1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 static const char *_name = DM_NAME; 44 45 static unsigned int major = 0; 46 static unsigned int _major = 0; 47 48 static DEFINE_IDR(_minor_idr); 49 50 static DEFINE_SPINLOCK(_minor_lock); 51 52 static void do_deferred_remove(struct work_struct *w); 53 54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 55 56 static struct workqueue_struct *deferred_remove_workqueue; 57 58 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 60 61 void dm_issue_global_event(void) 62 { 63 atomic_inc(&dm_global_event_nr); 64 wake_up(&dm_global_eventq); 65 } 66 67 /* 68 * One of these is allocated (on-stack) per original bio. 69 */ 70 struct clone_info { 71 struct dm_table *map; 72 struct bio *bio; 73 struct dm_io *io; 74 sector_t sector; 75 unsigned sector_count; 76 }; 77 78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 79 #define DM_IO_BIO_OFFSET \ 80 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 81 82 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 83 { 84 return container_of(clone, struct dm_target_io, clone); 85 } 86 87 void *dm_per_bio_data(struct bio *bio, size_t data_size) 88 { 89 if (!clone_to_tio(bio)->inside_dm_io) 90 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 91 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 92 } 93 EXPORT_SYMBOL_GPL(dm_per_bio_data); 94 95 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 96 { 97 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 98 if (io->magic == DM_IO_MAGIC) 99 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 100 BUG_ON(io->magic != DM_TIO_MAGIC); 101 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 102 } 103 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 104 105 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 106 { 107 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 108 } 109 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 110 111 #define MINOR_ALLOCED ((void *)-1) 112 113 #define DM_NUMA_NODE NUMA_NO_NODE 114 static int dm_numa_node = DM_NUMA_NODE; 115 116 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 117 static int swap_bios = DEFAULT_SWAP_BIOS; 118 static int get_swap_bios(void) 119 { 120 int latch = READ_ONCE(swap_bios); 121 if (unlikely(latch <= 0)) 122 latch = DEFAULT_SWAP_BIOS; 123 return latch; 124 } 125 126 /* 127 * For mempools pre-allocation at the table loading time. 128 */ 129 struct dm_md_mempools { 130 struct bio_set bs; 131 struct bio_set io_bs; 132 }; 133 134 struct table_device { 135 struct list_head list; 136 refcount_t count; 137 struct dm_dev dm_dev; 138 }; 139 140 /* 141 * Bio-based DM's mempools' reserved IOs set by the user. 142 */ 143 #define RESERVED_BIO_BASED_IOS 16 144 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 145 146 static int __dm_get_module_param_int(int *module_param, int min, int max) 147 { 148 int param = READ_ONCE(*module_param); 149 int modified_param = 0; 150 bool modified = true; 151 152 if (param < min) 153 modified_param = min; 154 else if (param > max) 155 modified_param = max; 156 else 157 modified = false; 158 159 if (modified) { 160 (void)cmpxchg(module_param, param, modified_param); 161 param = modified_param; 162 } 163 164 return param; 165 } 166 167 unsigned __dm_get_module_param(unsigned *module_param, 168 unsigned def, unsigned max) 169 { 170 unsigned param = READ_ONCE(*module_param); 171 unsigned modified_param = 0; 172 173 if (!param) 174 modified_param = def; 175 else if (param > max) 176 modified_param = max; 177 178 if (modified_param) { 179 (void)cmpxchg(module_param, param, modified_param); 180 param = modified_param; 181 } 182 183 return param; 184 } 185 186 unsigned dm_get_reserved_bio_based_ios(void) 187 { 188 return __dm_get_module_param(&reserved_bio_based_ios, 189 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 190 } 191 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 192 193 static unsigned dm_get_numa_node(void) 194 { 195 return __dm_get_module_param_int(&dm_numa_node, 196 DM_NUMA_NODE, num_online_nodes() - 1); 197 } 198 199 static int __init local_init(void) 200 { 201 int r; 202 203 r = dm_uevent_init(); 204 if (r) 205 return r; 206 207 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 208 if (!deferred_remove_workqueue) { 209 r = -ENOMEM; 210 goto out_uevent_exit; 211 } 212 213 _major = major; 214 r = register_blkdev(_major, _name); 215 if (r < 0) 216 goto out_free_workqueue; 217 218 if (!_major) 219 _major = r; 220 221 return 0; 222 223 out_free_workqueue: 224 destroy_workqueue(deferred_remove_workqueue); 225 out_uevent_exit: 226 dm_uevent_exit(); 227 228 return r; 229 } 230 231 static void local_exit(void) 232 { 233 flush_scheduled_work(); 234 destroy_workqueue(deferred_remove_workqueue); 235 236 unregister_blkdev(_major, _name); 237 dm_uevent_exit(); 238 239 _major = 0; 240 241 DMINFO("cleaned up"); 242 } 243 244 static int (*_inits[])(void) __initdata = { 245 local_init, 246 dm_target_init, 247 dm_linear_init, 248 dm_stripe_init, 249 dm_io_init, 250 dm_kcopyd_init, 251 dm_interface_init, 252 dm_statistics_init, 253 }; 254 255 static void (*_exits[])(void) = { 256 local_exit, 257 dm_target_exit, 258 dm_linear_exit, 259 dm_stripe_exit, 260 dm_io_exit, 261 dm_kcopyd_exit, 262 dm_interface_exit, 263 dm_statistics_exit, 264 }; 265 266 static int __init dm_init(void) 267 { 268 const int count = ARRAY_SIZE(_inits); 269 int r, i; 270 271 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 272 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 273 " Duplicate IMA measurements will not be recorded in the IMA log."); 274 #endif 275 276 for (i = 0; i < count; i++) { 277 r = _inits[i](); 278 if (r) 279 goto bad; 280 } 281 282 return 0; 283 bad: 284 while (i--) 285 _exits[i](); 286 287 return r; 288 } 289 290 static void __exit dm_exit(void) 291 { 292 int i = ARRAY_SIZE(_exits); 293 294 while (i--) 295 _exits[i](); 296 297 /* 298 * Should be empty by this point. 299 */ 300 idr_destroy(&_minor_idr); 301 } 302 303 /* 304 * Block device functions 305 */ 306 int dm_deleting_md(struct mapped_device *md) 307 { 308 return test_bit(DMF_DELETING, &md->flags); 309 } 310 311 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 312 { 313 struct mapped_device *md; 314 315 spin_lock(&_minor_lock); 316 317 md = bdev->bd_disk->private_data; 318 if (!md) 319 goto out; 320 321 if (test_bit(DMF_FREEING, &md->flags) || 322 dm_deleting_md(md)) { 323 md = NULL; 324 goto out; 325 } 326 327 dm_get(md); 328 atomic_inc(&md->open_count); 329 out: 330 spin_unlock(&_minor_lock); 331 332 return md ? 0 : -ENXIO; 333 } 334 335 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 336 { 337 struct mapped_device *md; 338 339 spin_lock(&_minor_lock); 340 341 md = disk->private_data; 342 if (WARN_ON(!md)) 343 goto out; 344 345 if (atomic_dec_and_test(&md->open_count) && 346 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 347 queue_work(deferred_remove_workqueue, &deferred_remove_work); 348 349 dm_put(md); 350 out: 351 spin_unlock(&_minor_lock); 352 } 353 354 int dm_open_count(struct mapped_device *md) 355 { 356 return atomic_read(&md->open_count); 357 } 358 359 /* 360 * Guarantees nothing is using the device before it's deleted. 361 */ 362 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 363 { 364 int r = 0; 365 366 spin_lock(&_minor_lock); 367 368 if (dm_open_count(md)) { 369 r = -EBUSY; 370 if (mark_deferred) 371 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 372 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 373 r = -EEXIST; 374 else 375 set_bit(DMF_DELETING, &md->flags); 376 377 spin_unlock(&_minor_lock); 378 379 return r; 380 } 381 382 int dm_cancel_deferred_remove(struct mapped_device *md) 383 { 384 int r = 0; 385 386 spin_lock(&_minor_lock); 387 388 if (test_bit(DMF_DELETING, &md->flags)) 389 r = -EBUSY; 390 else 391 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 392 393 spin_unlock(&_minor_lock); 394 395 return r; 396 } 397 398 static void do_deferred_remove(struct work_struct *w) 399 { 400 dm_deferred_remove(); 401 } 402 403 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 404 { 405 struct mapped_device *md = bdev->bd_disk->private_data; 406 407 return dm_get_geometry(md, geo); 408 } 409 410 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 411 struct block_device **bdev) 412 { 413 struct dm_target *tgt; 414 struct dm_table *map; 415 int r; 416 417 retry: 418 r = -ENOTTY; 419 map = dm_get_live_table(md, srcu_idx); 420 if (!map || !dm_table_get_size(map)) 421 return r; 422 423 /* We only support devices that have a single target */ 424 if (dm_table_get_num_targets(map) != 1) 425 return r; 426 427 tgt = dm_table_get_target(map, 0); 428 if (!tgt->type->prepare_ioctl) 429 return r; 430 431 if (dm_suspended_md(md)) 432 return -EAGAIN; 433 434 r = tgt->type->prepare_ioctl(tgt, bdev); 435 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 436 dm_put_live_table(md, *srcu_idx); 437 msleep(10); 438 goto retry; 439 } 440 441 return r; 442 } 443 444 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 445 { 446 dm_put_live_table(md, srcu_idx); 447 } 448 449 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 450 unsigned int cmd, unsigned long arg) 451 { 452 struct mapped_device *md = bdev->bd_disk->private_data; 453 int r, srcu_idx; 454 455 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 456 if (r < 0) 457 goto out; 458 459 if (r > 0) { 460 /* 461 * Target determined this ioctl is being issued against a 462 * subset of the parent bdev; require extra privileges. 463 */ 464 if (!capable(CAP_SYS_RAWIO)) { 465 DMDEBUG_LIMIT( 466 "%s: sending ioctl %x to DM device without required privilege.", 467 current->comm, cmd); 468 r = -ENOIOCTLCMD; 469 goto out; 470 } 471 } 472 473 if (!bdev->bd_disk->fops->ioctl) 474 r = -ENOTTY; 475 else 476 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 477 out: 478 dm_unprepare_ioctl(md, srcu_idx); 479 return r; 480 } 481 482 u64 dm_start_time_ns_from_clone(struct bio *bio) 483 { 484 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 485 } 486 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 487 488 static bool bio_is_flush_with_data(struct bio *bio) 489 { 490 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 491 } 492 493 static void dm_io_acct(bool end, struct mapped_device *md, struct bio *bio, 494 unsigned long start_time, struct dm_stats_aux *stats_aux) 495 { 496 bool is_flush_with_data; 497 unsigned int bi_size; 498 499 /* If REQ_PREFLUSH set save any payload but do not account it */ 500 is_flush_with_data = bio_is_flush_with_data(bio); 501 if (is_flush_with_data) { 502 bi_size = bio->bi_iter.bi_size; 503 bio->bi_iter.bi_size = 0; 504 } 505 506 if (!end) 507 bio_start_io_acct_time(bio, start_time); 508 else 509 bio_end_io_acct(bio, start_time); 510 511 if (unlikely(dm_stats_used(&md->stats))) 512 dm_stats_account_io(&md->stats, bio_data_dir(bio), 513 bio->bi_iter.bi_sector, bio_sectors(bio), 514 end, start_time, stats_aux); 515 516 /* Restore bio's payload so it does get accounted upon requeue */ 517 if (is_flush_with_data) 518 bio->bi_iter.bi_size = bi_size; 519 } 520 521 static void dm_start_io_acct(struct dm_io *io) 522 { 523 dm_io_acct(false, io->md, io->orig_bio, io->start_time, &io->stats_aux); 524 } 525 526 static void dm_end_io_acct(struct dm_io *io) 527 { 528 dm_io_acct(true, io->md, io->orig_bio, io->start_time, &io->stats_aux); 529 } 530 531 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 532 { 533 struct dm_io *io; 534 struct dm_target_io *tio; 535 struct bio *clone; 536 537 clone = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, &md->io_bs); 538 539 tio = clone_to_tio(clone); 540 tio->inside_dm_io = true; 541 tio->io = NULL; 542 543 io = container_of(tio, struct dm_io, tio); 544 io->magic = DM_IO_MAGIC; 545 io->status = 0; 546 atomic_set(&io->io_count, 1); 547 this_cpu_inc(*md->pending_io); 548 io->orig_bio = bio; 549 io->md = md; 550 spin_lock_init(&io->endio_lock); 551 552 io->start_time = jiffies; 553 554 dm_stats_record_start(&md->stats, &io->stats_aux); 555 556 return io; 557 } 558 559 static void free_io(struct dm_io *io) 560 { 561 bio_put(&io->tio.clone); 562 } 563 564 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 565 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask) 566 { 567 struct dm_target_io *tio; 568 struct bio *clone; 569 570 if (!ci->io->tio.io) { 571 /* the dm_target_io embedded in ci->io is available */ 572 tio = &ci->io->tio; 573 /* alloc_io() already initialized embedded clone */ 574 clone = &tio->clone; 575 } else { 576 clone = bio_alloc_clone(ci->bio->bi_bdev, ci->bio, 577 gfp_mask, &ci->io->md->bs); 578 if (!clone) 579 return NULL; 580 581 tio = clone_to_tio(clone); 582 tio->inside_dm_io = false; 583 } 584 585 tio->magic = DM_TIO_MAGIC; 586 tio->io = ci->io; 587 tio->ti = ti; 588 tio->target_bio_nr = target_bio_nr; 589 tio->len_ptr = len; 590 tio->old_sector = 0; 591 592 if (len) { 593 clone->bi_iter.bi_size = to_bytes(*len); 594 if (bio_integrity(clone)) 595 bio_integrity_trim(clone); 596 } 597 598 return clone; 599 } 600 601 static void free_tio(struct bio *clone) 602 { 603 if (clone_to_tio(clone)->inside_dm_io) 604 return; 605 bio_put(clone); 606 } 607 608 /* 609 * Add the bio to the list of deferred io. 610 */ 611 static void queue_io(struct mapped_device *md, struct bio *bio) 612 { 613 unsigned long flags; 614 615 spin_lock_irqsave(&md->deferred_lock, flags); 616 bio_list_add(&md->deferred, bio); 617 spin_unlock_irqrestore(&md->deferred_lock, flags); 618 queue_work(md->wq, &md->work); 619 } 620 621 /* 622 * Everyone (including functions in this file), should use this 623 * function to access the md->map field, and make sure they call 624 * dm_put_live_table() when finished. 625 */ 626 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 627 { 628 *srcu_idx = srcu_read_lock(&md->io_barrier); 629 630 return srcu_dereference(md->map, &md->io_barrier); 631 } 632 633 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 634 { 635 srcu_read_unlock(&md->io_barrier, srcu_idx); 636 } 637 638 void dm_sync_table(struct mapped_device *md) 639 { 640 synchronize_srcu(&md->io_barrier); 641 synchronize_rcu_expedited(); 642 } 643 644 /* 645 * A fast alternative to dm_get_live_table/dm_put_live_table. 646 * The caller must not block between these two functions. 647 */ 648 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 649 { 650 rcu_read_lock(); 651 return rcu_dereference(md->map); 652 } 653 654 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 655 { 656 rcu_read_unlock(); 657 } 658 659 static char *_dm_claim_ptr = "I belong to device-mapper"; 660 661 /* 662 * Open a table device so we can use it as a map destination. 663 */ 664 static int open_table_device(struct table_device *td, dev_t dev, 665 struct mapped_device *md) 666 { 667 struct block_device *bdev; 668 u64 part_off; 669 int r; 670 671 BUG_ON(td->dm_dev.bdev); 672 673 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 674 if (IS_ERR(bdev)) 675 return PTR_ERR(bdev); 676 677 r = bd_link_disk_holder(bdev, dm_disk(md)); 678 if (r) { 679 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 680 return r; 681 } 682 683 td->dm_dev.bdev = bdev; 684 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 685 return 0; 686 } 687 688 /* 689 * Close a table device that we've been using. 690 */ 691 static void close_table_device(struct table_device *td, struct mapped_device *md) 692 { 693 if (!td->dm_dev.bdev) 694 return; 695 696 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 697 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 698 put_dax(td->dm_dev.dax_dev); 699 td->dm_dev.bdev = NULL; 700 td->dm_dev.dax_dev = NULL; 701 } 702 703 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 704 fmode_t mode) 705 { 706 struct table_device *td; 707 708 list_for_each_entry(td, l, list) 709 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 710 return td; 711 712 return NULL; 713 } 714 715 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 716 struct dm_dev **result) 717 { 718 int r; 719 struct table_device *td; 720 721 mutex_lock(&md->table_devices_lock); 722 td = find_table_device(&md->table_devices, dev, mode); 723 if (!td) { 724 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 725 if (!td) { 726 mutex_unlock(&md->table_devices_lock); 727 return -ENOMEM; 728 } 729 730 td->dm_dev.mode = mode; 731 td->dm_dev.bdev = NULL; 732 733 if ((r = open_table_device(td, dev, md))) { 734 mutex_unlock(&md->table_devices_lock); 735 kfree(td); 736 return r; 737 } 738 739 format_dev_t(td->dm_dev.name, dev); 740 741 refcount_set(&td->count, 1); 742 list_add(&td->list, &md->table_devices); 743 } else { 744 refcount_inc(&td->count); 745 } 746 mutex_unlock(&md->table_devices_lock); 747 748 *result = &td->dm_dev; 749 return 0; 750 } 751 752 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 753 { 754 struct table_device *td = container_of(d, struct table_device, dm_dev); 755 756 mutex_lock(&md->table_devices_lock); 757 if (refcount_dec_and_test(&td->count)) { 758 close_table_device(td, md); 759 list_del(&td->list); 760 kfree(td); 761 } 762 mutex_unlock(&md->table_devices_lock); 763 } 764 765 static void free_table_devices(struct list_head *devices) 766 { 767 struct list_head *tmp, *next; 768 769 list_for_each_safe(tmp, next, devices) { 770 struct table_device *td = list_entry(tmp, struct table_device, list); 771 772 DMWARN("dm_destroy: %s still exists with %d references", 773 td->dm_dev.name, refcount_read(&td->count)); 774 kfree(td); 775 } 776 } 777 778 /* 779 * Get the geometry associated with a dm device 780 */ 781 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 782 { 783 *geo = md->geometry; 784 785 return 0; 786 } 787 788 /* 789 * Set the geometry of a device. 790 */ 791 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 792 { 793 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 794 795 if (geo->start > sz) { 796 DMWARN("Start sector is beyond the geometry limits."); 797 return -EINVAL; 798 } 799 800 md->geometry = *geo; 801 802 return 0; 803 } 804 805 static int __noflush_suspending(struct mapped_device *md) 806 { 807 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 808 } 809 810 /* 811 * Decrements the number of outstanding ios that a bio has been 812 * cloned into, completing the original io if necc. 813 */ 814 void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 815 { 816 unsigned long flags; 817 blk_status_t io_error; 818 struct bio *bio; 819 struct mapped_device *md = io->md; 820 821 /* Push-back supersedes any I/O errors */ 822 if (unlikely(error)) { 823 spin_lock_irqsave(&io->endio_lock, flags); 824 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 825 io->status = error; 826 spin_unlock_irqrestore(&io->endio_lock, flags); 827 } 828 829 if (atomic_dec_and_test(&io->io_count)) { 830 bio = io->orig_bio; 831 if (io->status == BLK_STS_DM_REQUEUE) { 832 /* 833 * Target requested pushing back the I/O. 834 */ 835 spin_lock_irqsave(&md->deferred_lock, flags); 836 if (__noflush_suspending(md) && 837 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 838 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 839 bio_list_add_head(&md->deferred, bio); 840 } else { 841 /* 842 * noflush suspend was interrupted or this is 843 * a write to a zoned target. 844 */ 845 io->status = BLK_STS_IOERR; 846 } 847 spin_unlock_irqrestore(&md->deferred_lock, flags); 848 } 849 850 io_error = io->status; 851 dm_end_io_acct(io); 852 free_io(io); 853 smp_wmb(); 854 this_cpu_dec(*md->pending_io); 855 856 /* nudge anyone waiting on suspend queue */ 857 if (unlikely(wq_has_sleeper(&md->wait))) 858 wake_up(&md->wait); 859 860 if (io_error == BLK_STS_DM_REQUEUE) 861 return; 862 863 if (bio_is_flush_with_data(bio)) { 864 /* 865 * Preflush done for flush with data, reissue 866 * without REQ_PREFLUSH. 867 */ 868 bio->bi_opf &= ~REQ_PREFLUSH; 869 queue_io(md, bio); 870 } else { 871 /* done with normal IO or empty flush */ 872 if (io_error) 873 bio->bi_status = io_error; 874 bio_endio(bio); 875 } 876 } 877 } 878 879 void disable_discard(struct mapped_device *md) 880 { 881 struct queue_limits *limits = dm_get_queue_limits(md); 882 883 /* device doesn't really support DISCARD, disable it */ 884 limits->max_discard_sectors = 0; 885 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 886 } 887 888 void disable_write_same(struct mapped_device *md) 889 { 890 struct queue_limits *limits = dm_get_queue_limits(md); 891 892 /* device doesn't really support WRITE SAME, disable it */ 893 limits->max_write_same_sectors = 0; 894 } 895 896 void disable_write_zeroes(struct mapped_device *md) 897 { 898 struct queue_limits *limits = dm_get_queue_limits(md); 899 900 /* device doesn't really support WRITE ZEROES, disable it */ 901 limits->max_write_zeroes_sectors = 0; 902 } 903 904 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 905 { 906 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 907 } 908 909 static void clone_endio(struct bio *bio) 910 { 911 blk_status_t error = bio->bi_status; 912 struct dm_target_io *tio = clone_to_tio(bio); 913 struct dm_io *io = tio->io; 914 struct mapped_device *md = tio->io->md; 915 dm_endio_fn endio = tio->ti->type->end_io; 916 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 917 918 if (unlikely(error == BLK_STS_TARGET)) { 919 if (bio_op(bio) == REQ_OP_DISCARD && 920 !q->limits.max_discard_sectors) 921 disable_discard(md); 922 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 923 !q->limits.max_write_same_sectors) 924 disable_write_same(md); 925 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 926 !q->limits.max_write_zeroes_sectors) 927 disable_write_zeroes(md); 928 } 929 930 if (blk_queue_is_zoned(q)) 931 dm_zone_endio(io, bio); 932 933 if (endio) { 934 int r = endio(tio->ti, bio, &error); 935 switch (r) { 936 case DM_ENDIO_REQUEUE: 937 /* 938 * Requeuing writes to a sequential zone of a zoned 939 * target will break the sequential write pattern: 940 * fail such IO. 941 */ 942 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 943 error = BLK_STS_IOERR; 944 else 945 error = BLK_STS_DM_REQUEUE; 946 fallthrough; 947 case DM_ENDIO_DONE: 948 break; 949 case DM_ENDIO_INCOMPLETE: 950 /* The target will handle the io */ 951 return; 952 default: 953 DMWARN("unimplemented target endio return value: %d", r); 954 BUG(); 955 } 956 } 957 958 if (unlikely(swap_bios_limit(tio->ti, bio))) { 959 struct mapped_device *md = io->md; 960 up(&md->swap_bios_semaphore); 961 } 962 963 free_tio(bio); 964 dm_io_dec_pending(io, error); 965 } 966 967 /* 968 * Return maximum size of I/O possible at the supplied sector up to the current 969 * target boundary. 970 */ 971 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 972 sector_t target_offset) 973 { 974 return ti->len - target_offset; 975 } 976 977 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 978 { 979 sector_t target_offset = dm_target_offset(ti, sector); 980 sector_t len = max_io_len_target_boundary(ti, target_offset); 981 sector_t max_len; 982 983 /* 984 * Does the target need to split IO even further? 985 * - varied (per target) IO splitting is a tenet of DM; this 986 * explains why stacked chunk_sectors based splitting via 987 * blk_max_size_offset() isn't possible here. So pass in 988 * ti->max_io_len to override stacked chunk_sectors. 989 */ 990 if (ti->max_io_len) { 991 max_len = blk_max_size_offset(ti->table->md->queue, 992 target_offset, ti->max_io_len); 993 if (len > max_len) 994 len = max_len; 995 } 996 997 return len; 998 } 999 1000 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1001 { 1002 if (len > UINT_MAX) { 1003 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1004 (unsigned long long)len, UINT_MAX); 1005 ti->error = "Maximum size of target IO is too large"; 1006 return -EINVAL; 1007 } 1008 1009 ti->max_io_len = (uint32_t) len; 1010 1011 return 0; 1012 } 1013 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1014 1015 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1016 sector_t sector, int *srcu_idx) 1017 __acquires(md->io_barrier) 1018 { 1019 struct dm_table *map; 1020 struct dm_target *ti; 1021 1022 map = dm_get_live_table(md, srcu_idx); 1023 if (!map) 1024 return NULL; 1025 1026 ti = dm_table_find_target(map, sector); 1027 if (!ti) 1028 return NULL; 1029 1030 return ti; 1031 } 1032 1033 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1034 long nr_pages, void **kaddr, pfn_t *pfn) 1035 { 1036 struct mapped_device *md = dax_get_private(dax_dev); 1037 sector_t sector = pgoff * PAGE_SECTORS; 1038 struct dm_target *ti; 1039 long len, ret = -EIO; 1040 int srcu_idx; 1041 1042 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1043 1044 if (!ti) 1045 goto out; 1046 if (!ti->type->direct_access) 1047 goto out; 1048 len = max_io_len(ti, sector) / PAGE_SECTORS; 1049 if (len < 1) 1050 goto out; 1051 nr_pages = min(len, nr_pages); 1052 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1053 1054 out: 1055 dm_put_live_table(md, srcu_idx); 1056 1057 return ret; 1058 } 1059 1060 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1061 size_t nr_pages) 1062 { 1063 struct mapped_device *md = dax_get_private(dax_dev); 1064 sector_t sector = pgoff * PAGE_SECTORS; 1065 struct dm_target *ti; 1066 int ret = -EIO; 1067 int srcu_idx; 1068 1069 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1070 1071 if (!ti) 1072 goto out; 1073 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1074 /* 1075 * ->zero_page_range() is mandatory dax operation. If we are 1076 * here, something is wrong. 1077 */ 1078 goto out; 1079 } 1080 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1081 out: 1082 dm_put_live_table(md, srcu_idx); 1083 1084 return ret; 1085 } 1086 1087 /* 1088 * A target may call dm_accept_partial_bio only from the map routine. It is 1089 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1090 * operations and REQ_OP_ZONE_APPEND (zone append writes). 1091 * 1092 * dm_accept_partial_bio informs the dm that the target only wants to process 1093 * additional n_sectors sectors of the bio and the rest of the data should be 1094 * sent in a next bio. 1095 * 1096 * A diagram that explains the arithmetics: 1097 * +--------------------+---------------+-------+ 1098 * | 1 | 2 | 3 | 1099 * +--------------------+---------------+-------+ 1100 * 1101 * <-------------- *tio->len_ptr ---------------> 1102 * <------- bi_size -------> 1103 * <-- n_sectors --> 1104 * 1105 * Region 1 was already iterated over with bio_advance or similar function. 1106 * (it may be empty if the target doesn't use bio_advance) 1107 * Region 2 is the remaining bio size that the target wants to process. 1108 * (it may be empty if region 1 is non-empty, although there is no reason 1109 * to make it empty) 1110 * The target requires that region 3 is to be sent in the next bio. 1111 * 1112 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1113 * the partially processed part (the sum of regions 1+2) must be the same for all 1114 * copies of the bio. 1115 */ 1116 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1117 { 1118 struct dm_target_io *tio = clone_to_tio(bio); 1119 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1120 1121 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1122 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1123 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1124 BUG_ON(bi_size > *tio->len_ptr); 1125 BUG_ON(n_sectors > bi_size); 1126 1127 *tio->len_ptr -= bi_size - n_sectors; 1128 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1129 } 1130 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1131 1132 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1133 { 1134 mutex_lock(&md->swap_bios_lock); 1135 while (latch < md->swap_bios) { 1136 cond_resched(); 1137 down(&md->swap_bios_semaphore); 1138 md->swap_bios--; 1139 } 1140 while (latch > md->swap_bios) { 1141 cond_resched(); 1142 up(&md->swap_bios_semaphore); 1143 md->swap_bios++; 1144 } 1145 mutex_unlock(&md->swap_bios_lock); 1146 } 1147 1148 static void __map_bio(struct bio *clone) 1149 { 1150 struct dm_target_io *tio = clone_to_tio(clone); 1151 int r; 1152 struct dm_io *io = tio->io; 1153 struct dm_target *ti = tio->ti; 1154 1155 clone->bi_end_io = clone_endio; 1156 1157 /* 1158 * Map the clone. If r == 0 we don't need to do 1159 * anything, the target has assumed ownership of 1160 * this io. 1161 */ 1162 dm_io_inc_pending(io); 1163 tio->old_sector = clone->bi_iter.bi_sector; 1164 1165 if (unlikely(swap_bios_limit(ti, clone))) { 1166 struct mapped_device *md = io->md; 1167 int latch = get_swap_bios(); 1168 if (unlikely(latch != md->swap_bios)) 1169 __set_swap_bios_limit(md, latch); 1170 down(&md->swap_bios_semaphore); 1171 } 1172 1173 /* 1174 * Check if the IO needs a special mapping due to zone append emulation 1175 * on zoned target. In this case, dm_zone_map_bio() calls the target 1176 * map operation. 1177 */ 1178 if (dm_emulate_zone_append(io->md)) 1179 r = dm_zone_map_bio(tio); 1180 else 1181 r = ti->type->map(ti, clone); 1182 1183 switch (r) { 1184 case DM_MAPIO_SUBMITTED: 1185 break; 1186 case DM_MAPIO_REMAPPED: 1187 /* the bio has been remapped so dispatch it */ 1188 trace_block_bio_remap(clone, bio_dev(io->orig_bio), 1189 tio->old_sector); 1190 submit_bio_noacct(clone); 1191 break; 1192 case DM_MAPIO_KILL: 1193 case DM_MAPIO_REQUEUE: 1194 if (unlikely(swap_bios_limit(ti, clone))) 1195 up(&io->md->swap_bios_semaphore); 1196 free_tio(clone); 1197 if (r == DM_MAPIO_KILL) 1198 dm_io_dec_pending(io, BLK_STS_IOERR); 1199 else 1200 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1201 break; 1202 default: 1203 DMWARN("unimplemented target map return value: %d", r); 1204 BUG(); 1205 } 1206 } 1207 1208 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1209 struct dm_target *ti, unsigned num_bios, 1210 unsigned *len) 1211 { 1212 struct bio *bio; 1213 int try; 1214 1215 for (try = 0; try < 2; try++) { 1216 int bio_nr; 1217 1218 if (try) 1219 mutex_lock(&ci->io->md->table_devices_lock); 1220 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1221 bio = alloc_tio(ci, ti, bio_nr, len, 1222 try ? GFP_NOIO : GFP_NOWAIT); 1223 if (!bio) 1224 break; 1225 1226 bio_list_add(blist, bio); 1227 } 1228 if (try) 1229 mutex_unlock(&ci->io->md->table_devices_lock); 1230 if (bio_nr == num_bios) 1231 return; 1232 1233 while ((bio = bio_list_pop(blist))) 1234 free_tio(bio); 1235 } 1236 } 1237 1238 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1239 unsigned num_bios, unsigned *len) 1240 { 1241 struct bio_list blist = BIO_EMPTY_LIST; 1242 struct bio *clone; 1243 1244 switch (num_bios) { 1245 case 0: 1246 break; 1247 case 1: 1248 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1249 __map_bio(clone); 1250 break; 1251 default: 1252 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1253 while ((clone = bio_list_pop(&blist))) 1254 __map_bio(clone); 1255 break; 1256 } 1257 } 1258 1259 static int __send_empty_flush(struct clone_info *ci) 1260 { 1261 unsigned target_nr = 0; 1262 struct dm_target *ti; 1263 struct bio flush_bio; 1264 1265 /* 1266 * Use an on-stack bio for this, it's safe since we don't 1267 * need to reference it after submit. It's just used as 1268 * the basis for the clone(s). 1269 */ 1270 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1271 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1272 1273 ci->bio = &flush_bio; 1274 ci->sector_count = 0; 1275 1276 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1277 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1278 1279 bio_uninit(ci->bio); 1280 return 0; 1281 } 1282 1283 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1284 unsigned num_bios) 1285 { 1286 unsigned len; 1287 1288 /* 1289 * Even though the device advertised support for this type of 1290 * request, that does not mean every target supports it, and 1291 * reconfiguration might also have changed that since the 1292 * check was performed. 1293 */ 1294 if (!num_bios) 1295 return -EOPNOTSUPP; 1296 1297 len = min_t(sector_t, ci->sector_count, 1298 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1299 1300 __send_duplicate_bios(ci, ti, num_bios, &len); 1301 1302 ci->sector += len; 1303 ci->sector_count -= len; 1304 1305 return 0; 1306 } 1307 1308 static bool is_abnormal_io(struct bio *bio) 1309 { 1310 bool r = false; 1311 1312 switch (bio_op(bio)) { 1313 case REQ_OP_DISCARD: 1314 case REQ_OP_SECURE_ERASE: 1315 case REQ_OP_WRITE_SAME: 1316 case REQ_OP_WRITE_ZEROES: 1317 r = true; 1318 break; 1319 } 1320 1321 return r; 1322 } 1323 1324 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1325 int *result) 1326 { 1327 struct bio *bio = ci->bio; 1328 unsigned num_bios = 0; 1329 1330 switch (bio_op(bio)) { 1331 case REQ_OP_DISCARD: 1332 num_bios = ti->num_discard_bios; 1333 break; 1334 case REQ_OP_SECURE_ERASE: 1335 num_bios = ti->num_secure_erase_bios; 1336 break; 1337 case REQ_OP_WRITE_SAME: 1338 num_bios = ti->num_write_same_bios; 1339 break; 1340 case REQ_OP_WRITE_ZEROES: 1341 num_bios = ti->num_write_zeroes_bios; 1342 break; 1343 default: 1344 return false; 1345 } 1346 1347 *result = __send_changing_extent_only(ci, ti, num_bios); 1348 return true; 1349 } 1350 1351 /* 1352 * Select the correct strategy for processing a non-flush bio. 1353 */ 1354 static int __split_and_process_bio(struct clone_info *ci) 1355 { 1356 struct bio *clone; 1357 struct dm_target *ti; 1358 unsigned len; 1359 int r; 1360 1361 ti = dm_table_find_target(ci->map, ci->sector); 1362 if (!ti) 1363 return -EIO; 1364 1365 if (__process_abnormal_io(ci, ti, &r)) 1366 return r; 1367 1368 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1369 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1370 __map_bio(clone); 1371 1372 ci->sector += len; 1373 ci->sector_count -= len; 1374 1375 return 0; 1376 } 1377 1378 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1379 struct dm_table *map, struct bio *bio) 1380 { 1381 ci->map = map; 1382 ci->io = alloc_io(md, bio); 1383 ci->bio = bio; 1384 ci->sector = bio->bi_iter.bi_sector; 1385 ci->sector_count = bio_sectors(bio); 1386 1387 /* Shouldn't happen but sector_count was being set to 0 so... */ 1388 if (WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1389 ci->sector_count = 0; 1390 } 1391 1392 /* 1393 * Entry point to split a bio into clones and submit them to the targets. 1394 */ 1395 static void dm_split_and_process_bio(struct mapped_device *md, 1396 struct dm_table *map, struct bio *bio) 1397 { 1398 struct clone_info ci; 1399 struct bio *b; 1400 int error = 0; 1401 1402 init_clone_info(&ci, md, map, bio); 1403 1404 if (bio->bi_opf & REQ_PREFLUSH) { 1405 error = __send_empty_flush(&ci); 1406 /* dm_io_dec_pending submits any data associated with flush */ 1407 goto out; 1408 } 1409 1410 error = __split_and_process_bio(&ci); 1411 if (error || !ci.sector_count) 1412 goto out; 1413 1414 /* 1415 * Remainder must be passed to submit_bio_noacct() so it gets handled 1416 * *after* bios already submitted have been completely processed. 1417 * We take a clone of the original to store in ci.io->orig_bio to be 1418 * used by dm_end_io_acct() and for dm_io_dec_pending() to use for 1419 * completion handling. 1420 */ 1421 b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1422 GFP_NOIO, &md->queue->bio_split); 1423 ci.io->orig_bio = b; 1424 1425 bio_chain(b, bio); 1426 trace_block_split(b, bio->bi_iter.bi_sector); 1427 submit_bio_noacct(bio); 1428 out: 1429 dm_start_io_acct(ci.io); 1430 /* drop the extra reference count */ 1431 dm_io_dec_pending(ci.io, errno_to_blk_status(error)); 1432 } 1433 1434 static void dm_submit_bio(struct bio *bio) 1435 { 1436 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1437 int srcu_idx; 1438 struct dm_table *map; 1439 1440 map = dm_get_live_table(md, &srcu_idx); 1441 if (unlikely(!map)) { 1442 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 1443 dm_device_name(md)); 1444 bio_io_error(bio); 1445 goto out; 1446 } 1447 1448 /* If suspended, queue this IO for later */ 1449 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1450 if (bio->bi_opf & REQ_NOWAIT) 1451 bio_wouldblock_error(bio); 1452 else if (bio->bi_opf & REQ_RAHEAD) 1453 bio_io_error(bio); 1454 else 1455 queue_io(md, bio); 1456 goto out; 1457 } 1458 1459 /* 1460 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc) 1461 * otherwise associated queue_limits won't be imposed. 1462 */ 1463 if (is_abnormal_io(bio)) 1464 blk_queue_split(&bio); 1465 1466 dm_split_and_process_bio(md, map, bio); 1467 out: 1468 dm_put_live_table(md, srcu_idx); 1469 } 1470 1471 /*----------------------------------------------------------------- 1472 * An IDR is used to keep track of allocated minor numbers. 1473 *---------------------------------------------------------------*/ 1474 static void free_minor(int minor) 1475 { 1476 spin_lock(&_minor_lock); 1477 idr_remove(&_minor_idr, minor); 1478 spin_unlock(&_minor_lock); 1479 } 1480 1481 /* 1482 * See if the device with a specific minor # is free. 1483 */ 1484 static int specific_minor(int minor) 1485 { 1486 int r; 1487 1488 if (minor >= (1 << MINORBITS)) 1489 return -EINVAL; 1490 1491 idr_preload(GFP_KERNEL); 1492 spin_lock(&_minor_lock); 1493 1494 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1495 1496 spin_unlock(&_minor_lock); 1497 idr_preload_end(); 1498 if (r < 0) 1499 return r == -ENOSPC ? -EBUSY : r; 1500 return 0; 1501 } 1502 1503 static int next_free_minor(int *minor) 1504 { 1505 int r; 1506 1507 idr_preload(GFP_KERNEL); 1508 spin_lock(&_minor_lock); 1509 1510 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1511 1512 spin_unlock(&_minor_lock); 1513 idr_preload_end(); 1514 if (r < 0) 1515 return r; 1516 *minor = r; 1517 return 0; 1518 } 1519 1520 static const struct block_device_operations dm_blk_dops; 1521 static const struct block_device_operations dm_rq_blk_dops; 1522 static const struct dax_operations dm_dax_ops; 1523 1524 static void dm_wq_work(struct work_struct *work); 1525 1526 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1527 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1528 { 1529 dm_destroy_crypto_profile(q->crypto_profile); 1530 } 1531 1532 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1533 1534 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1535 { 1536 } 1537 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1538 1539 static void cleanup_mapped_device(struct mapped_device *md) 1540 { 1541 if (md->wq) 1542 destroy_workqueue(md->wq); 1543 bioset_exit(&md->bs); 1544 bioset_exit(&md->io_bs); 1545 1546 if (md->dax_dev) { 1547 dax_remove_host(md->disk); 1548 kill_dax(md->dax_dev); 1549 put_dax(md->dax_dev); 1550 md->dax_dev = NULL; 1551 } 1552 1553 if (md->disk) { 1554 spin_lock(&_minor_lock); 1555 md->disk->private_data = NULL; 1556 spin_unlock(&_minor_lock); 1557 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1558 dm_sysfs_exit(md); 1559 del_gendisk(md->disk); 1560 } 1561 dm_queue_destroy_crypto_profile(md->queue); 1562 blk_cleanup_disk(md->disk); 1563 } 1564 1565 if (md->pending_io) { 1566 free_percpu(md->pending_io); 1567 md->pending_io = NULL; 1568 } 1569 1570 cleanup_srcu_struct(&md->io_barrier); 1571 1572 mutex_destroy(&md->suspend_lock); 1573 mutex_destroy(&md->type_lock); 1574 mutex_destroy(&md->table_devices_lock); 1575 mutex_destroy(&md->swap_bios_lock); 1576 1577 dm_mq_cleanup_mapped_device(md); 1578 dm_cleanup_zoned_dev(md); 1579 } 1580 1581 /* 1582 * Allocate and initialise a blank device with a given minor. 1583 */ 1584 static struct mapped_device *alloc_dev(int minor) 1585 { 1586 int r, numa_node_id = dm_get_numa_node(); 1587 struct mapped_device *md; 1588 void *old_md; 1589 1590 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1591 if (!md) { 1592 DMWARN("unable to allocate device, out of memory."); 1593 return NULL; 1594 } 1595 1596 if (!try_module_get(THIS_MODULE)) 1597 goto bad_module_get; 1598 1599 /* get a minor number for the dev */ 1600 if (minor == DM_ANY_MINOR) 1601 r = next_free_minor(&minor); 1602 else 1603 r = specific_minor(minor); 1604 if (r < 0) 1605 goto bad_minor; 1606 1607 r = init_srcu_struct(&md->io_barrier); 1608 if (r < 0) 1609 goto bad_io_barrier; 1610 1611 md->numa_node_id = numa_node_id; 1612 md->init_tio_pdu = false; 1613 md->type = DM_TYPE_NONE; 1614 mutex_init(&md->suspend_lock); 1615 mutex_init(&md->type_lock); 1616 mutex_init(&md->table_devices_lock); 1617 spin_lock_init(&md->deferred_lock); 1618 atomic_set(&md->holders, 1); 1619 atomic_set(&md->open_count, 0); 1620 atomic_set(&md->event_nr, 0); 1621 atomic_set(&md->uevent_seq, 0); 1622 INIT_LIST_HEAD(&md->uevent_list); 1623 INIT_LIST_HEAD(&md->table_devices); 1624 spin_lock_init(&md->uevent_lock); 1625 1626 /* 1627 * default to bio-based until DM table is loaded and md->type 1628 * established. If request-based table is loaded: blk-mq will 1629 * override accordingly. 1630 */ 1631 md->disk = blk_alloc_disk(md->numa_node_id); 1632 if (!md->disk) 1633 goto bad; 1634 md->queue = md->disk->queue; 1635 1636 init_waitqueue_head(&md->wait); 1637 INIT_WORK(&md->work, dm_wq_work); 1638 init_waitqueue_head(&md->eventq); 1639 init_completion(&md->kobj_holder.completion); 1640 1641 md->swap_bios = get_swap_bios(); 1642 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1643 mutex_init(&md->swap_bios_lock); 1644 1645 md->disk->major = _major; 1646 md->disk->first_minor = minor; 1647 md->disk->minors = 1; 1648 md->disk->flags |= GENHD_FL_NO_PART; 1649 md->disk->fops = &dm_blk_dops; 1650 md->disk->queue = md->queue; 1651 md->disk->private_data = md; 1652 sprintf(md->disk->disk_name, "dm-%d", minor); 1653 1654 if (IS_ENABLED(CONFIG_FS_DAX)) { 1655 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1656 if (IS_ERR(md->dax_dev)) { 1657 md->dax_dev = NULL; 1658 goto bad; 1659 } 1660 set_dax_nocache(md->dax_dev); 1661 set_dax_nomc(md->dax_dev); 1662 if (dax_add_host(md->dax_dev, md->disk)) 1663 goto bad; 1664 } 1665 1666 format_dev_t(md->name, MKDEV(_major, minor)); 1667 1668 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 1669 if (!md->wq) 1670 goto bad; 1671 1672 md->pending_io = alloc_percpu(unsigned long); 1673 if (!md->pending_io) 1674 goto bad; 1675 1676 dm_stats_init(&md->stats); 1677 1678 /* Populate the mapping, nobody knows we exist yet */ 1679 spin_lock(&_minor_lock); 1680 old_md = idr_replace(&_minor_idr, md, minor); 1681 spin_unlock(&_minor_lock); 1682 1683 BUG_ON(old_md != MINOR_ALLOCED); 1684 1685 return md; 1686 1687 bad: 1688 cleanup_mapped_device(md); 1689 bad_io_barrier: 1690 free_minor(minor); 1691 bad_minor: 1692 module_put(THIS_MODULE); 1693 bad_module_get: 1694 kvfree(md); 1695 return NULL; 1696 } 1697 1698 static void unlock_fs(struct mapped_device *md); 1699 1700 static void free_dev(struct mapped_device *md) 1701 { 1702 int minor = MINOR(disk_devt(md->disk)); 1703 1704 unlock_fs(md); 1705 1706 cleanup_mapped_device(md); 1707 1708 free_table_devices(&md->table_devices); 1709 dm_stats_cleanup(&md->stats); 1710 free_minor(minor); 1711 1712 module_put(THIS_MODULE); 1713 kvfree(md); 1714 } 1715 1716 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1717 { 1718 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1719 int ret = 0; 1720 1721 if (dm_table_bio_based(t)) { 1722 /* 1723 * The md may already have mempools that need changing. 1724 * If so, reload bioset because front_pad may have changed 1725 * because a different table was loaded. 1726 */ 1727 bioset_exit(&md->bs); 1728 bioset_exit(&md->io_bs); 1729 1730 } else if (bioset_initialized(&md->bs)) { 1731 /* 1732 * There's no need to reload with request-based dm 1733 * because the size of front_pad doesn't change. 1734 * Note for future: If you are to reload bioset, 1735 * prep-ed requests in the queue may refer 1736 * to bio from the old bioset, so you must walk 1737 * through the queue to unprep. 1738 */ 1739 goto out; 1740 } 1741 1742 BUG_ON(!p || 1743 bioset_initialized(&md->bs) || 1744 bioset_initialized(&md->io_bs)); 1745 1746 ret = bioset_init_from_src(&md->bs, &p->bs); 1747 if (ret) 1748 goto out; 1749 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 1750 if (ret) 1751 bioset_exit(&md->bs); 1752 out: 1753 /* mempool bind completed, no longer need any mempools in the table */ 1754 dm_table_free_md_mempools(t); 1755 return ret; 1756 } 1757 1758 /* 1759 * Bind a table to the device. 1760 */ 1761 static void event_callback(void *context) 1762 { 1763 unsigned long flags; 1764 LIST_HEAD(uevents); 1765 struct mapped_device *md = (struct mapped_device *) context; 1766 1767 spin_lock_irqsave(&md->uevent_lock, flags); 1768 list_splice_init(&md->uevent_list, &uevents); 1769 spin_unlock_irqrestore(&md->uevent_lock, flags); 1770 1771 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1772 1773 atomic_inc(&md->event_nr); 1774 wake_up(&md->eventq); 1775 dm_issue_global_event(); 1776 } 1777 1778 /* 1779 * Returns old map, which caller must destroy. 1780 */ 1781 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1782 struct queue_limits *limits) 1783 { 1784 struct dm_table *old_map; 1785 struct request_queue *q = md->queue; 1786 bool request_based = dm_table_request_based(t); 1787 sector_t size; 1788 int ret; 1789 1790 lockdep_assert_held(&md->suspend_lock); 1791 1792 size = dm_table_get_size(t); 1793 1794 /* 1795 * Wipe any geometry if the size of the table changed. 1796 */ 1797 if (size != dm_get_size(md)) 1798 memset(&md->geometry, 0, sizeof(md->geometry)); 1799 1800 if (!get_capacity(md->disk)) 1801 set_capacity(md->disk, size); 1802 else 1803 set_capacity_and_notify(md->disk, size); 1804 1805 dm_table_event_callback(t, event_callback, md); 1806 1807 if (request_based) { 1808 /* 1809 * Leverage the fact that request-based DM targets are 1810 * immutable singletons - used to optimize dm_mq_queue_rq. 1811 */ 1812 md->immutable_target = dm_table_get_immutable_target(t); 1813 } 1814 1815 ret = __bind_mempools(md, t); 1816 if (ret) { 1817 old_map = ERR_PTR(ret); 1818 goto out; 1819 } 1820 1821 ret = dm_table_set_restrictions(t, q, limits); 1822 if (ret) { 1823 old_map = ERR_PTR(ret); 1824 goto out; 1825 } 1826 1827 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1828 rcu_assign_pointer(md->map, (void *)t); 1829 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1830 1831 if (old_map) 1832 dm_sync_table(md); 1833 1834 out: 1835 return old_map; 1836 } 1837 1838 /* 1839 * Returns unbound table for the caller to free. 1840 */ 1841 static struct dm_table *__unbind(struct mapped_device *md) 1842 { 1843 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1844 1845 if (!map) 1846 return NULL; 1847 1848 dm_table_event_callback(map, NULL, NULL); 1849 RCU_INIT_POINTER(md->map, NULL); 1850 dm_sync_table(md); 1851 1852 return map; 1853 } 1854 1855 /* 1856 * Constructor for a new device. 1857 */ 1858 int dm_create(int minor, struct mapped_device **result) 1859 { 1860 struct mapped_device *md; 1861 1862 md = alloc_dev(minor); 1863 if (!md) 1864 return -ENXIO; 1865 1866 dm_ima_reset_data(md); 1867 1868 *result = md; 1869 return 0; 1870 } 1871 1872 /* 1873 * Functions to manage md->type. 1874 * All are required to hold md->type_lock. 1875 */ 1876 void dm_lock_md_type(struct mapped_device *md) 1877 { 1878 mutex_lock(&md->type_lock); 1879 } 1880 1881 void dm_unlock_md_type(struct mapped_device *md) 1882 { 1883 mutex_unlock(&md->type_lock); 1884 } 1885 1886 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 1887 { 1888 BUG_ON(!mutex_is_locked(&md->type_lock)); 1889 md->type = type; 1890 } 1891 1892 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 1893 { 1894 return md->type; 1895 } 1896 1897 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1898 { 1899 return md->immutable_target_type; 1900 } 1901 1902 /* 1903 * The queue_limits are only valid as long as you have a reference 1904 * count on 'md'. 1905 */ 1906 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1907 { 1908 BUG_ON(!atomic_read(&md->holders)); 1909 return &md->queue->limits; 1910 } 1911 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1912 1913 /* 1914 * Setup the DM device's queue based on md's type 1915 */ 1916 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1917 { 1918 enum dm_queue_mode type = dm_table_get_type(t); 1919 struct queue_limits limits; 1920 int r; 1921 1922 switch (type) { 1923 case DM_TYPE_REQUEST_BASED: 1924 md->disk->fops = &dm_rq_blk_dops; 1925 r = dm_mq_init_request_queue(md, t); 1926 if (r) { 1927 DMERR("Cannot initialize queue for request-based dm mapped device"); 1928 return r; 1929 } 1930 break; 1931 case DM_TYPE_BIO_BASED: 1932 case DM_TYPE_DAX_BIO_BASED: 1933 break; 1934 case DM_TYPE_NONE: 1935 WARN_ON_ONCE(true); 1936 break; 1937 } 1938 1939 r = dm_calculate_queue_limits(t, &limits); 1940 if (r) { 1941 DMERR("Cannot calculate initial queue limits"); 1942 return r; 1943 } 1944 r = dm_table_set_restrictions(t, md->queue, &limits); 1945 if (r) 1946 return r; 1947 1948 r = add_disk(md->disk); 1949 if (r) 1950 return r; 1951 1952 r = dm_sysfs_init(md); 1953 if (r) { 1954 del_gendisk(md->disk); 1955 return r; 1956 } 1957 md->type = type; 1958 return 0; 1959 } 1960 1961 struct mapped_device *dm_get_md(dev_t dev) 1962 { 1963 struct mapped_device *md; 1964 unsigned minor = MINOR(dev); 1965 1966 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1967 return NULL; 1968 1969 spin_lock(&_minor_lock); 1970 1971 md = idr_find(&_minor_idr, minor); 1972 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 1973 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 1974 md = NULL; 1975 goto out; 1976 } 1977 dm_get(md); 1978 out: 1979 spin_unlock(&_minor_lock); 1980 1981 return md; 1982 } 1983 EXPORT_SYMBOL_GPL(dm_get_md); 1984 1985 void *dm_get_mdptr(struct mapped_device *md) 1986 { 1987 return md->interface_ptr; 1988 } 1989 1990 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1991 { 1992 md->interface_ptr = ptr; 1993 } 1994 1995 void dm_get(struct mapped_device *md) 1996 { 1997 atomic_inc(&md->holders); 1998 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 1999 } 2000 2001 int dm_hold(struct mapped_device *md) 2002 { 2003 spin_lock(&_minor_lock); 2004 if (test_bit(DMF_FREEING, &md->flags)) { 2005 spin_unlock(&_minor_lock); 2006 return -EBUSY; 2007 } 2008 dm_get(md); 2009 spin_unlock(&_minor_lock); 2010 return 0; 2011 } 2012 EXPORT_SYMBOL_GPL(dm_hold); 2013 2014 const char *dm_device_name(struct mapped_device *md) 2015 { 2016 return md->name; 2017 } 2018 EXPORT_SYMBOL_GPL(dm_device_name); 2019 2020 static void __dm_destroy(struct mapped_device *md, bool wait) 2021 { 2022 struct dm_table *map; 2023 int srcu_idx; 2024 2025 might_sleep(); 2026 2027 spin_lock(&_minor_lock); 2028 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2029 set_bit(DMF_FREEING, &md->flags); 2030 spin_unlock(&_minor_lock); 2031 2032 blk_set_queue_dying(md->queue); 2033 2034 /* 2035 * Take suspend_lock so that presuspend and postsuspend methods 2036 * do not race with internal suspend. 2037 */ 2038 mutex_lock(&md->suspend_lock); 2039 map = dm_get_live_table(md, &srcu_idx); 2040 if (!dm_suspended_md(md)) { 2041 dm_table_presuspend_targets(map); 2042 set_bit(DMF_SUSPENDED, &md->flags); 2043 set_bit(DMF_POST_SUSPENDING, &md->flags); 2044 dm_table_postsuspend_targets(map); 2045 } 2046 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2047 dm_put_live_table(md, srcu_idx); 2048 mutex_unlock(&md->suspend_lock); 2049 2050 /* 2051 * Rare, but there may be I/O requests still going to complete, 2052 * for example. Wait for all references to disappear. 2053 * No one should increment the reference count of the mapped_device, 2054 * after the mapped_device state becomes DMF_FREEING. 2055 */ 2056 if (wait) 2057 while (atomic_read(&md->holders)) 2058 msleep(1); 2059 else if (atomic_read(&md->holders)) 2060 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2061 dm_device_name(md), atomic_read(&md->holders)); 2062 2063 dm_table_destroy(__unbind(md)); 2064 free_dev(md); 2065 } 2066 2067 void dm_destroy(struct mapped_device *md) 2068 { 2069 __dm_destroy(md, true); 2070 } 2071 2072 void dm_destroy_immediate(struct mapped_device *md) 2073 { 2074 __dm_destroy(md, false); 2075 } 2076 2077 void dm_put(struct mapped_device *md) 2078 { 2079 atomic_dec(&md->holders); 2080 } 2081 EXPORT_SYMBOL_GPL(dm_put); 2082 2083 static bool dm_in_flight_bios(struct mapped_device *md) 2084 { 2085 int cpu; 2086 unsigned long sum = 0; 2087 2088 for_each_possible_cpu(cpu) 2089 sum += *per_cpu_ptr(md->pending_io, cpu); 2090 2091 return sum != 0; 2092 } 2093 2094 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2095 { 2096 int r = 0; 2097 DEFINE_WAIT(wait); 2098 2099 while (true) { 2100 prepare_to_wait(&md->wait, &wait, task_state); 2101 2102 if (!dm_in_flight_bios(md)) 2103 break; 2104 2105 if (signal_pending_state(task_state, current)) { 2106 r = -EINTR; 2107 break; 2108 } 2109 2110 io_schedule(); 2111 } 2112 finish_wait(&md->wait, &wait); 2113 2114 smp_rmb(); 2115 2116 return r; 2117 } 2118 2119 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2120 { 2121 int r = 0; 2122 2123 if (!queue_is_mq(md->queue)) 2124 return dm_wait_for_bios_completion(md, task_state); 2125 2126 while (true) { 2127 if (!blk_mq_queue_inflight(md->queue)) 2128 break; 2129 2130 if (signal_pending_state(task_state, current)) { 2131 r = -EINTR; 2132 break; 2133 } 2134 2135 msleep(5); 2136 } 2137 2138 return r; 2139 } 2140 2141 /* 2142 * Process the deferred bios 2143 */ 2144 static void dm_wq_work(struct work_struct *work) 2145 { 2146 struct mapped_device *md = container_of(work, struct mapped_device, work); 2147 struct bio *bio; 2148 2149 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2150 spin_lock_irq(&md->deferred_lock); 2151 bio = bio_list_pop(&md->deferred); 2152 spin_unlock_irq(&md->deferred_lock); 2153 2154 if (!bio) 2155 break; 2156 2157 submit_bio_noacct(bio); 2158 } 2159 } 2160 2161 static void dm_queue_flush(struct mapped_device *md) 2162 { 2163 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2164 smp_mb__after_atomic(); 2165 queue_work(md->wq, &md->work); 2166 } 2167 2168 /* 2169 * Swap in a new table, returning the old one for the caller to destroy. 2170 */ 2171 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2172 { 2173 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2174 struct queue_limits limits; 2175 int r; 2176 2177 mutex_lock(&md->suspend_lock); 2178 2179 /* device must be suspended */ 2180 if (!dm_suspended_md(md)) 2181 goto out; 2182 2183 /* 2184 * If the new table has no data devices, retain the existing limits. 2185 * This helps multipath with queue_if_no_path if all paths disappear, 2186 * then new I/O is queued based on these limits, and then some paths 2187 * reappear. 2188 */ 2189 if (dm_table_has_no_data_devices(table)) { 2190 live_map = dm_get_live_table_fast(md); 2191 if (live_map) 2192 limits = md->queue->limits; 2193 dm_put_live_table_fast(md); 2194 } 2195 2196 if (!live_map) { 2197 r = dm_calculate_queue_limits(table, &limits); 2198 if (r) { 2199 map = ERR_PTR(r); 2200 goto out; 2201 } 2202 } 2203 2204 map = __bind(md, table, &limits); 2205 dm_issue_global_event(); 2206 2207 out: 2208 mutex_unlock(&md->suspend_lock); 2209 return map; 2210 } 2211 2212 /* 2213 * Functions to lock and unlock any filesystem running on the 2214 * device. 2215 */ 2216 static int lock_fs(struct mapped_device *md) 2217 { 2218 int r; 2219 2220 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2221 2222 r = freeze_bdev(md->disk->part0); 2223 if (!r) 2224 set_bit(DMF_FROZEN, &md->flags); 2225 return r; 2226 } 2227 2228 static void unlock_fs(struct mapped_device *md) 2229 { 2230 if (!test_bit(DMF_FROZEN, &md->flags)) 2231 return; 2232 thaw_bdev(md->disk->part0); 2233 clear_bit(DMF_FROZEN, &md->flags); 2234 } 2235 2236 /* 2237 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2238 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2239 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2240 * 2241 * If __dm_suspend returns 0, the device is completely quiescent 2242 * now. There is no request-processing activity. All new requests 2243 * are being added to md->deferred list. 2244 */ 2245 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2246 unsigned suspend_flags, unsigned int task_state, 2247 int dmf_suspended_flag) 2248 { 2249 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2250 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2251 int r; 2252 2253 lockdep_assert_held(&md->suspend_lock); 2254 2255 /* 2256 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2257 * This flag is cleared before dm_suspend returns. 2258 */ 2259 if (noflush) 2260 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2261 else 2262 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2263 2264 /* 2265 * This gets reverted if there's an error later and the targets 2266 * provide the .presuspend_undo hook. 2267 */ 2268 dm_table_presuspend_targets(map); 2269 2270 /* 2271 * Flush I/O to the device. 2272 * Any I/O submitted after lock_fs() may not be flushed. 2273 * noflush takes precedence over do_lockfs. 2274 * (lock_fs() flushes I/Os and waits for them to complete.) 2275 */ 2276 if (!noflush && do_lockfs) { 2277 r = lock_fs(md); 2278 if (r) { 2279 dm_table_presuspend_undo_targets(map); 2280 return r; 2281 } 2282 } 2283 2284 /* 2285 * Here we must make sure that no processes are submitting requests 2286 * to target drivers i.e. no one may be executing 2287 * dm_split_and_process_bio from dm_submit_bio. 2288 * 2289 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2290 * we take the write lock. To prevent any process from reentering 2291 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2292 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2293 * flush_workqueue(md->wq). 2294 */ 2295 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2296 if (map) 2297 synchronize_srcu(&md->io_barrier); 2298 2299 /* 2300 * Stop md->queue before flushing md->wq in case request-based 2301 * dm defers requests to md->wq from md->queue. 2302 */ 2303 if (dm_request_based(md)) 2304 dm_stop_queue(md->queue); 2305 2306 flush_workqueue(md->wq); 2307 2308 /* 2309 * At this point no more requests are entering target request routines. 2310 * We call dm_wait_for_completion to wait for all existing requests 2311 * to finish. 2312 */ 2313 r = dm_wait_for_completion(md, task_state); 2314 if (!r) 2315 set_bit(dmf_suspended_flag, &md->flags); 2316 2317 if (noflush) 2318 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2319 if (map) 2320 synchronize_srcu(&md->io_barrier); 2321 2322 /* were we interrupted ? */ 2323 if (r < 0) { 2324 dm_queue_flush(md); 2325 2326 if (dm_request_based(md)) 2327 dm_start_queue(md->queue); 2328 2329 unlock_fs(md); 2330 dm_table_presuspend_undo_targets(map); 2331 /* pushback list is already flushed, so skip flush */ 2332 } 2333 2334 return r; 2335 } 2336 2337 /* 2338 * We need to be able to change a mapping table under a mounted 2339 * filesystem. For example we might want to move some data in 2340 * the background. Before the table can be swapped with 2341 * dm_bind_table, dm_suspend must be called to flush any in 2342 * flight bios and ensure that any further io gets deferred. 2343 */ 2344 /* 2345 * Suspend mechanism in request-based dm. 2346 * 2347 * 1. Flush all I/Os by lock_fs() if needed. 2348 * 2. Stop dispatching any I/O by stopping the request_queue. 2349 * 3. Wait for all in-flight I/Os to be completed or requeued. 2350 * 2351 * To abort suspend, start the request_queue. 2352 */ 2353 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2354 { 2355 struct dm_table *map = NULL; 2356 int r = 0; 2357 2358 retry: 2359 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2360 2361 if (dm_suspended_md(md)) { 2362 r = -EINVAL; 2363 goto out_unlock; 2364 } 2365 2366 if (dm_suspended_internally_md(md)) { 2367 /* already internally suspended, wait for internal resume */ 2368 mutex_unlock(&md->suspend_lock); 2369 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2370 if (r) 2371 return r; 2372 goto retry; 2373 } 2374 2375 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2376 2377 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2378 if (r) 2379 goto out_unlock; 2380 2381 set_bit(DMF_POST_SUSPENDING, &md->flags); 2382 dm_table_postsuspend_targets(map); 2383 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2384 2385 out_unlock: 2386 mutex_unlock(&md->suspend_lock); 2387 return r; 2388 } 2389 2390 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2391 { 2392 if (map) { 2393 int r = dm_table_resume_targets(map); 2394 if (r) 2395 return r; 2396 } 2397 2398 dm_queue_flush(md); 2399 2400 /* 2401 * Flushing deferred I/Os must be done after targets are resumed 2402 * so that mapping of targets can work correctly. 2403 * Request-based dm is queueing the deferred I/Os in its request_queue. 2404 */ 2405 if (dm_request_based(md)) 2406 dm_start_queue(md->queue); 2407 2408 unlock_fs(md); 2409 2410 return 0; 2411 } 2412 2413 int dm_resume(struct mapped_device *md) 2414 { 2415 int r; 2416 struct dm_table *map = NULL; 2417 2418 retry: 2419 r = -EINVAL; 2420 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2421 2422 if (!dm_suspended_md(md)) 2423 goto out; 2424 2425 if (dm_suspended_internally_md(md)) { 2426 /* already internally suspended, wait for internal resume */ 2427 mutex_unlock(&md->suspend_lock); 2428 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2429 if (r) 2430 return r; 2431 goto retry; 2432 } 2433 2434 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2435 if (!map || !dm_table_get_size(map)) 2436 goto out; 2437 2438 r = __dm_resume(md, map); 2439 if (r) 2440 goto out; 2441 2442 clear_bit(DMF_SUSPENDED, &md->flags); 2443 out: 2444 mutex_unlock(&md->suspend_lock); 2445 2446 return r; 2447 } 2448 2449 /* 2450 * Internal suspend/resume works like userspace-driven suspend. It waits 2451 * until all bios finish and prevents issuing new bios to the target drivers. 2452 * It may be used only from the kernel. 2453 */ 2454 2455 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2456 { 2457 struct dm_table *map = NULL; 2458 2459 lockdep_assert_held(&md->suspend_lock); 2460 2461 if (md->internal_suspend_count++) 2462 return; /* nested internal suspend */ 2463 2464 if (dm_suspended_md(md)) { 2465 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2466 return; /* nest suspend */ 2467 } 2468 2469 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2470 2471 /* 2472 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2473 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2474 * would require changing .presuspend to return an error -- avoid this 2475 * until there is a need for more elaborate variants of internal suspend. 2476 */ 2477 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2478 DMF_SUSPENDED_INTERNALLY); 2479 2480 set_bit(DMF_POST_SUSPENDING, &md->flags); 2481 dm_table_postsuspend_targets(map); 2482 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2483 } 2484 2485 static void __dm_internal_resume(struct mapped_device *md) 2486 { 2487 BUG_ON(!md->internal_suspend_count); 2488 2489 if (--md->internal_suspend_count) 2490 return; /* resume from nested internal suspend */ 2491 2492 if (dm_suspended_md(md)) 2493 goto done; /* resume from nested suspend */ 2494 2495 /* 2496 * NOTE: existing callers don't need to call dm_table_resume_targets 2497 * (which may fail -- so best to avoid it for now by passing NULL map) 2498 */ 2499 (void) __dm_resume(md, NULL); 2500 2501 done: 2502 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2503 smp_mb__after_atomic(); 2504 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2505 } 2506 2507 void dm_internal_suspend_noflush(struct mapped_device *md) 2508 { 2509 mutex_lock(&md->suspend_lock); 2510 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2511 mutex_unlock(&md->suspend_lock); 2512 } 2513 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2514 2515 void dm_internal_resume(struct mapped_device *md) 2516 { 2517 mutex_lock(&md->suspend_lock); 2518 __dm_internal_resume(md); 2519 mutex_unlock(&md->suspend_lock); 2520 } 2521 EXPORT_SYMBOL_GPL(dm_internal_resume); 2522 2523 /* 2524 * Fast variants of internal suspend/resume hold md->suspend_lock, 2525 * which prevents interaction with userspace-driven suspend. 2526 */ 2527 2528 void dm_internal_suspend_fast(struct mapped_device *md) 2529 { 2530 mutex_lock(&md->suspend_lock); 2531 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2532 return; 2533 2534 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2535 synchronize_srcu(&md->io_barrier); 2536 flush_workqueue(md->wq); 2537 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2538 } 2539 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2540 2541 void dm_internal_resume_fast(struct mapped_device *md) 2542 { 2543 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2544 goto done; 2545 2546 dm_queue_flush(md); 2547 2548 done: 2549 mutex_unlock(&md->suspend_lock); 2550 } 2551 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2552 2553 /*----------------------------------------------------------------- 2554 * Event notification. 2555 *---------------------------------------------------------------*/ 2556 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2557 unsigned cookie) 2558 { 2559 int r; 2560 unsigned noio_flag; 2561 char udev_cookie[DM_COOKIE_LENGTH]; 2562 char *envp[] = { udev_cookie, NULL }; 2563 2564 noio_flag = memalloc_noio_save(); 2565 2566 if (!cookie) 2567 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2568 else { 2569 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2570 DM_COOKIE_ENV_VAR_NAME, cookie); 2571 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2572 action, envp); 2573 } 2574 2575 memalloc_noio_restore(noio_flag); 2576 2577 return r; 2578 } 2579 2580 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2581 { 2582 return atomic_add_return(1, &md->uevent_seq); 2583 } 2584 2585 uint32_t dm_get_event_nr(struct mapped_device *md) 2586 { 2587 return atomic_read(&md->event_nr); 2588 } 2589 2590 int dm_wait_event(struct mapped_device *md, int event_nr) 2591 { 2592 return wait_event_interruptible(md->eventq, 2593 (event_nr != atomic_read(&md->event_nr))); 2594 } 2595 2596 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2597 { 2598 unsigned long flags; 2599 2600 spin_lock_irqsave(&md->uevent_lock, flags); 2601 list_add(elist, &md->uevent_list); 2602 spin_unlock_irqrestore(&md->uevent_lock, flags); 2603 } 2604 2605 /* 2606 * The gendisk is only valid as long as you have a reference 2607 * count on 'md'. 2608 */ 2609 struct gendisk *dm_disk(struct mapped_device *md) 2610 { 2611 return md->disk; 2612 } 2613 EXPORT_SYMBOL_GPL(dm_disk); 2614 2615 struct kobject *dm_kobject(struct mapped_device *md) 2616 { 2617 return &md->kobj_holder.kobj; 2618 } 2619 2620 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2621 { 2622 struct mapped_device *md; 2623 2624 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2625 2626 spin_lock(&_minor_lock); 2627 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2628 md = NULL; 2629 goto out; 2630 } 2631 dm_get(md); 2632 out: 2633 spin_unlock(&_minor_lock); 2634 2635 return md; 2636 } 2637 2638 int dm_suspended_md(struct mapped_device *md) 2639 { 2640 return test_bit(DMF_SUSPENDED, &md->flags); 2641 } 2642 2643 static int dm_post_suspending_md(struct mapped_device *md) 2644 { 2645 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2646 } 2647 2648 int dm_suspended_internally_md(struct mapped_device *md) 2649 { 2650 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2651 } 2652 2653 int dm_test_deferred_remove_flag(struct mapped_device *md) 2654 { 2655 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2656 } 2657 2658 int dm_suspended(struct dm_target *ti) 2659 { 2660 return dm_suspended_md(ti->table->md); 2661 } 2662 EXPORT_SYMBOL_GPL(dm_suspended); 2663 2664 int dm_post_suspending(struct dm_target *ti) 2665 { 2666 return dm_post_suspending_md(ti->table->md); 2667 } 2668 EXPORT_SYMBOL_GPL(dm_post_suspending); 2669 2670 int dm_noflush_suspending(struct dm_target *ti) 2671 { 2672 return __noflush_suspending(ti->table->md); 2673 } 2674 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2675 2676 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2677 unsigned integrity, unsigned per_io_data_size, 2678 unsigned min_pool_size) 2679 { 2680 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2681 unsigned int pool_size = 0; 2682 unsigned int front_pad, io_front_pad; 2683 int ret; 2684 2685 if (!pools) 2686 return NULL; 2687 2688 switch (type) { 2689 case DM_TYPE_BIO_BASED: 2690 case DM_TYPE_DAX_BIO_BASED: 2691 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2692 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2693 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2694 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2695 if (ret) 2696 goto out; 2697 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2698 goto out; 2699 break; 2700 case DM_TYPE_REQUEST_BASED: 2701 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2702 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2703 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2704 break; 2705 default: 2706 BUG(); 2707 } 2708 2709 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2710 if (ret) 2711 goto out; 2712 2713 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2714 goto out; 2715 2716 return pools; 2717 2718 out: 2719 dm_free_md_mempools(pools); 2720 2721 return NULL; 2722 } 2723 2724 void dm_free_md_mempools(struct dm_md_mempools *pools) 2725 { 2726 if (!pools) 2727 return; 2728 2729 bioset_exit(&pools->bs); 2730 bioset_exit(&pools->io_bs); 2731 2732 kfree(pools); 2733 } 2734 2735 struct dm_pr { 2736 u64 old_key; 2737 u64 new_key; 2738 u32 flags; 2739 bool fail_early; 2740 }; 2741 2742 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2743 void *data) 2744 { 2745 struct mapped_device *md = bdev->bd_disk->private_data; 2746 struct dm_table *table; 2747 struct dm_target *ti; 2748 int ret = -ENOTTY, srcu_idx; 2749 2750 table = dm_get_live_table(md, &srcu_idx); 2751 if (!table || !dm_table_get_size(table)) 2752 goto out; 2753 2754 /* We only support devices that have a single target */ 2755 if (dm_table_get_num_targets(table) != 1) 2756 goto out; 2757 ti = dm_table_get_target(table, 0); 2758 2759 ret = -EINVAL; 2760 if (!ti->type->iterate_devices) 2761 goto out; 2762 2763 ret = ti->type->iterate_devices(ti, fn, data); 2764 out: 2765 dm_put_live_table(md, srcu_idx); 2766 return ret; 2767 } 2768 2769 /* 2770 * For register / unregister we need to manually call out to every path. 2771 */ 2772 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2773 sector_t start, sector_t len, void *data) 2774 { 2775 struct dm_pr *pr = data; 2776 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2777 2778 if (!ops || !ops->pr_register) 2779 return -EOPNOTSUPP; 2780 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2781 } 2782 2783 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2784 u32 flags) 2785 { 2786 struct dm_pr pr = { 2787 .old_key = old_key, 2788 .new_key = new_key, 2789 .flags = flags, 2790 .fail_early = true, 2791 }; 2792 int ret; 2793 2794 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2795 if (ret && new_key) { 2796 /* unregister all paths if we failed to register any path */ 2797 pr.old_key = new_key; 2798 pr.new_key = 0; 2799 pr.flags = 0; 2800 pr.fail_early = false; 2801 dm_call_pr(bdev, __dm_pr_register, &pr); 2802 } 2803 2804 return ret; 2805 } 2806 2807 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2808 u32 flags) 2809 { 2810 struct mapped_device *md = bdev->bd_disk->private_data; 2811 const struct pr_ops *ops; 2812 int r, srcu_idx; 2813 2814 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2815 if (r < 0) 2816 goto out; 2817 2818 ops = bdev->bd_disk->fops->pr_ops; 2819 if (ops && ops->pr_reserve) 2820 r = ops->pr_reserve(bdev, key, type, flags); 2821 else 2822 r = -EOPNOTSUPP; 2823 out: 2824 dm_unprepare_ioctl(md, srcu_idx); 2825 return r; 2826 } 2827 2828 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2829 { 2830 struct mapped_device *md = bdev->bd_disk->private_data; 2831 const struct pr_ops *ops; 2832 int r, srcu_idx; 2833 2834 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2835 if (r < 0) 2836 goto out; 2837 2838 ops = bdev->bd_disk->fops->pr_ops; 2839 if (ops && ops->pr_release) 2840 r = ops->pr_release(bdev, key, type); 2841 else 2842 r = -EOPNOTSUPP; 2843 out: 2844 dm_unprepare_ioctl(md, srcu_idx); 2845 return r; 2846 } 2847 2848 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2849 enum pr_type type, bool abort) 2850 { 2851 struct mapped_device *md = bdev->bd_disk->private_data; 2852 const struct pr_ops *ops; 2853 int r, srcu_idx; 2854 2855 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2856 if (r < 0) 2857 goto out; 2858 2859 ops = bdev->bd_disk->fops->pr_ops; 2860 if (ops && ops->pr_preempt) 2861 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2862 else 2863 r = -EOPNOTSUPP; 2864 out: 2865 dm_unprepare_ioctl(md, srcu_idx); 2866 return r; 2867 } 2868 2869 static int dm_pr_clear(struct block_device *bdev, u64 key) 2870 { 2871 struct mapped_device *md = bdev->bd_disk->private_data; 2872 const struct pr_ops *ops; 2873 int r, srcu_idx; 2874 2875 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2876 if (r < 0) 2877 goto out; 2878 2879 ops = bdev->bd_disk->fops->pr_ops; 2880 if (ops && ops->pr_clear) 2881 r = ops->pr_clear(bdev, key); 2882 else 2883 r = -EOPNOTSUPP; 2884 out: 2885 dm_unprepare_ioctl(md, srcu_idx); 2886 return r; 2887 } 2888 2889 static const struct pr_ops dm_pr_ops = { 2890 .pr_register = dm_pr_register, 2891 .pr_reserve = dm_pr_reserve, 2892 .pr_release = dm_pr_release, 2893 .pr_preempt = dm_pr_preempt, 2894 .pr_clear = dm_pr_clear, 2895 }; 2896 2897 static const struct block_device_operations dm_blk_dops = { 2898 .submit_bio = dm_submit_bio, 2899 .open = dm_blk_open, 2900 .release = dm_blk_close, 2901 .ioctl = dm_blk_ioctl, 2902 .getgeo = dm_blk_getgeo, 2903 .report_zones = dm_blk_report_zones, 2904 .pr_ops = &dm_pr_ops, 2905 .owner = THIS_MODULE 2906 }; 2907 2908 static const struct block_device_operations dm_rq_blk_dops = { 2909 .open = dm_blk_open, 2910 .release = dm_blk_close, 2911 .ioctl = dm_blk_ioctl, 2912 .getgeo = dm_blk_getgeo, 2913 .pr_ops = &dm_pr_ops, 2914 .owner = THIS_MODULE 2915 }; 2916 2917 static const struct dax_operations dm_dax_ops = { 2918 .direct_access = dm_dax_direct_access, 2919 .zero_page_range = dm_dax_zero_page_range, 2920 }; 2921 2922 /* 2923 * module hooks 2924 */ 2925 module_init(dm_init); 2926 module_exit(dm_exit); 2927 2928 module_param(major, uint, 0); 2929 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2930 2931 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2932 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2933 2934 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2935 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2936 2937 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 2938 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 2939 2940 MODULE_DESCRIPTION(DM_NAME " driver"); 2941 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2942 MODULE_LICENSE("GPL"); 2943