xref: /openbmc/linux/drivers/md/dm.c (revision 0c16ed1ab758538b4a4df8368bc1a8b22453a9b4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13 
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/signal.h>
19 #include <linux/blkpg.h>
20 #include <linux/bio.h>
21 #include <linux/mempool.h>
22 #include <linux/dax.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/uio.h>
26 #include <linux/hdreg.h>
27 #include <linux/delay.h>
28 #include <linux/wait.h>
29 #include <linux/pr.h>
30 #include <linux/refcount.h>
31 #include <linux/part_stat.h>
32 #include <linux/blk-crypto.h>
33 #include <linux/blk-crypto-profile.h>
34 
35 #define DM_MSG_PREFIX "core"
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 /*
45  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46  * dm_io into one list, and reuse bio->bi_private as the list head. Before
47  * ending this fs bio, we will recover its ->bi_private.
48  */
49 #define REQ_DM_POLL_LIST	REQ_DRV
50 
51 static const char *_name = DM_NAME;
52 
53 static unsigned int major;
54 static unsigned int _major;
55 
56 static DEFINE_IDR(_minor_idr);
57 
58 static DEFINE_SPINLOCK(_minor_lock);
59 
60 static void do_deferred_remove(struct work_struct *w);
61 
62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63 
64 static struct workqueue_struct *deferred_remove_workqueue;
65 
66 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68 
69 void dm_issue_global_event(void)
70 {
71 	atomic_inc(&dm_global_event_nr);
72 	wake_up(&dm_global_eventq);
73 }
74 
75 DEFINE_STATIC_KEY_FALSE(stats_enabled);
76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78 
79 /*
80  * One of these is allocated (on-stack) per original bio.
81  */
82 struct clone_info {
83 	struct dm_table *map;
84 	struct bio *bio;
85 	struct dm_io *io;
86 	sector_t sector;
87 	unsigned int sector_count;
88 	bool is_abnormal_io:1;
89 	bool submit_as_polled:1;
90 };
91 
92 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93 {
94 	return container_of(clone, struct dm_target_io, clone);
95 }
96 
97 void *dm_per_bio_data(struct bio *bio, size_t data_size)
98 {
99 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102 }
103 EXPORT_SYMBOL_GPL(dm_per_bio_data);
104 
105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106 {
107 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108 
109 	if (io->magic == DM_IO_MAGIC)
110 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111 	BUG_ON(io->magic != DM_TIO_MAGIC);
112 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113 }
114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115 
116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117 {
118 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119 }
120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121 
122 #define MINOR_ALLOCED ((void *)-1)
123 
124 #define DM_NUMA_NODE NUMA_NO_NODE
125 static int dm_numa_node = DM_NUMA_NODE;
126 
127 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
128 static int swap_bios = DEFAULT_SWAP_BIOS;
129 static int get_swap_bios(void)
130 {
131 	int latch = READ_ONCE(swap_bios);
132 
133 	if (unlikely(latch <= 0))
134 		latch = DEFAULT_SWAP_BIOS;
135 	return latch;
136 }
137 
138 struct table_device {
139 	struct list_head list;
140 	refcount_t count;
141 	struct dm_dev dm_dev;
142 };
143 
144 /*
145  * Bio-based DM's mempools' reserved IOs set by the user.
146  */
147 #define RESERVED_BIO_BASED_IOS		16
148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149 
150 static int __dm_get_module_param_int(int *module_param, int min, int max)
151 {
152 	int param = READ_ONCE(*module_param);
153 	int modified_param = 0;
154 	bool modified = true;
155 
156 	if (param < min)
157 		modified_param = min;
158 	else if (param > max)
159 		modified_param = max;
160 	else
161 		modified = false;
162 
163 	if (modified) {
164 		(void)cmpxchg(module_param, param, modified_param);
165 		param = modified_param;
166 	}
167 
168 	return param;
169 }
170 
171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172 {
173 	unsigned int param = READ_ONCE(*module_param);
174 	unsigned int modified_param = 0;
175 
176 	if (!param)
177 		modified_param = def;
178 	else if (param > max)
179 		modified_param = max;
180 
181 	if (modified_param) {
182 		(void)cmpxchg(module_param, param, modified_param);
183 		param = modified_param;
184 	}
185 
186 	return param;
187 }
188 
189 unsigned int dm_get_reserved_bio_based_ios(void)
190 {
191 	return __dm_get_module_param(&reserved_bio_based_ios,
192 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193 }
194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195 
196 static unsigned int dm_get_numa_node(void)
197 {
198 	return __dm_get_module_param_int(&dm_numa_node,
199 					 DM_NUMA_NODE, num_online_nodes() - 1);
200 }
201 
202 static int __init local_init(void)
203 {
204 	int r;
205 
206 	r = dm_uevent_init();
207 	if (r)
208 		return r;
209 
210 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
211 	if (!deferred_remove_workqueue) {
212 		r = -ENOMEM;
213 		goto out_uevent_exit;
214 	}
215 
216 	_major = major;
217 	r = register_blkdev(_major, _name);
218 	if (r < 0)
219 		goto out_free_workqueue;
220 
221 	if (!_major)
222 		_major = r;
223 
224 	return 0;
225 
226 out_free_workqueue:
227 	destroy_workqueue(deferred_remove_workqueue);
228 out_uevent_exit:
229 	dm_uevent_exit();
230 
231 	return r;
232 }
233 
234 static void local_exit(void)
235 {
236 	destroy_workqueue(deferred_remove_workqueue);
237 
238 	unregister_blkdev(_major, _name);
239 	dm_uevent_exit();
240 
241 	_major = 0;
242 
243 	DMINFO("cleaned up");
244 }
245 
246 static int (*_inits[])(void) __initdata = {
247 	local_init,
248 	dm_target_init,
249 	dm_linear_init,
250 	dm_stripe_init,
251 	dm_io_init,
252 	dm_kcopyd_init,
253 	dm_interface_init,
254 	dm_statistics_init,
255 };
256 
257 static void (*_exits[])(void) = {
258 	local_exit,
259 	dm_target_exit,
260 	dm_linear_exit,
261 	dm_stripe_exit,
262 	dm_io_exit,
263 	dm_kcopyd_exit,
264 	dm_interface_exit,
265 	dm_statistics_exit,
266 };
267 
268 static int __init dm_init(void)
269 {
270 	const int count = ARRAY_SIZE(_inits);
271 	int r, i;
272 
273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
276 #endif
277 
278 	for (i = 0; i < count; i++) {
279 		r = _inits[i]();
280 		if (r)
281 			goto bad;
282 	}
283 
284 	return 0;
285 bad:
286 	while (i--)
287 		_exits[i]();
288 
289 	return r;
290 }
291 
292 static void __exit dm_exit(void)
293 {
294 	int i = ARRAY_SIZE(_exits);
295 
296 	while (i--)
297 		_exits[i]();
298 
299 	/*
300 	 * Should be empty by this point.
301 	 */
302 	idr_destroy(&_minor_idr);
303 }
304 
305 /*
306  * Block device functions
307  */
308 int dm_deleting_md(struct mapped_device *md)
309 {
310 	return test_bit(DMF_DELETING, &md->flags);
311 }
312 
313 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
314 {
315 	struct mapped_device *md;
316 
317 	spin_lock(&_minor_lock);
318 
319 	md = bdev->bd_disk->private_data;
320 	if (!md)
321 		goto out;
322 
323 	if (test_bit(DMF_FREEING, &md->flags) ||
324 	    dm_deleting_md(md)) {
325 		md = NULL;
326 		goto out;
327 	}
328 
329 	dm_get(md);
330 	atomic_inc(&md->open_count);
331 out:
332 	spin_unlock(&_minor_lock);
333 
334 	return md ? 0 : -ENXIO;
335 }
336 
337 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
338 {
339 	struct mapped_device *md;
340 
341 	spin_lock(&_minor_lock);
342 
343 	md = disk->private_data;
344 	if (WARN_ON(!md))
345 		goto out;
346 
347 	if (atomic_dec_and_test(&md->open_count) &&
348 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
350 
351 	dm_put(md);
352 out:
353 	spin_unlock(&_minor_lock);
354 }
355 
356 int dm_open_count(struct mapped_device *md)
357 {
358 	return atomic_read(&md->open_count);
359 }
360 
361 /*
362  * Guarantees nothing is using the device before it's deleted.
363  */
364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365 {
366 	int r = 0;
367 
368 	spin_lock(&_minor_lock);
369 
370 	if (dm_open_count(md)) {
371 		r = -EBUSY;
372 		if (mark_deferred)
373 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375 		r = -EEXIST;
376 	else
377 		set_bit(DMF_DELETING, &md->flags);
378 
379 	spin_unlock(&_minor_lock);
380 
381 	return r;
382 }
383 
384 int dm_cancel_deferred_remove(struct mapped_device *md)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (test_bit(DMF_DELETING, &md->flags))
391 		r = -EBUSY;
392 	else
393 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 static void do_deferred_remove(struct work_struct *w)
401 {
402 	dm_deferred_remove();
403 }
404 
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406 {
407 	struct mapped_device *md = bdev->bd_disk->private_data;
408 
409 	return dm_get_geometry(md, geo);
410 }
411 
412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413 			    struct block_device **bdev)
414 {
415 	struct dm_target *ti;
416 	struct dm_table *map;
417 	int r;
418 
419 retry:
420 	r = -ENOTTY;
421 	map = dm_get_live_table(md, srcu_idx);
422 	if (!map || !dm_table_get_size(map))
423 		return r;
424 
425 	/* We only support devices that have a single target */
426 	if (map->num_targets != 1)
427 		return r;
428 
429 	ti = dm_table_get_target(map, 0);
430 	if (!ti->type->prepare_ioctl)
431 		return r;
432 
433 	if (dm_suspended_md(md))
434 		return -EAGAIN;
435 
436 	r = ti->type->prepare_ioctl(ti, bdev);
437 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438 		dm_put_live_table(md, *srcu_idx);
439 		fsleep(10000);
440 		goto retry;
441 	}
442 
443 	return r;
444 }
445 
446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447 {
448 	dm_put_live_table(md, srcu_idx);
449 }
450 
451 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
452 			unsigned int cmd, unsigned long arg)
453 {
454 	struct mapped_device *md = bdev->bd_disk->private_data;
455 	int r, srcu_idx;
456 
457 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458 	if (r < 0)
459 		goto out;
460 
461 	if (r > 0) {
462 		/*
463 		 * Target determined this ioctl is being issued against a
464 		 * subset of the parent bdev; require extra privileges.
465 		 */
466 		if (!capable(CAP_SYS_RAWIO)) {
467 			DMDEBUG_LIMIT(
468 	"%s: sending ioctl %x to DM device without required privilege.",
469 				current->comm, cmd);
470 			r = -ENOIOCTLCMD;
471 			goto out;
472 		}
473 	}
474 
475 	if (!bdev->bd_disk->fops->ioctl)
476 		r = -ENOTTY;
477 	else
478 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479 out:
480 	dm_unprepare_ioctl(md, srcu_idx);
481 	return r;
482 }
483 
484 u64 dm_start_time_ns_from_clone(struct bio *bio)
485 {
486 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487 }
488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489 
490 static bool bio_is_flush_with_data(struct bio *bio)
491 {
492 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493 }
494 
495 static void dm_io_acct(struct dm_io *io, bool end)
496 {
497 	struct dm_stats_aux *stats_aux = &io->stats_aux;
498 	unsigned long start_time = io->start_time;
499 	struct mapped_device *md = io->md;
500 	struct bio *bio = io->orig_bio;
501 	unsigned int sectors;
502 
503 	/*
504 	 * If REQ_PREFLUSH set, don't account payload, it will be
505 	 * submitted (and accounted) after this flush completes.
506 	 */
507 	if (bio_is_flush_with_data(bio))
508 		sectors = 0;
509 	else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
510 		sectors = bio_sectors(bio);
511 	else
512 		sectors = io->sectors;
513 
514 	if (!end)
515 		bdev_start_io_acct(bio->bi_bdev, bio_op(bio), start_time);
516 	else
517 		bdev_end_io_acct(bio->bi_bdev, bio_op(bio), sectors,
518 				 start_time);
519 
520 	if (static_branch_unlikely(&stats_enabled) &&
521 	    unlikely(dm_stats_used(&md->stats))) {
522 		sector_t sector;
523 
524 		if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
525 			sector = bio->bi_iter.bi_sector;
526 		else
527 			sector = bio_end_sector(bio) - io->sector_offset;
528 
529 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
530 				    sector, sectors,
531 				    end, start_time, stats_aux);
532 	}
533 }
534 
535 static void __dm_start_io_acct(struct dm_io *io)
536 {
537 	dm_io_acct(io, false);
538 }
539 
540 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
541 {
542 	/*
543 	 * Ensure IO accounting is only ever started once.
544 	 */
545 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
546 		return;
547 
548 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
549 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
550 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
551 	} else {
552 		unsigned long flags;
553 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
554 		spin_lock_irqsave(&io->lock, flags);
555 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
556 			spin_unlock_irqrestore(&io->lock, flags);
557 			return;
558 		}
559 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
560 		spin_unlock_irqrestore(&io->lock, flags);
561 	}
562 
563 	__dm_start_io_acct(io);
564 }
565 
566 static void dm_end_io_acct(struct dm_io *io)
567 {
568 	dm_io_acct(io, true);
569 }
570 
571 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
572 {
573 	struct dm_io *io;
574 	struct dm_target_io *tio;
575 	struct bio *clone;
576 
577 	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
578 	tio = clone_to_tio(clone);
579 	tio->flags = 0;
580 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
581 	tio->io = NULL;
582 
583 	io = container_of(tio, struct dm_io, tio);
584 	io->magic = DM_IO_MAGIC;
585 	io->status = BLK_STS_OK;
586 
587 	/* one ref is for submission, the other is for completion */
588 	atomic_set(&io->io_count, 2);
589 	this_cpu_inc(*md->pending_io);
590 	io->orig_bio = bio;
591 	io->md = md;
592 	spin_lock_init(&io->lock);
593 	io->start_time = jiffies;
594 	io->flags = 0;
595 
596 	if (static_branch_unlikely(&stats_enabled))
597 		dm_stats_record_start(&md->stats, &io->stats_aux);
598 
599 	return io;
600 }
601 
602 static void free_io(struct dm_io *io)
603 {
604 	bio_put(&io->tio.clone);
605 }
606 
607 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
608 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
609 {
610 	struct mapped_device *md = ci->io->md;
611 	struct dm_target_io *tio;
612 	struct bio *clone;
613 
614 	if (!ci->io->tio.io) {
615 		/* the dm_target_io embedded in ci->io is available */
616 		tio = &ci->io->tio;
617 		/* alloc_io() already initialized embedded clone */
618 		clone = &tio->clone;
619 	} else {
620 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
621 					&md->mempools->bs);
622 		if (!clone)
623 			return NULL;
624 
625 		/* REQ_DM_POLL_LIST shouldn't be inherited */
626 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
627 
628 		tio = clone_to_tio(clone);
629 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
630 	}
631 
632 	tio->magic = DM_TIO_MAGIC;
633 	tio->io = ci->io;
634 	tio->ti = ti;
635 	tio->target_bio_nr = target_bio_nr;
636 	tio->len_ptr = len;
637 	tio->old_sector = 0;
638 
639 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
640 	clone->bi_bdev = md->disk->part0;
641 	if (unlikely(ti->needs_bio_set_dev))
642 		bio_set_dev(clone, md->disk->part0);
643 
644 	if (len) {
645 		clone->bi_iter.bi_size = to_bytes(*len);
646 		if (bio_integrity(clone))
647 			bio_integrity_trim(clone);
648 	}
649 
650 	return clone;
651 }
652 
653 static void free_tio(struct bio *clone)
654 {
655 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
656 		return;
657 	bio_put(clone);
658 }
659 
660 /*
661  * Add the bio to the list of deferred io.
662  */
663 static void queue_io(struct mapped_device *md, struct bio *bio)
664 {
665 	unsigned long flags;
666 
667 	spin_lock_irqsave(&md->deferred_lock, flags);
668 	bio_list_add(&md->deferred, bio);
669 	spin_unlock_irqrestore(&md->deferred_lock, flags);
670 	queue_work(md->wq, &md->work);
671 }
672 
673 /*
674  * Everyone (including functions in this file), should use this
675  * function to access the md->map field, and make sure they call
676  * dm_put_live_table() when finished.
677  */
678 struct dm_table *dm_get_live_table(struct mapped_device *md,
679 				   int *srcu_idx) __acquires(md->io_barrier)
680 {
681 	*srcu_idx = srcu_read_lock(&md->io_barrier);
682 
683 	return srcu_dereference(md->map, &md->io_barrier);
684 }
685 
686 void dm_put_live_table(struct mapped_device *md,
687 		       int srcu_idx) __releases(md->io_barrier)
688 {
689 	srcu_read_unlock(&md->io_barrier, srcu_idx);
690 }
691 
692 void dm_sync_table(struct mapped_device *md)
693 {
694 	synchronize_srcu(&md->io_barrier);
695 	synchronize_rcu_expedited();
696 }
697 
698 /*
699  * A fast alternative to dm_get_live_table/dm_put_live_table.
700  * The caller must not block between these two functions.
701  */
702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
703 {
704 	rcu_read_lock();
705 	return rcu_dereference(md->map);
706 }
707 
708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
709 {
710 	rcu_read_unlock();
711 }
712 
713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
714 					int *srcu_idx, blk_opf_t bio_opf)
715 {
716 	if (bio_opf & REQ_NOWAIT)
717 		return dm_get_live_table_fast(md);
718 	else
719 		return dm_get_live_table(md, srcu_idx);
720 }
721 
722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
723 					 blk_opf_t bio_opf)
724 {
725 	if (bio_opf & REQ_NOWAIT)
726 		dm_put_live_table_fast(md);
727 	else
728 		dm_put_live_table(md, srcu_idx);
729 }
730 
731 static char *_dm_claim_ptr = "I belong to device-mapper";
732 
733 /*
734  * Open a table device so we can use it as a map destination.
735  */
736 static struct table_device *open_table_device(struct mapped_device *md,
737 		dev_t dev, fmode_t mode)
738 {
739 	struct table_device *td;
740 	struct block_device *bdev;
741 	u64 part_off;
742 	int r;
743 
744 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
745 	if (!td)
746 		return ERR_PTR(-ENOMEM);
747 	refcount_set(&td->count, 1);
748 
749 	bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr);
750 	if (IS_ERR(bdev)) {
751 		r = PTR_ERR(bdev);
752 		goto out_free_td;
753 	}
754 
755 	/*
756 	 * We can be called before the dm disk is added.  In that case we can't
757 	 * register the holder relation here.  It will be done once add_disk was
758 	 * called.
759 	 */
760 	if (md->disk->slave_dir) {
761 		r = bd_link_disk_holder(bdev, md->disk);
762 		if (r)
763 			goto out_blkdev_put;
764 	}
765 
766 	td->dm_dev.mode = mode;
767 	td->dm_dev.bdev = bdev;
768 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
769 	format_dev_t(td->dm_dev.name, dev);
770 	list_add(&td->list, &md->table_devices);
771 	return td;
772 
773 out_blkdev_put:
774 	blkdev_put(bdev, mode | FMODE_EXCL);
775 out_free_td:
776 	kfree(td);
777 	return ERR_PTR(r);
778 }
779 
780 /*
781  * Close a table device that we've been using.
782  */
783 static void close_table_device(struct table_device *td, struct mapped_device *md)
784 {
785 	if (md->disk->slave_dir)
786 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
787 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
788 	put_dax(td->dm_dev.dax_dev);
789 	list_del(&td->list);
790 	kfree(td);
791 }
792 
793 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
794 					      fmode_t mode)
795 {
796 	struct table_device *td;
797 
798 	list_for_each_entry(td, l, list)
799 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
800 			return td;
801 
802 	return NULL;
803 }
804 
805 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
806 			struct dm_dev **result)
807 {
808 	struct table_device *td;
809 
810 	mutex_lock(&md->table_devices_lock);
811 	td = find_table_device(&md->table_devices, dev, mode);
812 	if (!td) {
813 		td = open_table_device(md, dev, mode);
814 		if (IS_ERR(td)) {
815 			mutex_unlock(&md->table_devices_lock);
816 			return PTR_ERR(td);
817 		}
818 	} else {
819 		refcount_inc(&td->count);
820 	}
821 	mutex_unlock(&md->table_devices_lock);
822 
823 	*result = &td->dm_dev;
824 	return 0;
825 }
826 
827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828 {
829 	struct table_device *td = container_of(d, struct table_device, dm_dev);
830 
831 	mutex_lock(&md->table_devices_lock);
832 	if (refcount_dec_and_test(&td->count))
833 		close_table_device(td, md);
834 	mutex_unlock(&md->table_devices_lock);
835 }
836 
837 /*
838  * Get the geometry associated with a dm device
839  */
840 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
841 {
842 	*geo = md->geometry;
843 
844 	return 0;
845 }
846 
847 /*
848  * Set the geometry of a device.
849  */
850 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
851 {
852 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
853 
854 	if (geo->start > sz) {
855 		DMERR("Start sector is beyond the geometry limits.");
856 		return -EINVAL;
857 	}
858 
859 	md->geometry = *geo;
860 
861 	return 0;
862 }
863 
864 static int __noflush_suspending(struct mapped_device *md)
865 {
866 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
867 }
868 
869 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
870 {
871 	struct mapped_device *md = io->md;
872 
873 	if (first_stage) {
874 		struct dm_io *next = md->requeue_list;
875 
876 		md->requeue_list = io;
877 		io->next = next;
878 	} else {
879 		bio_list_add_head(&md->deferred, io->orig_bio);
880 	}
881 }
882 
883 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
884 {
885 	if (first_stage)
886 		queue_work(md->wq, &md->requeue_work);
887 	else
888 		queue_work(md->wq, &md->work);
889 }
890 
891 /*
892  * Return true if the dm_io's original bio is requeued.
893  * io->status is updated with error if requeue disallowed.
894  */
895 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
896 {
897 	struct bio *bio = io->orig_bio;
898 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
899 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
900 				     (bio->bi_opf & REQ_POLLED));
901 	struct mapped_device *md = io->md;
902 	bool requeued = false;
903 
904 	if (handle_requeue || handle_polled_eagain) {
905 		unsigned long flags;
906 
907 		if (bio->bi_opf & REQ_POLLED) {
908 			/*
909 			 * Upper layer won't help us poll split bio
910 			 * (io->orig_bio may only reflect a subset of the
911 			 * pre-split original) so clear REQ_POLLED.
912 			 */
913 			bio_clear_polled(bio);
914 		}
915 
916 		/*
917 		 * Target requested pushing back the I/O or
918 		 * polled IO hit BLK_STS_AGAIN.
919 		 */
920 		spin_lock_irqsave(&md->deferred_lock, flags);
921 		if ((__noflush_suspending(md) &&
922 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
923 		    handle_polled_eagain || first_stage) {
924 			dm_requeue_add_io(io, first_stage);
925 			requeued = true;
926 		} else {
927 			/*
928 			 * noflush suspend was interrupted or this is
929 			 * a write to a zoned target.
930 			 */
931 			io->status = BLK_STS_IOERR;
932 		}
933 		spin_unlock_irqrestore(&md->deferred_lock, flags);
934 	}
935 
936 	if (requeued)
937 		dm_kick_requeue(md, first_stage);
938 
939 	return requeued;
940 }
941 
942 static void __dm_io_complete(struct dm_io *io, bool first_stage)
943 {
944 	struct bio *bio = io->orig_bio;
945 	struct mapped_device *md = io->md;
946 	blk_status_t io_error;
947 	bool requeued;
948 
949 	requeued = dm_handle_requeue(io, first_stage);
950 	if (requeued && first_stage)
951 		return;
952 
953 	io_error = io->status;
954 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
955 		dm_end_io_acct(io);
956 	else if (!io_error) {
957 		/*
958 		 * Must handle target that DM_MAPIO_SUBMITTED only to
959 		 * then bio_endio() rather than dm_submit_bio_remap()
960 		 */
961 		__dm_start_io_acct(io);
962 		dm_end_io_acct(io);
963 	}
964 	free_io(io);
965 	smp_wmb();
966 	this_cpu_dec(*md->pending_io);
967 
968 	/* nudge anyone waiting on suspend queue */
969 	if (unlikely(wq_has_sleeper(&md->wait)))
970 		wake_up(&md->wait);
971 
972 	/* Return early if the original bio was requeued */
973 	if (requeued)
974 		return;
975 
976 	if (bio_is_flush_with_data(bio)) {
977 		/*
978 		 * Preflush done for flush with data, reissue
979 		 * without REQ_PREFLUSH.
980 		 */
981 		bio->bi_opf &= ~REQ_PREFLUSH;
982 		queue_io(md, bio);
983 	} else {
984 		/* done with normal IO or empty flush */
985 		if (io_error)
986 			bio->bi_status = io_error;
987 		bio_endio(bio);
988 	}
989 }
990 
991 static void dm_wq_requeue_work(struct work_struct *work)
992 {
993 	struct mapped_device *md = container_of(work, struct mapped_device,
994 						requeue_work);
995 	unsigned long flags;
996 	struct dm_io *io;
997 
998 	/* reuse deferred lock to simplify dm_handle_requeue */
999 	spin_lock_irqsave(&md->deferred_lock, flags);
1000 	io = md->requeue_list;
1001 	md->requeue_list = NULL;
1002 	spin_unlock_irqrestore(&md->deferred_lock, flags);
1003 
1004 	while (io) {
1005 		struct dm_io *next = io->next;
1006 
1007 		dm_io_rewind(io, &md->disk->bio_split);
1008 
1009 		io->next = NULL;
1010 		__dm_io_complete(io, false);
1011 		io = next;
1012 		cond_resched();
1013 	}
1014 }
1015 
1016 /*
1017  * Two staged requeue:
1018  *
1019  * 1) io->orig_bio points to the real original bio, and the part mapped to
1020  *    this io must be requeued, instead of other parts of the original bio.
1021  *
1022  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1023  */
1024 static void dm_io_complete(struct dm_io *io)
1025 {
1026 	bool first_requeue;
1027 
1028 	/*
1029 	 * Only dm_io that has been split needs two stage requeue, otherwise
1030 	 * we may run into long bio clone chain during suspend and OOM could
1031 	 * be triggered.
1032 	 *
1033 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1034 	 * also aren't handled via the first stage requeue.
1035 	 */
1036 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1037 		first_requeue = true;
1038 	else
1039 		first_requeue = false;
1040 
1041 	__dm_io_complete(io, first_requeue);
1042 }
1043 
1044 /*
1045  * Decrements the number of outstanding ios that a bio has been
1046  * cloned into, completing the original io if necc.
1047  */
1048 static inline void __dm_io_dec_pending(struct dm_io *io)
1049 {
1050 	if (atomic_dec_and_test(&io->io_count))
1051 		dm_io_complete(io);
1052 }
1053 
1054 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1055 {
1056 	unsigned long flags;
1057 
1058 	/* Push-back supersedes any I/O errors */
1059 	spin_lock_irqsave(&io->lock, flags);
1060 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1061 	      __noflush_suspending(io->md))) {
1062 		io->status = error;
1063 	}
1064 	spin_unlock_irqrestore(&io->lock, flags);
1065 }
1066 
1067 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1068 {
1069 	if (unlikely(error))
1070 		dm_io_set_error(io, error);
1071 
1072 	__dm_io_dec_pending(io);
1073 }
1074 
1075 /*
1076  * The queue_limits are only valid as long as you have a reference
1077  * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1078  */
1079 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1080 {
1081 	return &md->queue->limits;
1082 }
1083 
1084 void disable_discard(struct mapped_device *md)
1085 {
1086 	struct queue_limits *limits = dm_get_queue_limits(md);
1087 
1088 	/* device doesn't really support DISCARD, disable it */
1089 	limits->max_discard_sectors = 0;
1090 }
1091 
1092 void disable_write_zeroes(struct mapped_device *md)
1093 {
1094 	struct queue_limits *limits = dm_get_queue_limits(md);
1095 
1096 	/* device doesn't really support WRITE ZEROES, disable it */
1097 	limits->max_write_zeroes_sectors = 0;
1098 }
1099 
1100 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1101 {
1102 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1103 }
1104 
1105 static void clone_endio(struct bio *bio)
1106 {
1107 	blk_status_t error = bio->bi_status;
1108 	struct dm_target_io *tio = clone_to_tio(bio);
1109 	struct dm_target *ti = tio->ti;
1110 	dm_endio_fn endio = ti->type->end_io;
1111 	struct dm_io *io = tio->io;
1112 	struct mapped_device *md = io->md;
1113 
1114 	if (unlikely(error == BLK_STS_TARGET)) {
1115 		if (bio_op(bio) == REQ_OP_DISCARD &&
1116 		    !bdev_max_discard_sectors(bio->bi_bdev))
1117 			disable_discard(md);
1118 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1119 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1120 			disable_write_zeroes(md);
1121 	}
1122 
1123 	if (static_branch_unlikely(&zoned_enabled) &&
1124 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1125 		dm_zone_endio(io, bio);
1126 
1127 	if (endio) {
1128 		int r = endio(ti, bio, &error);
1129 
1130 		switch (r) {
1131 		case DM_ENDIO_REQUEUE:
1132 			if (static_branch_unlikely(&zoned_enabled)) {
1133 				/*
1134 				 * Requeuing writes to a sequential zone of a zoned
1135 				 * target will break the sequential write pattern:
1136 				 * fail such IO.
1137 				 */
1138 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1139 					error = BLK_STS_IOERR;
1140 				else
1141 					error = BLK_STS_DM_REQUEUE;
1142 			} else
1143 				error = BLK_STS_DM_REQUEUE;
1144 			fallthrough;
1145 		case DM_ENDIO_DONE:
1146 			break;
1147 		case DM_ENDIO_INCOMPLETE:
1148 			/* The target will handle the io */
1149 			return;
1150 		default:
1151 			DMCRIT("unimplemented target endio return value: %d", r);
1152 			BUG();
1153 		}
1154 	}
1155 
1156 	if (static_branch_unlikely(&swap_bios_enabled) &&
1157 	    unlikely(swap_bios_limit(ti, bio)))
1158 		up(&md->swap_bios_semaphore);
1159 
1160 	free_tio(bio);
1161 	dm_io_dec_pending(io, error);
1162 }
1163 
1164 /*
1165  * Return maximum size of I/O possible at the supplied sector up to the current
1166  * target boundary.
1167  */
1168 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1169 						  sector_t target_offset)
1170 {
1171 	return ti->len - target_offset;
1172 }
1173 
1174 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1175 			     unsigned int max_granularity)
1176 {
1177 	sector_t target_offset = dm_target_offset(ti, sector);
1178 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1179 
1180 	/*
1181 	 * Does the target need to split IO even further?
1182 	 * - varied (per target) IO splitting is a tenet of DM; this
1183 	 *   explains why stacked chunk_sectors based splitting via
1184 	 *   bio_split_to_limits() isn't possible here.
1185 	 */
1186 	if (!max_granularity)
1187 		return len;
1188 	return min_t(sector_t, len,
1189 		min(queue_max_sectors(ti->table->md->queue),
1190 		    blk_chunk_sectors_left(target_offset, max_granularity)));
1191 }
1192 
1193 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1194 {
1195 	return __max_io_len(ti, sector, ti->max_io_len);
1196 }
1197 
1198 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1199 {
1200 	if (len > UINT_MAX) {
1201 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1202 		      (unsigned long long)len, UINT_MAX);
1203 		ti->error = "Maximum size of target IO is too large";
1204 		return -EINVAL;
1205 	}
1206 
1207 	ti->max_io_len = (uint32_t) len;
1208 
1209 	return 0;
1210 }
1211 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1212 
1213 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1214 						sector_t sector, int *srcu_idx)
1215 	__acquires(md->io_barrier)
1216 {
1217 	struct dm_table *map;
1218 	struct dm_target *ti;
1219 
1220 	map = dm_get_live_table(md, srcu_idx);
1221 	if (!map)
1222 		return NULL;
1223 
1224 	ti = dm_table_find_target(map, sector);
1225 	if (!ti)
1226 		return NULL;
1227 
1228 	return ti;
1229 }
1230 
1231 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1232 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1233 		pfn_t *pfn)
1234 {
1235 	struct mapped_device *md = dax_get_private(dax_dev);
1236 	sector_t sector = pgoff * PAGE_SECTORS;
1237 	struct dm_target *ti;
1238 	long len, ret = -EIO;
1239 	int srcu_idx;
1240 
1241 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1242 
1243 	if (!ti)
1244 		goto out;
1245 	if (!ti->type->direct_access)
1246 		goto out;
1247 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1248 	if (len < 1)
1249 		goto out;
1250 	nr_pages = min(len, nr_pages);
1251 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1252 
1253  out:
1254 	dm_put_live_table(md, srcu_idx);
1255 
1256 	return ret;
1257 }
1258 
1259 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1260 				  size_t nr_pages)
1261 {
1262 	struct mapped_device *md = dax_get_private(dax_dev);
1263 	sector_t sector = pgoff * PAGE_SECTORS;
1264 	struct dm_target *ti;
1265 	int ret = -EIO;
1266 	int srcu_idx;
1267 
1268 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1269 
1270 	if (!ti)
1271 		goto out;
1272 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1273 		/*
1274 		 * ->zero_page_range() is mandatory dax operation. If we are
1275 		 *  here, something is wrong.
1276 		 */
1277 		goto out;
1278 	}
1279 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1280  out:
1281 	dm_put_live_table(md, srcu_idx);
1282 
1283 	return ret;
1284 }
1285 
1286 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1287 		void *addr, size_t bytes, struct iov_iter *i)
1288 {
1289 	struct mapped_device *md = dax_get_private(dax_dev);
1290 	sector_t sector = pgoff * PAGE_SECTORS;
1291 	struct dm_target *ti;
1292 	int srcu_idx;
1293 	long ret = 0;
1294 
1295 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1296 	if (!ti || !ti->type->dax_recovery_write)
1297 		goto out;
1298 
1299 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1300 out:
1301 	dm_put_live_table(md, srcu_idx);
1302 	return ret;
1303 }
1304 
1305 /*
1306  * A target may call dm_accept_partial_bio only from the map routine.  It is
1307  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1308  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1309  * __send_duplicate_bios().
1310  *
1311  * dm_accept_partial_bio informs the dm that the target only wants to process
1312  * additional n_sectors sectors of the bio and the rest of the data should be
1313  * sent in a next bio.
1314  *
1315  * A diagram that explains the arithmetics:
1316  * +--------------------+---------------+-------+
1317  * |         1          |       2       |   3   |
1318  * +--------------------+---------------+-------+
1319  *
1320  * <-------------- *tio->len_ptr --------------->
1321  *                      <----- bio_sectors ----->
1322  *                      <-- n_sectors -->
1323  *
1324  * Region 1 was already iterated over with bio_advance or similar function.
1325  *	(it may be empty if the target doesn't use bio_advance)
1326  * Region 2 is the remaining bio size that the target wants to process.
1327  *	(it may be empty if region 1 is non-empty, although there is no reason
1328  *	 to make it empty)
1329  * The target requires that region 3 is to be sent in the next bio.
1330  *
1331  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1332  * the partially processed part (the sum of regions 1+2) must be the same for all
1333  * copies of the bio.
1334  */
1335 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1336 {
1337 	struct dm_target_io *tio = clone_to_tio(bio);
1338 	struct dm_io *io = tio->io;
1339 	unsigned int bio_sectors = bio_sectors(bio);
1340 
1341 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1342 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1343 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1344 	BUG_ON(bio_sectors > *tio->len_ptr);
1345 	BUG_ON(n_sectors > bio_sectors);
1346 
1347 	*tio->len_ptr -= bio_sectors - n_sectors;
1348 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1349 
1350 	/*
1351 	 * __split_and_process_bio() may have already saved mapped part
1352 	 * for accounting but it is being reduced so update accordingly.
1353 	 */
1354 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1355 	io->sectors = n_sectors;
1356 	io->sector_offset = bio_sectors(io->orig_bio);
1357 }
1358 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1359 
1360 /*
1361  * @clone: clone bio that DM core passed to target's .map function
1362  * @tgt_clone: clone of @clone bio that target needs submitted
1363  *
1364  * Targets should use this interface to submit bios they take
1365  * ownership of when returning DM_MAPIO_SUBMITTED.
1366  *
1367  * Target should also enable ti->accounts_remapped_io
1368  */
1369 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1370 {
1371 	struct dm_target_io *tio = clone_to_tio(clone);
1372 	struct dm_io *io = tio->io;
1373 
1374 	/* establish bio that will get submitted */
1375 	if (!tgt_clone)
1376 		tgt_clone = clone;
1377 
1378 	/*
1379 	 * Account io->origin_bio to DM dev on behalf of target
1380 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1381 	 */
1382 	dm_start_io_acct(io, clone);
1383 
1384 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1385 			      tio->old_sector);
1386 	submit_bio_noacct(tgt_clone);
1387 }
1388 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1389 
1390 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1391 {
1392 	mutex_lock(&md->swap_bios_lock);
1393 	while (latch < md->swap_bios) {
1394 		cond_resched();
1395 		down(&md->swap_bios_semaphore);
1396 		md->swap_bios--;
1397 	}
1398 	while (latch > md->swap_bios) {
1399 		cond_resched();
1400 		up(&md->swap_bios_semaphore);
1401 		md->swap_bios++;
1402 	}
1403 	mutex_unlock(&md->swap_bios_lock);
1404 }
1405 
1406 static void __map_bio(struct bio *clone)
1407 {
1408 	struct dm_target_io *tio = clone_to_tio(clone);
1409 	struct dm_target *ti = tio->ti;
1410 	struct dm_io *io = tio->io;
1411 	struct mapped_device *md = io->md;
1412 	int r;
1413 
1414 	clone->bi_end_io = clone_endio;
1415 
1416 	/*
1417 	 * Map the clone.
1418 	 */
1419 	tio->old_sector = clone->bi_iter.bi_sector;
1420 
1421 	if (static_branch_unlikely(&swap_bios_enabled) &&
1422 	    unlikely(swap_bios_limit(ti, clone))) {
1423 		int latch = get_swap_bios();
1424 
1425 		if (unlikely(latch != md->swap_bios))
1426 			__set_swap_bios_limit(md, latch);
1427 		down(&md->swap_bios_semaphore);
1428 	}
1429 
1430 	if (static_branch_unlikely(&zoned_enabled)) {
1431 		/*
1432 		 * Check if the IO needs a special mapping due to zone append
1433 		 * emulation on zoned target. In this case, dm_zone_map_bio()
1434 		 * calls the target map operation.
1435 		 */
1436 		if (unlikely(dm_emulate_zone_append(md)))
1437 			r = dm_zone_map_bio(tio);
1438 		else
1439 			r = ti->type->map(ti, clone);
1440 	} else
1441 		r = ti->type->map(ti, clone);
1442 
1443 	switch (r) {
1444 	case DM_MAPIO_SUBMITTED:
1445 		/* target has assumed ownership of this io */
1446 		if (!ti->accounts_remapped_io)
1447 			dm_start_io_acct(io, clone);
1448 		break;
1449 	case DM_MAPIO_REMAPPED:
1450 		dm_submit_bio_remap(clone, NULL);
1451 		break;
1452 	case DM_MAPIO_KILL:
1453 	case DM_MAPIO_REQUEUE:
1454 		if (static_branch_unlikely(&swap_bios_enabled) &&
1455 		    unlikely(swap_bios_limit(ti, clone)))
1456 			up(&md->swap_bios_semaphore);
1457 		free_tio(clone);
1458 		if (r == DM_MAPIO_KILL)
1459 			dm_io_dec_pending(io, BLK_STS_IOERR);
1460 		else
1461 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1462 		break;
1463 	default:
1464 		DMCRIT("unimplemented target map return value: %d", r);
1465 		BUG();
1466 	}
1467 }
1468 
1469 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1470 {
1471 	struct dm_io *io = ci->io;
1472 
1473 	if (ci->sector_count > len) {
1474 		/*
1475 		 * Split needed, save the mapped part for accounting.
1476 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1477 		 */
1478 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1479 		io->sectors = len;
1480 		io->sector_offset = bio_sectors(ci->bio);
1481 	}
1482 }
1483 
1484 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1485 				struct dm_target *ti, unsigned int num_bios,
1486 				unsigned *len)
1487 {
1488 	struct bio *bio;
1489 	int try;
1490 
1491 	for (try = 0; try < 2; try++) {
1492 		int bio_nr;
1493 
1494 		if (try)
1495 			mutex_lock(&ci->io->md->table_devices_lock);
1496 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1497 			bio = alloc_tio(ci, ti, bio_nr, len,
1498 					try ? GFP_NOIO : GFP_NOWAIT);
1499 			if (!bio)
1500 				break;
1501 
1502 			bio_list_add(blist, bio);
1503 		}
1504 		if (try)
1505 			mutex_unlock(&ci->io->md->table_devices_lock);
1506 		if (bio_nr == num_bios)
1507 			return;
1508 
1509 		while ((bio = bio_list_pop(blist)))
1510 			free_tio(bio);
1511 	}
1512 }
1513 
1514 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1515 				 unsigned int num_bios, unsigned int *len)
1516 {
1517 	struct bio_list blist = BIO_EMPTY_LIST;
1518 	struct bio *clone;
1519 	unsigned int ret = 0;
1520 
1521 	switch (num_bios) {
1522 	case 0:
1523 		break;
1524 	case 1:
1525 		if (len)
1526 			setup_split_accounting(ci, *len);
1527 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1528 		__map_bio(clone);
1529 		ret = 1;
1530 		break;
1531 	default:
1532 		if (len)
1533 			setup_split_accounting(ci, *len);
1534 		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1535 		alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1536 		while ((clone = bio_list_pop(&blist))) {
1537 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1538 			__map_bio(clone);
1539 			ret += 1;
1540 		}
1541 		break;
1542 	}
1543 
1544 	return ret;
1545 }
1546 
1547 static void __send_empty_flush(struct clone_info *ci)
1548 {
1549 	struct dm_table *t = ci->map;
1550 	struct bio flush_bio;
1551 
1552 	/*
1553 	 * Use an on-stack bio for this, it's safe since we don't
1554 	 * need to reference it after submit. It's just used as
1555 	 * the basis for the clone(s).
1556 	 */
1557 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1558 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1559 
1560 	ci->bio = &flush_bio;
1561 	ci->sector_count = 0;
1562 	ci->io->tio.clone.bi_iter.bi_size = 0;
1563 
1564 	for (unsigned int i = 0; i < t->num_targets; i++) {
1565 		unsigned int bios;
1566 		struct dm_target *ti = dm_table_get_target(t, i);
1567 
1568 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1569 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1570 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1571 	}
1572 
1573 	/*
1574 	 * alloc_io() takes one extra reference for submission, so the
1575 	 * reference won't reach 0 without the following subtraction
1576 	 */
1577 	atomic_sub(1, &ci->io->io_count);
1578 
1579 	bio_uninit(ci->bio);
1580 }
1581 
1582 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1583 					unsigned int num_bios,
1584 					unsigned int max_granularity)
1585 {
1586 	unsigned int len, bios;
1587 
1588 	len = min_t(sector_t, ci->sector_count,
1589 		    __max_io_len(ti, ci->sector, max_granularity));
1590 
1591 	atomic_add(num_bios, &ci->io->io_count);
1592 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1593 	/*
1594 	 * alloc_io() takes one extra reference for submission, so the
1595 	 * reference won't reach 0 without the following (+1) subtraction
1596 	 */
1597 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1598 
1599 	ci->sector += len;
1600 	ci->sector_count -= len;
1601 }
1602 
1603 static bool is_abnormal_io(struct bio *bio)
1604 {
1605 	enum req_op op = bio_op(bio);
1606 
1607 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1608 		switch (op) {
1609 		case REQ_OP_DISCARD:
1610 		case REQ_OP_SECURE_ERASE:
1611 		case REQ_OP_WRITE_ZEROES:
1612 			return true;
1613 		default:
1614 			break;
1615 		}
1616 	}
1617 
1618 	return false;
1619 }
1620 
1621 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1622 					  struct dm_target *ti)
1623 {
1624 	unsigned int num_bios = 0;
1625 	unsigned int max_granularity = 0;
1626 	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1627 
1628 	switch (bio_op(ci->bio)) {
1629 	case REQ_OP_DISCARD:
1630 		num_bios = ti->num_discard_bios;
1631 		if (ti->max_discard_granularity)
1632 			max_granularity = limits->max_discard_sectors;
1633 		break;
1634 	case REQ_OP_SECURE_ERASE:
1635 		num_bios = ti->num_secure_erase_bios;
1636 		if (ti->max_secure_erase_granularity)
1637 			max_granularity = limits->max_secure_erase_sectors;
1638 		break;
1639 	case REQ_OP_WRITE_ZEROES:
1640 		num_bios = ti->num_write_zeroes_bios;
1641 		if (ti->max_write_zeroes_granularity)
1642 			max_granularity = limits->max_write_zeroes_sectors;
1643 		break;
1644 	default:
1645 		break;
1646 	}
1647 
1648 	/*
1649 	 * Even though the device advertised support for this type of
1650 	 * request, that does not mean every target supports it, and
1651 	 * reconfiguration might also have changed that since the
1652 	 * check was performed.
1653 	 */
1654 	if (unlikely(!num_bios))
1655 		return BLK_STS_NOTSUPP;
1656 
1657 	__send_changing_extent_only(ci, ti, num_bios, max_granularity);
1658 	return BLK_STS_OK;
1659 }
1660 
1661 /*
1662  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1663  * associated with this bio, and this bio's bi_private needs to be
1664  * stored in dm_io->data before the reuse.
1665  *
1666  * bio->bi_private is owned by fs or upper layer, so block layer won't
1667  * touch it after splitting. Meantime it won't be changed by anyone after
1668  * bio is submitted. So this reuse is safe.
1669  */
1670 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1671 {
1672 	return (struct dm_io **)&bio->bi_private;
1673 }
1674 
1675 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1676 {
1677 	struct dm_io **head = dm_poll_list_head(bio);
1678 
1679 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1680 		bio->bi_opf |= REQ_DM_POLL_LIST;
1681 		/*
1682 		 * Save .bi_private into dm_io, so that we can reuse
1683 		 * .bi_private as dm_io list head for storing dm_io list
1684 		 */
1685 		io->data = bio->bi_private;
1686 
1687 		/* tell block layer to poll for completion */
1688 		bio->bi_cookie = ~BLK_QC_T_NONE;
1689 
1690 		io->next = NULL;
1691 	} else {
1692 		/*
1693 		 * bio recursed due to split, reuse original poll list,
1694 		 * and save bio->bi_private too.
1695 		 */
1696 		io->data = (*head)->data;
1697 		io->next = *head;
1698 	}
1699 
1700 	*head = io;
1701 }
1702 
1703 /*
1704  * Select the correct strategy for processing a non-flush bio.
1705  */
1706 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1707 {
1708 	struct bio *clone;
1709 	struct dm_target *ti;
1710 	unsigned int len;
1711 
1712 	ti = dm_table_find_target(ci->map, ci->sector);
1713 	if (unlikely(!ti))
1714 		return BLK_STS_IOERR;
1715 
1716 	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1717 	    unlikely(!dm_target_supports_nowait(ti->type)))
1718 		return BLK_STS_NOTSUPP;
1719 
1720 	if (unlikely(ci->is_abnormal_io))
1721 		return __process_abnormal_io(ci, ti);
1722 
1723 	/*
1724 	 * Only support bio polling for normal IO, and the target io is
1725 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1726 	 */
1727 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1728 
1729 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1730 	setup_split_accounting(ci, len);
1731 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1732 	__map_bio(clone);
1733 
1734 	ci->sector += len;
1735 	ci->sector_count -= len;
1736 
1737 	return BLK_STS_OK;
1738 }
1739 
1740 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1741 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1742 {
1743 	ci->map = map;
1744 	ci->io = alloc_io(md, bio);
1745 	ci->bio = bio;
1746 	ci->is_abnormal_io = is_abnormal;
1747 	ci->submit_as_polled = false;
1748 	ci->sector = bio->bi_iter.bi_sector;
1749 	ci->sector_count = bio_sectors(bio);
1750 
1751 	/* Shouldn't happen but sector_count was being set to 0 so... */
1752 	if (static_branch_unlikely(&zoned_enabled) &&
1753 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1754 		ci->sector_count = 0;
1755 }
1756 
1757 /*
1758  * Entry point to split a bio into clones and submit them to the targets.
1759  */
1760 static void dm_split_and_process_bio(struct mapped_device *md,
1761 				     struct dm_table *map, struct bio *bio)
1762 {
1763 	struct clone_info ci;
1764 	struct dm_io *io;
1765 	blk_status_t error = BLK_STS_OK;
1766 	bool is_abnormal;
1767 
1768 	is_abnormal = is_abnormal_io(bio);
1769 	if (unlikely(is_abnormal)) {
1770 		/*
1771 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1772 		 * otherwise associated queue_limits won't be imposed.
1773 		 */
1774 		bio = bio_split_to_limits(bio);
1775 		if (!bio)
1776 			return;
1777 	}
1778 
1779 	init_clone_info(&ci, md, map, bio, is_abnormal);
1780 	io = ci.io;
1781 
1782 	if (bio->bi_opf & REQ_PREFLUSH) {
1783 		__send_empty_flush(&ci);
1784 		/* dm_io_complete submits any data associated with flush */
1785 		goto out;
1786 	}
1787 
1788 	error = __split_and_process_bio(&ci);
1789 	if (error || !ci.sector_count)
1790 		goto out;
1791 	/*
1792 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1793 	 * *after* bios already submitted have been completely processed.
1794 	 */
1795 	bio_trim(bio, io->sectors, ci.sector_count);
1796 	trace_block_split(bio, bio->bi_iter.bi_sector);
1797 	bio_inc_remaining(bio);
1798 	submit_bio_noacct(bio);
1799 out:
1800 	/*
1801 	 * Drop the extra reference count for non-POLLED bio, and hold one
1802 	 * reference for POLLED bio, which will be released in dm_poll_bio
1803 	 *
1804 	 * Add every dm_io instance into the dm_io list head which is stored
1805 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1806 	 */
1807 	if (error || !ci.submit_as_polled) {
1808 		/*
1809 		 * In case of submission failure, the extra reference for
1810 		 * submitting io isn't consumed yet
1811 		 */
1812 		if (error)
1813 			atomic_dec(&io->io_count);
1814 		dm_io_dec_pending(io, error);
1815 	} else
1816 		dm_queue_poll_io(bio, io);
1817 }
1818 
1819 static void dm_submit_bio(struct bio *bio)
1820 {
1821 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1822 	int srcu_idx;
1823 	struct dm_table *map;
1824 	blk_opf_t bio_opf = bio->bi_opf;
1825 
1826 	map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1827 
1828 	/* If suspended, or map not yet available, queue this IO for later */
1829 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1830 	    unlikely(!map)) {
1831 		if (bio->bi_opf & REQ_NOWAIT)
1832 			bio_wouldblock_error(bio);
1833 		else if (bio->bi_opf & REQ_RAHEAD)
1834 			bio_io_error(bio);
1835 		else
1836 			queue_io(md, bio);
1837 		goto out;
1838 	}
1839 
1840 	dm_split_and_process_bio(md, map, bio);
1841 out:
1842 	dm_put_live_table_bio(md, srcu_idx, bio_opf);
1843 }
1844 
1845 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1846 			  unsigned int flags)
1847 {
1848 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1849 
1850 	/* don't poll if the mapped io is done */
1851 	if (atomic_read(&io->io_count) > 1)
1852 		bio_poll(&io->tio.clone, iob, flags);
1853 
1854 	/* bio_poll holds the last reference */
1855 	return atomic_read(&io->io_count) == 1;
1856 }
1857 
1858 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1859 		       unsigned int flags)
1860 {
1861 	struct dm_io **head = dm_poll_list_head(bio);
1862 	struct dm_io *list = *head;
1863 	struct dm_io *tmp = NULL;
1864 	struct dm_io *curr, *next;
1865 
1866 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1867 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1868 		return 0;
1869 
1870 	WARN_ON_ONCE(!list);
1871 
1872 	/*
1873 	 * Restore .bi_private before possibly completing dm_io.
1874 	 *
1875 	 * bio_poll() is only possible once @bio has been completely
1876 	 * submitted via submit_bio_noacct()'s depth-first submission.
1877 	 * So there is no dm_queue_poll_io() race associated with
1878 	 * clearing REQ_DM_POLL_LIST here.
1879 	 */
1880 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1881 	bio->bi_private = list->data;
1882 
1883 	for (curr = list, next = curr->next; curr; curr = next, next =
1884 			curr ? curr->next : NULL) {
1885 		if (dm_poll_dm_io(curr, iob, flags)) {
1886 			/*
1887 			 * clone_endio() has already occurred, so no
1888 			 * error handling is needed here.
1889 			 */
1890 			__dm_io_dec_pending(curr);
1891 		} else {
1892 			curr->next = tmp;
1893 			tmp = curr;
1894 		}
1895 	}
1896 
1897 	/* Not done? */
1898 	if (tmp) {
1899 		bio->bi_opf |= REQ_DM_POLL_LIST;
1900 		/* Reset bio->bi_private to dm_io list head */
1901 		*head = tmp;
1902 		return 0;
1903 	}
1904 	return 1;
1905 }
1906 
1907 /*
1908  *---------------------------------------------------------------
1909  * An IDR is used to keep track of allocated minor numbers.
1910  *---------------------------------------------------------------
1911  */
1912 static void free_minor(int minor)
1913 {
1914 	spin_lock(&_minor_lock);
1915 	idr_remove(&_minor_idr, minor);
1916 	spin_unlock(&_minor_lock);
1917 }
1918 
1919 /*
1920  * See if the device with a specific minor # is free.
1921  */
1922 static int specific_minor(int minor)
1923 {
1924 	int r;
1925 
1926 	if (minor >= (1 << MINORBITS))
1927 		return -EINVAL;
1928 
1929 	idr_preload(GFP_KERNEL);
1930 	spin_lock(&_minor_lock);
1931 
1932 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1933 
1934 	spin_unlock(&_minor_lock);
1935 	idr_preload_end();
1936 	if (r < 0)
1937 		return r == -ENOSPC ? -EBUSY : r;
1938 	return 0;
1939 }
1940 
1941 static int next_free_minor(int *minor)
1942 {
1943 	int r;
1944 
1945 	idr_preload(GFP_KERNEL);
1946 	spin_lock(&_minor_lock);
1947 
1948 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1949 
1950 	spin_unlock(&_minor_lock);
1951 	idr_preload_end();
1952 	if (r < 0)
1953 		return r;
1954 	*minor = r;
1955 	return 0;
1956 }
1957 
1958 static const struct block_device_operations dm_blk_dops;
1959 static const struct block_device_operations dm_rq_blk_dops;
1960 static const struct dax_operations dm_dax_ops;
1961 
1962 static void dm_wq_work(struct work_struct *work);
1963 
1964 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1965 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1966 {
1967 	dm_destroy_crypto_profile(q->crypto_profile);
1968 }
1969 
1970 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1971 
1972 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1973 {
1974 }
1975 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1976 
1977 static void cleanup_mapped_device(struct mapped_device *md)
1978 {
1979 	if (md->wq)
1980 		destroy_workqueue(md->wq);
1981 	dm_free_md_mempools(md->mempools);
1982 
1983 	if (md->dax_dev) {
1984 		dax_remove_host(md->disk);
1985 		kill_dax(md->dax_dev);
1986 		put_dax(md->dax_dev);
1987 		md->dax_dev = NULL;
1988 	}
1989 
1990 	dm_cleanup_zoned_dev(md);
1991 	if (md->disk) {
1992 		spin_lock(&_minor_lock);
1993 		md->disk->private_data = NULL;
1994 		spin_unlock(&_minor_lock);
1995 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1996 			struct table_device *td;
1997 
1998 			dm_sysfs_exit(md);
1999 			list_for_each_entry(td, &md->table_devices, list) {
2000 				bd_unlink_disk_holder(td->dm_dev.bdev,
2001 						      md->disk);
2002 			}
2003 
2004 			/*
2005 			 * Hold lock to make sure del_gendisk() won't concurrent
2006 			 * with open/close_table_device().
2007 			 */
2008 			mutex_lock(&md->table_devices_lock);
2009 			del_gendisk(md->disk);
2010 			mutex_unlock(&md->table_devices_lock);
2011 		}
2012 		dm_queue_destroy_crypto_profile(md->queue);
2013 		put_disk(md->disk);
2014 	}
2015 
2016 	if (md->pending_io) {
2017 		free_percpu(md->pending_io);
2018 		md->pending_io = NULL;
2019 	}
2020 
2021 	cleanup_srcu_struct(&md->io_barrier);
2022 
2023 	mutex_destroy(&md->suspend_lock);
2024 	mutex_destroy(&md->type_lock);
2025 	mutex_destroy(&md->table_devices_lock);
2026 	mutex_destroy(&md->swap_bios_lock);
2027 
2028 	dm_mq_cleanup_mapped_device(md);
2029 }
2030 
2031 /*
2032  * Allocate and initialise a blank device with a given minor.
2033  */
2034 static struct mapped_device *alloc_dev(int minor)
2035 {
2036 	int r, numa_node_id = dm_get_numa_node();
2037 	struct mapped_device *md;
2038 	void *old_md;
2039 
2040 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2041 	if (!md) {
2042 		DMERR("unable to allocate device, out of memory.");
2043 		return NULL;
2044 	}
2045 
2046 	if (!try_module_get(THIS_MODULE))
2047 		goto bad_module_get;
2048 
2049 	/* get a minor number for the dev */
2050 	if (minor == DM_ANY_MINOR)
2051 		r = next_free_minor(&minor);
2052 	else
2053 		r = specific_minor(minor);
2054 	if (r < 0)
2055 		goto bad_minor;
2056 
2057 	r = init_srcu_struct(&md->io_barrier);
2058 	if (r < 0)
2059 		goto bad_io_barrier;
2060 
2061 	md->numa_node_id = numa_node_id;
2062 	md->init_tio_pdu = false;
2063 	md->type = DM_TYPE_NONE;
2064 	mutex_init(&md->suspend_lock);
2065 	mutex_init(&md->type_lock);
2066 	mutex_init(&md->table_devices_lock);
2067 	spin_lock_init(&md->deferred_lock);
2068 	atomic_set(&md->holders, 1);
2069 	atomic_set(&md->open_count, 0);
2070 	atomic_set(&md->event_nr, 0);
2071 	atomic_set(&md->uevent_seq, 0);
2072 	INIT_LIST_HEAD(&md->uevent_list);
2073 	INIT_LIST_HEAD(&md->table_devices);
2074 	spin_lock_init(&md->uevent_lock);
2075 
2076 	/*
2077 	 * default to bio-based until DM table is loaded and md->type
2078 	 * established. If request-based table is loaded: blk-mq will
2079 	 * override accordingly.
2080 	 */
2081 	md->disk = blk_alloc_disk(md->numa_node_id);
2082 	if (!md->disk)
2083 		goto bad;
2084 	md->queue = md->disk->queue;
2085 
2086 	init_waitqueue_head(&md->wait);
2087 	INIT_WORK(&md->work, dm_wq_work);
2088 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2089 	init_waitqueue_head(&md->eventq);
2090 	init_completion(&md->kobj_holder.completion);
2091 
2092 	md->requeue_list = NULL;
2093 	md->swap_bios = get_swap_bios();
2094 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2095 	mutex_init(&md->swap_bios_lock);
2096 
2097 	md->disk->major = _major;
2098 	md->disk->first_minor = minor;
2099 	md->disk->minors = 1;
2100 	md->disk->flags |= GENHD_FL_NO_PART;
2101 	md->disk->fops = &dm_blk_dops;
2102 	md->disk->private_data = md;
2103 	sprintf(md->disk->disk_name, "dm-%d", minor);
2104 
2105 	if (IS_ENABLED(CONFIG_FS_DAX)) {
2106 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2107 		if (IS_ERR(md->dax_dev)) {
2108 			md->dax_dev = NULL;
2109 			goto bad;
2110 		}
2111 		set_dax_nocache(md->dax_dev);
2112 		set_dax_nomc(md->dax_dev);
2113 		if (dax_add_host(md->dax_dev, md->disk))
2114 			goto bad;
2115 	}
2116 
2117 	format_dev_t(md->name, MKDEV(_major, minor));
2118 
2119 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2120 	if (!md->wq)
2121 		goto bad;
2122 
2123 	md->pending_io = alloc_percpu(unsigned long);
2124 	if (!md->pending_io)
2125 		goto bad;
2126 
2127 	r = dm_stats_init(&md->stats);
2128 	if (r < 0)
2129 		goto bad;
2130 
2131 	/* Populate the mapping, nobody knows we exist yet */
2132 	spin_lock(&_minor_lock);
2133 	old_md = idr_replace(&_minor_idr, md, minor);
2134 	spin_unlock(&_minor_lock);
2135 
2136 	BUG_ON(old_md != MINOR_ALLOCED);
2137 
2138 	return md;
2139 
2140 bad:
2141 	cleanup_mapped_device(md);
2142 bad_io_barrier:
2143 	free_minor(minor);
2144 bad_minor:
2145 	module_put(THIS_MODULE);
2146 bad_module_get:
2147 	kvfree(md);
2148 	return NULL;
2149 }
2150 
2151 static void unlock_fs(struct mapped_device *md);
2152 
2153 static void free_dev(struct mapped_device *md)
2154 {
2155 	int minor = MINOR(disk_devt(md->disk));
2156 
2157 	unlock_fs(md);
2158 
2159 	cleanup_mapped_device(md);
2160 
2161 	WARN_ON_ONCE(!list_empty(&md->table_devices));
2162 	dm_stats_cleanup(&md->stats);
2163 	free_minor(minor);
2164 
2165 	module_put(THIS_MODULE);
2166 	kvfree(md);
2167 }
2168 
2169 /*
2170  * Bind a table to the device.
2171  */
2172 static void event_callback(void *context)
2173 {
2174 	unsigned long flags;
2175 	LIST_HEAD(uevents);
2176 	struct mapped_device *md = context;
2177 
2178 	spin_lock_irqsave(&md->uevent_lock, flags);
2179 	list_splice_init(&md->uevent_list, &uevents);
2180 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2181 
2182 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2183 
2184 	atomic_inc(&md->event_nr);
2185 	wake_up(&md->eventq);
2186 	dm_issue_global_event();
2187 }
2188 
2189 /*
2190  * Returns old map, which caller must destroy.
2191  */
2192 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2193 			       struct queue_limits *limits)
2194 {
2195 	struct dm_table *old_map;
2196 	sector_t size;
2197 	int ret;
2198 
2199 	lockdep_assert_held(&md->suspend_lock);
2200 
2201 	size = dm_table_get_size(t);
2202 
2203 	/*
2204 	 * Wipe any geometry if the size of the table changed.
2205 	 */
2206 	if (size != dm_get_size(md))
2207 		memset(&md->geometry, 0, sizeof(md->geometry));
2208 
2209 	set_capacity(md->disk, size);
2210 
2211 	dm_table_event_callback(t, event_callback, md);
2212 
2213 	if (dm_table_request_based(t)) {
2214 		/*
2215 		 * Leverage the fact that request-based DM targets are
2216 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2217 		 */
2218 		md->immutable_target = dm_table_get_immutable_target(t);
2219 
2220 		/*
2221 		 * There is no need to reload with request-based dm because the
2222 		 * size of front_pad doesn't change.
2223 		 *
2224 		 * Note for future: If you are to reload bioset, prep-ed
2225 		 * requests in the queue may refer to bio from the old bioset,
2226 		 * so you must walk through the queue to unprep.
2227 		 */
2228 		if (!md->mempools) {
2229 			md->mempools = t->mempools;
2230 			t->mempools = NULL;
2231 		}
2232 	} else {
2233 		/*
2234 		 * The md may already have mempools that need changing.
2235 		 * If so, reload bioset because front_pad may have changed
2236 		 * because a different table was loaded.
2237 		 */
2238 		dm_free_md_mempools(md->mempools);
2239 		md->mempools = t->mempools;
2240 		t->mempools = NULL;
2241 	}
2242 
2243 	ret = dm_table_set_restrictions(t, md->queue, limits);
2244 	if (ret) {
2245 		old_map = ERR_PTR(ret);
2246 		goto out;
2247 	}
2248 
2249 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2250 	rcu_assign_pointer(md->map, (void *)t);
2251 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2252 
2253 	if (old_map)
2254 		dm_sync_table(md);
2255 out:
2256 	return old_map;
2257 }
2258 
2259 /*
2260  * Returns unbound table for the caller to free.
2261  */
2262 static struct dm_table *__unbind(struct mapped_device *md)
2263 {
2264 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2265 
2266 	if (!map)
2267 		return NULL;
2268 
2269 	dm_table_event_callback(map, NULL, NULL);
2270 	RCU_INIT_POINTER(md->map, NULL);
2271 	dm_sync_table(md);
2272 
2273 	return map;
2274 }
2275 
2276 /*
2277  * Constructor for a new device.
2278  */
2279 int dm_create(int minor, struct mapped_device **result)
2280 {
2281 	struct mapped_device *md;
2282 
2283 	md = alloc_dev(minor);
2284 	if (!md)
2285 		return -ENXIO;
2286 
2287 	dm_ima_reset_data(md);
2288 
2289 	*result = md;
2290 	return 0;
2291 }
2292 
2293 /*
2294  * Functions to manage md->type.
2295  * All are required to hold md->type_lock.
2296  */
2297 void dm_lock_md_type(struct mapped_device *md)
2298 {
2299 	mutex_lock(&md->type_lock);
2300 }
2301 
2302 void dm_unlock_md_type(struct mapped_device *md)
2303 {
2304 	mutex_unlock(&md->type_lock);
2305 }
2306 
2307 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2308 {
2309 	BUG_ON(!mutex_is_locked(&md->type_lock));
2310 	md->type = type;
2311 }
2312 
2313 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2314 {
2315 	return md->type;
2316 }
2317 
2318 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2319 {
2320 	return md->immutable_target_type;
2321 }
2322 
2323 /*
2324  * Setup the DM device's queue based on md's type
2325  */
2326 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2327 {
2328 	enum dm_queue_mode type = dm_table_get_type(t);
2329 	struct queue_limits limits;
2330 	struct table_device *td;
2331 	int r;
2332 
2333 	switch (type) {
2334 	case DM_TYPE_REQUEST_BASED:
2335 		md->disk->fops = &dm_rq_blk_dops;
2336 		r = dm_mq_init_request_queue(md, t);
2337 		if (r) {
2338 			DMERR("Cannot initialize queue for request-based dm mapped device");
2339 			return r;
2340 		}
2341 		break;
2342 	case DM_TYPE_BIO_BASED:
2343 	case DM_TYPE_DAX_BIO_BASED:
2344 		break;
2345 	case DM_TYPE_NONE:
2346 		WARN_ON_ONCE(true);
2347 		break;
2348 	}
2349 
2350 	r = dm_calculate_queue_limits(t, &limits);
2351 	if (r) {
2352 		DMERR("Cannot calculate initial queue limits");
2353 		return r;
2354 	}
2355 	r = dm_table_set_restrictions(t, md->queue, &limits);
2356 	if (r)
2357 		return r;
2358 
2359 	/*
2360 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2361 	 * with open_table_device() and close_table_device().
2362 	 */
2363 	mutex_lock(&md->table_devices_lock);
2364 	r = add_disk(md->disk);
2365 	mutex_unlock(&md->table_devices_lock);
2366 	if (r)
2367 		return r;
2368 
2369 	/*
2370 	 * Register the holder relationship for devices added before the disk
2371 	 * was live.
2372 	 */
2373 	list_for_each_entry(td, &md->table_devices, list) {
2374 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2375 		if (r)
2376 			goto out_undo_holders;
2377 	}
2378 
2379 	r = dm_sysfs_init(md);
2380 	if (r)
2381 		goto out_undo_holders;
2382 
2383 	md->type = type;
2384 	return 0;
2385 
2386 out_undo_holders:
2387 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2388 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2389 	mutex_lock(&md->table_devices_lock);
2390 	del_gendisk(md->disk);
2391 	mutex_unlock(&md->table_devices_lock);
2392 	return r;
2393 }
2394 
2395 struct mapped_device *dm_get_md(dev_t dev)
2396 {
2397 	struct mapped_device *md;
2398 	unsigned int minor = MINOR(dev);
2399 
2400 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2401 		return NULL;
2402 
2403 	spin_lock(&_minor_lock);
2404 
2405 	md = idr_find(&_minor_idr, minor);
2406 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2407 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2408 		md = NULL;
2409 		goto out;
2410 	}
2411 	dm_get(md);
2412 out:
2413 	spin_unlock(&_minor_lock);
2414 
2415 	return md;
2416 }
2417 EXPORT_SYMBOL_GPL(dm_get_md);
2418 
2419 void *dm_get_mdptr(struct mapped_device *md)
2420 {
2421 	return md->interface_ptr;
2422 }
2423 
2424 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2425 {
2426 	md->interface_ptr = ptr;
2427 }
2428 
2429 void dm_get(struct mapped_device *md)
2430 {
2431 	atomic_inc(&md->holders);
2432 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2433 }
2434 
2435 int dm_hold(struct mapped_device *md)
2436 {
2437 	spin_lock(&_minor_lock);
2438 	if (test_bit(DMF_FREEING, &md->flags)) {
2439 		spin_unlock(&_minor_lock);
2440 		return -EBUSY;
2441 	}
2442 	dm_get(md);
2443 	spin_unlock(&_minor_lock);
2444 	return 0;
2445 }
2446 EXPORT_SYMBOL_GPL(dm_hold);
2447 
2448 const char *dm_device_name(struct mapped_device *md)
2449 {
2450 	return md->name;
2451 }
2452 EXPORT_SYMBOL_GPL(dm_device_name);
2453 
2454 static void __dm_destroy(struct mapped_device *md, bool wait)
2455 {
2456 	struct dm_table *map;
2457 	int srcu_idx;
2458 
2459 	might_sleep();
2460 
2461 	spin_lock(&_minor_lock);
2462 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2463 	set_bit(DMF_FREEING, &md->flags);
2464 	spin_unlock(&_minor_lock);
2465 
2466 	blk_mark_disk_dead(md->disk);
2467 
2468 	/*
2469 	 * Take suspend_lock so that presuspend and postsuspend methods
2470 	 * do not race with internal suspend.
2471 	 */
2472 	mutex_lock(&md->suspend_lock);
2473 	map = dm_get_live_table(md, &srcu_idx);
2474 	if (!dm_suspended_md(md)) {
2475 		dm_table_presuspend_targets(map);
2476 		set_bit(DMF_SUSPENDED, &md->flags);
2477 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2478 		dm_table_postsuspend_targets(map);
2479 	}
2480 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2481 	dm_put_live_table(md, srcu_idx);
2482 	mutex_unlock(&md->suspend_lock);
2483 
2484 	/*
2485 	 * Rare, but there may be I/O requests still going to complete,
2486 	 * for example.  Wait for all references to disappear.
2487 	 * No one should increment the reference count of the mapped_device,
2488 	 * after the mapped_device state becomes DMF_FREEING.
2489 	 */
2490 	if (wait)
2491 		while (atomic_read(&md->holders))
2492 			fsleep(1000);
2493 	else if (atomic_read(&md->holders))
2494 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2495 		       dm_device_name(md), atomic_read(&md->holders));
2496 
2497 	dm_table_destroy(__unbind(md));
2498 	free_dev(md);
2499 }
2500 
2501 void dm_destroy(struct mapped_device *md)
2502 {
2503 	__dm_destroy(md, true);
2504 }
2505 
2506 void dm_destroy_immediate(struct mapped_device *md)
2507 {
2508 	__dm_destroy(md, false);
2509 }
2510 
2511 void dm_put(struct mapped_device *md)
2512 {
2513 	atomic_dec(&md->holders);
2514 }
2515 EXPORT_SYMBOL_GPL(dm_put);
2516 
2517 static bool dm_in_flight_bios(struct mapped_device *md)
2518 {
2519 	int cpu;
2520 	unsigned long sum = 0;
2521 
2522 	for_each_possible_cpu(cpu)
2523 		sum += *per_cpu_ptr(md->pending_io, cpu);
2524 
2525 	return sum != 0;
2526 }
2527 
2528 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2529 {
2530 	int r = 0;
2531 	DEFINE_WAIT(wait);
2532 
2533 	while (true) {
2534 		prepare_to_wait(&md->wait, &wait, task_state);
2535 
2536 		if (!dm_in_flight_bios(md))
2537 			break;
2538 
2539 		if (signal_pending_state(task_state, current)) {
2540 			r = -EINTR;
2541 			break;
2542 		}
2543 
2544 		io_schedule();
2545 	}
2546 	finish_wait(&md->wait, &wait);
2547 
2548 	smp_rmb();
2549 
2550 	return r;
2551 }
2552 
2553 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2554 {
2555 	int r = 0;
2556 
2557 	if (!queue_is_mq(md->queue))
2558 		return dm_wait_for_bios_completion(md, task_state);
2559 
2560 	while (true) {
2561 		if (!blk_mq_queue_inflight(md->queue))
2562 			break;
2563 
2564 		if (signal_pending_state(task_state, current)) {
2565 			r = -EINTR;
2566 			break;
2567 		}
2568 
2569 		fsleep(5000);
2570 	}
2571 
2572 	return r;
2573 }
2574 
2575 /*
2576  * Process the deferred bios
2577  */
2578 static void dm_wq_work(struct work_struct *work)
2579 {
2580 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2581 	struct bio *bio;
2582 
2583 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2584 		spin_lock_irq(&md->deferred_lock);
2585 		bio = bio_list_pop(&md->deferred);
2586 		spin_unlock_irq(&md->deferred_lock);
2587 
2588 		if (!bio)
2589 			break;
2590 
2591 		submit_bio_noacct(bio);
2592 		cond_resched();
2593 	}
2594 }
2595 
2596 static void dm_queue_flush(struct mapped_device *md)
2597 {
2598 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2599 	smp_mb__after_atomic();
2600 	queue_work(md->wq, &md->work);
2601 }
2602 
2603 /*
2604  * Swap in a new table, returning the old one for the caller to destroy.
2605  */
2606 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2607 {
2608 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2609 	struct queue_limits limits;
2610 	int r;
2611 
2612 	mutex_lock(&md->suspend_lock);
2613 
2614 	/* device must be suspended */
2615 	if (!dm_suspended_md(md))
2616 		goto out;
2617 
2618 	/*
2619 	 * If the new table has no data devices, retain the existing limits.
2620 	 * This helps multipath with queue_if_no_path if all paths disappear,
2621 	 * then new I/O is queued based on these limits, and then some paths
2622 	 * reappear.
2623 	 */
2624 	if (dm_table_has_no_data_devices(table)) {
2625 		live_map = dm_get_live_table_fast(md);
2626 		if (live_map)
2627 			limits = md->queue->limits;
2628 		dm_put_live_table_fast(md);
2629 	}
2630 
2631 	if (!live_map) {
2632 		r = dm_calculate_queue_limits(table, &limits);
2633 		if (r) {
2634 			map = ERR_PTR(r);
2635 			goto out;
2636 		}
2637 	}
2638 
2639 	map = __bind(md, table, &limits);
2640 	dm_issue_global_event();
2641 
2642 out:
2643 	mutex_unlock(&md->suspend_lock);
2644 	return map;
2645 }
2646 
2647 /*
2648  * Functions to lock and unlock any filesystem running on the
2649  * device.
2650  */
2651 static int lock_fs(struct mapped_device *md)
2652 {
2653 	int r;
2654 
2655 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2656 
2657 	r = freeze_bdev(md->disk->part0);
2658 	if (!r)
2659 		set_bit(DMF_FROZEN, &md->flags);
2660 	return r;
2661 }
2662 
2663 static void unlock_fs(struct mapped_device *md)
2664 {
2665 	if (!test_bit(DMF_FROZEN, &md->flags))
2666 		return;
2667 	thaw_bdev(md->disk->part0);
2668 	clear_bit(DMF_FROZEN, &md->flags);
2669 }
2670 
2671 /*
2672  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2673  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2674  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2675  *
2676  * If __dm_suspend returns 0, the device is completely quiescent
2677  * now. There is no request-processing activity. All new requests
2678  * are being added to md->deferred list.
2679  */
2680 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2681 			unsigned int suspend_flags, unsigned int task_state,
2682 			int dmf_suspended_flag)
2683 {
2684 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2685 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2686 	int r;
2687 
2688 	lockdep_assert_held(&md->suspend_lock);
2689 
2690 	/*
2691 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2692 	 * This flag is cleared before dm_suspend returns.
2693 	 */
2694 	if (noflush)
2695 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2696 	else
2697 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2698 
2699 	/*
2700 	 * This gets reverted if there's an error later and the targets
2701 	 * provide the .presuspend_undo hook.
2702 	 */
2703 	dm_table_presuspend_targets(map);
2704 
2705 	/*
2706 	 * Flush I/O to the device.
2707 	 * Any I/O submitted after lock_fs() may not be flushed.
2708 	 * noflush takes precedence over do_lockfs.
2709 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2710 	 */
2711 	if (!noflush && do_lockfs) {
2712 		r = lock_fs(md);
2713 		if (r) {
2714 			dm_table_presuspend_undo_targets(map);
2715 			return r;
2716 		}
2717 	}
2718 
2719 	/*
2720 	 * Here we must make sure that no processes are submitting requests
2721 	 * to target drivers i.e. no one may be executing
2722 	 * dm_split_and_process_bio from dm_submit_bio.
2723 	 *
2724 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2725 	 * we take the write lock. To prevent any process from reentering
2726 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2727 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2728 	 * flush_workqueue(md->wq).
2729 	 */
2730 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2731 	if (map)
2732 		synchronize_srcu(&md->io_barrier);
2733 
2734 	/*
2735 	 * Stop md->queue before flushing md->wq in case request-based
2736 	 * dm defers requests to md->wq from md->queue.
2737 	 */
2738 	if (dm_request_based(md))
2739 		dm_stop_queue(md->queue);
2740 
2741 	flush_workqueue(md->wq);
2742 
2743 	/*
2744 	 * At this point no more requests are entering target request routines.
2745 	 * We call dm_wait_for_completion to wait for all existing requests
2746 	 * to finish.
2747 	 */
2748 	r = dm_wait_for_completion(md, task_state);
2749 	if (!r)
2750 		set_bit(dmf_suspended_flag, &md->flags);
2751 
2752 	if (noflush)
2753 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2754 	if (map)
2755 		synchronize_srcu(&md->io_barrier);
2756 
2757 	/* were we interrupted ? */
2758 	if (r < 0) {
2759 		dm_queue_flush(md);
2760 
2761 		if (dm_request_based(md))
2762 			dm_start_queue(md->queue);
2763 
2764 		unlock_fs(md);
2765 		dm_table_presuspend_undo_targets(map);
2766 		/* pushback list is already flushed, so skip flush */
2767 	}
2768 
2769 	return r;
2770 }
2771 
2772 /*
2773  * We need to be able to change a mapping table under a mounted
2774  * filesystem.  For example we might want to move some data in
2775  * the background.  Before the table can be swapped with
2776  * dm_bind_table, dm_suspend must be called to flush any in
2777  * flight bios and ensure that any further io gets deferred.
2778  */
2779 /*
2780  * Suspend mechanism in request-based dm.
2781  *
2782  * 1. Flush all I/Os by lock_fs() if needed.
2783  * 2. Stop dispatching any I/O by stopping the request_queue.
2784  * 3. Wait for all in-flight I/Os to be completed or requeued.
2785  *
2786  * To abort suspend, start the request_queue.
2787  */
2788 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2789 {
2790 	struct dm_table *map = NULL;
2791 	int r = 0;
2792 
2793 retry:
2794 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2795 
2796 	if (dm_suspended_md(md)) {
2797 		r = -EINVAL;
2798 		goto out_unlock;
2799 	}
2800 
2801 	if (dm_suspended_internally_md(md)) {
2802 		/* already internally suspended, wait for internal resume */
2803 		mutex_unlock(&md->suspend_lock);
2804 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2805 		if (r)
2806 			return r;
2807 		goto retry;
2808 	}
2809 
2810 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2811 
2812 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2813 	if (r)
2814 		goto out_unlock;
2815 
2816 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2817 	dm_table_postsuspend_targets(map);
2818 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2819 
2820 out_unlock:
2821 	mutex_unlock(&md->suspend_lock);
2822 	return r;
2823 }
2824 
2825 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2826 {
2827 	if (map) {
2828 		int r = dm_table_resume_targets(map);
2829 
2830 		if (r)
2831 			return r;
2832 	}
2833 
2834 	dm_queue_flush(md);
2835 
2836 	/*
2837 	 * Flushing deferred I/Os must be done after targets are resumed
2838 	 * so that mapping of targets can work correctly.
2839 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2840 	 */
2841 	if (dm_request_based(md))
2842 		dm_start_queue(md->queue);
2843 
2844 	unlock_fs(md);
2845 
2846 	return 0;
2847 }
2848 
2849 int dm_resume(struct mapped_device *md)
2850 {
2851 	int r;
2852 	struct dm_table *map = NULL;
2853 
2854 retry:
2855 	r = -EINVAL;
2856 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2857 
2858 	if (!dm_suspended_md(md))
2859 		goto out;
2860 
2861 	if (dm_suspended_internally_md(md)) {
2862 		/* already internally suspended, wait for internal resume */
2863 		mutex_unlock(&md->suspend_lock);
2864 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2865 		if (r)
2866 			return r;
2867 		goto retry;
2868 	}
2869 
2870 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2871 	if (!map || !dm_table_get_size(map))
2872 		goto out;
2873 
2874 	r = __dm_resume(md, map);
2875 	if (r)
2876 		goto out;
2877 
2878 	clear_bit(DMF_SUSPENDED, &md->flags);
2879 out:
2880 	mutex_unlock(&md->suspend_lock);
2881 
2882 	return r;
2883 }
2884 
2885 /*
2886  * Internal suspend/resume works like userspace-driven suspend. It waits
2887  * until all bios finish and prevents issuing new bios to the target drivers.
2888  * It may be used only from the kernel.
2889  */
2890 
2891 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2892 {
2893 	struct dm_table *map = NULL;
2894 
2895 	lockdep_assert_held(&md->suspend_lock);
2896 
2897 	if (md->internal_suspend_count++)
2898 		return; /* nested internal suspend */
2899 
2900 	if (dm_suspended_md(md)) {
2901 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2902 		return; /* nest suspend */
2903 	}
2904 
2905 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2906 
2907 	/*
2908 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2909 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2910 	 * would require changing .presuspend to return an error -- avoid this
2911 	 * until there is a need for more elaborate variants of internal suspend.
2912 	 */
2913 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2914 			    DMF_SUSPENDED_INTERNALLY);
2915 
2916 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2917 	dm_table_postsuspend_targets(map);
2918 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2919 }
2920 
2921 static void __dm_internal_resume(struct mapped_device *md)
2922 {
2923 	BUG_ON(!md->internal_suspend_count);
2924 
2925 	if (--md->internal_suspend_count)
2926 		return; /* resume from nested internal suspend */
2927 
2928 	if (dm_suspended_md(md))
2929 		goto done; /* resume from nested suspend */
2930 
2931 	/*
2932 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2933 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2934 	 */
2935 	(void) __dm_resume(md, NULL);
2936 
2937 done:
2938 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2939 	smp_mb__after_atomic();
2940 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2941 }
2942 
2943 void dm_internal_suspend_noflush(struct mapped_device *md)
2944 {
2945 	mutex_lock(&md->suspend_lock);
2946 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2947 	mutex_unlock(&md->suspend_lock);
2948 }
2949 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2950 
2951 void dm_internal_resume(struct mapped_device *md)
2952 {
2953 	mutex_lock(&md->suspend_lock);
2954 	__dm_internal_resume(md);
2955 	mutex_unlock(&md->suspend_lock);
2956 }
2957 EXPORT_SYMBOL_GPL(dm_internal_resume);
2958 
2959 /*
2960  * Fast variants of internal suspend/resume hold md->suspend_lock,
2961  * which prevents interaction with userspace-driven suspend.
2962  */
2963 
2964 void dm_internal_suspend_fast(struct mapped_device *md)
2965 {
2966 	mutex_lock(&md->suspend_lock);
2967 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2968 		return;
2969 
2970 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2971 	synchronize_srcu(&md->io_barrier);
2972 	flush_workqueue(md->wq);
2973 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2974 }
2975 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2976 
2977 void dm_internal_resume_fast(struct mapped_device *md)
2978 {
2979 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2980 		goto done;
2981 
2982 	dm_queue_flush(md);
2983 
2984 done:
2985 	mutex_unlock(&md->suspend_lock);
2986 }
2987 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2988 
2989 /*
2990  *---------------------------------------------------------------
2991  * Event notification.
2992  *---------------------------------------------------------------
2993  */
2994 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2995 		      unsigned int cookie, bool need_resize_uevent)
2996 {
2997 	int r;
2998 	unsigned int noio_flag;
2999 	char udev_cookie[DM_COOKIE_LENGTH];
3000 	char *envp[3] = { NULL, NULL, NULL };
3001 	char **envpp = envp;
3002 	if (cookie) {
3003 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3004 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3005 		*envpp++ = udev_cookie;
3006 	}
3007 	if (need_resize_uevent) {
3008 		*envpp++ = "RESIZE=1";
3009 	}
3010 
3011 	noio_flag = memalloc_noio_save();
3012 
3013 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3014 
3015 	memalloc_noio_restore(noio_flag);
3016 
3017 	return r;
3018 }
3019 
3020 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3021 {
3022 	return atomic_add_return(1, &md->uevent_seq);
3023 }
3024 
3025 uint32_t dm_get_event_nr(struct mapped_device *md)
3026 {
3027 	return atomic_read(&md->event_nr);
3028 }
3029 
3030 int dm_wait_event(struct mapped_device *md, int event_nr)
3031 {
3032 	return wait_event_interruptible(md->eventq,
3033 			(event_nr != atomic_read(&md->event_nr)));
3034 }
3035 
3036 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3037 {
3038 	unsigned long flags;
3039 
3040 	spin_lock_irqsave(&md->uevent_lock, flags);
3041 	list_add(elist, &md->uevent_list);
3042 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3043 }
3044 
3045 /*
3046  * The gendisk is only valid as long as you have a reference
3047  * count on 'md'.
3048  */
3049 struct gendisk *dm_disk(struct mapped_device *md)
3050 {
3051 	return md->disk;
3052 }
3053 EXPORT_SYMBOL_GPL(dm_disk);
3054 
3055 struct kobject *dm_kobject(struct mapped_device *md)
3056 {
3057 	return &md->kobj_holder.kobj;
3058 }
3059 
3060 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3061 {
3062 	struct mapped_device *md;
3063 
3064 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3065 
3066 	spin_lock(&_minor_lock);
3067 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3068 		md = NULL;
3069 		goto out;
3070 	}
3071 	dm_get(md);
3072 out:
3073 	spin_unlock(&_minor_lock);
3074 
3075 	return md;
3076 }
3077 
3078 int dm_suspended_md(struct mapped_device *md)
3079 {
3080 	return test_bit(DMF_SUSPENDED, &md->flags);
3081 }
3082 
3083 static int dm_post_suspending_md(struct mapped_device *md)
3084 {
3085 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3086 }
3087 
3088 int dm_suspended_internally_md(struct mapped_device *md)
3089 {
3090 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3091 }
3092 
3093 int dm_test_deferred_remove_flag(struct mapped_device *md)
3094 {
3095 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3096 }
3097 
3098 int dm_suspended(struct dm_target *ti)
3099 {
3100 	return dm_suspended_md(ti->table->md);
3101 }
3102 EXPORT_SYMBOL_GPL(dm_suspended);
3103 
3104 int dm_post_suspending(struct dm_target *ti)
3105 {
3106 	return dm_post_suspending_md(ti->table->md);
3107 }
3108 EXPORT_SYMBOL_GPL(dm_post_suspending);
3109 
3110 int dm_noflush_suspending(struct dm_target *ti)
3111 {
3112 	return __noflush_suspending(ti->table->md);
3113 }
3114 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3115 
3116 void dm_free_md_mempools(struct dm_md_mempools *pools)
3117 {
3118 	if (!pools)
3119 		return;
3120 
3121 	bioset_exit(&pools->bs);
3122 	bioset_exit(&pools->io_bs);
3123 
3124 	kfree(pools);
3125 }
3126 
3127 struct dm_pr {
3128 	u64	old_key;
3129 	u64	new_key;
3130 	u32	flags;
3131 	bool	abort;
3132 	bool	fail_early;
3133 	int	ret;
3134 	enum pr_type type;
3135 };
3136 
3137 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3138 		      struct dm_pr *pr)
3139 {
3140 	struct mapped_device *md = bdev->bd_disk->private_data;
3141 	struct dm_table *table;
3142 	struct dm_target *ti;
3143 	int ret = -ENOTTY, srcu_idx;
3144 
3145 	table = dm_get_live_table(md, &srcu_idx);
3146 	if (!table || !dm_table_get_size(table))
3147 		goto out;
3148 
3149 	/* We only support devices that have a single target */
3150 	if (table->num_targets != 1)
3151 		goto out;
3152 	ti = dm_table_get_target(table, 0);
3153 
3154 	if (dm_suspended_md(md)) {
3155 		ret = -EAGAIN;
3156 		goto out;
3157 	}
3158 
3159 	ret = -EINVAL;
3160 	if (!ti->type->iterate_devices)
3161 		goto out;
3162 
3163 	ti->type->iterate_devices(ti, fn, pr);
3164 	ret = 0;
3165 out:
3166 	dm_put_live_table(md, srcu_idx);
3167 	return ret;
3168 }
3169 
3170 /*
3171  * For register / unregister we need to manually call out to every path.
3172  */
3173 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3174 			    sector_t start, sector_t len, void *data)
3175 {
3176 	struct dm_pr *pr = data;
3177 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3178 	int ret;
3179 
3180 	if (!ops || !ops->pr_register) {
3181 		pr->ret = -EOPNOTSUPP;
3182 		return -1;
3183 	}
3184 
3185 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3186 	if (!ret)
3187 		return 0;
3188 
3189 	if (!pr->ret)
3190 		pr->ret = ret;
3191 
3192 	if (pr->fail_early)
3193 		return -1;
3194 
3195 	return 0;
3196 }
3197 
3198 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3199 			  u32 flags)
3200 {
3201 	struct dm_pr pr = {
3202 		.old_key	= old_key,
3203 		.new_key	= new_key,
3204 		.flags		= flags,
3205 		.fail_early	= true,
3206 		.ret		= 0,
3207 	};
3208 	int ret;
3209 
3210 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3211 	if (ret) {
3212 		/* Didn't even get to register a path */
3213 		return ret;
3214 	}
3215 
3216 	if (!pr.ret)
3217 		return 0;
3218 	ret = pr.ret;
3219 
3220 	if (!new_key)
3221 		return ret;
3222 
3223 	/* unregister all paths if we failed to register any path */
3224 	pr.old_key = new_key;
3225 	pr.new_key = 0;
3226 	pr.flags = 0;
3227 	pr.fail_early = false;
3228 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3229 	return ret;
3230 }
3231 
3232 
3233 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3234 			   sector_t start, sector_t len, void *data)
3235 {
3236 	struct dm_pr *pr = data;
3237 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3238 
3239 	if (!ops || !ops->pr_reserve) {
3240 		pr->ret = -EOPNOTSUPP;
3241 		return -1;
3242 	}
3243 
3244 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3245 	if (!pr->ret)
3246 		return -1;
3247 
3248 	return 0;
3249 }
3250 
3251 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3252 			 u32 flags)
3253 {
3254 	struct dm_pr pr = {
3255 		.old_key	= key,
3256 		.flags		= flags,
3257 		.type		= type,
3258 		.fail_early	= false,
3259 		.ret		= 0,
3260 	};
3261 	int ret;
3262 
3263 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3264 	if (ret)
3265 		return ret;
3266 
3267 	return pr.ret;
3268 }
3269 
3270 /*
3271  * If there is a non-All Registrants type of reservation, the release must be
3272  * sent down the holding path. For the cases where there is no reservation or
3273  * the path is not the holder the device will also return success, so we must
3274  * try each path to make sure we got the correct path.
3275  */
3276 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3277 			   sector_t start, sector_t len, void *data)
3278 {
3279 	struct dm_pr *pr = data;
3280 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3281 
3282 	if (!ops || !ops->pr_release) {
3283 		pr->ret = -EOPNOTSUPP;
3284 		return -1;
3285 	}
3286 
3287 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3288 	if (pr->ret)
3289 		return -1;
3290 
3291 	return 0;
3292 }
3293 
3294 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3295 {
3296 	struct dm_pr pr = {
3297 		.old_key	= key,
3298 		.type		= type,
3299 		.fail_early	= false,
3300 	};
3301 	int ret;
3302 
3303 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3304 	if (ret)
3305 		return ret;
3306 
3307 	return pr.ret;
3308 }
3309 
3310 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3311 			   sector_t start, sector_t len, void *data)
3312 {
3313 	struct dm_pr *pr = data;
3314 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3315 
3316 	if (!ops || !ops->pr_preempt) {
3317 		pr->ret = -EOPNOTSUPP;
3318 		return -1;
3319 	}
3320 
3321 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3322 				  pr->abort);
3323 	if (!pr->ret)
3324 		return -1;
3325 
3326 	return 0;
3327 }
3328 
3329 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3330 			 enum pr_type type, bool abort)
3331 {
3332 	struct dm_pr pr = {
3333 		.new_key	= new_key,
3334 		.old_key	= old_key,
3335 		.type		= type,
3336 		.fail_early	= false,
3337 	};
3338 	int ret;
3339 
3340 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3341 	if (ret)
3342 		return ret;
3343 
3344 	return pr.ret;
3345 }
3346 
3347 static int dm_pr_clear(struct block_device *bdev, u64 key)
3348 {
3349 	struct mapped_device *md = bdev->bd_disk->private_data;
3350 	const struct pr_ops *ops;
3351 	int r, srcu_idx;
3352 
3353 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3354 	if (r < 0)
3355 		goto out;
3356 
3357 	ops = bdev->bd_disk->fops->pr_ops;
3358 	if (ops && ops->pr_clear)
3359 		r = ops->pr_clear(bdev, key);
3360 	else
3361 		r = -EOPNOTSUPP;
3362 out:
3363 	dm_unprepare_ioctl(md, srcu_idx);
3364 	return r;
3365 }
3366 
3367 static const struct pr_ops dm_pr_ops = {
3368 	.pr_register	= dm_pr_register,
3369 	.pr_reserve	= dm_pr_reserve,
3370 	.pr_release	= dm_pr_release,
3371 	.pr_preempt	= dm_pr_preempt,
3372 	.pr_clear	= dm_pr_clear,
3373 };
3374 
3375 static const struct block_device_operations dm_blk_dops = {
3376 	.submit_bio = dm_submit_bio,
3377 	.poll_bio = dm_poll_bio,
3378 	.open = dm_blk_open,
3379 	.release = dm_blk_close,
3380 	.ioctl = dm_blk_ioctl,
3381 	.getgeo = dm_blk_getgeo,
3382 	.report_zones = dm_blk_report_zones,
3383 	.pr_ops = &dm_pr_ops,
3384 	.owner = THIS_MODULE
3385 };
3386 
3387 static const struct block_device_operations dm_rq_blk_dops = {
3388 	.open = dm_blk_open,
3389 	.release = dm_blk_close,
3390 	.ioctl = dm_blk_ioctl,
3391 	.getgeo = dm_blk_getgeo,
3392 	.pr_ops = &dm_pr_ops,
3393 	.owner = THIS_MODULE
3394 };
3395 
3396 static const struct dax_operations dm_dax_ops = {
3397 	.direct_access = dm_dax_direct_access,
3398 	.zero_page_range = dm_dax_zero_page_range,
3399 	.recovery_write = dm_dax_recovery_write,
3400 };
3401 
3402 /*
3403  * module hooks
3404  */
3405 module_init(dm_init);
3406 module_exit(dm_exit);
3407 
3408 module_param(major, uint, 0);
3409 MODULE_PARM_DESC(major, "The major number of the device mapper");
3410 
3411 module_param(reserved_bio_based_ios, uint, 0644);
3412 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3413 
3414 module_param(dm_numa_node, int, 0644);
3415 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3416 
3417 module_param(swap_bios, int, 0644);
3418 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3419 
3420 MODULE_DESCRIPTION(DM_NAME " driver");
3421 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3422 MODULE_LICENSE("GPL");
3423