xref: /openbmc/linux/drivers/md/dm.c (revision 0cede372ce6a8adf4d4d28fe7edd2aa913804595)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 
32 #define DM_MSG_PREFIX "core"
33 
34 /*
35  * Cookies are numeric values sent with CHANGE and REMOVE
36  * uevents while resuming, removing or renaming the device.
37  */
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
40 
41 static const char *_name = DM_NAME;
42 
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
45 
46 static DEFINE_IDR(_minor_idr);
47 
48 static DEFINE_SPINLOCK(_minor_lock);
49 
50 static void do_deferred_remove(struct work_struct *w);
51 
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
53 
54 static struct workqueue_struct *deferred_remove_workqueue;
55 
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
58 
59 void dm_issue_global_event(void)
60 {
61 	atomic_inc(&dm_global_event_nr);
62 	wake_up(&dm_global_eventq);
63 }
64 
65 /*
66  * One of these is allocated (on-stack) per original bio.
67  */
68 struct clone_info {
69 	struct dm_table *map;
70 	struct bio *bio;
71 	struct dm_io *io;
72 	sector_t sector;
73 	unsigned sector_count;
74 };
75 
76 /*
77  * One of these is allocated per clone bio.
78  */
79 #define DM_TIO_MAGIC 7282014
80 struct dm_target_io {
81 	unsigned magic;
82 	struct dm_io *io;
83 	struct dm_target *ti;
84 	unsigned target_bio_nr;
85 	unsigned *len_ptr;
86 	bool inside_dm_io;
87 	struct bio clone;
88 };
89 
90 /*
91  * One of these is allocated per original bio.
92  * It contains the first clone used for that original.
93  */
94 #define DM_IO_MAGIC 5191977
95 struct dm_io {
96 	unsigned magic;
97 	struct mapped_device *md;
98 	blk_status_t status;
99 	atomic_t io_count;
100 	struct bio *orig_bio;
101 	unsigned long start_time;
102 	spinlock_t endio_lock;
103 	struct dm_stats_aux stats_aux;
104 	/* last member of dm_target_io is 'struct bio' */
105 	struct dm_target_io tio;
106 };
107 
108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
109 {
110 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 	if (!tio->inside_dm_io)
112 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
114 }
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
116 
117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
118 {
119 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 	if (io->magic == DM_IO_MAGIC)
121 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 	BUG_ON(io->magic != DM_TIO_MAGIC);
123 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
124 }
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
126 
127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
128 {
129 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
130 }
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
132 
133 #define MINOR_ALLOCED ((void *)-1)
134 
135 /*
136  * Bits for the md->flags field.
137  */
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
140 #define DMF_FROZEN 2
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
147 
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node = DM_NUMA_NODE;
150 
151 /*
152  * For mempools pre-allocation at the table loading time.
153  */
154 struct dm_md_mempools {
155 	struct bio_set bs;
156 	struct bio_set io_bs;
157 };
158 
159 struct table_device {
160 	struct list_head list;
161 	refcount_t count;
162 	struct dm_dev dm_dev;
163 };
164 
165 /*
166  * Bio-based DM's mempools' reserved IOs set by the user.
167  */
168 #define RESERVED_BIO_BASED_IOS		16
169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
170 
171 static int __dm_get_module_param_int(int *module_param, int min, int max)
172 {
173 	int param = READ_ONCE(*module_param);
174 	int modified_param = 0;
175 	bool modified = true;
176 
177 	if (param < min)
178 		modified_param = min;
179 	else if (param > max)
180 		modified_param = max;
181 	else
182 		modified = false;
183 
184 	if (modified) {
185 		(void)cmpxchg(module_param, param, modified_param);
186 		param = modified_param;
187 	}
188 
189 	return param;
190 }
191 
192 unsigned __dm_get_module_param(unsigned *module_param,
193 			       unsigned def, unsigned max)
194 {
195 	unsigned param = READ_ONCE(*module_param);
196 	unsigned modified_param = 0;
197 
198 	if (!param)
199 		modified_param = def;
200 	else if (param > max)
201 		modified_param = max;
202 
203 	if (modified_param) {
204 		(void)cmpxchg(module_param, param, modified_param);
205 		param = modified_param;
206 	}
207 
208 	return param;
209 }
210 
211 unsigned dm_get_reserved_bio_based_ios(void)
212 {
213 	return __dm_get_module_param(&reserved_bio_based_ios,
214 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
215 }
216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
217 
218 static unsigned dm_get_numa_node(void)
219 {
220 	return __dm_get_module_param_int(&dm_numa_node,
221 					 DM_NUMA_NODE, num_online_nodes() - 1);
222 }
223 
224 static int __init local_init(void)
225 {
226 	int r;
227 
228 	r = dm_uevent_init();
229 	if (r)
230 		return r;
231 
232 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
233 	if (!deferred_remove_workqueue) {
234 		r = -ENOMEM;
235 		goto out_uevent_exit;
236 	}
237 
238 	_major = major;
239 	r = register_blkdev(_major, _name);
240 	if (r < 0)
241 		goto out_free_workqueue;
242 
243 	if (!_major)
244 		_major = r;
245 
246 	return 0;
247 
248 out_free_workqueue:
249 	destroy_workqueue(deferred_remove_workqueue);
250 out_uevent_exit:
251 	dm_uevent_exit();
252 
253 	return r;
254 }
255 
256 static void local_exit(void)
257 {
258 	flush_scheduled_work();
259 	destroy_workqueue(deferred_remove_workqueue);
260 
261 	unregister_blkdev(_major, _name);
262 	dm_uevent_exit();
263 
264 	_major = 0;
265 
266 	DMINFO("cleaned up");
267 }
268 
269 static int (*_inits[])(void) __initdata = {
270 	local_init,
271 	dm_target_init,
272 	dm_linear_init,
273 	dm_stripe_init,
274 	dm_io_init,
275 	dm_kcopyd_init,
276 	dm_interface_init,
277 	dm_statistics_init,
278 };
279 
280 static void (*_exits[])(void) = {
281 	local_exit,
282 	dm_target_exit,
283 	dm_linear_exit,
284 	dm_stripe_exit,
285 	dm_io_exit,
286 	dm_kcopyd_exit,
287 	dm_interface_exit,
288 	dm_statistics_exit,
289 };
290 
291 static int __init dm_init(void)
292 {
293 	const int count = ARRAY_SIZE(_inits);
294 
295 	int r, i;
296 
297 	for (i = 0; i < count; i++) {
298 		r = _inits[i]();
299 		if (r)
300 			goto bad;
301 	}
302 
303 	return 0;
304 
305       bad:
306 	while (i--)
307 		_exits[i]();
308 
309 	return r;
310 }
311 
312 static void __exit dm_exit(void)
313 {
314 	int i = ARRAY_SIZE(_exits);
315 
316 	while (i--)
317 		_exits[i]();
318 
319 	/*
320 	 * Should be empty by this point.
321 	 */
322 	idr_destroy(&_minor_idr);
323 }
324 
325 /*
326  * Block device functions
327  */
328 int dm_deleting_md(struct mapped_device *md)
329 {
330 	return test_bit(DMF_DELETING, &md->flags);
331 }
332 
333 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
334 {
335 	struct mapped_device *md;
336 
337 	spin_lock(&_minor_lock);
338 
339 	md = bdev->bd_disk->private_data;
340 	if (!md)
341 		goto out;
342 
343 	if (test_bit(DMF_FREEING, &md->flags) ||
344 	    dm_deleting_md(md)) {
345 		md = NULL;
346 		goto out;
347 	}
348 
349 	dm_get(md);
350 	atomic_inc(&md->open_count);
351 out:
352 	spin_unlock(&_minor_lock);
353 
354 	return md ? 0 : -ENXIO;
355 }
356 
357 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
358 {
359 	struct mapped_device *md;
360 
361 	spin_lock(&_minor_lock);
362 
363 	md = disk->private_data;
364 	if (WARN_ON(!md))
365 		goto out;
366 
367 	if (atomic_dec_and_test(&md->open_count) &&
368 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
369 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
370 
371 	dm_put(md);
372 out:
373 	spin_unlock(&_minor_lock);
374 }
375 
376 int dm_open_count(struct mapped_device *md)
377 {
378 	return atomic_read(&md->open_count);
379 }
380 
381 /*
382  * Guarantees nothing is using the device before it's deleted.
383  */
384 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (dm_open_count(md)) {
391 		r = -EBUSY;
392 		if (mark_deferred)
393 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
395 		r = -EEXIST;
396 	else
397 		set_bit(DMF_DELETING, &md->flags);
398 
399 	spin_unlock(&_minor_lock);
400 
401 	return r;
402 }
403 
404 int dm_cancel_deferred_remove(struct mapped_device *md)
405 {
406 	int r = 0;
407 
408 	spin_lock(&_minor_lock);
409 
410 	if (test_bit(DMF_DELETING, &md->flags))
411 		r = -EBUSY;
412 	else
413 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
414 
415 	spin_unlock(&_minor_lock);
416 
417 	return r;
418 }
419 
420 static void do_deferred_remove(struct work_struct *w)
421 {
422 	dm_deferred_remove();
423 }
424 
425 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
426 {
427 	struct mapped_device *md = bdev->bd_disk->private_data;
428 
429 	return dm_get_geometry(md, geo);
430 }
431 
432 #ifdef CONFIG_BLK_DEV_ZONED
433 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
434 {
435 	struct dm_report_zones_args *args = data;
436 	sector_t sector_diff = args->tgt->begin - args->start;
437 
438 	/*
439 	 * Ignore zones beyond the target range.
440 	 */
441 	if (zone->start >= args->start + args->tgt->len)
442 		return 0;
443 
444 	/*
445 	 * Remap the start sector and write pointer position of the zone
446 	 * to match its position in the target range.
447 	 */
448 	zone->start += sector_diff;
449 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
450 		if (zone->cond == BLK_ZONE_COND_FULL)
451 			zone->wp = zone->start + zone->len;
452 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
453 			zone->wp = zone->start;
454 		else
455 			zone->wp += sector_diff;
456 	}
457 
458 	args->next_sector = zone->start + zone->len;
459 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
460 }
461 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
462 
463 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
464 		unsigned int nr_zones, report_zones_cb cb, void *data)
465 {
466 	struct mapped_device *md = disk->private_data;
467 	struct dm_table *map;
468 	int srcu_idx, ret;
469 	struct dm_report_zones_args args = {
470 		.next_sector = sector,
471 		.orig_data = data,
472 		.orig_cb = cb,
473 	};
474 
475 	if (dm_suspended_md(md))
476 		return -EAGAIN;
477 
478 	map = dm_get_live_table(md, &srcu_idx);
479 	if (!map)
480 		return -EIO;
481 
482 	do {
483 		struct dm_target *tgt;
484 
485 		tgt = dm_table_find_target(map, args.next_sector);
486 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
487 			ret = -EIO;
488 			goto out;
489 		}
490 
491 		args.tgt = tgt;
492 		ret = tgt->type->report_zones(tgt, &args,
493 					      nr_zones - args.zone_idx);
494 		if (ret < 0)
495 			goto out;
496 	} while (args.zone_idx < nr_zones &&
497 		 args.next_sector < get_capacity(disk));
498 
499 	ret = args.zone_idx;
500 out:
501 	dm_put_live_table(md, srcu_idx);
502 	return ret;
503 }
504 #else
505 #define dm_blk_report_zones		NULL
506 #endif /* CONFIG_BLK_DEV_ZONED */
507 
508 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
509 			    struct block_device **bdev)
510 	__acquires(md->io_barrier)
511 {
512 	struct dm_target *tgt;
513 	struct dm_table *map;
514 	int r;
515 
516 retry:
517 	r = -ENOTTY;
518 	map = dm_get_live_table(md, srcu_idx);
519 	if (!map || !dm_table_get_size(map))
520 		return r;
521 
522 	/* We only support devices that have a single target */
523 	if (dm_table_get_num_targets(map) != 1)
524 		return r;
525 
526 	tgt = dm_table_get_target(map, 0);
527 	if (!tgt->type->prepare_ioctl)
528 		return r;
529 
530 	if (dm_suspended_md(md))
531 		return -EAGAIN;
532 
533 	r = tgt->type->prepare_ioctl(tgt, bdev);
534 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
535 		dm_put_live_table(md, *srcu_idx);
536 		msleep(10);
537 		goto retry;
538 	}
539 
540 	return r;
541 }
542 
543 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
544 	__releases(md->io_barrier)
545 {
546 	dm_put_live_table(md, srcu_idx);
547 }
548 
549 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
550 			unsigned int cmd, unsigned long arg)
551 {
552 	struct mapped_device *md = bdev->bd_disk->private_data;
553 	int r, srcu_idx;
554 
555 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
556 	if (r < 0)
557 		goto out;
558 
559 	if (r > 0) {
560 		/*
561 		 * Target determined this ioctl is being issued against a
562 		 * subset of the parent bdev; require extra privileges.
563 		 */
564 		if (!capable(CAP_SYS_RAWIO)) {
565 			DMWARN_LIMIT(
566 	"%s: sending ioctl %x to DM device without required privilege.",
567 				current->comm, cmd);
568 			r = -ENOIOCTLCMD;
569 			goto out;
570 		}
571 	}
572 
573 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
574 out:
575 	dm_unprepare_ioctl(md, srcu_idx);
576 	return r;
577 }
578 
579 u64 dm_start_time_ns_from_clone(struct bio *bio)
580 {
581 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
582 	struct dm_io *io = tio->io;
583 
584 	return jiffies_to_nsecs(io->start_time);
585 }
586 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
587 
588 static void start_io_acct(struct dm_io *io)
589 {
590 	struct mapped_device *md = io->md;
591 	struct bio *bio = io->orig_bio;
592 
593 	io->start_time = bio_start_io_acct(bio);
594 	if (unlikely(dm_stats_used(&md->stats)))
595 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
596 				    bio->bi_iter.bi_sector, bio_sectors(bio),
597 				    false, 0, &io->stats_aux);
598 }
599 
600 static void end_io_acct(struct dm_io *io)
601 {
602 	struct mapped_device *md = io->md;
603 	struct bio *bio = io->orig_bio;
604 	unsigned long duration = jiffies - io->start_time;
605 
606 	bio_end_io_acct(bio, io->start_time);
607 
608 	if (unlikely(dm_stats_used(&md->stats)))
609 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
610 				    bio->bi_iter.bi_sector, bio_sectors(bio),
611 				    true, duration, &io->stats_aux);
612 
613 	/* nudge anyone waiting on suspend queue */
614 	if (unlikely(wq_has_sleeper(&md->wait)))
615 		wake_up(&md->wait);
616 }
617 
618 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
619 {
620 	struct dm_io *io;
621 	struct dm_target_io *tio;
622 	struct bio *clone;
623 
624 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
625 	if (!clone)
626 		return NULL;
627 
628 	tio = container_of(clone, struct dm_target_io, clone);
629 	tio->inside_dm_io = true;
630 	tio->io = NULL;
631 
632 	io = container_of(tio, struct dm_io, tio);
633 	io->magic = DM_IO_MAGIC;
634 	io->status = 0;
635 	atomic_set(&io->io_count, 1);
636 	io->orig_bio = bio;
637 	io->md = md;
638 	spin_lock_init(&io->endio_lock);
639 
640 	start_io_acct(io);
641 
642 	return io;
643 }
644 
645 static void free_io(struct mapped_device *md, struct dm_io *io)
646 {
647 	bio_put(&io->tio.clone);
648 }
649 
650 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
651 				      unsigned target_bio_nr, gfp_t gfp_mask)
652 {
653 	struct dm_target_io *tio;
654 
655 	if (!ci->io->tio.io) {
656 		/* the dm_target_io embedded in ci->io is available */
657 		tio = &ci->io->tio;
658 	} else {
659 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
660 		if (!clone)
661 			return NULL;
662 
663 		tio = container_of(clone, struct dm_target_io, clone);
664 		tio->inside_dm_io = false;
665 	}
666 
667 	tio->magic = DM_TIO_MAGIC;
668 	tio->io = ci->io;
669 	tio->ti = ti;
670 	tio->target_bio_nr = target_bio_nr;
671 
672 	return tio;
673 }
674 
675 static void free_tio(struct dm_target_io *tio)
676 {
677 	if (tio->inside_dm_io)
678 		return;
679 	bio_put(&tio->clone);
680 }
681 
682 /*
683  * Add the bio to the list of deferred io.
684  */
685 static void queue_io(struct mapped_device *md, struct bio *bio)
686 {
687 	unsigned long flags;
688 
689 	spin_lock_irqsave(&md->deferred_lock, flags);
690 	bio_list_add(&md->deferred, bio);
691 	spin_unlock_irqrestore(&md->deferred_lock, flags);
692 	queue_work(md->wq, &md->work);
693 }
694 
695 /*
696  * Everyone (including functions in this file), should use this
697  * function to access the md->map field, and make sure they call
698  * dm_put_live_table() when finished.
699  */
700 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
701 {
702 	*srcu_idx = srcu_read_lock(&md->io_barrier);
703 
704 	return srcu_dereference(md->map, &md->io_barrier);
705 }
706 
707 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
708 {
709 	srcu_read_unlock(&md->io_barrier, srcu_idx);
710 }
711 
712 void dm_sync_table(struct mapped_device *md)
713 {
714 	synchronize_srcu(&md->io_barrier);
715 	synchronize_rcu_expedited();
716 }
717 
718 /*
719  * A fast alternative to dm_get_live_table/dm_put_live_table.
720  * The caller must not block between these two functions.
721  */
722 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
723 {
724 	rcu_read_lock();
725 	return rcu_dereference(md->map);
726 }
727 
728 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
729 {
730 	rcu_read_unlock();
731 }
732 
733 static char *_dm_claim_ptr = "I belong to device-mapper";
734 
735 /*
736  * Open a table device so we can use it as a map destination.
737  */
738 static int open_table_device(struct table_device *td, dev_t dev,
739 			     struct mapped_device *md)
740 {
741 	struct block_device *bdev;
742 
743 	int r;
744 
745 	BUG_ON(td->dm_dev.bdev);
746 
747 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
748 	if (IS_ERR(bdev))
749 		return PTR_ERR(bdev);
750 
751 	r = bd_link_disk_holder(bdev, dm_disk(md));
752 	if (r) {
753 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
754 		return r;
755 	}
756 
757 	td->dm_dev.bdev = bdev;
758 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
759 	return 0;
760 }
761 
762 /*
763  * Close a table device that we've been using.
764  */
765 static void close_table_device(struct table_device *td, struct mapped_device *md)
766 {
767 	if (!td->dm_dev.bdev)
768 		return;
769 
770 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
771 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
772 	put_dax(td->dm_dev.dax_dev);
773 	td->dm_dev.bdev = NULL;
774 	td->dm_dev.dax_dev = NULL;
775 }
776 
777 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
778 					      fmode_t mode)
779 {
780 	struct table_device *td;
781 
782 	list_for_each_entry(td, l, list)
783 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
784 			return td;
785 
786 	return NULL;
787 }
788 
789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
790 			struct dm_dev **result)
791 {
792 	int r;
793 	struct table_device *td;
794 
795 	mutex_lock(&md->table_devices_lock);
796 	td = find_table_device(&md->table_devices, dev, mode);
797 	if (!td) {
798 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
799 		if (!td) {
800 			mutex_unlock(&md->table_devices_lock);
801 			return -ENOMEM;
802 		}
803 
804 		td->dm_dev.mode = mode;
805 		td->dm_dev.bdev = NULL;
806 
807 		if ((r = open_table_device(td, dev, md))) {
808 			mutex_unlock(&md->table_devices_lock);
809 			kfree(td);
810 			return r;
811 		}
812 
813 		format_dev_t(td->dm_dev.name, dev);
814 
815 		refcount_set(&td->count, 1);
816 		list_add(&td->list, &md->table_devices);
817 	} else {
818 		refcount_inc(&td->count);
819 	}
820 	mutex_unlock(&md->table_devices_lock);
821 
822 	*result = &td->dm_dev;
823 	return 0;
824 }
825 EXPORT_SYMBOL_GPL(dm_get_table_device);
826 
827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828 {
829 	struct table_device *td = container_of(d, struct table_device, dm_dev);
830 
831 	mutex_lock(&md->table_devices_lock);
832 	if (refcount_dec_and_test(&td->count)) {
833 		close_table_device(td, md);
834 		list_del(&td->list);
835 		kfree(td);
836 	}
837 	mutex_unlock(&md->table_devices_lock);
838 }
839 EXPORT_SYMBOL(dm_put_table_device);
840 
841 static void free_table_devices(struct list_head *devices)
842 {
843 	struct list_head *tmp, *next;
844 
845 	list_for_each_safe(tmp, next, devices) {
846 		struct table_device *td = list_entry(tmp, struct table_device, list);
847 
848 		DMWARN("dm_destroy: %s still exists with %d references",
849 		       td->dm_dev.name, refcount_read(&td->count));
850 		kfree(td);
851 	}
852 }
853 
854 /*
855  * Get the geometry associated with a dm device
856  */
857 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
858 {
859 	*geo = md->geometry;
860 
861 	return 0;
862 }
863 
864 /*
865  * Set the geometry of a device.
866  */
867 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
868 {
869 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
870 
871 	if (geo->start > sz) {
872 		DMWARN("Start sector is beyond the geometry limits.");
873 		return -EINVAL;
874 	}
875 
876 	md->geometry = *geo;
877 
878 	return 0;
879 }
880 
881 static int __noflush_suspending(struct mapped_device *md)
882 {
883 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
884 }
885 
886 /*
887  * Decrements the number of outstanding ios that a bio has been
888  * cloned into, completing the original io if necc.
889  */
890 static void dec_pending(struct dm_io *io, blk_status_t error)
891 {
892 	unsigned long flags;
893 	blk_status_t io_error;
894 	struct bio *bio;
895 	struct mapped_device *md = io->md;
896 
897 	/* Push-back supersedes any I/O errors */
898 	if (unlikely(error)) {
899 		spin_lock_irqsave(&io->endio_lock, flags);
900 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
901 			io->status = error;
902 		spin_unlock_irqrestore(&io->endio_lock, flags);
903 	}
904 
905 	if (atomic_dec_and_test(&io->io_count)) {
906 		if (io->status == BLK_STS_DM_REQUEUE) {
907 			/*
908 			 * Target requested pushing back the I/O.
909 			 */
910 			spin_lock_irqsave(&md->deferred_lock, flags);
911 			if (__noflush_suspending(md))
912 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
913 				bio_list_add_head(&md->deferred, io->orig_bio);
914 			else
915 				/* noflush suspend was interrupted. */
916 				io->status = BLK_STS_IOERR;
917 			spin_unlock_irqrestore(&md->deferred_lock, flags);
918 		}
919 
920 		io_error = io->status;
921 		bio = io->orig_bio;
922 		end_io_acct(io);
923 		free_io(md, io);
924 
925 		if (io_error == BLK_STS_DM_REQUEUE)
926 			return;
927 
928 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
929 			/*
930 			 * Preflush done for flush with data, reissue
931 			 * without REQ_PREFLUSH.
932 			 */
933 			bio->bi_opf &= ~REQ_PREFLUSH;
934 			queue_io(md, bio);
935 		} else {
936 			/* done with normal IO or empty flush */
937 			if (io_error)
938 				bio->bi_status = io_error;
939 			bio_endio(bio);
940 		}
941 	}
942 }
943 
944 void disable_discard(struct mapped_device *md)
945 {
946 	struct queue_limits *limits = dm_get_queue_limits(md);
947 
948 	/* device doesn't really support DISCARD, disable it */
949 	limits->max_discard_sectors = 0;
950 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
951 }
952 
953 void disable_write_same(struct mapped_device *md)
954 {
955 	struct queue_limits *limits = dm_get_queue_limits(md);
956 
957 	/* device doesn't really support WRITE SAME, disable it */
958 	limits->max_write_same_sectors = 0;
959 }
960 
961 void disable_write_zeroes(struct mapped_device *md)
962 {
963 	struct queue_limits *limits = dm_get_queue_limits(md);
964 
965 	/* device doesn't really support WRITE ZEROES, disable it */
966 	limits->max_write_zeroes_sectors = 0;
967 }
968 
969 static void clone_endio(struct bio *bio)
970 {
971 	blk_status_t error = bio->bi_status;
972 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
973 	struct dm_io *io = tio->io;
974 	struct mapped_device *md = tio->io->md;
975 	dm_endio_fn endio = tio->ti->type->end_io;
976 	struct bio *orig_bio = io->orig_bio;
977 
978 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
979 		if (bio_op(bio) == REQ_OP_DISCARD &&
980 		    !bio->bi_disk->queue->limits.max_discard_sectors)
981 			disable_discard(md);
982 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
983 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
984 			disable_write_same(md);
985 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
986 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
987 			disable_write_zeroes(md);
988 	}
989 
990 	/*
991 	 * For zone-append bios get offset in zone of the written
992 	 * sector and add that to the original bio sector pos.
993 	 */
994 	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
995 		sector_t written_sector = bio->bi_iter.bi_sector;
996 		struct request_queue *q = orig_bio->bi_disk->queue;
997 		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
998 
999 		orig_bio->bi_iter.bi_sector += written_sector & mask;
1000 	}
1001 
1002 	if (endio) {
1003 		int r = endio(tio->ti, bio, &error);
1004 		switch (r) {
1005 		case DM_ENDIO_REQUEUE:
1006 			error = BLK_STS_DM_REQUEUE;
1007 			fallthrough;
1008 		case DM_ENDIO_DONE:
1009 			break;
1010 		case DM_ENDIO_INCOMPLETE:
1011 			/* The target will handle the io */
1012 			return;
1013 		default:
1014 			DMWARN("unimplemented target endio return value: %d", r);
1015 			BUG();
1016 		}
1017 	}
1018 
1019 	free_tio(tio);
1020 	dec_pending(io, error);
1021 }
1022 
1023 /*
1024  * Return maximum size of I/O possible at the supplied sector up to the current
1025  * target boundary.
1026  */
1027 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1028 						  sector_t target_offset)
1029 {
1030 	return ti->len - target_offset;
1031 }
1032 
1033 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1034 {
1035 	sector_t target_offset = dm_target_offset(ti, sector);
1036 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1037 	sector_t max_len;
1038 
1039 	/*
1040 	 * Does the target need to split even further?
1041 	 * - q->limits.chunk_sectors reflects ti->max_io_len so
1042 	 *   blk_max_size_offset() provides required splitting.
1043 	 * - blk_max_size_offset() also respects q->limits.max_sectors
1044 	 */
1045 	max_len = blk_max_size_offset(ti->table->md->queue,
1046 				      target_offset);
1047 	if (len > max_len)
1048 		len = max_len;
1049 
1050 	return len;
1051 }
1052 
1053 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1054 {
1055 	if (len > UINT_MAX) {
1056 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1057 		      (unsigned long long)len, UINT_MAX);
1058 		ti->error = "Maximum size of target IO is too large";
1059 		return -EINVAL;
1060 	}
1061 
1062 	ti->max_io_len = (uint32_t) len;
1063 
1064 	return 0;
1065 }
1066 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1067 
1068 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1069 						sector_t sector, int *srcu_idx)
1070 	__acquires(md->io_barrier)
1071 {
1072 	struct dm_table *map;
1073 	struct dm_target *ti;
1074 
1075 	map = dm_get_live_table(md, srcu_idx);
1076 	if (!map)
1077 		return NULL;
1078 
1079 	ti = dm_table_find_target(map, sector);
1080 	if (!ti)
1081 		return NULL;
1082 
1083 	return ti;
1084 }
1085 
1086 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1087 				 long nr_pages, void **kaddr, pfn_t *pfn)
1088 {
1089 	struct mapped_device *md = dax_get_private(dax_dev);
1090 	sector_t sector = pgoff * PAGE_SECTORS;
1091 	struct dm_target *ti;
1092 	long len, ret = -EIO;
1093 	int srcu_idx;
1094 
1095 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1096 
1097 	if (!ti)
1098 		goto out;
1099 	if (!ti->type->direct_access)
1100 		goto out;
1101 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1102 	if (len < 1)
1103 		goto out;
1104 	nr_pages = min(len, nr_pages);
1105 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1106 
1107  out:
1108 	dm_put_live_table(md, srcu_idx);
1109 
1110 	return ret;
1111 }
1112 
1113 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1114 		int blocksize, sector_t start, sector_t len)
1115 {
1116 	struct mapped_device *md = dax_get_private(dax_dev);
1117 	struct dm_table *map;
1118 	bool ret = false;
1119 	int srcu_idx;
1120 
1121 	map = dm_get_live_table(md, &srcu_idx);
1122 	if (!map)
1123 		goto out;
1124 
1125 	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1126 
1127 out:
1128 	dm_put_live_table(md, srcu_idx);
1129 
1130 	return ret;
1131 }
1132 
1133 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1134 				    void *addr, size_t bytes, struct iov_iter *i)
1135 {
1136 	struct mapped_device *md = dax_get_private(dax_dev);
1137 	sector_t sector = pgoff * PAGE_SECTORS;
1138 	struct dm_target *ti;
1139 	long ret = 0;
1140 	int srcu_idx;
1141 
1142 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1143 
1144 	if (!ti)
1145 		goto out;
1146 	if (!ti->type->dax_copy_from_iter) {
1147 		ret = copy_from_iter(addr, bytes, i);
1148 		goto out;
1149 	}
1150 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1151  out:
1152 	dm_put_live_table(md, srcu_idx);
1153 
1154 	return ret;
1155 }
1156 
1157 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1158 		void *addr, size_t bytes, struct iov_iter *i)
1159 {
1160 	struct mapped_device *md = dax_get_private(dax_dev);
1161 	sector_t sector = pgoff * PAGE_SECTORS;
1162 	struct dm_target *ti;
1163 	long ret = 0;
1164 	int srcu_idx;
1165 
1166 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1167 
1168 	if (!ti)
1169 		goto out;
1170 	if (!ti->type->dax_copy_to_iter) {
1171 		ret = copy_to_iter(addr, bytes, i);
1172 		goto out;
1173 	}
1174 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1175  out:
1176 	dm_put_live_table(md, srcu_idx);
1177 
1178 	return ret;
1179 }
1180 
1181 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1182 				  size_t nr_pages)
1183 {
1184 	struct mapped_device *md = dax_get_private(dax_dev);
1185 	sector_t sector = pgoff * PAGE_SECTORS;
1186 	struct dm_target *ti;
1187 	int ret = -EIO;
1188 	int srcu_idx;
1189 
1190 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1191 
1192 	if (!ti)
1193 		goto out;
1194 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1195 		/*
1196 		 * ->zero_page_range() is mandatory dax operation. If we are
1197 		 *  here, something is wrong.
1198 		 */
1199 		dm_put_live_table(md, srcu_idx);
1200 		goto out;
1201 	}
1202 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1203 
1204  out:
1205 	dm_put_live_table(md, srcu_idx);
1206 
1207 	return ret;
1208 }
1209 
1210 /*
1211  * A target may call dm_accept_partial_bio only from the map routine.  It is
1212  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1213  * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1214  *
1215  * dm_accept_partial_bio informs the dm that the target only wants to process
1216  * additional n_sectors sectors of the bio and the rest of the data should be
1217  * sent in a next bio.
1218  *
1219  * A diagram that explains the arithmetics:
1220  * +--------------------+---------------+-------+
1221  * |         1          |       2       |   3   |
1222  * +--------------------+---------------+-------+
1223  *
1224  * <-------------- *tio->len_ptr --------------->
1225  *                      <------- bi_size ------->
1226  *                      <-- n_sectors -->
1227  *
1228  * Region 1 was already iterated over with bio_advance or similar function.
1229  *	(it may be empty if the target doesn't use bio_advance)
1230  * Region 2 is the remaining bio size that the target wants to process.
1231  *	(it may be empty if region 1 is non-empty, although there is no reason
1232  *	 to make it empty)
1233  * The target requires that region 3 is to be sent in the next bio.
1234  *
1235  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1236  * the partially processed part (the sum of regions 1+2) must be the same for all
1237  * copies of the bio.
1238  */
1239 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1240 {
1241 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1242 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1243 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1244 	BUG_ON(bi_size > *tio->len_ptr);
1245 	BUG_ON(n_sectors > bi_size);
1246 	*tio->len_ptr -= bi_size - n_sectors;
1247 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1248 }
1249 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1250 
1251 static blk_qc_t __map_bio(struct dm_target_io *tio)
1252 {
1253 	int r;
1254 	sector_t sector;
1255 	struct bio *clone = &tio->clone;
1256 	struct dm_io *io = tio->io;
1257 	struct dm_target *ti = tio->ti;
1258 	blk_qc_t ret = BLK_QC_T_NONE;
1259 
1260 	clone->bi_end_io = clone_endio;
1261 
1262 	/*
1263 	 * Map the clone.  If r == 0 we don't need to do
1264 	 * anything, the target has assumed ownership of
1265 	 * this io.
1266 	 */
1267 	atomic_inc(&io->io_count);
1268 	sector = clone->bi_iter.bi_sector;
1269 
1270 	r = ti->type->map(ti, clone);
1271 	switch (r) {
1272 	case DM_MAPIO_SUBMITTED:
1273 		break;
1274 	case DM_MAPIO_REMAPPED:
1275 		/* the bio has been remapped so dispatch it */
1276 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1277 				      bio_dev(io->orig_bio), sector);
1278 		ret = submit_bio_noacct(clone);
1279 		break;
1280 	case DM_MAPIO_KILL:
1281 		free_tio(tio);
1282 		dec_pending(io, BLK_STS_IOERR);
1283 		break;
1284 	case DM_MAPIO_REQUEUE:
1285 		free_tio(tio);
1286 		dec_pending(io, BLK_STS_DM_REQUEUE);
1287 		break;
1288 	default:
1289 		DMWARN("unimplemented target map return value: %d", r);
1290 		BUG();
1291 	}
1292 
1293 	return ret;
1294 }
1295 
1296 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1297 {
1298 	bio->bi_iter.bi_sector = sector;
1299 	bio->bi_iter.bi_size = to_bytes(len);
1300 }
1301 
1302 /*
1303  * Creates a bio that consists of range of complete bvecs.
1304  */
1305 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1306 		     sector_t sector, unsigned len)
1307 {
1308 	struct bio *clone = &tio->clone;
1309 
1310 	__bio_clone_fast(clone, bio);
1311 
1312 	bio_crypt_clone(clone, bio, GFP_NOIO);
1313 
1314 	if (bio_integrity(bio)) {
1315 		int r;
1316 
1317 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1318 			     !dm_target_passes_integrity(tio->ti->type))) {
1319 			DMWARN("%s: the target %s doesn't support integrity data.",
1320 				dm_device_name(tio->io->md),
1321 				tio->ti->type->name);
1322 			return -EIO;
1323 		}
1324 
1325 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1326 		if (r < 0)
1327 			return r;
1328 	}
1329 
1330 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1331 	clone->bi_iter.bi_size = to_bytes(len);
1332 
1333 	if (bio_integrity(bio))
1334 		bio_integrity_trim(clone);
1335 
1336 	return 0;
1337 }
1338 
1339 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1340 				struct dm_target *ti, unsigned num_bios)
1341 {
1342 	struct dm_target_io *tio;
1343 	int try;
1344 
1345 	if (!num_bios)
1346 		return;
1347 
1348 	if (num_bios == 1) {
1349 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1350 		bio_list_add(blist, &tio->clone);
1351 		return;
1352 	}
1353 
1354 	for (try = 0; try < 2; try++) {
1355 		int bio_nr;
1356 		struct bio *bio;
1357 
1358 		if (try)
1359 			mutex_lock(&ci->io->md->table_devices_lock);
1360 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1361 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1362 			if (!tio)
1363 				break;
1364 
1365 			bio_list_add(blist, &tio->clone);
1366 		}
1367 		if (try)
1368 			mutex_unlock(&ci->io->md->table_devices_lock);
1369 		if (bio_nr == num_bios)
1370 			return;
1371 
1372 		while ((bio = bio_list_pop(blist))) {
1373 			tio = container_of(bio, struct dm_target_io, clone);
1374 			free_tio(tio);
1375 		}
1376 	}
1377 }
1378 
1379 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1380 					   struct dm_target_io *tio, unsigned *len)
1381 {
1382 	struct bio *clone = &tio->clone;
1383 
1384 	tio->len_ptr = len;
1385 
1386 	__bio_clone_fast(clone, ci->bio);
1387 	if (len)
1388 		bio_setup_sector(clone, ci->sector, *len);
1389 
1390 	return __map_bio(tio);
1391 }
1392 
1393 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1394 				  unsigned num_bios, unsigned *len)
1395 {
1396 	struct bio_list blist = BIO_EMPTY_LIST;
1397 	struct bio *bio;
1398 	struct dm_target_io *tio;
1399 
1400 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1401 
1402 	while ((bio = bio_list_pop(&blist))) {
1403 		tio = container_of(bio, struct dm_target_io, clone);
1404 		(void) __clone_and_map_simple_bio(ci, tio, len);
1405 	}
1406 }
1407 
1408 static int __send_empty_flush(struct clone_info *ci)
1409 {
1410 	unsigned target_nr = 0;
1411 	struct dm_target *ti;
1412 	struct bio flush_bio;
1413 
1414 	/*
1415 	 * Use an on-stack bio for this, it's safe since we don't
1416 	 * need to reference it after submit. It's just used as
1417 	 * the basis for the clone(s).
1418 	 */
1419 	bio_init(&flush_bio, NULL, 0);
1420 	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1421 	ci->bio = &flush_bio;
1422 	ci->sector_count = 0;
1423 
1424 	/*
1425 	 * Empty flush uses a statically initialized bio, as the base for
1426 	 * cloning.  However, blkg association requires that a bdev is
1427 	 * associated with a gendisk, which doesn't happen until the bdev is
1428 	 * opened.  So, blkg association is done at issue time of the flush
1429 	 * rather than when the device is created in alloc_dev().
1430 	 */
1431 	bio_set_dev(ci->bio, ci->io->md->bdev);
1432 
1433 	BUG_ON(bio_has_data(ci->bio));
1434 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1435 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1436 
1437 	bio_uninit(ci->bio);
1438 	return 0;
1439 }
1440 
1441 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1442 				    sector_t sector, unsigned *len)
1443 {
1444 	struct bio *bio = ci->bio;
1445 	struct dm_target_io *tio;
1446 	int r;
1447 
1448 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1449 	tio->len_ptr = len;
1450 	r = clone_bio(tio, bio, sector, *len);
1451 	if (r < 0) {
1452 		free_tio(tio);
1453 		return r;
1454 	}
1455 	(void) __map_bio(tio);
1456 
1457 	return 0;
1458 }
1459 
1460 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1461 				       unsigned num_bios)
1462 {
1463 	unsigned len;
1464 
1465 	/*
1466 	 * Even though the device advertised support for this type of
1467 	 * request, that does not mean every target supports it, and
1468 	 * reconfiguration might also have changed that since the
1469 	 * check was performed.
1470 	 */
1471 	if (!num_bios)
1472 		return -EOPNOTSUPP;
1473 
1474 	len = min_t(sector_t, ci->sector_count,
1475 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1476 
1477 	__send_duplicate_bios(ci, ti, num_bios, &len);
1478 
1479 	ci->sector += len;
1480 	ci->sector_count -= len;
1481 
1482 	return 0;
1483 }
1484 
1485 static bool is_abnormal_io(struct bio *bio)
1486 {
1487 	bool r = false;
1488 
1489 	switch (bio_op(bio)) {
1490 	case REQ_OP_DISCARD:
1491 	case REQ_OP_SECURE_ERASE:
1492 	case REQ_OP_WRITE_SAME:
1493 	case REQ_OP_WRITE_ZEROES:
1494 		r = true;
1495 		break;
1496 	}
1497 
1498 	return r;
1499 }
1500 
1501 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1502 				  int *result)
1503 {
1504 	struct bio *bio = ci->bio;
1505 	unsigned num_bios = 0;
1506 
1507 	switch (bio_op(bio)) {
1508 	case REQ_OP_DISCARD:
1509 		num_bios = ti->num_discard_bios;
1510 		break;
1511 	case REQ_OP_SECURE_ERASE:
1512 		num_bios = ti->num_secure_erase_bios;
1513 		break;
1514 	case REQ_OP_WRITE_SAME:
1515 		num_bios = ti->num_write_same_bios;
1516 		break;
1517 	case REQ_OP_WRITE_ZEROES:
1518 		num_bios = ti->num_write_zeroes_bios;
1519 		break;
1520 	default:
1521 		return false;
1522 	}
1523 
1524 	*result = __send_changing_extent_only(ci, ti, num_bios);
1525 	return true;
1526 }
1527 
1528 /*
1529  * Select the correct strategy for processing a non-flush bio.
1530  */
1531 static int __split_and_process_non_flush(struct clone_info *ci)
1532 {
1533 	struct dm_target *ti;
1534 	unsigned len;
1535 	int r;
1536 
1537 	ti = dm_table_find_target(ci->map, ci->sector);
1538 	if (!ti)
1539 		return -EIO;
1540 
1541 	if (__process_abnormal_io(ci, ti, &r))
1542 		return r;
1543 
1544 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1545 
1546 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1547 	if (r < 0)
1548 		return r;
1549 
1550 	ci->sector += len;
1551 	ci->sector_count -= len;
1552 
1553 	return 0;
1554 }
1555 
1556 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1557 			    struct dm_table *map, struct bio *bio)
1558 {
1559 	ci->map = map;
1560 	ci->io = alloc_io(md, bio);
1561 	ci->sector = bio->bi_iter.bi_sector;
1562 }
1563 
1564 #define __dm_part_stat_sub(part, field, subnd)	\
1565 	(part_stat_get(part, field) -= (subnd))
1566 
1567 /*
1568  * Entry point to split a bio into clones and submit them to the targets.
1569  */
1570 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1571 					struct dm_table *map, struct bio *bio)
1572 {
1573 	struct clone_info ci;
1574 	blk_qc_t ret = BLK_QC_T_NONE;
1575 	int error = 0;
1576 
1577 	init_clone_info(&ci, md, map, bio);
1578 
1579 	if (bio->bi_opf & REQ_PREFLUSH) {
1580 		error = __send_empty_flush(&ci);
1581 		/* dec_pending submits any data associated with flush */
1582 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1583 		ci.bio = bio;
1584 		ci.sector_count = 0;
1585 		error = __split_and_process_non_flush(&ci);
1586 	} else {
1587 		ci.bio = bio;
1588 		ci.sector_count = bio_sectors(bio);
1589 		while (ci.sector_count && !error) {
1590 			error = __split_and_process_non_flush(&ci);
1591 			if (current->bio_list && ci.sector_count && !error) {
1592 				/*
1593 				 * Remainder must be passed to submit_bio_noacct()
1594 				 * so that it gets handled *after* bios already submitted
1595 				 * have been completely processed.
1596 				 * We take a clone of the original to store in
1597 				 * ci.io->orig_bio to be used by end_io_acct() and
1598 				 * for dec_pending to use for completion handling.
1599 				 */
1600 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1601 							  GFP_NOIO, &md->queue->bio_split);
1602 				ci.io->orig_bio = b;
1603 
1604 				/*
1605 				 * Adjust IO stats for each split, otherwise upon queue
1606 				 * reentry there will be redundant IO accounting.
1607 				 * NOTE: this is a stop-gap fix, a proper fix involves
1608 				 * significant refactoring of DM core's bio splitting
1609 				 * (by eliminating DM's splitting and just using bio_split)
1610 				 */
1611 				part_stat_lock();
1612 				__dm_part_stat_sub(&dm_disk(md)->part0,
1613 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1614 				part_stat_unlock();
1615 
1616 				bio_chain(b, bio);
1617 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1618 				ret = submit_bio_noacct(bio);
1619 				break;
1620 			}
1621 		}
1622 	}
1623 
1624 	/* drop the extra reference count */
1625 	dec_pending(ci.io, errno_to_blk_status(error));
1626 	return ret;
1627 }
1628 
1629 /*
1630  * Optimized variant of __split_and_process_bio that leverages the
1631  * fact that targets that use it do _not_ have a need to split bios.
1632  */
1633 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1634 			      struct bio *bio)
1635 {
1636 	struct clone_info ci;
1637 	blk_qc_t ret = BLK_QC_T_NONE;
1638 	int error = 0;
1639 
1640 	init_clone_info(&ci, md, map, bio);
1641 
1642 	if (bio->bi_opf & REQ_PREFLUSH) {
1643 		error = __send_empty_flush(&ci);
1644 		/* dec_pending submits any data associated with flush */
1645 	} else {
1646 		struct dm_target_io *tio;
1647 		struct dm_target *ti = md->immutable_target;
1648 
1649 		if (WARN_ON_ONCE(!ti)) {
1650 			error = -EIO;
1651 			goto out;
1652 		}
1653 
1654 		ci.bio = bio;
1655 		ci.sector_count = bio_sectors(bio);
1656 		if (__process_abnormal_io(&ci, ti, &error))
1657 			goto out;
1658 
1659 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1660 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1661 	}
1662 out:
1663 	/* drop the extra reference count */
1664 	dec_pending(ci.io, errno_to_blk_status(error));
1665 	return ret;
1666 }
1667 
1668 static blk_qc_t dm_submit_bio(struct bio *bio)
1669 {
1670 	struct mapped_device *md = bio->bi_disk->private_data;
1671 	blk_qc_t ret = BLK_QC_T_NONE;
1672 	int srcu_idx;
1673 	struct dm_table *map;
1674 
1675 	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
1676 		/*
1677 		 * We are called with a live reference on q_usage_counter, but
1678 		 * that one will be released as soon as we return.  Grab an
1679 		 * extra one as blk_mq_submit_bio expects to be able to consume
1680 		 * a reference (which lives until the request is freed in case a
1681 		 * request is allocated).
1682 		 */
1683 		percpu_ref_get(&bio->bi_disk->queue->q_usage_counter);
1684 		return blk_mq_submit_bio(bio);
1685 	}
1686 
1687 	map = dm_get_live_table(md, &srcu_idx);
1688 	if (unlikely(!map)) {
1689 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1690 			    dm_device_name(md));
1691 		bio_io_error(bio);
1692 		goto out;
1693 	}
1694 
1695 	/* If suspended, queue this IO for later */
1696 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1697 		if (bio->bi_opf & REQ_NOWAIT)
1698 			bio_wouldblock_error(bio);
1699 		else if (bio->bi_opf & REQ_RAHEAD)
1700 			bio_io_error(bio);
1701 		else
1702 			queue_io(md, bio);
1703 		goto out;
1704 	}
1705 
1706 	/*
1707 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1708 	 * otherwise associated queue_limits won't be imposed.
1709 	 */
1710 	if (is_abnormal_io(bio))
1711 		blk_queue_split(&bio);
1712 
1713 	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1714 		ret = __process_bio(md, map, bio);
1715 	else
1716 		ret = __split_and_process_bio(md, map, bio);
1717 out:
1718 	dm_put_live_table(md, srcu_idx);
1719 	return ret;
1720 }
1721 
1722 /*-----------------------------------------------------------------
1723  * An IDR is used to keep track of allocated minor numbers.
1724  *---------------------------------------------------------------*/
1725 static void free_minor(int minor)
1726 {
1727 	spin_lock(&_minor_lock);
1728 	idr_remove(&_minor_idr, minor);
1729 	spin_unlock(&_minor_lock);
1730 }
1731 
1732 /*
1733  * See if the device with a specific minor # is free.
1734  */
1735 static int specific_minor(int minor)
1736 {
1737 	int r;
1738 
1739 	if (minor >= (1 << MINORBITS))
1740 		return -EINVAL;
1741 
1742 	idr_preload(GFP_KERNEL);
1743 	spin_lock(&_minor_lock);
1744 
1745 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1746 
1747 	spin_unlock(&_minor_lock);
1748 	idr_preload_end();
1749 	if (r < 0)
1750 		return r == -ENOSPC ? -EBUSY : r;
1751 	return 0;
1752 }
1753 
1754 static int next_free_minor(int *minor)
1755 {
1756 	int r;
1757 
1758 	idr_preload(GFP_KERNEL);
1759 	spin_lock(&_minor_lock);
1760 
1761 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1762 
1763 	spin_unlock(&_minor_lock);
1764 	idr_preload_end();
1765 	if (r < 0)
1766 		return r;
1767 	*minor = r;
1768 	return 0;
1769 }
1770 
1771 static const struct block_device_operations dm_blk_dops;
1772 static const struct dax_operations dm_dax_ops;
1773 
1774 static void dm_wq_work(struct work_struct *work);
1775 
1776 static void cleanup_mapped_device(struct mapped_device *md)
1777 {
1778 	if (md->wq)
1779 		destroy_workqueue(md->wq);
1780 	bioset_exit(&md->bs);
1781 	bioset_exit(&md->io_bs);
1782 
1783 	if (md->dax_dev) {
1784 		kill_dax(md->dax_dev);
1785 		put_dax(md->dax_dev);
1786 		md->dax_dev = NULL;
1787 	}
1788 
1789 	if (md->disk) {
1790 		spin_lock(&_minor_lock);
1791 		md->disk->private_data = NULL;
1792 		spin_unlock(&_minor_lock);
1793 		del_gendisk(md->disk);
1794 		put_disk(md->disk);
1795 	}
1796 
1797 	if (md->queue)
1798 		blk_cleanup_queue(md->queue);
1799 
1800 	cleanup_srcu_struct(&md->io_barrier);
1801 
1802 	if (md->bdev) {
1803 		bdput(md->bdev);
1804 		md->bdev = NULL;
1805 	}
1806 
1807 	mutex_destroy(&md->suspend_lock);
1808 	mutex_destroy(&md->type_lock);
1809 	mutex_destroy(&md->table_devices_lock);
1810 
1811 	dm_mq_cleanup_mapped_device(md);
1812 }
1813 
1814 /*
1815  * Allocate and initialise a blank device with a given minor.
1816  */
1817 static struct mapped_device *alloc_dev(int minor)
1818 {
1819 	int r, numa_node_id = dm_get_numa_node();
1820 	struct mapped_device *md;
1821 	void *old_md;
1822 
1823 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1824 	if (!md) {
1825 		DMWARN("unable to allocate device, out of memory.");
1826 		return NULL;
1827 	}
1828 
1829 	if (!try_module_get(THIS_MODULE))
1830 		goto bad_module_get;
1831 
1832 	/* get a minor number for the dev */
1833 	if (minor == DM_ANY_MINOR)
1834 		r = next_free_minor(&minor);
1835 	else
1836 		r = specific_minor(minor);
1837 	if (r < 0)
1838 		goto bad_minor;
1839 
1840 	r = init_srcu_struct(&md->io_barrier);
1841 	if (r < 0)
1842 		goto bad_io_barrier;
1843 
1844 	md->numa_node_id = numa_node_id;
1845 	md->init_tio_pdu = false;
1846 	md->type = DM_TYPE_NONE;
1847 	mutex_init(&md->suspend_lock);
1848 	mutex_init(&md->type_lock);
1849 	mutex_init(&md->table_devices_lock);
1850 	spin_lock_init(&md->deferred_lock);
1851 	atomic_set(&md->holders, 1);
1852 	atomic_set(&md->open_count, 0);
1853 	atomic_set(&md->event_nr, 0);
1854 	atomic_set(&md->uevent_seq, 0);
1855 	INIT_LIST_HEAD(&md->uevent_list);
1856 	INIT_LIST_HEAD(&md->table_devices);
1857 	spin_lock_init(&md->uevent_lock);
1858 
1859 	/*
1860 	 * default to bio-based until DM table is loaded and md->type
1861 	 * established. If request-based table is loaded: blk-mq will
1862 	 * override accordingly.
1863 	 */
1864 	md->queue = blk_alloc_queue(numa_node_id);
1865 	if (!md->queue)
1866 		goto bad;
1867 
1868 	md->disk = alloc_disk_node(1, md->numa_node_id);
1869 	if (!md->disk)
1870 		goto bad;
1871 
1872 	init_waitqueue_head(&md->wait);
1873 	INIT_WORK(&md->work, dm_wq_work);
1874 	init_waitqueue_head(&md->eventq);
1875 	init_completion(&md->kobj_holder.completion);
1876 
1877 	md->disk->major = _major;
1878 	md->disk->first_minor = minor;
1879 	md->disk->fops = &dm_blk_dops;
1880 	md->disk->queue = md->queue;
1881 	md->disk->private_data = md;
1882 	sprintf(md->disk->disk_name, "dm-%d", minor);
1883 
1884 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1885 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1886 					&dm_dax_ops, 0);
1887 		if (IS_ERR(md->dax_dev))
1888 			goto bad;
1889 	}
1890 
1891 	add_disk_no_queue_reg(md->disk);
1892 	format_dev_t(md->name, MKDEV(_major, minor));
1893 
1894 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1895 	if (!md->wq)
1896 		goto bad;
1897 
1898 	md->bdev = bdget_disk(md->disk, 0);
1899 	if (!md->bdev)
1900 		goto bad;
1901 
1902 	dm_stats_init(&md->stats);
1903 
1904 	/* Populate the mapping, nobody knows we exist yet */
1905 	spin_lock(&_minor_lock);
1906 	old_md = idr_replace(&_minor_idr, md, minor);
1907 	spin_unlock(&_minor_lock);
1908 
1909 	BUG_ON(old_md != MINOR_ALLOCED);
1910 
1911 	return md;
1912 
1913 bad:
1914 	cleanup_mapped_device(md);
1915 bad_io_barrier:
1916 	free_minor(minor);
1917 bad_minor:
1918 	module_put(THIS_MODULE);
1919 bad_module_get:
1920 	kvfree(md);
1921 	return NULL;
1922 }
1923 
1924 static void unlock_fs(struct mapped_device *md);
1925 
1926 static void free_dev(struct mapped_device *md)
1927 {
1928 	int minor = MINOR(disk_devt(md->disk));
1929 
1930 	unlock_fs(md);
1931 
1932 	cleanup_mapped_device(md);
1933 
1934 	free_table_devices(&md->table_devices);
1935 	dm_stats_cleanup(&md->stats);
1936 	free_minor(minor);
1937 
1938 	module_put(THIS_MODULE);
1939 	kvfree(md);
1940 }
1941 
1942 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1943 {
1944 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1945 	int ret = 0;
1946 
1947 	if (dm_table_bio_based(t)) {
1948 		/*
1949 		 * The md may already have mempools that need changing.
1950 		 * If so, reload bioset because front_pad may have changed
1951 		 * because a different table was loaded.
1952 		 */
1953 		bioset_exit(&md->bs);
1954 		bioset_exit(&md->io_bs);
1955 
1956 	} else if (bioset_initialized(&md->bs)) {
1957 		/*
1958 		 * There's no need to reload with request-based dm
1959 		 * because the size of front_pad doesn't change.
1960 		 * Note for future: If you are to reload bioset,
1961 		 * prep-ed requests in the queue may refer
1962 		 * to bio from the old bioset, so you must walk
1963 		 * through the queue to unprep.
1964 		 */
1965 		goto out;
1966 	}
1967 
1968 	BUG_ON(!p ||
1969 	       bioset_initialized(&md->bs) ||
1970 	       bioset_initialized(&md->io_bs));
1971 
1972 	ret = bioset_init_from_src(&md->bs, &p->bs);
1973 	if (ret)
1974 		goto out;
1975 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1976 	if (ret)
1977 		bioset_exit(&md->bs);
1978 out:
1979 	/* mempool bind completed, no longer need any mempools in the table */
1980 	dm_table_free_md_mempools(t);
1981 	return ret;
1982 }
1983 
1984 /*
1985  * Bind a table to the device.
1986  */
1987 static void event_callback(void *context)
1988 {
1989 	unsigned long flags;
1990 	LIST_HEAD(uevents);
1991 	struct mapped_device *md = (struct mapped_device *) context;
1992 
1993 	spin_lock_irqsave(&md->uevent_lock, flags);
1994 	list_splice_init(&md->uevent_list, &uevents);
1995 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1996 
1997 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1998 
1999 	atomic_inc(&md->event_nr);
2000 	wake_up(&md->eventq);
2001 	dm_issue_global_event();
2002 }
2003 
2004 /*
2005  * Returns old map, which caller must destroy.
2006  */
2007 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2008 			       struct queue_limits *limits)
2009 {
2010 	struct dm_table *old_map;
2011 	struct request_queue *q = md->queue;
2012 	bool request_based = dm_table_request_based(t);
2013 	sector_t size;
2014 	int ret;
2015 
2016 	lockdep_assert_held(&md->suspend_lock);
2017 
2018 	size = dm_table_get_size(t);
2019 
2020 	/*
2021 	 * Wipe any geometry if the size of the table changed.
2022 	 */
2023 	if (size != dm_get_size(md))
2024 		memset(&md->geometry, 0, sizeof(md->geometry));
2025 
2026 	set_capacity(md->disk, size);
2027 	bd_set_nr_sectors(md->bdev, size);
2028 
2029 	dm_table_event_callback(t, event_callback, md);
2030 
2031 	/*
2032 	 * The queue hasn't been stopped yet, if the old table type wasn't
2033 	 * for request-based during suspension.  So stop it to prevent
2034 	 * I/O mapping before resume.
2035 	 * This must be done before setting the queue restrictions,
2036 	 * because request-based dm may be run just after the setting.
2037 	 */
2038 	if (request_based)
2039 		dm_stop_queue(q);
2040 
2041 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2042 		/*
2043 		 * Leverage the fact that request-based DM targets and
2044 		 * NVMe bio based targets are immutable singletons
2045 		 * - used to optimize both __process_bio and dm_mq_queue_rq
2046 		 */
2047 		md->immutable_target = dm_table_get_immutable_target(t);
2048 	}
2049 
2050 	ret = __bind_mempools(md, t);
2051 	if (ret) {
2052 		old_map = ERR_PTR(ret);
2053 		goto out;
2054 	}
2055 
2056 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2057 	rcu_assign_pointer(md->map, (void *)t);
2058 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2059 
2060 	dm_table_set_restrictions(t, q, limits);
2061 	if (old_map)
2062 		dm_sync_table(md);
2063 
2064 out:
2065 	return old_map;
2066 }
2067 
2068 /*
2069  * Returns unbound table for the caller to free.
2070  */
2071 static struct dm_table *__unbind(struct mapped_device *md)
2072 {
2073 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2074 
2075 	if (!map)
2076 		return NULL;
2077 
2078 	dm_table_event_callback(map, NULL, NULL);
2079 	RCU_INIT_POINTER(md->map, NULL);
2080 	dm_sync_table(md);
2081 
2082 	return map;
2083 }
2084 
2085 /*
2086  * Constructor for a new device.
2087  */
2088 int dm_create(int minor, struct mapped_device **result)
2089 {
2090 	int r;
2091 	struct mapped_device *md;
2092 
2093 	md = alloc_dev(minor);
2094 	if (!md)
2095 		return -ENXIO;
2096 
2097 	r = dm_sysfs_init(md);
2098 	if (r) {
2099 		free_dev(md);
2100 		return r;
2101 	}
2102 
2103 	*result = md;
2104 	return 0;
2105 }
2106 
2107 /*
2108  * Functions to manage md->type.
2109  * All are required to hold md->type_lock.
2110  */
2111 void dm_lock_md_type(struct mapped_device *md)
2112 {
2113 	mutex_lock(&md->type_lock);
2114 }
2115 
2116 void dm_unlock_md_type(struct mapped_device *md)
2117 {
2118 	mutex_unlock(&md->type_lock);
2119 }
2120 
2121 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2122 {
2123 	BUG_ON(!mutex_is_locked(&md->type_lock));
2124 	md->type = type;
2125 }
2126 
2127 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2128 {
2129 	return md->type;
2130 }
2131 
2132 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2133 {
2134 	return md->immutable_target_type;
2135 }
2136 
2137 /*
2138  * The queue_limits are only valid as long as you have a reference
2139  * count on 'md'.
2140  */
2141 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2142 {
2143 	BUG_ON(!atomic_read(&md->holders));
2144 	return &md->queue->limits;
2145 }
2146 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2147 
2148 /*
2149  * Setup the DM device's queue based on md's type
2150  */
2151 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2152 {
2153 	int r;
2154 	struct queue_limits limits;
2155 	enum dm_queue_mode type = dm_get_md_type(md);
2156 
2157 	switch (type) {
2158 	case DM_TYPE_REQUEST_BASED:
2159 		r = dm_mq_init_request_queue(md, t);
2160 		if (r) {
2161 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2162 			return r;
2163 		}
2164 		break;
2165 	case DM_TYPE_BIO_BASED:
2166 	case DM_TYPE_DAX_BIO_BASED:
2167 	case DM_TYPE_NVME_BIO_BASED:
2168 		break;
2169 	case DM_TYPE_NONE:
2170 		WARN_ON_ONCE(true);
2171 		break;
2172 	}
2173 
2174 	r = dm_calculate_queue_limits(t, &limits);
2175 	if (r) {
2176 		DMERR("Cannot calculate initial queue limits");
2177 		return r;
2178 	}
2179 	dm_table_set_restrictions(t, md->queue, &limits);
2180 	blk_register_queue(md->disk);
2181 
2182 	return 0;
2183 }
2184 
2185 struct mapped_device *dm_get_md(dev_t dev)
2186 {
2187 	struct mapped_device *md;
2188 	unsigned minor = MINOR(dev);
2189 
2190 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2191 		return NULL;
2192 
2193 	spin_lock(&_minor_lock);
2194 
2195 	md = idr_find(&_minor_idr, minor);
2196 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2197 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2198 		md = NULL;
2199 		goto out;
2200 	}
2201 	dm_get(md);
2202 out:
2203 	spin_unlock(&_minor_lock);
2204 
2205 	return md;
2206 }
2207 EXPORT_SYMBOL_GPL(dm_get_md);
2208 
2209 void *dm_get_mdptr(struct mapped_device *md)
2210 {
2211 	return md->interface_ptr;
2212 }
2213 
2214 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2215 {
2216 	md->interface_ptr = ptr;
2217 }
2218 
2219 void dm_get(struct mapped_device *md)
2220 {
2221 	atomic_inc(&md->holders);
2222 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2223 }
2224 
2225 int dm_hold(struct mapped_device *md)
2226 {
2227 	spin_lock(&_minor_lock);
2228 	if (test_bit(DMF_FREEING, &md->flags)) {
2229 		spin_unlock(&_minor_lock);
2230 		return -EBUSY;
2231 	}
2232 	dm_get(md);
2233 	spin_unlock(&_minor_lock);
2234 	return 0;
2235 }
2236 EXPORT_SYMBOL_GPL(dm_hold);
2237 
2238 const char *dm_device_name(struct mapped_device *md)
2239 {
2240 	return md->name;
2241 }
2242 EXPORT_SYMBOL_GPL(dm_device_name);
2243 
2244 static void __dm_destroy(struct mapped_device *md, bool wait)
2245 {
2246 	struct dm_table *map;
2247 	int srcu_idx;
2248 
2249 	might_sleep();
2250 
2251 	spin_lock(&_minor_lock);
2252 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2253 	set_bit(DMF_FREEING, &md->flags);
2254 	spin_unlock(&_minor_lock);
2255 
2256 	blk_set_queue_dying(md->queue);
2257 
2258 	/*
2259 	 * Take suspend_lock so that presuspend and postsuspend methods
2260 	 * do not race with internal suspend.
2261 	 */
2262 	mutex_lock(&md->suspend_lock);
2263 	map = dm_get_live_table(md, &srcu_idx);
2264 	if (!dm_suspended_md(md)) {
2265 		dm_table_presuspend_targets(map);
2266 		set_bit(DMF_SUSPENDED, &md->flags);
2267 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2268 		dm_table_postsuspend_targets(map);
2269 	}
2270 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2271 	dm_put_live_table(md, srcu_idx);
2272 	mutex_unlock(&md->suspend_lock);
2273 
2274 	/*
2275 	 * Rare, but there may be I/O requests still going to complete,
2276 	 * for example.  Wait for all references to disappear.
2277 	 * No one should increment the reference count of the mapped_device,
2278 	 * after the mapped_device state becomes DMF_FREEING.
2279 	 */
2280 	if (wait)
2281 		while (atomic_read(&md->holders))
2282 			msleep(1);
2283 	else if (atomic_read(&md->holders))
2284 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2285 		       dm_device_name(md), atomic_read(&md->holders));
2286 
2287 	dm_sysfs_exit(md);
2288 	dm_table_destroy(__unbind(md));
2289 	free_dev(md);
2290 }
2291 
2292 void dm_destroy(struct mapped_device *md)
2293 {
2294 	__dm_destroy(md, true);
2295 }
2296 
2297 void dm_destroy_immediate(struct mapped_device *md)
2298 {
2299 	__dm_destroy(md, false);
2300 }
2301 
2302 void dm_put(struct mapped_device *md)
2303 {
2304 	atomic_dec(&md->holders);
2305 }
2306 EXPORT_SYMBOL_GPL(dm_put);
2307 
2308 static bool md_in_flight_bios(struct mapped_device *md)
2309 {
2310 	int cpu;
2311 	struct hd_struct *part = &dm_disk(md)->part0;
2312 	long sum = 0;
2313 
2314 	for_each_possible_cpu(cpu) {
2315 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2316 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2317 	}
2318 
2319 	return sum != 0;
2320 }
2321 
2322 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2323 {
2324 	int r = 0;
2325 	DEFINE_WAIT(wait);
2326 
2327 	while (true) {
2328 		prepare_to_wait(&md->wait, &wait, task_state);
2329 
2330 		if (!md_in_flight_bios(md))
2331 			break;
2332 
2333 		if (signal_pending_state(task_state, current)) {
2334 			r = -EINTR;
2335 			break;
2336 		}
2337 
2338 		io_schedule();
2339 	}
2340 	finish_wait(&md->wait, &wait);
2341 
2342 	return r;
2343 }
2344 
2345 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2346 {
2347 	int r = 0;
2348 
2349 	if (!queue_is_mq(md->queue))
2350 		return dm_wait_for_bios_completion(md, task_state);
2351 
2352 	while (true) {
2353 		if (!blk_mq_queue_inflight(md->queue))
2354 			break;
2355 
2356 		if (signal_pending_state(task_state, current)) {
2357 			r = -EINTR;
2358 			break;
2359 		}
2360 
2361 		msleep(5);
2362 	}
2363 
2364 	return r;
2365 }
2366 
2367 /*
2368  * Process the deferred bios
2369  */
2370 static void dm_wq_work(struct work_struct *work)
2371 {
2372 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2373 	struct bio *bio;
2374 
2375 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2376 		spin_lock_irq(&md->deferred_lock);
2377 		bio = bio_list_pop(&md->deferred);
2378 		spin_unlock_irq(&md->deferred_lock);
2379 
2380 		if (!bio)
2381 			break;
2382 
2383 		submit_bio_noacct(bio);
2384 	}
2385 }
2386 
2387 static void dm_queue_flush(struct mapped_device *md)
2388 {
2389 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2390 	smp_mb__after_atomic();
2391 	queue_work(md->wq, &md->work);
2392 }
2393 
2394 /*
2395  * Swap in a new table, returning the old one for the caller to destroy.
2396  */
2397 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2398 {
2399 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2400 	struct queue_limits limits;
2401 	int r;
2402 
2403 	mutex_lock(&md->suspend_lock);
2404 
2405 	/* device must be suspended */
2406 	if (!dm_suspended_md(md))
2407 		goto out;
2408 
2409 	/*
2410 	 * If the new table has no data devices, retain the existing limits.
2411 	 * This helps multipath with queue_if_no_path if all paths disappear,
2412 	 * then new I/O is queued based on these limits, and then some paths
2413 	 * reappear.
2414 	 */
2415 	if (dm_table_has_no_data_devices(table)) {
2416 		live_map = dm_get_live_table_fast(md);
2417 		if (live_map)
2418 			limits = md->queue->limits;
2419 		dm_put_live_table_fast(md);
2420 	}
2421 
2422 	if (!live_map) {
2423 		r = dm_calculate_queue_limits(table, &limits);
2424 		if (r) {
2425 			map = ERR_PTR(r);
2426 			goto out;
2427 		}
2428 	}
2429 
2430 	map = __bind(md, table, &limits);
2431 	dm_issue_global_event();
2432 
2433 out:
2434 	mutex_unlock(&md->suspend_lock);
2435 	return map;
2436 }
2437 
2438 /*
2439  * Functions to lock and unlock any filesystem running on the
2440  * device.
2441  */
2442 static int lock_fs(struct mapped_device *md)
2443 {
2444 	int r;
2445 
2446 	WARN_ON(md->frozen_sb);
2447 
2448 	md->frozen_sb = freeze_bdev(md->bdev);
2449 	if (IS_ERR(md->frozen_sb)) {
2450 		r = PTR_ERR(md->frozen_sb);
2451 		md->frozen_sb = NULL;
2452 		return r;
2453 	}
2454 
2455 	set_bit(DMF_FROZEN, &md->flags);
2456 
2457 	return 0;
2458 }
2459 
2460 static void unlock_fs(struct mapped_device *md)
2461 {
2462 	if (!test_bit(DMF_FROZEN, &md->flags))
2463 		return;
2464 
2465 	thaw_bdev(md->bdev, md->frozen_sb);
2466 	md->frozen_sb = NULL;
2467 	clear_bit(DMF_FROZEN, &md->flags);
2468 }
2469 
2470 /*
2471  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2472  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2473  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2474  *
2475  * If __dm_suspend returns 0, the device is completely quiescent
2476  * now. There is no request-processing activity. All new requests
2477  * are being added to md->deferred list.
2478  */
2479 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2480 			unsigned suspend_flags, long task_state,
2481 			int dmf_suspended_flag)
2482 {
2483 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2484 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2485 	int r;
2486 
2487 	lockdep_assert_held(&md->suspend_lock);
2488 
2489 	/*
2490 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2491 	 * This flag is cleared before dm_suspend returns.
2492 	 */
2493 	if (noflush)
2494 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2495 	else
2496 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2497 
2498 	/*
2499 	 * This gets reverted if there's an error later and the targets
2500 	 * provide the .presuspend_undo hook.
2501 	 */
2502 	dm_table_presuspend_targets(map);
2503 
2504 	/*
2505 	 * Flush I/O to the device.
2506 	 * Any I/O submitted after lock_fs() may not be flushed.
2507 	 * noflush takes precedence over do_lockfs.
2508 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2509 	 */
2510 	if (!noflush && do_lockfs) {
2511 		r = lock_fs(md);
2512 		if (r) {
2513 			dm_table_presuspend_undo_targets(map);
2514 			return r;
2515 		}
2516 	}
2517 
2518 	/*
2519 	 * Here we must make sure that no processes are submitting requests
2520 	 * to target drivers i.e. no one may be executing
2521 	 * __split_and_process_bio from dm_submit_bio.
2522 	 *
2523 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2524 	 * we take the write lock. To prevent any process from reentering
2525 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2526 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2527 	 * flush_workqueue(md->wq).
2528 	 */
2529 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2530 	if (map)
2531 		synchronize_srcu(&md->io_barrier);
2532 
2533 	/*
2534 	 * Stop md->queue before flushing md->wq in case request-based
2535 	 * dm defers requests to md->wq from md->queue.
2536 	 */
2537 	if (dm_request_based(md))
2538 		dm_stop_queue(md->queue);
2539 
2540 	flush_workqueue(md->wq);
2541 
2542 	/*
2543 	 * At this point no more requests are entering target request routines.
2544 	 * We call dm_wait_for_completion to wait for all existing requests
2545 	 * to finish.
2546 	 */
2547 	r = dm_wait_for_completion(md, task_state);
2548 	if (!r)
2549 		set_bit(dmf_suspended_flag, &md->flags);
2550 
2551 	if (noflush)
2552 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2553 	if (map)
2554 		synchronize_srcu(&md->io_barrier);
2555 
2556 	/* were we interrupted ? */
2557 	if (r < 0) {
2558 		dm_queue_flush(md);
2559 
2560 		if (dm_request_based(md))
2561 			dm_start_queue(md->queue);
2562 
2563 		unlock_fs(md);
2564 		dm_table_presuspend_undo_targets(map);
2565 		/* pushback list is already flushed, so skip flush */
2566 	}
2567 
2568 	return r;
2569 }
2570 
2571 /*
2572  * We need to be able to change a mapping table under a mounted
2573  * filesystem.  For example we might want to move some data in
2574  * the background.  Before the table can be swapped with
2575  * dm_bind_table, dm_suspend must be called to flush any in
2576  * flight bios and ensure that any further io gets deferred.
2577  */
2578 /*
2579  * Suspend mechanism in request-based dm.
2580  *
2581  * 1. Flush all I/Os by lock_fs() if needed.
2582  * 2. Stop dispatching any I/O by stopping the request_queue.
2583  * 3. Wait for all in-flight I/Os to be completed or requeued.
2584  *
2585  * To abort suspend, start the request_queue.
2586  */
2587 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2588 {
2589 	struct dm_table *map = NULL;
2590 	int r = 0;
2591 
2592 retry:
2593 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2594 
2595 	if (dm_suspended_md(md)) {
2596 		r = -EINVAL;
2597 		goto out_unlock;
2598 	}
2599 
2600 	if (dm_suspended_internally_md(md)) {
2601 		/* already internally suspended, wait for internal resume */
2602 		mutex_unlock(&md->suspend_lock);
2603 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2604 		if (r)
2605 			return r;
2606 		goto retry;
2607 	}
2608 
2609 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2610 
2611 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2612 	if (r)
2613 		goto out_unlock;
2614 
2615 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2616 	dm_table_postsuspend_targets(map);
2617 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2618 
2619 out_unlock:
2620 	mutex_unlock(&md->suspend_lock);
2621 	return r;
2622 }
2623 
2624 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2625 {
2626 	if (map) {
2627 		int r = dm_table_resume_targets(map);
2628 		if (r)
2629 			return r;
2630 	}
2631 
2632 	dm_queue_flush(md);
2633 
2634 	/*
2635 	 * Flushing deferred I/Os must be done after targets are resumed
2636 	 * so that mapping of targets can work correctly.
2637 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2638 	 */
2639 	if (dm_request_based(md))
2640 		dm_start_queue(md->queue);
2641 
2642 	unlock_fs(md);
2643 
2644 	return 0;
2645 }
2646 
2647 int dm_resume(struct mapped_device *md)
2648 {
2649 	int r;
2650 	struct dm_table *map = NULL;
2651 
2652 retry:
2653 	r = -EINVAL;
2654 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2655 
2656 	if (!dm_suspended_md(md))
2657 		goto out;
2658 
2659 	if (dm_suspended_internally_md(md)) {
2660 		/* already internally suspended, wait for internal resume */
2661 		mutex_unlock(&md->suspend_lock);
2662 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2663 		if (r)
2664 			return r;
2665 		goto retry;
2666 	}
2667 
2668 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2669 	if (!map || !dm_table_get_size(map))
2670 		goto out;
2671 
2672 	r = __dm_resume(md, map);
2673 	if (r)
2674 		goto out;
2675 
2676 	clear_bit(DMF_SUSPENDED, &md->flags);
2677 out:
2678 	mutex_unlock(&md->suspend_lock);
2679 
2680 	return r;
2681 }
2682 
2683 /*
2684  * Internal suspend/resume works like userspace-driven suspend. It waits
2685  * until all bios finish and prevents issuing new bios to the target drivers.
2686  * It may be used only from the kernel.
2687  */
2688 
2689 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2690 {
2691 	struct dm_table *map = NULL;
2692 
2693 	lockdep_assert_held(&md->suspend_lock);
2694 
2695 	if (md->internal_suspend_count++)
2696 		return; /* nested internal suspend */
2697 
2698 	if (dm_suspended_md(md)) {
2699 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2700 		return; /* nest suspend */
2701 	}
2702 
2703 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2704 
2705 	/*
2706 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2707 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2708 	 * would require changing .presuspend to return an error -- avoid this
2709 	 * until there is a need for more elaborate variants of internal suspend.
2710 	 */
2711 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2712 			    DMF_SUSPENDED_INTERNALLY);
2713 
2714 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2715 	dm_table_postsuspend_targets(map);
2716 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2717 }
2718 
2719 static void __dm_internal_resume(struct mapped_device *md)
2720 {
2721 	BUG_ON(!md->internal_suspend_count);
2722 
2723 	if (--md->internal_suspend_count)
2724 		return; /* resume from nested internal suspend */
2725 
2726 	if (dm_suspended_md(md))
2727 		goto done; /* resume from nested suspend */
2728 
2729 	/*
2730 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2731 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2732 	 */
2733 	(void) __dm_resume(md, NULL);
2734 
2735 done:
2736 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2737 	smp_mb__after_atomic();
2738 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2739 }
2740 
2741 void dm_internal_suspend_noflush(struct mapped_device *md)
2742 {
2743 	mutex_lock(&md->suspend_lock);
2744 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2745 	mutex_unlock(&md->suspend_lock);
2746 }
2747 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2748 
2749 void dm_internal_resume(struct mapped_device *md)
2750 {
2751 	mutex_lock(&md->suspend_lock);
2752 	__dm_internal_resume(md);
2753 	mutex_unlock(&md->suspend_lock);
2754 }
2755 EXPORT_SYMBOL_GPL(dm_internal_resume);
2756 
2757 /*
2758  * Fast variants of internal suspend/resume hold md->suspend_lock,
2759  * which prevents interaction with userspace-driven suspend.
2760  */
2761 
2762 void dm_internal_suspend_fast(struct mapped_device *md)
2763 {
2764 	mutex_lock(&md->suspend_lock);
2765 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2766 		return;
2767 
2768 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2769 	synchronize_srcu(&md->io_barrier);
2770 	flush_workqueue(md->wq);
2771 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2772 }
2773 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2774 
2775 void dm_internal_resume_fast(struct mapped_device *md)
2776 {
2777 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2778 		goto done;
2779 
2780 	dm_queue_flush(md);
2781 
2782 done:
2783 	mutex_unlock(&md->suspend_lock);
2784 }
2785 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2786 
2787 /*-----------------------------------------------------------------
2788  * Event notification.
2789  *---------------------------------------------------------------*/
2790 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2791 		       unsigned cookie)
2792 {
2793 	int r;
2794 	unsigned noio_flag;
2795 	char udev_cookie[DM_COOKIE_LENGTH];
2796 	char *envp[] = { udev_cookie, NULL };
2797 
2798 	noio_flag = memalloc_noio_save();
2799 
2800 	if (!cookie)
2801 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2802 	else {
2803 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2804 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2805 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2806 				       action, envp);
2807 	}
2808 
2809 	memalloc_noio_restore(noio_flag);
2810 
2811 	return r;
2812 }
2813 
2814 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2815 {
2816 	return atomic_add_return(1, &md->uevent_seq);
2817 }
2818 
2819 uint32_t dm_get_event_nr(struct mapped_device *md)
2820 {
2821 	return atomic_read(&md->event_nr);
2822 }
2823 
2824 int dm_wait_event(struct mapped_device *md, int event_nr)
2825 {
2826 	return wait_event_interruptible(md->eventq,
2827 			(event_nr != atomic_read(&md->event_nr)));
2828 }
2829 
2830 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2831 {
2832 	unsigned long flags;
2833 
2834 	spin_lock_irqsave(&md->uevent_lock, flags);
2835 	list_add(elist, &md->uevent_list);
2836 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2837 }
2838 
2839 /*
2840  * The gendisk is only valid as long as you have a reference
2841  * count on 'md'.
2842  */
2843 struct gendisk *dm_disk(struct mapped_device *md)
2844 {
2845 	return md->disk;
2846 }
2847 EXPORT_SYMBOL_GPL(dm_disk);
2848 
2849 struct kobject *dm_kobject(struct mapped_device *md)
2850 {
2851 	return &md->kobj_holder.kobj;
2852 }
2853 
2854 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2855 {
2856 	struct mapped_device *md;
2857 
2858 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2859 
2860 	spin_lock(&_minor_lock);
2861 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2862 		md = NULL;
2863 		goto out;
2864 	}
2865 	dm_get(md);
2866 out:
2867 	spin_unlock(&_minor_lock);
2868 
2869 	return md;
2870 }
2871 
2872 int dm_suspended_md(struct mapped_device *md)
2873 {
2874 	return test_bit(DMF_SUSPENDED, &md->flags);
2875 }
2876 
2877 static int dm_post_suspending_md(struct mapped_device *md)
2878 {
2879 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2880 }
2881 
2882 int dm_suspended_internally_md(struct mapped_device *md)
2883 {
2884 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2885 }
2886 
2887 int dm_test_deferred_remove_flag(struct mapped_device *md)
2888 {
2889 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2890 }
2891 
2892 int dm_suspended(struct dm_target *ti)
2893 {
2894 	return dm_suspended_md(ti->table->md);
2895 }
2896 EXPORT_SYMBOL_GPL(dm_suspended);
2897 
2898 int dm_post_suspending(struct dm_target *ti)
2899 {
2900 	return dm_post_suspending_md(ti->table->md);
2901 }
2902 EXPORT_SYMBOL_GPL(dm_post_suspending);
2903 
2904 int dm_noflush_suspending(struct dm_target *ti)
2905 {
2906 	return __noflush_suspending(ti->table->md);
2907 }
2908 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2909 
2910 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2911 					    unsigned integrity, unsigned per_io_data_size,
2912 					    unsigned min_pool_size)
2913 {
2914 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2915 	unsigned int pool_size = 0;
2916 	unsigned int front_pad, io_front_pad;
2917 	int ret;
2918 
2919 	if (!pools)
2920 		return NULL;
2921 
2922 	switch (type) {
2923 	case DM_TYPE_BIO_BASED:
2924 	case DM_TYPE_DAX_BIO_BASED:
2925 	case DM_TYPE_NVME_BIO_BASED:
2926 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2927 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2928 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2929 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2930 		if (ret)
2931 			goto out;
2932 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2933 			goto out;
2934 		break;
2935 	case DM_TYPE_REQUEST_BASED:
2936 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2937 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2938 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2939 		break;
2940 	default:
2941 		BUG();
2942 	}
2943 
2944 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2945 	if (ret)
2946 		goto out;
2947 
2948 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2949 		goto out;
2950 
2951 	return pools;
2952 
2953 out:
2954 	dm_free_md_mempools(pools);
2955 
2956 	return NULL;
2957 }
2958 
2959 void dm_free_md_mempools(struct dm_md_mempools *pools)
2960 {
2961 	if (!pools)
2962 		return;
2963 
2964 	bioset_exit(&pools->bs);
2965 	bioset_exit(&pools->io_bs);
2966 
2967 	kfree(pools);
2968 }
2969 
2970 struct dm_pr {
2971 	u64	old_key;
2972 	u64	new_key;
2973 	u32	flags;
2974 	bool	fail_early;
2975 };
2976 
2977 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2978 		      void *data)
2979 {
2980 	struct mapped_device *md = bdev->bd_disk->private_data;
2981 	struct dm_table *table;
2982 	struct dm_target *ti;
2983 	int ret = -ENOTTY, srcu_idx;
2984 
2985 	table = dm_get_live_table(md, &srcu_idx);
2986 	if (!table || !dm_table_get_size(table))
2987 		goto out;
2988 
2989 	/* We only support devices that have a single target */
2990 	if (dm_table_get_num_targets(table) != 1)
2991 		goto out;
2992 	ti = dm_table_get_target(table, 0);
2993 
2994 	ret = -EINVAL;
2995 	if (!ti->type->iterate_devices)
2996 		goto out;
2997 
2998 	ret = ti->type->iterate_devices(ti, fn, data);
2999 out:
3000 	dm_put_live_table(md, srcu_idx);
3001 	return ret;
3002 }
3003 
3004 /*
3005  * For register / unregister we need to manually call out to every path.
3006  */
3007 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3008 			    sector_t start, sector_t len, void *data)
3009 {
3010 	struct dm_pr *pr = data;
3011 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3012 
3013 	if (!ops || !ops->pr_register)
3014 		return -EOPNOTSUPP;
3015 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3016 }
3017 
3018 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3019 			  u32 flags)
3020 {
3021 	struct dm_pr pr = {
3022 		.old_key	= old_key,
3023 		.new_key	= new_key,
3024 		.flags		= flags,
3025 		.fail_early	= true,
3026 	};
3027 	int ret;
3028 
3029 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3030 	if (ret && new_key) {
3031 		/* unregister all paths if we failed to register any path */
3032 		pr.old_key = new_key;
3033 		pr.new_key = 0;
3034 		pr.flags = 0;
3035 		pr.fail_early = false;
3036 		dm_call_pr(bdev, __dm_pr_register, &pr);
3037 	}
3038 
3039 	return ret;
3040 }
3041 
3042 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3043 			 u32 flags)
3044 {
3045 	struct mapped_device *md = bdev->bd_disk->private_data;
3046 	const struct pr_ops *ops;
3047 	int r, srcu_idx;
3048 
3049 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3050 	if (r < 0)
3051 		goto out;
3052 
3053 	ops = bdev->bd_disk->fops->pr_ops;
3054 	if (ops && ops->pr_reserve)
3055 		r = ops->pr_reserve(bdev, key, type, flags);
3056 	else
3057 		r = -EOPNOTSUPP;
3058 out:
3059 	dm_unprepare_ioctl(md, srcu_idx);
3060 	return r;
3061 }
3062 
3063 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3064 {
3065 	struct mapped_device *md = bdev->bd_disk->private_data;
3066 	const struct pr_ops *ops;
3067 	int r, srcu_idx;
3068 
3069 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3070 	if (r < 0)
3071 		goto out;
3072 
3073 	ops = bdev->bd_disk->fops->pr_ops;
3074 	if (ops && ops->pr_release)
3075 		r = ops->pr_release(bdev, key, type);
3076 	else
3077 		r = -EOPNOTSUPP;
3078 out:
3079 	dm_unprepare_ioctl(md, srcu_idx);
3080 	return r;
3081 }
3082 
3083 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3084 			 enum pr_type type, bool abort)
3085 {
3086 	struct mapped_device *md = bdev->bd_disk->private_data;
3087 	const struct pr_ops *ops;
3088 	int r, srcu_idx;
3089 
3090 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3091 	if (r < 0)
3092 		goto out;
3093 
3094 	ops = bdev->bd_disk->fops->pr_ops;
3095 	if (ops && ops->pr_preempt)
3096 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3097 	else
3098 		r = -EOPNOTSUPP;
3099 out:
3100 	dm_unprepare_ioctl(md, srcu_idx);
3101 	return r;
3102 }
3103 
3104 static int dm_pr_clear(struct block_device *bdev, u64 key)
3105 {
3106 	struct mapped_device *md = bdev->bd_disk->private_data;
3107 	const struct pr_ops *ops;
3108 	int r, srcu_idx;
3109 
3110 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3111 	if (r < 0)
3112 		goto out;
3113 
3114 	ops = bdev->bd_disk->fops->pr_ops;
3115 	if (ops && ops->pr_clear)
3116 		r = ops->pr_clear(bdev, key);
3117 	else
3118 		r = -EOPNOTSUPP;
3119 out:
3120 	dm_unprepare_ioctl(md, srcu_idx);
3121 	return r;
3122 }
3123 
3124 static const struct pr_ops dm_pr_ops = {
3125 	.pr_register	= dm_pr_register,
3126 	.pr_reserve	= dm_pr_reserve,
3127 	.pr_release	= dm_pr_release,
3128 	.pr_preempt	= dm_pr_preempt,
3129 	.pr_clear	= dm_pr_clear,
3130 };
3131 
3132 static const struct block_device_operations dm_blk_dops = {
3133 	.submit_bio = dm_submit_bio,
3134 	.open = dm_blk_open,
3135 	.release = dm_blk_close,
3136 	.ioctl = dm_blk_ioctl,
3137 	.getgeo = dm_blk_getgeo,
3138 	.report_zones = dm_blk_report_zones,
3139 	.pr_ops = &dm_pr_ops,
3140 	.owner = THIS_MODULE
3141 };
3142 
3143 static const struct dax_operations dm_dax_ops = {
3144 	.direct_access = dm_dax_direct_access,
3145 	.dax_supported = dm_dax_supported,
3146 	.copy_from_iter = dm_dax_copy_from_iter,
3147 	.copy_to_iter = dm_dax_copy_to_iter,
3148 	.zero_page_range = dm_dax_zero_page_range,
3149 };
3150 
3151 /*
3152  * module hooks
3153  */
3154 module_init(dm_init);
3155 module_exit(dm_exit);
3156 
3157 module_param(major, uint, 0);
3158 MODULE_PARM_DESC(major, "The major number of the device mapper");
3159 
3160 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3161 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3162 
3163 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3164 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3165 
3166 MODULE_DESCRIPTION(DM_NAME " driver");
3167 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3168 MODULE_LICENSE("GPL");
3169