1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 #include <linux/part_stat.h> 29 30 #define DM_MSG_PREFIX "core" 31 32 /* 33 * Cookies are numeric values sent with CHANGE and REMOVE 34 * uevents while resuming, removing or renaming the device. 35 */ 36 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 37 #define DM_COOKIE_LENGTH 24 38 39 static const char *_name = DM_NAME; 40 41 static unsigned int major = 0; 42 static unsigned int _major = 0; 43 44 static DEFINE_IDR(_minor_idr); 45 46 static DEFINE_SPINLOCK(_minor_lock); 47 48 static void do_deferred_remove(struct work_struct *w); 49 50 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 51 52 static struct workqueue_struct *deferred_remove_workqueue; 53 54 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 55 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 56 57 void dm_issue_global_event(void) 58 { 59 atomic_inc(&dm_global_event_nr); 60 wake_up(&dm_global_eventq); 61 } 62 63 /* 64 * One of these is allocated (on-stack) per original bio. 65 */ 66 struct clone_info { 67 struct dm_table *map; 68 struct bio *bio; 69 struct dm_io *io; 70 sector_t sector; 71 unsigned sector_count; 72 }; 73 74 /* 75 * One of these is allocated per clone bio. 76 */ 77 #define DM_TIO_MAGIC 7282014 78 struct dm_target_io { 79 unsigned magic; 80 struct dm_io *io; 81 struct dm_target *ti; 82 unsigned target_bio_nr; 83 unsigned *len_ptr; 84 bool inside_dm_io; 85 struct bio clone; 86 }; 87 88 /* 89 * One of these is allocated per original bio. 90 * It contains the first clone used for that original. 91 */ 92 #define DM_IO_MAGIC 5191977 93 struct dm_io { 94 unsigned magic; 95 struct mapped_device *md; 96 blk_status_t status; 97 atomic_t io_count; 98 struct bio *orig_bio; 99 unsigned long start_time; 100 spinlock_t endio_lock; 101 struct dm_stats_aux stats_aux; 102 /* last member of dm_target_io is 'struct bio' */ 103 struct dm_target_io tio; 104 }; 105 106 void *dm_per_bio_data(struct bio *bio, size_t data_size) 107 { 108 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 109 if (!tio->inside_dm_io) 110 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 111 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 112 } 113 EXPORT_SYMBOL_GPL(dm_per_bio_data); 114 115 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 116 { 117 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 118 if (io->magic == DM_IO_MAGIC) 119 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 120 BUG_ON(io->magic != DM_TIO_MAGIC); 121 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 122 } 123 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 124 125 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 126 { 127 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 128 } 129 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 130 131 #define MINOR_ALLOCED ((void *)-1) 132 133 /* 134 * Bits for the md->flags field. 135 */ 136 #define DMF_BLOCK_IO_FOR_SUSPEND 0 137 #define DMF_SUSPENDED 1 138 #define DMF_FROZEN 2 139 #define DMF_FREEING 3 140 #define DMF_DELETING 4 141 #define DMF_NOFLUSH_SUSPENDING 5 142 #define DMF_DEFERRED_REMOVE 6 143 #define DMF_SUSPENDED_INTERNALLY 7 144 145 #define DM_NUMA_NODE NUMA_NO_NODE 146 static int dm_numa_node = DM_NUMA_NODE; 147 148 /* 149 * For mempools pre-allocation at the table loading time. 150 */ 151 struct dm_md_mempools { 152 struct bio_set bs; 153 struct bio_set io_bs; 154 }; 155 156 struct table_device { 157 struct list_head list; 158 refcount_t count; 159 struct dm_dev dm_dev; 160 }; 161 162 /* 163 * Bio-based DM's mempools' reserved IOs set by the user. 164 */ 165 #define RESERVED_BIO_BASED_IOS 16 166 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 167 168 static int __dm_get_module_param_int(int *module_param, int min, int max) 169 { 170 int param = READ_ONCE(*module_param); 171 int modified_param = 0; 172 bool modified = true; 173 174 if (param < min) 175 modified_param = min; 176 else if (param > max) 177 modified_param = max; 178 else 179 modified = false; 180 181 if (modified) { 182 (void)cmpxchg(module_param, param, modified_param); 183 param = modified_param; 184 } 185 186 return param; 187 } 188 189 unsigned __dm_get_module_param(unsigned *module_param, 190 unsigned def, unsigned max) 191 { 192 unsigned param = READ_ONCE(*module_param); 193 unsigned modified_param = 0; 194 195 if (!param) 196 modified_param = def; 197 else if (param > max) 198 modified_param = max; 199 200 if (modified_param) { 201 (void)cmpxchg(module_param, param, modified_param); 202 param = modified_param; 203 } 204 205 return param; 206 } 207 208 unsigned dm_get_reserved_bio_based_ios(void) 209 { 210 return __dm_get_module_param(&reserved_bio_based_ios, 211 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 212 } 213 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 214 215 static unsigned dm_get_numa_node(void) 216 { 217 return __dm_get_module_param_int(&dm_numa_node, 218 DM_NUMA_NODE, num_online_nodes() - 1); 219 } 220 221 static int __init local_init(void) 222 { 223 int r; 224 225 r = dm_uevent_init(); 226 if (r) 227 return r; 228 229 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 230 if (!deferred_remove_workqueue) { 231 r = -ENOMEM; 232 goto out_uevent_exit; 233 } 234 235 _major = major; 236 r = register_blkdev(_major, _name); 237 if (r < 0) 238 goto out_free_workqueue; 239 240 if (!_major) 241 _major = r; 242 243 return 0; 244 245 out_free_workqueue: 246 destroy_workqueue(deferred_remove_workqueue); 247 out_uevent_exit: 248 dm_uevent_exit(); 249 250 return r; 251 } 252 253 static void local_exit(void) 254 { 255 flush_scheduled_work(); 256 destroy_workqueue(deferred_remove_workqueue); 257 258 unregister_blkdev(_major, _name); 259 dm_uevent_exit(); 260 261 _major = 0; 262 263 DMINFO("cleaned up"); 264 } 265 266 static int (*_inits[])(void) __initdata = { 267 local_init, 268 dm_target_init, 269 dm_linear_init, 270 dm_stripe_init, 271 dm_io_init, 272 dm_kcopyd_init, 273 dm_interface_init, 274 dm_statistics_init, 275 }; 276 277 static void (*_exits[])(void) = { 278 local_exit, 279 dm_target_exit, 280 dm_linear_exit, 281 dm_stripe_exit, 282 dm_io_exit, 283 dm_kcopyd_exit, 284 dm_interface_exit, 285 dm_statistics_exit, 286 }; 287 288 static int __init dm_init(void) 289 { 290 const int count = ARRAY_SIZE(_inits); 291 292 int r, i; 293 294 for (i = 0; i < count; i++) { 295 r = _inits[i](); 296 if (r) 297 goto bad; 298 } 299 300 return 0; 301 302 bad: 303 while (i--) 304 _exits[i](); 305 306 return r; 307 } 308 309 static void __exit dm_exit(void) 310 { 311 int i = ARRAY_SIZE(_exits); 312 313 while (i--) 314 _exits[i](); 315 316 /* 317 * Should be empty by this point. 318 */ 319 idr_destroy(&_minor_idr); 320 } 321 322 /* 323 * Block device functions 324 */ 325 int dm_deleting_md(struct mapped_device *md) 326 { 327 return test_bit(DMF_DELETING, &md->flags); 328 } 329 330 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 331 { 332 struct mapped_device *md; 333 334 spin_lock(&_minor_lock); 335 336 md = bdev->bd_disk->private_data; 337 if (!md) 338 goto out; 339 340 if (test_bit(DMF_FREEING, &md->flags) || 341 dm_deleting_md(md)) { 342 md = NULL; 343 goto out; 344 } 345 346 dm_get(md); 347 atomic_inc(&md->open_count); 348 out: 349 spin_unlock(&_minor_lock); 350 351 return md ? 0 : -ENXIO; 352 } 353 354 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 355 { 356 struct mapped_device *md; 357 358 spin_lock(&_minor_lock); 359 360 md = disk->private_data; 361 if (WARN_ON(!md)) 362 goto out; 363 364 if (atomic_dec_and_test(&md->open_count) && 365 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 366 queue_work(deferred_remove_workqueue, &deferred_remove_work); 367 368 dm_put(md); 369 out: 370 spin_unlock(&_minor_lock); 371 } 372 373 int dm_open_count(struct mapped_device *md) 374 { 375 return atomic_read(&md->open_count); 376 } 377 378 /* 379 * Guarantees nothing is using the device before it's deleted. 380 */ 381 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 382 { 383 int r = 0; 384 385 spin_lock(&_minor_lock); 386 387 if (dm_open_count(md)) { 388 r = -EBUSY; 389 if (mark_deferred) 390 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 391 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 392 r = -EEXIST; 393 else 394 set_bit(DMF_DELETING, &md->flags); 395 396 spin_unlock(&_minor_lock); 397 398 return r; 399 } 400 401 int dm_cancel_deferred_remove(struct mapped_device *md) 402 { 403 int r = 0; 404 405 spin_lock(&_minor_lock); 406 407 if (test_bit(DMF_DELETING, &md->flags)) 408 r = -EBUSY; 409 else 410 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 411 412 spin_unlock(&_minor_lock); 413 414 return r; 415 } 416 417 static void do_deferred_remove(struct work_struct *w) 418 { 419 dm_deferred_remove(); 420 } 421 422 sector_t dm_get_size(struct mapped_device *md) 423 { 424 return get_capacity(md->disk); 425 } 426 427 struct request_queue *dm_get_md_queue(struct mapped_device *md) 428 { 429 return md->queue; 430 } 431 432 struct dm_stats *dm_get_stats(struct mapped_device *md) 433 { 434 return &md->stats; 435 } 436 437 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 438 { 439 struct mapped_device *md = bdev->bd_disk->private_data; 440 441 return dm_get_geometry(md, geo); 442 } 443 444 #ifdef CONFIG_BLK_DEV_ZONED 445 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data) 446 { 447 struct dm_report_zones_args *args = data; 448 sector_t sector_diff = args->tgt->begin - args->start; 449 450 /* 451 * Ignore zones beyond the target range. 452 */ 453 if (zone->start >= args->start + args->tgt->len) 454 return 0; 455 456 /* 457 * Remap the start sector and write pointer position of the zone 458 * to match its position in the target range. 459 */ 460 zone->start += sector_diff; 461 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 462 if (zone->cond == BLK_ZONE_COND_FULL) 463 zone->wp = zone->start + zone->len; 464 else if (zone->cond == BLK_ZONE_COND_EMPTY) 465 zone->wp = zone->start; 466 else 467 zone->wp += sector_diff; 468 } 469 470 args->next_sector = zone->start + zone->len; 471 return args->orig_cb(zone, args->zone_idx++, args->orig_data); 472 } 473 EXPORT_SYMBOL_GPL(dm_report_zones_cb); 474 475 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 476 unsigned int nr_zones, report_zones_cb cb, void *data) 477 { 478 struct mapped_device *md = disk->private_data; 479 struct dm_table *map; 480 int srcu_idx, ret; 481 struct dm_report_zones_args args = { 482 .next_sector = sector, 483 .orig_data = data, 484 .orig_cb = cb, 485 }; 486 487 if (dm_suspended_md(md)) 488 return -EAGAIN; 489 490 map = dm_get_live_table(md, &srcu_idx); 491 if (!map) 492 return -EIO; 493 494 do { 495 struct dm_target *tgt; 496 497 tgt = dm_table_find_target(map, args.next_sector); 498 if (WARN_ON_ONCE(!tgt->type->report_zones)) { 499 ret = -EIO; 500 goto out; 501 } 502 503 args.tgt = tgt; 504 ret = tgt->type->report_zones(tgt, &args, nr_zones); 505 if (ret < 0) 506 goto out; 507 } while (args.zone_idx < nr_zones && 508 args.next_sector < get_capacity(disk)); 509 510 ret = args.zone_idx; 511 out: 512 dm_put_live_table(md, srcu_idx); 513 return ret; 514 } 515 #else 516 #define dm_blk_report_zones NULL 517 #endif /* CONFIG_BLK_DEV_ZONED */ 518 519 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 520 struct block_device **bdev) 521 __acquires(md->io_barrier) 522 { 523 struct dm_target *tgt; 524 struct dm_table *map; 525 int r; 526 527 retry: 528 r = -ENOTTY; 529 map = dm_get_live_table(md, srcu_idx); 530 if (!map || !dm_table_get_size(map)) 531 return r; 532 533 /* We only support devices that have a single target */ 534 if (dm_table_get_num_targets(map) != 1) 535 return r; 536 537 tgt = dm_table_get_target(map, 0); 538 if (!tgt->type->prepare_ioctl) 539 return r; 540 541 if (dm_suspended_md(md)) 542 return -EAGAIN; 543 544 r = tgt->type->prepare_ioctl(tgt, bdev); 545 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 546 dm_put_live_table(md, *srcu_idx); 547 msleep(10); 548 goto retry; 549 } 550 551 return r; 552 } 553 554 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 555 __releases(md->io_barrier) 556 { 557 dm_put_live_table(md, srcu_idx); 558 } 559 560 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 561 unsigned int cmd, unsigned long arg) 562 { 563 struct mapped_device *md = bdev->bd_disk->private_data; 564 int r, srcu_idx; 565 566 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 567 if (r < 0) 568 goto out; 569 570 if (r > 0) { 571 /* 572 * Target determined this ioctl is being issued against a 573 * subset of the parent bdev; require extra privileges. 574 */ 575 if (!capable(CAP_SYS_RAWIO)) { 576 DMWARN_LIMIT( 577 "%s: sending ioctl %x to DM device without required privilege.", 578 current->comm, cmd); 579 r = -ENOIOCTLCMD; 580 goto out; 581 } 582 } 583 584 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 585 out: 586 dm_unprepare_ioctl(md, srcu_idx); 587 return r; 588 } 589 590 static void start_io_acct(struct dm_io *io); 591 592 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 593 { 594 struct dm_io *io; 595 struct dm_target_io *tio; 596 struct bio *clone; 597 598 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 599 if (!clone) 600 return NULL; 601 602 tio = container_of(clone, struct dm_target_io, clone); 603 tio->inside_dm_io = true; 604 tio->io = NULL; 605 606 io = container_of(tio, struct dm_io, tio); 607 io->magic = DM_IO_MAGIC; 608 io->status = 0; 609 atomic_set(&io->io_count, 1); 610 io->orig_bio = bio; 611 io->md = md; 612 spin_lock_init(&io->endio_lock); 613 614 start_io_acct(io); 615 616 return io; 617 } 618 619 static void free_io(struct mapped_device *md, struct dm_io *io) 620 { 621 bio_put(&io->tio.clone); 622 } 623 624 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 625 unsigned target_bio_nr, gfp_t gfp_mask) 626 { 627 struct dm_target_io *tio; 628 629 if (!ci->io->tio.io) { 630 /* the dm_target_io embedded in ci->io is available */ 631 tio = &ci->io->tio; 632 } else { 633 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 634 if (!clone) 635 return NULL; 636 637 tio = container_of(clone, struct dm_target_io, clone); 638 tio->inside_dm_io = false; 639 } 640 641 tio->magic = DM_TIO_MAGIC; 642 tio->io = ci->io; 643 tio->ti = ti; 644 tio->target_bio_nr = target_bio_nr; 645 646 return tio; 647 } 648 649 static void free_tio(struct dm_target_io *tio) 650 { 651 if (tio->inside_dm_io) 652 return; 653 bio_put(&tio->clone); 654 } 655 656 static bool md_in_flight_bios(struct mapped_device *md) 657 { 658 int cpu; 659 struct hd_struct *part = &dm_disk(md)->part0; 660 long sum = 0; 661 662 for_each_possible_cpu(cpu) { 663 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 664 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 665 } 666 667 return sum != 0; 668 } 669 670 static bool md_in_flight(struct mapped_device *md) 671 { 672 if (queue_is_mq(md->queue)) 673 return blk_mq_queue_inflight(md->queue); 674 else 675 return md_in_flight_bios(md); 676 } 677 678 u64 dm_start_time_ns_from_clone(struct bio *bio) 679 { 680 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 681 struct dm_io *io = tio->io; 682 683 return jiffies_to_nsecs(io->start_time); 684 } 685 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 686 687 static void start_io_acct(struct dm_io *io) 688 { 689 struct mapped_device *md = io->md; 690 struct bio *bio = io->orig_bio; 691 692 io->start_time = jiffies; 693 694 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio), 695 &dm_disk(md)->part0); 696 697 if (unlikely(dm_stats_used(&md->stats))) 698 dm_stats_account_io(&md->stats, bio_data_dir(bio), 699 bio->bi_iter.bi_sector, bio_sectors(bio), 700 false, 0, &io->stats_aux); 701 } 702 703 static void end_io_acct(struct dm_io *io) 704 { 705 struct mapped_device *md = io->md; 706 struct bio *bio = io->orig_bio; 707 unsigned long duration = jiffies - io->start_time; 708 709 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0, 710 io->start_time); 711 712 if (unlikely(dm_stats_used(&md->stats))) 713 dm_stats_account_io(&md->stats, bio_data_dir(bio), 714 bio->bi_iter.bi_sector, bio_sectors(bio), 715 true, duration, &io->stats_aux); 716 717 /* nudge anyone waiting on suspend queue */ 718 if (unlikely(wq_has_sleeper(&md->wait))) 719 wake_up(&md->wait); 720 } 721 722 /* 723 * Add the bio to the list of deferred io. 724 */ 725 static void queue_io(struct mapped_device *md, struct bio *bio) 726 { 727 unsigned long flags; 728 729 spin_lock_irqsave(&md->deferred_lock, flags); 730 bio_list_add(&md->deferred, bio); 731 spin_unlock_irqrestore(&md->deferred_lock, flags); 732 queue_work(md->wq, &md->work); 733 } 734 735 /* 736 * Everyone (including functions in this file), should use this 737 * function to access the md->map field, and make sure they call 738 * dm_put_live_table() when finished. 739 */ 740 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 741 { 742 *srcu_idx = srcu_read_lock(&md->io_barrier); 743 744 return srcu_dereference(md->map, &md->io_barrier); 745 } 746 747 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 748 { 749 srcu_read_unlock(&md->io_barrier, srcu_idx); 750 } 751 752 void dm_sync_table(struct mapped_device *md) 753 { 754 synchronize_srcu(&md->io_barrier); 755 synchronize_rcu_expedited(); 756 } 757 758 /* 759 * A fast alternative to dm_get_live_table/dm_put_live_table. 760 * The caller must not block between these two functions. 761 */ 762 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 763 { 764 rcu_read_lock(); 765 return rcu_dereference(md->map); 766 } 767 768 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 769 { 770 rcu_read_unlock(); 771 } 772 773 static char *_dm_claim_ptr = "I belong to device-mapper"; 774 775 /* 776 * Open a table device so we can use it as a map destination. 777 */ 778 static int open_table_device(struct table_device *td, dev_t dev, 779 struct mapped_device *md) 780 { 781 struct block_device *bdev; 782 783 int r; 784 785 BUG_ON(td->dm_dev.bdev); 786 787 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 788 if (IS_ERR(bdev)) 789 return PTR_ERR(bdev); 790 791 r = bd_link_disk_holder(bdev, dm_disk(md)); 792 if (r) { 793 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 794 return r; 795 } 796 797 td->dm_dev.bdev = bdev; 798 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 799 return 0; 800 } 801 802 /* 803 * Close a table device that we've been using. 804 */ 805 static void close_table_device(struct table_device *td, struct mapped_device *md) 806 { 807 if (!td->dm_dev.bdev) 808 return; 809 810 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 811 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 812 put_dax(td->dm_dev.dax_dev); 813 td->dm_dev.bdev = NULL; 814 td->dm_dev.dax_dev = NULL; 815 } 816 817 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 818 fmode_t mode) 819 { 820 struct table_device *td; 821 822 list_for_each_entry(td, l, list) 823 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 824 return td; 825 826 return NULL; 827 } 828 829 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 830 struct dm_dev **result) 831 { 832 int r; 833 struct table_device *td; 834 835 mutex_lock(&md->table_devices_lock); 836 td = find_table_device(&md->table_devices, dev, mode); 837 if (!td) { 838 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 839 if (!td) { 840 mutex_unlock(&md->table_devices_lock); 841 return -ENOMEM; 842 } 843 844 td->dm_dev.mode = mode; 845 td->dm_dev.bdev = NULL; 846 847 if ((r = open_table_device(td, dev, md))) { 848 mutex_unlock(&md->table_devices_lock); 849 kfree(td); 850 return r; 851 } 852 853 format_dev_t(td->dm_dev.name, dev); 854 855 refcount_set(&td->count, 1); 856 list_add(&td->list, &md->table_devices); 857 } else { 858 refcount_inc(&td->count); 859 } 860 mutex_unlock(&md->table_devices_lock); 861 862 *result = &td->dm_dev; 863 return 0; 864 } 865 EXPORT_SYMBOL_GPL(dm_get_table_device); 866 867 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 868 { 869 struct table_device *td = container_of(d, struct table_device, dm_dev); 870 871 mutex_lock(&md->table_devices_lock); 872 if (refcount_dec_and_test(&td->count)) { 873 close_table_device(td, md); 874 list_del(&td->list); 875 kfree(td); 876 } 877 mutex_unlock(&md->table_devices_lock); 878 } 879 EXPORT_SYMBOL(dm_put_table_device); 880 881 static void free_table_devices(struct list_head *devices) 882 { 883 struct list_head *tmp, *next; 884 885 list_for_each_safe(tmp, next, devices) { 886 struct table_device *td = list_entry(tmp, struct table_device, list); 887 888 DMWARN("dm_destroy: %s still exists with %d references", 889 td->dm_dev.name, refcount_read(&td->count)); 890 kfree(td); 891 } 892 } 893 894 /* 895 * Get the geometry associated with a dm device 896 */ 897 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 898 { 899 *geo = md->geometry; 900 901 return 0; 902 } 903 904 /* 905 * Set the geometry of a device. 906 */ 907 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 908 { 909 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 910 911 if (geo->start > sz) { 912 DMWARN("Start sector is beyond the geometry limits."); 913 return -EINVAL; 914 } 915 916 md->geometry = *geo; 917 918 return 0; 919 } 920 921 static int __noflush_suspending(struct mapped_device *md) 922 { 923 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 924 } 925 926 /* 927 * Decrements the number of outstanding ios that a bio has been 928 * cloned into, completing the original io if necc. 929 */ 930 static void dec_pending(struct dm_io *io, blk_status_t error) 931 { 932 unsigned long flags; 933 blk_status_t io_error; 934 struct bio *bio; 935 struct mapped_device *md = io->md; 936 937 /* Push-back supersedes any I/O errors */ 938 if (unlikely(error)) { 939 spin_lock_irqsave(&io->endio_lock, flags); 940 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 941 io->status = error; 942 spin_unlock_irqrestore(&io->endio_lock, flags); 943 } 944 945 if (atomic_dec_and_test(&io->io_count)) { 946 if (io->status == BLK_STS_DM_REQUEUE) { 947 /* 948 * Target requested pushing back the I/O. 949 */ 950 spin_lock_irqsave(&md->deferred_lock, flags); 951 if (__noflush_suspending(md)) 952 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 953 bio_list_add_head(&md->deferred, io->orig_bio); 954 else 955 /* noflush suspend was interrupted. */ 956 io->status = BLK_STS_IOERR; 957 spin_unlock_irqrestore(&md->deferred_lock, flags); 958 } 959 960 io_error = io->status; 961 bio = io->orig_bio; 962 end_io_acct(io); 963 free_io(md, io); 964 965 if (io_error == BLK_STS_DM_REQUEUE) 966 return; 967 968 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 969 /* 970 * Preflush done for flush with data, reissue 971 * without REQ_PREFLUSH. 972 */ 973 bio->bi_opf &= ~REQ_PREFLUSH; 974 queue_io(md, bio); 975 } else { 976 /* done with normal IO or empty flush */ 977 if (io_error) 978 bio->bi_status = io_error; 979 bio_endio(bio); 980 } 981 } 982 } 983 984 void disable_discard(struct mapped_device *md) 985 { 986 struct queue_limits *limits = dm_get_queue_limits(md); 987 988 /* device doesn't really support DISCARD, disable it */ 989 limits->max_discard_sectors = 0; 990 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 991 } 992 993 void disable_write_same(struct mapped_device *md) 994 { 995 struct queue_limits *limits = dm_get_queue_limits(md); 996 997 /* device doesn't really support WRITE SAME, disable it */ 998 limits->max_write_same_sectors = 0; 999 } 1000 1001 void disable_write_zeroes(struct mapped_device *md) 1002 { 1003 struct queue_limits *limits = dm_get_queue_limits(md); 1004 1005 /* device doesn't really support WRITE ZEROES, disable it */ 1006 limits->max_write_zeroes_sectors = 0; 1007 } 1008 1009 static void clone_endio(struct bio *bio) 1010 { 1011 blk_status_t error = bio->bi_status; 1012 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1013 struct dm_io *io = tio->io; 1014 struct mapped_device *md = tio->io->md; 1015 dm_endio_fn endio = tio->ti->type->end_io; 1016 1017 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 1018 if (bio_op(bio) == REQ_OP_DISCARD && 1019 !bio->bi_disk->queue->limits.max_discard_sectors) 1020 disable_discard(md); 1021 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 1022 !bio->bi_disk->queue->limits.max_write_same_sectors) 1023 disable_write_same(md); 1024 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1025 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 1026 disable_write_zeroes(md); 1027 } 1028 1029 if (endio) { 1030 int r = endio(tio->ti, bio, &error); 1031 switch (r) { 1032 case DM_ENDIO_REQUEUE: 1033 error = BLK_STS_DM_REQUEUE; 1034 /*FALLTHRU*/ 1035 case DM_ENDIO_DONE: 1036 break; 1037 case DM_ENDIO_INCOMPLETE: 1038 /* The target will handle the io */ 1039 return; 1040 default: 1041 DMWARN("unimplemented target endio return value: %d", r); 1042 BUG(); 1043 } 1044 } 1045 1046 free_tio(tio); 1047 dec_pending(io, error); 1048 } 1049 1050 /* 1051 * Return maximum size of I/O possible at the supplied sector up to the current 1052 * target boundary. 1053 */ 1054 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1055 { 1056 sector_t target_offset = dm_target_offset(ti, sector); 1057 1058 return ti->len - target_offset; 1059 } 1060 1061 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1062 { 1063 sector_t len = max_io_len_target_boundary(sector, ti); 1064 sector_t offset, max_len; 1065 1066 /* 1067 * Does the target need to split even further? 1068 */ 1069 if (ti->max_io_len) { 1070 offset = dm_target_offset(ti, sector); 1071 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1072 max_len = sector_div(offset, ti->max_io_len); 1073 else 1074 max_len = offset & (ti->max_io_len - 1); 1075 max_len = ti->max_io_len - max_len; 1076 1077 if (len > max_len) 1078 len = max_len; 1079 } 1080 1081 return len; 1082 } 1083 1084 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1085 { 1086 if (len > UINT_MAX) { 1087 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1088 (unsigned long long)len, UINT_MAX); 1089 ti->error = "Maximum size of target IO is too large"; 1090 return -EINVAL; 1091 } 1092 1093 ti->max_io_len = (uint32_t) len; 1094 1095 return 0; 1096 } 1097 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1098 1099 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1100 sector_t sector, int *srcu_idx) 1101 __acquires(md->io_barrier) 1102 { 1103 struct dm_table *map; 1104 struct dm_target *ti; 1105 1106 map = dm_get_live_table(md, srcu_idx); 1107 if (!map) 1108 return NULL; 1109 1110 ti = dm_table_find_target(map, sector); 1111 if (!ti) 1112 return NULL; 1113 1114 return ti; 1115 } 1116 1117 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1118 long nr_pages, void **kaddr, pfn_t *pfn) 1119 { 1120 struct mapped_device *md = dax_get_private(dax_dev); 1121 sector_t sector = pgoff * PAGE_SECTORS; 1122 struct dm_target *ti; 1123 long len, ret = -EIO; 1124 int srcu_idx; 1125 1126 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1127 1128 if (!ti) 1129 goto out; 1130 if (!ti->type->direct_access) 1131 goto out; 1132 len = max_io_len(sector, ti) / PAGE_SECTORS; 1133 if (len < 1) 1134 goto out; 1135 nr_pages = min(len, nr_pages); 1136 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1137 1138 out: 1139 dm_put_live_table(md, srcu_idx); 1140 1141 return ret; 1142 } 1143 1144 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1145 int blocksize, sector_t start, sector_t len) 1146 { 1147 struct mapped_device *md = dax_get_private(dax_dev); 1148 struct dm_table *map; 1149 int srcu_idx; 1150 bool ret; 1151 1152 map = dm_get_live_table(md, &srcu_idx); 1153 if (!map) 1154 return false; 1155 1156 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize); 1157 1158 dm_put_live_table(md, srcu_idx); 1159 1160 return ret; 1161 } 1162 1163 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1164 void *addr, size_t bytes, struct iov_iter *i) 1165 { 1166 struct mapped_device *md = dax_get_private(dax_dev); 1167 sector_t sector = pgoff * PAGE_SECTORS; 1168 struct dm_target *ti; 1169 long ret = 0; 1170 int srcu_idx; 1171 1172 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1173 1174 if (!ti) 1175 goto out; 1176 if (!ti->type->dax_copy_from_iter) { 1177 ret = copy_from_iter(addr, bytes, i); 1178 goto out; 1179 } 1180 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1181 out: 1182 dm_put_live_table(md, srcu_idx); 1183 1184 return ret; 1185 } 1186 1187 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1188 void *addr, size_t bytes, struct iov_iter *i) 1189 { 1190 struct mapped_device *md = dax_get_private(dax_dev); 1191 sector_t sector = pgoff * PAGE_SECTORS; 1192 struct dm_target *ti; 1193 long ret = 0; 1194 int srcu_idx; 1195 1196 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1197 1198 if (!ti) 1199 goto out; 1200 if (!ti->type->dax_copy_to_iter) { 1201 ret = copy_to_iter(addr, bytes, i); 1202 goto out; 1203 } 1204 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1205 out: 1206 dm_put_live_table(md, srcu_idx); 1207 1208 return ret; 1209 } 1210 1211 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1212 size_t nr_pages) 1213 { 1214 struct mapped_device *md = dax_get_private(dax_dev); 1215 sector_t sector = pgoff * PAGE_SECTORS; 1216 struct dm_target *ti; 1217 int ret = -EIO; 1218 int srcu_idx; 1219 1220 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1221 1222 if (!ti) 1223 goto out; 1224 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1225 /* 1226 * ->zero_page_range() is mandatory dax operation. If we are 1227 * here, something is wrong. 1228 */ 1229 dm_put_live_table(md, srcu_idx); 1230 goto out; 1231 } 1232 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1233 1234 out: 1235 dm_put_live_table(md, srcu_idx); 1236 1237 return ret; 1238 } 1239 1240 /* 1241 * A target may call dm_accept_partial_bio only from the map routine. It is 1242 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET, 1243 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH. 1244 * 1245 * dm_accept_partial_bio informs the dm that the target only wants to process 1246 * additional n_sectors sectors of the bio and the rest of the data should be 1247 * sent in a next bio. 1248 * 1249 * A diagram that explains the arithmetics: 1250 * +--------------------+---------------+-------+ 1251 * | 1 | 2 | 3 | 1252 * +--------------------+---------------+-------+ 1253 * 1254 * <-------------- *tio->len_ptr ---------------> 1255 * <------- bi_size -------> 1256 * <-- n_sectors --> 1257 * 1258 * Region 1 was already iterated over with bio_advance or similar function. 1259 * (it may be empty if the target doesn't use bio_advance) 1260 * Region 2 is the remaining bio size that the target wants to process. 1261 * (it may be empty if region 1 is non-empty, although there is no reason 1262 * to make it empty) 1263 * The target requires that region 3 is to be sent in the next bio. 1264 * 1265 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1266 * the partially processed part (the sum of regions 1+2) must be the same for all 1267 * copies of the bio. 1268 */ 1269 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1270 { 1271 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1272 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1273 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1274 BUG_ON(bi_size > *tio->len_ptr); 1275 BUG_ON(n_sectors > bi_size); 1276 *tio->len_ptr -= bi_size - n_sectors; 1277 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1278 } 1279 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1280 1281 static blk_qc_t __map_bio(struct dm_target_io *tio) 1282 { 1283 int r; 1284 sector_t sector; 1285 struct bio *clone = &tio->clone; 1286 struct dm_io *io = tio->io; 1287 struct mapped_device *md = io->md; 1288 struct dm_target *ti = tio->ti; 1289 blk_qc_t ret = BLK_QC_T_NONE; 1290 1291 clone->bi_end_io = clone_endio; 1292 1293 /* 1294 * Map the clone. If r == 0 we don't need to do 1295 * anything, the target has assumed ownership of 1296 * this io. 1297 */ 1298 atomic_inc(&io->io_count); 1299 sector = clone->bi_iter.bi_sector; 1300 1301 r = ti->type->map(ti, clone); 1302 switch (r) { 1303 case DM_MAPIO_SUBMITTED: 1304 break; 1305 case DM_MAPIO_REMAPPED: 1306 /* the bio has been remapped so dispatch it */ 1307 trace_block_bio_remap(clone->bi_disk->queue, clone, 1308 bio_dev(io->orig_bio), sector); 1309 if (md->type == DM_TYPE_NVME_BIO_BASED) 1310 ret = direct_make_request(clone); 1311 else 1312 ret = generic_make_request(clone); 1313 break; 1314 case DM_MAPIO_KILL: 1315 free_tio(tio); 1316 dec_pending(io, BLK_STS_IOERR); 1317 break; 1318 case DM_MAPIO_REQUEUE: 1319 free_tio(tio); 1320 dec_pending(io, BLK_STS_DM_REQUEUE); 1321 break; 1322 default: 1323 DMWARN("unimplemented target map return value: %d", r); 1324 BUG(); 1325 } 1326 1327 return ret; 1328 } 1329 1330 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1331 { 1332 bio->bi_iter.bi_sector = sector; 1333 bio->bi_iter.bi_size = to_bytes(len); 1334 } 1335 1336 /* 1337 * Creates a bio that consists of range of complete bvecs. 1338 */ 1339 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1340 sector_t sector, unsigned len) 1341 { 1342 struct bio *clone = &tio->clone; 1343 1344 __bio_clone_fast(clone, bio); 1345 1346 if (bio_integrity(bio)) { 1347 int r; 1348 1349 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1350 !dm_target_passes_integrity(tio->ti->type))) { 1351 DMWARN("%s: the target %s doesn't support integrity data.", 1352 dm_device_name(tio->io->md), 1353 tio->ti->type->name); 1354 return -EIO; 1355 } 1356 1357 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1358 if (r < 0) 1359 return r; 1360 } 1361 1362 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1363 clone->bi_iter.bi_size = to_bytes(len); 1364 1365 if (bio_integrity(bio)) 1366 bio_integrity_trim(clone); 1367 1368 return 0; 1369 } 1370 1371 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1372 struct dm_target *ti, unsigned num_bios) 1373 { 1374 struct dm_target_io *tio; 1375 int try; 1376 1377 if (!num_bios) 1378 return; 1379 1380 if (num_bios == 1) { 1381 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1382 bio_list_add(blist, &tio->clone); 1383 return; 1384 } 1385 1386 for (try = 0; try < 2; try++) { 1387 int bio_nr; 1388 struct bio *bio; 1389 1390 if (try) 1391 mutex_lock(&ci->io->md->table_devices_lock); 1392 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1393 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1394 if (!tio) 1395 break; 1396 1397 bio_list_add(blist, &tio->clone); 1398 } 1399 if (try) 1400 mutex_unlock(&ci->io->md->table_devices_lock); 1401 if (bio_nr == num_bios) 1402 return; 1403 1404 while ((bio = bio_list_pop(blist))) { 1405 tio = container_of(bio, struct dm_target_io, clone); 1406 free_tio(tio); 1407 } 1408 } 1409 } 1410 1411 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1412 struct dm_target_io *tio, unsigned *len) 1413 { 1414 struct bio *clone = &tio->clone; 1415 1416 tio->len_ptr = len; 1417 1418 __bio_clone_fast(clone, ci->bio); 1419 if (len) 1420 bio_setup_sector(clone, ci->sector, *len); 1421 1422 return __map_bio(tio); 1423 } 1424 1425 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1426 unsigned num_bios, unsigned *len) 1427 { 1428 struct bio_list blist = BIO_EMPTY_LIST; 1429 struct bio *bio; 1430 struct dm_target_io *tio; 1431 1432 alloc_multiple_bios(&blist, ci, ti, num_bios); 1433 1434 while ((bio = bio_list_pop(&blist))) { 1435 tio = container_of(bio, struct dm_target_io, clone); 1436 (void) __clone_and_map_simple_bio(ci, tio, len); 1437 } 1438 } 1439 1440 static int __send_empty_flush(struct clone_info *ci) 1441 { 1442 unsigned target_nr = 0; 1443 struct dm_target *ti; 1444 1445 /* 1446 * Empty flush uses a statically initialized bio, as the base for 1447 * cloning. However, blkg association requires that a bdev is 1448 * associated with a gendisk, which doesn't happen until the bdev is 1449 * opened. So, blkg association is done at issue time of the flush 1450 * rather than when the device is created in alloc_dev(). 1451 */ 1452 bio_set_dev(ci->bio, ci->io->md->bdev); 1453 1454 BUG_ON(bio_has_data(ci->bio)); 1455 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1456 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1457 1458 bio_disassociate_blkg(ci->bio); 1459 1460 return 0; 1461 } 1462 1463 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1464 sector_t sector, unsigned *len) 1465 { 1466 struct bio *bio = ci->bio; 1467 struct dm_target_io *tio; 1468 int r; 1469 1470 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1471 tio->len_ptr = len; 1472 r = clone_bio(tio, bio, sector, *len); 1473 if (r < 0) { 1474 free_tio(tio); 1475 return r; 1476 } 1477 (void) __map_bio(tio); 1478 1479 return 0; 1480 } 1481 1482 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1483 1484 static unsigned get_num_discard_bios(struct dm_target *ti) 1485 { 1486 return ti->num_discard_bios; 1487 } 1488 1489 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1490 { 1491 return ti->num_secure_erase_bios; 1492 } 1493 1494 static unsigned get_num_write_same_bios(struct dm_target *ti) 1495 { 1496 return ti->num_write_same_bios; 1497 } 1498 1499 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1500 { 1501 return ti->num_write_zeroes_bios; 1502 } 1503 1504 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1505 unsigned num_bios) 1506 { 1507 unsigned len; 1508 1509 /* 1510 * Even though the device advertised support for this type of 1511 * request, that does not mean every target supports it, and 1512 * reconfiguration might also have changed that since the 1513 * check was performed. 1514 */ 1515 if (!num_bios) 1516 return -EOPNOTSUPP; 1517 1518 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1519 1520 __send_duplicate_bios(ci, ti, num_bios, &len); 1521 1522 ci->sector += len; 1523 ci->sector_count -= len; 1524 1525 return 0; 1526 } 1527 1528 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1529 { 1530 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti)); 1531 } 1532 1533 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1534 { 1535 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti)); 1536 } 1537 1538 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1539 { 1540 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti)); 1541 } 1542 1543 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1544 { 1545 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti)); 1546 } 1547 1548 static bool is_abnormal_io(struct bio *bio) 1549 { 1550 bool r = false; 1551 1552 switch (bio_op(bio)) { 1553 case REQ_OP_DISCARD: 1554 case REQ_OP_SECURE_ERASE: 1555 case REQ_OP_WRITE_SAME: 1556 case REQ_OP_WRITE_ZEROES: 1557 r = true; 1558 break; 1559 } 1560 1561 return r; 1562 } 1563 1564 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1565 int *result) 1566 { 1567 struct bio *bio = ci->bio; 1568 1569 if (bio_op(bio) == REQ_OP_DISCARD) 1570 *result = __send_discard(ci, ti); 1571 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1572 *result = __send_secure_erase(ci, ti); 1573 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1574 *result = __send_write_same(ci, ti); 1575 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1576 *result = __send_write_zeroes(ci, ti); 1577 else 1578 return false; 1579 1580 return true; 1581 } 1582 1583 /* 1584 * Select the correct strategy for processing a non-flush bio. 1585 */ 1586 static int __split_and_process_non_flush(struct clone_info *ci) 1587 { 1588 struct dm_target *ti; 1589 unsigned len; 1590 int r; 1591 1592 ti = dm_table_find_target(ci->map, ci->sector); 1593 if (!ti) 1594 return -EIO; 1595 1596 if (__process_abnormal_io(ci, ti, &r)) 1597 return r; 1598 1599 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1600 1601 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1602 if (r < 0) 1603 return r; 1604 1605 ci->sector += len; 1606 ci->sector_count -= len; 1607 1608 return 0; 1609 } 1610 1611 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1612 struct dm_table *map, struct bio *bio) 1613 { 1614 ci->map = map; 1615 ci->io = alloc_io(md, bio); 1616 ci->sector = bio->bi_iter.bi_sector; 1617 } 1618 1619 #define __dm_part_stat_sub(part, field, subnd) \ 1620 (part_stat_get(part, field) -= (subnd)) 1621 1622 /* 1623 * Entry point to split a bio into clones and submit them to the targets. 1624 */ 1625 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1626 struct dm_table *map, struct bio *bio) 1627 { 1628 struct clone_info ci; 1629 blk_qc_t ret = BLK_QC_T_NONE; 1630 int error = 0; 1631 1632 init_clone_info(&ci, md, map, bio); 1633 1634 if (bio->bi_opf & REQ_PREFLUSH) { 1635 struct bio flush_bio; 1636 1637 /* 1638 * Use an on-stack bio for this, it's safe since we don't 1639 * need to reference it after submit. It's just used as 1640 * the basis for the clone(s). 1641 */ 1642 bio_init(&flush_bio, NULL, 0); 1643 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1644 ci.bio = &flush_bio; 1645 ci.sector_count = 0; 1646 error = __send_empty_flush(&ci); 1647 /* dec_pending submits any data associated with flush */ 1648 } else if (op_is_zone_mgmt(bio_op(bio))) { 1649 ci.bio = bio; 1650 ci.sector_count = 0; 1651 error = __split_and_process_non_flush(&ci); 1652 } else { 1653 ci.bio = bio; 1654 ci.sector_count = bio_sectors(bio); 1655 while (ci.sector_count && !error) { 1656 error = __split_and_process_non_flush(&ci); 1657 if (current->bio_list && ci.sector_count && !error) { 1658 /* 1659 * Remainder must be passed to generic_make_request() 1660 * so that it gets handled *after* bios already submitted 1661 * have been completely processed. 1662 * We take a clone of the original to store in 1663 * ci.io->orig_bio to be used by end_io_acct() and 1664 * for dec_pending to use for completion handling. 1665 */ 1666 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1667 GFP_NOIO, &md->queue->bio_split); 1668 ci.io->orig_bio = b; 1669 1670 /* 1671 * Adjust IO stats for each split, otherwise upon queue 1672 * reentry there will be redundant IO accounting. 1673 * NOTE: this is a stop-gap fix, a proper fix involves 1674 * significant refactoring of DM core's bio splitting 1675 * (by eliminating DM's splitting and just using bio_split) 1676 */ 1677 part_stat_lock(); 1678 __dm_part_stat_sub(&dm_disk(md)->part0, 1679 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1680 part_stat_unlock(); 1681 1682 bio_chain(b, bio); 1683 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1684 ret = generic_make_request(bio); 1685 break; 1686 } 1687 } 1688 } 1689 1690 /* drop the extra reference count */ 1691 dec_pending(ci.io, errno_to_blk_status(error)); 1692 return ret; 1693 } 1694 1695 /* 1696 * Optimized variant of __split_and_process_bio that leverages the 1697 * fact that targets that use it do _not_ have a need to split bios. 1698 */ 1699 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map, 1700 struct bio *bio, struct dm_target *ti) 1701 { 1702 struct clone_info ci; 1703 blk_qc_t ret = BLK_QC_T_NONE; 1704 int error = 0; 1705 1706 init_clone_info(&ci, md, map, bio); 1707 1708 if (bio->bi_opf & REQ_PREFLUSH) { 1709 struct bio flush_bio; 1710 1711 /* 1712 * Use an on-stack bio for this, it's safe since we don't 1713 * need to reference it after submit. It's just used as 1714 * the basis for the clone(s). 1715 */ 1716 bio_init(&flush_bio, NULL, 0); 1717 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1718 ci.bio = &flush_bio; 1719 ci.sector_count = 0; 1720 error = __send_empty_flush(&ci); 1721 /* dec_pending submits any data associated with flush */ 1722 } else { 1723 struct dm_target_io *tio; 1724 1725 ci.bio = bio; 1726 ci.sector_count = bio_sectors(bio); 1727 if (__process_abnormal_io(&ci, ti, &error)) 1728 goto out; 1729 1730 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1731 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1732 } 1733 out: 1734 /* drop the extra reference count */ 1735 dec_pending(ci.io, errno_to_blk_status(error)); 1736 return ret; 1737 } 1738 1739 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio) 1740 { 1741 unsigned len, sector_count; 1742 1743 sector_count = bio_sectors(*bio); 1744 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count); 1745 1746 if (sector_count > len) { 1747 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split); 1748 1749 bio_chain(split, *bio); 1750 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector); 1751 generic_make_request(*bio); 1752 *bio = split; 1753 } 1754 } 1755 1756 static blk_qc_t dm_process_bio(struct mapped_device *md, 1757 struct dm_table *map, struct bio *bio) 1758 { 1759 blk_qc_t ret = BLK_QC_T_NONE; 1760 struct dm_target *ti = md->immutable_target; 1761 1762 if (unlikely(!map)) { 1763 bio_io_error(bio); 1764 return ret; 1765 } 1766 1767 if (!ti) { 1768 ti = dm_table_find_target(map, bio->bi_iter.bi_sector); 1769 if (unlikely(!ti)) { 1770 bio_io_error(bio); 1771 return ret; 1772 } 1773 } 1774 1775 /* 1776 * If in ->make_request_fn we need to use blk_queue_split(), otherwise 1777 * queue_limits for abnormal requests (e.g. discard, writesame, etc) 1778 * won't be imposed. 1779 */ 1780 if (current->bio_list) { 1781 if (is_abnormal_io(bio)) 1782 blk_queue_split(md->queue, &bio); 1783 else 1784 dm_queue_split(md, ti, &bio); 1785 } 1786 1787 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1788 return __process_bio(md, map, bio, ti); 1789 else 1790 return __split_and_process_bio(md, map, bio); 1791 } 1792 1793 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1794 { 1795 struct mapped_device *md = q->queuedata; 1796 blk_qc_t ret = BLK_QC_T_NONE; 1797 int srcu_idx; 1798 struct dm_table *map; 1799 1800 map = dm_get_live_table(md, &srcu_idx); 1801 1802 /* if we're suspended, we have to queue this io for later */ 1803 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1804 dm_put_live_table(md, srcu_idx); 1805 1806 if (!(bio->bi_opf & REQ_RAHEAD)) 1807 queue_io(md, bio); 1808 else 1809 bio_io_error(bio); 1810 return ret; 1811 } 1812 1813 ret = dm_process_bio(md, map, bio); 1814 1815 dm_put_live_table(md, srcu_idx); 1816 return ret; 1817 } 1818 1819 static int dm_any_congested(void *congested_data, int bdi_bits) 1820 { 1821 int r = bdi_bits; 1822 struct mapped_device *md = congested_data; 1823 struct dm_table *map; 1824 1825 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1826 if (dm_request_based(md)) { 1827 /* 1828 * With request-based DM we only need to check the 1829 * top-level queue for congestion. 1830 */ 1831 struct backing_dev_info *bdi = md->queue->backing_dev_info; 1832 r = bdi->wb.congested->state & bdi_bits; 1833 } else { 1834 map = dm_get_live_table_fast(md); 1835 if (map) 1836 r = dm_table_any_congested(map, bdi_bits); 1837 dm_put_live_table_fast(md); 1838 } 1839 } 1840 1841 return r; 1842 } 1843 1844 /*----------------------------------------------------------------- 1845 * An IDR is used to keep track of allocated minor numbers. 1846 *---------------------------------------------------------------*/ 1847 static void free_minor(int minor) 1848 { 1849 spin_lock(&_minor_lock); 1850 idr_remove(&_minor_idr, minor); 1851 spin_unlock(&_minor_lock); 1852 } 1853 1854 /* 1855 * See if the device with a specific minor # is free. 1856 */ 1857 static int specific_minor(int minor) 1858 { 1859 int r; 1860 1861 if (minor >= (1 << MINORBITS)) 1862 return -EINVAL; 1863 1864 idr_preload(GFP_KERNEL); 1865 spin_lock(&_minor_lock); 1866 1867 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1868 1869 spin_unlock(&_minor_lock); 1870 idr_preload_end(); 1871 if (r < 0) 1872 return r == -ENOSPC ? -EBUSY : r; 1873 return 0; 1874 } 1875 1876 static int next_free_minor(int *minor) 1877 { 1878 int r; 1879 1880 idr_preload(GFP_KERNEL); 1881 spin_lock(&_minor_lock); 1882 1883 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1884 1885 spin_unlock(&_minor_lock); 1886 idr_preload_end(); 1887 if (r < 0) 1888 return r; 1889 *minor = r; 1890 return 0; 1891 } 1892 1893 static const struct block_device_operations dm_blk_dops; 1894 static const struct dax_operations dm_dax_ops; 1895 1896 static void dm_wq_work(struct work_struct *work); 1897 1898 static void cleanup_mapped_device(struct mapped_device *md) 1899 { 1900 if (md->wq) 1901 destroy_workqueue(md->wq); 1902 bioset_exit(&md->bs); 1903 bioset_exit(&md->io_bs); 1904 1905 if (md->dax_dev) { 1906 kill_dax(md->dax_dev); 1907 put_dax(md->dax_dev); 1908 md->dax_dev = NULL; 1909 } 1910 1911 if (md->disk) { 1912 spin_lock(&_minor_lock); 1913 md->disk->private_data = NULL; 1914 spin_unlock(&_minor_lock); 1915 del_gendisk(md->disk); 1916 put_disk(md->disk); 1917 } 1918 1919 if (md->queue) 1920 blk_cleanup_queue(md->queue); 1921 1922 cleanup_srcu_struct(&md->io_barrier); 1923 1924 if (md->bdev) { 1925 bdput(md->bdev); 1926 md->bdev = NULL; 1927 } 1928 1929 mutex_destroy(&md->suspend_lock); 1930 mutex_destroy(&md->type_lock); 1931 mutex_destroy(&md->table_devices_lock); 1932 1933 dm_mq_cleanup_mapped_device(md); 1934 } 1935 1936 /* 1937 * Allocate and initialise a blank device with a given minor. 1938 */ 1939 static struct mapped_device *alloc_dev(int minor) 1940 { 1941 int r, numa_node_id = dm_get_numa_node(); 1942 struct mapped_device *md; 1943 void *old_md; 1944 1945 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1946 if (!md) { 1947 DMWARN("unable to allocate device, out of memory."); 1948 return NULL; 1949 } 1950 1951 if (!try_module_get(THIS_MODULE)) 1952 goto bad_module_get; 1953 1954 /* get a minor number for the dev */ 1955 if (minor == DM_ANY_MINOR) 1956 r = next_free_minor(&minor); 1957 else 1958 r = specific_minor(minor); 1959 if (r < 0) 1960 goto bad_minor; 1961 1962 r = init_srcu_struct(&md->io_barrier); 1963 if (r < 0) 1964 goto bad_io_barrier; 1965 1966 md->numa_node_id = numa_node_id; 1967 md->init_tio_pdu = false; 1968 md->type = DM_TYPE_NONE; 1969 mutex_init(&md->suspend_lock); 1970 mutex_init(&md->type_lock); 1971 mutex_init(&md->table_devices_lock); 1972 spin_lock_init(&md->deferred_lock); 1973 atomic_set(&md->holders, 1); 1974 atomic_set(&md->open_count, 0); 1975 atomic_set(&md->event_nr, 0); 1976 atomic_set(&md->uevent_seq, 0); 1977 INIT_LIST_HEAD(&md->uevent_list); 1978 INIT_LIST_HEAD(&md->table_devices); 1979 spin_lock_init(&md->uevent_lock); 1980 1981 /* 1982 * default to bio-based required ->make_request_fn until DM 1983 * table is loaded and md->type established. If request-based 1984 * table is loaded: blk-mq will override accordingly. 1985 */ 1986 md->queue = blk_alloc_queue(dm_make_request, numa_node_id); 1987 if (!md->queue) 1988 goto bad; 1989 md->queue->queuedata = md; 1990 1991 md->disk = alloc_disk_node(1, md->numa_node_id); 1992 if (!md->disk) 1993 goto bad; 1994 1995 init_waitqueue_head(&md->wait); 1996 INIT_WORK(&md->work, dm_wq_work); 1997 init_waitqueue_head(&md->eventq); 1998 init_completion(&md->kobj_holder.completion); 1999 2000 md->disk->major = _major; 2001 md->disk->first_minor = minor; 2002 md->disk->fops = &dm_blk_dops; 2003 md->disk->queue = md->queue; 2004 md->disk->private_data = md; 2005 sprintf(md->disk->disk_name, "dm-%d", minor); 2006 2007 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 2008 md->dax_dev = alloc_dax(md, md->disk->disk_name, 2009 &dm_dax_ops, 0); 2010 if (IS_ERR(md->dax_dev)) 2011 goto bad; 2012 } 2013 2014 add_disk_no_queue_reg(md->disk); 2015 format_dev_t(md->name, MKDEV(_major, minor)); 2016 2017 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2018 if (!md->wq) 2019 goto bad; 2020 2021 md->bdev = bdget_disk(md->disk, 0); 2022 if (!md->bdev) 2023 goto bad; 2024 2025 dm_stats_init(&md->stats); 2026 2027 /* Populate the mapping, nobody knows we exist yet */ 2028 spin_lock(&_minor_lock); 2029 old_md = idr_replace(&_minor_idr, md, minor); 2030 spin_unlock(&_minor_lock); 2031 2032 BUG_ON(old_md != MINOR_ALLOCED); 2033 2034 return md; 2035 2036 bad: 2037 cleanup_mapped_device(md); 2038 bad_io_barrier: 2039 free_minor(minor); 2040 bad_minor: 2041 module_put(THIS_MODULE); 2042 bad_module_get: 2043 kvfree(md); 2044 return NULL; 2045 } 2046 2047 static void unlock_fs(struct mapped_device *md); 2048 2049 static void free_dev(struct mapped_device *md) 2050 { 2051 int minor = MINOR(disk_devt(md->disk)); 2052 2053 unlock_fs(md); 2054 2055 cleanup_mapped_device(md); 2056 2057 free_table_devices(&md->table_devices); 2058 dm_stats_cleanup(&md->stats); 2059 free_minor(minor); 2060 2061 module_put(THIS_MODULE); 2062 kvfree(md); 2063 } 2064 2065 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2066 { 2067 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2068 int ret = 0; 2069 2070 if (dm_table_bio_based(t)) { 2071 /* 2072 * The md may already have mempools that need changing. 2073 * If so, reload bioset because front_pad may have changed 2074 * because a different table was loaded. 2075 */ 2076 bioset_exit(&md->bs); 2077 bioset_exit(&md->io_bs); 2078 2079 } else if (bioset_initialized(&md->bs)) { 2080 /* 2081 * There's no need to reload with request-based dm 2082 * because the size of front_pad doesn't change. 2083 * Note for future: If you are to reload bioset, 2084 * prep-ed requests in the queue may refer 2085 * to bio from the old bioset, so you must walk 2086 * through the queue to unprep. 2087 */ 2088 goto out; 2089 } 2090 2091 BUG_ON(!p || 2092 bioset_initialized(&md->bs) || 2093 bioset_initialized(&md->io_bs)); 2094 2095 ret = bioset_init_from_src(&md->bs, &p->bs); 2096 if (ret) 2097 goto out; 2098 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2099 if (ret) 2100 bioset_exit(&md->bs); 2101 out: 2102 /* mempool bind completed, no longer need any mempools in the table */ 2103 dm_table_free_md_mempools(t); 2104 return ret; 2105 } 2106 2107 /* 2108 * Bind a table to the device. 2109 */ 2110 static void event_callback(void *context) 2111 { 2112 unsigned long flags; 2113 LIST_HEAD(uevents); 2114 struct mapped_device *md = (struct mapped_device *) context; 2115 2116 spin_lock_irqsave(&md->uevent_lock, flags); 2117 list_splice_init(&md->uevent_list, &uevents); 2118 spin_unlock_irqrestore(&md->uevent_lock, flags); 2119 2120 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2121 2122 atomic_inc(&md->event_nr); 2123 wake_up(&md->eventq); 2124 dm_issue_global_event(); 2125 } 2126 2127 /* 2128 * Protected by md->suspend_lock obtained by dm_swap_table(). 2129 */ 2130 static void __set_size(struct mapped_device *md, sector_t size) 2131 { 2132 lockdep_assert_held(&md->suspend_lock); 2133 2134 set_capacity(md->disk, size); 2135 2136 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2137 } 2138 2139 /* 2140 * Returns old map, which caller must destroy. 2141 */ 2142 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2143 struct queue_limits *limits) 2144 { 2145 struct dm_table *old_map; 2146 struct request_queue *q = md->queue; 2147 bool request_based = dm_table_request_based(t); 2148 sector_t size; 2149 int ret; 2150 2151 lockdep_assert_held(&md->suspend_lock); 2152 2153 size = dm_table_get_size(t); 2154 2155 /* 2156 * Wipe any geometry if the size of the table changed. 2157 */ 2158 if (size != dm_get_size(md)) 2159 memset(&md->geometry, 0, sizeof(md->geometry)); 2160 2161 __set_size(md, size); 2162 2163 dm_table_event_callback(t, event_callback, md); 2164 2165 /* 2166 * The queue hasn't been stopped yet, if the old table type wasn't 2167 * for request-based during suspension. So stop it to prevent 2168 * I/O mapping before resume. 2169 * This must be done before setting the queue restrictions, 2170 * because request-based dm may be run just after the setting. 2171 */ 2172 if (request_based) 2173 dm_stop_queue(q); 2174 2175 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2176 /* 2177 * Leverage the fact that request-based DM targets and 2178 * NVMe bio based targets are immutable singletons 2179 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2180 * and __process_bio. 2181 */ 2182 md->immutable_target = dm_table_get_immutable_target(t); 2183 } 2184 2185 ret = __bind_mempools(md, t); 2186 if (ret) { 2187 old_map = ERR_PTR(ret); 2188 goto out; 2189 } 2190 2191 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2192 rcu_assign_pointer(md->map, (void *)t); 2193 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2194 2195 dm_table_set_restrictions(t, q, limits); 2196 if (old_map) 2197 dm_sync_table(md); 2198 2199 out: 2200 return old_map; 2201 } 2202 2203 /* 2204 * Returns unbound table for the caller to free. 2205 */ 2206 static struct dm_table *__unbind(struct mapped_device *md) 2207 { 2208 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2209 2210 if (!map) 2211 return NULL; 2212 2213 dm_table_event_callback(map, NULL, NULL); 2214 RCU_INIT_POINTER(md->map, NULL); 2215 dm_sync_table(md); 2216 2217 return map; 2218 } 2219 2220 /* 2221 * Constructor for a new device. 2222 */ 2223 int dm_create(int minor, struct mapped_device **result) 2224 { 2225 int r; 2226 struct mapped_device *md; 2227 2228 md = alloc_dev(minor); 2229 if (!md) 2230 return -ENXIO; 2231 2232 r = dm_sysfs_init(md); 2233 if (r) { 2234 free_dev(md); 2235 return r; 2236 } 2237 2238 *result = md; 2239 return 0; 2240 } 2241 2242 /* 2243 * Functions to manage md->type. 2244 * All are required to hold md->type_lock. 2245 */ 2246 void dm_lock_md_type(struct mapped_device *md) 2247 { 2248 mutex_lock(&md->type_lock); 2249 } 2250 2251 void dm_unlock_md_type(struct mapped_device *md) 2252 { 2253 mutex_unlock(&md->type_lock); 2254 } 2255 2256 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2257 { 2258 BUG_ON(!mutex_is_locked(&md->type_lock)); 2259 md->type = type; 2260 } 2261 2262 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2263 { 2264 return md->type; 2265 } 2266 2267 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2268 { 2269 return md->immutable_target_type; 2270 } 2271 2272 /* 2273 * The queue_limits are only valid as long as you have a reference 2274 * count on 'md'. 2275 */ 2276 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2277 { 2278 BUG_ON(!atomic_read(&md->holders)); 2279 return &md->queue->limits; 2280 } 2281 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2282 2283 static void dm_init_congested_fn(struct mapped_device *md) 2284 { 2285 md->queue->backing_dev_info->congested_data = md; 2286 md->queue->backing_dev_info->congested_fn = dm_any_congested; 2287 } 2288 2289 /* 2290 * Setup the DM device's queue based on md's type 2291 */ 2292 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2293 { 2294 int r; 2295 struct queue_limits limits; 2296 enum dm_queue_mode type = dm_get_md_type(md); 2297 2298 switch (type) { 2299 case DM_TYPE_REQUEST_BASED: 2300 r = dm_mq_init_request_queue(md, t); 2301 if (r) { 2302 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2303 return r; 2304 } 2305 dm_init_congested_fn(md); 2306 break; 2307 case DM_TYPE_BIO_BASED: 2308 case DM_TYPE_DAX_BIO_BASED: 2309 case DM_TYPE_NVME_BIO_BASED: 2310 dm_init_congested_fn(md); 2311 break; 2312 case DM_TYPE_NONE: 2313 WARN_ON_ONCE(true); 2314 break; 2315 } 2316 2317 r = dm_calculate_queue_limits(t, &limits); 2318 if (r) { 2319 DMERR("Cannot calculate initial queue limits"); 2320 return r; 2321 } 2322 dm_table_set_restrictions(t, md->queue, &limits); 2323 blk_register_queue(md->disk); 2324 2325 return 0; 2326 } 2327 2328 struct mapped_device *dm_get_md(dev_t dev) 2329 { 2330 struct mapped_device *md; 2331 unsigned minor = MINOR(dev); 2332 2333 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2334 return NULL; 2335 2336 spin_lock(&_minor_lock); 2337 2338 md = idr_find(&_minor_idr, minor); 2339 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2340 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2341 md = NULL; 2342 goto out; 2343 } 2344 dm_get(md); 2345 out: 2346 spin_unlock(&_minor_lock); 2347 2348 return md; 2349 } 2350 EXPORT_SYMBOL_GPL(dm_get_md); 2351 2352 void *dm_get_mdptr(struct mapped_device *md) 2353 { 2354 return md->interface_ptr; 2355 } 2356 2357 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2358 { 2359 md->interface_ptr = ptr; 2360 } 2361 2362 void dm_get(struct mapped_device *md) 2363 { 2364 atomic_inc(&md->holders); 2365 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2366 } 2367 2368 int dm_hold(struct mapped_device *md) 2369 { 2370 spin_lock(&_minor_lock); 2371 if (test_bit(DMF_FREEING, &md->flags)) { 2372 spin_unlock(&_minor_lock); 2373 return -EBUSY; 2374 } 2375 dm_get(md); 2376 spin_unlock(&_minor_lock); 2377 return 0; 2378 } 2379 EXPORT_SYMBOL_GPL(dm_hold); 2380 2381 const char *dm_device_name(struct mapped_device *md) 2382 { 2383 return md->name; 2384 } 2385 EXPORT_SYMBOL_GPL(dm_device_name); 2386 2387 static void __dm_destroy(struct mapped_device *md, bool wait) 2388 { 2389 struct dm_table *map; 2390 int srcu_idx; 2391 2392 might_sleep(); 2393 2394 spin_lock(&_minor_lock); 2395 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2396 set_bit(DMF_FREEING, &md->flags); 2397 spin_unlock(&_minor_lock); 2398 2399 blk_set_queue_dying(md->queue); 2400 2401 /* 2402 * Take suspend_lock so that presuspend and postsuspend methods 2403 * do not race with internal suspend. 2404 */ 2405 mutex_lock(&md->suspend_lock); 2406 map = dm_get_live_table(md, &srcu_idx); 2407 if (!dm_suspended_md(md)) { 2408 dm_table_presuspend_targets(map); 2409 set_bit(DMF_SUSPENDED, &md->flags); 2410 dm_table_postsuspend_targets(map); 2411 } 2412 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2413 dm_put_live_table(md, srcu_idx); 2414 mutex_unlock(&md->suspend_lock); 2415 2416 /* 2417 * Rare, but there may be I/O requests still going to complete, 2418 * for example. Wait for all references to disappear. 2419 * No one should increment the reference count of the mapped_device, 2420 * after the mapped_device state becomes DMF_FREEING. 2421 */ 2422 if (wait) 2423 while (atomic_read(&md->holders)) 2424 msleep(1); 2425 else if (atomic_read(&md->holders)) 2426 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2427 dm_device_name(md), atomic_read(&md->holders)); 2428 2429 dm_sysfs_exit(md); 2430 dm_table_destroy(__unbind(md)); 2431 free_dev(md); 2432 } 2433 2434 void dm_destroy(struct mapped_device *md) 2435 { 2436 __dm_destroy(md, true); 2437 } 2438 2439 void dm_destroy_immediate(struct mapped_device *md) 2440 { 2441 __dm_destroy(md, false); 2442 } 2443 2444 void dm_put(struct mapped_device *md) 2445 { 2446 atomic_dec(&md->holders); 2447 } 2448 EXPORT_SYMBOL_GPL(dm_put); 2449 2450 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2451 { 2452 int r = 0; 2453 DEFINE_WAIT(wait); 2454 2455 while (1) { 2456 prepare_to_wait(&md->wait, &wait, task_state); 2457 2458 if (!md_in_flight(md)) 2459 break; 2460 2461 if (signal_pending_state(task_state, current)) { 2462 r = -EINTR; 2463 break; 2464 } 2465 2466 io_schedule(); 2467 } 2468 finish_wait(&md->wait, &wait); 2469 2470 return r; 2471 } 2472 2473 /* 2474 * Process the deferred bios 2475 */ 2476 static void dm_wq_work(struct work_struct *work) 2477 { 2478 struct mapped_device *md = container_of(work, struct mapped_device, 2479 work); 2480 struct bio *c; 2481 int srcu_idx; 2482 struct dm_table *map; 2483 2484 map = dm_get_live_table(md, &srcu_idx); 2485 2486 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2487 spin_lock_irq(&md->deferred_lock); 2488 c = bio_list_pop(&md->deferred); 2489 spin_unlock_irq(&md->deferred_lock); 2490 2491 if (!c) 2492 break; 2493 2494 if (dm_request_based(md)) 2495 (void) generic_make_request(c); 2496 else 2497 (void) dm_process_bio(md, map, c); 2498 } 2499 2500 dm_put_live_table(md, srcu_idx); 2501 } 2502 2503 static void dm_queue_flush(struct mapped_device *md) 2504 { 2505 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2506 smp_mb__after_atomic(); 2507 queue_work(md->wq, &md->work); 2508 } 2509 2510 /* 2511 * Swap in a new table, returning the old one for the caller to destroy. 2512 */ 2513 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2514 { 2515 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2516 struct queue_limits limits; 2517 int r; 2518 2519 mutex_lock(&md->suspend_lock); 2520 2521 /* device must be suspended */ 2522 if (!dm_suspended_md(md)) 2523 goto out; 2524 2525 /* 2526 * If the new table has no data devices, retain the existing limits. 2527 * This helps multipath with queue_if_no_path if all paths disappear, 2528 * then new I/O is queued based on these limits, and then some paths 2529 * reappear. 2530 */ 2531 if (dm_table_has_no_data_devices(table)) { 2532 live_map = dm_get_live_table_fast(md); 2533 if (live_map) 2534 limits = md->queue->limits; 2535 dm_put_live_table_fast(md); 2536 } 2537 2538 if (!live_map) { 2539 r = dm_calculate_queue_limits(table, &limits); 2540 if (r) { 2541 map = ERR_PTR(r); 2542 goto out; 2543 } 2544 } 2545 2546 map = __bind(md, table, &limits); 2547 dm_issue_global_event(); 2548 2549 out: 2550 mutex_unlock(&md->suspend_lock); 2551 return map; 2552 } 2553 2554 /* 2555 * Functions to lock and unlock any filesystem running on the 2556 * device. 2557 */ 2558 static int lock_fs(struct mapped_device *md) 2559 { 2560 int r; 2561 2562 WARN_ON(md->frozen_sb); 2563 2564 md->frozen_sb = freeze_bdev(md->bdev); 2565 if (IS_ERR(md->frozen_sb)) { 2566 r = PTR_ERR(md->frozen_sb); 2567 md->frozen_sb = NULL; 2568 return r; 2569 } 2570 2571 set_bit(DMF_FROZEN, &md->flags); 2572 2573 return 0; 2574 } 2575 2576 static void unlock_fs(struct mapped_device *md) 2577 { 2578 if (!test_bit(DMF_FROZEN, &md->flags)) 2579 return; 2580 2581 thaw_bdev(md->bdev, md->frozen_sb); 2582 md->frozen_sb = NULL; 2583 clear_bit(DMF_FROZEN, &md->flags); 2584 } 2585 2586 /* 2587 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2588 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2589 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2590 * 2591 * If __dm_suspend returns 0, the device is completely quiescent 2592 * now. There is no request-processing activity. All new requests 2593 * are being added to md->deferred list. 2594 */ 2595 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2596 unsigned suspend_flags, long task_state, 2597 int dmf_suspended_flag) 2598 { 2599 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2600 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2601 int r; 2602 2603 lockdep_assert_held(&md->suspend_lock); 2604 2605 /* 2606 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2607 * This flag is cleared before dm_suspend returns. 2608 */ 2609 if (noflush) 2610 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2611 else 2612 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2613 2614 /* 2615 * This gets reverted if there's an error later and the targets 2616 * provide the .presuspend_undo hook. 2617 */ 2618 dm_table_presuspend_targets(map); 2619 2620 /* 2621 * Flush I/O to the device. 2622 * Any I/O submitted after lock_fs() may not be flushed. 2623 * noflush takes precedence over do_lockfs. 2624 * (lock_fs() flushes I/Os and waits for them to complete.) 2625 */ 2626 if (!noflush && do_lockfs) { 2627 r = lock_fs(md); 2628 if (r) { 2629 dm_table_presuspend_undo_targets(map); 2630 return r; 2631 } 2632 } 2633 2634 /* 2635 * Here we must make sure that no processes are submitting requests 2636 * to target drivers i.e. no one may be executing 2637 * __split_and_process_bio. This is called from dm_request and 2638 * dm_wq_work. 2639 * 2640 * To get all processes out of __split_and_process_bio in dm_request, 2641 * we take the write lock. To prevent any process from reentering 2642 * __split_and_process_bio from dm_request and quiesce the thread 2643 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2644 * flush_workqueue(md->wq). 2645 */ 2646 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2647 if (map) 2648 synchronize_srcu(&md->io_barrier); 2649 2650 /* 2651 * Stop md->queue before flushing md->wq in case request-based 2652 * dm defers requests to md->wq from md->queue. 2653 */ 2654 if (dm_request_based(md)) 2655 dm_stop_queue(md->queue); 2656 2657 flush_workqueue(md->wq); 2658 2659 /* 2660 * At this point no more requests are entering target request routines. 2661 * We call dm_wait_for_completion to wait for all existing requests 2662 * to finish. 2663 */ 2664 r = dm_wait_for_completion(md, task_state); 2665 if (!r) 2666 set_bit(dmf_suspended_flag, &md->flags); 2667 2668 if (noflush) 2669 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2670 if (map) 2671 synchronize_srcu(&md->io_barrier); 2672 2673 /* were we interrupted ? */ 2674 if (r < 0) { 2675 dm_queue_flush(md); 2676 2677 if (dm_request_based(md)) 2678 dm_start_queue(md->queue); 2679 2680 unlock_fs(md); 2681 dm_table_presuspend_undo_targets(map); 2682 /* pushback list is already flushed, so skip flush */ 2683 } 2684 2685 return r; 2686 } 2687 2688 /* 2689 * We need to be able to change a mapping table under a mounted 2690 * filesystem. For example we might want to move some data in 2691 * the background. Before the table can be swapped with 2692 * dm_bind_table, dm_suspend must be called to flush any in 2693 * flight bios and ensure that any further io gets deferred. 2694 */ 2695 /* 2696 * Suspend mechanism in request-based dm. 2697 * 2698 * 1. Flush all I/Os by lock_fs() if needed. 2699 * 2. Stop dispatching any I/O by stopping the request_queue. 2700 * 3. Wait for all in-flight I/Os to be completed or requeued. 2701 * 2702 * To abort suspend, start the request_queue. 2703 */ 2704 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2705 { 2706 struct dm_table *map = NULL; 2707 int r = 0; 2708 2709 retry: 2710 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2711 2712 if (dm_suspended_md(md)) { 2713 r = -EINVAL; 2714 goto out_unlock; 2715 } 2716 2717 if (dm_suspended_internally_md(md)) { 2718 /* already internally suspended, wait for internal resume */ 2719 mutex_unlock(&md->suspend_lock); 2720 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2721 if (r) 2722 return r; 2723 goto retry; 2724 } 2725 2726 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2727 2728 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2729 if (r) 2730 goto out_unlock; 2731 2732 dm_table_postsuspend_targets(map); 2733 2734 out_unlock: 2735 mutex_unlock(&md->suspend_lock); 2736 return r; 2737 } 2738 2739 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2740 { 2741 if (map) { 2742 int r = dm_table_resume_targets(map); 2743 if (r) 2744 return r; 2745 } 2746 2747 dm_queue_flush(md); 2748 2749 /* 2750 * Flushing deferred I/Os must be done after targets are resumed 2751 * so that mapping of targets can work correctly. 2752 * Request-based dm is queueing the deferred I/Os in its request_queue. 2753 */ 2754 if (dm_request_based(md)) 2755 dm_start_queue(md->queue); 2756 2757 unlock_fs(md); 2758 2759 return 0; 2760 } 2761 2762 int dm_resume(struct mapped_device *md) 2763 { 2764 int r; 2765 struct dm_table *map = NULL; 2766 2767 retry: 2768 r = -EINVAL; 2769 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2770 2771 if (!dm_suspended_md(md)) 2772 goto out; 2773 2774 if (dm_suspended_internally_md(md)) { 2775 /* already internally suspended, wait for internal resume */ 2776 mutex_unlock(&md->suspend_lock); 2777 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2778 if (r) 2779 return r; 2780 goto retry; 2781 } 2782 2783 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2784 if (!map || !dm_table_get_size(map)) 2785 goto out; 2786 2787 r = __dm_resume(md, map); 2788 if (r) 2789 goto out; 2790 2791 clear_bit(DMF_SUSPENDED, &md->flags); 2792 out: 2793 mutex_unlock(&md->suspend_lock); 2794 2795 return r; 2796 } 2797 2798 /* 2799 * Internal suspend/resume works like userspace-driven suspend. It waits 2800 * until all bios finish and prevents issuing new bios to the target drivers. 2801 * It may be used only from the kernel. 2802 */ 2803 2804 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2805 { 2806 struct dm_table *map = NULL; 2807 2808 lockdep_assert_held(&md->suspend_lock); 2809 2810 if (md->internal_suspend_count++) 2811 return; /* nested internal suspend */ 2812 2813 if (dm_suspended_md(md)) { 2814 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2815 return; /* nest suspend */ 2816 } 2817 2818 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2819 2820 /* 2821 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2822 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2823 * would require changing .presuspend to return an error -- avoid this 2824 * until there is a need for more elaborate variants of internal suspend. 2825 */ 2826 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2827 DMF_SUSPENDED_INTERNALLY); 2828 2829 dm_table_postsuspend_targets(map); 2830 } 2831 2832 static void __dm_internal_resume(struct mapped_device *md) 2833 { 2834 BUG_ON(!md->internal_suspend_count); 2835 2836 if (--md->internal_suspend_count) 2837 return; /* resume from nested internal suspend */ 2838 2839 if (dm_suspended_md(md)) 2840 goto done; /* resume from nested suspend */ 2841 2842 /* 2843 * NOTE: existing callers don't need to call dm_table_resume_targets 2844 * (which may fail -- so best to avoid it for now by passing NULL map) 2845 */ 2846 (void) __dm_resume(md, NULL); 2847 2848 done: 2849 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2850 smp_mb__after_atomic(); 2851 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2852 } 2853 2854 void dm_internal_suspend_noflush(struct mapped_device *md) 2855 { 2856 mutex_lock(&md->suspend_lock); 2857 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2858 mutex_unlock(&md->suspend_lock); 2859 } 2860 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2861 2862 void dm_internal_resume(struct mapped_device *md) 2863 { 2864 mutex_lock(&md->suspend_lock); 2865 __dm_internal_resume(md); 2866 mutex_unlock(&md->suspend_lock); 2867 } 2868 EXPORT_SYMBOL_GPL(dm_internal_resume); 2869 2870 /* 2871 * Fast variants of internal suspend/resume hold md->suspend_lock, 2872 * which prevents interaction with userspace-driven suspend. 2873 */ 2874 2875 void dm_internal_suspend_fast(struct mapped_device *md) 2876 { 2877 mutex_lock(&md->suspend_lock); 2878 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2879 return; 2880 2881 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2882 synchronize_srcu(&md->io_barrier); 2883 flush_workqueue(md->wq); 2884 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2885 } 2886 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2887 2888 void dm_internal_resume_fast(struct mapped_device *md) 2889 { 2890 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2891 goto done; 2892 2893 dm_queue_flush(md); 2894 2895 done: 2896 mutex_unlock(&md->suspend_lock); 2897 } 2898 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2899 2900 /*----------------------------------------------------------------- 2901 * Event notification. 2902 *---------------------------------------------------------------*/ 2903 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2904 unsigned cookie) 2905 { 2906 char udev_cookie[DM_COOKIE_LENGTH]; 2907 char *envp[] = { udev_cookie, NULL }; 2908 2909 if (!cookie) 2910 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2911 else { 2912 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2913 DM_COOKIE_ENV_VAR_NAME, cookie); 2914 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2915 action, envp); 2916 } 2917 } 2918 2919 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2920 { 2921 return atomic_add_return(1, &md->uevent_seq); 2922 } 2923 2924 uint32_t dm_get_event_nr(struct mapped_device *md) 2925 { 2926 return atomic_read(&md->event_nr); 2927 } 2928 2929 int dm_wait_event(struct mapped_device *md, int event_nr) 2930 { 2931 return wait_event_interruptible(md->eventq, 2932 (event_nr != atomic_read(&md->event_nr))); 2933 } 2934 2935 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2936 { 2937 unsigned long flags; 2938 2939 spin_lock_irqsave(&md->uevent_lock, flags); 2940 list_add(elist, &md->uevent_list); 2941 spin_unlock_irqrestore(&md->uevent_lock, flags); 2942 } 2943 2944 /* 2945 * The gendisk is only valid as long as you have a reference 2946 * count on 'md'. 2947 */ 2948 struct gendisk *dm_disk(struct mapped_device *md) 2949 { 2950 return md->disk; 2951 } 2952 EXPORT_SYMBOL_GPL(dm_disk); 2953 2954 struct kobject *dm_kobject(struct mapped_device *md) 2955 { 2956 return &md->kobj_holder.kobj; 2957 } 2958 2959 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2960 { 2961 struct mapped_device *md; 2962 2963 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2964 2965 spin_lock(&_minor_lock); 2966 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2967 md = NULL; 2968 goto out; 2969 } 2970 dm_get(md); 2971 out: 2972 spin_unlock(&_minor_lock); 2973 2974 return md; 2975 } 2976 2977 int dm_suspended_md(struct mapped_device *md) 2978 { 2979 return test_bit(DMF_SUSPENDED, &md->flags); 2980 } 2981 2982 int dm_suspended_internally_md(struct mapped_device *md) 2983 { 2984 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2985 } 2986 2987 int dm_test_deferred_remove_flag(struct mapped_device *md) 2988 { 2989 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2990 } 2991 2992 int dm_suspended(struct dm_target *ti) 2993 { 2994 return dm_suspended_md(dm_table_get_md(ti->table)); 2995 } 2996 EXPORT_SYMBOL_GPL(dm_suspended); 2997 2998 int dm_noflush_suspending(struct dm_target *ti) 2999 { 3000 return __noflush_suspending(dm_table_get_md(ti->table)); 3001 } 3002 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3003 3004 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 3005 unsigned integrity, unsigned per_io_data_size, 3006 unsigned min_pool_size) 3007 { 3008 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 3009 unsigned int pool_size = 0; 3010 unsigned int front_pad, io_front_pad; 3011 int ret; 3012 3013 if (!pools) 3014 return NULL; 3015 3016 switch (type) { 3017 case DM_TYPE_BIO_BASED: 3018 case DM_TYPE_DAX_BIO_BASED: 3019 case DM_TYPE_NVME_BIO_BASED: 3020 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 3021 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3022 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 3023 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 3024 if (ret) 3025 goto out; 3026 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 3027 goto out; 3028 break; 3029 case DM_TYPE_REQUEST_BASED: 3030 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3031 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3032 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3033 break; 3034 default: 3035 BUG(); 3036 } 3037 3038 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3039 if (ret) 3040 goto out; 3041 3042 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3043 goto out; 3044 3045 return pools; 3046 3047 out: 3048 dm_free_md_mempools(pools); 3049 3050 return NULL; 3051 } 3052 3053 void dm_free_md_mempools(struct dm_md_mempools *pools) 3054 { 3055 if (!pools) 3056 return; 3057 3058 bioset_exit(&pools->bs); 3059 bioset_exit(&pools->io_bs); 3060 3061 kfree(pools); 3062 } 3063 3064 struct dm_pr { 3065 u64 old_key; 3066 u64 new_key; 3067 u32 flags; 3068 bool fail_early; 3069 }; 3070 3071 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3072 void *data) 3073 { 3074 struct mapped_device *md = bdev->bd_disk->private_data; 3075 struct dm_table *table; 3076 struct dm_target *ti; 3077 int ret = -ENOTTY, srcu_idx; 3078 3079 table = dm_get_live_table(md, &srcu_idx); 3080 if (!table || !dm_table_get_size(table)) 3081 goto out; 3082 3083 /* We only support devices that have a single target */ 3084 if (dm_table_get_num_targets(table) != 1) 3085 goto out; 3086 ti = dm_table_get_target(table, 0); 3087 3088 ret = -EINVAL; 3089 if (!ti->type->iterate_devices) 3090 goto out; 3091 3092 ret = ti->type->iterate_devices(ti, fn, data); 3093 out: 3094 dm_put_live_table(md, srcu_idx); 3095 return ret; 3096 } 3097 3098 /* 3099 * For register / unregister we need to manually call out to every path. 3100 */ 3101 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3102 sector_t start, sector_t len, void *data) 3103 { 3104 struct dm_pr *pr = data; 3105 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3106 3107 if (!ops || !ops->pr_register) 3108 return -EOPNOTSUPP; 3109 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3110 } 3111 3112 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3113 u32 flags) 3114 { 3115 struct dm_pr pr = { 3116 .old_key = old_key, 3117 .new_key = new_key, 3118 .flags = flags, 3119 .fail_early = true, 3120 }; 3121 int ret; 3122 3123 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3124 if (ret && new_key) { 3125 /* unregister all paths if we failed to register any path */ 3126 pr.old_key = new_key; 3127 pr.new_key = 0; 3128 pr.flags = 0; 3129 pr.fail_early = false; 3130 dm_call_pr(bdev, __dm_pr_register, &pr); 3131 } 3132 3133 return ret; 3134 } 3135 3136 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3137 u32 flags) 3138 { 3139 struct mapped_device *md = bdev->bd_disk->private_data; 3140 const struct pr_ops *ops; 3141 int r, srcu_idx; 3142 3143 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3144 if (r < 0) 3145 goto out; 3146 3147 ops = bdev->bd_disk->fops->pr_ops; 3148 if (ops && ops->pr_reserve) 3149 r = ops->pr_reserve(bdev, key, type, flags); 3150 else 3151 r = -EOPNOTSUPP; 3152 out: 3153 dm_unprepare_ioctl(md, srcu_idx); 3154 return r; 3155 } 3156 3157 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3158 { 3159 struct mapped_device *md = bdev->bd_disk->private_data; 3160 const struct pr_ops *ops; 3161 int r, srcu_idx; 3162 3163 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3164 if (r < 0) 3165 goto out; 3166 3167 ops = bdev->bd_disk->fops->pr_ops; 3168 if (ops && ops->pr_release) 3169 r = ops->pr_release(bdev, key, type); 3170 else 3171 r = -EOPNOTSUPP; 3172 out: 3173 dm_unprepare_ioctl(md, srcu_idx); 3174 return r; 3175 } 3176 3177 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3178 enum pr_type type, bool abort) 3179 { 3180 struct mapped_device *md = bdev->bd_disk->private_data; 3181 const struct pr_ops *ops; 3182 int r, srcu_idx; 3183 3184 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3185 if (r < 0) 3186 goto out; 3187 3188 ops = bdev->bd_disk->fops->pr_ops; 3189 if (ops && ops->pr_preempt) 3190 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3191 else 3192 r = -EOPNOTSUPP; 3193 out: 3194 dm_unprepare_ioctl(md, srcu_idx); 3195 return r; 3196 } 3197 3198 static int dm_pr_clear(struct block_device *bdev, u64 key) 3199 { 3200 struct mapped_device *md = bdev->bd_disk->private_data; 3201 const struct pr_ops *ops; 3202 int r, srcu_idx; 3203 3204 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3205 if (r < 0) 3206 goto out; 3207 3208 ops = bdev->bd_disk->fops->pr_ops; 3209 if (ops && ops->pr_clear) 3210 r = ops->pr_clear(bdev, key); 3211 else 3212 r = -EOPNOTSUPP; 3213 out: 3214 dm_unprepare_ioctl(md, srcu_idx); 3215 return r; 3216 } 3217 3218 static const struct pr_ops dm_pr_ops = { 3219 .pr_register = dm_pr_register, 3220 .pr_reserve = dm_pr_reserve, 3221 .pr_release = dm_pr_release, 3222 .pr_preempt = dm_pr_preempt, 3223 .pr_clear = dm_pr_clear, 3224 }; 3225 3226 static const struct block_device_operations dm_blk_dops = { 3227 .open = dm_blk_open, 3228 .release = dm_blk_close, 3229 .ioctl = dm_blk_ioctl, 3230 .getgeo = dm_blk_getgeo, 3231 .report_zones = dm_blk_report_zones, 3232 .pr_ops = &dm_pr_ops, 3233 .owner = THIS_MODULE 3234 }; 3235 3236 static const struct dax_operations dm_dax_ops = { 3237 .direct_access = dm_dax_direct_access, 3238 .dax_supported = dm_dax_supported, 3239 .copy_from_iter = dm_dax_copy_from_iter, 3240 .copy_to_iter = dm_dax_copy_to_iter, 3241 .zero_page_range = dm_dax_zero_page_range, 3242 }; 3243 3244 /* 3245 * module hooks 3246 */ 3247 module_init(dm_init); 3248 module_exit(dm_exit); 3249 3250 module_param(major, uint, 0); 3251 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3252 3253 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3254 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3255 3256 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3257 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3258 3259 MODULE_DESCRIPTION(DM_NAME " driver"); 3260 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3261 MODULE_LICENSE("GPL"); 3262