xref: /openbmc/linux/drivers/md/dm.c (revision 087615bf3acdafd0ba7c7c9ed5286e7b7c80fe1b)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 #include <linux/part_stat.h>
29 
30 #define DM_MSG_PREFIX "core"
31 
32 /*
33  * Cookies are numeric values sent with CHANGE and REMOVE
34  * uevents while resuming, removing or renaming the device.
35  */
36 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
37 #define DM_COOKIE_LENGTH 24
38 
39 static const char *_name = DM_NAME;
40 
41 static unsigned int major = 0;
42 static unsigned int _major = 0;
43 
44 static DEFINE_IDR(_minor_idr);
45 
46 static DEFINE_SPINLOCK(_minor_lock);
47 
48 static void do_deferred_remove(struct work_struct *w);
49 
50 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
51 
52 static struct workqueue_struct *deferred_remove_workqueue;
53 
54 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
55 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
56 
57 void dm_issue_global_event(void)
58 {
59 	atomic_inc(&dm_global_event_nr);
60 	wake_up(&dm_global_eventq);
61 }
62 
63 /*
64  * One of these is allocated (on-stack) per original bio.
65  */
66 struct clone_info {
67 	struct dm_table *map;
68 	struct bio *bio;
69 	struct dm_io *io;
70 	sector_t sector;
71 	unsigned sector_count;
72 };
73 
74 /*
75  * One of these is allocated per clone bio.
76  */
77 #define DM_TIO_MAGIC 7282014
78 struct dm_target_io {
79 	unsigned magic;
80 	struct dm_io *io;
81 	struct dm_target *ti;
82 	unsigned target_bio_nr;
83 	unsigned *len_ptr;
84 	bool inside_dm_io;
85 	struct bio clone;
86 };
87 
88 /*
89  * One of these is allocated per original bio.
90  * It contains the first clone used for that original.
91  */
92 #define DM_IO_MAGIC 5191977
93 struct dm_io {
94 	unsigned magic;
95 	struct mapped_device *md;
96 	blk_status_t status;
97 	atomic_t io_count;
98 	struct bio *orig_bio;
99 	unsigned long start_time;
100 	spinlock_t endio_lock;
101 	struct dm_stats_aux stats_aux;
102 	/* last member of dm_target_io is 'struct bio' */
103 	struct dm_target_io tio;
104 };
105 
106 void *dm_per_bio_data(struct bio *bio, size_t data_size)
107 {
108 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
109 	if (!tio->inside_dm_io)
110 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
111 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
112 }
113 EXPORT_SYMBOL_GPL(dm_per_bio_data);
114 
115 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
116 {
117 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
118 	if (io->magic == DM_IO_MAGIC)
119 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
120 	BUG_ON(io->magic != DM_TIO_MAGIC);
121 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
122 }
123 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
124 
125 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
126 {
127 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
128 }
129 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
130 
131 #define MINOR_ALLOCED ((void *)-1)
132 
133 /*
134  * Bits for the md->flags field.
135  */
136 #define DMF_BLOCK_IO_FOR_SUSPEND 0
137 #define DMF_SUSPENDED 1
138 #define DMF_FROZEN 2
139 #define DMF_FREEING 3
140 #define DMF_DELETING 4
141 #define DMF_NOFLUSH_SUSPENDING 5
142 #define DMF_DEFERRED_REMOVE 6
143 #define DMF_SUSPENDED_INTERNALLY 7
144 
145 #define DM_NUMA_NODE NUMA_NO_NODE
146 static int dm_numa_node = DM_NUMA_NODE;
147 
148 /*
149  * For mempools pre-allocation at the table loading time.
150  */
151 struct dm_md_mempools {
152 	struct bio_set bs;
153 	struct bio_set io_bs;
154 };
155 
156 struct table_device {
157 	struct list_head list;
158 	refcount_t count;
159 	struct dm_dev dm_dev;
160 };
161 
162 /*
163  * Bio-based DM's mempools' reserved IOs set by the user.
164  */
165 #define RESERVED_BIO_BASED_IOS		16
166 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
167 
168 static int __dm_get_module_param_int(int *module_param, int min, int max)
169 {
170 	int param = READ_ONCE(*module_param);
171 	int modified_param = 0;
172 	bool modified = true;
173 
174 	if (param < min)
175 		modified_param = min;
176 	else if (param > max)
177 		modified_param = max;
178 	else
179 		modified = false;
180 
181 	if (modified) {
182 		(void)cmpxchg(module_param, param, modified_param);
183 		param = modified_param;
184 	}
185 
186 	return param;
187 }
188 
189 unsigned __dm_get_module_param(unsigned *module_param,
190 			       unsigned def, unsigned max)
191 {
192 	unsigned param = READ_ONCE(*module_param);
193 	unsigned modified_param = 0;
194 
195 	if (!param)
196 		modified_param = def;
197 	else if (param > max)
198 		modified_param = max;
199 
200 	if (modified_param) {
201 		(void)cmpxchg(module_param, param, modified_param);
202 		param = modified_param;
203 	}
204 
205 	return param;
206 }
207 
208 unsigned dm_get_reserved_bio_based_ios(void)
209 {
210 	return __dm_get_module_param(&reserved_bio_based_ios,
211 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
212 }
213 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
214 
215 static unsigned dm_get_numa_node(void)
216 {
217 	return __dm_get_module_param_int(&dm_numa_node,
218 					 DM_NUMA_NODE, num_online_nodes() - 1);
219 }
220 
221 static int __init local_init(void)
222 {
223 	int r;
224 
225 	r = dm_uevent_init();
226 	if (r)
227 		return r;
228 
229 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
230 	if (!deferred_remove_workqueue) {
231 		r = -ENOMEM;
232 		goto out_uevent_exit;
233 	}
234 
235 	_major = major;
236 	r = register_blkdev(_major, _name);
237 	if (r < 0)
238 		goto out_free_workqueue;
239 
240 	if (!_major)
241 		_major = r;
242 
243 	return 0;
244 
245 out_free_workqueue:
246 	destroy_workqueue(deferred_remove_workqueue);
247 out_uevent_exit:
248 	dm_uevent_exit();
249 
250 	return r;
251 }
252 
253 static void local_exit(void)
254 {
255 	flush_scheduled_work();
256 	destroy_workqueue(deferred_remove_workqueue);
257 
258 	unregister_blkdev(_major, _name);
259 	dm_uevent_exit();
260 
261 	_major = 0;
262 
263 	DMINFO("cleaned up");
264 }
265 
266 static int (*_inits[])(void) __initdata = {
267 	local_init,
268 	dm_target_init,
269 	dm_linear_init,
270 	dm_stripe_init,
271 	dm_io_init,
272 	dm_kcopyd_init,
273 	dm_interface_init,
274 	dm_statistics_init,
275 };
276 
277 static void (*_exits[])(void) = {
278 	local_exit,
279 	dm_target_exit,
280 	dm_linear_exit,
281 	dm_stripe_exit,
282 	dm_io_exit,
283 	dm_kcopyd_exit,
284 	dm_interface_exit,
285 	dm_statistics_exit,
286 };
287 
288 static int __init dm_init(void)
289 {
290 	const int count = ARRAY_SIZE(_inits);
291 
292 	int r, i;
293 
294 	for (i = 0; i < count; i++) {
295 		r = _inits[i]();
296 		if (r)
297 			goto bad;
298 	}
299 
300 	return 0;
301 
302       bad:
303 	while (i--)
304 		_exits[i]();
305 
306 	return r;
307 }
308 
309 static void __exit dm_exit(void)
310 {
311 	int i = ARRAY_SIZE(_exits);
312 
313 	while (i--)
314 		_exits[i]();
315 
316 	/*
317 	 * Should be empty by this point.
318 	 */
319 	idr_destroy(&_minor_idr);
320 }
321 
322 /*
323  * Block device functions
324  */
325 int dm_deleting_md(struct mapped_device *md)
326 {
327 	return test_bit(DMF_DELETING, &md->flags);
328 }
329 
330 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
331 {
332 	struct mapped_device *md;
333 
334 	spin_lock(&_minor_lock);
335 
336 	md = bdev->bd_disk->private_data;
337 	if (!md)
338 		goto out;
339 
340 	if (test_bit(DMF_FREEING, &md->flags) ||
341 	    dm_deleting_md(md)) {
342 		md = NULL;
343 		goto out;
344 	}
345 
346 	dm_get(md);
347 	atomic_inc(&md->open_count);
348 out:
349 	spin_unlock(&_minor_lock);
350 
351 	return md ? 0 : -ENXIO;
352 }
353 
354 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
355 {
356 	struct mapped_device *md;
357 
358 	spin_lock(&_minor_lock);
359 
360 	md = disk->private_data;
361 	if (WARN_ON(!md))
362 		goto out;
363 
364 	if (atomic_dec_and_test(&md->open_count) &&
365 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
366 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
367 
368 	dm_put(md);
369 out:
370 	spin_unlock(&_minor_lock);
371 }
372 
373 int dm_open_count(struct mapped_device *md)
374 {
375 	return atomic_read(&md->open_count);
376 }
377 
378 /*
379  * Guarantees nothing is using the device before it's deleted.
380  */
381 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
382 {
383 	int r = 0;
384 
385 	spin_lock(&_minor_lock);
386 
387 	if (dm_open_count(md)) {
388 		r = -EBUSY;
389 		if (mark_deferred)
390 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
391 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
392 		r = -EEXIST;
393 	else
394 		set_bit(DMF_DELETING, &md->flags);
395 
396 	spin_unlock(&_minor_lock);
397 
398 	return r;
399 }
400 
401 int dm_cancel_deferred_remove(struct mapped_device *md)
402 {
403 	int r = 0;
404 
405 	spin_lock(&_minor_lock);
406 
407 	if (test_bit(DMF_DELETING, &md->flags))
408 		r = -EBUSY;
409 	else
410 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
411 
412 	spin_unlock(&_minor_lock);
413 
414 	return r;
415 }
416 
417 static void do_deferred_remove(struct work_struct *w)
418 {
419 	dm_deferred_remove();
420 }
421 
422 sector_t dm_get_size(struct mapped_device *md)
423 {
424 	return get_capacity(md->disk);
425 }
426 
427 struct request_queue *dm_get_md_queue(struct mapped_device *md)
428 {
429 	return md->queue;
430 }
431 
432 struct dm_stats *dm_get_stats(struct mapped_device *md)
433 {
434 	return &md->stats;
435 }
436 
437 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
438 {
439 	struct mapped_device *md = bdev->bd_disk->private_data;
440 
441 	return dm_get_geometry(md, geo);
442 }
443 
444 #ifdef CONFIG_BLK_DEV_ZONED
445 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
446 {
447 	struct dm_report_zones_args *args = data;
448 	sector_t sector_diff = args->tgt->begin - args->start;
449 
450 	/*
451 	 * Ignore zones beyond the target range.
452 	 */
453 	if (zone->start >= args->start + args->tgt->len)
454 		return 0;
455 
456 	/*
457 	 * Remap the start sector and write pointer position of the zone
458 	 * to match its position in the target range.
459 	 */
460 	zone->start += sector_diff;
461 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
462 		if (zone->cond == BLK_ZONE_COND_FULL)
463 			zone->wp = zone->start + zone->len;
464 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
465 			zone->wp = zone->start;
466 		else
467 			zone->wp += sector_diff;
468 	}
469 
470 	args->next_sector = zone->start + zone->len;
471 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
472 }
473 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
474 
475 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
476 		unsigned int nr_zones, report_zones_cb cb, void *data)
477 {
478 	struct mapped_device *md = disk->private_data;
479 	struct dm_table *map;
480 	int srcu_idx, ret;
481 	struct dm_report_zones_args args = {
482 		.next_sector = sector,
483 		.orig_data = data,
484 		.orig_cb = cb,
485 	};
486 
487 	if (dm_suspended_md(md))
488 		return -EAGAIN;
489 
490 	map = dm_get_live_table(md, &srcu_idx);
491 	if (!map)
492 		return -EIO;
493 
494 	do {
495 		struct dm_target *tgt;
496 
497 		tgt = dm_table_find_target(map, args.next_sector);
498 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
499 			ret = -EIO;
500 			goto out;
501 		}
502 
503 		args.tgt = tgt;
504 		ret = tgt->type->report_zones(tgt, &args, nr_zones);
505 		if (ret < 0)
506 			goto out;
507 	} while (args.zone_idx < nr_zones &&
508 		 args.next_sector < get_capacity(disk));
509 
510 	ret = args.zone_idx;
511 out:
512 	dm_put_live_table(md, srcu_idx);
513 	return ret;
514 }
515 #else
516 #define dm_blk_report_zones		NULL
517 #endif /* CONFIG_BLK_DEV_ZONED */
518 
519 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
520 			    struct block_device **bdev)
521 	__acquires(md->io_barrier)
522 {
523 	struct dm_target *tgt;
524 	struct dm_table *map;
525 	int r;
526 
527 retry:
528 	r = -ENOTTY;
529 	map = dm_get_live_table(md, srcu_idx);
530 	if (!map || !dm_table_get_size(map))
531 		return r;
532 
533 	/* We only support devices that have a single target */
534 	if (dm_table_get_num_targets(map) != 1)
535 		return r;
536 
537 	tgt = dm_table_get_target(map, 0);
538 	if (!tgt->type->prepare_ioctl)
539 		return r;
540 
541 	if (dm_suspended_md(md))
542 		return -EAGAIN;
543 
544 	r = tgt->type->prepare_ioctl(tgt, bdev);
545 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
546 		dm_put_live_table(md, *srcu_idx);
547 		msleep(10);
548 		goto retry;
549 	}
550 
551 	return r;
552 }
553 
554 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
555 	__releases(md->io_barrier)
556 {
557 	dm_put_live_table(md, srcu_idx);
558 }
559 
560 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
561 			unsigned int cmd, unsigned long arg)
562 {
563 	struct mapped_device *md = bdev->bd_disk->private_data;
564 	int r, srcu_idx;
565 
566 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
567 	if (r < 0)
568 		goto out;
569 
570 	if (r > 0) {
571 		/*
572 		 * Target determined this ioctl is being issued against a
573 		 * subset of the parent bdev; require extra privileges.
574 		 */
575 		if (!capable(CAP_SYS_RAWIO)) {
576 			DMWARN_LIMIT(
577 	"%s: sending ioctl %x to DM device without required privilege.",
578 				current->comm, cmd);
579 			r = -ENOIOCTLCMD;
580 			goto out;
581 		}
582 	}
583 
584 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
585 out:
586 	dm_unprepare_ioctl(md, srcu_idx);
587 	return r;
588 }
589 
590 static void start_io_acct(struct dm_io *io);
591 
592 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
593 {
594 	struct dm_io *io;
595 	struct dm_target_io *tio;
596 	struct bio *clone;
597 
598 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
599 	if (!clone)
600 		return NULL;
601 
602 	tio = container_of(clone, struct dm_target_io, clone);
603 	tio->inside_dm_io = true;
604 	tio->io = NULL;
605 
606 	io = container_of(tio, struct dm_io, tio);
607 	io->magic = DM_IO_MAGIC;
608 	io->status = 0;
609 	atomic_set(&io->io_count, 1);
610 	io->orig_bio = bio;
611 	io->md = md;
612 	spin_lock_init(&io->endio_lock);
613 
614 	start_io_acct(io);
615 
616 	return io;
617 }
618 
619 static void free_io(struct mapped_device *md, struct dm_io *io)
620 {
621 	bio_put(&io->tio.clone);
622 }
623 
624 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
625 				      unsigned target_bio_nr, gfp_t gfp_mask)
626 {
627 	struct dm_target_io *tio;
628 
629 	if (!ci->io->tio.io) {
630 		/* the dm_target_io embedded in ci->io is available */
631 		tio = &ci->io->tio;
632 	} else {
633 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
634 		if (!clone)
635 			return NULL;
636 
637 		tio = container_of(clone, struct dm_target_io, clone);
638 		tio->inside_dm_io = false;
639 	}
640 
641 	tio->magic = DM_TIO_MAGIC;
642 	tio->io = ci->io;
643 	tio->ti = ti;
644 	tio->target_bio_nr = target_bio_nr;
645 
646 	return tio;
647 }
648 
649 static void free_tio(struct dm_target_io *tio)
650 {
651 	if (tio->inside_dm_io)
652 		return;
653 	bio_put(&tio->clone);
654 }
655 
656 static bool md_in_flight_bios(struct mapped_device *md)
657 {
658 	int cpu;
659 	struct hd_struct *part = &dm_disk(md)->part0;
660 	long sum = 0;
661 
662 	for_each_possible_cpu(cpu) {
663 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
664 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
665 	}
666 
667 	return sum != 0;
668 }
669 
670 static bool md_in_flight(struct mapped_device *md)
671 {
672 	if (queue_is_mq(md->queue))
673 		return blk_mq_queue_inflight(md->queue);
674 	else
675 		return md_in_flight_bios(md);
676 }
677 
678 u64 dm_start_time_ns_from_clone(struct bio *bio)
679 {
680 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
681 	struct dm_io *io = tio->io;
682 
683 	return jiffies_to_nsecs(io->start_time);
684 }
685 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
686 
687 static void start_io_acct(struct dm_io *io)
688 {
689 	struct mapped_device *md = io->md;
690 	struct bio *bio = io->orig_bio;
691 
692 	io->start_time = jiffies;
693 
694 	generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
695 			      &dm_disk(md)->part0);
696 
697 	if (unlikely(dm_stats_used(&md->stats)))
698 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
699 				    bio->bi_iter.bi_sector, bio_sectors(bio),
700 				    false, 0, &io->stats_aux);
701 }
702 
703 static void end_io_acct(struct dm_io *io)
704 {
705 	struct mapped_device *md = io->md;
706 	struct bio *bio = io->orig_bio;
707 	unsigned long duration = jiffies - io->start_time;
708 
709 	generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
710 			    io->start_time);
711 
712 	if (unlikely(dm_stats_used(&md->stats)))
713 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
714 				    bio->bi_iter.bi_sector, bio_sectors(bio),
715 				    true, duration, &io->stats_aux);
716 
717 	/* nudge anyone waiting on suspend queue */
718 	if (unlikely(wq_has_sleeper(&md->wait)))
719 		wake_up(&md->wait);
720 }
721 
722 /*
723  * Add the bio to the list of deferred io.
724  */
725 static void queue_io(struct mapped_device *md, struct bio *bio)
726 {
727 	unsigned long flags;
728 
729 	spin_lock_irqsave(&md->deferred_lock, flags);
730 	bio_list_add(&md->deferred, bio);
731 	spin_unlock_irqrestore(&md->deferred_lock, flags);
732 	queue_work(md->wq, &md->work);
733 }
734 
735 /*
736  * Everyone (including functions in this file), should use this
737  * function to access the md->map field, and make sure they call
738  * dm_put_live_table() when finished.
739  */
740 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
741 {
742 	*srcu_idx = srcu_read_lock(&md->io_barrier);
743 
744 	return srcu_dereference(md->map, &md->io_barrier);
745 }
746 
747 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
748 {
749 	srcu_read_unlock(&md->io_barrier, srcu_idx);
750 }
751 
752 void dm_sync_table(struct mapped_device *md)
753 {
754 	synchronize_srcu(&md->io_barrier);
755 	synchronize_rcu_expedited();
756 }
757 
758 /*
759  * A fast alternative to dm_get_live_table/dm_put_live_table.
760  * The caller must not block between these two functions.
761  */
762 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
763 {
764 	rcu_read_lock();
765 	return rcu_dereference(md->map);
766 }
767 
768 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
769 {
770 	rcu_read_unlock();
771 }
772 
773 static char *_dm_claim_ptr = "I belong to device-mapper";
774 
775 /*
776  * Open a table device so we can use it as a map destination.
777  */
778 static int open_table_device(struct table_device *td, dev_t dev,
779 			     struct mapped_device *md)
780 {
781 	struct block_device *bdev;
782 
783 	int r;
784 
785 	BUG_ON(td->dm_dev.bdev);
786 
787 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
788 	if (IS_ERR(bdev))
789 		return PTR_ERR(bdev);
790 
791 	r = bd_link_disk_holder(bdev, dm_disk(md));
792 	if (r) {
793 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
794 		return r;
795 	}
796 
797 	td->dm_dev.bdev = bdev;
798 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
799 	return 0;
800 }
801 
802 /*
803  * Close a table device that we've been using.
804  */
805 static void close_table_device(struct table_device *td, struct mapped_device *md)
806 {
807 	if (!td->dm_dev.bdev)
808 		return;
809 
810 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
811 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
812 	put_dax(td->dm_dev.dax_dev);
813 	td->dm_dev.bdev = NULL;
814 	td->dm_dev.dax_dev = NULL;
815 }
816 
817 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
818 					      fmode_t mode)
819 {
820 	struct table_device *td;
821 
822 	list_for_each_entry(td, l, list)
823 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
824 			return td;
825 
826 	return NULL;
827 }
828 
829 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
830 			struct dm_dev **result)
831 {
832 	int r;
833 	struct table_device *td;
834 
835 	mutex_lock(&md->table_devices_lock);
836 	td = find_table_device(&md->table_devices, dev, mode);
837 	if (!td) {
838 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
839 		if (!td) {
840 			mutex_unlock(&md->table_devices_lock);
841 			return -ENOMEM;
842 		}
843 
844 		td->dm_dev.mode = mode;
845 		td->dm_dev.bdev = NULL;
846 
847 		if ((r = open_table_device(td, dev, md))) {
848 			mutex_unlock(&md->table_devices_lock);
849 			kfree(td);
850 			return r;
851 		}
852 
853 		format_dev_t(td->dm_dev.name, dev);
854 
855 		refcount_set(&td->count, 1);
856 		list_add(&td->list, &md->table_devices);
857 	} else {
858 		refcount_inc(&td->count);
859 	}
860 	mutex_unlock(&md->table_devices_lock);
861 
862 	*result = &td->dm_dev;
863 	return 0;
864 }
865 EXPORT_SYMBOL_GPL(dm_get_table_device);
866 
867 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
868 {
869 	struct table_device *td = container_of(d, struct table_device, dm_dev);
870 
871 	mutex_lock(&md->table_devices_lock);
872 	if (refcount_dec_and_test(&td->count)) {
873 		close_table_device(td, md);
874 		list_del(&td->list);
875 		kfree(td);
876 	}
877 	mutex_unlock(&md->table_devices_lock);
878 }
879 EXPORT_SYMBOL(dm_put_table_device);
880 
881 static void free_table_devices(struct list_head *devices)
882 {
883 	struct list_head *tmp, *next;
884 
885 	list_for_each_safe(tmp, next, devices) {
886 		struct table_device *td = list_entry(tmp, struct table_device, list);
887 
888 		DMWARN("dm_destroy: %s still exists with %d references",
889 		       td->dm_dev.name, refcount_read(&td->count));
890 		kfree(td);
891 	}
892 }
893 
894 /*
895  * Get the geometry associated with a dm device
896  */
897 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
898 {
899 	*geo = md->geometry;
900 
901 	return 0;
902 }
903 
904 /*
905  * Set the geometry of a device.
906  */
907 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
908 {
909 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
910 
911 	if (geo->start > sz) {
912 		DMWARN("Start sector is beyond the geometry limits.");
913 		return -EINVAL;
914 	}
915 
916 	md->geometry = *geo;
917 
918 	return 0;
919 }
920 
921 static int __noflush_suspending(struct mapped_device *md)
922 {
923 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
924 }
925 
926 /*
927  * Decrements the number of outstanding ios that a bio has been
928  * cloned into, completing the original io if necc.
929  */
930 static void dec_pending(struct dm_io *io, blk_status_t error)
931 {
932 	unsigned long flags;
933 	blk_status_t io_error;
934 	struct bio *bio;
935 	struct mapped_device *md = io->md;
936 
937 	/* Push-back supersedes any I/O errors */
938 	if (unlikely(error)) {
939 		spin_lock_irqsave(&io->endio_lock, flags);
940 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
941 			io->status = error;
942 		spin_unlock_irqrestore(&io->endio_lock, flags);
943 	}
944 
945 	if (atomic_dec_and_test(&io->io_count)) {
946 		if (io->status == BLK_STS_DM_REQUEUE) {
947 			/*
948 			 * Target requested pushing back the I/O.
949 			 */
950 			spin_lock_irqsave(&md->deferred_lock, flags);
951 			if (__noflush_suspending(md))
952 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
953 				bio_list_add_head(&md->deferred, io->orig_bio);
954 			else
955 				/* noflush suspend was interrupted. */
956 				io->status = BLK_STS_IOERR;
957 			spin_unlock_irqrestore(&md->deferred_lock, flags);
958 		}
959 
960 		io_error = io->status;
961 		bio = io->orig_bio;
962 		end_io_acct(io);
963 		free_io(md, io);
964 
965 		if (io_error == BLK_STS_DM_REQUEUE)
966 			return;
967 
968 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
969 			/*
970 			 * Preflush done for flush with data, reissue
971 			 * without REQ_PREFLUSH.
972 			 */
973 			bio->bi_opf &= ~REQ_PREFLUSH;
974 			queue_io(md, bio);
975 		} else {
976 			/* done with normal IO or empty flush */
977 			if (io_error)
978 				bio->bi_status = io_error;
979 			bio_endio(bio);
980 		}
981 	}
982 }
983 
984 void disable_discard(struct mapped_device *md)
985 {
986 	struct queue_limits *limits = dm_get_queue_limits(md);
987 
988 	/* device doesn't really support DISCARD, disable it */
989 	limits->max_discard_sectors = 0;
990 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
991 }
992 
993 void disable_write_same(struct mapped_device *md)
994 {
995 	struct queue_limits *limits = dm_get_queue_limits(md);
996 
997 	/* device doesn't really support WRITE SAME, disable it */
998 	limits->max_write_same_sectors = 0;
999 }
1000 
1001 void disable_write_zeroes(struct mapped_device *md)
1002 {
1003 	struct queue_limits *limits = dm_get_queue_limits(md);
1004 
1005 	/* device doesn't really support WRITE ZEROES, disable it */
1006 	limits->max_write_zeroes_sectors = 0;
1007 }
1008 
1009 static void clone_endio(struct bio *bio)
1010 {
1011 	blk_status_t error = bio->bi_status;
1012 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1013 	struct dm_io *io = tio->io;
1014 	struct mapped_device *md = tio->io->md;
1015 	dm_endio_fn endio = tio->ti->type->end_io;
1016 
1017 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
1018 		if (bio_op(bio) == REQ_OP_DISCARD &&
1019 		    !bio->bi_disk->queue->limits.max_discard_sectors)
1020 			disable_discard(md);
1021 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1022 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
1023 			disable_write_same(md);
1024 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1025 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1026 			disable_write_zeroes(md);
1027 	}
1028 
1029 	if (endio) {
1030 		int r = endio(tio->ti, bio, &error);
1031 		switch (r) {
1032 		case DM_ENDIO_REQUEUE:
1033 			error = BLK_STS_DM_REQUEUE;
1034 			/*FALLTHRU*/
1035 		case DM_ENDIO_DONE:
1036 			break;
1037 		case DM_ENDIO_INCOMPLETE:
1038 			/* The target will handle the io */
1039 			return;
1040 		default:
1041 			DMWARN("unimplemented target endio return value: %d", r);
1042 			BUG();
1043 		}
1044 	}
1045 
1046 	free_tio(tio);
1047 	dec_pending(io, error);
1048 }
1049 
1050 /*
1051  * Return maximum size of I/O possible at the supplied sector up to the current
1052  * target boundary.
1053  */
1054 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1055 {
1056 	sector_t target_offset = dm_target_offset(ti, sector);
1057 
1058 	return ti->len - target_offset;
1059 }
1060 
1061 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1062 {
1063 	sector_t len = max_io_len_target_boundary(sector, ti);
1064 	sector_t offset, max_len;
1065 
1066 	/*
1067 	 * Does the target need to split even further?
1068 	 */
1069 	if (ti->max_io_len) {
1070 		offset = dm_target_offset(ti, sector);
1071 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1072 			max_len = sector_div(offset, ti->max_io_len);
1073 		else
1074 			max_len = offset & (ti->max_io_len - 1);
1075 		max_len = ti->max_io_len - max_len;
1076 
1077 		if (len > max_len)
1078 			len = max_len;
1079 	}
1080 
1081 	return len;
1082 }
1083 
1084 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1085 {
1086 	if (len > UINT_MAX) {
1087 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1088 		      (unsigned long long)len, UINT_MAX);
1089 		ti->error = "Maximum size of target IO is too large";
1090 		return -EINVAL;
1091 	}
1092 
1093 	ti->max_io_len = (uint32_t) len;
1094 
1095 	return 0;
1096 }
1097 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1098 
1099 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1100 						sector_t sector, int *srcu_idx)
1101 	__acquires(md->io_barrier)
1102 {
1103 	struct dm_table *map;
1104 	struct dm_target *ti;
1105 
1106 	map = dm_get_live_table(md, srcu_idx);
1107 	if (!map)
1108 		return NULL;
1109 
1110 	ti = dm_table_find_target(map, sector);
1111 	if (!ti)
1112 		return NULL;
1113 
1114 	return ti;
1115 }
1116 
1117 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1118 				 long nr_pages, void **kaddr, pfn_t *pfn)
1119 {
1120 	struct mapped_device *md = dax_get_private(dax_dev);
1121 	sector_t sector = pgoff * PAGE_SECTORS;
1122 	struct dm_target *ti;
1123 	long len, ret = -EIO;
1124 	int srcu_idx;
1125 
1126 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1127 
1128 	if (!ti)
1129 		goto out;
1130 	if (!ti->type->direct_access)
1131 		goto out;
1132 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1133 	if (len < 1)
1134 		goto out;
1135 	nr_pages = min(len, nr_pages);
1136 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1137 
1138  out:
1139 	dm_put_live_table(md, srcu_idx);
1140 
1141 	return ret;
1142 }
1143 
1144 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1145 		int blocksize, sector_t start, sector_t len)
1146 {
1147 	struct mapped_device *md = dax_get_private(dax_dev);
1148 	struct dm_table *map;
1149 	int srcu_idx;
1150 	bool ret;
1151 
1152 	map = dm_get_live_table(md, &srcu_idx);
1153 	if (!map)
1154 		return false;
1155 
1156 	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1157 
1158 	dm_put_live_table(md, srcu_idx);
1159 
1160 	return ret;
1161 }
1162 
1163 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1164 				    void *addr, size_t bytes, struct iov_iter *i)
1165 {
1166 	struct mapped_device *md = dax_get_private(dax_dev);
1167 	sector_t sector = pgoff * PAGE_SECTORS;
1168 	struct dm_target *ti;
1169 	long ret = 0;
1170 	int srcu_idx;
1171 
1172 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1173 
1174 	if (!ti)
1175 		goto out;
1176 	if (!ti->type->dax_copy_from_iter) {
1177 		ret = copy_from_iter(addr, bytes, i);
1178 		goto out;
1179 	}
1180 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1181  out:
1182 	dm_put_live_table(md, srcu_idx);
1183 
1184 	return ret;
1185 }
1186 
1187 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1188 		void *addr, size_t bytes, struct iov_iter *i)
1189 {
1190 	struct mapped_device *md = dax_get_private(dax_dev);
1191 	sector_t sector = pgoff * PAGE_SECTORS;
1192 	struct dm_target *ti;
1193 	long ret = 0;
1194 	int srcu_idx;
1195 
1196 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1197 
1198 	if (!ti)
1199 		goto out;
1200 	if (!ti->type->dax_copy_to_iter) {
1201 		ret = copy_to_iter(addr, bytes, i);
1202 		goto out;
1203 	}
1204 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1205  out:
1206 	dm_put_live_table(md, srcu_idx);
1207 
1208 	return ret;
1209 }
1210 
1211 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1212 				  size_t nr_pages)
1213 {
1214 	struct mapped_device *md = dax_get_private(dax_dev);
1215 	sector_t sector = pgoff * PAGE_SECTORS;
1216 	struct dm_target *ti;
1217 	int ret = -EIO;
1218 	int srcu_idx;
1219 
1220 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1221 
1222 	if (!ti)
1223 		goto out;
1224 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1225 		/*
1226 		 * ->zero_page_range() is mandatory dax operation. If we are
1227 		 *  here, something is wrong.
1228 		 */
1229 		dm_put_live_table(md, srcu_idx);
1230 		goto out;
1231 	}
1232 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1233 
1234  out:
1235 	dm_put_live_table(md, srcu_idx);
1236 
1237 	return ret;
1238 }
1239 
1240 /*
1241  * A target may call dm_accept_partial_bio only from the map routine.  It is
1242  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1243  * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1244  *
1245  * dm_accept_partial_bio informs the dm that the target only wants to process
1246  * additional n_sectors sectors of the bio and the rest of the data should be
1247  * sent in a next bio.
1248  *
1249  * A diagram that explains the arithmetics:
1250  * +--------------------+---------------+-------+
1251  * |         1          |       2       |   3   |
1252  * +--------------------+---------------+-------+
1253  *
1254  * <-------------- *tio->len_ptr --------------->
1255  *                      <------- bi_size ------->
1256  *                      <-- n_sectors -->
1257  *
1258  * Region 1 was already iterated over with bio_advance or similar function.
1259  *	(it may be empty if the target doesn't use bio_advance)
1260  * Region 2 is the remaining bio size that the target wants to process.
1261  *	(it may be empty if region 1 is non-empty, although there is no reason
1262  *	 to make it empty)
1263  * The target requires that region 3 is to be sent in the next bio.
1264  *
1265  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1266  * the partially processed part (the sum of regions 1+2) must be the same for all
1267  * copies of the bio.
1268  */
1269 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1270 {
1271 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1272 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1273 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1274 	BUG_ON(bi_size > *tio->len_ptr);
1275 	BUG_ON(n_sectors > bi_size);
1276 	*tio->len_ptr -= bi_size - n_sectors;
1277 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1278 }
1279 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1280 
1281 static blk_qc_t __map_bio(struct dm_target_io *tio)
1282 {
1283 	int r;
1284 	sector_t sector;
1285 	struct bio *clone = &tio->clone;
1286 	struct dm_io *io = tio->io;
1287 	struct mapped_device *md = io->md;
1288 	struct dm_target *ti = tio->ti;
1289 	blk_qc_t ret = BLK_QC_T_NONE;
1290 
1291 	clone->bi_end_io = clone_endio;
1292 
1293 	/*
1294 	 * Map the clone.  If r == 0 we don't need to do
1295 	 * anything, the target has assumed ownership of
1296 	 * this io.
1297 	 */
1298 	atomic_inc(&io->io_count);
1299 	sector = clone->bi_iter.bi_sector;
1300 
1301 	r = ti->type->map(ti, clone);
1302 	switch (r) {
1303 	case DM_MAPIO_SUBMITTED:
1304 		break;
1305 	case DM_MAPIO_REMAPPED:
1306 		/* the bio has been remapped so dispatch it */
1307 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1308 				      bio_dev(io->orig_bio), sector);
1309 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1310 			ret = direct_make_request(clone);
1311 		else
1312 			ret = generic_make_request(clone);
1313 		break;
1314 	case DM_MAPIO_KILL:
1315 		free_tio(tio);
1316 		dec_pending(io, BLK_STS_IOERR);
1317 		break;
1318 	case DM_MAPIO_REQUEUE:
1319 		free_tio(tio);
1320 		dec_pending(io, BLK_STS_DM_REQUEUE);
1321 		break;
1322 	default:
1323 		DMWARN("unimplemented target map return value: %d", r);
1324 		BUG();
1325 	}
1326 
1327 	return ret;
1328 }
1329 
1330 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1331 {
1332 	bio->bi_iter.bi_sector = sector;
1333 	bio->bi_iter.bi_size = to_bytes(len);
1334 }
1335 
1336 /*
1337  * Creates a bio that consists of range of complete bvecs.
1338  */
1339 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1340 		     sector_t sector, unsigned len)
1341 {
1342 	struct bio *clone = &tio->clone;
1343 
1344 	__bio_clone_fast(clone, bio);
1345 
1346 	if (bio_integrity(bio)) {
1347 		int r;
1348 
1349 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1350 			     !dm_target_passes_integrity(tio->ti->type))) {
1351 			DMWARN("%s: the target %s doesn't support integrity data.",
1352 				dm_device_name(tio->io->md),
1353 				tio->ti->type->name);
1354 			return -EIO;
1355 		}
1356 
1357 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1358 		if (r < 0)
1359 			return r;
1360 	}
1361 
1362 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1363 	clone->bi_iter.bi_size = to_bytes(len);
1364 
1365 	if (bio_integrity(bio))
1366 		bio_integrity_trim(clone);
1367 
1368 	return 0;
1369 }
1370 
1371 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1372 				struct dm_target *ti, unsigned num_bios)
1373 {
1374 	struct dm_target_io *tio;
1375 	int try;
1376 
1377 	if (!num_bios)
1378 		return;
1379 
1380 	if (num_bios == 1) {
1381 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1382 		bio_list_add(blist, &tio->clone);
1383 		return;
1384 	}
1385 
1386 	for (try = 0; try < 2; try++) {
1387 		int bio_nr;
1388 		struct bio *bio;
1389 
1390 		if (try)
1391 			mutex_lock(&ci->io->md->table_devices_lock);
1392 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1393 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1394 			if (!tio)
1395 				break;
1396 
1397 			bio_list_add(blist, &tio->clone);
1398 		}
1399 		if (try)
1400 			mutex_unlock(&ci->io->md->table_devices_lock);
1401 		if (bio_nr == num_bios)
1402 			return;
1403 
1404 		while ((bio = bio_list_pop(blist))) {
1405 			tio = container_of(bio, struct dm_target_io, clone);
1406 			free_tio(tio);
1407 		}
1408 	}
1409 }
1410 
1411 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1412 					   struct dm_target_io *tio, unsigned *len)
1413 {
1414 	struct bio *clone = &tio->clone;
1415 
1416 	tio->len_ptr = len;
1417 
1418 	__bio_clone_fast(clone, ci->bio);
1419 	if (len)
1420 		bio_setup_sector(clone, ci->sector, *len);
1421 
1422 	return __map_bio(tio);
1423 }
1424 
1425 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1426 				  unsigned num_bios, unsigned *len)
1427 {
1428 	struct bio_list blist = BIO_EMPTY_LIST;
1429 	struct bio *bio;
1430 	struct dm_target_io *tio;
1431 
1432 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1433 
1434 	while ((bio = bio_list_pop(&blist))) {
1435 		tio = container_of(bio, struct dm_target_io, clone);
1436 		(void) __clone_and_map_simple_bio(ci, tio, len);
1437 	}
1438 }
1439 
1440 static int __send_empty_flush(struct clone_info *ci)
1441 {
1442 	unsigned target_nr = 0;
1443 	struct dm_target *ti;
1444 
1445 	/*
1446 	 * Empty flush uses a statically initialized bio, as the base for
1447 	 * cloning.  However, blkg association requires that a bdev is
1448 	 * associated with a gendisk, which doesn't happen until the bdev is
1449 	 * opened.  So, blkg association is done at issue time of the flush
1450 	 * rather than when the device is created in alloc_dev().
1451 	 */
1452 	bio_set_dev(ci->bio, ci->io->md->bdev);
1453 
1454 	BUG_ON(bio_has_data(ci->bio));
1455 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1456 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1457 
1458 	bio_disassociate_blkg(ci->bio);
1459 
1460 	return 0;
1461 }
1462 
1463 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1464 				    sector_t sector, unsigned *len)
1465 {
1466 	struct bio *bio = ci->bio;
1467 	struct dm_target_io *tio;
1468 	int r;
1469 
1470 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1471 	tio->len_ptr = len;
1472 	r = clone_bio(tio, bio, sector, *len);
1473 	if (r < 0) {
1474 		free_tio(tio);
1475 		return r;
1476 	}
1477 	(void) __map_bio(tio);
1478 
1479 	return 0;
1480 }
1481 
1482 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1483 
1484 static unsigned get_num_discard_bios(struct dm_target *ti)
1485 {
1486 	return ti->num_discard_bios;
1487 }
1488 
1489 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1490 {
1491 	return ti->num_secure_erase_bios;
1492 }
1493 
1494 static unsigned get_num_write_same_bios(struct dm_target *ti)
1495 {
1496 	return ti->num_write_same_bios;
1497 }
1498 
1499 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1500 {
1501 	return ti->num_write_zeroes_bios;
1502 }
1503 
1504 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1505 				       unsigned num_bios)
1506 {
1507 	unsigned len;
1508 
1509 	/*
1510 	 * Even though the device advertised support for this type of
1511 	 * request, that does not mean every target supports it, and
1512 	 * reconfiguration might also have changed that since the
1513 	 * check was performed.
1514 	 */
1515 	if (!num_bios)
1516 		return -EOPNOTSUPP;
1517 
1518 	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1519 
1520 	__send_duplicate_bios(ci, ti, num_bios, &len);
1521 
1522 	ci->sector += len;
1523 	ci->sector_count -= len;
1524 
1525 	return 0;
1526 }
1527 
1528 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1529 {
1530 	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1531 }
1532 
1533 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1534 {
1535 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1536 }
1537 
1538 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1539 {
1540 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1541 }
1542 
1543 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1544 {
1545 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1546 }
1547 
1548 static bool is_abnormal_io(struct bio *bio)
1549 {
1550 	bool r = false;
1551 
1552 	switch (bio_op(bio)) {
1553 	case REQ_OP_DISCARD:
1554 	case REQ_OP_SECURE_ERASE:
1555 	case REQ_OP_WRITE_SAME:
1556 	case REQ_OP_WRITE_ZEROES:
1557 		r = true;
1558 		break;
1559 	}
1560 
1561 	return r;
1562 }
1563 
1564 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1565 				  int *result)
1566 {
1567 	struct bio *bio = ci->bio;
1568 
1569 	if (bio_op(bio) == REQ_OP_DISCARD)
1570 		*result = __send_discard(ci, ti);
1571 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1572 		*result = __send_secure_erase(ci, ti);
1573 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1574 		*result = __send_write_same(ci, ti);
1575 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1576 		*result = __send_write_zeroes(ci, ti);
1577 	else
1578 		return false;
1579 
1580 	return true;
1581 }
1582 
1583 /*
1584  * Select the correct strategy for processing a non-flush bio.
1585  */
1586 static int __split_and_process_non_flush(struct clone_info *ci)
1587 {
1588 	struct dm_target *ti;
1589 	unsigned len;
1590 	int r;
1591 
1592 	ti = dm_table_find_target(ci->map, ci->sector);
1593 	if (!ti)
1594 		return -EIO;
1595 
1596 	if (__process_abnormal_io(ci, ti, &r))
1597 		return r;
1598 
1599 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1600 
1601 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1602 	if (r < 0)
1603 		return r;
1604 
1605 	ci->sector += len;
1606 	ci->sector_count -= len;
1607 
1608 	return 0;
1609 }
1610 
1611 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1612 			    struct dm_table *map, struct bio *bio)
1613 {
1614 	ci->map = map;
1615 	ci->io = alloc_io(md, bio);
1616 	ci->sector = bio->bi_iter.bi_sector;
1617 }
1618 
1619 #define __dm_part_stat_sub(part, field, subnd)	\
1620 	(part_stat_get(part, field) -= (subnd))
1621 
1622 /*
1623  * Entry point to split a bio into clones and submit them to the targets.
1624  */
1625 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1626 					struct dm_table *map, struct bio *bio)
1627 {
1628 	struct clone_info ci;
1629 	blk_qc_t ret = BLK_QC_T_NONE;
1630 	int error = 0;
1631 
1632 	init_clone_info(&ci, md, map, bio);
1633 
1634 	if (bio->bi_opf & REQ_PREFLUSH) {
1635 		struct bio flush_bio;
1636 
1637 		/*
1638 		 * Use an on-stack bio for this, it's safe since we don't
1639 		 * need to reference it after submit. It's just used as
1640 		 * the basis for the clone(s).
1641 		 */
1642 		bio_init(&flush_bio, NULL, 0);
1643 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1644 		ci.bio = &flush_bio;
1645 		ci.sector_count = 0;
1646 		error = __send_empty_flush(&ci);
1647 		/* dec_pending submits any data associated with flush */
1648 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1649 		ci.bio = bio;
1650 		ci.sector_count = 0;
1651 		error = __split_and_process_non_flush(&ci);
1652 	} else {
1653 		ci.bio = bio;
1654 		ci.sector_count = bio_sectors(bio);
1655 		while (ci.sector_count && !error) {
1656 			error = __split_and_process_non_flush(&ci);
1657 			if (current->bio_list && ci.sector_count && !error) {
1658 				/*
1659 				 * Remainder must be passed to generic_make_request()
1660 				 * so that it gets handled *after* bios already submitted
1661 				 * have been completely processed.
1662 				 * We take a clone of the original to store in
1663 				 * ci.io->orig_bio to be used by end_io_acct() and
1664 				 * for dec_pending to use for completion handling.
1665 				 */
1666 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1667 							  GFP_NOIO, &md->queue->bio_split);
1668 				ci.io->orig_bio = b;
1669 
1670 				/*
1671 				 * Adjust IO stats for each split, otherwise upon queue
1672 				 * reentry there will be redundant IO accounting.
1673 				 * NOTE: this is a stop-gap fix, a proper fix involves
1674 				 * significant refactoring of DM core's bio splitting
1675 				 * (by eliminating DM's splitting and just using bio_split)
1676 				 */
1677 				part_stat_lock();
1678 				__dm_part_stat_sub(&dm_disk(md)->part0,
1679 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1680 				part_stat_unlock();
1681 
1682 				bio_chain(b, bio);
1683 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1684 				ret = generic_make_request(bio);
1685 				break;
1686 			}
1687 		}
1688 	}
1689 
1690 	/* drop the extra reference count */
1691 	dec_pending(ci.io, errno_to_blk_status(error));
1692 	return ret;
1693 }
1694 
1695 /*
1696  * Optimized variant of __split_and_process_bio that leverages the
1697  * fact that targets that use it do _not_ have a need to split bios.
1698  */
1699 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1700 			      struct bio *bio, struct dm_target *ti)
1701 {
1702 	struct clone_info ci;
1703 	blk_qc_t ret = BLK_QC_T_NONE;
1704 	int error = 0;
1705 
1706 	init_clone_info(&ci, md, map, bio);
1707 
1708 	if (bio->bi_opf & REQ_PREFLUSH) {
1709 		struct bio flush_bio;
1710 
1711 		/*
1712 		 * Use an on-stack bio for this, it's safe since we don't
1713 		 * need to reference it after submit. It's just used as
1714 		 * the basis for the clone(s).
1715 		 */
1716 		bio_init(&flush_bio, NULL, 0);
1717 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1718 		ci.bio = &flush_bio;
1719 		ci.sector_count = 0;
1720 		error = __send_empty_flush(&ci);
1721 		/* dec_pending submits any data associated with flush */
1722 	} else {
1723 		struct dm_target_io *tio;
1724 
1725 		ci.bio = bio;
1726 		ci.sector_count = bio_sectors(bio);
1727 		if (__process_abnormal_io(&ci, ti, &error))
1728 			goto out;
1729 
1730 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1731 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1732 	}
1733 out:
1734 	/* drop the extra reference count */
1735 	dec_pending(ci.io, errno_to_blk_status(error));
1736 	return ret;
1737 }
1738 
1739 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1740 {
1741 	unsigned len, sector_count;
1742 
1743 	sector_count = bio_sectors(*bio);
1744 	len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1745 
1746 	if (sector_count > len) {
1747 		struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1748 
1749 		bio_chain(split, *bio);
1750 		trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1751 		generic_make_request(*bio);
1752 		*bio = split;
1753 	}
1754 }
1755 
1756 static blk_qc_t dm_process_bio(struct mapped_device *md,
1757 			       struct dm_table *map, struct bio *bio)
1758 {
1759 	blk_qc_t ret = BLK_QC_T_NONE;
1760 	struct dm_target *ti = md->immutable_target;
1761 
1762 	if (unlikely(!map)) {
1763 		bio_io_error(bio);
1764 		return ret;
1765 	}
1766 
1767 	if (!ti) {
1768 		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1769 		if (unlikely(!ti)) {
1770 			bio_io_error(bio);
1771 			return ret;
1772 		}
1773 	}
1774 
1775 	/*
1776 	 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1777 	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1778 	 * won't be imposed.
1779 	 */
1780 	if (current->bio_list) {
1781 		if (is_abnormal_io(bio))
1782 			blk_queue_split(md->queue, &bio);
1783 		else
1784 			dm_queue_split(md, ti, &bio);
1785 	}
1786 
1787 	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1788 		return __process_bio(md, map, bio, ti);
1789 	else
1790 		return __split_and_process_bio(md, map, bio);
1791 }
1792 
1793 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1794 {
1795 	struct mapped_device *md = q->queuedata;
1796 	blk_qc_t ret = BLK_QC_T_NONE;
1797 	int srcu_idx;
1798 	struct dm_table *map;
1799 
1800 	map = dm_get_live_table(md, &srcu_idx);
1801 
1802 	/* if we're suspended, we have to queue this io for later */
1803 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1804 		dm_put_live_table(md, srcu_idx);
1805 
1806 		if (!(bio->bi_opf & REQ_RAHEAD))
1807 			queue_io(md, bio);
1808 		else
1809 			bio_io_error(bio);
1810 		return ret;
1811 	}
1812 
1813 	ret = dm_process_bio(md, map, bio);
1814 
1815 	dm_put_live_table(md, srcu_idx);
1816 	return ret;
1817 }
1818 
1819 static int dm_any_congested(void *congested_data, int bdi_bits)
1820 {
1821 	int r = bdi_bits;
1822 	struct mapped_device *md = congested_data;
1823 	struct dm_table *map;
1824 
1825 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1826 		if (dm_request_based(md)) {
1827 			/*
1828 			 * With request-based DM we only need to check the
1829 			 * top-level queue for congestion.
1830 			 */
1831 			struct backing_dev_info *bdi = md->queue->backing_dev_info;
1832 			r = bdi->wb.congested->state & bdi_bits;
1833 		} else {
1834 			map = dm_get_live_table_fast(md);
1835 			if (map)
1836 				r = dm_table_any_congested(map, bdi_bits);
1837 			dm_put_live_table_fast(md);
1838 		}
1839 	}
1840 
1841 	return r;
1842 }
1843 
1844 /*-----------------------------------------------------------------
1845  * An IDR is used to keep track of allocated minor numbers.
1846  *---------------------------------------------------------------*/
1847 static void free_minor(int minor)
1848 {
1849 	spin_lock(&_minor_lock);
1850 	idr_remove(&_minor_idr, minor);
1851 	spin_unlock(&_minor_lock);
1852 }
1853 
1854 /*
1855  * See if the device with a specific minor # is free.
1856  */
1857 static int specific_minor(int minor)
1858 {
1859 	int r;
1860 
1861 	if (minor >= (1 << MINORBITS))
1862 		return -EINVAL;
1863 
1864 	idr_preload(GFP_KERNEL);
1865 	spin_lock(&_minor_lock);
1866 
1867 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1868 
1869 	spin_unlock(&_minor_lock);
1870 	idr_preload_end();
1871 	if (r < 0)
1872 		return r == -ENOSPC ? -EBUSY : r;
1873 	return 0;
1874 }
1875 
1876 static int next_free_minor(int *minor)
1877 {
1878 	int r;
1879 
1880 	idr_preload(GFP_KERNEL);
1881 	spin_lock(&_minor_lock);
1882 
1883 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1884 
1885 	spin_unlock(&_minor_lock);
1886 	idr_preload_end();
1887 	if (r < 0)
1888 		return r;
1889 	*minor = r;
1890 	return 0;
1891 }
1892 
1893 static const struct block_device_operations dm_blk_dops;
1894 static const struct dax_operations dm_dax_ops;
1895 
1896 static void dm_wq_work(struct work_struct *work);
1897 
1898 static void cleanup_mapped_device(struct mapped_device *md)
1899 {
1900 	if (md->wq)
1901 		destroy_workqueue(md->wq);
1902 	bioset_exit(&md->bs);
1903 	bioset_exit(&md->io_bs);
1904 
1905 	if (md->dax_dev) {
1906 		kill_dax(md->dax_dev);
1907 		put_dax(md->dax_dev);
1908 		md->dax_dev = NULL;
1909 	}
1910 
1911 	if (md->disk) {
1912 		spin_lock(&_minor_lock);
1913 		md->disk->private_data = NULL;
1914 		spin_unlock(&_minor_lock);
1915 		del_gendisk(md->disk);
1916 		put_disk(md->disk);
1917 	}
1918 
1919 	if (md->queue)
1920 		blk_cleanup_queue(md->queue);
1921 
1922 	cleanup_srcu_struct(&md->io_barrier);
1923 
1924 	if (md->bdev) {
1925 		bdput(md->bdev);
1926 		md->bdev = NULL;
1927 	}
1928 
1929 	mutex_destroy(&md->suspend_lock);
1930 	mutex_destroy(&md->type_lock);
1931 	mutex_destroy(&md->table_devices_lock);
1932 
1933 	dm_mq_cleanup_mapped_device(md);
1934 }
1935 
1936 /*
1937  * Allocate and initialise a blank device with a given minor.
1938  */
1939 static struct mapped_device *alloc_dev(int minor)
1940 {
1941 	int r, numa_node_id = dm_get_numa_node();
1942 	struct mapped_device *md;
1943 	void *old_md;
1944 
1945 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1946 	if (!md) {
1947 		DMWARN("unable to allocate device, out of memory.");
1948 		return NULL;
1949 	}
1950 
1951 	if (!try_module_get(THIS_MODULE))
1952 		goto bad_module_get;
1953 
1954 	/* get a minor number for the dev */
1955 	if (minor == DM_ANY_MINOR)
1956 		r = next_free_minor(&minor);
1957 	else
1958 		r = specific_minor(minor);
1959 	if (r < 0)
1960 		goto bad_minor;
1961 
1962 	r = init_srcu_struct(&md->io_barrier);
1963 	if (r < 0)
1964 		goto bad_io_barrier;
1965 
1966 	md->numa_node_id = numa_node_id;
1967 	md->init_tio_pdu = false;
1968 	md->type = DM_TYPE_NONE;
1969 	mutex_init(&md->suspend_lock);
1970 	mutex_init(&md->type_lock);
1971 	mutex_init(&md->table_devices_lock);
1972 	spin_lock_init(&md->deferred_lock);
1973 	atomic_set(&md->holders, 1);
1974 	atomic_set(&md->open_count, 0);
1975 	atomic_set(&md->event_nr, 0);
1976 	atomic_set(&md->uevent_seq, 0);
1977 	INIT_LIST_HEAD(&md->uevent_list);
1978 	INIT_LIST_HEAD(&md->table_devices);
1979 	spin_lock_init(&md->uevent_lock);
1980 
1981 	/*
1982 	 * default to bio-based required ->make_request_fn until DM
1983 	 * table is loaded and md->type established. If request-based
1984 	 * table is loaded: blk-mq will override accordingly.
1985 	 */
1986 	md->queue = blk_alloc_queue(dm_make_request, numa_node_id);
1987 	if (!md->queue)
1988 		goto bad;
1989 	md->queue->queuedata = md;
1990 
1991 	md->disk = alloc_disk_node(1, md->numa_node_id);
1992 	if (!md->disk)
1993 		goto bad;
1994 
1995 	init_waitqueue_head(&md->wait);
1996 	INIT_WORK(&md->work, dm_wq_work);
1997 	init_waitqueue_head(&md->eventq);
1998 	init_completion(&md->kobj_holder.completion);
1999 
2000 	md->disk->major = _major;
2001 	md->disk->first_minor = minor;
2002 	md->disk->fops = &dm_blk_dops;
2003 	md->disk->queue = md->queue;
2004 	md->disk->private_data = md;
2005 	sprintf(md->disk->disk_name, "dm-%d", minor);
2006 
2007 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
2008 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
2009 					&dm_dax_ops, 0);
2010 		if (IS_ERR(md->dax_dev))
2011 			goto bad;
2012 	}
2013 
2014 	add_disk_no_queue_reg(md->disk);
2015 	format_dev_t(md->name, MKDEV(_major, minor));
2016 
2017 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2018 	if (!md->wq)
2019 		goto bad;
2020 
2021 	md->bdev = bdget_disk(md->disk, 0);
2022 	if (!md->bdev)
2023 		goto bad;
2024 
2025 	dm_stats_init(&md->stats);
2026 
2027 	/* Populate the mapping, nobody knows we exist yet */
2028 	spin_lock(&_minor_lock);
2029 	old_md = idr_replace(&_minor_idr, md, minor);
2030 	spin_unlock(&_minor_lock);
2031 
2032 	BUG_ON(old_md != MINOR_ALLOCED);
2033 
2034 	return md;
2035 
2036 bad:
2037 	cleanup_mapped_device(md);
2038 bad_io_barrier:
2039 	free_minor(minor);
2040 bad_minor:
2041 	module_put(THIS_MODULE);
2042 bad_module_get:
2043 	kvfree(md);
2044 	return NULL;
2045 }
2046 
2047 static void unlock_fs(struct mapped_device *md);
2048 
2049 static void free_dev(struct mapped_device *md)
2050 {
2051 	int minor = MINOR(disk_devt(md->disk));
2052 
2053 	unlock_fs(md);
2054 
2055 	cleanup_mapped_device(md);
2056 
2057 	free_table_devices(&md->table_devices);
2058 	dm_stats_cleanup(&md->stats);
2059 	free_minor(minor);
2060 
2061 	module_put(THIS_MODULE);
2062 	kvfree(md);
2063 }
2064 
2065 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2066 {
2067 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2068 	int ret = 0;
2069 
2070 	if (dm_table_bio_based(t)) {
2071 		/*
2072 		 * The md may already have mempools that need changing.
2073 		 * If so, reload bioset because front_pad may have changed
2074 		 * because a different table was loaded.
2075 		 */
2076 		bioset_exit(&md->bs);
2077 		bioset_exit(&md->io_bs);
2078 
2079 	} else if (bioset_initialized(&md->bs)) {
2080 		/*
2081 		 * There's no need to reload with request-based dm
2082 		 * because the size of front_pad doesn't change.
2083 		 * Note for future: If you are to reload bioset,
2084 		 * prep-ed requests in the queue may refer
2085 		 * to bio from the old bioset, so you must walk
2086 		 * through the queue to unprep.
2087 		 */
2088 		goto out;
2089 	}
2090 
2091 	BUG_ON(!p ||
2092 	       bioset_initialized(&md->bs) ||
2093 	       bioset_initialized(&md->io_bs));
2094 
2095 	ret = bioset_init_from_src(&md->bs, &p->bs);
2096 	if (ret)
2097 		goto out;
2098 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2099 	if (ret)
2100 		bioset_exit(&md->bs);
2101 out:
2102 	/* mempool bind completed, no longer need any mempools in the table */
2103 	dm_table_free_md_mempools(t);
2104 	return ret;
2105 }
2106 
2107 /*
2108  * Bind a table to the device.
2109  */
2110 static void event_callback(void *context)
2111 {
2112 	unsigned long flags;
2113 	LIST_HEAD(uevents);
2114 	struct mapped_device *md = (struct mapped_device *) context;
2115 
2116 	spin_lock_irqsave(&md->uevent_lock, flags);
2117 	list_splice_init(&md->uevent_list, &uevents);
2118 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2119 
2120 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2121 
2122 	atomic_inc(&md->event_nr);
2123 	wake_up(&md->eventq);
2124 	dm_issue_global_event();
2125 }
2126 
2127 /*
2128  * Protected by md->suspend_lock obtained by dm_swap_table().
2129  */
2130 static void __set_size(struct mapped_device *md, sector_t size)
2131 {
2132 	lockdep_assert_held(&md->suspend_lock);
2133 
2134 	set_capacity(md->disk, size);
2135 
2136 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2137 }
2138 
2139 /*
2140  * Returns old map, which caller must destroy.
2141  */
2142 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2143 			       struct queue_limits *limits)
2144 {
2145 	struct dm_table *old_map;
2146 	struct request_queue *q = md->queue;
2147 	bool request_based = dm_table_request_based(t);
2148 	sector_t size;
2149 	int ret;
2150 
2151 	lockdep_assert_held(&md->suspend_lock);
2152 
2153 	size = dm_table_get_size(t);
2154 
2155 	/*
2156 	 * Wipe any geometry if the size of the table changed.
2157 	 */
2158 	if (size != dm_get_size(md))
2159 		memset(&md->geometry, 0, sizeof(md->geometry));
2160 
2161 	__set_size(md, size);
2162 
2163 	dm_table_event_callback(t, event_callback, md);
2164 
2165 	/*
2166 	 * The queue hasn't been stopped yet, if the old table type wasn't
2167 	 * for request-based during suspension.  So stop it to prevent
2168 	 * I/O mapping before resume.
2169 	 * This must be done before setting the queue restrictions,
2170 	 * because request-based dm may be run just after the setting.
2171 	 */
2172 	if (request_based)
2173 		dm_stop_queue(q);
2174 
2175 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2176 		/*
2177 		 * Leverage the fact that request-based DM targets and
2178 		 * NVMe bio based targets are immutable singletons
2179 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2180 		 *   and __process_bio.
2181 		 */
2182 		md->immutable_target = dm_table_get_immutable_target(t);
2183 	}
2184 
2185 	ret = __bind_mempools(md, t);
2186 	if (ret) {
2187 		old_map = ERR_PTR(ret);
2188 		goto out;
2189 	}
2190 
2191 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2192 	rcu_assign_pointer(md->map, (void *)t);
2193 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2194 
2195 	dm_table_set_restrictions(t, q, limits);
2196 	if (old_map)
2197 		dm_sync_table(md);
2198 
2199 out:
2200 	return old_map;
2201 }
2202 
2203 /*
2204  * Returns unbound table for the caller to free.
2205  */
2206 static struct dm_table *__unbind(struct mapped_device *md)
2207 {
2208 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2209 
2210 	if (!map)
2211 		return NULL;
2212 
2213 	dm_table_event_callback(map, NULL, NULL);
2214 	RCU_INIT_POINTER(md->map, NULL);
2215 	dm_sync_table(md);
2216 
2217 	return map;
2218 }
2219 
2220 /*
2221  * Constructor for a new device.
2222  */
2223 int dm_create(int minor, struct mapped_device **result)
2224 {
2225 	int r;
2226 	struct mapped_device *md;
2227 
2228 	md = alloc_dev(minor);
2229 	if (!md)
2230 		return -ENXIO;
2231 
2232 	r = dm_sysfs_init(md);
2233 	if (r) {
2234 		free_dev(md);
2235 		return r;
2236 	}
2237 
2238 	*result = md;
2239 	return 0;
2240 }
2241 
2242 /*
2243  * Functions to manage md->type.
2244  * All are required to hold md->type_lock.
2245  */
2246 void dm_lock_md_type(struct mapped_device *md)
2247 {
2248 	mutex_lock(&md->type_lock);
2249 }
2250 
2251 void dm_unlock_md_type(struct mapped_device *md)
2252 {
2253 	mutex_unlock(&md->type_lock);
2254 }
2255 
2256 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2257 {
2258 	BUG_ON(!mutex_is_locked(&md->type_lock));
2259 	md->type = type;
2260 }
2261 
2262 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2263 {
2264 	return md->type;
2265 }
2266 
2267 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2268 {
2269 	return md->immutable_target_type;
2270 }
2271 
2272 /*
2273  * The queue_limits are only valid as long as you have a reference
2274  * count on 'md'.
2275  */
2276 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2277 {
2278 	BUG_ON(!atomic_read(&md->holders));
2279 	return &md->queue->limits;
2280 }
2281 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2282 
2283 static void dm_init_congested_fn(struct mapped_device *md)
2284 {
2285 	md->queue->backing_dev_info->congested_data = md;
2286 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
2287 }
2288 
2289 /*
2290  * Setup the DM device's queue based on md's type
2291  */
2292 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2293 {
2294 	int r;
2295 	struct queue_limits limits;
2296 	enum dm_queue_mode type = dm_get_md_type(md);
2297 
2298 	switch (type) {
2299 	case DM_TYPE_REQUEST_BASED:
2300 		r = dm_mq_init_request_queue(md, t);
2301 		if (r) {
2302 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2303 			return r;
2304 		}
2305 		dm_init_congested_fn(md);
2306 		break;
2307 	case DM_TYPE_BIO_BASED:
2308 	case DM_TYPE_DAX_BIO_BASED:
2309 	case DM_TYPE_NVME_BIO_BASED:
2310 		dm_init_congested_fn(md);
2311 		break;
2312 	case DM_TYPE_NONE:
2313 		WARN_ON_ONCE(true);
2314 		break;
2315 	}
2316 
2317 	r = dm_calculate_queue_limits(t, &limits);
2318 	if (r) {
2319 		DMERR("Cannot calculate initial queue limits");
2320 		return r;
2321 	}
2322 	dm_table_set_restrictions(t, md->queue, &limits);
2323 	blk_register_queue(md->disk);
2324 
2325 	return 0;
2326 }
2327 
2328 struct mapped_device *dm_get_md(dev_t dev)
2329 {
2330 	struct mapped_device *md;
2331 	unsigned minor = MINOR(dev);
2332 
2333 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2334 		return NULL;
2335 
2336 	spin_lock(&_minor_lock);
2337 
2338 	md = idr_find(&_minor_idr, minor);
2339 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2340 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2341 		md = NULL;
2342 		goto out;
2343 	}
2344 	dm_get(md);
2345 out:
2346 	spin_unlock(&_minor_lock);
2347 
2348 	return md;
2349 }
2350 EXPORT_SYMBOL_GPL(dm_get_md);
2351 
2352 void *dm_get_mdptr(struct mapped_device *md)
2353 {
2354 	return md->interface_ptr;
2355 }
2356 
2357 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2358 {
2359 	md->interface_ptr = ptr;
2360 }
2361 
2362 void dm_get(struct mapped_device *md)
2363 {
2364 	atomic_inc(&md->holders);
2365 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2366 }
2367 
2368 int dm_hold(struct mapped_device *md)
2369 {
2370 	spin_lock(&_minor_lock);
2371 	if (test_bit(DMF_FREEING, &md->flags)) {
2372 		spin_unlock(&_minor_lock);
2373 		return -EBUSY;
2374 	}
2375 	dm_get(md);
2376 	spin_unlock(&_minor_lock);
2377 	return 0;
2378 }
2379 EXPORT_SYMBOL_GPL(dm_hold);
2380 
2381 const char *dm_device_name(struct mapped_device *md)
2382 {
2383 	return md->name;
2384 }
2385 EXPORT_SYMBOL_GPL(dm_device_name);
2386 
2387 static void __dm_destroy(struct mapped_device *md, bool wait)
2388 {
2389 	struct dm_table *map;
2390 	int srcu_idx;
2391 
2392 	might_sleep();
2393 
2394 	spin_lock(&_minor_lock);
2395 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2396 	set_bit(DMF_FREEING, &md->flags);
2397 	spin_unlock(&_minor_lock);
2398 
2399 	blk_set_queue_dying(md->queue);
2400 
2401 	/*
2402 	 * Take suspend_lock so that presuspend and postsuspend methods
2403 	 * do not race with internal suspend.
2404 	 */
2405 	mutex_lock(&md->suspend_lock);
2406 	map = dm_get_live_table(md, &srcu_idx);
2407 	if (!dm_suspended_md(md)) {
2408 		dm_table_presuspend_targets(map);
2409 		set_bit(DMF_SUSPENDED, &md->flags);
2410 		dm_table_postsuspend_targets(map);
2411 	}
2412 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2413 	dm_put_live_table(md, srcu_idx);
2414 	mutex_unlock(&md->suspend_lock);
2415 
2416 	/*
2417 	 * Rare, but there may be I/O requests still going to complete,
2418 	 * for example.  Wait for all references to disappear.
2419 	 * No one should increment the reference count of the mapped_device,
2420 	 * after the mapped_device state becomes DMF_FREEING.
2421 	 */
2422 	if (wait)
2423 		while (atomic_read(&md->holders))
2424 			msleep(1);
2425 	else if (atomic_read(&md->holders))
2426 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2427 		       dm_device_name(md), atomic_read(&md->holders));
2428 
2429 	dm_sysfs_exit(md);
2430 	dm_table_destroy(__unbind(md));
2431 	free_dev(md);
2432 }
2433 
2434 void dm_destroy(struct mapped_device *md)
2435 {
2436 	__dm_destroy(md, true);
2437 }
2438 
2439 void dm_destroy_immediate(struct mapped_device *md)
2440 {
2441 	__dm_destroy(md, false);
2442 }
2443 
2444 void dm_put(struct mapped_device *md)
2445 {
2446 	atomic_dec(&md->holders);
2447 }
2448 EXPORT_SYMBOL_GPL(dm_put);
2449 
2450 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2451 {
2452 	int r = 0;
2453 	DEFINE_WAIT(wait);
2454 
2455 	while (1) {
2456 		prepare_to_wait(&md->wait, &wait, task_state);
2457 
2458 		if (!md_in_flight(md))
2459 			break;
2460 
2461 		if (signal_pending_state(task_state, current)) {
2462 			r = -EINTR;
2463 			break;
2464 		}
2465 
2466 		io_schedule();
2467 	}
2468 	finish_wait(&md->wait, &wait);
2469 
2470 	return r;
2471 }
2472 
2473 /*
2474  * Process the deferred bios
2475  */
2476 static void dm_wq_work(struct work_struct *work)
2477 {
2478 	struct mapped_device *md = container_of(work, struct mapped_device,
2479 						work);
2480 	struct bio *c;
2481 	int srcu_idx;
2482 	struct dm_table *map;
2483 
2484 	map = dm_get_live_table(md, &srcu_idx);
2485 
2486 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2487 		spin_lock_irq(&md->deferred_lock);
2488 		c = bio_list_pop(&md->deferred);
2489 		spin_unlock_irq(&md->deferred_lock);
2490 
2491 		if (!c)
2492 			break;
2493 
2494 		if (dm_request_based(md))
2495 			(void) generic_make_request(c);
2496 		else
2497 			(void) dm_process_bio(md, map, c);
2498 	}
2499 
2500 	dm_put_live_table(md, srcu_idx);
2501 }
2502 
2503 static void dm_queue_flush(struct mapped_device *md)
2504 {
2505 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2506 	smp_mb__after_atomic();
2507 	queue_work(md->wq, &md->work);
2508 }
2509 
2510 /*
2511  * Swap in a new table, returning the old one for the caller to destroy.
2512  */
2513 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2514 {
2515 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2516 	struct queue_limits limits;
2517 	int r;
2518 
2519 	mutex_lock(&md->suspend_lock);
2520 
2521 	/* device must be suspended */
2522 	if (!dm_suspended_md(md))
2523 		goto out;
2524 
2525 	/*
2526 	 * If the new table has no data devices, retain the existing limits.
2527 	 * This helps multipath with queue_if_no_path if all paths disappear,
2528 	 * then new I/O is queued based on these limits, and then some paths
2529 	 * reappear.
2530 	 */
2531 	if (dm_table_has_no_data_devices(table)) {
2532 		live_map = dm_get_live_table_fast(md);
2533 		if (live_map)
2534 			limits = md->queue->limits;
2535 		dm_put_live_table_fast(md);
2536 	}
2537 
2538 	if (!live_map) {
2539 		r = dm_calculate_queue_limits(table, &limits);
2540 		if (r) {
2541 			map = ERR_PTR(r);
2542 			goto out;
2543 		}
2544 	}
2545 
2546 	map = __bind(md, table, &limits);
2547 	dm_issue_global_event();
2548 
2549 out:
2550 	mutex_unlock(&md->suspend_lock);
2551 	return map;
2552 }
2553 
2554 /*
2555  * Functions to lock and unlock any filesystem running on the
2556  * device.
2557  */
2558 static int lock_fs(struct mapped_device *md)
2559 {
2560 	int r;
2561 
2562 	WARN_ON(md->frozen_sb);
2563 
2564 	md->frozen_sb = freeze_bdev(md->bdev);
2565 	if (IS_ERR(md->frozen_sb)) {
2566 		r = PTR_ERR(md->frozen_sb);
2567 		md->frozen_sb = NULL;
2568 		return r;
2569 	}
2570 
2571 	set_bit(DMF_FROZEN, &md->flags);
2572 
2573 	return 0;
2574 }
2575 
2576 static void unlock_fs(struct mapped_device *md)
2577 {
2578 	if (!test_bit(DMF_FROZEN, &md->flags))
2579 		return;
2580 
2581 	thaw_bdev(md->bdev, md->frozen_sb);
2582 	md->frozen_sb = NULL;
2583 	clear_bit(DMF_FROZEN, &md->flags);
2584 }
2585 
2586 /*
2587  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2588  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2589  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2590  *
2591  * If __dm_suspend returns 0, the device is completely quiescent
2592  * now. There is no request-processing activity. All new requests
2593  * are being added to md->deferred list.
2594  */
2595 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2596 			unsigned suspend_flags, long task_state,
2597 			int dmf_suspended_flag)
2598 {
2599 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2600 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2601 	int r;
2602 
2603 	lockdep_assert_held(&md->suspend_lock);
2604 
2605 	/*
2606 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2607 	 * This flag is cleared before dm_suspend returns.
2608 	 */
2609 	if (noflush)
2610 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2611 	else
2612 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2613 
2614 	/*
2615 	 * This gets reverted if there's an error later and the targets
2616 	 * provide the .presuspend_undo hook.
2617 	 */
2618 	dm_table_presuspend_targets(map);
2619 
2620 	/*
2621 	 * Flush I/O to the device.
2622 	 * Any I/O submitted after lock_fs() may not be flushed.
2623 	 * noflush takes precedence over do_lockfs.
2624 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2625 	 */
2626 	if (!noflush && do_lockfs) {
2627 		r = lock_fs(md);
2628 		if (r) {
2629 			dm_table_presuspend_undo_targets(map);
2630 			return r;
2631 		}
2632 	}
2633 
2634 	/*
2635 	 * Here we must make sure that no processes are submitting requests
2636 	 * to target drivers i.e. no one may be executing
2637 	 * __split_and_process_bio. This is called from dm_request and
2638 	 * dm_wq_work.
2639 	 *
2640 	 * To get all processes out of __split_and_process_bio in dm_request,
2641 	 * we take the write lock. To prevent any process from reentering
2642 	 * __split_and_process_bio from dm_request and quiesce the thread
2643 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2644 	 * flush_workqueue(md->wq).
2645 	 */
2646 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2647 	if (map)
2648 		synchronize_srcu(&md->io_barrier);
2649 
2650 	/*
2651 	 * Stop md->queue before flushing md->wq in case request-based
2652 	 * dm defers requests to md->wq from md->queue.
2653 	 */
2654 	if (dm_request_based(md))
2655 		dm_stop_queue(md->queue);
2656 
2657 	flush_workqueue(md->wq);
2658 
2659 	/*
2660 	 * At this point no more requests are entering target request routines.
2661 	 * We call dm_wait_for_completion to wait for all existing requests
2662 	 * to finish.
2663 	 */
2664 	r = dm_wait_for_completion(md, task_state);
2665 	if (!r)
2666 		set_bit(dmf_suspended_flag, &md->flags);
2667 
2668 	if (noflush)
2669 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2670 	if (map)
2671 		synchronize_srcu(&md->io_barrier);
2672 
2673 	/* were we interrupted ? */
2674 	if (r < 0) {
2675 		dm_queue_flush(md);
2676 
2677 		if (dm_request_based(md))
2678 			dm_start_queue(md->queue);
2679 
2680 		unlock_fs(md);
2681 		dm_table_presuspend_undo_targets(map);
2682 		/* pushback list is already flushed, so skip flush */
2683 	}
2684 
2685 	return r;
2686 }
2687 
2688 /*
2689  * We need to be able to change a mapping table under a mounted
2690  * filesystem.  For example we might want to move some data in
2691  * the background.  Before the table can be swapped with
2692  * dm_bind_table, dm_suspend must be called to flush any in
2693  * flight bios and ensure that any further io gets deferred.
2694  */
2695 /*
2696  * Suspend mechanism in request-based dm.
2697  *
2698  * 1. Flush all I/Os by lock_fs() if needed.
2699  * 2. Stop dispatching any I/O by stopping the request_queue.
2700  * 3. Wait for all in-flight I/Os to be completed or requeued.
2701  *
2702  * To abort suspend, start the request_queue.
2703  */
2704 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2705 {
2706 	struct dm_table *map = NULL;
2707 	int r = 0;
2708 
2709 retry:
2710 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2711 
2712 	if (dm_suspended_md(md)) {
2713 		r = -EINVAL;
2714 		goto out_unlock;
2715 	}
2716 
2717 	if (dm_suspended_internally_md(md)) {
2718 		/* already internally suspended, wait for internal resume */
2719 		mutex_unlock(&md->suspend_lock);
2720 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2721 		if (r)
2722 			return r;
2723 		goto retry;
2724 	}
2725 
2726 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2727 
2728 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2729 	if (r)
2730 		goto out_unlock;
2731 
2732 	dm_table_postsuspend_targets(map);
2733 
2734 out_unlock:
2735 	mutex_unlock(&md->suspend_lock);
2736 	return r;
2737 }
2738 
2739 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2740 {
2741 	if (map) {
2742 		int r = dm_table_resume_targets(map);
2743 		if (r)
2744 			return r;
2745 	}
2746 
2747 	dm_queue_flush(md);
2748 
2749 	/*
2750 	 * Flushing deferred I/Os must be done after targets are resumed
2751 	 * so that mapping of targets can work correctly.
2752 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2753 	 */
2754 	if (dm_request_based(md))
2755 		dm_start_queue(md->queue);
2756 
2757 	unlock_fs(md);
2758 
2759 	return 0;
2760 }
2761 
2762 int dm_resume(struct mapped_device *md)
2763 {
2764 	int r;
2765 	struct dm_table *map = NULL;
2766 
2767 retry:
2768 	r = -EINVAL;
2769 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2770 
2771 	if (!dm_suspended_md(md))
2772 		goto out;
2773 
2774 	if (dm_suspended_internally_md(md)) {
2775 		/* already internally suspended, wait for internal resume */
2776 		mutex_unlock(&md->suspend_lock);
2777 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2778 		if (r)
2779 			return r;
2780 		goto retry;
2781 	}
2782 
2783 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2784 	if (!map || !dm_table_get_size(map))
2785 		goto out;
2786 
2787 	r = __dm_resume(md, map);
2788 	if (r)
2789 		goto out;
2790 
2791 	clear_bit(DMF_SUSPENDED, &md->flags);
2792 out:
2793 	mutex_unlock(&md->suspend_lock);
2794 
2795 	return r;
2796 }
2797 
2798 /*
2799  * Internal suspend/resume works like userspace-driven suspend. It waits
2800  * until all bios finish and prevents issuing new bios to the target drivers.
2801  * It may be used only from the kernel.
2802  */
2803 
2804 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2805 {
2806 	struct dm_table *map = NULL;
2807 
2808 	lockdep_assert_held(&md->suspend_lock);
2809 
2810 	if (md->internal_suspend_count++)
2811 		return; /* nested internal suspend */
2812 
2813 	if (dm_suspended_md(md)) {
2814 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2815 		return; /* nest suspend */
2816 	}
2817 
2818 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2819 
2820 	/*
2821 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2822 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2823 	 * would require changing .presuspend to return an error -- avoid this
2824 	 * until there is a need for more elaborate variants of internal suspend.
2825 	 */
2826 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2827 			    DMF_SUSPENDED_INTERNALLY);
2828 
2829 	dm_table_postsuspend_targets(map);
2830 }
2831 
2832 static void __dm_internal_resume(struct mapped_device *md)
2833 {
2834 	BUG_ON(!md->internal_suspend_count);
2835 
2836 	if (--md->internal_suspend_count)
2837 		return; /* resume from nested internal suspend */
2838 
2839 	if (dm_suspended_md(md))
2840 		goto done; /* resume from nested suspend */
2841 
2842 	/*
2843 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2844 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2845 	 */
2846 	(void) __dm_resume(md, NULL);
2847 
2848 done:
2849 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2850 	smp_mb__after_atomic();
2851 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2852 }
2853 
2854 void dm_internal_suspend_noflush(struct mapped_device *md)
2855 {
2856 	mutex_lock(&md->suspend_lock);
2857 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2858 	mutex_unlock(&md->suspend_lock);
2859 }
2860 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2861 
2862 void dm_internal_resume(struct mapped_device *md)
2863 {
2864 	mutex_lock(&md->suspend_lock);
2865 	__dm_internal_resume(md);
2866 	mutex_unlock(&md->suspend_lock);
2867 }
2868 EXPORT_SYMBOL_GPL(dm_internal_resume);
2869 
2870 /*
2871  * Fast variants of internal suspend/resume hold md->suspend_lock,
2872  * which prevents interaction with userspace-driven suspend.
2873  */
2874 
2875 void dm_internal_suspend_fast(struct mapped_device *md)
2876 {
2877 	mutex_lock(&md->suspend_lock);
2878 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2879 		return;
2880 
2881 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2882 	synchronize_srcu(&md->io_barrier);
2883 	flush_workqueue(md->wq);
2884 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2885 }
2886 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2887 
2888 void dm_internal_resume_fast(struct mapped_device *md)
2889 {
2890 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2891 		goto done;
2892 
2893 	dm_queue_flush(md);
2894 
2895 done:
2896 	mutex_unlock(&md->suspend_lock);
2897 }
2898 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2899 
2900 /*-----------------------------------------------------------------
2901  * Event notification.
2902  *---------------------------------------------------------------*/
2903 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2904 		       unsigned cookie)
2905 {
2906 	char udev_cookie[DM_COOKIE_LENGTH];
2907 	char *envp[] = { udev_cookie, NULL };
2908 
2909 	if (!cookie)
2910 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2911 	else {
2912 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2913 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2914 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2915 					  action, envp);
2916 	}
2917 }
2918 
2919 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2920 {
2921 	return atomic_add_return(1, &md->uevent_seq);
2922 }
2923 
2924 uint32_t dm_get_event_nr(struct mapped_device *md)
2925 {
2926 	return atomic_read(&md->event_nr);
2927 }
2928 
2929 int dm_wait_event(struct mapped_device *md, int event_nr)
2930 {
2931 	return wait_event_interruptible(md->eventq,
2932 			(event_nr != atomic_read(&md->event_nr)));
2933 }
2934 
2935 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2936 {
2937 	unsigned long flags;
2938 
2939 	spin_lock_irqsave(&md->uevent_lock, flags);
2940 	list_add(elist, &md->uevent_list);
2941 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2942 }
2943 
2944 /*
2945  * The gendisk is only valid as long as you have a reference
2946  * count on 'md'.
2947  */
2948 struct gendisk *dm_disk(struct mapped_device *md)
2949 {
2950 	return md->disk;
2951 }
2952 EXPORT_SYMBOL_GPL(dm_disk);
2953 
2954 struct kobject *dm_kobject(struct mapped_device *md)
2955 {
2956 	return &md->kobj_holder.kobj;
2957 }
2958 
2959 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2960 {
2961 	struct mapped_device *md;
2962 
2963 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2964 
2965 	spin_lock(&_minor_lock);
2966 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2967 		md = NULL;
2968 		goto out;
2969 	}
2970 	dm_get(md);
2971 out:
2972 	spin_unlock(&_minor_lock);
2973 
2974 	return md;
2975 }
2976 
2977 int dm_suspended_md(struct mapped_device *md)
2978 {
2979 	return test_bit(DMF_SUSPENDED, &md->flags);
2980 }
2981 
2982 int dm_suspended_internally_md(struct mapped_device *md)
2983 {
2984 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2985 }
2986 
2987 int dm_test_deferred_remove_flag(struct mapped_device *md)
2988 {
2989 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2990 }
2991 
2992 int dm_suspended(struct dm_target *ti)
2993 {
2994 	return dm_suspended_md(dm_table_get_md(ti->table));
2995 }
2996 EXPORT_SYMBOL_GPL(dm_suspended);
2997 
2998 int dm_noflush_suspending(struct dm_target *ti)
2999 {
3000 	return __noflush_suspending(dm_table_get_md(ti->table));
3001 }
3002 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3003 
3004 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
3005 					    unsigned integrity, unsigned per_io_data_size,
3006 					    unsigned min_pool_size)
3007 {
3008 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3009 	unsigned int pool_size = 0;
3010 	unsigned int front_pad, io_front_pad;
3011 	int ret;
3012 
3013 	if (!pools)
3014 		return NULL;
3015 
3016 	switch (type) {
3017 	case DM_TYPE_BIO_BASED:
3018 	case DM_TYPE_DAX_BIO_BASED:
3019 	case DM_TYPE_NVME_BIO_BASED:
3020 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3021 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3022 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3023 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3024 		if (ret)
3025 			goto out;
3026 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3027 			goto out;
3028 		break;
3029 	case DM_TYPE_REQUEST_BASED:
3030 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3031 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3032 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3033 		break;
3034 	default:
3035 		BUG();
3036 	}
3037 
3038 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3039 	if (ret)
3040 		goto out;
3041 
3042 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3043 		goto out;
3044 
3045 	return pools;
3046 
3047 out:
3048 	dm_free_md_mempools(pools);
3049 
3050 	return NULL;
3051 }
3052 
3053 void dm_free_md_mempools(struct dm_md_mempools *pools)
3054 {
3055 	if (!pools)
3056 		return;
3057 
3058 	bioset_exit(&pools->bs);
3059 	bioset_exit(&pools->io_bs);
3060 
3061 	kfree(pools);
3062 }
3063 
3064 struct dm_pr {
3065 	u64	old_key;
3066 	u64	new_key;
3067 	u32	flags;
3068 	bool	fail_early;
3069 };
3070 
3071 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3072 		      void *data)
3073 {
3074 	struct mapped_device *md = bdev->bd_disk->private_data;
3075 	struct dm_table *table;
3076 	struct dm_target *ti;
3077 	int ret = -ENOTTY, srcu_idx;
3078 
3079 	table = dm_get_live_table(md, &srcu_idx);
3080 	if (!table || !dm_table_get_size(table))
3081 		goto out;
3082 
3083 	/* We only support devices that have a single target */
3084 	if (dm_table_get_num_targets(table) != 1)
3085 		goto out;
3086 	ti = dm_table_get_target(table, 0);
3087 
3088 	ret = -EINVAL;
3089 	if (!ti->type->iterate_devices)
3090 		goto out;
3091 
3092 	ret = ti->type->iterate_devices(ti, fn, data);
3093 out:
3094 	dm_put_live_table(md, srcu_idx);
3095 	return ret;
3096 }
3097 
3098 /*
3099  * For register / unregister we need to manually call out to every path.
3100  */
3101 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3102 			    sector_t start, sector_t len, void *data)
3103 {
3104 	struct dm_pr *pr = data;
3105 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3106 
3107 	if (!ops || !ops->pr_register)
3108 		return -EOPNOTSUPP;
3109 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3110 }
3111 
3112 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3113 			  u32 flags)
3114 {
3115 	struct dm_pr pr = {
3116 		.old_key	= old_key,
3117 		.new_key	= new_key,
3118 		.flags		= flags,
3119 		.fail_early	= true,
3120 	};
3121 	int ret;
3122 
3123 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3124 	if (ret && new_key) {
3125 		/* unregister all paths if we failed to register any path */
3126 		pr.old_key = new_key;
3127 		pr.new_key = 0;
3128 		pr.flags = 0;
3129 		pr.fail_early = false;
3130 		dm_call_pr(bdev, __dm_pr_register, &pr);
3131 	}
3132 
3133 	return ret;
3134 }
3135 
3136 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3137 			 u32 flags)
3138 {
3139 	struct mapped_device *md = bdev->bd_disk->private_data;
3140 	const struct pr_ops *ops;
3141 	int r, srcu_idx;
3142 
3143 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3144 	if (r < 0)
3145 		goto out;
3146 
3147 	ops = bdev->bd_disk->fops->pr_ops;
3148 	if (ops && ops->pr_reserve)
3149 		r = ops->pr_reserve(bdev, key, type, flags);
3150 	else
3151 		r = -EOPNOTSUPP;
3152 out:
3153 	dm_unprepare_ioctl(md, srcu_idx);
3154 	return r;
3155 }
3156 
3157 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3158 {
3159 	struct mapped_device *md = bdev->bd_disk->private_data;
3160 	const struct pr_ops *ops;
3161 	int r, srcu_idx;
3162 
3163 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3164 	if (r < 0)
3165 		goto out;
3166 
3167 	ops = bdev->bd_disk->fops->pr_ops;
3168 	if (ops && ops->pr_release)
3169 		r = ops->pr_release(bdev, key, type);
3170 	else
3171 		r = -EOPNOTSUPP;
3172 out:
3173 	dm_unprepare_ioctl(md, srcu_idx);
3174 	return r;
3175 }
3176 
3177 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3178 			 enum pr_type type, bool abort)
3179 {
3180 	struct mapped_device *md = bdev->bd_disk->private_data;
3181 	const struct pr_ops *ops;
3182 	int r, srcu_idx;
3183 
3184 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3185 	if (r < 0)
3186 		goto out;
3187 
3188 	ops = bdev->bd_disk->fops->pr_ops;
3189 	if (ops && ops->pr_preempt)
3190 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3191 	else
3192 		r = -EOPNOTSUPP;
3193 out:
3194 	dm_unprepare_ioctl(md, srcu_idx);
3195 	return r;
3196 }
3197 
3198 static int dm_pr_clear(struct block_device *bdev, u64 key)
3199 {
3200 	struct mapped_device *md = bdev->bd_disk->private_data;
3201 	const struct pr_ops *ops;
3202 	int r, srcu_idx;
3203 
3204 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3205 	if (r < 0)
3206 		goto out;
3207 
3208 	ops = bdev->bd_disk->fops->pr_ops;
3209 	if (ops && ops->pr_clear)
3210 		r = ops->pr_clear(bdev, key);
3211 	else
3212 		r = -EOPNOTSUPP;
3213 out:
3214 	dm_unprepare_ioctl(md, srcu_idx);
3215 	return r;
3216 }
3217 
3218 static const struct pr_ops dm_pr_ops = {
3219 	.pr_register	= dm_pr_register,
3220 	.pr_reserve	= dm_pr_reserve,
3221 	.pr_release	= dm_pr_release,
3222 	.pr_preempt	= dm_pr_preempt,
3223 	.pr_clear	= dm_pr_clear,
3224 };
3225 
3226 static const struct block_device_operations dm_blk_dops = {
3227 	.open = dm_blk_open,
3228 	.release = dm_blk_close,
3229 	.ioctl = dm_blk_ioctl,
3230 	.getgeo = dm_blk_getgeo,
3231 	.report_zones = dm_blk_report_zones,
3232 	.pr_ops = &dm_pr_ops,
3233 	.owner = THIS_MODULE
3234 };
3235 
3236 static const struct dax_operations dm_dax_ops = {
3237 	.direct_access = dm_dax_direct_access,
3238 	.dax_supported = dm_dax_supported,
3239 	.copy_from_iter = dm_dax_copy_from_iter,
3240 	.copy_to_iter = dm_dax_copy_to_iter,
3241 	.zero_page_range = dm_dax_zero_page_range,
3242 };
3243 
3244 /*
3245  * module hooks
3246  */
3247 module_init(dm_init);
3248 module_exit(dm_exit);
3249 
3250 module_param(major, uint, 0);
3251 MODULE_PARM_DESC(major, "The major number of the device mapper");
3252 
3253 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3254 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3255 
3256 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3257 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3258 
3259 MODULE_DESCRIPTION(DM_NAME " driver");
3260 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3261 MODULE_LICENSE("GPL");
3262