if (!dm_target_is_valid(ti)) 1136 return -EIO; 1137 1138 max = max_io_len(ci->md, ci->sector, ti); 1139 1140 /* 1141 * Allocate a target io object. 1142 */ 1143 tio = alloc_tio(ci, ti); 1144 1145 if (ci->sector_count <= max) { 1146 /* 1147 * Optimise for the simple case where we can do all of 1148 * the remaining io with a single clone. 1149 */ 1150 clone = clone_bio(bio, ci->sector, ci->idx, 1151 bio->bi_vcnt - ci->idx, ci->sector_count, 1152 ci->md->bs); 1153 __map_bio(ti, clone, tio); 1154 ci->sector_count = 0; 1155 1156 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1157 /* 1158 * There are some bvecs that don't span targets. 1159 * Do as many of these as possible. 1160 */ 1161 int i; 1162 sector_t remaining = max; 1163 sector_t bv_len; 1164 1165 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 1166 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 1167 1168 if (bv_len > remaining) 1169 break; 1170 1171 remaining -= bv_len; 1172 len += bv_len; 1173 } 1174 1175 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len, 1176 ci->md->bs); 1177 __map_bio(ti, clone, tio); 1178 1179 ci->sector += len; 1180 ci->sector_count -= len; 1181 ci->idx = i; 1182 1183 } else { 1184 /* 1185 * Handle a bvec that must be split between two or more targets. 1186 */ 1187 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1188 sector_t remaining = to_sector(bv->bv_len); 1189 unsigned int offset = 0; 1190 1191 do { 1192 if (offset) { 1193 ti = dm_table_find_target(ci->map, ci->sector); 1194 if (!dm_target_is_valid(ti)) 1195 return -EIO; 1196 1197 max = max_io_len(ci->md, ci->sector, ti); 1198 1199 tio = alloc_tio(ci, ti); 1200 } 1201 1202 len = min(remaining, max); 1203 1204 clone = split_bvec(bio, ci->sector, ci->idx, 1205 bv->bv_offset + offset, len, 1206 ci->md->bs); 1207 1208 __map_bio(ti, clone, tio); 1209 1210 ci->sector += len; 1211 ci->sector_count -= len; 1212 offset += to_bytes(len); 1213 } while (remaining -= len); 1214 1215 ci->idx++; 1216 } 1217 1218 return 0; 1219 } 1220 1221 /* 1222 * Split the bio into several clones and submit it to targets. 1223 */ 1224 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 1225 { 1226 struct clone_info ci; 1227 int error = 0; 1228 1229 ci.map = dm_get_table(md); 1230 if (unlikely(!ci.map)) { 1231 if (!bio_rw_flagged(bio, BIO_RW_BARRIER)) 1232 bio_io_error(bio); 1233 else 1234 if (!md->barrier_error) 1235 md->barrier_error = -EIO; 1236 return; 1237 } 1238 1239 ci.md = md; 1240 ci.bio = bio; 1241 ci.io = alloc_io(md); 1242 ci.io->error = 0; 1243 atomic_set(&ci.io->io_count, 1); 1244 ci.io->bio = bio; 1245 ci.io->md = md; 1246 spin_lock_init(&ci.io->endio_lock); 1247 ci.sector = bio->bi_sector; 1248 ci.sector_count = bio_sectors(bio); 1249 if (unlikely(bio_empty_barrier(bio))) 1250 ci.sector_count = 1; 1251 ci.idx = bio->bi_idx; 1252 1253 start_io_acct(ci.io); 1254 while (ci.sector_count && !error) 1255 error = __clone_and_map(&ci); 1256 1257 /* drop the extra reference count */ 1258 dec_pending(ci.io, error); 1259 dm_table_put(ci.map); 1260 } 1261 /*----------------------------------------------------------------- 1262 * CRUD END 1263 *---------------------------------------------------------------*/ 1264 1265 static int dm_merge_bvec(struct request_queue *q, 1266 struct bvec_merge_data *bvm, 1267 struct bio_vec *biovec) 1268 { 1269 struct mapped_device *md = q->queuedata; 1270 struct dm_table *map = dm_get_table(md); 1271 struct dm_target *ti; 1272 sector_t max_sectors; 1273 int max_size = 0; 1274 1275 if (unlikely(!map)) 1276 goto out; 1277 1278 ti = dm_table_find_target(map, bvm->bi_sector); 1279 if (!dm_target_is_valid(ti)) 1280 goto out_table; 1281 1282 /* 1283 * Find maximum amount of I/O that won't need splitting 1284 */ 1285 max_sectors = min(max_io_len(md, bvm->bi_sector, ti), 1286 (sector_t) BIO_MAX_SECTORS); 1287 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1288 if (max_size < 0) 1289 max_size = 0; 1290 1291 /* 1292 * merge_bvec_fn() returns number of bytes 1293 * it can accept at this offset 1294 * max is precomputed maximal io size 1295 */ 1296 if (max_size && ti->type->merge) 1297 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1298 /* 1299 * If the target doesn't support merge method and some of the devices 1300 * provided their merge_bvec method (we know this by looking at 1301 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1302 * entries. So always set max_size to 0, and the code below allows 1303 * just one page. 1304 */ 1305 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1306 1307 max_size = 0; 1308 1309 out_table: 1310 dm_table_put(map); 1311 1312 out: 1313 /* 1314 * Always allow an entire first page 1315 */ 1316 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1317 max_size = biovec->bv_len; 1318 1319 return max_size; 1320 } 1321 1322 /* 1323 * The request function that just remaps the bio built up by 1324 * dm_merge_bvec. 1325 */ 1326 static int _dm_request(struct request_queue *q, struct bio *bio) 1327 { 1328 int rw = bio_data_dir(bio); 1329 struct mapped_device *md = q->queuedata; 1330 int cpu; 1331 1332 down_read(&md->io_lock); 1333 1334 cpu = part_stat_lock(); 1335 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1336 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1337 part_stat_unlock(); 1338 1339 /* 1340 * If we're suspended or the thread is processing barriers 1341 * we have to queue this io for later. 1342 */ 1343 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) || 1344 unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) { 1345 up_read(&md->io_lock); 1346 1347 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) && 1348 bio_rw(bio) == READA) { 1349 bio_io_error(bio); 1350 return 0; 1351 } 1352 1353 queue_io(md, bio); 1354 1355 return 0; 1356 } 1357 1358 __split_and_process_bio(md, bio); 1359 up_read(&md->io_lock); 1360 return 0; 1361 } 1362 1363 static int dm_make_request(struct request_queue *q, struct bio *bio) 1364 { 1365 struct mapped_device *md = q->queuedata; 1366 1367 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) { 1368 bio_endio(bio, -EOPNOTSUPP); 1369 return 0; 1370 } 1371 1372 return md->saved_make_request_fn(q, bio); /* call __make_request() */ 1373 } 1374 1375 static int dm_request_based(struct mapped_device *md) 1376 { 1377 return blk_queue_stackable(md->queue); 1378 } 1379 1380 static int dm_request(struct request_queue *q, struct bio *bio) 1381 { 1382 struct mapped_device *md = q->queuedata; 1383 1384 if (dm_request_based(md)) 1385 return dm_make_request(q, bio); 1386 1387 return _dm_request(q, bio); 1388 } 1389 1390 void dm_dispatch_request(struct request *rq) 1391 { 1392 int r; 1393 1394 if (blk_queue_io_stat(rq->q)) 1395 rq->cmd_flags |= REQ_IO_STAT; 1396 1397 rq->start_time = jiffies; 1398 r = blk_insert_cloned_request(rq->q, rq); 1399 if (r) 1400 dm_complete_request(rq, r); 1401 } 1402 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1403 1404 static void dm_rq_bio_destructor(struct bio *bio) 1405 { 1406 struct dm_rq_clone_bio_info *info = bio->bi_private; 1407 struct mapped_device *md = info->tio->md; 1408 1409 free_bio_info(info); 1410 bio_free(bio, md->bs); 1411 } 1412 1413 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1414 void *data) 1415 { 1416 struct dm_rq_target_io *tio = data; 1417 struct mapped_device *md = tio->md; 1418 struct dm_rq_clone_bio_info *info = alloc_bio_info(md); 1419 1420 if (!info) 1421 return -ENOMEM; 1422 1423 info->orig = bio_orig; 1424 info->tio = tio; 1425 bio->bi_end_io = end_clone_bio; 1426 bio->bi_private = info; 1427 bio->bi_destructor = dm_rq_bio_destructor; 1428 1429 return 0; 1430 } 1431 1432 static int setup_clone(struct request *clone, struct request *rq, 1433 struct dm_rq_target_io *tio) 1434 { 1435 int r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1436 dm_rq_bio_constructor, tio); 1437 1438 if (r) 1439 return r; 1440 1441 clone->cmd = rq->cmd; 1442 clone->cmd_len = rq->cmd_len; 1443 clone->sense = rq->sense; 1444 clone->buffer = rq->buffer; 1445 clone->end_io = end_clone_request; 1446 clone->end_io_data = tio; 1447 1448 return 0; 1449 } 1450 1451 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1452 gfp_t gfp_mask) 1453 { 1454 struct request *clone; 1455 struct dm_rq_target_io *tio; 1456 1457 tio = alloc_rq_tio(md, gfp_mask); 1458 if (!tio) 1459 return NULL; 1460 1461 tio->md = md; 1462 tio->ti = NULL; 1463 tio->orig = rq; 1464 tio->error = 0; 1465 memset(&tio->info, 0, sizeof(tio->info)); 1466 1467 clone = &tio->clone; 1468 if (setup_clone(clone, rq, tio)) { 1469 /* -ENOMEM */ 1470 free_rq_tio(tio); 1471 return NULL; 1472 } 1473 1474 return clone; 1475 } 1476 1477 /* 1478 * Called with the queue lock held. 1479 */ 1480 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1481 { 1482 struct mapped_device *md = q->queuedata; 1483 struct request *clone; 1484 1485 if (unlikely(rq->special)) { 1486 DMWARN("Already has something in rq->special."); 1487 return BLKPREP_KILL; 1488 } 1489 1490 clone = clone_rq(rq, md, GFP_ATOMIC); 1491 if (!clone) 1492 return BLKPREP_DEFER; 1493 1494 rq->special = clone; 1495 rq->cmd_flags |= REQ_DONTPREP; 1496 1497 return BLKPREP_OK; 1498 } 1499 1500 static void map_request(struct dm_target *ti, struct request *clone, 1501 struct mapped_device *md) 1502 { 1503 int r; 1504 struct dm_rq_target_io *tio = clone->end_io_data; 1505 1506 /* 1507 * Hold the md reference here for the in-flight I/O. 1508 * We can't rely on the reference count by device opener, 1509 * because the device may be closed during the request completion 1510 * when all bios are completed. 1511 * See the comment in rq_completed() too. 1512 */ 1513 dm_get(md); 1514 1515 tio->ti = ti; 1516 r = ti->type->map_rq(ti, clone, &tio->info); 1517 switch (r) { 1518 case DM_MAPIO_SUBMITTED: 1519 /* The target has taken the I/O to submit by itself later */ 1520 break; 1521 case DM_MAPIO_REMAPPED: 1522 /* The target has remapped the I/O so dispatch it */ 1523 dm_dispatch_request(clone); 1524 break; 1525 case DM_MAPIO_REQUEUE: 1526 /* The target wants to requeue the I/O */ 1527 dm_requeue_unmapped_request(clone); 1528 break; 1529 default: 1530 if (r > 0) { 1531 DMWARN("unimplemented target map return value: %d", r); 1532 BUG(); 1533 } 1534 1535 /* The target wants to complete the I/O */ 1536 dm_kill_unmapped_request(clone, r); 1537 break; 1538 } 1539 } 1540 1541 /* 1542 * q->request_fn for request-based dm. 1543 * Called with the queue lock held. 1544 */ 1545 static void dm_request_fn(struct request_queue *q) 1546 { 1547 struct mapped_device *md = q->queuedata; 1548 struct dm_table *map = dm_get_table(md); 1549 struct dm_target *ti; 1550 struct request *rq, *clone; 1551 1552 /* 1553 * For suspend, check blk_queue_stopped() and increment 1554 * ->pending within a single queue_lock not to increment the 1555 * number of in-flight I/Os after the queue is stopped in 1556 * dm_suspend(). 1557 */ 1558 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) { 1559 rq = blk_peek_request(q); 1560 if (!rq) 1561 goto plug_and_out; 1562 1563 ti = dm_table_find_target(map, blk_rq_pos(rq)); 1564 if (ti->type->busy && ti->type->busy(ti)) 1565 goto plug_and_out; 1566 1567 blk_start_request(rq); 1568 clone = rq->special; 1569 atomic_inc(&md->pending[rq_data_dir(clone)]); 1570 1571 spin_unlock(q->queue_lock); 1572 map_request(ti, clone, md); 1573 spin_lock_irq(q->queue_lock); 1574 } 1575 1576 goto out; 1577 1578 plug_and_out: 1579 if (!elv_queue_empty(q)) 1580 /* Some requests still remain, retry later */ 1581 blk_plug_device(q); 1582 1583 out: 1584 dm_table_put(map); 1585 1586 return; 1587 } 1588 1589 int dm_underlying_device_busy(struct request_queue *q) 1590 { 1591 return blk_lld_busy(q); 1592 } 1593 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1594 1595 static int dm_lld_busy(struct request_queue *q) 1596 { 1597 int r; 1598 struct mapped_device *md = q->queuedata; 1599 struct dm_table *map = dm_get_table(md); 1600 1601 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1602 r = 1; 1603 else 1604 r = dm_table_any_busy_target(map); 1605 1606 dm_table_put(map); 1607 1608 return r; 1609 } 1610 1611 static void dm_unplug_all(struct request_queue *q) 1612 { 1613 struct mapped_device *md = q->queuedata; 1614 struct dm_table *map = dm_get_table(md); 1615 1616 if (map) { 1617 if (dm_request_based(md)) 1618 generic_unplug_device(q); 1619 1620 dm_table_unplug_all(map); 1621 dm_table_put(map); 1622 } 1623 } 1624 1625 static int dm_any_congested(void *congested_data, int bdi_bits) 1626 { 1627 int r = bdi_bits; 1628 struct mapped_device *md = congested_data; 1629 struct dm_table *map; 1630 1631 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1632 map = dm_get_table(md); 1633 if (map) { 1634 /* 1635 * Request-based dm cares about only own queue for 1636 * the query about congestion status of request_queue 1637 */ 1638 if (dm_request_based(md)) 1639 r = md->queue->backing_dev_info.state & 1640 bdi_bits; 1641 else 1642 r = dm_table_any_congested(map, bdi_bits); 1643 1644 dm_table_put(map); 1645 } 1646 } 1647 1648 return r; 1649 } 1650 1651 /*----------------------------------------------------------------- 1652 * An IDR is used to keep track of allocated minor numbers. 1653 *---------------------------------------------------------------*/ 1654 static DEFINE_IDR(_minor_idr); 1655 1656 static void free_minor(int minor) 1657 { 1658 spin_lock(&_minor_lock); 1659 idr_remove(&_minor_idr, minor); 1660 spin_unlock(&_minor_lock); 1661 } 1662 1663 /* 1664 * See if the device with a specific minor # is free. 1665 */ 1666 static int specific_minor(int minor) 1667 { 1668 int r, m; 1669 1670 if (minor >= (1 << MINORBITS)) 1671 return -EINVAL; 1672 1673 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1674 if (!r) 1675 return -ENOMEM; 1676 1677 spin_lock(&_minor_lock); 1678 1679 if (idr_find(&_minor_idr, minor)) { 1680 r = -EBUSY; 1681 goto out; 1682 } 1683 1684 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 1685 if (r) 1686 goto out; 1687 1688 if (m != minor) { 1689 idr_remove(&_minor_idr, m); 1690 r = -EBUSY; 1691 goto out; 1692 } 1693 1694 out: 1695 spin_unlock(&_minor_lock); 1696 return r; 1697 } 1698 1699 static int next_free_minor(int *minor) 1700 { 1701 int r, m; 1702 1703 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1704 if (!r) 1705 return -ENOMEM; 1706 1707 spin_lock(&_minor_lock); 1708 1709 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1710 if (r) 1711 goto out; 1712 1713 if (m >= (1 << MINORBITS)) { 1714 idr_remove(&_minor_idr, m); 1715 r = -ENOSPC; 1716 goto out; 1717 } 1718 1719 *minor = m; 1720 1721 out: 1722 spin_unlock(&_minor_lock); 1723 return r; 1724 } 1725 1726 static const struct block_device_operations dm_blk_dops; 1727 1728 static void dm_wq_work(struct work_struct *work); 1729 1730 /* 1731 * Allocate and initialise a blank device with a given minor. 1732 */ 1733 static struct mapped_device *alloc_dev(int minor) 1734 { 1735 int r; 1736 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1737 void *old_md; 1738 1739 if (!md) { 1740 DMWARN("unable to allocate device, out of memory."); 1741 return NULL; 1742 } 1743 1744 if (!try_module_get(THIS_MODULE)) 1745 goto bad_module_get; 1746 1747 /* get a minor number for the dev */ 1748 if (minor == DM_ANY_MINOR) 1749 r = next_free_minor(&minor); 1750 else 1751 r = specific_minor(minor); 1752 if (r < 0) 1753 goto bad_minor; 1754 1755 init_rwsem(&md->io_lock); 1756 mutex_init(&md->suspend_lock); 1757 spin_lock_init(&md->deferred_lock); 1758 rwlock_init(&md->map_lock); 1759 atomic_set(&md->holders, 1); 1760 atomic_set(&md->open_count, 0); 1761 atomic_set(&md->event_nr, 0); 1762 atomic_set(&md->uevent_seq, 0); 1763 INIT_LIST_HEAD(&md->uevent_list); 1764 spin_lock_init(&md->uevent_lock); 1765 1766 md->queue = blk_init_queue(dm_request_fn, NULL); 1767 if (!md->queue) 1768 goto bad_queue; 1769 1770 /* 1771 * Request-based dm devices cannot be stacked on top of bio-based dm 1772 * devices. The type of this dm device has not been decided yet, 1773 * although we initialized the queue using blk_init_queue(). 1774 * The type is decided at the first table loading time. 1775 * To prevent problematic device stacking, clear the queue flag 1776 * for request stacking support until then. 1777 * 1778 * This queue is new, so no concurrency on the queue_flags. 1779 */ 1780 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1781 md->saved_make_request_fn = md->queue->make_request_fn; 1782 md->queue->queuedata = md; 1783 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1784 md->queue->backing_dev_info.congested_data = md; 1785 blk_queue_make_request(md->queue, dm_request); 1786 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1787 md->queue->unplug_fn = dm_unplug_all; 1788 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1789 blk_queue_softirq_done(md->queue, dm_softirq_done); 1790 blk_queue_prep_rq(md->queue, dm_prep_fn); 1791 blk_queue_lld_busy(md->queue, dm_lld_busy); 1792 1793 md->disk = alloc_disk(1); 1794 if (!md->disk) 1795 goto bad_disk; 1796 1797 atomic_set(&md->pending[0], 0); 1798 atomic_set(&md->pending[1], 0); 1799 init_waitqueue_head(&md->wait); 1800 INIT_WORK(&md->work, dm_wq_work); 1801 init_waitqueue_head(&md->eventq); 1802 1803 md->disk->major = _major; 1804 md->disk->first_minor = minor; 1805 md->disk->fops = &dm_blk_dops; 1806 md->disk->queue = md->queue; 1807 md->disk->private_data = md; 1808 sprintf(md->disk->disk_name, "dm-%d", minor); 1809 add_disk(md->disk); 1810 format_dev_t(md->name, MKDEV(_major, minor)); 1811 1812 md->wq = create_singlethread_workqueue("kdmflush"); 1813 if (!md->wq) 1814 goto bad_thread; 1815 1816 md->bdev = bdget_disk(md->disk, 0); 1817 if (!md->bdev) 1818 goto bad_bdev; 1819 1820 /* Populate the mapping, nobody knows we exist yet */ 1821 spin_lock(&_minor_lock); 1822 old_md = idr_replace(&_minor_idr, md, minor); 1823 spin_unlock(&_minor_lock); 1824 1825 BUG_ON(old_md != MINOR_ALLOCED); 1826 1827 return md; 1828 1829 bad_bdev: 1830 destroy_workqueue(md->wq); 1831 bad_thread: 1832 del_gendisk(md->disk); 1833 put_disk(md->disk); 1834 bad_disk: 1835 blk_cleanup_queue(md->queue); 1836 bad_queue: 1837 free_minor(minor); 1838 bad_minor: 1839 module_put(THIS_MODULE); 1840 bad_module_get: 1841 kfree(md); 1842 return NULL; 1843 } 1844 1845 static void unlock_fs(struct mapped_device *md); 1846 1847 static void free_dev(struct mapped_device *md) 1848 { 1849 int minor = MINOR(disk_devt(md->disk)); 1850 1851 unlock_fs(md); 1852 bdput(md->bdev); 1853 destroy_workqueue(md->wq); 1854 if (md->tio_pool) 1855 mempool_destroy(md->tio_pool); 1856 if (md->io_pool) 1857 mempool_destroy(md->io_pool); 1858 if (md->bs) 1859 bioset_free(md->bs); 1860 blk_integrity_unregister(md->disk); 1861 del_gendisk(md->disk); 1862 free_minor(minor); 1863 1864 spin_lock(&_minor_lock); 1865 md->disk->private_data = NULL; 1866 spin_unlock(&_minor_lock); 1867 1868 put_disk(md->disk); 1869 blk_cleanup_queue(md->queue); 1870 module_put(THIS_MODULE); 1871 kfree(md); 1872 } 1873 1874 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1875 { 1876 struct dm_md_mempools *p; 1877 1878 if (md->io_pool && md->tio_pool && md->bs) 1879 /* the md already has necessary mempools */ 1880 goto out; 1881 1882 p = dm_table_get_md_mempools(t); 1883 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs); 1884 1885 md->io_pool = p->io_pool; 1886 p->io_pool = NULL; 1887 md->tio_pool = p->tio_pool; 1888 p->tio_pool = NULL; 1889 md->bs = p->bs; 1890 p->bs = NULL; 1891 1892 out: 1893 /* mempool bind completed, now no need any mempools in the table */ 1894 dm_table_free_md_mempools(t); 1895 } 1896 1897 /* 1898 * Bind a table to the device. 1899 */ 1900 static void event_callback(void *context) 1901 { 1902 unsigned long flags; 1903 LIST_HEAD(uevents); 1904 struct mapped_device *md = (struct mapped_device *) context; 1905 1906 spin_lock_irqsave(&md->uevent_lock, flags); 1907 list_splice_init(&md->uevent_list, &uevents); 1908 spin_unlock_irqrestore(&md->uevent_lock, flags); 1909 1910 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1911 1912 atomic_inc(&md->event_nr); 1913 wake_up(&md->eventq); 1914 } 1915 1916 static void __set_size(struct mapped_device *md, sector_t size) 1917 { 1918 set_capacity(md->disk, size); 1919 1920 mutex_lock(&md->bdev->bd_inode->i_mutex); 1921 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1922 mutex_unlock(&md->bdev->bd_inode->i_mutex); 1923 } 1924 1925 static int __bind(struct mapped_device *md, struct dm_table *t, 1926 struct queue_limits *limits) 1927 { 1928 struct request_queue *q = md->queue; 1929 sector_t size; 1930 unsigned long flags; 1931 1932 size = dm_table_get_size(t); 1933 1934 /* 1935 * Wipe any geometry if the size of the table changed. 1936 */ 1937 if (size != get_capacity(md->disk)) 1938 memset(&md->geometry, 0, sizeof(md->geometry)); 1939 1940 __set_size(md, size); 1941 1942 if (!size) { 1943 dm_table_destroy(t); 1944 return 0; 1945 } 1946 1947 dm_table_event_callback(t, event_callback, md); 1948 1949 /* 1950 * The queue hasn't been stopped yet, if the old table type wasn't 1951 * for request-based during suspension. So stop it to prevent 1952 * I/O mapping before resume. 1953 * This must be done before setting the queue restrictions, 1954 * because request-based dm may be run just after the setting. 1955 */ 1956 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 1957 stop_queue(q); 1958 1959 __bind_mempools(md, t); 1960 1961 write_lock_irqsave(&md->map_lock, flags); 1962 md->map = t; 1963 dm_table_set_restrictions(t, q, limits); 1964 write_unlock_irqrestore(&md->map_lock, flags); 1965 1966 return 0; 1967 } 1968 1969 static void __unbind(struct mapped_device *md) 1970 { 1971 struct dm_table *map = md->map; 1972 unsigned long flags; 1973 1974 if (!map) 1975 return; 1976 1977 dm_table_event_callback(map, NULL, NULL); 1978 write_lock_irqsave(&md->map_lock, flags); 1979 md->map = NULL; 1980 write_unlock_irqrestore(&md->map_lock, flags); 1981 dm_table_destroy(map); 1982 } 1983 1984 /* 1985 * Constructor for a new device. 1986 */ 1987 int dm_create(int minor, struct mapped_device **result) 1988 { 1989 struct mapped_device *md; 1990 1991 md = alloc_dev(minor); 1992 if (!md) 1993 return -ENXIO; 1994 1995 dm_sysfs_init(md); 1996 1997 *result = md; 1998 return 0; 1999 } 2000 2001 static struct mapped_device *dm_find_md(dev_t dev) 2002 { 2003 struct mapped_device *md; 2004 unsigned minor = MINOR(dev); 2005 2006 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2007 return NULL; 2008 2009 spin_lock(&_minor_lock); 2010 2011 md = idr_find(&_minor_idr, minor); 2012 if (md && (md == MINOR_ALLOCED || 2013 (MINOR(disk_devt(dm_disk(md))) != minor) || 2014 test_bit(DMF_FREEING, &md->flags))) { 2015 md = NULL; 2016 goto out; 2017 } 2018 2019 out: 2020 spin_unlock(&_minor_lock); 2021 2022 return md; 2023 } 2024 2025 struct mapped_device *dm_get_md(dev_t dev) 2026 { 2027 struct mapped_device *md = dm_find_md(dev); 2028 2029 if (md) 2030 dm_get(md); 2031 2032 return md; 2033 } 2034 2035 void *dm_get_mdptr(struct mapped_device *md) 2036 { 2037 return md->interface_ptr; 2038 } 2039 2040 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2041 { 2042 md->interface_ptr = ptr; 2043 } 2044 2045 void dm_get(struct mapped_device *md) 2046 { 2047 atomic_inc(&md->holders); 2048 } 2049 2050 const char *dm_device_name(struct mapped_device *md) 2051 { 2052 return md->name; 2053 } 2054 EXPORT_SYMBOL_GPL(dm_device_name); 2055 2056 void dm_put(struct mapped_device *md) 2057 { 2058 struct dm_table *map; 2059 2060 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2061 2062 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) { 2063 map = dm_get_table(md); 2064 idr_replace(&_minor_idr, MINOR_ALLOCED, 2065 MINOR(disk_devt(dm_disk(md)))); 2066 set_bit(DMF_FREEING, &md->flags); 2067 spin_unlock(&_minor_lock); 2068 if (!dm_suspended(md)) { 2069 dm_table_presuspend_targets(map); 2070 dm_table_postsuspend_targets(map); 2071 } 2072 dm_sysfs_exit(md); 2073 dm_table_put(map); 2074 __unbind(md); 2075 free_dev(md); 2076 } 2077 } 2078 EXPORT_SYMBOL_GPL(dm_put); 2079 2080 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2081 { 2082 int r = 0; 2083 DECLARE_WAITQUEUE(wait, current); 2084 2085 dm_unplug_all(md->queue); 2086 2087 add_wait_queue(&md->wait, &wait); 2088 2089 while (1) { 2090 set_current_state(interruptible); 2091 2092 smp_mb(); 2093 if (!md_in_flight(md)) 2094 break; 2095 2096 if (interruptible == TASK_INTERRUPTIBLE && 2097 signal_pending(current)) { 2098 r = -EINTR; 2099 break; 2100 } 2101 2102 io_schedule(); 2103 } 2104 set_current_state(TASK_RUNNING); 2105 2106 remove_wait_queue(&md->wait, &wait); 2107 2108 return r; 2109 } 2110 2111 static void dm_flush(struct mapped_device *md) 2112 { 2113 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2114 2115 bio_init(&md->barrier_bio); 2116 md->barrier_bio.bi_bdev = md->bdev; 2117 md->barrier_bio.bi_rw = WRITE_BARRIER; 2118 __split_and_process_bio(md, &md->barrier_bio); 2119 2120 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2121 } 2122 2123 static void process_barrier(struct mapped_device *md, struct bio *bio) 2124 { 2125 md->barrier_error = 0; 2126 2127 dm_flush(md); 2128 2129 if (!bio_empty_barrier(bio)) { 2130 __split_and_process_bio(md, bio); 2131 dm_flush(md); 2132 } 2133 2134 if (md->barrier_error != DM_ENDIO_REQUEUE) 2135 bio_endio(bio, md->barrier_error); 2136 else { 2137 spin_lock_irq(&md->deferred_lock); 2138 bio_list_add_head(&md->deferred, bio); 2139 spin_unlock_irq(&md->deferred_lock); 2140 } 2141 } 2142 2143 /* 2144 * Process the deferred bios 2145 */ 2146 static void dm_wq_work(struct work_struct *work) 2147 { 2148 struct mapped_device *md = container_of(work, struct mapped_device, 2149 work); 2150 struct bio *c; 2151 2152 down_write(&md->io_lock); 2153 2154 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2155 spin_lock_irq(&md->deferred_lock); 2156 c = bio_list_pop(&md->deferred); 2157 spin_unlock_irq(&md->deferred_lock); 2158 2159 if (!c) { 2160 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags); 2161 break; 2162 } 2163 2164 up_write(&md->io_lock); 2165 2166 if (dm_request_based(md)) 2167 generic_make_request(c); 2168 else { 2169 if (bio_rw_flagged(c, BIO_RW_BARRIER)) 2170 process_barrier(md, c); 2171 else 2172 __split_and_process_bio(md, c); 2173 } 2174 2175 down_write(&md->io_lock); 2176 } 2177 2178 up_write(&md->io_lock); 2179 } 2180 2181 static void dm_queue_flush(struct mapped_device *md) 2182 { 2183 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2184 smp_mb__after_clear_bit(); 2185 queue_work(md->wq, &md->work); 2186 } 2187 2188 /* 2189 * Swap in a new table (destroying old one). 2190 */ 2191 int dm_swap_table(struct mapped_device *md, struct dm_table *table) 2192 { 2193 struct queue_limits limits; 2194 int r = -EINVAL; 2195 2196 mutex_lock(&md->suspend_lock); 2197 2198 /* device must be suspended */ 2199 if (!dm_suspended(md)) 2200 goto out; 2201 2202 r = dm_calculate_queue_limits(table, &limits); 2203 if (r) 2204 goto out; 2205 2206 /* cannot change the device type, once a table is bound */ 2207 if (md->map && 2208 (dm_table_get_type(md->map) != dm_table_get_type(table))) { 2209 DMWARN("can't change the device type after a table is bound"); 2210 goto out; 2211 } 2212 2213 __unbind(md); 2214 r = __bind(md, table, &limits); 2215 2216 out: 2217 mutex_unlock(&md->suspend_lock); 2218 return r; 2219 } 2220 2221 /* 2222 * Functions to lock and unlock any filesystem running on the 2223 * device. 2224 */ 2225 static int lock_fs(struct mapped_device *md) 2226 { 2227 int r; 2228 2229 WARN_ON(md->frozen_sb); 2230 2231 md->frozen_sb = freeze_bdev(md->bdev); 2232 if (IS_ERR(md->frozen_sb)) { 2233 r = PTR_ERR(md->frozen_sb); 2234 md->frozen_sb = NULL; 2235 return r; 2236 } 2237 2238 set_bit(DMF_FROZEN, &md->flags); 2239 2240 return 0; 2241 } 2242 2243 static void unlock_fs(struct mapped_device *md) 2244 { 2245 if (!test_bit(DMF_FROZEN, &md->flags)) 2246 return; 2247 2248 thaw_bdev(md->bdev, md->frozen_sb); 2249 md->frozen_sb = NULL; 2250 clear_bit(DMF_FROZEN, &md->flags); 2251 } 2252 2253 /* 2254 * We need to be able to change a mapping table under a mounted 2255 * filesystem. For example we might want to move some data in 2256 * the background. Before the table can be swapped with 2257 * dm_bind_table, dm_suspend must be called to flush any in 2258 * flight bios and ensure that any further io gets deferred. 2259 */ 2260 /* 2261 * Suspend mechanism in request-based dm. 2262 * 2263 * 1. Flush all I/Os by lock_fs() if needed. 2264 * 2. Stop dispatching any I/O by stopping the request_queue. 2265 * 3. Wait for all in-flight I/Os to be completed or requeued. 2266 * 2267 * To abort suspend, start the request_queue. 2268 */ 2269 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2270 { 2271 struct dm_table *map = NULL; 2272 int r = 0; 2273 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2274 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2275 2276 mutex_lock(&md->suspend_lock); 2277 2278 if (dm_suspended(md)) { 2279 r = -EINVAL; 2280 goto out_unlock; 2281 } 2282 2283 map = dm_get_table(md); 2284 2285 /* 2286 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2287 * This flag is cleared before dm_suspend returns. 2288 */ 2289 if (noflush) 2290 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2291 2292 /* This does not get reverted if there's an error later. */ 2293 dm_table_presuspend_targets(map); 2294 2295 /* 2296 * Flush I/O to the device. 2297 * Any I/O submitted after lock_fs() may not be flushed. 2298 * noflush takes precedence over do_lockfs. 2299 * (lock_fs() flushes I/Os and waits for them to complete.) 2300 */ 2301 if (!noflush && do_lockfs) { 2302 r = lock_fs(md); 2303 if (r) 2304 goto out; 2305 } 2306 2307 /* 2308 * Here we must make sure that no processes are submitting requests 2309 * to target drivers i.e. no one may be executing 2310 * __split_and_process_bio. This is called from dm_request and 2311 * dm_wq_work. 2312 * 2313 * To get all processes out of __split_and_process_bio in dm_request, 2314 * we take the write lock. To prevent any process from reentering 2315 * __split_and_process_bio from dm_request, we set 2316 * DMF_QUEUE_IO_TO_THREAD. 2317 * 2318 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND 2319 * and call flush_workqueue(md->wq). flush_workqueue will wait until 2320 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any 2321 * further calls to __split_and_process_bio from dm_wq_work. 2322 */ 2323 down_write(&md->io_lock); 2324 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2325 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags); 2326 up_write(&md->io_lock); 2327 2328 flush_workqueue(md->wq); 2329 2330 if (dm_request_based(md)) 2331 stop_queue(md->queue); 2332 2333 /* 2334 * At this point no more requests are entering target request routines. 2335 * We call dm_wait_for_completion to wait for all existing requests 2336 * to finish. 2337 */ 2338 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2339 2340 down_write(&md->io_lock); 2341 if (noflush) 2342 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2343 up_write(&md->io_lock); 2344 2345 /* were we interrupted ? */ 2346 if (r < 0) { 2347 dm_queue_flush(md); 2348 2349 if (dm_request_based(md)) 2350 start_queue(md->queue); 2351 2352 unlock_fs(md); 2353 goto out; /* pushback list is already flushed, so skip flush */ 2354 } 2355 2356 /* 2357 * If dm_wait_for_completion returned 0, the device is completely 2358 * quiescent now. There is no request-processing activity. All new 2359 * requests are being added to md->deferred list. 2360 */ 2361 2362 dm_table_postsuspend_targets(map); 2363 2364 set_bit(DMF_SUSPENDED, &md->flags); 2365 2366 out: 2367 dm_table_put(map); 2368 2369 out_unlock: 2370 mutex_unlock(&md->suspend_lock); 2371 return r; 2372 } 2373 2374 int dm_resume(struct mapped_device *md) 2375 { 2376 int r = -EINVAL; 2377 struct dm_table *map = NULL; 2378 2379 mutex_lock(&md->suspend_lock); 2380 if (!dm_suspended(md)) 2381 goto out; 2382 2383 map = dm_get_table(md); 2384 if (!map || !dm_table_get_size(map)) 2385 goto out; 2386 2387 r = dm_table_resume_targets(map); 2388 if (r) 2389 goto out; 2390 2391 dm_queue_flush(md); 2392 2393 /* 2394 * Flushing deferred I/Os must be done after targets are resumed 2395 * so that mapping of targets can work correctly. 2396 * Request-based dm is queueing the deferred I/Os in its request_queue. 2397 */ 2398 if (dm_request_based(md)) 2399 start_queue(md->queue); 2400 2401 unlock_fs(md); 2402 2403 clear_bit(DMF_SUSPENDED, &md->flags); 2404 2405 dm_table_unplug_all(map); 2406 r = 0; 2407 out: 2408 dm_table_put(map); 2409 mutex_unlock(&md->suspend_lock); 2410 2411 return r; 2412 } 2413 2414 /*----------------------------------------------------------------- 2415 * Event notification. 2416 *---------------------------------------------------------------*/ 2417 void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2418 unsigned cookie) 2419 { 2420 char udev_cookie[DM_COOKIE_LENGTH]; 2421 char *envp[] = { udev_cookie, NULL }; 2422 2423 if (!cookie) 2424 kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2425 else { 2426 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2427 DM_COOKIE_ENV_VAR_NAME, cookie); 2428 kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 2429 } 2430 } 2431 2432 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2433 { 2434 return atomic_add_return(1, &md->uevent_seq); 2435 } 2436 2437 uint32_t dm_get_event_nr(struct mapped_device *md) 2438 { 2439 return atomic_read(&md->event_nr); 2440 } 2441 2442 int dm_wait_event(struct mapped_device *md, int event_nr) 2443 { 2444 return wait_event_interruptible(md->eventq, 2445 (event_nr != atomic_read(&md->event_nr))); 2446 } 2447 2448 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2449 { 2450 unsigned long flags; 2451 2452 spin_lock_irqsave(&md->uevent_lock, flags); 2453 list_add(elist, &md->uevent_list); 2454 spin_unlock_irqrestore(&md->uevent_lock, flags); 2455 } 2456 2457 /* 2458 * The gendisk is only valid as long as you have a reference 2459 * count on 'md'. 2460 */ 2461 struct gendisk *dm_disk(struct mapped_device *md) 2462 { 2463 return md->disk; 2464 } 2465 2466 struct kobject *dm_kobject(struct mapped_device *md) 2467 { 2468 return &md->kobj; 2469 } 2470 2471 /* 2472 * struct mapped_device should not be exported outside of dm.c 2473 * so use this check to verify that kobj is part of md structure 2474 */ 2475 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2476 { 2477 struct mapped_device *md; 2478 2479 md = container_of(kobj, struct mapped_device, kobj); 2480 if (&md->kobj != kobj) 2481 return NULL; 2482 2483 if (test_bit(DMF_FREEING, &md->flags) || 2484 test_bit(DMF_DELETING, &md->flags)) 2485 return NULL; 2486 2487 dm_get(md); 2488 return md; 2489 } 2490 2491 int dm_suspended(struct mapped_device *md) 2492 { 2493 return test_bit(DMF_SUSPENDED, &md->flags); 2494 } 2495 2496 int dm_noflush_suspending(struct dm_target *ti) 2497 { 2498 struct mapped_device *md = dm_table_get_md(ti->table); 2499 int r = __noflush_suspending(md); 2500 2501 dm_put(md); 2502 2503 return r; 2504 } 2505 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2506 2507 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type) 2508 { 2509 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL); 2510 2511 if (!pools) 2512 return NULL; 2513 2514 pools->io_pool = (type == DM_TYPE_BIO_BASED) ? 2515 mempool_create_slab_pool(MIN_IOS, _io_cache) : 2516 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache); 2517 if (!pools->io_pool) 2518 goto free_pools_and_out; 2519 2520 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ? 2521 mempool_create_slab_pool(MIN_IOS, _tio_cache) : 2522 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache); 2523 if (!pools->tio_pool) 2524 goto free_io_pool_and_out; 2525 2526 pools->bs = (type == DM_TYPE_BIO_BASED) ? 2527 bioset_create(16, 0) : bioset_create(MIN_IOS, 0); 2528 if (!pools->bs) 2529 goto free_tio_pool_and_out; 2530 2531 return pools; 2532 2533 free_tio_pool_and_out: 2534 mempool_destroy(pools->tio_pool); 2535 2536 free_io_pool_and_out: 2537 mempool_destroy(pools->io_pool); 2538 2539 free_pools_and_out: 2540 kfree(pools); 2541 2542 return NULL; 2543 } 2544 2545 void dm_free_md_mempools(struct dm_md_mempools *pools) 2546 { 2547 if (!pools) 2548 return; 2549 2550 if (pools->io_pool) 2551 mempool_destroy(pools->io_pool); 2552 2553 if (pools->tio_pool) 2554 mempool_destroy(pools->tio_pool); 2555 2556 if (pools->bs) 2557 bioset_free(pools->bs); 2558 2559 kfree(pools); 2560 } 2561 2562 static const struct block_device_operations dm_blk_dops = { 2563 .open = dm_blk_open, 2564 .release = dm_blk_close, 2565 .ioctl = dm_blk_ioctl, 2566 .getgeo = dm_blk_getgeo, 2567 .owner = THIS_MODULE 2568 }; 2569 2570 EXPORT_SYMBOL(dm_get_mapinfo); 2571 2572 /* 2573 * module hooks 2574 */ 2575 module_init(dm_init); 2576 module_exit(dm_exit); 2577 2578 module_param(major, uint, 0); 2579 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2580 MODULE_DESCRIPTION(DM_NAME " driver"); 2581 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2582 MODULE_LICENSE("GPL"); 2583