xref: /openbmc/linux/drivers/md/dm.c (revision 115485e83f497fdf9b4bf779038cfe4e141292a9)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 #include <linux/pr.h>
28 
29 #include <trace/events/block.h>
30 
31 #define DM_MSG_PREFIX "core"
32 
33 #ifdef CONFIG_PRINTK
34 /*
35  * ratelimit state to be used in DMXXX_LIMIT().
36  */
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 		       DEFAULT_RATELIMIT_INTERVAL,
39 		       DEFAULT_RATELIMIT_BURST);
40 EXPORT_SYMBOL(dm_ratelimit_state);
41 #endif
42 
43 /*
44  * Cookies are numeric values sent with CHANGE and REMOVE
45  * uevents while resuming, removing or renaming the device.
46  */
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per bio.
68  */
69 struct dm_io {
70 	struct mapped_device *md;
71 	int error;
72 	atomic_t io_count;
73 	struct bio *bio;
74 	unsigned long start_time;
75 	spinlock_t endio_lock;
76 	struct dm_stats_aux stats_aux;
77 };
78 
79 /*
80  * For request-based dm.
81  * One of these is allocated per request.
82  */
83 struct dm_rq_target_io {
84 	struct mapped_device *md;
85 	struct dm_target *ti;
86 	struct request *orig, *clone;
87 	struct kthread_work work;
88 	int error;
89 	union map_info info;
90 	struct dm_stats_aux stats_aux;
91 	unsigned long duration_jiffies;
92 	unsigned n_sectors;
93 };
94 
95 /*
96  * For request-based dm - the bio clones we allocate are embedded in these
97  * structs.
98  *
99  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100  * the bioset is created - this means the bio has to come at the end of the
101  * struct.
102  */
103 struct dm_rq_clone_bio_info {
104 	struct bio *orig;
105 	struct dm_rq_target_io *tio;
106 	struct bio clone;
107 };
108 
109 #define MINOR_ALLOCED ((void *)-1)
110 
111 /*
112  * Bits for the md->flags field.
113  */
114 #define DMF_BLOCK_IO_FOR_SUSPEND 0
115 #define DMF_SUSPENDED 1
116 #define DMF_FROZEN 2
117 #define DMF_FREEING 3
118 #define DMF_DELETING 4
119 #define DMF_NOFLUSH_SUSPENDING 5
120 #define DMF_DEFERRED_REMOVE 6
121 #define DMF_SUSPENDED_INTERNALLY 7
122 
123 /*
124  * A dummy definition to make RCU happy.
125  * struct dm_table should never be dereferenced in this file.
126  */
127 struct dm_table {
128 	int undefined__;
129 };
130 
131 /*
132  * Work processed by per-device workqueue.
133  */
134 struct mapped_device {
135 	struct srcu_struct io_barrier;
136 	struct mutex suspend_lock;
137 	atomic_t holders;
138 	atomic_t open_count;
139 
140 	/*
141 	 * The current mapping.
142 	 * Use dm_get_live_table{_fast} or take suspend_lock for
143 	 * dereference.
144 	 */
145 	struct dm_table __rcu *map;
146 
147 	struct list_head table_devices;
148 	struct mutex table_devices_lock;
149 
150 	unsigned long flags;
151 
152 	struct request_queue *queue;
153 	int numa_node_id;
154 
155 	unsigned type;
156 	/* Protect queue and type against concurrent access. */
157 	struct mutex type_lock;
158 
159 	struct dm_target *immutable_target;
160 	struct target_type *immutable_target_type;
161 
162 	struct gendisk *disk;
163 	char name[16];
164 
165 	void *interface_ptr;
166 
167 	/*
168 	 * A list of ios that arrived while we were suspended.
169 	 */
170 	atomic_t pending[2];
171 	wait_queue_head_t wait;
172 	struct work_struct work;
173 	struct bio_list deferred;
174 	spinlock_t deferred_lock;
175 
176 	/*
177 	 * Processing queue (flush)
178 	 */
179 	struct workqueue_struct *wq;
180 
181 	/*
182 	 * io objects are allocated from here.
183 	 */
184 	mempool_t *io_pool;
185 	mempool_t *rq_pool;
186 
187 	struct bio_set *bs;
188 
189 	/*
190 	 * Event handling.
191 	 */
192 	atomic_t event_nr;
193 	wait_queue_head_t eventq;
194 	atomic_t uevent_seq;
195 	struct list_head uevent_list;
196 	spinlock_t uevent_lock; /* Protect access to uevent_list */
197 
198 	/*
199 	 * freeze/thaw support require holding onto a super block
200 	 */
201 	struct super_block *frozen_sb;
202 	struct block_device *bdev;
203 
204 	/* forced geometry settings */
205 	struct hd_geometry geometry;
206 
207 	/* kobject and completion */
208 	struct dm_kobject_holder kobj_holder;
209 
210 	/* zero-length flush that will be cloned and submitted to targets */
211 	struct bio flush_bio;
212 
213 	/* the number of internal suspends */
214 	unsigned internal_suspend_count;
215 
216 	struct dm_stats stats;
217 
218 	struct kthread_worker kworker;
219 	struct task_struct *kworker_task;
220 
221 	/* for request-based merge heuristic in dm_request_fn() */
222 	unsigned seq_rq_merge_deadline_usecs;
223 	int last_rq_rw;
224 	sector_t last_rq_pos;
225 	ktime_t last_rq_start_time;
226 
227 	/* for blk-mq request-based DM support */
228 	struct blk_mq_tag_set *tag_set;
229 	bool use_blk_mq:1;
230 	bool init_tio_pdu:1;
231 };
232 
233 #ifdef CONFIG_DM_MQ_DEFAULT
234 static bool use_blk_mq = true;
235 #else
236 static bool use_blk_mq = false;
237 #endif
238 
239 #define DM_MQ_NR_HW_QUEUES 1
240 #define DM_MQ_QUEUE_DEPTH 2048
241 #define DM_NUMA_NODE NUMA_NO_NODE
242 
243 static unsigned dm_mq_nr_hw_queues = DM_MQ_NR_HW_QUEUES;
244 static unsigned dm_mq_queue_depth = DM_MQ_QUEUE_DEPTH;
245 static int dm_numa_node = DM_NUMA_NODE;
246 
247 bool dm_use_blk_mq(struct mapped_device *md)
248 {
249 	return md->use_blk_mq;
250 }
251 EXPORT_SYMBOL_GPL(dm_use_blk_mq);
252 
253 /*
254  * For mempools pre-allocation at the table loading time.
255  */
256 struct dm_md_mempools {
257 	mempool_t *io_pool;
258 	mempool_t *rq_pool;
259 	struct bio_set *bs;
260 };
261 
262 struct table_device {
263 	struct list_head list;
264 	atomic_t count;
265 	struct dm_dev dm_dev;
266 };
267 
268 #define RESERVED_BIO_BASED_IOS		16
269 #define RESERVED_REQUEST_BASED_IOS	256
270 #define RESERVED_MAX_IOS		1024
271 static struct kmem_cache *_io_cache;
272 static struct kmem_cache *_rq_tio_cache;
273 static struct kmem_cache *_rq_cache;
274 
275 /*
276  * Bio-based DM's mempools' reserved IOs set by the user.
277  */
278 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
279 
280 /*
281  * Request-based DM's mempools' reserved IOs set by the user.
282  */
283 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
284 
285 static int __dm_get_module_param_int(int *module_param, int min, int max)
286 {
287 	int param = ACCESS_ONCE(*module_param);
288 	int modified_param = 0;
289 	bool modified = true;
290 
291 	if (param < min)
292 		modified_param = min;
293 	else if (param > max)
294 		modified_param = max;
295 	else
296 		modified = false;
297 
298 	if (modified) {
299 		(void)cmpxchg(module_param, param, modified_param);
300 		param = modified_param;
301 	}
302 
303 	return param;
304 }
305 
306 static unsigned __dm_get_module_param(unsigned *module_param,
307 				      unsigned def, unsigned max)
308 {
309 	unsigned param = ACCESS_ONCE(*module_param);
310 	unsigned modified_param = 0;
311 
312 	if (!param)
313 		modified_param = def;
314 	else if (param > max)
315 		modified_param = max;
316 
317 	if (modified_param) {
318 		(void)cmpxchg(module_param, param, modified_param);
319 		param = modified_param;
320 	}
321 
322 	return param;
323 }
324 
325 unsigned dm_get_reserved_bio_based_ios(void)
326 {
327 	return __dm_get_module_param(&reserved_bio_based_ios,
328 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
329 }
330 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
331 
332 unsigned dm_get_reserved_rq_based_ios(void)
333 {
334 	return __dm_get_module_param(&reserved_rq_based_ios,
335 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
336 }
337 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
338 
339 static unsigned dm_get_blk_mq_nr_hw_queues(void)
340 {
341 	return __dm_get_module_param(&dm_mq_nr_hw_queues, 1, 32);
342 }
343 
344 static unsigned dm_get_blk_mq_queue_depth(void)
345 {
346 	return __dm_get_module_param(&dm_mq_queue_depth,
347 				     DM_MQ_QUEUE_DEPTH, BLK_MQ_MAX_DEPTH);
348 }
349 
350 static unsigned dm_get_numa_node(void)
351 {
352 	return __dm_get_module_param_int(&dm_numa_node,
353 					 DM_NUMA_NODE, num_online_nodes() - 1);
354 }
355 
356 static int __init local_init(void)
357 {
358 	int r = -ENOMEM;
359 
360 	/* allocate a slab for the dm_ios */
361 	_io_cache = KMEM_CACHE(dm_io, 0);
362 	if (!_io_cache)
363 		return r;
364 
365 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
366 	if (!_rq_tio_cache)
367 		goto out_free_io_cache;
368 
369 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
370 				      __alignof__(struct request), 0, NULL);
371 	if (!_rq_cache)
372 		goto out_free_rq_tio_cache;
373 
374 	r = dm_uevent_init();
375 	if (r)
376 		goto out_free_rq_cache;
377 
378 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
379 	if (!deferred_remove_workqueue) {
380 		r = -ENOMEM;
381 		goto out_uevent_exit;
382 	}
383 
384 	_major = major;
385 	r = register_blkdev(_major, _name);
386 	if (r < 0)
387 		goto out_free_workqueue;
388 
389 	if (!_major)
390 		_major = r;
391 
392 	return 0;
393 
394 out_free_workqueue:
395 	destroy_workqueue(deferred_remove_workqueue);
396 out_uevent_exit:
397 	dm_uevent_exit();
398 out_free_rq_cache:
399 	kmem_cache_destroy(_rq_cache);
400 out_free_rq_tio_cache:
401 	kmem_cache_destroy(_rq_tio_cache);
402 out_free_io_cache:
403 	kmem_cache_destroy(_io_cache);
404 
405 	return r;
406 }
407 
408 static void local_exit(void)
409 {
410 	flush_scheduled_work();
411 	destroy_workqueue(deferred_remove_workqueue);
412 
413 	kmem_cache_destroy(_rq_cache);
414 	kmem_cache_destroy(_rq_tio_cache);
415 	kmem_cache_destroy(_io_cache);
416 	unregister_blkdev(_major, _name);
417 	dm_uevent_exit();
418 
419 	_major = 0;
420 
421 	DMINFO("cleaned up");
422 }
423 
424 static int (*_inits[])(void) __initdata = {
425 	local_init,
426 	dm_target_init,
427 	dm_linear_init,
428 	dm_stripe_init,
429 	dm_io_init,
430 	dm_kcopyd_init,
431 	dm_interface_init,
432 	dm_statistics_init,
433 };
434 
435 static void (*_exits[])(void) = {
436 	local_exit,
437 	dm_target_exit,
438 	dm_linear_exit,
439 	dm_stripe_exit,
440 	dm_io_exit,
441 	dm_kcopyd_exit,
442 	dm_interface_exit,
443 	dm_statistics_exit,
444 };
445 
446 static int __init dm_init(void)
447 {
448 	const int count = ARRAY_SIZE(_inits);
449 
450 	int r, i;
451 
452 	for (i = 0; i < count; i++) {
453 		r = _inits[i]();
454 		if (r)
455 			goto bad;
456 	}
457 
458 	return 0;
459 
460       bad:
461 	while (i--)
462 		_exits[i]();
463 
464 	return r;
465 }
466 
467 static void __exit dm_exit(void)
468 {
469 	int i = ARRAY_SIZE(_exits);
470 
471 	while (i--)
472 		_exits[i]();
473 
474 	/*
475 	 * Should be empty by this point.
476 	 */
477 	idr_destroy(&_minor_idr);
478 }
479 
480 /*
481  * Block device functions
482  */
483 int dm_deleting_md(struct mapped_device *md)
484 {
485 	return test_bit(DMF_DELETING, &md->flags);
486 }
487 
488 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
489 {
490 	struct mapped_device *md;
491 
492 	spin_lock(&_minor_lock);
493 
494 	md = bdev->bd_disk->private_data;
495 	if (!md)
496 		goto out;
497 
498 	if (test_bit(DMF_FREEING, &md->flags) ||
499 	    dm_deleting_md(md)) {
500 		md = NULL;
501 		goto out;
502 	}
503 
504 	dm_get(md);
505 	atomic_inc(&md->open_count);
506 out:
507 	spin_unlock(&_minor_lock);
508 
509 	return md ? 0 : -ENXIO;
510 }
511 
512 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
513 {
514 	struct mapped_device *md;
515 
516 	spin_lock(&_minor_lock);
517 
518 	md = disk->private_data;
519 	if (WARN_ON(!md))
520 		goto out;
521 
522 	if (atomic_dec_and_test(&md->open_count) &&
523 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
524 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
525 
526 	dm_put(md);
527 out:
528 	spin_unlock(&_minor_lock);
529 }
530 
531 int dm_open_count(struct mapped_device *md)
532 {
533 	return atomic_read(&md->open_count);
534 }
535 
536 /*
537  * Guarantees nothing is using the device before it's deleted.
538  */
539 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
540 {
541 	int r = 0;
542 
543 	spin_lock(&_minor_lock);
544 
545 	if (dm_open_count(md)) {
546 		r = -EBUSY;
547 		if (mark_deferred)
548 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
549 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
550 		r = -EEXIST;
551 	else
552 		set_bit(DMF_DELETING, &md->flags);
553 
554 	spin_unlock(&_minor_lock);
555 
556 	return r;
557 }
558 
559 int dm_cancel_deferred_remove(struct mapped_device *md)
560 {
561 	int r = 0;
562 
563 	spin_lock(&_minor_lock);
564 
565 	if (test_bit(DMF_DELETING, &md->flags))
566 		r = -EBUSY;
567 	else
568 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
569 
570 	spin_unlock(&_minor_lock);
571 
572 	return r;
573 }
574 
575 static void do_deferred_remove(struct work_struct *w)
576 {
577 	dm_deferred_remove();
578 }
579 
580 sector_t dm_get_size(struct mapped_device *md)
581 {
582 	return get_capacity(md->disk);
583 }
584 
585 struct request_queue *dm_get_md_queue(struct mapped_device *md)
586 {
587 	return md->queue;
588 }
589 
590 struct dm_stats *dm_get_stats(struct mapped_device *md)
591 {
592 	return &md->stats;
593 }
594 
595 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
596 {
597 	struct mapped_device *md = bdev->bd_disk->private_data;
598 
599 	return dm_get_geometry(md, geo);
600 }
601 
602 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
603 				  struct block_device **bdev,
604 				  fmode_t *mode)
605 {
606 	struct dm_target *tgt;
607 	struct dm_table *map;
608 	int srcu_idx, r;
609 
610 retry:
611 	r = -ENOTTY;
612 	map = dm_get_live_table(md, &srcu_idx);
613 	if (!map || !dm_table_get_size(map))
614 		goto out;
615 
616 	/* We only support devices that have a single target */
617 	if (dm_table_get_num_targets(map) != 1)
618 		goto out;
619 
620 	tgt = dm_table_get_target(map, 0);
621 	if (!tgt->type->prepare_ioctl)
622 		goto out;
623 
624 	if (dm_suspended_md(md)) {
625 		r = -EAGAIN;
626 		goto out;
627 	}
628 
629 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
630 	if (r < 0)
631 		goto out;
632 
633 	bdgrab(*bdev);
634 	dm_put_live_table(md, srcu_idx);
635 	return r;
636 
637 out:
638 	dm_put_live_table(md, srcu_idx);
639 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
640 		msleep(10);
641 		goto retry;
642 	}
643 	return r;
644 }
645 
646 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
647 			unsigned int cmd, unsigned long arg)
648 {
649 	struct mapped_device *md = bdev->bd_disk->private_data;
650 	int r;
651 
652 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
653 	if (r < 0)
654 		return r;
655 
656 	if (r > 0) {
657 		/*
658 		 * Target determined this ioctl is being issued against
659 		 * a logical partition of the parent bdev; so extra
660 		 * validation is needed.
661 		 */
662 		r = scsi_verify_blk_ioctl(NULL, cmd);
663 		if (r)
664 			goto out;
665 	}
666 
667 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
668 out:
669 	bdput(bdev);
670 	return r;
671 }
672 
673 static struct dm_io *alloc_io(struct mapped_device *md)
674 {
675 	return mempool_alloc(md->io_pool, GFP_NOIO);
676 }
677 
678 static void free_io(struct mapped_device *md, struct dm_io *io)
679 {
680 	mempool_free(io, md->io_pool);
681 }
682 
683 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
684 {
685 	bio_put(&tio->clone);
686 }
687 
688 static struct dm_rq_target_io *alloc_old_rq_tio(struct mapped_device *md,
689 						gfp_t gfp_mask)
690 {
691 	return mempool_alloc(md->io_pool, gfp_mask);
692 }
693 
694 static void free_old_rq_tio(struct dm_rq_target_io *tio)
695 {
696 	mempool_free(tio, tio->md->io_pool);
697 }
698 
699 static struct request *alloc_old_clone_request(struct mapped_device *md,
700 					       gfp_t gfp_mask)
701 {
702 	return mempool_alloc(md->rq_pool, gfp_mask);
703 }
704 
705 static void free_old_clone_request(struct mapped_device *md, struct request *rq)
706 {
707 	mempool_free(rq, md->rq_pool);
708 }
709 
710 static int md_in_flight(struct mapped_device *md)
711 {
712 	return atomic_read(&md->pending[READ]) +
713 	       atomic_read(&md->pending[WRITE]);
714 }
715 
716 static void start_io_acct(struct dm_io *io)
717 {
718 	struct mapped_device *md = io->md;
719 	struct bio *bio = io->bio;
720 	int cpu;
721 	int rw = bio_data_dir(bio);
722 
723 	io->start_time = jiffies;
724 
725 	cpu = part_stat_lock();
726 	part_round_stats(cpu, &dm_disk(md)->part0);
727 	part_stat_unlock();
728 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
729 		atomic_inc_return(&md->pending[rw]));
730 
731 	if (unlikely(dm_stats_used(&md->stats)))
732 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
733 				    bio_sectors(bio), false, 0, &io->stats_aux);
734 }
735 
736 static void end_io_acct(struct dm_io *io)
737 {
738 	struct mapped_device *md = io->md;
739 	struct bio *bio = io->bio;
740 	unsigned long duration = jiffies - io->start_time;
741 	int pending;
742 	int rw = bio_data_dir(bio);
743 
744 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
745 
746 	if (unlikely(dm_stats_used(&md->stats)))
747 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
748 				    bio_sectors(bio), true, duration, &io->stats_aux);
749 
750 	/*
751 	 * After this is decremented the bio must not be touched if it is
752 	 * a flush.
753 	 */
754 	pending = atomic_dec_return(&md->pending[rw]);
755 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
756 	pending += atomic_read(&md->pending[rw^0x1]);
757 
758 	/* nudge anyone waiting on suspend queue */
759 	if (!pending)
760 		wake_up(&md->wait);
761 }
762 
763 /*
764  * Add the bio to the list of deferred io.
765  */
766 static void queue_io(struct mapped_device *md, struct bio *bio)
767 {
768 	unsigned long flags;
769 
770 	spin_lock_irqsave(&md->deferred_lock, flags);
771 	bio_list_add(&md->deferred, bio);
772 	spin_unlock_irqrestore(&md->deferred_lock, flags);
773 	queue_work(md->wq, &md->work);
774 }
775 
776 /*
777  * Everyone (including functions in this file), should use this
778  * function to access the md->map field, and make sure they call
779  * dm_put_live_table() when finished.
780  */
781 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
782 {
783 	*srcu_idx = srcu_read_lock(&md->io_barrier);
784 
785 	return srcu_dereference(md->map, &md->io_barrier);
786 }
787 
788 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
789 {
790 	srcu_read_unlock(&md->io_barrier, srcu_idx);
791 }
792 
793 void dm_sync_table(struct mapped_device *md)
794 {
795 	synchronize_srcu(&md->io_barrier);
796 	synchronize_rcu_expedited();
797 }
798 
799 /*
800  * A fast alternative to dm_get_live_table/dm_put_live_table.
801  * The caller must not block between these two functions.
802  */
803 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
804 {
805 	rcu_read_lock();
806 	return rcu_dereference(md->map);
807 }
808 
809 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
810 {
811 	rcu_read_unlock();
812 }
813 
814 /*
815  * Open a table device so we can use it as a map destination.
816  */
817 static int open_table_device(struct table_device *td, dev_t dev,
818 			     struct mapped_device *md)
819 {
820 	static char *_claim_ptr = "I belong to device-mapper";
821 	struct block_device *bdev;
822 
823 	int r;
824 
825 	BUG_ON(td->dm_dev.bdev);
826 
827 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
828 	if (IS_ERR(bdev))
829 		return PTR_ERR(bdev);
830 
831 	r = bd_link_disk_holder(bdev, dm_disk(md));
832 	if (r) {
833 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
834 		return r;
835 	}
836 
837 	td->dm_dev.bdev = bdev;
838 	return 0;
839 }
840 
841 /*
842  * Close a table device that we've been using.
843  */
844 static void close_table_device(struct table_device *td, struct mapped_device *md)
845 {
846 	if (!td->dm_dev.bdev)
847 		return;
848 
849 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
850 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
851 	td->dm_dev.bdev = NULL;
852 }
853 
854 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
855 					      fmode_t mode) {
856 	struct table_device *td;
857 
858 	list_for_each_entry(td, l, list)
859 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
860 			return td;
861 
862 	return NULL;
863 }
864 
865 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
866 			struct dm_dev **result) {
867 	int r;
868 	struct table_device *td;
869 
870 	mutex_lock(&md->table_devices_lock);
871 	td = find_table_device(&md->table_devices, dev, mode);
872 	if (!td) {
873 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
874 		if (!td) {
875 			mutex_unlock(&md->table_devices_lock);
876 			return -ENOMEM;
877 		}
878 
879 		td->dm_dev.mode = mode;
880 		td->dm_dev.bdev = NULL;
881 
882 		if ((r = open_table_device(td, dev, md))) {
883 			mutex_unlock(&md->table_devices_lock);
884 			kfree(td);
885 			return r;
886 		}
887 
888 		format_dev_t(td->dm_dev.name, dev);
889 
890 		atomic_set(&td->count, 0);
891 		list_add(&td->list, &md->table_devices);
892 	}
893 	atomic_inc(&td->count);
894 	mutex_unlock(&md->table_devices_lock);
895 
896 	*result = &td->dm_dev;
897 	return 0;
898 }
899 EXPORT_SYMBOL_GPL(dm_get_table_device);
900 
901 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
902 {
903 	struct table_device *td = container_of(d, struct table_device, dm_dev);
904 
905 	mutex_lock(&md->table_devices_lock);
906 	if (atomic_dec_and_test(&td->count)) {
907 		close_table_device(td, md);
908 		list_del(&td->list);
909 		kfree(td);
910 	}
911 	mutex_unlock(&md->table_devices_lock);
912 }
913 EXPORT_SYMBOL(dm_put_table_device);
914 
915 static void free_table_devices(struct list_head *devices)
916 {
917 	struct list_head *tmp, *next;
918 
919 	list_for_each_safe(tmp, next, devices) {
920 		struct table_device *td = list_entry(tmp, struct table_device, list);
921 
922 		DMWARN("dm_destroy: %s still exists with %d references",
923 		       td->dm_dev.name, atomic_read(&td->count));
924 		kfree(td);
925 	}
926 }
927 
928 /*
929  * Get the geometry associated with a dm device
930  */
931 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
932 {
933 	*geo = md->geometry;
934 
935 	return 0;
936 }
937 
938 /*
939  * Set the geometry of a device.
940  */
941 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
942 {
943 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
944 
945 	if (geo->start > sz) {
946 		DMWARN("Start sector is beyond the geometry limits.");
947 		return -EINVAL;
948 	}
949 
950 	md->geometry = *geo;
951 
952 	return 0;
953 }
954 
955 /*-----------------------------------------------------------------
956  * CRUD START:
957  *   A more elegant soln is in the works that uses the queue
958  *   merge fn, unfortunately there are a couple of changes to
959  *   the block layer that I want to make for this.  So in the
960  *   interests of getting something for people to use I give
961  *   you this clearly demarcated crap.
962  *---------------------------------------------------------------*/
963 
964 static int __noflush_suspending(struct mapped_device *md)
965 {
966 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
967 }
968 
969 /*
970  * Decrements the number of outstanding ios that a bio has been
971  * cloned into, completing the original io if necc.
972  */
973 static void dec_pending(struct dm_io *io, int error)
974 {
975 	unsigned long flags;
976 	int io_error;
977 	struct bio *bio;
978 	struct mapped_device *md = io->md;
979 
980 	/* Push-back supersedes any I/O errors */
981 	if (unlikely(error)) {
982 		spin_lock_irqsave(&io->endio_lock, flags);
983 		if (!(io->error > 0 && __noflush_suspending(md)))
984 			io->error = error;
985 		spin_unlock_irqrestore(&io->endio_lock, flags);
986 	}
987 
988 	if (atomic_dec_and_test(&io->io_count)) {
989 		if (io->error == DM_ENDIO_REQUEUE) {
990 			/*
991 			 * Target requested pushing back the I/O.
992 			 */
993 			spin_lock_irqsave(&md->deferred_lock, flags);
994 			if (__noflush_suspending(md))
995 				bio_list_add_head(&md->deferred, io->bio);
996 			else
997 				/* noflush suspend was interrupted. */
998 				io->error = -EIO;
999 			spin_unlock_irqrestore(&md->deferred_lock, flags);
1000 		}
1001 
1002 		io_error = io->error;
1003 		bio = io->bio;
1004 		end_io_acct(io);
1005 		free_io(md, io);
1006 
1007 		if (io_error == DM_ENDIO_REQUEUE)
1008 			return;
1009 
1010 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
1011 			/*
1012 			 * Preflush done for flush with data, reissue
1013 			 * without REQ_FLUSH.
1014 			 */
1015 			bio->bi_rw &= ~REQ_FLUSH;
1016 			queue_io(md, bio);
1017 		} else {
1018 			/* done with normal IO or empty flush */
1019 			trace_block_bio_complete(md->queue, bio, io_error);
1020 			bio->bi_error = io_error;
1021 			bio_endio(bio);
1022 		}
1023 	}
1024 }
1025 
1026 static void disable_write_same(struct mapped_device *md)
1027 {
1028 	struct queue_limits *limits = dm_get_queue_limits(md);
1029 
1030 	/* device doesn't really support WRITE SAME, disable it */
1031 	limits->max_write_same_sectors = 0;
1032 }
1033 
1034 static void clone_endio(struct bio *bio)
1035 {
1036 	int error = bio->bi_error;
1037 	int r = error;
1038 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1039 	struct dm_io *io = tio->io;
1040 	struct mapped_device *md = tio->io->md;
1041 	dm_endio_fn endio = tio->ti->type->end_io;
1042 
1043 	if (endio) {
1044 		r = endio(tio->ti, bio, error);
1045 		if (r < 0 || r == DM_ENDIO_REQUEUE)
1046 			/*
1047 			 * error and requeue request are handled
1048 			 * in dec_pending().
1049 			 */
1050 			error = r;
1051 		else if (r == DM_ENDIO_INCOMPLETE)
1052 			/* The target will handle the io */
1053 			return;
1054 		else if (r) {
1055 			DMWARN("unimplemented target endio return value: %d", r);
1056 			BUG();
1057 		}
1058 	}
1059 
1060 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1061 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1062 		disable_write_same(md);
1063 
1064 	free_tio(md, tio);
1065 	dec_pending(io, error);
1066 }
1067 
1068 /*
1069  * Partial completion handling for request-based dm
1070  */
1071 static void end_clone_bio(struct bio *clone)
1072 {
1073 	struct dm_rq_clone_bio_info *info =
1074 		container_of(clone, struct dm_rq_clone_bio_info, clone);
1075 	struct dm_rq_target_io *tio = info->tio;
1076 	struct bio *bio = info->orig;
1077 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1078 	int error = clone->bi_error;
1079 
1080 	bio_put(clone);
1081 
1082 	if (tio->error)
1083 		/*
1084 		 * An error has already been detected on the request.
1085 		 * Once error occurred, just let clone->end_io() handle
1086 		 * the remainder.
1087 		 */
1088 		return;
1089 	else if (error) {
1090 		/*
1091 		 * Don't notice the error to the upper layer yet.
1092 		 * The error handling decision is made by the target driver,
1093 		 * when the request is completed.
1094 		 */
1095 		tio->error = error;
1096 		return;
1097 	}
1098 
1099 	/*
1100 	 * I/O for the bio successfully completed.
1101 	 * Notice the data completion to the upper layer.
1102 	 */
1103 
1104 	/*
1105 	 * bios are processed from the head of the list.
1106 	 * So the completing bio should always be rq->bio.
1107 	 * If it's not, something wrong is happening.
1108 	 */
1109 	if (tio->orig->bio != bio)
1110 		DMERR("bio completion is going in the middle of the request");
1111 
1112 	/*
1113 	 * Update the original request.
1114 	 * Do not use blk_end_request() here, because it may complete
1115 	 * the original request before the clone, and break the ordering.
1116 	 */
1117 	blk_update_request(tio->orig, 0, nr_bytes);
1118 }
1119 
1120 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1121 {
1122 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1123 }
1124 
1125 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1126 {
1127 	if (unlikely(dm_stats_used(&md->stats))) {
1128 		struct dm_rq_target_io *tio = tio_from_request(orig);
1129 		tio->duration_jiffies = jiffies - tio->duration_jiffies;
1130 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1131 				    tio->n_sectors, true, tio->duration_jiffies,
1132 				    &tio->stats_aux);
1133 	}
1134 }
1135 
1136 /*
1137  * Don't touch any member of the md after calling this function because
1138  * the md may be freed in dm_put() at the end of this function.
1139  * Or do dm_get() before calling this function and dm_put() later.
1140  */
1141 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1142 {
1143 	atomic_dec(&md->pending[rw]);
1144 
1145 	/* nudge anyone waiting on suspend queue */
1146 	if (!md_in_flight(md))
1147 		wake_up(&md->wait);
1148 
1149 	/*
1150 	 * Run this off this callpath, as drivers could invoke end_io while
1151 	 * inside their request_fn (and holding the queue lock). Calling
1152 	 * back into ->request_fn() could deadlock attempting to grab the
1153 	 * queue lock again.
1154 	 */
1155 	if (!md->queue->mq_ops && run_queue)
1156 		blk_run_queue_async(md->queue);
1157 
1158 	/*
1159 	 * dm_put() must be at the end of this function. See the comment above
1160 	 */
1161 	dm_put(md);
1162 }
1163 
1164 static void free_rq_clone(struct request *clone)
1165 {
1166 	struct dm_rq_target_io *tio = clone->end_io_data;
1167 	struct mapped_device *md = tio->md;
1168 
1169 	blk_rq_unprep_clone(clone);
1170 
1171 	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1172 		/* stacked on blk-mq queue(s) */
1173 		tio->ti->type->release_clone_rq(clone);
1174 	else if (!md->queue->mq_ops)
1175 		/* request_fn queue stacked on request_fn queue(s) */
1176 		free_old_clone_request(md, clone);
1177 
1178 	if (!md->queue->mq_ops)
1179 		free_old_rq_tio(tio);
1180 }
1181 
1182 /*
1183  * Complete the clone and the original request.
1184  * Must be called without clone's queue lock held,
1185  * see end_clone_request() for more details.
1186  */
1187 static void dm_end_request(struct request *clone, int error)
1188 {
1189 	int rw = rq_data_dir(clone);
1190 	struct dm_rq_target_io *tio = clone->end_io_data;
1191 	struct mapped_device *md = tio->md;
1192 	struct request *rq = tio->orig;
1193 
1194 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1195 		rq->errors = clone->errors;
1196 		rq->resid_len = clone->resid_len;
1197 
1198 		if (rq->sense)
1199 			/*
1200 			 * We are using the sense buffer of the original
1201 			 * request.
1202 			 * So setting the length of the sense data is enough.
1203 			 */
1204 			rq->sense_len = clone->sense_len;
1205 	}
1206 
1207 	free_rq_clone(clone);
1208 	rq_end_stats(md, rq);
1209 	if (!rq->q->mq_ops)
1210 		blk_end_request_all(rq, error);
1211 	else
1212 		blk_mq_end_request(rq, error);
1213 	rq_completed(md, rw, true);
1214 }
1215 
1216 static void dm_unprep_request(struct request *rq)
1217 {
1218 	struct dm_rq_target_io *tio = tio_from_request(rq);
1219 	struct request *clone = tio->clone;
1220 
1221 	if (!rq->q->mq_ops) {
1222 		rq->special = NULL;
1223 		rq->cmd_flags &= ~REQ_DONTPREP;
1224 	}
1225 
1226 	if (clone)
1227 		free_rq_clone(clone);
1228 	else if (!tio->md->queue->mq_ops)
1229 		free_old_rq_tio(tio);
1230 }
1231 
1232 /*
1233  * Requeue the original request of a clone.
1234  */
1235 static void dm_old_requeue_request(struct request *rq)
1236 {
1237 	struct request_queue *q = rq->q;
1238 	unsigned long flags;
1239 
1240 	spin_lock_irqsave(q->queue_lock, flags);
1241 	blk_requeue_request(q, rq);
1242 	blk_run_queue_async(q);
1243 	spin_unlock_irqrestore(q->queue_lock, flags);
1244 }
1245 
1246 static void dm_mq_requeue_request(struct request *rq)
1247 {
1248 	struct request_queue *q = rq->q;
1249 	unsigned long flags;
1250 
1251 	blk_mq_requeue_request(rq);
1252 	spin_lock_irqsave(q->queue_lock, flags);
1253 	if (!blk_queue_stopped(q))
1254 		blk_mq_kick_requeue_list(q);
1255 	spin_unlock_irqrestore(q->queue_lock, flags);
1256 }
1257 
1258 static void dm_requeue_original_request(struct mapped_device *md,
1259 					struct request *rq)
1260 {
1261 	int rw = rq_data_dir(rq);
1262 
1263 	dm_unprep_request(rq);
1264 
1265 	rq_end_stats(md, rq);
1266 	if (!rq->q->mq_ops)
1267 		dm_old_requeue_request(rq);
1268 	else
1269 		dm_mq_requeue_request(rq);
1270 
1271 	rq_completed(md, rw, false);
1272 }
1273 
1274 static void dm_old_stop_queue(struct request_queue *q)
1275 {
1276 	unsigned long flags;
1277 
1278 	spin_lock_irqsave(q->queue_lock, flags);
1279 	if (blk_queue_stopped(q)) {
1280 		spin_unlock_irqrestore(q->queue_lock, flags);
1281 		return;
1282 	}
1283 
1284 	blk_stop_queue(q);
1285 	spin_unlock_irqrestore(q->queue_lock, flags);
1286 }
1287 
1288 static void dm_stop_queue(struct request_queue *q)
1289 {
1290 	if (!q->mq_ops)
1291 		dm_old_stop_queue(q);
1292 	else
1293 		blk_mq_stop_hw_queues(q);
1294 }
1295 
1296 static void dm_old_start_queue(struct request_queue *q)
1297 {
1298 	unsigned long flags;
1299 
1300 	spin_lock_irqsave(q->queue_lock, flags);
1301 	if (blk_queue_stopped(q))
1302 		blk_start_queue(q);
1303 	spin_unlock_irqrestore(q->queue_lock, flags);
1304 }
1305 
1306 static void dm_start_queue(struct request_queue *q)
1307 {
1308 	if (!q->mq_ops)
1309 		dm_old_start_queue(q);
1310 	else {
1311 		blk_mq_start_stopped_hw_queues(q, true);
1312 		blk_mq_kick_requeue_list(q);
1313 	}
1314 }
1315 
1316 static void dm_done(struct request *clone, int error, bool mapped)
1317 {
1318 	int r = error;
1319 	struct dm_rq_target_io *tio = clone->end_io_data;
1320 	dm_request_endio_fn rq_end_io = NULL;
1321 
1322 	if (tio->ti) {
1323 		rq_end_io = tio->ti->type->rq_end_io;
1324 
1325 		if (mapped && rq_end_io)
1326 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1327 	}
1328 
1329 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1330 		     !clone->q->limits.max_write_same_sectors))
1331 		disable_write_same(tio->md);
1332 
1333 	if (r <= 0)
1334 		/* The target wants to complete the I/O */
1335 		dm_end_request(clone, r);
1336 	else if (r == DM_ENDIO_INCOMPLETE)
1337 		/* The target will handle the I/O */
1338 		return;
1339 	else if (r == DM_ENDIO_REQUEUE)
1340 		/* The target wants to requeue the I/O */
1341 		dm_requeue_original_request(tio->md, tio->orig);
1342 	else {
1343 		DMWARN("unimplemented target endio return value: %d", r);
1344 		BUG();
1345 	}
1346 }
1347 
1348 /*
1349  * Request completion handler for request-based dm
1350  */
1351 static void dm_softirq_done(struct request *rq)
1352 {
1353 	bool mapped = true;
1354 	struct dm_rq_target_io *tio = tio_from_request(rq);
1355 	struct request *clone = tio->clone;
1356 	int rw;
1357 
1358 	if (!clone) {
1359 		rq_end_stats(tio->md, rq);
1360 		rw = rq_data_dir(rq);
1361 		if (!rq->q->mq_ops) {
1362 			blk_end_request_all(rq, tio->error);
1363 			rq_completed(tio->md, rw, false);
1364 			free_old_rq_tio(tio);
1365 		} else {
1366 			blk_mq_end_request(rq, tio->error);
1367 			rq_completed(tio->md, rw, false);
1368 		}
1369 		return;
1370 	}
1371 
1372 	if (rq->cmd_flags & REQ_FAILED)
1373 		mapped = false;
1374 
1375 	dm_done(clone, tio->error, mapped);
1376 }
1377 
1378 /*
1379  * Complete the clone and the original request with the error status
1380  * through softirq context.
1381  */
1382 static void dm_complete_request(struct request *rq, int error)
1383 {
1384 	struct dm_rq_target_io *tio = tio_from_request(rq);
1385 
1386 	tio->error = error;
1387 	if (!rq->q->mq_ops)
1388 		blk_complete_request(rq);
1389 	else
1390 		blk_mq_complete_request(rq, error);
1391 }
1392 
1393 /*
1394  * Complete the not-mapped clone and the original request with the error status
1395  * through softirq context.
1396  * Target's rq_end_io() function isn't called.
1397  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1398  */
1399 static void dm_kill_unmapped_request(struct request *rq, int error)
1400 {
1401 	rq->cmd_flags |= REQ_FAILED;
1402 	dm_complete_request(rq, error);
1403 }
1404 
1405 /*
1406  * Called with the clone's queue lock held (in the case of .request_fn)
1407  */
1408 static void end_clone_request(struct request *clone, int error)
1409 {
1410 	struct dm_rq_target_io *tio = clone->end_io_data;
1411 
1412 	if (!clone->q->mq_ops) {
1413 		/*
1414 		 * For just cleaning up the information of the queue in which
1415 		 * the clone was dispatched.
1416 		 * The clone is *NOT* freed actually here because it is alloced
1417 		 * from dm own mempool (REQ_ALLOCED isn't set).
1418 		 */
1419 		__blk_put_request(clone->q, clone);
1420 	}
1421 
1422 	/*
1423 	 * Actual request completion is done in a softirq context which doesn't
1424 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1425 	 *     - another request may be submitted by the upper level driver
1426 	 *       of the stacking during the completion
1427 	 *     - the submission which requires queue lock may be done
1428 	 *       against this clone's queue
1429 	 */
1430 	dm_complete_request(tio->orig, error);
1431 }
1432 
1433 /*
1434  * Return maximum size of I/O possible at the supplied sector up to the current
1435  * target boundary.
1436  */
1437 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1438 {
1439 	sector_t target_offset = dm_target_offset(ti, sector);
1440 
1441 	return ti->len - target_offset;
1442 }
1443 
1444 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1445 {
1446 	sector_t len = max_io_len_target_boundary(sector, ti);
1447 	sector_t offset, max_len;
1448 
1449 	/*
1450 	 * Does the target need to split even further?
1451 	 */
1452 	if (ti->max_io_len) {
1453 		offset = dm_target_offset(ti, sector);
1454 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1455 			max_len = sector_div(offset, ti->max_io_len);
1456 		else
1457 			max_len = offset & (ti->max_io_len - 1);
1458 		max_len = ti->max_io_len - max_len;
1459 
1460 		if (len > max_len)
1461 			len = max_len;
1462 	}
1463 
1464 	return len;
1465 }
1466 
1467 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1468 {
1469 	if (len > UINT_MAX) {
1470 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1471 		      (unsigned long long)len, UINT_MAX);
1472 		ti->error = "Maximum size of target IO is too large";
1473 		return -EINVAL;
1474 	}
1475 
1476 	ti->max_io_len = (uint32_t) len;
1477 
1478 	return 0;
1479 }
1480 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1481 
1482 /*
1483  * A target may call dm_accept_partial_bio only from the map routine.  It is
1484  * allowed for all bio types except REQ_FLUSH.
1485  *
1486  * dm_accept_partial_bio informs the dm that the target only wants to process
1487  * additional n_sectors sectors of the bio and the rest of the data should be
1488  * sent in a next bio.
1489  *
1490  * A diagram that explains the arithmetics:
1491  * +--------------------+---------------+-------+
1492  * |         1          |       2       |   3   |
1493  * +--------------------+---------------+-------+
1494  *
1495  * <-------------- *tio->len_ptr --------------->
1496  *                      <------- bi_size ------->
1497  *                      <-- n_sectors -->
1498  *
1499  * Region 1 was already iterated over with bio_advance or similar function.
1500  *	(it may be empty if the target doesn't use bio_advance)
1501  * Region 2 is the remaining bio size that the target wants to process.
1502  *	(it may be empty if region 1 is non-empty, although there is no reason
1503  *	 to make it empty)
1504  * The target requires that region 3 is to be sent in the next bio.
1505  *
1506  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1507  * the partially processed part (the sum of regions 1+2) must be the same for all
1508  * copies of the bio.
1509  */
1510 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1511 {
1512 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1513 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1514 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1515 	BUG_ON(bi_size > *tio->len_ptr);
1516 	BUG_ON(n_sectors > bi_size);
1517 	*tio->len_ptr -= bi_size - n_sectors;
1518 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1519 }
1520 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1521 
1522 static void __map_bio(struct dm_target_io *tio)
1523 {
1524 	int r;
1525 	sector_t sector;
1526 	struct mapped_device *md;
1527 	struct bio *clone = &tio->clone;
1528 	struct dm_target *ti = tio->ti;
1529 
1530 	clone->bi_end_io = clone_endio;
1531 
1532 	/*
1533 	 * Map the clone.  If r == 0 we don't need to do
1534 	 * anything, the target has assumed ownership of
1535 	 * this io.
1536 	 */
1537 	atomic_inc(&tio->io->io_count);
1538 	sector = clone->bi_iter.bi_sector;
1539 	r = ti->type->map(ti, clone);
1540 	if (r == DM_MAPIO_REMAPPED) {
1541 		/* the bio has been remapped so dispatch it */
1542 
1543 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1544 				      tio->io->bio->bi_bdev->bd_dev, sector);
1545 
1546 		generic_make_request(clone);
1547 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1548 		/* error the io and bail out, or requeue it if needed */
1549 		md = tio->io->md;
1550 		dec_pending(tio->io, r);
1551 		free_tio(md, tio);
1552 	} else if (r != DM_MAPIO_SUBMITTED) {
1553 		DMWARN("unimplemented target map return value: %d", r);
1554 		BUG();
1555 	}
1556 }
1557 
1558 struct clone_info {
1559 	struct mapped_device *md;
1560 	struct dm_table *map;
1561 	struct bio *bio;
1562 	struct dm_io *io;
1563 	sector_t sector;
1564 	unsigned sector_count;
1565 };
1566 
1567 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1568 {
1569 	bio->bi_iter.bi_sector = sector;
1570 	bio->bi_iter.bi_size = to_bytes(len);
1571 }
1572 
1573 /*
1574  * Creates a bio that consists of range of complete bvecs.
1575  */
1576 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1577 		      sector_t sector, unsigned len)
1578 {
1579 	struct bio *clone = &tio->clone;
1580 
1581 	__bio_clone_fast(clone, bio);
1582 
1583 	if (bio_integrity(bio))
1584 		bio_integrity_clone(clone, bio, GFP_NOIO);
1585 
1586 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1587 	clone->bi_iter.bi_size = to_bytes(len);
1588 
1589 	if (bio_integrity(bio))
1590 		bio_integrity_trim(clone, 0, len);
1591 }
1592 
1593 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1594 				      struct dm_target *ti,
1595 				      unsigned target_bio_nr)
1596 {
1597 	struct dm_target_io *tio;
1598 	struct bio *clone;
1599 
1600 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1601 	tio = container_of(clone, struct dm_target_io, clone);
1602 
1603 	tio->io = ci->io;
1604 	tio->ti = ti;
1605 	tio->target_bio_nr = target_bio_nr;
1606 
1607 	return tio;
1608 }
1609 
1610 static void __clone_and_map_simple_bio(struct clone_info *ci,
1611 				       struct dm_target *ti,
1612 				       unsigned target_bio_nr, unsigned *len)
1613 {
1614 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1615 	struct bio *clone = &tio->clone;
1616 
1617 	tio->len_ptr = len;
1618 
1619 	__bio_clone_fast(clone, ci->bio);
1620 	if (len)
1621 		bio_setup_sector(clone, ci->sector, *len);
1622 
1623 	__map_bio(tio);
1624 }
1625 
1626 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1627 				  unsigned num_bios, unsigned *len)
1628 {
1629 	unsigned target_bio_nr;
1630 
1631 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1632 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1633 }
1634 
1635 static int __send_empty_flush(struct clone_info *ci)
1636 {
1637 	unsigned target_nr = 0;
1638 	struct dm_target *ti;
1639 
1640 	BUG_ON(bio_has_data(ci->bio));
1641 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1642 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1643 
1644 	return 0;
1645 }
1646 
1647 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1648 				     sector_t sector, unsigned *len)
1649 {
1650 	struct bio *bio = ci->bio;
1651 	struct dm_target_io *tio;
1652 	unsigned target_bio_nr;
1653 	unsigned num_target_bios = 1;
1654 
1655 	/*
1656 	 * Does the target want to receive duplicate copies of the bio?
1657 	 */
1658 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1659 		num_target_bios = ti->num_write_bios(ti, bio);
1660 
1661 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1662 		tio = alloc_tio(ci, ti, target_bio_nr);
1663 		tio->len_ptr = len;
1664 		clone_bio(tio, bio, sector, *len);
1665 		__map_bio(tio);
1666 	}
1667 }
1668 
1669 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1670 
1671 static unsigned get_num_discard_bios(struct dm_target *ti)
1672 {
1673 	return ti->num_discard_bios;
1674 }
1675 
1676 static unsigned get_num_write_same_bios(struct dm_target *ti)
1677 {
1678 	return ti->num_write_same_bios;
1679 }
1680 
1681 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1682 
1683 static bool is_split_required_for_discard(struct dm_target *ti)
1684 {
1685 	return ti->split_discard_bios;
1686 }
1687 
1688 static int __send_changing_extent_only(struct clone_info *ci,
1689 				       get_num_bios_fn get_num_bios,
1690 				       is_split_required_fn is_split_required)
1691 {
1692 	struct dm_target *ti;
1693 	unsigned len;
1694 	unsigned num_bios;
1695 
1696 	do {
1697 		ti = dm_table_find_target(ci->map, ci->sector);
1698 		if (!dm_target_is_valid(ti))
1699 			return -EIO;
1700 
1701 		/*
1702 		 * Even though the device advertised support for this type of
1703 		 * request, that does not mean every target supports it, and
1704 		 * reconfiguration might also have changed that since the
1705 		 * check was performed.
1706 		 */
1707 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1708 		if (!num_bios)
1709 			return -EOPNOTSUPP;
1710 
1711 		if (is_split_required && !is_split_required(ti))
1712 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1713 		else
1714 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1715 
1716 		__send_duplicate_bios(ci, ti, num_bios, &len);
1717 
1718 		ci->sector += len;
1719 	} while (ci->sector_count -= len);
1720 
1721 	return 0;
1722 }
1723 
1724 static int __send_discard(struct clone_info *ci)
1725 {
1726 	return __send_changing_extent_only(ci, get_num_discard_bios,
1727 					   is_split_required_for_discard);
1728 }
1729 
1730 static int __send_write_same(struct clone_info *ci)
1731 {
1732 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1733 }
1734 
1735 /*
1736  * Select the correct strategy for processing a non-flush bio.
1737  */
1738 static int __split_and_process_non_flush(struct clone_info *ci)
1739 {
1740 	struct bio *bio = ci->bio;
1741 	struct dm_target *ti;
1742 	unsigned len;
1743 
1744 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1745 		return __send_discard(ci);
1746 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1747 		return __send_write_same(ci);
1748 
1749 	ti = dm_table_find_target(ci->map, ci->sector);
1750 	if (!dm_target_is_valid(ti))
1751 		return -EIO;
1752 
1753 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1754 
1755 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1756 
1757 	ci->sector += len;
1758 	ci->sector_count -= len;
1759 
1760 	return 0;
1761 }
1762 
1763 /*
1764  * Entry point to split a bio into clones and submit them to the targets.
1765  */
1766 static void __split_and_process_bio(struct mapped_device *md,
1767 				    struct dm_table *map, struct bio *bio)
1768 {
1769 	struct clone_info ci;
1770 	int error = 0;
1771 
1772 	if (unlikely(!map)) {
1773 		bio_io_error(bio);
1774 		return;
1775 	}
1776 
1777 	ci.map = map;
1778 	ci.md = md;
1779 	ci.io = alloc_io(md);
1780 	ci.io->error = 0;
1781 	atomic_set(&ci.io->io_count, 1);
1782 	ci.io->bio = bio;
1783 	ci.io->md = md;
1784 	spin_lock_init(&ci.io->endio_lock);
1785 	ci.sector = bio->bi_iter.bi_sector;
1786 
1787 	start_io_acct(ci.io);
1788 
1789 	if (bio->bi_rw & REQ_FLUSH) {
1790 		ci.bio = &ci.md->flush_bio;
1791 		ci.sector_count = 0;
1792 		error = __send_empty_flush(&ci);
1793 		/* dec_pending submits any data associated with flush */
1794 	} else {
1795 		ci.bio = bio;
1796 		ci.sector_count = bio_sectors(bio);
1797 		while (ci.sector_count && !error)
1798 			error = __split_and_process_non_flush(&ci);
1799 	}
1800 
1801 	/* drop the extra reference count */
1802 	dec_pending(ci.io, error);
1803 }
1804 /*-----------------------------------------------------------------
1805  * CRUD END
1806  *---------------------------------------------------------------*/
1807 
1808 /*
1809  * The request function that just remaps the bio built up by
1810  * dm_merge_bvec.
1811  */
1812 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1813 {
1814 	int rw = bio_data_dir(bio);
1815 	struct mapped_device *md = q->queuedata;
1816 	int srcu_idx;
1817 	struct dm_table *map;
1818 
1819 	map = dm_get_live_table(md, &srcu_idx);
1820 
1821 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1822 
1823 	/* if we're suspended, we have to queue this io for later */
1824 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1825 		dm_put_live_table(md, srcu_idx);
1826 
1827 		if (bio_rw(bio) != READA)
1828 			queue_io(md, bio);
1829 		else
1830 			bio_io_error(bio);
1831 		return BLK_QC_T_NONE;
1832 	}
1833 
1834 	__split_and_process_bio(md, map, bio);
1835 	dm_put_live_table(md, srcu_idx);
1836 	return BLK_QC_T_NONE;
1837 }
1838 
1839 int dm_request_based(struct mapped_device *md)
1840 {
1841 	return blk_queue_stackable(md->queue);
1842 }
1843 
1844 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1845 {
1846 	int r;
1847 
1848 	if (blk_queue_io_stat(clone->q))
1849 		clone->cmd_flags |= REQ_IO_STAT;
1850 
1851 	clone->start_time = jiffies;
1852 	r = blk_insert_cloned_request(clone->q, clone);
1853 	if (r)
1854 		/* must complete clone in terms of original request */
1855 		dm_complete_request(rq, r);
1856 }
1857 
1858 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1859 				 void *data)
1860 {
1861 	struct dm_rq_target_io *tio = data;
1862 	struct dm_rq_clone_bio_info *info =
1863 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1864 
1865 	info->orig = bio_orig;
1866 	info->tio = tio;
1867 	bio->bi_end_io = end_clone_bio;
1868 
1869 	return 0;
1870 }
1871 
1872 static int setup_clone(struct request *clone, struct request *rq,
1873 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1874 {
1875 	int r;
1876 
1877 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1878 			      dm_rq_bio_constructor, tio);
1879 	if (r)
1880 		return r;
1881 
1882 	clone->cmd = rq->cmd;
1883 	clone->cmd_len = rq->cmd_len;
1884 	clone->sense = rq->sense;
1885 	clone->end_io = end_clone_request;
1886 	clone->end_io_data = tio;
1887 
1888 	tio->clone = clone;
1889 
1890 	return 0;
1891 }
1892 
1893 static struct request *clone_old_rq(struct request *rq, struct mapped_device *md,
1894 				    struct dm_rq_target_io *tio, gfp_t gfp_mask)
1895 {
1896 	/*
1897 	 * Create clone for use with .request_fn request_queue
1898 	 */
1899 	struct request *clone;
1900 
1901 	clone = alloc_old_clone_request(md, gfp_mask);
1902 	if (!clone)
1903 		return NULL;
1904 
1905 	blk_rq_init(NULL, clone);
1906 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1907 		/* -ENOMEM */
1908 		free_old_clone_request(md, clone);
1909 		return NULL;
1910 	}
1911 
1912 	return clone;
1913 }
1914 
1915 static void map_tio_request(struct kthread_work *work);
1916 
1917 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1918 		     struct mapped_device *md)
1919 {
1920 	tio->md = md;
1921 	tio->ti = NULL;
1922 	tio->clone = NULL;
1923 	tio->orig = rq;
1924 	tio->error = 0;
1925 	/*
1926 	 * Avoid initializing info for blk-mq; it passes
1927 	 * target-specific data through info.ptr
1928 	 * (see: dm_mq_init_request)
1929 	 */
1930 	if (!md->init_tio_pdu)
1931 		memset(&tio->info, 0, sizeof(tio->info));
1932 	if (md->kworker_task)
1933 		init_kthread_work(&tio->work, map_tio_request);
1934 }
1935 
1936 static struct dm_rq_target_io *dm_old_prep_tio(struct request *rq,
1937 					       struct mapped_device *md,
1938 					       gfp_t gfp_mask)
1939 {
1940 	struct dm_rq_target_io *tio;
1941 	int srcu_idx;
1942 	struct dm_table *table;
1943 
1944 	tio = alloc_old_rq_tio(md, gfp_mask);
1945 	if (!tio)
1946 		return NULL;
1947 
1948 	init_tio(tio, rq, md);
1949 
1950 	table = dm_get_live_table(md, &srcu_idx);
1951 	/*
1952 	 * Must clone a request if this .request_fn DM device
1953 	 * is stacked on .request_fn device(s).
1954 	 */
1955 	if (!dm_table_mq_request_based(table)) {
1956 		if (!clone_old_rq(rq, md, tio, gfp_mask)) {
1957 			dm_put_live_table(md, srcu_idx);
1958 			free_old_rq_tio(tio);
1959 			return NULL;
1960 		}
1961 	}
1962 	dm_put_live_table(md, srcu_idx);
1963 
1964 	return tio;
1965 }
1966 
1967 /*
1968  * Called with the queue lock held.
1969  */
1970 static int dm_old_prep_fn(struct request_queue *q, struct request *rq)
1971 {
1972 	struct mapped_device *md = q->queuedata;
1973 	struct dm_rq_target_io *tio;
1974 
1975 	if (unlikely(rq->special)) {
1976 		DMWARN("Already has something in rq->special.");
1977 		return BLKPREP_KILL;
1978 	}
1979 
1980 	tio = dm_old_prep_tio(rq, md, GFP_ATOMIC);
1981 	if (!tio)
1982 		return BLKPREP_DEFER;
1983 
1984 	rq->special = tio;
1985 	rq->cmd_flags |= REQ_DONTPREP;
1986 
1987 	return BLKPREP_OK;
1988 }
1989 
1990 /*
1991  * Returns:
1992  * 0                : the request has been processed
1993  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1994  * < 0              : the request was completed due to failure
1995  */
1996 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1997 		       struct mapped_device *md)
1998 {
1999 	int r;
2000 	struct dm_target *ti = tio->ti;
2001 	struct request *clone = NULL;
2002 
2003 	if (tio->clone) {
2004 		clone = tio->clone;
2005 		r = ti->type->map_rq(ti, clone, &tio->info);
2006 	} else {
2007 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
2008 		if (r < 0) {
2009 			/* The target wants to complete the I/O */
2010 			dm_kill_unmapped_request(rq, r);
2011 			return r;
2012 		}
2013 		if (r != DM_MAPIO_REMAPPED)
2014 			return r;
2015 		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
2016 			/* -ENOMEM */
2017 			ti->type->release_clone_rq(clone);
2018 			return DM_MAPIO_REQUEUE;
2019 		}
2020 	}
2021 
2022 	switch (r) {
2023 	case DM_MAPIO_SUBMITTED:
2024 		/* The target has taken the I/O to submit by itself later */
2025 		break;
2026 	case DM_MAPIO_REMAPPED:
2027 		/* The target has remapped the I/O so dispatch it */
2028 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
2029 				     blk_rq_pos(rq));
2030 		dm_dispatch_clone_request(clone, rq);
2031 		break;
2032 	case DM_MAPIO_REQUEUE:
2033 		/* The target wants to requeue the I/O */
2034 		dm_requeue_original_request(md, tio->orig);
2035 		break;
2036 	default:
2037 		if (r > 0) {
2038 			DMWARN("unimplemented target map return value: %d", r);
2039 			BUG();
2040 		}
2041 
2042 		/* The target wants to complete the I/O */
2043 		dm_kill_unmapped_request(rq, r);
2044 		return r;
2045 	}
2046 
2047 	return 0;
2048 }
2049 
2050 static void map_tio_request(struct kthread_work *work)
2051 {
2052 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2053 	struct request *rq = tio->orig;
2054 	struct mapped_device *md = tio->md;
2055 
2056 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2057 		dm_requeue_original_request(md, rq);
2058 }
2059 
2060 static void dm_start_request(struct mapped_device *md, struct request *orig)
2061 {
2062 	if (!orig->q->mq_ops)
2063 		blk_start_request(orig);
2064 	else
2065 		blk_mq_start_request(orig);
2066 	atomic_inc(&md->pending[rq_data_dir(orig)]);
2067 
2068 	if (md->seq_rq_merge_deadline_usecs) {
2069 		md->last_rq_pos = rq_end_sector(orig);
2070 		md->last_rq_rw = rq_data_dir(orig);
2071 		md->last_rq_start_time = ktime_get();
2072 	}
2073 
2074 	if (unlikely(dm_stats_used(&md->stats))) {
2075 		struct dm_rq_target_io *tio = tio_from_request(orig);
2076 		tio->duration_jiffies = jiffies;
2077 		tio->n_sectors = blk_rq_sectors(orig);
2078 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2079 				    tio->n_sectors, false, 0, &tio->stats_aux);
2080 	}
2081 
2082 	/*
2083 	 * Hold the md reference here for the in-flight I/O.
2084 	 * We can't rely on the reference count by device opener,
2085 	 * because the device may be closed during the request completion
2086 	 * when all bios are completed.
2087 	 * See the comment in rq_completed() too.
2088 	 */
2089 	dm_get(md);
2090 }
2091 
2092 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2093 
2094 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2095 {
2096 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2097 }
2098 
2099 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2100 						     const char *buf, size_t count)
2101 {
2102 	unsigned deadline;
2103 
2104 	if (!dm_request_based(md) || md->use_blk_mq)
2105 		return count;
2106 
2107 	if (kstrtouint(buf, 10, &deadline))
2108 		return -EINVAL;
2109 
2110 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2111 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2112 
2113 	md->seq_rq_merge_deadline_usecs = deadline;
2114 
2115 	return count;
2116 }
2117 
2118 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2119 {
2120 	ktime_t kt_deadline;
2121 
2122 	if (!md->seq_rq_merge_deadline_usecs)
2123 		return false;
2124 
2125 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2126 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2127 
2128 	return !ktime_after(ktime_get(), kt_deadline);
2129 }
2130 
2131 /*
2132  * q->request_fn for request-based dm.
2133  * Called with the queue lock held.
2134  */
2135 static void dm_request_fn(struct request_queue *q)
2136 {
2137 	struct mapped_device *md = q->queuedata;
2138 	struct dm_target *ti = md->immutable_target;
2139 	struct request *rq;
2140 	struct dm_rq_target_io *tio;
2141 	sector_t pos = 0;
2142 
2143 	if (unlikely(!ti)) {
2144 		int srcu_idx;
2145 		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2146 
2147 		ti = dm_table_find_target(map, pos);
2148 		dm_put_live_table(md, srcu_idx);
2149 	}
2150 
2151 	/*
2152 	 * For suspend, check blk_queue_stopped() and increment
2153 	 * ->pending within a single queue_lock not to increment the
2154 	 * number of in-flight I/Os after the queue is stopped in
2155 	 * dm_suspend().
2156 	 */
2157 	while (!blk_queue_stopped(q)) {
2158 		rq = blk_peek_request(q);
2159 		if (!rq)
2160 			return;
2161 
2162 		/* always use block 0 to find the target for flushes for now */
2163 		pos = 0;
2164 		if (!(rq->cmd_flags & REQ_FLUSH))
2165 			pos = blk_rq_pos(rq);
2166 
2167 		if ((dm_request_peeked_before_merge_deadline(md) &&
2168 		     md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2169 		     md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) ||
2170 		    (ti->type->busy && ti->type->busy(ti))) {
2171 			blk_delay_queue(q, HZ / 100);
2172 			return;
2173 		}
2174 
2175 		dm_start_request(md, rq);
2176 
2177 		tio = tio_from_request(rq);
2178 		/* Establish tio->ti before queuing work (map_tio_request) */
2179 		tio->ti = ti;
2180 		queue_kthread_work(&md->kworker, &tio->work);
2181 		BUG_ON(!irqs_disabled());
2182 	}
2183 }
2184 
2185 static int dm_any_congested(void *congested_data, int bdi_bits)
2186 {
2187 	int r = bdi_bits;
2188 	struct mapped_device *md = congested_data;
2189 	struct dm_table *map;
2190 
2191 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2192 		if (dm_request_based(md)) {
2193 			/*
2194 			 * With request-based DM we only need to check the
2195 			 * top-level queue for congestion.
2196 			 */
2197 			r = md->queue->backing_dev_info.wb.state & bdi_bits;
2198 		} else {
2199 			map = dm_get_live_table_fast(md);
2200 			if (map)
2201 				r = dm_table_any_congested(map, bdi_bits);
2202 			dm_put_live_table_fast(md);
2203 		}
2204 	}
2205 
2206 	return r;
2207 }
2208 
2209 /*-----------------------------------------------------------------
2210  * An IDR is used to keep track of allocated minor numbers.
2211  *---------------------------------------------------------------*/
2212 static void free_minor(int minor)
2213 {
2214 	spin_lock(&_minor_lock);
2215 	idr_remove(&_minor_idr, minor);
2216 	spin_unlock(&_minor_lock);
2217 }
2218 
2219 /*
2220  * See if the device with a specific minor # is free.
2221  */
2222 static int specific_minor(int minor)
2223 {
2224 	int r;
2225 
2226 	if (minor >= (1 << MINORBITS))
2227 		return -EINVAL;
2228 
2229 	idr_preload(GFP_KERNEL);
2230 	spin_lock(&_minor_lock);
2231 
2232 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2233 
2234 	spin_unlock(&_minor_lock);
2235 	idr_preload_end();
2236 	if (r < 0)
2237 		return r == -ENOSPC ? -EBUSY : r;
2238 	return 0;
2239 }
2240 
2241 static int next_free_minor(int *minor)
2242 {
2243 	int r;
2244 
2245 	idr_preload(GFP_KERNEL);
2246 	spin_lock(&_minor_lock);
2247 
2248 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2249 
2250 	spin_unlock(&_minor_lock);
2251 	idr_preload_end();
2252 	if (r < 0)
2253 		return r;
2254 	*minor = r;
2255 	return 0;
2256 }
2257 
2258 static const struct block_device_operations dm_blk_dops;
2259 
2260 static void dm_wq_work(struct work_struct *work);
2261 
2262 static void dm_init_md_queue(struct mapped_device *md)
2263 {
2264 	/*
2265 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2266 	 * devices.  The type of this dm device may not have been decided yet.
2267 	 * The type is decided at the first table loading time.
2268 	 * To prevent problematic device stacking, clear the queue flag
2269 	 * for request stacking support until then.
2270 	 *
2271 	 * This queue is new, so no concurrency on the queue_flags.
2272 	 */
2273 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2274 
2275 	/*
2276 	 * Initialize data that will only be used by a non-blk-mq DM queue
2277 	 * - must do so here (in alloc_dev callchain) before queue is used
2278 	 */
2279 	md->queue->queuedata = md;
2280 	md->queue->backing_dev_info.congested_data = md;
2281 }
2282 
2283 static void dm_init_normal_md_queue(struct mapped_device *md)
2284 {
2285 	md->use_blk_mq = false;
2286 	dm_init_md_queue(md);
2287 
2288 	/*
2289 	 * Initialize aspects of queue that aren't relevant for blk-mq
2290 	 */
2291 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2292 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2293 }
2294 
2295 static void cleanup_mapped_device(struct mapped_device *md)
2296 {
2297 	if (md->wq)
2298 		destroy_workqueue(md->wq);
2299 	if (md->kworker_task)
2300 		kthread_stop(md->kworker_task);
2301 	mempool_destroy(md->io_pool);
2302 	mempool_destroy(md->rq_pool);
2303 	if (md->bs)
2304 		bioset_free(md->bs);
2305 
2306 	cleanup_srcu_struct(&md->io_barrier);
2307 
2308 	if (md->disk) {
2309 		spin_lock(&_minor_lock);
2310 		md->disk->private_data = NULL;
2311 		spin_unlock(&_minor_lock);
2312 		del_gendisk(md->disk);
2313 		put_disk(md->disk);
2314 	}
2315 
2316 	if (md->queue)
2317 		blk_cleanup_queue(md->queue);
2318 
2319 	if (md->bdev) {
2320 		bdput(md->bdev);
2321 		md->bdev = NULL;
2322 	}
2323 }
2324 
2325 /*
2326  * Allocate and initialise a blank device with a given minor.
2327  */
2328 static struct mapped_device *alloc_dev(int minor)
2329 {
2330 	int r, numa_node_id = dm_get_numa_node();
2331 	struct mapped_device *md;
2332 	void *old_md;
2333 
2334 	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2335 	if (!md) {
2336 		DMWARN("unable to allocate device, out of memory.");
2337 		return NULL;
2338 	}
2339 
2340 	if (!try_module_get(THIS_MODULE))
2341 		goto bad_module_get;
2342 
2343 	/* get a minor number for the dev */
2344 	if (minor == DM_ANY_MINOR)
2345 		r = next_free_minor(&minor);
2346 	else
2347 		r = specific_minor(minor);
2348 	if (r < 0)
2349 		goto bad_minor;
2350 
2351 	r = init_srcu_struct(&md->io_barrier);
2352 	if (r < 0)
2353 		goto bad_io_barrier;
2354 
2355 	md->numa_node_id = numa_node_id;
2356 	md->use_blk_mq = use_blk_mq;
2357 	md->init_tio_pdu = false;
2358 	md->type = DM_TYPE_NONE;
2359 	mutex_init(&md->suspend_lock);
2360 	mutex_init(&md->type_lock);
2361 	mutex_init(&md->table_devices_lock);
2362 	spin_lock_init(&md->deferred_lock);
2363 	atomic_set(&md->holders, 1);
2364 	atomic_set(&md->open_count, 0);
2365 	atomic_set(&md->event_nr, 0);
2366 	atomic_set(&md->uevent_seq, 0);
2367 	INIT_LIST_HEAD(&md->uevent_list);
2368 	INIT_LIST_HEAD(&md->table_devices);
2369 	spin_lock_init(&md->uevent_lock);
2370 
2371 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
2372 	if (!md->queue)
2373 		goto bad;
2374 
2375 	dm_init_md_queue(md);
2376 
2377 	md->disk = alloc_disk_node(1, numa_node_id);
2378 	if (!md->disk)
2379 		goto bad;
2380 
2381 	atomic_set(&md->pending[0], 0);
2382 	atomic_set(&md->pending[1], 0);
2383 	init_waitqueue_head(&md->wait);
2384 	INIT_WORK(&md->work, dm_wq_work);
2385 	init_waitqueue_head(&md->eventq);
2386 	init_completion(&md->kobj_holder.completion);
2387 	md->kworker_task = NULL;
2388 
2389 	md->disk->major = _major;
2390 	md->disk->first_minor = minor;
2391 	md->disk->fops = &dm_blk_dops;
2392 	md->disk->queue = md->queue;
2393 	md->disk->private_data = md;
2394 	sprintf(md->disk->disk_name, "dm-%d", minor);
2395 	add_disk(md->disk);
2396 	format_dev_t(md->name, MKDEV(_major, minor));
2397 
2398 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2399 	if (!md->wq)
2400 		goto bad;
2401 
2402 	md->bdev = bdget_disk(md->disk, 0);
2403 	if (!md->bdev)
2404 		goto bad;
2405 
2406 	bio_init(&md->flush_bio);
2407 	md->flush_bio.bi_bdev = md->bdev;
2408 	md->flush_bio.bi_rw = WRITE_FLUSH;
2409 
2410 	dm_stats_init(&md->stats);
2411 
2412 	/* Populate the mapping, nobody knows we exist yet */
2413 	spin_lock(&_minor_lock);
2414 	old_md = idr_replace(&_minor_idr, md, minor);
2415 	spin_unlock(&_minor_lock);
2416 
2417 	BUG_ON(old_md != MINOR_ALLOCED);
2418 
2419 	return md;
2420 
2421 bad:
2422 	cleanup_mapped_device(md);
2423 bad_io_barrier:
2424 	free_minor(minor);
2425 bad_minor:
2426 	module_put(THIS_MODULE);
2427 bad_module_get:
2428 	kfree(md);
2429 	return NULL;
2430 }
2431 
2432 static void unlock_fs(struct mapped_device *md);
2433 
2434 static void free_dev(struct mapped_device *md)
2435 {
2436 	int minor = MINOR(disk_devt(md->disk));
2437 
2438 	unlock_fs(md);
2439 
2440 	cleanup_mapped_device(md);
2441 	if (md->tag_set) {
2442 		blk_mq_free_tag_set(md->tag_set);
2443 		kfree(md->tag_set);
2444 	}
2445 
2446 	free_table_devices(&md->table_devices);
2447 	dm_stats_cleanup(&md->stats);
2448 	free_minor(minor);
2449 
2450 	module_put(THIS_MODULE);
2451 	kfree(md);
2452 }
2453 
2454 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2455 {
2456 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2457 
2458 	if (md->bs) {
2459 		/* The md already has necessary mempools. */
2460 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2461 			/*
2462 			 * Reload bioset because front_pad may have changed
2463 			 * because a different table was loaded.
2464 			 */
2465 			bioset_free(md->bs);
2466 			md->bs = p->bs;
2467 			p->bs = NULL;
2468 		}
2469 		/*
2470 		 * There's no need to reload with request-based dm
2471 		 * because the size of front_pad doesn't change.
2472 		 * Note for future: If you are to reload bioset,
2473 		 * prep-ed requests in the queue may refer
2474 		 * to bio from the old bioset, so you must walk
2475 		 * through the queue to unprep.
2476 		 */
2477 		goto out;
2478 	}
2479 
2480 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2481 
2482 	md->io_pool = p->io_pool;
2483 	p->io_pool = NULL;
2484 	md->rq_pool = p->rq_pool;
2485 	p->rq_pool = NULL;
2486 	md->bs = p->bs;
2487 	p->bs = NULL;
2488 
2489 out:
2490 	/* mempool bind completed, no longer need any mempools in the table */
2491 	dm_table_free_md_mempools(t);
2492 }
2493 
2494 /*
2495  * Bind a table to the device.
2496  */
2497 static void event_callback(void *context)
2498 {
2499 	unsigned long flags;
2500 	LIST_HEAD(uevents);
2501 	struct mapped_device *md = (struct mapped_device *) context;
2502 
2503 	spin_lock_irqsave(&md->uevent_lock, flags);
2504 	list_splice_init(&md->uevent_list, &uevents);
2505 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2506 
2507 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2508 
2509 	atomic_inc(&md->event_nr);
2510 	wake_up(&md->eventq);
2511 }
2512 
2513 /*
2514  * Protected by md->suspend_lock obtained by dm_swap_table().
2515  */
2516 static void __set_size(struct mapped_device *md, sector_t size)
2517 {
2518 	set_capacity(md->disk, size);
2519 
2520 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2521 }
2522 
2523 /*
2524  * Returns old map, which caller must destroy.
2525  */
2526 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2527 			       struct queue_limits *limits)
2528 {
2529 	struct dm_table *old_map;
2530 	struct request_queue *q = md->queue;
2531 	sector_t size;
2532 
2533 	size = dm_table_get_size(t);
2534 
2535 	/*
2536 	 * Wipe any geometry if the size of the table changed.
2537 	 */
2538 	if (size != dm_get_size(md))
2539 		memset(&md->geometry, 0, sizeof(md->geometry));
2540 
2541 	__set_size(md, size);
2542 
2543 	dm_table_event_callback(t, event_callback, md);
2544 
2545 	/*
2546 	 * The queue hasn't been stopped yet, if the old table type wasn't
2547 	 * for request-based during suspension.  So stop it to prevent
2548 	 * I/O mapping before resume.
2549 	 * This must be done before setting the queue restrictions,
2550 	 * because request-based dm may be run just after the setting.
2551 	 */
2552 	if (dm_table_request_based(t)) {
2553 		dm_stop_queue(q);
2554 		/*
2555 		 * Leverage the fact that request-based DM targets are
2556 		 * immutable singletons and establish md->immutable_target
2557 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
2558 		 */
2559 		md->immutable_target = dm_table_get_immutable_target(t);
2560 	}
2561 
2562 	__bind_mempools(md, t);
2563 
2564 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2565 	rcu_assign_pointer(md->map, t);
2566 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2567 
2568 	dm_table_set_restrictions(t, q, limits);
2569 	if (old_map)
2570 		dm_sync_table(md);
2571 
2572 	return old_map;
2573 }
2574 
2575 /*
2576  * Returns unbound table for the caller to free.
2577  */
2578 static struct dm_table *__unbind(struct mapped_device *md)
2579 {
2580 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2581 
2582 	if (!map)
2583 		return NULL;
2584 
2585 	dm_table_event_callback(map, NULL, NULL);
2586 	RCU_INIT_POINTER(md->map, NULL);
2587 	dm_sync_table(md);
2588 
2589 	return map;
2590 }
2591 
2592 /*
2593  * Constructor for a new device.
2594  */
2595 int dm_create(int minor, struct mapped_device **result)
2596 {
2597 	struct mapped_device *md;
2598 
2599 	md = alloc_dev(minor);
2600 	if (!md)
2601 		return -ENXIO;
2602 
2603 	dm_sysfs_init(md);
2604 
2605 	*result = md;
2606 	return 0;
2607 }
2608 
2609 /*
2610  * Functions to manage md->type.
2611  * All are required to hold md->type_lock.
2612  */
2613 void dm_lock_md_type(struct mapped_device *md)
2614 {
2615 	mutex_lock(&md->type_lock);
2616 }
2617 
2618 void dm_unlock_md_type(struct mapped_device *md)
2619 {
2620 	mutex_unlock(&md->type_lock);
2621 }
2622 
2623 void dm_set_md_type(struct mapped_device *md, unsigned type)
2624 {
2625 	BUG_ON(!mutex_is_locked(&md->type_lock));
2626 	md->type = type;
2627 }
2628 
2629 unsigned dm_get_md_type(struct mapped_device *md)
2630 {
2631 	return md->type;
2632 }
2633 
2634 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2635 {
2636 	return md->immutable_target_type;
2637 }
2638 
2639 /*
2640  * The queue_limits are only valid as long as you have a reference
2641  * count on 'md'.
2642  */
2643 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2644 {
2645 	BUG_ON(!atomic_read(&md->holders));
2646 	return &md->queue->limits;
2647 }
2648 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2649 
2650 static void dm_old_init_rq_based_worker_thread(struct mapped_device *md)
2651 {
2652 	/* Initialize the request-based DM worker thread */
2653 	init_kthread_worker(&md->kworker);
2654 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2655 				       "kdmwork-%s", dm_device_name(md));
2656 }
2657 
2658 /*
2659  * Fully initialize a .request_fn request-based queue.
2660  */
2661 static int dm_old_init_request_queue(struct mapped_device *md)
2662 {
2663 	struct request_queue *q = NULL;
2664 
2665 	/* Fully initialize the queue */
2666 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2667 	if (!q)
2668 		return -EINVAL;
2669 
2670 	/* disable dm_request_fn's merge heuristic by default */
2671 	md->seq_rq_merge_deadline_usecs = 0;
2672 
2673 	md->queue = q;
2674 	dm_init_normal_md_queue(md);
2675 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2676 	blk_queue_prep_rq(md->queue, dm_old_prep_fn);
2677 
2678 	dm_old_init_rq_based_worker_thread(md);
2679 
2680 	elv_register_queue(md->queue);
2681 
2682 	return 0;
2683 }
2684 
2685 static int dm_mq_init_request(void *data, struct request *rq,
2686 			      unsigned int hctx_idx, unsigned int request_idx,
2687 			      unsigned int numa_node)
2688 {
2689 	struct mapped_device *md = data;
2690 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2691 
2692 	/*
2693 	 * Must initialize md member of tio, otherwise it won't
2694 	 * be available in dm_mq_queue_rq.
2695 	 */
2696 	tio->md = md;
2697 
2698 	if (md->init_tio_pdu) {
2699 		/* target-specific per-io data is immediately after the tio */
2700 		tio->info.ptr = tio + 1;
2701 	}
2702 
2703 	return 0;
2704 }
2705 
2706 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2707 			  const struct blk_mq_queue_data *bd)
2708 {
2709 	struct request *rq = bd->rq;
2710 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2711 	struct mapped_device *md = tio->md;
2712 	struct dm_target *ti = md->immutable_target;
2713 
2714 	if (unlikely(!ti)) {
2715 		int srcu_idx;
2716 		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2717 
2718 		ti = dm_table_find_target(map, 0);
2719 		dm_put_live_table(md, srcu_idx);
2720 	}
2721 
2722 	if (ti->type->busy && ti->type->busy(ti))
2723 		return BLK_MQ_RQ_QUEUE_BUSY;
2724 
2725 	dm_start_request(md, rq);
2726 
2727 	/* Init tio using md established in .init_request */
2728 	init_tio(tio, rq, md);
2729 
2730 	/*
2731 	 * Establish tio->ti before queuing work (map_tio_request)
2732 	 * or making direct call to map_request().
2733 	 */
2734 	tio->ti = ti;
2735 
2736 	/* Direct call is fine since .queue_rq allows allocations */
2737 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2738 		/* Undo dm_start_request() before requeuing */
2739 		rq_end_stats(md, rq);
2740 		rq_completed(md, rq_data_dir(rq), false);
2741 		return BLK_MQ_RQ_QUEUE_BUSY;
2742 	}
2743 
2744 	return BLK_MQ_RQ_QUEUE_OK;
2745 }
2746 
2747 static struct blk_mq_ops dm_mq_ops = {
2748 	.queue_rq = dm_mq_queue_rq,
2749 	.map_queue = blk_mq_map_queue,
2750 	.complete = dm_softirq_done,
2751 	.init_request = dm_mq_init_request,
2752 };
2753 
2754 static int dm_mq_init_request_queue(struct mapped_device *md,
2755 				    struct dm_target *immutable_tgt)
2756 {
2757 	struct request_queue *q;
2758 	int err;
2759 
2760 	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
2761 		DMERR("request-based dm-mq may only be stacked on blk-mq device(s)");
2762 		return -EINVAL;
2763 	}
2764 
2765 	md->tag_set = kzalloc_node(sizeof(struct blk_mq_tag_set), GFP_KERNEL, md->numa_node_id);
2766 	if (!md->tag_set)
2767 		return -ENOMEM;
2768 
2769 	md->tag_set->ops = &dm_mq_ops;
2770 	md->tag_set->queue_depth = dm_get_blk_mq_queue_depth();
2771 	md->tag_set->numa_node = md->numa_node_id;
2772 	md->tag_set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2773 	md->tag_set->nr_hw_queues = dm_get_blk_mq_nr_hw_queues();
2774 	md->tag_set->driver_data = md;
2775 
2776 	md->tag_set->cmd_size = sizeof(struct dm_rq_target_io);
2777 	if (immutable_tgt && immutable_tgt->per_io_data_size) {
2778 		/* any target-specific per-io data is immediately after the tio */
2779 		md->tag_set->cmd_size += immutable_tgt->per_io_data_size;
2780 		md->init_tio_pdu = true;
2781 	}
2782 
2783 	err = blk_mq_alloc_tag_set(md->tag_set);
2784 	if (err)
2785 		goto out_kfree_tag_set;
2786 
2787 	q = blk_mq_init_allocated_queue(md->tag_set, md->queue);
2788 	if (IS_ERR(q)) {
2789 		err = PTR_ERR(q);
2790 		goto out_tag_set;
2791 	}
2792 	md->queue = q;
2793 	dm_init_md_queue(md);
2794 
2795 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2796 	blk_mq_register_disk(md->disk);
2797 
2798 	return 0;
2799 
2800 out_tag_set:
2801 	blk_mq_free_tag_set(md->tag_set);
2802 out_kfree_tag_set:
2803 	kfree(md->tag_set);
2804 
2805 	return err;
2806 }
2807 
2808 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2809 {
2810 	if (type == DM_TYPE_BIO_BASED)
2811 		return type;
2812 
2813 	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2814 }
2815 
2816 /*
2817  * Setup the DM device's queue based on md's type
2818  */
2819 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2820 {
2821 	int r;
2822 	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2823 
2824 	switch (md_type) {
2825 	case DM_TYPE_REQUEST_BASED:
2826 		r = dm_old_init_request_queue(md);
2827 		if (r) {
2828 			DMERR("Cannot initialize queue for request-based mapped device");
2829 			return r;
2830 		}
2831 		break;
2832 	case DM_TYPE_MQ_REQUEST_BASED:
2833 		r = dm_mq_init_request_queue(md, dm_table_get_immutable_target(t));
2834 		if (r) {
2835 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2836 			return r;
2837 		}
2838 		break;
2839 	case DM_TYPE_BIO_BASED:
2840 		dm_init_normal_md_queue(md);
2841 		blk_queue_make_request(md->queue, dm_make_request);
2842 		/*
2843 		 * DM handles splitting bios as needed.  Free the bio_split bioset
2844 		 * since it won't be used (saves 1 process per bio-based DM device).
2845 		 */
2846 		bioset_free(md->queue->bio_split);
2847 		md->queue->bio_split = NULL;
2848 		break;
2849 	}
2850 
2851 	return 0;
2852 }
2853 
2854 struct mapped_device *dm_get_md(dev_t dev)
2855 {
2856 	struct mapped_device *md;
2857 	unsigned minor = MINOR(dev);
2858 
2859 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2860 		return NULL;
2861 
2862 	spin_lock(&_minor_lock);
2863 
2864 	md = idr_find(&_minor_idr, minor);
2865 	if (md) {
2866 		if ((md == MINOR_ALLOCED ||
2867 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2868 		     dm_deleting_md(md) ||
2869 		     test_bit(DMF_FREEING, &md->flags))) {
2870 			md = NULL;
2871 			goto out;
2872 		}
2873 		dm_get(md);
2874 	}
2875 
2876 out:
2877 	spin_unlock(&_minor_lock);
2878 
2879 	return md;
2880 }
2881 EXPORT_SYMBOL_GPL(dm_get_md);
2882 
2883 void *dm_get_mdptr(struct mapped_device *md)
2884 {
2885 	return md->interface_ptr;
2886 }
2887 
2888 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2889 {
2890 	md->interface_ptr = ptr;
2891 }
2892 
2893 void dm_get(struct mapped_device *md)
2894 {
2895 	atomic_inc(&md->holders);
2896 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2897 }
2898 
2899 int dm_hold(struct mapped_device *md)
2900 {
2901 	spin_lock(&_minor_lock);
2902 	if (test_bit(DMF_FREEING, &md->flags)) {
2903 		spin_unlock(&_minor_lock);
2904 		return -EBUSY;
2905 	}
2906 	dm_get(md);
2907 	spin_unlock(&_minor_lock);
2908 	return 0;
2909 }
2910 EXPORT_SYMBOL_GPL(dm_hold);
2911 
2912 const char *dm_device_name(struct mapped_device *md)
2913 {
2914 	return md->name;
2915 }
2916 EXPORT_SYMBOL_GPL(dm_device_name);
2917 
2918 static void __dm_destroy(struct mapped_device *md, bool wait)
2919 {
2920 	struct dm_table *map;
2921 	int srcu_idx;
2922 
2923 	might_sleep();
2924 
2925 	spin_lock(&_minor_lock);
2926 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2927 	set_bit(DMF_FREEING, &md->flags);
2928 	spin_unlock(&_minor_lock);
2929 
2930 	if (dm_request_based(md) && md->kworker_task)
2931 		flush_kthread_worker(&md->kworker);
2932 
2933 	/*
2934 	 * Take suspend_lock so that presuspend and postsuspend methods
2935 	 * do not race with internal suspend.
2936 	 */
2937 	mutex_lock(&md->suspend_lock);
2938 	map = dm_get_live_table(md, &srcu_idx);
2939 	if (!dm_suspended_md(md)) {
2940 		dm_table_presuspend_targets(map);
2941 		dm_table_postsuspend_targets(map);
2942 	}
2943 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2944 	dm_put_live_table(md, srcu_idx);
2945 	mutex_unlock(&md->suspend_lock);
2946 
2947 	/*
2948 	 * Rare, but there may be I/O requests still going to complete,
2949 	 * for example.  Wait for all references to disappear.
2950 	 * No one should increment the reference count of the mapped_device,
2951 	 * after the mapped_device state becomes DMF_FREEING.
2952 	 */
2953 	if (wait)
2954 		while (atomic_read(&md->holders))
2955 			msleep(1);
2956 	else if (atomic_read(&md->holders))
2957 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2958 		       dm_device_name(md), atomic_read(&md->holders));
2959 
2960 	dm_sysfs_exit(md);
2961 	dm_table_destroy(__unbind(md));
2962 	free_dev(md);
2963 }
2964 
2965 void dm_destroy(struct mapped_device *md)
2966 {
2967 	__dm_destroy(md, true);
2968 }
2969 
2970 void dm_destroy_immediate(struct mapped_device *md)
2971 {
2972 	__dm_destroy(md, false);
2973 }
2974 
2975 void dm_put(struct mapped_device *md)
2976 {
2977 	atomic_dec(&md->holders);
2978 }
2979 EXPORT_SYMBOL_GPL(dm_put);
2980 
2981 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2982 {
2983 	int r = 0;
2984 	DECLARE_WAITQUEUE(wait, current);
2985 
2986 	add_wait_queue(&md->wait, &wait);
2987 
2988 	while (1) {
2989 		set_current_state(interruptible);
2990 
2991 		if (!md_in_flight(md))
2992 			break;
2993 
2994 		if (interruptible == TASK_INTERRUPTIBLE &&
2995 		    signal_pending(current)) {
2996 			r = -EINTR;
2997 			break;
2998 		}
2999 
3000 		io_schedule();
3001 	}
3002 	set_current_state(TASK_RUNNING);
3003 
3004 	remove_wait_queue(&md->wait, &wait);
3005 
3006 	return r;
3007 }
3008 
3009 /*
3010  * Process the deferred bios
3011  */
3012 static void dm_wq_work(struct work_struct *work)
3013 {
3014 	struct mapped_device *md = container_of(work, struct mapped_device,
3015 						work);
3016 	struct bio *c;
3017 	int srcu_idx;
3018 	struct dm_table *map;
3019 
3020 	map = dm_get_live_table(md, &srcu_idx);
3021 
3022 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3023 		spin_lock_irq(&md->deferred_lock);
3024 		c = bio_list_pop(&md->deferred);
3025 		spin_unlock_irq(&md->deferred_lock);
3026 
3027 		if (!c)
3028 			break;
3029 
3030 		if (dm_request_based(md))
3031 			generic_make_request(c);
3032 		else
3033 			__split_and_process_bio(md, map, c);
3034 	}
3035 
3036 	dm_put_live_table(md, srcu_idx);
3037 }
3038 
3039 static void dm_queue_flush(struct mapped_device *md)
3040 {
3041 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3042 	smp_mb__after_atomic();
3043 	queue_work(md->wq, &md->work);
3044 }
3045 
3046 /*
3047  * Swap in a new table, returning the old one for the caller to destroy.
3048  */
3049 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3050 {
3051 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3052 	struct queue_limits limits;
3053 	int r;
3054 
3055 	mutex_lock(&md->suspend_lock);
3056 
3057 	/* device must be suspended */
3058 	if (!dm_suspended_md(md))
3059 		goto out;
3060 
3061 	/*
3062 	 * If the new table has no data devices, retain the existing limits.
3063 	 * This helps multipath with queue_if_no_path if all paths disappear,
3064 	 * then new I/O is queued based on these limits, and then some paths
3065 	 * reappear.
3066 	 */
3067 	if (dm_table_has_no_data_devices(table)) {
3068 		live_map = dm_get_live_table_fast(md);
3069 		if (live_map)
3070 			limits = md->queue->limits;
3071 		dm_put_live_table_fast(md);
3072 	}
3073 
3074 	if (!live_map) {
3075 		r = dm_calculate_queue_limits(table, &limits);
3076 		if (r) {
3077 			map = ERR_PTR(r);
3078 			goto out;
3079 		}
3080 	}
3081 
3082 	map = __bind(md, table, &limits);
3083 
3084 out:
3085 	mutex_unlock(&md->suspend_lock);
3086 	return map;
3087 }
3088 
3089 /*
3090  * Functions to lock and unlock any filesystem running on the
3091  * device.
3092  */
3093 static int lock_fs(struct mapped_device *md)
3094 {
3095 	int r;
3096 
3097 	WARN_ON(md->frozen_sb);
3098 
3099 	md->frozen_sb = freeze_bdev(md->bdev);
3100 	if (IS_ERR(md->frozen_sb)) {
3101 		r = PTR_ERR(md->frozen_sb);
3102 		md->frozen_sb = NULL;
3103 		return r;
3104 	}
3105 
3106 	set_bit(DMF_FROZEN, &md->flags);
3107 
3108 	return 0;
3109 }
3110 
3111 static void unlock_fs(struct mapped_device *md)
3112 {
3113 	if (!test_bit(DMF_FROZEN, &md->flags))
3114 		return;
3115 
3116 	thaw_bdev(md->bdev, md->frozen_sb);
3117 	md->frozen_sb = NULL;
3118 	clear_bit(DMF_FROZEN, &md->flags);
3119 }
3120 
3121 /*
3122  * If __dm_suspend returns 0, the device is completely quiescent
3123  * now. There is no request-processing activity. All new requests
3124  * are being added to md->deferred list.
3125  *
3126  * Caller must hold md->suspend_lock
3127  */
3128 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3129 			unsigned suspend_flags, int interruptible)
3130 {
3131 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3132 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3133 	int r;
3134 
3135 	/*
3136 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3137 	 * This flag is cleared before dm_suspend returns.
3138 	 */
3139 	if (noflush)
3140 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3141 
3142 	/*
3143 	 * This gets reverted if there's an error later and the targets
3144 	 * provide the .presuspend_undo hook.
3145 	 */
3146 	dm_table_presuspend_targets(map);
3147 
3148 	/*
3149 	 * Flush I/O to the device.
3150 	 * Any I/O submitted after lock_fs() may not be flushed.
3151 	 * noflush takes precedence over do_lockfs.
3152 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3153 	 */
3154 	if (!noflush && do_lockfs) {
3155 		r = lock_fs(md);
3156 		if (r) {
3157 			dm_table_presuspend_undo_targets(map);
3158 			return r;
3159 		}
3160 	}
3161 
3162 	/*
3163 	 * Here we must make sure that no processes are submitting requests
3164 	 * to target drivers i.e. no one may be executing
3165 	 * __split_and_process_bio. This is called from dm_request and
3166 	 * dm_wq_work.
3167 	 *
3168 	 * To get all processes out of __split_and_process_bio in dm_request,
3169 	 * we take the write lock. To prevent any process from reentering
3170 	 * __split_and_process_bio from dm_request and quiesce the thread
3171 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3172 	 * flush_workqueue(md->wq).
3173 	 */
3174 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3175 	if (map)
3176 		synchronize_srcu(&md->io_barrier);
3177 
3178 	/*
3179 	 * Stop md->queue before flushing md->wq in case request-based
3180 	 * dm defers requests to md->wq from md->queue.
3181 	 */
3182 	if (dm_request_based(md)) {
3183 		dm_stop_queue(md->queue);
3184 		if (md->kworker_task)
3185 			flush_kthread_worker(&md->kworker);
3186 	}
3187 
3188 	flush_workqueue(md->wq);
3189 
3190 	/*
3191 	 * At this point no more requests are entering target request routines.
3192 	 * We call dm_wait_for_completion to wait for all existing requests
3193 	 * to finish.
3194 	 */
3195 	r = dm_wait_for_completion(md, interruptible);
3196 
3197 	if (noflush)
3198 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3199 	if (map)
3200 		synchronize_srcu(&md->io_barrier);
3201 
3202 	/* were we interrupted ? */
3203 	if (r < 0) {
3204 		dm_queue_flush(md);
3205 
3206 		if (dm_request_based(md))
3207 			dm_start_queue(md->queue);
3208 
3209 		unlock_fs(md);
3210 		dm_table_presuspend_undo_targets(map);
3211 		/* pushback list is already flushed, so skip flush */
3212 	}
3213 
3214 	return r;
3215 }
3216 
3217 /*
3218  * We need to be able to change a mapping table under a mounted
3219  * filesystem.  For example we might want to move some data in
3220  * the background.  Before the table can be swapped with
3221  * dm_bind_table, dm_suspend must be called to flush any in
3222  * flight bios and ensure that any further io gets deferred.
3223  */
3224 /*
3225  * Suspend mechanism in request-based dm.
3226  *
3227  * 1. Flush all I/Os by lock_fs() if needed.
3228  * 2. Stop dispatching any I/O by stopping the request_queue.
3229  * 3. Wait for all in-flight I/Os to be completed or requeued.
3230  *
3231  * To abort suspend, start the request_queue.
3232  */
3233 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3234 {
3235 	struct dm_table *map = NULL;
3236 	int r = 0;
3237 
3238 retry:
3239 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3240 
3241 	if (dm_suspended_md(md)) {
3242 		r = -EINVAL;
3243 		goto out_unlock;
3244 	}
3245 
3246 	if (dm_suspended_internally_md(md)) {
3247 		/* already internally suspended, wait for internal resume */
3248 		mutex_unlock(&md->suspend_lock);
3249 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3250 		if (r)
3251 			return r;
3252 		goto retry;
3253 	}
3254 
3255 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3256 
3257 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3258 	if (r)
3259 		goto out_unlock;
3260 
3261 	set_bit(DMF_SUSPENDED, &md->flags);
3262 
3263 	dm_table_postsuspend_targets(map);
3264 
3265 out_unlock:
3266 	mutex_unlock(&md->suspend_lock);
3267 	return r;
3268 }
3269 
3270 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3271 {
3272 	if (map) {
3273 		int r = dm_table_resume_targets(map);
3274 		if (r)
3275 			return r;
3276 	}
3277 
3278 	dm_queue_flush(md);
3279 
3280 	/*
3281 	 * Flushing deferred I/Os must be done after targets are resumed
3282 	 * so that mapping of targets can work correctly.
3283 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3284 	 */
3285 	if (dm_request_based(md))
3286 		dm_start_queue(md->queue);
3287 
3288 	unlock_fs(md);
3289 
3290 	return 0;
3291 }
3292 
3293 int dm_resume(struct mapped_device *md)
3294 {
3295 	int r = -EINVAL;
3296 	struct dm_table *map = NULL;
3297 
3298 retry:
3299 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3300 
3301 	if (!dm_suspended_md(md))
3302 		goto out;
3303 
3304 	if (dm_suspended_internally_md(md)) {
3305 		/* already internally suspended, wait for internal resume */
3306 		mutex_unlock(&md->suspend_lock);
3307 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3308 		if (r)
3309 			return r;
3310 		goto retry;
3311 	}
3312 
3313 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3314 	if (!map || !dm_table_get_size(map))
3315 		goto out;
3316 
3317 	r = __dm_resume(md, map);
3318 	if (r)
3319 		goto out;
3320 
3321 	clear_bit(DMF_SUSPENDED, &md->flags);
3322 
3323 	r = 0;
3324 out:
3325 	mutex_unlock(&md->suspend_lock);
3326 
3327 	return r;
3328 }
3329 
3330 /*
3331  * Internal suspend/resume works like userspace-driven suspend. It waits
3332  * until all bios finish and prevents issuing new bios to the target drivers.
3333  * It may be used only from the kernel.
3334  */
3335 
3336 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3337 {
3338 	struct dm_table *map = NULL;
3339 
3340 	if (md->internal_suspend_count++)
3341 		return; /* nested internal suspend */
3342 
3343 	if (dm_suspended_md(md)) {
3344 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3345 		return; /* nest suspend */
3346 	}
3347 
3348 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3349 
3350 	/*
3351 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3352 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3353 	 * would require changing .presuspend to return an error -- avoid this
3354 	 * until there is a need for more elaborate variants of internal suspend.
3355 	 */
3356 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3357 
3358 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3359 
3360 	dm_table_postsuspend_targets(map);
3361 }
3362 
3363 static void __dm_internal_resume(struct mapped_device *md)
3364 {
3365 	BUG_ON(!md->internal_suspend_count);
3366 
3367 	if (--md->internal_suspend_count)
3368 		return; /* resume from nested internal suspend */
3369 
3370 	if (dm_suspended_md(md))
3371 		goto done; /* resume from nested suspend */
3372 
3373 	/*
3374 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3375 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3376 	 */
3377 	(void) __dm_resume(md, NULL);
3378 
3379 done:
3380 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3381 	smp_mb__after_atomic();
3382 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3383 }
3384 
3385 void dm_internal_suspend_noflush(struct mapped_device *md)
3386 {
3387 	mutex_lock(&md->suspend_lock);
3388 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3389 	mutex_unlock(&md->suspend_lock);
3390 }
3391 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3392 
3393 void dm_internal_resume(struct mapped_device *md)
3394 {
3395 	mutex_lock(&md->suspend_lock);
3396 	__dm_internal_resume(md);
3397 	mutex_unlock(&md->suspend_lock);
3398 }
3399 EXPORT_SYMBOL_GPL(dm_internal_resume);
3400 
3401 /*
3402  * Fast variants of internal suspend/resume hold md->suspend_lock,
3403  * which prevents interaction with userspace-driven suspend.
3404  */
3405 
3406 void dm_internal_suspend_fast(struct mapped_device *md)
3407 {
3408 	mutex_lock(&md->suspend_lock);
3409 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3410 		return;
3411 
3412 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3413 	synchronize_srcu(&md->io_barrier);
3414 	flush_workqueue(md->wq);
3415 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3416 }
3417 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3418 
3419 void dm_internal_resume_fast(struct mapped_device *md)
3420 {
3421 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3422 		goto done;
3423 
3424 	dm_queue_flush(md);
3425 
3426 done:
3427 	mutex_unlock(&md->suspend_lock);
3428 }
3429 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3430 
3431 /*-----------------------------------------------------------------
3432  * Event notification.
3433  *---------------------------------------------------------------*/
3434 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3435 		       unsigned cookie)
3436 {
3437 	char udev_cookie[DM_COOKIE_LENGTH];
3438 	char *envp[] = { udev_cookie, NULL };
3439 
3440 	if (!cookie)
3441 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3442 	else {
3443 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3444 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3445 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3446 					  action, envp);
3447 	}
3448 }
3449 
3450 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3451 {
3452 	return atomic_add_return(1, &md->uevent_seq);
3453 }
3454 
3455 uint32_t dm_get_event_nr(struct mapped_device *md)
3456 {
3457 	return atomic_read(&md->event_nr);
3458 }
3459 
3460 int dm_wait_event(struct mapped_device *md, int event_nr)
3461 {
3462 	return wait_event_interruptible(md->eventq,
3463 			(event_nr != atomic_read(&md->event_nr)));
3464 }
3465 
3466 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3467 {
3468 	unsigned long flags;
3469 
3470 	spin_lock_irqsave(&md->uevent_lock, flags);
3471 	list_add(elist, &md->uevent_list);
3472 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3473 }
3474 
3475 /*
3476  * The gendisk is only valid as long as you have a reference
3477  * count on 'md'.
3478  */
3479 struct gendisk *dm_disk(struct mapped_device *md)
3480 {
3481 	return md->disk;
3482 }
3483 EXPORT_SYMBOL_GPL(dm_disk);
3484 
3485 struct kobject *dm_kobject(struct mapped_device *md)
3486 {
3487 	return &md->kobj_holder.kobj;
3488 }
3489 
3490 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3491 {
3492 	struct mapped_device *md;
3493 
3494 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3495 
3496 	if (test_bit(DMF_FREEING, &md->flags) ||
3497 	    dm_deleting_md(md))
3498 		return NULL;
3499 
3500 	dm_get(md);
3501 	return md;
3502 }
3503 
3504 int dm_suspended_md(struct mapped_device *md)
3505 {
3506 	return test_bit(DMF_SUSPENDED, &md->flags);
3507 }
3508 
3509 int dm_suspended_internally_md(struct mapped_device *md)
3510 {
3511 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3512 }
3513 
3514 int dm_test_deferred_remove_flag(struct mapped_device *md)
3515 {
3516 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3517 }
3518 
3519 int dm_suspended(struct dm_target *ti)
3520 {
3521 	return dm_suspended_md(dm_table_get_md(ti->table));
3522 }
3523 EXPORT_SYMBOL_GPL(dm_suspended);
3524 
3525 int dm_noflush_suspending(struct dm_target *ti)
3526 {
3527 	return __noflush_suspending(dm_table_get_md(ti->table));
3528 }
3529 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3530 
3531 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3532 					    unsigned integrity, unsigned per_io_data_size)
3533 {
3534 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3535 	struct kmem_cache *cachep = NULL;
3536 	unsigned int pool_size = 0;
3537 	unsigned int front_pad;
3538 
3539 	if (!pools)
3540 		return NULL;
3541 
3542 	type = filter_md_type(type, md);
3543 
3544 	switch (type) {
3545 	case DM_TYPE_BIO_BASED:
3546 		cachep = _io_cache;
3547 		pool_size = dm_get_reserved_bio_based_ios();
3548 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3549 		break;
3550 	case DM_TYPE_REQUEST_BASED:
3551 		cachep = _rq_tio_cache;
3552 		pool_size = dm_get_reserved_rq_based_ios();
3553 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3554 		if (!pools->rq_pool)
3555 			goto out;
3556 		/* fall through to setup remaining rq-based pools */
3557 	case DM_TYPE_MQ_REQUEST_BASED:
3558 		if (!pool_size)
3559 			pool_size = dm_get_reserved_rq_based_ios();
3560 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3561 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3562 		break;
3563 	default:
3564 		BUG();
3565 	}
3566 
3567 	if (cachep) {
3568 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3569 		if (!pools->io_pool)
3570 			goto out;
3571 	}
3572 
3573 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3574 	if (!pools->bs)
3575 		goto out;
3576 
3577 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3578 		goto out;
3579 
3580 	return pools;
3581 
3582 out:
3583 	dm_free_md_mempools(pools);
3584 
3585 	return NULL;
3586 }
3587 
3588 void dm_free_md_mempools(struct dm_md_mempools *pools)
3589 {
3590 	if (!pools)
3591 		return;
3592 
3593 	mempool_destroy(pools->io_pool);
3594 	mempool_destroy(pools->rq_pool);
3595 
3596 	if (pools->bs)
3597 		bioset_free(pools->bs);
3598 
3599 	kfree(pools);
3600 }
3601 
3602 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3603 			  u32 flags)
3604 {
3605 	struct mapped_device *md = bdev->bd_disk->private_data;
3606 	const struct pr_ops *ops;
3607 	fmode_t mode;
3608 	int r;
3609 
3610 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3611 	if (r < 0)
3612 		return r;
3613 
3614 	ops = bdev->bd_disk->fops->pr_ops;
3615 	if (ops && ops->pr_register)
3616 		r = ops->pr_register(bdev, old_key, new_key, flags);
3617 	else
3618 		r = -EOPNOTSUPP;
3619 
3620 	bdput(bdev);
3621 	return r;
3622 }
3623 
3624 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3625 			 u32 flags)
3626 {
3627 	struct mapped_device *md = bdev->bd_disk->private_data;
3628 	const struct pr_ops *ops;
3629 	fmode_t mode;
3630 	int r;
3631 
3632 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3633 	if (r < 0)
3634 		return r;
3635 
3636 	ops = bdev->bd_disk->fops->pr_ops;
3637 	if (ops && ops->pr_reserve)
3638 		r = ops->pr_reserve(bdev, key, type, flags);
3639 	else
3640 		r = -EOPNOTSUPP;
3641 
3642 	bdput(bdev);
3643 	return r;
3644 }
3645 
3646 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3647 {
3648 	struct mapped_device *md = bdev->bd_disk->private_data;
3649 	const struct pr_ops *ops;
3650 	fmode_t mode;
3651 	int r;
3652 
3653 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3654 	if (r < 0)
3655 		return r;
3656 
3657 	ops = bdev->bd_disk->fops->pr_ops;
3658 	if (ops && ops->pr_release)
3659 		r = ops->pr_release(bdev, key, type);
3660 	else
3661 		r = -EOPNOTSUPP;
3662 
3663 	bdput(bdev);
3664 	return r;
3665 }
3666 
3667 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3668 			 enum pr_type type, bool abort)
3669 {
3670 	struct mapped_device *md = bdev->bd_disk->private_data;
3671 	const struct pr_ops *ops;
3672 	fmode_t mode;
3673 	int r;
3674 
3675 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3676 	if (r < 0)
3677 		return r;
3678 
3679 	ops = bdev->bd_disk->fops->pr_ops;
3680 	if (ops && ops->pr_preempt)
3681 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3682 	else
3683 		r = -EOPNOTSUPP;
3684 
3685 	bdput(bdev);
3686 	return r;
3687 }
3688 
3689 static int dm_pr_clear(struct block_device *bdev, u64 key)
3690 {
3691 	struct mapped_device *md = bdev->bd_disk->private_data;
3692 	const struct pr_ops *ops;
3693 	fmode_t mode;
3694 	int r;
3695 
3696 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3697 	if (r < 0)
3698 		return r;
3699 
3700 	ops = bdev->bd_disk->fops->pr_ops;
3701 	if (ops && ops->pr_clear)
3702 		r = ops->pr_clear(bdev, key);
3703 	else
3704 		r = -EOPNOTSUPP;
3705 
3706 	bdput(bdev);
3707 	return r;
3708 }
3709 
3710 static const struct pr_ops dm_pr_ops = {
3711 	.pr_register	= dm_pr_register,
3712 	.pr_reserve	= dm_pr_reserve,
3713 	.pr_release	= dm_pr_release,
3714 	.pr_preempt	= dm_pr_preempt,
3715 	.pr_clear	= dm_pr_clear,
3716 };
3717 
3718 static const struct block_device_operations dm_blk_dops = {
3719 	.open = dm_blk_open,
3720 	.release = dm_blk_close,
3721 	.ioctl = dm_blk_ioctl,
3722 	.getgeo = dm_blk_getgeo,
3723 	.pr_ops = &dm_pr_ops,
3724 	.owner = THIS_MODULE
3725 };
3726 
3727 /*
3728  * module hooks
3729  */
3730 module_init(dm_init);
3731 module_exit(dm_exit);
3732 
3733 module_param(major, uint, 0);
3734 MODULE_PARM_DESC(major, "The major number of the device mapper");
3735 
3736 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3737 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3738 
3739 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3740 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3741 
3742 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3743 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3744 
3745 module_param(dm_mq_nr_hw_queues, uint, S_IRUGO | S_IWUSR);
3746 MODULE_PARM_DESC(dm_mq_nr_hw_queues, "Number of hardware queues for request-based dm-mq devices");
3747 
3748 module_param(dm_mq_queue_depth, uint, S_IRUGO | S_IWUSR);
3749 MODULE_PARM_DESC(dm_mq_queue_depth, "Queue depth for request-based dm-mq devices");
3750 
3751 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3752 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3753 
3754 MODULE_DESCRIPTION(DM_NAME " driver");
3755 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3756 MODULE_LICENSE("GPL");
3757