1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/buffer_head.h> 18 #include <linux/mempool.h> 19 #include <linux/slab.h> 20 #include <linux/idr.h> 21 #include <linux/hdreg.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 /* 28 * Cookies are numeric values sent with CHANGE and REMOVE 29 * uevents while resuming, removing or renaming the device. 30 */ 31 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 32 #define DM_COOKIE_LENGTH 24 33 34 static const char *_name = DM_NAME; 35 36 static unsigned int major = 0; 37 static unsigned int _major = 0; 38 39 static DEFINE_SPINLOCK(_minor_lock); 40 /* 41 * For bio-based dm. 42 * One of these is allocated per bio. 43 */ 44 struct dm_io { 45 struct mapped_device *md; 46 int error; 47 atomic_t io_count; 48 struct bio *bio; 49 unsigned long start_time; 50 }; 51 52 /* 53 * For bio-based dm. 54 * One of these is allocated per target within a bio. Hopefully 55 * this will be simplified out one day. 56 */ 57 struct dm_target_io { 58 struct dm_io *io; 59 struct dm_target *ti; 60 union map_info info; 61 }; 62 63 /* 64 * For request-based dm. 65 * One of these is allocated per request. 66 */ 67 struct dm_rq_target_io { 68 struct mapped_device *md; 69 struct dm_target *ti; 70 struct request *orig, clone; 71 int error; 72 union map_info info; 73 }; 74 75 /* 76 * For request-based dm. 77 * One of these is allocated per bio. 78 */ 79 struct dm_rq_clone_bio_info { 80 struct bio *orig; 81 struct dm_rq_target_io *tio; 82 }; 83 84 union map_info *dm_get_mapinfo(struct bio *bio) 85 { 86 if (bio && bio->bi_private) 87 return &((struct dm_target_io *)bio->bi_private)->info; 88 return NULL; 89 } 90 91 union map_info *dm_get_rq_mapinfo(struct request *rq) 92 { 93 if (rq && rq->end_io_data) 94 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 95 return NULL; 96 } 97 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 98 99 #define MINOR_ALLOCED ((void *)-1) 100 101 /* 102 * Bits for the md->flags field. 103 */ 104 #define DMF_BLOCK_IO_FOR_SUSPEND 0 105 #define DMF_SUSPENDED 1 106 #define DMF_FROZEN 2 107 #define DMF_FREEING 3 108 #define DMF_DELETING 4 109 #define DMF_NOFLUSH_SUSPENDING 5 110 #define DMF_QUEUE_IO_TO_THREAD 6 111 112 /* 113 * Work processed by per-device workqueue. 114 */ 115 struct mapped_device { 116 struct rw_semaphore io_lock; 117 struct mutex suspend_lock; 118 rwlock_t map_lock; 119 atomic_t holders; 120 atomic_t open_count; 121 122 unsigned long flags; 123 124 struct request_queue *queue; 125 struct gendisk *disk; 126 char name[16]; 127 128 void *interface_ptr; 129 130 /* 131 * A list of ios that arrived while we were suspended. 132 */ 133 atomic_t pending[2]; 134 wait_queue_head_t wait; 135 struct work_struct work; 136 struct bio_list deferred; 137 spinlock_t deferred_lock; 138 139 /* 140 * An error from the barrier request currently being processed. 141 */ 142 int barrier_error; 143 144 /* 145 * Processing queue (flush/barriers) 146 */ 147 struct workqueue_struct *wq; 148 149 /* 150 * The current mapping. 151 */ 152 struct dm_table *map; 153 154 /* 155 * io objects are allocated from here. 156 */ 157 mempool_t *io_pool; 158 mempool_t *tio_pool; 159 160 struct bio_set *bs; 161 162 /* 163 * Event handling. 164 */ 165 atomic_t event_nr; 166 wait_queue_head_t eventq; 167 atomic_t uevent_seq; 168 struct list_head uevent_list; 169 spinlock_t uevent_lock; /* Protect access to uevent_list */ 170 171 /* 172 * freeze/thaw support require holding onto a super block 173 */ 174 struct super_block *frozen_sb; 175 struct block_device *bdev; 176 177 /* forced geometry settings */ 178 struct hd_geometry geometry; 179 180 /* marker of flush suspend for request-based dm */ 181 struct request suspend_rq; 182 183 /* For saving the address of __make_request for request based dm */ 184 make_request_fn *saved_make_request_fn; 185 186 /* sysfs handle */ 187 struct kobject kobj; 188 189 /* zero-length barrier that will be cloned and submitted to targets */ 190 struct bio barrier_bio; 191 }; 192 193 /* 194 * For mempools pre-allocation at the table loading time. 195 */ 196 struct dm_md_mempools { 197 mempool_t *io_pool; 198 mempool_t *tio_pool; 199 struct bio_set *bs; 200 }; 201 202 #define MIN_IOS 256 203 static struct kmem_cache *_io_cache; 204 static struct kmem_cache *_tio_cache; 205 static struct kmem_cache *_rq_tio_cache; 206 static struct kmem_cache *_rq_bio_info_cache; 207 208 static int __init local_init(void) 209 { 210 int r = -ENOMEM; 211 212 /* allocate a slab for the dm_ios */ 213 _io_cache = KMEM_CACHE(dm_io, 0); 214 if (!_io_cache) 215 return r; 216 217 /* allocate a slab for the target ios */ 218 _tio_cache = KMEM_CACHE(dm_target_io, 0); 219 if (!_tio_cache) 220 goto out_free_io_cache; 221 222 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 223 if (!_rq_tio_cache) 224 goto out_free_tio_cache; 225 226 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0); 227 if (!_rq_bio_info_cache) 228 goto out_free_rq_tio_cache; 229 230 r = dm_uevent_init(); 231 if (r) 232 goto out_free_rq_bio_info_cache; 233 234 _major = major; 235 r = register_blkdev(_major, _name); 236 if (r < 0) 237 goto out_uevent_exit; 238 239 if (!_major) 240 _major = r; 241 242 return 0; 243 244 out_uevent_exit: 245 dm_uevent_exit(); 246 out_free_rq_bio_info_cache: 247 kmem_cache_destroy(_rq_bio_info_cache); 248 out_free_rq_tio_cache: 249 kmem_cache_destroy(_rq_tio_cache); 250 out_free_tio_cache: 251 kmem_cache_destroy(_tio_cache); 252 out_free_io_cache: 253 kmem_cache_destroy(_io_cache); 254 255 return r; 256 } 257 258 static void local_exit(void) 259 { 260 kmem_cache_destroy(_rq_bio_info_cache); 261 kmem_cache_destroy(_rq_tio_cache); 262 kmem_cache_destroy(_tio_cache); 263 kmem_cache_destroy(_io_cache); 264 unregister_blkdev(_major, _name); 265 dm_uevent_exit(); 266 267 _major = 0; 268 269 DMINFO("cleaned up"); 270 } 271 272 static int (*_inits[])(void) __initdata = { 273 local_init, 274 dm_target_init, 275 dm_linear_init, 276 dm_stripe_init, 277 dm_kcopyd_init, 278 dm_interface_init, 279 }; 280 281 static void (*_exits[])(void) = { 282 local_exit, 283 dm_target_exit, 284 dm_linear_exit, 285 dm_stripe_exit, 286 dm_kcopyd_exit, 287 dm_interface_exit, 288 }; 289 290 static int __init dm_init(void) 291 { 292 const int count = ARRAY_SIZE(_inits); 293 294 int r, i; 295 296 for (i = 0; i < count; i++) { 297 r = _inits[i](); 298 if (r) 299 goto bad; 300 } 301 302 return 0; 303 304 bad: 305 while (i--) 306 _exits[i](); 307 308 return r; 309 } 310 311 static void __exit dm_exit(void) 312 { 313 int i = ARRAY_SIZE(_exits); 314 315 while (i--) 316 _exits[i](); 317 } 318 319 /* 320 * Block device functions 321 */ 322 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 323 { 324 struct mapped_device *md; 325 326 spin_lock(&_minor_lock); 327 328 md = bdev->bd_disk->private_data; 329 if (!md) 330 goto out; 331 332 if (test_bit(DMF_FREEING, &md->flags) || 333 test_bit(DMF_DELETING, &md->flags)) { 334 md = NULL; 335 goto out; 336 } 337 338 dm_get(md); 339 atomic_inc(&md->open_count); 340 341 out: 342 spin_unlock(&_minor_lock); 343 344 return md ? 0 : -ENXIO; 345 } 346 347 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 348 { 349 struct mapped_device *md = disk->private_data; 350 atomic_dec(&md->open_count); 351 dm_put(md); 352 return 0; 353 } 354 355 int dm_open_count(struct mapped_device *md) 356 { 357 return atomic_read(&md->open_count); 358 } 359 360 /* 361 * Guarantees nothing is using the device before it's deleted. 362 */ 363 int dm_lock_for_deletion(struct mapped_device *md) 364 { 365 int r = 0; 366 367 spin_lock(&_minor_lock); 368 369 if (dm_open_count(md)) 370 r = -EBUSY; 371 else 372 set_bit(DMF_DELETING, &md->flags); 373 374 spin_unlock(&_minor_lock); 375 376 return r; 377 } 378 379 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 380 { 381 struct mapped_device *md = bdev->bd_disk->private_data; 382 383 return dm_get_geometry(md, geo); 384 } 385 386 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 387 unsigned int cmd, unsigned long arg) 388 { 389 struct mapped_device *md = bdev->bd_disk->private_data; 390 struct dm_table *map = dm_get_table(md); 391 struct dm_target *tgt; 392 int r = -ENOTTY; 393 394 if (!map || !dm_table_get_size(map)) 395 goto out; 396 397 /* We only support devices that have a single target */ 398 if (dm_table_get_num_targets(map) != 1) 399 goto out; 400 401 tgt = dm_table_get_target(map, 0); 402 403 if (dm_suspended(md)) { 404 r = -EAGAIN; 405 goto out; 406 } 407 408 if (tgt->type->ioctl) 409 r = tgt->type->ioctl(tgt, cmd, arg); 410 411 out: 412 dm_table_put(map); 413 414 return r; 415 } 416 417 static struct dm_io *alloc_io(struct mapped_device *md) 418 { 419 return mempool_alloc(md->io_pool, GFP_NOIO); 420 } 421 422 static void free_io(struct mapped_device *md, struct dm_io *io) 423 { 424 mempool_free(io, md->io_pool); 425 } 426 427 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 428 { 429 mempool_free(tio, md->tio_pool); 430 } 431 432 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md) 433 { 434 return mempool_alloc(md->tio_pool, GFP_ATOMIC); 435 } 436 437 static void free_rq_tio(struct dm_rq_target_io *tio) 438 { 439 mempool_free(tio, tio->md->tio_pool); 440 } 441 442 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md) 443 { 444 return mempool_alloc(md->io_pool, GFP_ATOMIC); 445 } 446 447 static void free_bio_info(struct dm_rq_clone_bio_info *info) 448 { 449 mempool_free(info, info->tio->md->io_pool); 450 } 451 452 static void start_io_acct(struct dm_io *io) 453 { 454 struct mapped_device *md = io->md; 455 int cpu; 456 int rw = bio_data_dir(io->bio); 457 458 io->start_time = jiffies; 459 460 cpu = part_stat_lock(); 461 part_round_stats(cpu, &dm_disk(md)->part0); 462 part_stat_unlock(); 463 dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]); 464 } 465 466 static void end_io_acct(struct dm_io *io) 467 { 468 struct mapped_device *md = io->md; 469 struct bio *bio = io->bio; 470 unsigned long duration = jiffies - io->start_time; 471 int pending, cpu; 472 int rw = bio_data_dir(bio); 473 474 cpu = part_stat_lock(); 475 part_round_stats(cpu, &dm_disk(md)->part0); 476 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 477 part_stat_unlock(); 478 479 /* 480 * After this is decremented the bio must not be touched if it is 481 * a barrier. 482 */ 483 dm_disk(md)->part0.in_flight[rw] = pending = 484 atomic_dec_return(&md->pending[rw]); 485 pending += atomic_read(&md->pending[rw^0x1]); 486 487 /* nudge anyone waiting on suspend queue */ 488 if (!pending) 489 wake_up(&md->wait); 490 } 491 492 /* 493 * Add the bio to the list of deferred io. 494 */ 495 static void queue_io(struct mapped_device *md, struct bio *bio) 496 { 497 down_write(&md->io_lock); 498 499 spin_lock_irq(&md->deferred_lock); 500 bio_list_add(&md->deferred, bio); 501 spin_unlock_irq(&md->deferred_lock); 502 503 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) 504 queue_work(md->wq, &md->work); 505 506 up_write(&md->io_lock); 507 } 508 509 /* 510 * Everyone (including functions in this file), should use this 511 * function to access the md->map field, and make sure they call 512 * dm_table_put() when finished. 513 */ 514 struct dm_table *dm_get_table(struct mapped_device *md) 515 { 516 struct dm_table *t; 517 unsigned long flags; 518 519 read_lock_irqsave(&md->map_lock, flags); 520 t = md->map; 521 if (t) 522 dm_table_get(t); 523 read_unlock_irqrestore(&md->map_lock, flags); 524 525 return t; 526 } 527 528 /* 529 * Get the geometry associated with a dm device 530 */ 531 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 532 { 533 *geo = md->geometry; 534 535 return 0; 536 } 537 538 /* 539 * Set the geometry of a device. 540 */ 541 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 542 { 543 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 544 545 if (geo->start > sz) { 546 DMWARN("Start sector is beyond the geometry limits."); 547 return -EINVAL; 548 } 549 550 md->geometry = *geo; 551 552 return 0; 553 } 554 555 /*----------------------------------------------------------------- 556 * CRUD START: 557 * A more elegant soln is in the works that uses the queue 558 * merge fn, unfortunately there are a couple of changes to 559 * the block layer that I want to make for this. So in the 560 * interests of getting something for people to use I give 561 * you this clearly demarcated crap. 562 *---------------------------------------------------------------*/ 563 564 static int __noflush_suspending(struct mapped_device *md) 565 { 566 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 567 } 568 569 /* 570 * Decrements the number of outstanding ios that a bio has been 571 * cloned into, completing the original io if necc. 572 */ 573 static void dec_pending(struct dm_io *io, int error) 574 { 575 unsigned long flags; 576 int io_error; 577 struct bio *bio; 578 struct mapped_device *md = io->md; 579 580 /* Push-back supersedes any I/O errors */ 581 if (error && !(io->error > 0 && __noflush_suspending(md))) 582 io->error = error; 583 584 if (atomic_dec_and_test(&io->io_count)) { 585 if (io->error == DM_ENDIO_REQUEUE) { 586 /* 587 * Target requested pushing back the I/O. 588 */ 589 spin_lock_irqsave(&md->deferred_lock, flags); 590 if (__noflush_suspending(md)) { 591 if (!bio_rw_flagged(io->bio, BIO_RW_BARRIER)) 592 bio_list_add_head(&md->deferred, 593 io->bio); 594 } else 595 /* noflush suspend was interrupted. */ 596 io->error = -EIO; 597 spin_unlock_irqrestore(&md->deferred_lock, flags); 598 } 599 600 io_error = io->error; 601 bio = io->bio; 602 603 if (bio_rw_flagged(bio, BIO_RW_BARRIER)) { 604 /* 605 * There can be just one barrier request so we use 606 * a per-device variable for error reporting. 607 * Note that you can't touch the bio after end_io_acct 608 */ 609 if (!md->barrier_error && io_error != -EOPNOTSUPP) 610 md->barrier_error = io_error; 611 end_io_acct(io); 612 } else { 613 end_io_acct(io); 614 615 if (io_error != DM_ENDIO_REQUEUE) { 616 trace_block_bio_complete(md->queue, bio); 617 618 bio_endio(bio, io_error); 619 } 620 } 621 622 free_io(md, io); 623 } 624 } 625 626 static void clone_endio(struct bio *bio, int error) 627 { 628 int r = 0; 629 struct dm_target_io *tio = bio->bi_private; 630 struct dm_io *io = tio->io; 631 struct mapped_device *md = tio->io->md; 632 dm_endio_fn endio = tio->ti->type->end_io; 633 634 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 635 error = -EIO; 636 637 if (endio) { 638 r = endio(tio->ti, bio, error, &tio->info); 639 if (r < 0 || r == DM_ENDIO_REQUEUE) 640 /* 641 * error and requeue request are handled 642 * in dec_pending(). 643 */ 644 error = r; 645 else if (r == DM_ENDIO_INCOMPLETE) 646 /* The target will handle the io */ 647 return; 648 else if (r) { 649 DMWARN("unimplemented target endio return value: %d", r); 650 BUG(); 651 } 652 } 653 654 /* 655 * Store md for cleanup instead of tio which is about to get freed. 656 */ 657 bio->bi_private = md->bs; 658 659 free_tio(md, tio); 660 bio_put(bio); 661 dec_pending(io, error); 662 } 663 664 /* 665 * Partial completion handling for request-based dm 666 */ 667 static void end_clone_bio(struct bio *clone, int error) 668 { 669 struct dm_rq_clone_bio_info *info = clone->bi_private; 670 struct dm_rq_target_io *tio = info->tio; 671 struct bio *bio = info->orig; 672 unsigned int nr_bytes = info->orig->bi_size; 673 674 bio_put(clone); 675 676 if (tio->error) 677 /* 678 * An error has already been detected on the request. 679 * Once error occurred, just let clone->end_io() handle 680 * the remainder. 681 */ 682 return; 683 else if (error) { 684 /* 685 * Don't notice the error to the upper layer yet. 686 * The error handling decision is made by the target driver, 687 * when the request is completed. 688 */ 689 tio->error = error; 690 return; 691 } 692 693 /* 694 * I/O for the bio successfully completed. 695 * Notice the data completion to the upper layer. 696 */ 697 698 /* 699 * bios are processed from the head of the list. 700 * So the completing bio should always be rq->bio. 701 * If it's not, something wrong is happening. 702 */ 703 if (tio->orig->bio != bio) 704 DMERR("bio completion is going in the middle of the request"); 705 706 /* 707 * Update the original request. 708 * Do not use blk_end_request() here, because it may complete 709 * the original request before the clone, and break the ordering. 710 */ 711 blk_update_request(tio->orig, 0, nr_bytes); 712 } 713 714 /* 715 * Don't touch any member of the md after calling this function because 716 * the md may be freed in dm_put() at the end of this function. 717 * Or do dm_get() before calling this function and dm_put() later. 718 */ 719 static void rq_completed(struct mapped_device *md, int run_queue) 720 { 721 int wakeup_waiters = 0; 722 struct request_queue *q = md->queue; 723 unsigned long flags; 724 725 spin_lock_irqsave(q->queue_lock, flags); 726 if (!queue_in_flight(q)) 727 wakeup_waiters = 1; 728 spin_unlock_irqrestore(q->queue_lock, flags); 729 730 /* nudge anyone waiting on suspend queue */ 731 if (wakeup_waiters) 732 wake_up(&md->wait); 733 734 if (run_queue) 735 blk_run_queue(q); 736 737 /* 738 * dm_put() must be at the end of this function. See the comment above 739 */ 740 dm_put(md); 741 } 742 743 static void free_rq_clone(struct request *clone) 744 { 745 struct dm_rq_target_io *tio = clone->end_io_data; 746 747 blk_rq_unprep_clone(clone); 748 free_rq_tio(tio); 749 } 750 751 static void dm_unprep_request(struct request *rq) 752 { 753 struct request *clone = rq->special; 754 755 rq->special = NULL; 756 rq->cmd_flags &= ~REQ_DONTPREP; 757 758 free_rq_clone(clone); 759 } 760 761 /* 762 * Requeue the original request of a clone. 763 */ 764 void dm_requeue_unmapped_request(struct request *clone) 765 { 766 struct dm_rq_target_io *tio = clone->end_io_data; 767 struct mapped_device *md = tio->md; 768 struct request *rq = tio->orig; 769 struct request_queue *q = rq->q; 770 unsigned long flags; 771 772 dm_unprep_request(rq); 773 774 spin_lock_irqsave(q->queue_lock, flags); 775 if (elv_queue_empty(q)) 776 blk_plug_device(q); 777 blk_requeue_request(q, rq); 778 spin_unlock_irqrestore(q->queue_lock, flags); 779 780 rq_completed(md, 0); 781 } 782 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 783 784 static void __stop_queue(struct request_queue *q) 785 { 786 blk_stop_queue(q); 787 } 788 789 static void stop_queue(struct request_queue *q) 790 { 791 unsigned long flags; 792 793 spin_lock_irqsave(q->queue_lock, flags); 794 __stop_queue(q); 795 spin_unlock_irqrestore(q->queue_lock, flags); 796 } 797 798 static void __start_queue(struct request_queue *q) 799 { 800 if (blk_queue_stopped(q)) 801 blk_start_queue(q); 802 } 803 804 static void start_queue(struct request_queue *q) 805 { 806 unsigned long flags; 807 808 spin_lock_irqsave(q->queue_lock, flags); 809 __start_queue(q); 810 spin_unlock_irqrestore(q->queue_lock, flags); 811 } 812 813 /* 814 * Complete the clone and the original request. 815 * Must be called without queue lock. 816 */ 817 static void dm_end_request(struct request *clone, int error) 818 { 819 struct dm_rq_target_io *tio = clone->end_io_data; 820 struct mapped_device *md = tio->md; 821 struct request *rq = tio->orig; 822 823 if (blk_pc_request(rq)) { 824 rq->errors = clone->errors; 825 rq->resid_len = clone->resid_len; 826 827 if (rq->sense) 828 /* 829 * We are using the sense buffer of the original 830 * request. 831 * So setting the length of the sense data is enough. 832 */ 833 rq->sense_len = clone->sense_len; 834 } 835 836 free_rq_clone(clone); 837 838 blk_end_request_all(rq, error); 839 840 rq_completed(md, 1); 841 } 842 843 /* 844 * Request completion handler for request-based dm 845 */ 846 static void dm_softirq_done(struct request *rq) 847 { 848 struct request *clone = rq->completion_data; 849 struct dm_rq_target_io *tio = clone->end_io_data; 850 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io; 851 int error = tio->error; 852 853 if (!(rq->cmd_flags & REQ_FAILED) && rq_end_io) 854 error = rq_end_io(tio->ti, clone, error, &tio->info); 855 856 if (error <= 0) 857 /* The target wants to complete the I/O */ 858 dm_end_request(clone, error); 859 else if (error == DM_ENDIO_INCOMPLETE) 860 /* The target will handle the I/O */ 861 return; 862 else if (error == DM_ENDIO_REQUEUE) 863 /* The target wants to requeue the I/O */ 864 dm_requeue_unmapped_request(clone); 865 else { 866 DMWARN("unimplemented target endio return value: %d", error); 867 BUG(); 868 } 869 } 870 871 /* 872 * Complete the clone and the original request with the error status 873 * through softirq context. 874 */ 875 static void dm_complete_request(struct request *clone, int error) 876 { 877 struct dm_rq_target_io *tio = clone->end_io_data; 878 struct request *rq = tio->orig; 879 880 tio->error = error; 881 rq->completion_data = clone; 882 blk_complete_request(rq); 883 } 884 885 /* 886 * Complete the not-mapped clone and the original request with the error status 887 * through softirq context. 888 * Target's rq_end_io() function isn't called. 889 * This may be used when the target's map_rq() function fails. 890 */ 891 void dm_kill_unmapped_request(struct request *clone, int error) 892 { 893 struct dm_rq_target_io *tio = clone->end_io_data; 894 struct request *rq = tio->orig; 895 896 rq->cmd_flags |= REQ_FAILED; 897 dm_complete_request(clone, error); 898 } 899 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 900 901 /* 902 * Called with the queue lock held 903 */ 904 static void end_clone_request(struct request *clone, int error) 905 { 906 /* 907 * For just cleaning up the information of the queue in which 908 * the clone was dispatched. 909 * The clone is *NOT* freed actually here because it is alloced from 910 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 911 */ 912 __blk_put_request(clone->q, clone); 913 914 /* 915 * Actual request completion is done in a softirq context which doesn't 916 * hold the queue lock. Otherwise, deadlock could occur because: 917 * - another request may be submitted by the upper level driver 918 * of the stacking during the completion 919 * - the submission which requires queue lock may be done 920 * against this queue 921 */ 922 dm_complete_request(clone, error); 923 } 924 925 static sector_t max_io_len(struct mapped_device *md, 926 sector_t sector, struct dm_target *ti) 927 { 928 sector_t offset = sector - ti->begin; 929 sector_t len = ti->len - offset; 930 931 /* 932 * Does the target need to split even further ? 933 */ 934 if (ti->split_io) { 935 sector_t boundary; 936 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1)) 937 - offset; 938 if (len > boundary) 939 len = boundary; 940 } 941 942 return len; 943 } 944 945 static void __map_bio(struct dm_target *ti, struct bio *clone, 946 struct dm_target_io *tio) 947 { 948 int r; 949 sector_t sector; 950 struct mapped_device *md; 951 952 clone->bi_end_io = clone_endio; 953 clone->bi_private = tio; 954 955 /* 956 * Map the clone. If r == 0 we don't need to do 957 * anything, the target has assumed ownership of 958 * this io. 959 */ 960 atomic_inc(&tio->io->io_count); 961 sector = clone->bi_sector; 962 r = ti->type->map(ti, clone, &tio->info); 963 if (r == DM_MAPIO_REMAPPED) { 964 /* the bio has been remapped so dispatch it */ 965 966 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone, 967 tio->io->bio->bi_bdev->bd_dev, sector); 968 969 generic_make_request(clone); 970 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 971 /* error the io and bail out, or requeue it if needed */ 972 md = tio->io->md; 973 dec_pending(tio->io, r); 974 /* 975 * Store bio_set for cleanup. 976 */ 977 clone->bi_private = md->bs; 978 bio_put(clone); 979 free_tio(md, tio); 980 } else if (r) { 981 DMWARN("unimplemented target map return value: %d", r); 982 BUG(); 983 } 984 } 985 986 struct clone_info { 987 struct mapped_device *md; 988 struct dm_table *map; 989 struct bio *bio; 990 struct dm_io *io; 991 sector_t sector; 992 sector_t sector_count; 993 unsigned short idx; 994 }; 995 996 static void dm_bio_destructor(struct bio *bio) 997 { 998 struct bio_set *bs = bio->bi_private; 999 1000 bio_free(bio, bs); 1001 } 1002 1003 /* 1004 * Creates a little bio that is just does part of a bvec. 1005 */ 1006 static struct bio *split_bvec(struct bio *bio, sector_t sector, 1007 unsigned short idx, unsigned int offset, 1008 unsigned int len, struct bio_set *bs) 1009 { 1010 struct bio *clone; 1011 struct bio_vec *bv = bio->bi_io_vec + idx; 1012 1013 clone = bio_alloc_bioset(GFP_NOIO, 1, bs); 1014 clone->bi_destructor = dm_bio_destructor; 1015 *clone->bi_io_vec = *bv; 1016 1017 clone->bi_sector = sector; 1018 clone->bi_bdev = bio->bi_bdev; 1019 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER); 1020 clone->bi_vcnt = 1; 1021 clone->bi_size = to_bytes(len); 1022 clone->bi_io_vec->bv_offset = offset; 1023 clone->bi_io_vec->bv_len = clone->bi_size; 1024 clone->bi_flags |= 1 << BIO_CLONED; 1025 1026 if (bio_integrity(bio)) { 1027 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1028 bio_integrity_trim(clone, 1029 bio_sector_offset(bio, idx, offset), len); 1030 } 1031 1032 return clone; 1033 } 1034 1035 /* 1036 * Creates a bio that consists of range of complete bvecs. 1037 */ 1038 static struct bio *clone_bio(struct bio *bio, sector_t sector, 1039 unsigned short idx, unsigned short bv_count, 1040 unsigned int len, struct bio_set *bs) 1041 { 1042 struct bio *clone; 1043 1044 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs); 1045 __bio_clone(clone, bio); 1046 clone->bi_rw &= ~(1 << BIO_RW_BARRIER); 1047 clone->bi_destructor = dm_bio_destructor; 1048 clone->bi_sector = sector; 1049 clone->bi_idx = idx; 1050 clone->bi_vcnt = idx + bv_count; 1051 clone->bi_size = to_bytes(len); 1052 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 1053 1054 if (bio_integrity(bio)) { 1055 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1056 1057 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1058 bio_integrity_trim(clone, 1059 bio_sector_offset(bio, idx, 0), len); 1060 } 1061 1062 return clone; 1063 } 1064 1065 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1066 struct dm_target *ti) 1067 { 1068 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO); 1069 1070 tio->io = ci->io; 1071 tio->ti = ti; 1072 memset(&tio->info, 0, sizeof(tio->info)); 1073 1074 return tio; 1075 } 1076 1077 static void __flush_target(struct clone_info *ci, struct dm_target *ti, 1078 unsigned flush_nr) 1079 { 1080 struct dm_target_io *tio = alloc_tio(ci, ti); 1081 struct bio *clone; 1082 1083 tio->info.flush_request = flush_nr; 1084 1085 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1086 __bio_clone(clone, ci->bio); 1087 clone->bi_destructor = dm_bio_destructor; 1088 1089 __map_bio(ti, clone, tio); 1090 } 1091 1092 static int __clone_and_map_empty_barrier(struct clone_info *ci) 1093 { 1094 unsigned target_nr = 0, flush_nr; 1095 struct dm_target *ti; 1096 1097 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1098 for (flush_nr = 0; flush_nr < ti->num_flush_requests; 1099 flush_nr++) 1100 __flush_target(ci, ti, flush_nr); 1101 1102 ci->sector_count = 0; 1103 1104 return 0; 1105 } 1106 1107 static int __clone_and_map(struct clone_info *ci) 1108 { 1109 struct bio *clone, *bio = ci->bio; 1110 struct dm_target *ti; 1111 sector_t len = 0, max; 1112 struct dm_target_io *tio; 1113 1114 if (unlikely(bio_empty_barrier(bio))) 1115 return __clone_and_map_empty_barrier(ci); 1116 1117 ti = dm_table_find_target(ci->map, ci->sector); 1118 if (!dm_target_is_valid(ti)) 1119 return -EIO; 1120 1121 max = max_io_len(ci->md, ci->sector, ti); 1122 1123 /* 1124 * Allocate a target io object. 1125 */ 1126 tio = alloc_tio(ci, ti); 1127 1128 if (ci->sector_count <= max) { 1129 /* 1130 * Optimise for the simple case where we can do all of 1131 * the remaining io with a single clone. 1132 */ 1133 clone = clone_bio(bio, ci->sector, ci->idx, 1134 bio->bi_vcnt - ci->idx, ci->sector_count, 1135 ci->md->bs); 1136 __map_bio(ti, clone, tio); 1137 ci->sector_count = 0; 1138 1139 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1140 /* 1141 * There are some bvecs that don't span targets. 1142 * Do as many of these as possible. 1143 */ 1144 int i; 1145 sector_t remaining = max; 1146 sector_t bv_len; 1147 1148 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 1149 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 1150 1151 if (bv_len > remaining) 1152 break; 1153 1154 remaining -= bv_len; 1155 len += bv_len; 1156 } 1157 1158 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len, 1159 ci->md->bs); 1160 __map_bio(ti, clone, tio); 1161 1162 ci->sector += len; 1163 ci->sector_count -= len; 1164 ci->idx = i; 1165 1166 } else { 1167 /* 1168 * Handle a bvec that must be split between two or more targets. 1169 */ 1170 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1171 sector_t remaining = to_sector(bv->bv_len); 1172 unsigned int offset = 0; 1173 1174 do { 1175 if (offset) { 1176 ti = dm_table_find_target(ci->map, ci->sector); 1177 if (!dm_target_is_valid(ti)) 1178 return -EIO; 1179 1180 max = max_io_len(ci->md, ci->sector, ti); 1181 1182 tio = alloc_tio(ci, ti); 1183 } 1184 1185 len = min(remaining, max); 1186 1187 clone = split_bvec(bio, ci->sector, ci->idx, 1188 bv->bv_offset + offset, len, 1189 ci->md->bs); 1190 1191 __map_bio(ti, clone, tio); 1192 1193 ci->sector += len; 1194 ci->sector_count -= len; 1195 offset += to_bytes(len); 1196 } while (remaining -= len); 1197 1198 ci->idx++; 1199 } 1200 1201 return 0; 1202 } 1203 1204 /* 1205 * Split the bio into several clones and submit it to targets. 1206 */ 1207 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 1208 { 1209 struct clone_info ci; 1210 int error = 0; 1211 1212 ci.map = dm_get_table(md); 1213 if (unlikely(!ci.map)) { 1214 if (!bio_rw_flagged(bio, BIO_RW_BARRIER)) 1215 bio_io_error(bio); 1216 else 1217 if (!md->barrier_error) 1218 md->barrier_error = -EIO; 1219 return; 1220 } 1221 1222 ci.md = md; 1223 ci.bio = bio; 1224 ci.io = alloc_io(md); 1225 ci.io->error = 0; 1226 atomic_set(&ci.io->io_count, 1); 1227 ci.io->bio = bio; 1228 ci.io->md = md; 1229 ci.sector = bio->bi_sector; 1230 ci.sector_count = bio_sectors(bio); 1231 if (unlikely(bio_empty_barrier(bio))) 1232 ci.sector_count = 1; 1233 ci.idx = bio->bi_idx; 1234 1235 start_io_acct(ci.io); 1236 while (ci.sector_count && !error) 1237 error = __clone_and_map(&ci); 1238 1239 /* drop the extra reference count */ 1240 dec_pending(ci.io, error); 1241 dm_table_put(ci.map); 1242 } 1243 /*----------------------------------------------------------------- 1244 * CRUD END 1245 *---------------------------------------------------------------*/ 1246 1247 static int dm_merge_bvec(struct request_queue *q, 1248 struct bvec_merge_data *bvm, 1249 struct bio_vec *biovec) 1250 { 1251 struct mapped_device *md = q->queuedata; 1252 struct dm_table *map = dm_get_table(md); 1253 struct dm_target *ti; 1254 sector_t max_sectors; 1255 int max_size = 0; 1256 1257 if (unlikely(!map)) 1258 goto out; 1259 1260 ti = dm_table_find_target(map, bvm->bi_sector); 1261 if (!dm_target_is_valid(ti)) 1262 goto out_table; 1263 1264 /* 1265 * Find maximum amount of I/O that won't need splitting 1266 */ 1267 max_sectors = min(max_io_len(md, bvm->bi_sector, ti), 1268 (sector_t) BIO_MAX_SECTORS); 1269 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1270 if (max_size < 0) 1271 max_size = 0; 1272 1273 /* 1274 * merge_bvec_fn() returns number of bytes 1275 * it can accept at this offset 1276 * max is precomputed maximal io size 1277 */ 1278 if (max_size && ti->type->merge) 1279 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1280 /* 1281 * If the target doesn't support merge method and some of the devices 1282 * provided their merge_bvec method (we know this by looking at 1283 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1284 * entries. So always set max_size to 0, and the code below allows 1285 * just one page. 1286 */ 1287 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1288 1289 max_size = 0; 1290 1291 out_table: 1292 dm_table_put(map); 1293 1294 out: 1295 /* 1296 * Always allow an entire first page 1297 */ 1298 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1299 max_size = biovec->bv_len; 1300 1301 return max_size; 1302 } 1303 1304 /* 1305 * The request function that just remaps the bio built up by 1306 * dm_merge_bvec. 1307 */ 1308 static int _dm_request(struct request_queue *q, struct bio *bio) 1309 { 1310 int rw = bio_data_dir(bio); 1311 struct mapped_device *md = q->queuedata; 1312 int cpu; 1313 1314 down_read(&md->io_lock); 1315 1316 cpu = part_stat_lock(); 1317 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1318 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1319 part_stat_unlock(); 1320 1321 /* 1322 * If we're suspended or the thread is processing barriers 1323 * we have to queue this io for later. 1324 */ 1325 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) || 1326 unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) { 1327 up_read(&md->io_lock); 1328 1329 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) && 1330 bio_rw(bio) == READA) { 1331 bio_io_error(bio); 1332 return 0; 1333 } 1334 1335 queue_io(md, bio); 1336 1337 return 0; 1338 } 1339 1340 __split_and_process_bio(md, bio); 1341 up_read(&md->io_lock); 1342 return 0; 1343 } 1344 1345 static int dm_make_request(struct request_queue *q, struct bio *bio) 1346 { 1347 struct mapped_device *md = q->queuedata; 1348 1349 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) { 1350 bio_endio(bio, -EOPNOTSUPP); 1351 return 0; 1352 } 1353 1354 return md->saved_make_request_fn(q, bio); /* call __make_request() */ 1355 } 1356 1357 static int dm_request_based(struct mapped_device *md) 1358 { 1359 return blk_queue_stackable(md->queue); 1360 } 1361 1362 static int dm_request(struct request_queue *q, struct bio *bio) 1363 { 1364 struct mapped_device *md = q->queuedata; 1365 1366 if (dm_request_based(md)) 1367 return dm_make_request(q, bio); 1368 1369 return _dm_request(q, bio); 1370 } 1371 1372 void dm_dispatch_request(struct request *rq) 1373 { 1374 int r; 1375 1376 if (blk_queue_io_stat(rq->q)) 1377 rq->cmd_flags |= REQ_IO_STAT; 1378 1379 rq->start_time = jiffies; 1380 r = blk_insert_cloned_request(rq->q, rq); 1381 if (r) 1382 dm_complete_request(rq, r); 1383 } 1384 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1385 1386 static void dm_rq_bio_destructor(struct bio *bio) 1387 { 1388 struct dm_rq_clone_bio_info *info = bio->bi_private; 1389 struct mapped_device *md = info->tio->md; 1390 1391 free_bio_info(info); 1392 bio_free(bio, md->bs); 1393 } 1394 1395 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1396 void *data) 1397 { 1398 struct dm_rq_target_io *tio = data; 1399 struct mapped_device *md = tio->md; 1400 struct dm_rq_clone_bio_info *info = alloc_bio_info(md); 1401 1402 if (!info) 1403 return -ENOMEM; 1404 1405 info->orig = bio_orig; 1406 info->tio = tio; 1407 bio->bi_end_io = end_clone_bio; 1408 bio->bi_private = info; 1409 bio->bi_destructor = dm_rq_bio_destructor; 1410 1411 return 0; 1412 } 1413 1414 static int setup_clone(struct request *clone, struct request *rq, 1415 struct dm_rq_target_io *tio) 1416 { 1417 int r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1418 dm_rq_bio_constructor, tio); 1419 1420 if (r) 1421 return r; 1422 1423 clone->cmd = rq->cmd; 1424 clone->cmd_len = rq->cmd_len; 1425 clone->sense = rq->sense; 1426 clone->buffer = rq->buffer; 1427 clone->end_io = end_clone_request; 1428 clone->end_io_data = tio; 1429 1430 return 0; 1431 } 1432 1433 static int dm_rq_flush_suspending(struct mapped_device *md) 1434 { 1435 return !md->suspend_rq.special; 1436 } 1437 1438 /* 1439 * Called with the queue lock held. 1440 */ 1441 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1442 { 1443 struct mapped_device *md = q->queuedata; 1444 struct dm_rq_target_io *tio; 1445 struct request *clone; 1446 1447 if (unlikely(rq == &md->suspend_rq)) { 1448 if (dm_rq_flush_suspending(md)) 1449 return BLKPREP_OK; 1450 else 1451 /* The flush suspend was interrupted */ 1452 return BLKPREP_KILL; 1453 } 1454 1455 if (unlikely(rq->special)) { 1456 DMWARN("Already has something in rq->special."); 1457 return BLKPREP_KILL; 1458 } 1459 1460 tio = alloc_rq_tio(md); /* Only one for each original request */ 1461 if (!tio) 1462 /* -ENOMEM */ 1463 return BLKPREP_DEFER; 1464 1465 tio->md = md; 1466 tio->ti = NULL; 1467 tio->orig = rq; 1468 tio->error = 0; 1469 memset(&tio->info, 0, sizeof(tio->info)); 1470 1471 clone = &tio->clone; 1472 if (setup_clone(clone, rq, tio)) { 1473 /* -ENOMEM */ 1474 free_rq_tio(tio); 1475 return BLKPREP_DEFER; 1476 } 1477 1478 rq->special = clone; 1479 rq->cmd_flags |= REQ_DONTPREP; 1480 1481 return BLKPREP_OK; 1482 } 1483 1484 static void map_request(struct dm_target *ti, struct request *rq, 1485 struct mapped_device *md) 1486 { 1487 int r; 1488 struct request *clone = rq->special; 1489 struct dm_rq_target_io *tio = clone->end_io_data; 1490 1491 /* 1492 * Hold the md reference here for the in-flight I/O. 1493 * We can't rely on the reference count by device opener, 1494 * because the device may be closed during the request completion 1495 * when all bios are completed. 1496 * See the comment in rq_completed() too. 1497 */ 1498 dm_get(md); 1499 1500 tio->ti = ti; 1501 r = ti->type->map_rq(ti, clone, &tio->info); 1502 switch (r) { 1503 case DM_MAPIO_SUBMITTED: 1504 /* The target has taken the I/O to submit by itself later */ 1505 break; 1506 case DM_MAPIO_REMAPPED: 1507 /* The target has remapped the I/O so dispatch it */ 1508 dm_dispatch_request(clone); 1509 break; 1510 case DM_MAPIO_REQUEUE: 1511 /* The target wants to requeue the I/O */ 1512 dm_requeue_unmapped_request(clone); 1513 break; 1514 default: 1515 if (r > 0) { 1516 DMWARN("unimplemented target map return value: %d", r); 1517 BUG(); 1518 } 1519 1520 /* The target wants to complete the I/O */ 1521 dm_kill_unmapped_request(clone, r); 1522 break; 1523 } 1524 } 1525 1526 /* 1527 * q->request_fn for request-based dm. 1528 * Called with the queue lock held. 1529 */ 1530 static void dm_request_fn(struct request_queue *q) 1531 { 1532 struct mapped_device *md = q->queuedata; 1533 struct dm_table *map = dm_get_table(md); 1534 struct dm_target *ti; 1535 struct request *rq; 1536 1537 /* 1538 * For noflush suspend, check blk_queue_stopped() to immediately 1539 * quit I/O dispatching. 1540 */ 1541 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) { 1542 rq = blk_peek_request(q); 1543 if (!rq) 1544 goto plug_and_out; 1545 1546 if (unlikely(rq == &md->suspend_rq)) { /* Flush suspend maker */ 1547 if (queue_in_flight(q)) 1548 /* Not quiet yet. Wait more */ 1549 goto plug_and_out; 1550 1551 /* This device should be quiet now */ 1552 __stop_queue(q); 1553 blk_start_request(rq); 1554 __blk_end_request_all(rq, 0); 1555 wake_up(&md->wait); 1556 goto out; 1557 } 1558 1559 ti = dm_table_find_target(map, blk_rq_pos(rq)); 1560 if (ti->type->busy && ti->type->busy(ti)) 1561 goto plug_and_out; 1562 1563 blk_start_request(rq); 1564 spin_unlock(q->queue_lock); 1565 map_request(ti, rq, md); 1566 spin_lock_irq(q->queue_lock); 1567 } 1568 1569 goto out; 1570 1571 plug_and_out: 1572 if (!elv_queue_empty(q)) 1573 /* Some requests still remain, retry later */ 1574 blk_plug_device(q); 1575 1576 out: 1577 dm_table_put(map); 1578 1579 return; 1580 } 1581 1582 int dm_underlying_device_busy(struct request_queue *q) 1583 { 1584 return blk_lld_busy(q); 1585 } 1586 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1587 1588 static int dm_lld_busy(struct request_queue *q) 1589 { 1590 int r; 1591 struct mapped_device *md = q->queuedata; 1592 struct dm_table *map = dm_get_table(md); 1593 1594 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1595 r = 1; 1596 else 1597 r = dm_table_any_busy_target(map); 1598 1599 dm_table_put(map); 1600 1601 return r; 1602 } 1603 1604 static void dm_unplug_all(struct request_queue *q) 1605 { 1606 struct mapped_device *md = q->queuedata; 1607 struct dm_table *map = dm_get_table(md); 1608 1609 if (map) { 1610 if (dm_request_based(md)) 1611 generic_unplug_device(q); 1612 1613 dm_table_unplug_all(map); 1614 dm_table_put(map); 1615 } 1616 } 1617 1618 static int dm_any_congested(void *congested_data, int bdi_bits) 1619 { 1620 int r = bdi_bits; 1621 struct mapped_device *md = congested_data; 1622 struct dm_table *map; 1623 1624 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1625 map = dm_get_table(md); 1626 if (map) { 1627 /* 1628 * Request-based dm cares about only own queue for 1629 * the query about congestion status of request_queue 1630 */ 1631 if (dm_request_based(md)) 1632 r = md->queue->backing_dev_info.state & 1633 bdi_bits; 1634 else 1635 r = dm_table_any_congested(map, bdi_bits); 1636 1637 dm_table_put(map); 1638 } 1639 } 1640 1641 return r; 1642 } 1643 1644 /*----------------------------------------------------------------- 1645 * An IDR is used to keep track of allocated minor numbers. 1646 *---------------------------------------------------------------*/ 1647 static DEFINE_IDR(_minor_idr); 1648 1649 static void free_minor(int minor) 1650 { 1651 spin_lock(&_minor_lock); 1652 idr_remove(&_minor_idr, minor); 1653 spin_unlock(&_minor_lock); 1654 } 1655 1656 /* 1657 * See if the device with a specific minor # is free. 1658 */ 1659 static int specific_minor(int minor) 1660 { 1661 int r, m; 1662 1663 if (minor >= (1 << MINORBITS)) 1664 return -EINVAL; 1665 1666 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1667 if (!r) 1668 return -ENOMEM; 1669 1670 spin_lock(&_minor_lock); 1671 1672 if (idr_find(&_minor_idr, minor)) { 1673 r = -EBUSY; 1674 goto out; 1675 } 1676 1677 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 1678 if (r) 1679 goto out; 1680 1681 if (m != minor) { 1682 idr_remove(&_minor_idr, m); 1683 r = -EBUSY; 1684 goto out; 1685 } 1686 1687 out: 1688 spin_unlock(&_minor_lock); 1689 return r; 1690 } 1691 1692 static int next_free_minor(int *minor) 1693 { 1694 int r, m; 1695 1696 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1697 if (!r) 1698 return -ENOMEM; 1699 1700 spin_lock(&_minor_lock); 1701 1702 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1703 if (r) 1704 goto out; 1705 1706 if (m >= (1 << MINORBITS)) { 1707 idr_remove(&_minor_idr, m); 1708 r = -ENOSPC; 1709 goto out; 1710 } 1711 1712 *minor = m; 1713 1714 out: 1715 spin_unlock(&_minor_lock); 1716 return r; 1717 } 1718 1719 static const struct block_device_operations dm_blk_dops; 1720 1721 static void dm_wq_work(struct work_struct *work); 1722 1723 /* 1724 * Allocate and initialise a blank device with a given minor. 1725 */ 1726 static struct mapped_device *alloc_dev(int minor) 1727 { 1728 int r; 1729 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1730 void *old_md; 1731 1732 if (!md) { 1733 DMWARN("unable to allocate device, out of memory."); 1734 return NULL; 1735 } 1736 1737 if (!try_module_get(THIS_MODULE)) 1738 goto bad_module_get; 1739 1740 /* get a minor number for the dev */ 1741 if (minor == DM_ANY_MINOR) 1742 r = next_free_minor(&minor); 1743 else 1744 r = specific_minor(minor); 1745 if (r < 0) 1746 goto bad_minor; 1747 1748 init_rwsem(&md->io_lock); 1749 mutex_init(&md->suspend_lock); 1750 spin_lock_init(&md->deferred_lock); 1751 rwlock_init(&md->map_lock); 1752 atomic_set(&md->holders, 1); 1753 atomic_set(&md->open_count, 0); 1754 atomic_set(&md->event_nr, 0); 1755 atomic_set(&md->uevent_seq, 0); 1756 INIT_LIST_HEAD(&md->uevent_list); 1757 spin_lock_init(&md->uevent_lock); 1758 1759 md->queue = blk_init_queue(dm_request_fn, NULL); 1760 if (!md->queue) 1761 goto bad_queue; 1762 1763 /* 1764 * Request-based dm devices cannot be stacked on top of bio-based dm 1765 * devices. The type of this dm device has not been decided yet, 1766 * although we initialized the queue using blk_init_queue(). 1767 * The type is decided at the first table loading time. 1768 * To prevent problematic device stacking, clear the queue flag 1769 * for request stacking support until then. 1770 * 1771 * This queue is new, so no concurrency on the queue_flags. 1772 */ 1773 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1774 md->saved_make_request_fn = md->queue->make_request_fn; 1775 md->queue->queuedata = md; 1776 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1777 md->queue->backing_dev_info.congested_data = md; 1778 blk_queue_make_request(md->queue, dm_request); 1779 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1780 md->queue->unplug_fn = dm_unplug_all; 1781 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1782 blk_queue_softirq_done(md->queue, dm_softirq_done); 1783 blk_queue_prep_rq(md->queue, dm_prep_fn); 1784 blk_queue_lld_busy(md->queue, dm_lld_busy); 1785 1786 md->disk = alloc_disk(1); 1787 if (!md->disk) 1788 goto bad_disk; 1789 1790 atomic_set(&md->pending[0], 0); 1791 atomic_set(&md->pending[1], 0); 1792 init_waitqueue_head(&md->wait); 1793 INIT_WORK(&md->work, dm_wq_work); 1794 init_waitqueue_head(&md->eventq); 1795 1796 md->disk->major = _major; 1797 md->disk->first_minor = minor; 1798 md->disk->fops = &dm_blk_dops; 1799 md->disk->queue = md->queue; 1800 md->disk->private_data = md; 1801 sprintf(md->disk->disk_name, "dm-%d", minor); 1802 add_disk(md->disk); 1803 format_dev_t(md->name, MKDEV(_major, minor)); 1804 1805 md->wq = create_singlethread_workqueue("kdmflush"); 1806 if (!md->wq) 1807 goto bad_thread; 1808 1809 md->bdev = bdget_disk(md->disk, 0); 1810 if (!md->bdev) 1811 goto bad_bdev; 1812 1813 /* Populate the mapping, nobody knows we exist yet */ 1814 spin_lock(&_minor_lock); 1815 old_md = idr_replace(&_minor_idr, md, minor); 1816 spin_unlock(&_minor_lock); 1817 1818 BUG_ON(old_md != MINOR_ALLOCED); 1819 1820 return md; 1821 1822 bad_bdev: 1823 destroy_workqueue(md->wq); 1824 bad_thread: 1825 del_gendisk(md->disk); 1826 put_disk(md->disk); 1827 bad_disk: 1828 blk_cleanup_queue(md->queue); 1829 bad_queue: 1830 free_minor(minor); 1831 bad_minor: 1832 module_put(THIS_MODULE); 1833 bad_module_get: 1834 kfree(md); 1835 return NULL; 1836 } 1837 1838 static void unlock_fs(struct mapped_device *md); 1839 1840 static void free_dev(struct mapped_device *md) 1841 { 1842 int minor = MINOR(disk_devt(md->disk)); 1843 1844 unlock_fs(md); 1845 bdput(md->bdev); 1846 destroy_workqueue(md->wq); 1847 if (md->tio_pool) 1848 mempool_destroy(md->tio_pool); 1849 if (md->io_pool) 1850 mempool_destroy(md->io_pool); 1851 if (md->bs) 1852 bioset_free(md->bs); 1853 blk_integrity_unregister(md->disk); 1854 del_gendisk(md->disk); 1855 free_minor(minor); 1856 1857 spin_lock(&_minor_lock); 1858 md->disk->private_data = NULL; 1859 spin_unlock(&_minor_lock); 1860 1861 put_disk(md->disk); 1862 blk_cleanup_queue(md->queue); 1863 module_put(THIS_MODULE); 1864 kfree(md); 1865 } 1866 1867 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1868 { 1869 struct dm_md_mempools *p; 1870 1871 if (md->io_pool && md->tio_pool && md->bs) 1872 /* the md already has necessary mempools */ 1873 goto out; 1874 1875 p = dm_table_get_md_mempools(t); 1876 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs); 1877 1878 md->io_pool = p->io_pool; 1879 p->io_pool = NULL; 1880 md->tio_pool = p->tio_pool; 1881 p->tio_pool = NULL; 1882 md->bs = p->bs; 1883 p->bs = NULL; 1884 1885 out: 1886 /* mempool bind completed, now no need any mempools in the table */ 1887 dm_table_free_md_mempools(t); 1888 } 1889 1890 /* 1891 * Bind a table to the device. 1892 */ 1893 static void event_callback(void *context) 1894 { 1895 unsigned long flags; 1896 LIST_HEAD(uevents); 1897 struct mapped_device *md = (struct mapped_device *) context; 1898 1899 spin_lock_irqsave(&md->uevent_lock, flags); 1900 list_splice_init(&md->uevent_list, &uevents); 1901 spin_unlock_irqrestore(&md->uevent_lock, flags); 1902 1903 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1904 1905 atomic_inc(&md->event_nr); 1906 wake_up(&md->eventq); 1907 } 1908 1909 static void __set_size(struct mapped_device *md, sector_t size) 1910 { 1911 set_capacity(md->disk, size); 1912 1913 mutex_lock(&md->bdev->bd_inode->i_mutex); 1914 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1915 mutex_unlock(&md->bdev->bd_inode->i_mutex); 1916 } 1917 1918 static int __bind(struct mapped_device *md, struct dm_table *t, 1919 struct queue_limits *limits) 1920 { 1921 struct request_queue *q = md->queue; 1922 sector_t size; 1923 unsigned long flags; 1924 1925 size = dm_table_get_size(t); 1926 1927 /* 1928 * Wipe any geometry if the size of the table changed. 1929 */ 1930 if (size != get_capacity(md->disk)) 1931 memset(&md->geometry, 0, sizeof(md->geometry)); 1932 1933 __set_size(md, size); 1934 1935 if (!size) { 1936 dm_table_destroy(t); 1937 return 0; 1938 } 1939 1940 dm_table_event_callback(t, event_callback, md); 1941 1942 /* 1943 * The queue hasn't been stopped yet, if the old table type wasn't 1944 * for request-based during suspension. So stop it to prevent 1945 * I/O mapping before resume. 1946 * This must be done before setting the queue restrictions, 1947 * because request-based dm may be run just after the setting. 1948 */ 1949 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 1950 stop_queue(q); 1951 1952 __bind_mempools(md, t); 1953 1954 write_lock_irqsave(&md->map_lock, flags); 1955 md->map = t; 1956 dm_table_set_restrictions(t, q, limits); 1957 write_unlock_irqrestore(&md->map_lock, flags); 1958 1959 return 0; 1960 } 1961 1962 static void __unbind(struct mapped_device *md) 1963 { 1964 struct dm_table *map = md->map; 1965 unsigned long flags; 1966 1967 if (!map) 1968 return; 1969 1970 dm_table_event_callback(map, NULL, NULL); 1971 write_lock_irqsave(&md->map_lock, flags); 1972 md->map = NULL; 1973 write_unlock_irqrestore(&md->map_lock, flags); 1974 dm_table_destroy(map); 1975 } 1976 1977 /* 1978 * Constructor for a new device. 1979 */ 1980 int dm_create(int minor, struct mapped_device **result) 1981 { 1982 struct mapped_device *md; 1983 1984 md = alloc_dev(minor); 1985 if (!md) 1986 return -ENXIO; 1987 1988 dm_sysfs_init(md); 1989 1990 *result = md; 1991 return 0; 1992 } 1993 1994 static struct mapped_device *dm_find_md(dev_t dev) 1995 { 1996 struct mapped_device *md; 1997 unsigned minor = MINOR(dev); 1998 1999 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2000 return NULL; 2001 2002 spin_lock(&_minor_lock); 2003 2004 md = idr_find(&_minor_idr, minor); 2005 if (md && (md == MINOR_ALLOCED || 2006 (MINOR(disk_devt(dm_disk(md))) != minor) || 2007 test_bit(DMF_FREEING, &md->flags))) { 2008 md = NULL; 2009 goto out; 2010 } 2011 2012 out: 2013 spin_unlock(&_minor_lock); 2014 2015 return md; 2016 } 2017 2018 struct mapped_device *dm_get_md(dev_t dev) 2019 { 2020 struct mapped_device *md = dm_find_md(dev); 2021 2022 if (md) 2023 dm_get(md); 2024 2025 return md; 2026 } 2027 2028 void *dm_get_mdptr(struct mapped_device *md) 2029 { 2030 return md->interface_ptr; 2031 } 2032 2033 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2034 { 2035 md->interface_ptr = ptr; 2036 } 2037 2038 void dm_get(struct mapped_device *md) 2039 { 2040 atomic_inc(&md->holders); 2041 } 2042 2043 const char *dm_device_name(struct mapped_device *md) 2044 { 2045 return md->name; 2046 } 2047 EXPORT_SYMBOL_GPL(dm_device_name); 2048 2049 void dm_put(struct mapped_device *md) 2050 { 2051 struct dm_table *map; 2052 2053 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2054 2055 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) { 2056 map = dm_get_table(md); 2057 idr_replace(&_minor_idr, MINOR_ALLOCED, 2058 MINOR(disk_devt(dm_disk(md)))); 2059 set_bit(DMF_FREEING, &md->flags); 2060 spin_unlock(&_minor_lock); 2061 if (!dm_suspended(md)) { 2062 dm_table_presuspend_targets(map); 2063 dm_table_postsuspend_targets(map); 2064 } 2065 dm_sysfs_exit(md); 2066 dm_table_put(map); 2067 __unbind(md); 2068 free_dev(md); 2069 } 2070 } 2071 EXPORT_SYMBOL_GPL(dm_put); 2072 2073 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2074 { 2075 int r = 0; 2076 DECLARE_WAITQUEUE(wait, current); 2077 struct request_queue *q = md->queue; 2078 unsigned long flags; 2079 2080 dm_unplug_all(md->queue); 2081 2082 add_wait_queue(&md->wait, &wait); 2083 2084 while (1) { 2085 set_current_state(interruptible); 2086 2087 smp_mb(); 2088 if (dm_request_based(md)) { 2089 spin_lock_irqsave(q->queue_lock, flags); 2090 if (!queue_in_flight(q) && blk_queue_stopped(q)) { 2091 spin_unlock_irqrestore(q->queue_lock, flags); 2092 break; 2093 } 2094 spin_unlock_irqrestore(q->queue_lock, flags); 2095 } else if (!atomic_read(&md->pending[0]) && 2096 !atomic_read(&md->pending[1])) 2097 break; 2098 2099 if (interruptible == TASK_INTERRUPTIBLE && 2100 signal_pending(current)) { 2101 r = -EINTR; 2102 break; 2103 } 2104 2105 io_schedule(); 2106 } 2107 set_current_state(TASK_RUNNING); 2108 2109 remove_wait_queue(&md->wait, &wait); 2110 2111 return r; 2112 } 2113 2114 static void dm_flush(struct mapped_device *md) 2115 { 2116 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2117 2118 bio_init(&md->barrier_bio); 2119 md->barrier_bio.bi_bdev = md->bdev; 2120 md->barrier_bio.bi_rw = WRITE_BARRIER; 2121 __split_and_process_bio(md, &md->barrier_bio); 2122 2123 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2124 } 2125 2126 static void process_barrier(struct mapped_device *md, struct bio *bio) 2127 { 2128 md->barrier_error = 0; 2129 2130 dm_flush(md); 2131 2132 if (!bio_empty_barrier(bio)) { 2133 __split_and_process_bio(md, bio); 2134 dm_flush(md); 2135 } 2136 2137 if (md->barrier_error != DM_ENDIO_REQUEUE) 2138 bio_endio(bio, md->barrier_error); 2139 else { 2140 spin_lock_irq(&md->deferred_lock); 2141 bio_list_add_head(&md->deferred, bio); 2142 spin_unlock_irq(&md->deferred_lock); 2143 } 2144 } 2145 2146 /* 2147 * Process the deferred bios 2148 */ 2149 static void dm_wq_work(struct work_struct *work) 2150 { 2151 struct mapped_device *md = container_of(work, struct mapped_device, 2152 work); 2153 struct bio *c; 2154 2155 down_write(&md->io_lock); 2156 2157 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2158 spin_lock_irq(&md->deferred_lock); 2159 c = bio_list_pop(&md->deferred); 2160 spin_unlock_irq(&md->deferred_lock); 2161 2162 if (!c) { 2163 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags); 2164 break; 2165 } 2166 2167 up_write(&md->io_lock); 2168 2169 if (dm_request_based(md)) 2170 generic_make_request(c); 2171 else { 2172 if (bio_rw_flagged(c, BIO_RW_BARRIER)) 2173 process_barrier(md, c); 2174 else 2175 __split_and_process_bio(md, c); 2176 } 2177 2178 down_write(&md->io_lock); 2179 } 2180 2181 up_write(&md->io_lock); 2182 } 2183 2184 static void dm_queue_flush(struct mapped_device *md) 2185 { 2186 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2187 smp_mb__after_clear_bit(); 2188 queue_work(md->wq, &md->work); 2189 } 2190 2191 /* 2192 * Swap in a new table (destroying old one). 2193 */ 2194 int dm_swap_table(struct mapped_device *md, struct dm_table *table) 2195 { 2196 struct queue_limits limits; 2197 int r = -EINVAL; 2198 2199 mutex_lock(&md->suspend_lock); 2200 2201 /* device must be suspended */ 2202 if (!dm_suspended(md)) 2203 goto out; 2204 2205 r = dm_calculate_queue_limits(table, &limits); 2206 if (r) 2207 goto out; 2208 2209 /* cannot change the device type, once a table is bound */ 2210 if (md->map && 2211 (dm_table_get_type(md->map) != dm_table_get_type(table))) { 2212 DMWARN("can't change the device type after a table is bound"); 2213 goto out; 2214 } 2215 2216 __unbind(md); 2217 r = __bind(md, table, &limits); 2218 2219 out: 2220 mutex_unlock(&md->suspend_lock); 2221 return r; 2222 } 2223 2224 static void dm_rq_invalidate_suspend_marker(struct mapped_device *md) 2225 { 2226 md->suspend_rq.special = (void *)0x1; 2227 } 2228 2229 static void dm_rq_abort_suspend(struct mapped_device *md, int noflush) 2230 { 2231 struct request_queue *q = md->queue; 2232 unsigned long flags; 2233 2234 spin_lock_irqsave(q->queue_lock, flags); 2235 if (!noflush) 2236 dm_rq_invalidate_suspend_marker(md); 2237 __start_queue(q); 2238 spin_unlock_irqrestore(q->queue_lock, flags); 2239 } 2240 2241 static void dm_rq_start_suspend(struct mapped_device *md, int noflush) 2242 { 2243 struct request *rq = &md->suspend_rq; 2244 struct request_queue *q = md->queue; 2245 2246 if (noflush) 2247 stop_queue(q); 2248 else { 2249 blk_rq_init(q, rq); 2250 blk_insert_request(q, rq, 0, NULL); 2251 } 2252 } 2253 2254 static int dm_rq_suspend_available(struct mapped_device *md, int noflush) 2255 { 2256 int r = 1; 2257 struct request *rq = &md->suspend_rq; 2258 struct request_queue *q = md->queue; 2259 unsigned long flags; 2260 2261 if (noflush) 2262 return r; 2263 2264 /* The marker must be protected by queue lock if it is in use */ 2265 spin_lock_irqsave(q->queue_lock, flags); 2266 if (unlikely(rq->ref_count)) { 2267 /* 2268 * This can happen, when the previous flush suspend was 2269 * interrupted, the marker is still in the queue and 2270 * this flush suspend has been invoked, because we don't 2271 * remove the marker at the time of suspend interruption. 2272 * We have only one marker per mapped_device, so we can't 2273 * start another flush suspend while it is in use. 2274 */ 2275 BUG_ON(!rq->special); /* The marker should be invalidated */ 2276 DMWARN("Invalidating the previous flush suspend is still in" 2277 " progress. Please retry later."); 2278 r = 0; 2279 } 2280 spin_unlock_irqrestore(q->queue_lock, flags); 2281 2282 return r; 2283 } 2284 2285 /* 2286 * Functions to lock and unlock any filesystem running on the 2287 * device. 2288 */ 2289 static int lock_fs(struct mapped_device *md) 2290 { 2291 int r; 2292 2293 WARN_ON(md->frozen_sb); 2294 2295 md->frozen_sb = freeze_bdev(md->bdev); 2296 if (IS_ERR(md->frozen_sb)) { 2297 r = PTR_ERR(md->frozen_sb); 2298 md->frozen_sb = NULL; 2299 return r; 2300 } 2301 2302 set_bit(DMF_FROZEN, &md->flags); 2303 2304 return 0; 2305 } 2306 2307 static void unlock_fs(struct mapped_device *md) 2308 { 2309 if (!test_bit(DMF_FROZEN, &md->flags)) 2310 return; 2311 2312 thaw_bdev(md->bdev, md->frozen_sb); 2313 md->frozen_sb = NULL; 2314 clear_bit(DMF_FROZEN, &md->flags); 2315 } 2316 2317 /* 2318 * We need to be able to change a mapping table under a mounted 2319 * filesystem. For example we might want to move some data in 2320 * the background. Before the table can be swapped with 2321 * dm_bind_table, dm_suspend must be called to flush any in 2322 * flight bios and ensure that any further io gets deferred. 2323 */ 2324 /* 2325 * Suspend mechanism in request-based dm. 2326 * 2327 * After the suspend starts, further incoming requests are kept in 2328 * the request_queue and deferred. 2329 * Remaining requests in the request_queue at the start of suspend are flushed 2330 * if it is flush suspend. 2331 * The suspend completes when the following conditions have been satisfied, 2332 * so wait for it: 2333 * 1. q->in_flight is 0 (which means no in_flight request) 2334 * 2. queue has been stopped (which means no request dispatching) 2335 * 2336 * 2337 * Noflush suspend 2338 * --------------- 2339 * Noflush suspend doesn't need to dispatch remaining requests. 2340 * So stop the queue immediately. Then, wait for all in_flight requests 2341 * to be completed or requeued. 2342 * 2343 * To abort noflush suspend, start the queue. 2344 * 2345 * 2346 * Flush suspend 2347 * ------------- 2348 * Flush suspend needs to dispatch remaining requests. So stop the queue 2349 * after the remaining requests are completed. (Requeued request must be also 2350 * re-dispatched and completed. Until then, we can't stop the queue.) 2351 * 2352 * During flushing the remaining requests, further incoming requests are also 2353 * inserted to the same queue. To distinguish which requests are to be 2354 * flushed, we insert a marker request to the queue at the time of starting 2355 * flush suspend, like a barrier. 2356 * The dispatching is blocked when the marker is found on the top of the queue. 2357 * And the queue is stopped when all in_flight requests are completed, since 2358 * that means the remaining requests are completely flushed. 2359 * Then, the marker is removed from the queue. 2360 * 2361 * To abort flush suspend, we also need to take care of the marker, not only 2362 * starting the queue. 2363 * We don't remove the marker forcibly from the queue since it's against 2364 * the block-layer manner. Instead, we put a invalidated mark on the marker. 2365 * When the invalidated marker is found on the top of the queue, it is 2366 * immediately removed from the queue, so it doesn't block dispatching. 2367 * Because we have only one marker per mapped_device, we can't start another 2368 * flush suspend until the invalidated marker is removed from the queue. 2369 * So fail and return with -EBUSY in such a case. 2370 */ 2371 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2372 { 2373 struct dm_table *map = NULL; 2374 int r = 0; 2375 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2376 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2377 2378 mutex_lock(&md->suspend_lock); 2379 2380 if (dm_suspended(md)) { 2381 r = -EINVAL; 2382 goto out_unlock; 2383 } 2384 2385 if (dm_request_based(md) && !dm_rq_suspend_available(md, noflush)) { 2386 r = -EBUSY; 2387 goto out_unlock; 2388 } 2389 2390 map = dm_get_table(md); 2391 2392 /* 2393 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2394 * This flag is cleared before dm_suspend returns. 2395 */ 2396 if (noflush) 2397 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2398 2399 /* This does not get reverted if there's an error later. */ 2400 dm_table_presuspend_targets(map); 2401 2402 /* 2403 * Flush I/O to the device. noflush supersedes do_lockfs, 2404 * because lock_fs() needs to flush I/Os. 2405 */ 2406 if (!noflush && do_lockfs) { 2407 r = lock_fs(md); 2408 if (r) 2409 goto out; 2410 } 2411 2412 /* 2413 * Here we must make sure that no processes are submitting requests 2414 * to target drivers i.e. no one may be executing 2415 * __split_and_process_bio. This is called from dm_request and 2416 * dm_wq_work. 2417 * 2418 * To get all processes out of __split_and_process_bio in dm_request, 2419 * we take the write lock. To prevent any process from reentering 2420 * __split_and_process_bio from dm_request, we set 2421 * DMF_QUEUE_IO_TO_THREAD. 2422 * 2423 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND 2424 * and call flush_workqueue(md->wq). flush_workqueue will wait until 2425 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any 2426 * further calls to __split_and_process_bio from dm_wq_work. 2427 */ 2428 down_write(&md->io_lock); 2429 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2430 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags); 2431 up_write(&md->io_lock); 2432 2433 flush_workqueue(md->wq); 2434 2435 if (dm_request_based(md)) 2436 dm_rq_start_suspend(md, noflush); 2437 2438 /* 2439 * At this point no more requests are entering target request routines. 2440 * We call dm_wait_for_completion to wait for all existing requests 2441 * to finish. 2442 */ 2443 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2444 2445 down_write(&md->io_lock); 2446 if (noflush) 2447 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2448 up_write(&md->io_lock); 2449 2450 /* were we interrupted ? */ 2451 if (r < 0) { 2452 dm_queue_flush(md); 2453 2454 if (dm_request_based(md)) 2455 dm_rq_abort_suspend(md, noflush); 2456 2457 unlock_fs(md); 2458 goto out; /* pushback list is already flushed, so skip flush */ 2459 } 2460 2461 /* 2462 * If dm_wait_for_completion returned 0, the device is completely 2463 * quiescent now. There is no request-processing activity. All new 2464 * requests are being added to md->deferred list. 2465 */ 2466 2467 dm_table_postsuspend_targets(map); 2468 2469 set_bit(DMF_SUSPENDED, &md->flags); 2470 2471 out: 2472 dm_table_put(map); 2473 2474 out_unlock: 2475 mutex_unlock(&md->suspend_lock); 2476 return r; 2477 } 2478 2479 int dm_resume(struct mapped_device *md) 2480 { 2481 int r = -EINVAL; 2482 struct dm_table *map = NULL; 2483 2484 mutex_lock(&md->suspend_lock); 2485 if (!dm_suspended(md)) 2486 goto out; 2487 2488 map = dm_get_table(md); 2489 if (!map || !dm_table_get_size(map)) 2490 goto out; 2491 2492 r = dm_table_resume_targets(map); 2493 if (r) 2494 goto out; 2495 2496 dm_queue_flush(md); 2497 2498 /* 2499 * Flushing deferred I/Os must be done after targets are resumed 2500 * so that mapping of targets can work correctly. 2501 * Request-based dm is queueing the deferred I/Os in its request_queue. 2502 */ 2503 if (dm_request_based(md)) 2504 start_queue(md->queue); 2505 2506 unlock_fs(md); 2507 2508 clear_bit(DMF_SUSPENDED, &md->flags); 2509 2510 dm_table_unplug_all(map); 2511 r = 0; 2512 out: 2513 dm_table_put(map); 2514 mutex_unlock(&md->suspend_lock); 2515 2516 return r; 2517 } 2518 2519 /*----------------------------------------------------------------- 2520 * Event notification. 2521 *---------------------------------------------------------------*/ 2522 void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2523 unsigned cookie) 2524 { 2525 char udev_cookie[DM_COOKIE_LENGTH]; 2526 char *envp[] = { udev_cookie, NULL }; 2527 2528 if (!cookie) 2529 kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2530 else { 2531 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2532 DM_COOKIE_ENV_VAR_NAME, cookie); 2533 kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 2534 } 2535 } 2536 2537 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2538 { 2539 return atomic_add_return(1, &md->uevent_seq); 2540 } 2541 2542 uint32_t dm_get_event_nr(struct mapped_device *md) 2543 { 2544 return atomic_read(&md->event_nr); 2545 } 2546 2547 int dm_wait_event(struct mapped_device *md, int event_nr) 2548 { 2549 return wait_event_interruptible(md->eventq, 2550 (event_nr != atomic_read(&md->event_nr))); 2551 } 2552 2553 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2554 { 2555 unsigned long flags; 2556 2557 spin_lock_irqsave(&md->uevent_lock, flags); 2558 list_add(elist, &md->uevent_list); 2559 spin_unlock_irqrestore(&md->uevent_lock, flags); 2560 } 2561 2562 /* 2563 * The gendisk is only valid as long as you have a reference 2564 * count on 'md'. 2565 */ 2566 struct gendisk *dm_disk(struct mapped_device *md) 2567 { 2568 return md->disk; 2569 } 2570 2571 struct kobject *dm_kobject(struct mapped_device *md) 2572 { 2573 return &md->kobj; 2574 } 2575 2576 /* 2577 * struct mapped_device should not be exported outside of dm.c 2578 * so use this check to verify that kobj is part of md structure 2579 */ 2580 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2581 { 2582 struct mapped_device *md; 2583 2584 md = container_of(kobj, struct mapped_device, kobj); 2585 if (&md->kobj != kobj) 2586 return NULL; 2587 2588 if (test_bit(DMF_FREEING, &md->flags) || 2589 test_bit(DMF_DELETING, &md->flags)) 2590 return NULL; 2591 2592 dm_get(md); 2593 return md; 2594 } 2595 2596 int dm_suspended(struct mapped_device *md) 2597 { 2598 return test_bit(DMF_SUSPENDED, &md->flags); 2599 } 2600 2601 int dm_noflush_suspending(struct dm_target *ti) 2602 { 2603 struct mapped_device *md = dm_table_get_md(ti->table); 2604 int r = __noflush_suspending(md); 2605 2606 dm_put(md); 2607 2608 return r; 2609 } 2610 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2611 2612 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type) 2613 { 2614 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL); 2615 2616 if (!pools) 2617 return NULL; 2618 2619 pools->io_pool = (type == DM_TYPE_BIO_BASED) ? 2620 mempool_create_slab_pool(MIN_IOS, _io_cache) : 2621 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache); 2622 if (!pools->io_pool) 2623 goto free_pools_and_out; 2624 2625 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ? 2626 mempool_create_slab_pool(MIN_IOS, _tio_cache) : 2627 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache); 2628 if (!pools->tio_pool) 2629 goto free_io_pool_and_out; 2630 2631 pools->bs = (type == DM_TYPE_BIO_BASED) ? 2632 bioset_create(16, 0) : bioset_create(MIN_IOS, 0); 2633 if (!pools->bs) 2634 goto free_tio_pool_and_out; 2635 2636 return pools; 2637 2638 free_tio_pool_and_out: 2639 mempool_destroy(pools->tio_pool); 2640 2641 free_io_pool_and_out: 2642 mempool_destroy(pools->io_pool); 2643 2644 free_pools_and_out: 2645 kfree(pools); 2646 2647 return NULL; 2648 } 2649 2650 void dm_free_md_mempools(struct dm_md_mempools *pools) 2651 { 2652 if (!pools) 2653 return; 2654 2655 if (pools->io_pool) 2656 mempool_destroy(pools->io_pool); 2657 2658 if (pools->tio_pool) 2659 mempool_destroy(pools->tio_pool); 2660 2661 if (pools->bs) 2662 bioset_free(pools->bs); 2663 2664 kfree(pools); 2665 } 2666 2667 static const struct block_device_operations dm_blk_dops = { 2668 .open = dm_blk_open, 2669 .release = dm_blk_close, 2670 .ioctl = dm_blk_ioctl, 2671 .getgeo = dm_blk_getgeo, 2672 .owner = THIS_MODULE 2673 }; 2674 2675 EXPORT_SYMBOL(dm_get_mapinfo); 2676 2677 /* 2678 * module hooks 2679 */ 2680 module_init(dm_init); 2681 module_exit(dm_exit); 2682 2683 module_param(major, uint, 0); 2684 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2685 MODULE_DESCRIPTION(DM_NAME " driver"); 2686 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2687 MODULE_LICENSE("GPL"); 2688