1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 static const char *_name = DM_NAME; 44 45 static unsigned int major = 0; 46 static unsigned int _major = 0; 47 48 static DEFINE_IDR(_minor_idr); 49 50 static DEFINE_SPINLOCK(_minor_lock); 51 52 static void do_deferred_remove(struct work_struct *w); 53 54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 55 56 static struct workqueue_struct *deferred_remove_workqueue; 57 58 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 60 61 void dm_issue_global_event(void) 62 { 63 atomic_inc(&dm_global_event_nr); 64 wake_up(&dm_global_eventq); 65 } 66 67 /* 68 * One of these is allocated (on-stack) per original bio. 69 */ 70 struct clone_info { 71 struct dm_table *map; 72 struct bio *bio; 73 struct dm_io *io; 74 sector_t sector; 75 unsigned sector_count; 76 }; 77 78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 79 #define DM_IO_BIO_OFFSET \ 80 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 81 82 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 83 { 84 return container_of(clone, struct dm_target_io, clone); 85 } 86 87 void *dm_per_bio_data(struct bio *bio, size_t data_size) 88 { 89 if (!clone_to_tio(bio)->inside_dm_io) 90 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 91 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 92 } 93 EXPORT_SYMBOL_GPL(dm_per_bio_data); 94 95 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 96 { 97 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 98 if (io->magic == DM_IO_MAGIC) 99 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 100 BUG_ON(io->magic != DM_TIO_MAGIC); 101 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 102 } 103 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 104 105 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 106 { 107 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 108 } 109 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 110 111 #define MINOR_ALLOCED ((void *)-1) 112 113 #define DM_NUMA_NODE NUMA_NO_NODE 114 static int dm_numa_node = DM_NUMA_NODE; 115 116 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 117 static int swap_bios = DEFAULT_SWAP_BIOS; 118 static int get_swap_bios(void) 119 { 120 int latch = READ_ONCE(swap_bios); 121 if (unlikely(latch <= 0)) 122 latch = DEFAULT_SWAP_BIOS; 123 return latch; 124 } 125 126 /* 127 * For mempools pre-allocation at the table loading time. 128 */ 129 struct dm_md_mempools { 130 struct bio_set bs; 131 struct bio_set io_bs; 132 }; 133 134 struct table_device { 135 struct list_head list; 136 refcount_t count; 137 struct dm_dev dm_dev; 138 }; 139 140 /* 141 * Bio-based DM's mempools' reserved IOs set by the user. 142 */ 143 #define RESERVED_BIO_BASED_IOS 16 144 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 145 146 static int __dm_get_module_param_int(int *module_param, int min, int max) 147 { 148 int param = READ_ONCE(*module_param); 149 int modified_param = 0; 150 bool modified = true; 151 152 if (param < min) 153 modified_param = min; 154 else if (param > max) 155 modified_param = max; 156 else 157 modified = false; 158 159 if (modified) { 160 (void)cmpxchg(module_param, param, modified_param); 161 param = modified_param; 162 } 163 164 return param; 165 } 166 167 unsigned __dm_get_module_param(unsigned *module_param, 168 unsigned def, unsigned max) 169 { 170 unsigned param = READ_ONCE(*module_param); 171 unsigned modified_param = 0; 172 173 if (!param) 174 modified_param = def; 175 else if (param > max) 176 modified_param = max; 177 178 if (modified_param) { 179 (void)cmpxchg(module_param, param, modified_param); 180 param = modified_param; 181 } 182 183 return param; 184 } 185 186 unsigned dm_get_reserved_bio_based_ios(void) 187 { 188 return __dm_get_module_param(&reserved_bio_based_ios, 189 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 190 } 191 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 192 193 static unsigned dm_get_numa_node(void) 194 { 195 return __dm_get_module_param_int(&dm_numa_node, 196 DM_NUMA_NODE, num_online_nodes() - 1); 197 } 198 199 static int __init local_init(void) 200 { 201 int r; 202 203 r = dm_uevent_init(); 204 if (r) 205 return r; 206 207 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 208 if (!deferred_remove_workqueue) { 209 r = -ENOMEM; 210 goto out_uevent_exit; 211 } 212 213 _major = major; 214 r = register_blkdev(_major, _name); 215 if (r < 0) 216 goto out_free_workqueue; 217 218 if (!_major) 219 _major = r; 220 221 return 0; 222 223 out_free_workqueue: 224 destroy_workqueue(deferred_remove_workqueue); 225 out_uevent_exit: 226 dm_uevent_exit(); 227 228 return r; 229 } 230 231 static void local_exit(void) 232 { 233 flush_scheduled_work(); 234 destroy_workqueue(deferred_remove_workqueue); 235 236 unregister_blkdev(_major, _name); 237 dm_uevent_exit(); 238 239 _major = 0; 240 241 DMINFO("cleaned up"); 242 } 243 244 static int (*_inits[])(void) __initdata = { 245 local_init, 246 dm_target_init, 247 dm_linear_init, 248 dm_stripe_init, 249 dm_io_init, 250 dm_kcopyd_init, 251 dm_interface_init, 252 dm_statistics_init, 253 }; 254 255 static void (*_exits[])(void) = { 256 local_exit, 257 dm_target_exit, 258 dm_linear_exit, 259 dm_stripe_exit, 260 dm_io_exit, 261 dm_kcopyd_exit, 262 dm_interface_exit, 263 dm_statistics_exit, 264 }; 265 266 static int __init dm_init(void) 267 { 268 const int count = ARRAY_SIZE(_inits); 269 int r, i; 270 271 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 272 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 273 " Duplicate IMA measurements will not be recorded in the IMA log."); 274 #endif 275 276 for (i = 0; i < count; i++) { 277 r = _inits[i](); 278 if (r) 279 goto bad; 280 } 281 282 return 0; 283 bad: 284 while (i--) 285 _exits[i](); 286 287 return r; 288 } 289 290 static void __exit dm_exit(void) 291 { 292 int i = ARRAY_SIZE(_exits); 293 294 while (i--) 295 _exits[i](); 296 297 /* 298 * Should be empty by this point. 299 */ 300 idr_destroy(&_minor_idr); 301 } 302 303 /* 304 * Block device functions 305 */ 306 int dm_deleting_md(struct mapped_device *md) 307 { 308 return test_bit(DMF_DELETING, &md->flags); 309 } 310 311 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 312 { 313 struct mapped_device *md; 314 315 spin_lock(&_minor_lock); 316 317 md = bdev->bd_disk->private_data; 318 if (!md) 319 goto out; 320 321 if (test_bit(DMF_FREEING, &md->flags) || 322 dm_deleting_md(md)) { 323 md = NULL; 324 goto out; 325 } 326 327 dm_get(md); 328 atomic_inc(&md->open_count); 329 out: 330 spin_unlock(&_minor_lock); 331 332 return md ? 0 : -ENXIO; 333 } 334 335 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 336 { 337 struct mapped_device *md; 338 339 spin_lock(&_minor_lock); 340 341 md = disk->private_data; 342 if (WARN_ON(!md)) 343 goto out; 344 345 if (atomic_dec_and_test(&md->open_count) && 346 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 347 queue_work(deferred_remove_workqueue, &deferred_remove_work); 348 349 dm_put(md); 350 out: 351 spin_unlock(&_minor_lock); 352 } 353 354 int dm_open_count(struct mapped_device *md) 355 { 356 return atomic_read(&md->open_count); 357 } 358 359 /* 360 * Guarantees nothing is using the device before it's deleted. 361 */ 362 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 363 { 364 int r = 0; 365 366 spin_lock(&_minor_lock); 367 368 if (dm_open_count(md)) { 369 r = -EBUSY; 370 if (mark_deferred) 371 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 372 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 373 r = -EEXIST; 374 else 375 set_bit(DMF_DELETING, &md->flags); 376 377 spin_unlock(&_minor_lock); 378 379 return r; 380 } 381 382 int dm_cancel_deferred_remove(struct mapped_device *md) 383 { 384 int r = 0; 385 386 spin_lock(&_minor_lock); 387 388 if (test_bit(DMF_DELETING, &md->flags)) 389 r = -EBUSY; 390 else 391 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 392 393 spin_unlock(&_minor_lock); 394 395 return r; 396 } 397 398 static void do_deferred_remove(struct work_struct *w) 399 { 400 dm_deferred_remove(); 401 } 402 403 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 404 { 405 struct mapped_device *md = bdev->bd_disk->private_data; 406 407 return dm_get_geometry(md, geo); 408 } 409 410 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 411 struct block_device **bdev) 412 { 413 struct dm_target *tgt; 414 struct dm_table *map; 415 int r; 416 417 retry: 418 r = -ENOTTY; 419 map = dm_get_live_table(md, srcu_idx); 420 if (!map || !dm_table_get_size(map)) 421 return r; 422 423 /* We only support devices that have a single target */ 424 if (dm_table_get_num_targets(map) != 1) 425 return r; 426 427 tgt = dm_table_get_target(map, 0); 428 if (!tgt->type->prepare_ioctl) 429 return r; 430 431 if (dm_suspended_md(md)) 432 return -EAGAIN; 433 434 r = tgt->type->prepare_ioctl(tgt, bdev); 435 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 436 dm_put_live_table(md, *srcu_idx); 437 msleep(10); 438 goto retry; 439 } 440 441 return r; 442 } 443 444 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 445 { 446 dm_put_live_table(md, srcu_idx); 447 } 448 449 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 450 unsigned int cmd, unsigned long arg) 451 { 452 struct mapped_device *md = bdev->bd_disk->private_data; 453 int r, srcu_idx; 454 455 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 456 if (r < 0) 457 goto out; 458 459 if (r > 0) { 460 /* 461 * Target determined this ioctl is being issued against a 462 * subset of the parent bdev; require extra privileges. 463 */ 464 if (!capable(CAP_SYS_RAWIO)) { 465 DMDEBUG_LIMIT( 466 "%s: sending ioctl %x to DM device without required privilege.", 467 current->comm, cmd); 468 r = -ENOIOCTLCMD; 469 goto out; 470 } 471 } 472 473 if (!bdev->bd_disk->fops->ioctl) 474 r = -ENOTTY; 475 else 476 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 477 out: 478 dm_unprepare_ioctl(md, srcu_idx); 479 return r; 480 } 481 482 u64 dm_start_time_ns_from_clone(struct bio *bio) 483 { 484 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 485 } 486 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 487 488 static bool bio_is_flush_with_data(struct bio *bio) 489 { 490 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 491 } 492 493 static void dm_io_acct(bool end, struct mapped_device *md, struct bio *bio, 494 unsigned long start_time, struct dm_stats_aux *stats_aux) 495 { 496 bool is_flush_with_data; 497 unsigned int bi_size; 498 499 /* If REQ_PREFLUSH set save any payload but do not account it */ 500 is_flush_with_data = bio_is_flush_with_data(bio); 501 if (is_flush_with_data) { 502 bi_size = bio->bi_iter.bi_size; 503 bio->bi_iter.bi_size = 0; 504 } 505 506 if (!end) 507 bio_start_io_acct_time(bio, start_time); 508 else 509 bio_end_io_acct(bio, start_time); 510 511 if (unlikely(dm_stats_used(&md->stats))) 512 dm_stats_account_io(&md->stats, bio_data_dir(bio), 513 bio->bi_iter.bi_sector, bio_sectors(bio), 514 end, start_time, stats_aux); 515 516 /* Restore bio's payload so it does get accounted upon requeue */ 517 if (is_flush_with_data) 518 bio->bi_iter.bi_size = bi_size; 519 } 520 521 static void dm_start_io_acct(struct dm_io *io) 522 { 523 dm_io_acct(false, io->md, io->orig_bio, io->start_time, &io->stats_aux); 524 } 525 526 static void dm_end_io_acct(struct dm_io *io) 527 { 528 dm_io_acct(true, io->md, io->orig_bio, io->start_time, &io->stats_aux); 529 } 530 531 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 532 { 533 struct dm_io *io; 534 struct dm_target_io *tio; 535 struct bio *clone; 536 537 clone = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, &md->io_bs); 538 539 tio = clone_to_tio(clone); 540 tio->inside_dm_io = true; 541 tio->io = NULL; 542 543 io = container_of(tio, struct dm_io, tio); 544 io->magic = DM_IO_MAGIC; 545 io->status = 0; 546 atomic_set(&io->io_count, 1); 547 this_cpu_inc(*md->pending_io); 548 io->orig_bio = bio; 549 io->md = md; 550 spin_lock_init(&io->endio_lock); 551 552 io->start_time = jiffies; 553 554 dm_stats_record_start(&md->stats, &io->stats_aux); 555 556 return io; 557 } 558 559 static void free_io(struct dm_io *io) 560 { 561 bio_put(&io->tio.clone); 562 } 563 564 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 565 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask) 566 { 567 struct dm_target_io *tio; 568 569 if (!ci->io->tio.io) { 570 /* the dm_target_io embedded in ci->io is available */ 571 tio = &ci->io->tio; 572 } else { 573 struct bio *clone = bio_alloc_clone(ci->bio->bi_bdev, ci->bio, 574 gfp_mask, &ci->io->md->bs); 575 if (!clone) 576 return NULL; 577 578 tio = clone_to_tio(clone); 579 tio->inside_dm_io = false; 580 } 581 582 tio->magic = DM_TIO_MAGIC; 583 tio->io = ci->io; 584 tio->ti = ti; 585 tio->target_bio_nr = target_bio_nr; 586 tio->len_ptr = len; 587 588 return &tio->clone; 589 } 590 591 static void free_tio(struct bio *clone) 592 { 593 if (clone_to_tio(clone)->inside_dm_io) 594 return; 595 bio_put(clone); 596 } 597 598 /* 599 * Add the bio to the list of deferred io. 600 */ 601 static void queue_io(struct mapped_device *md, struct bio *bio) 602 { 603 unsigned long flags; 604 605 spin_lock_irqsave(&md->deferred_lock, flags); 606 bio_list_add(&md->deferred, bio); 607 spin_unlock_irqrestore(&md->deferred_lock, flags); 608 queue_work(md->wq, &md->work); 609 } 610 611 /* 612 * Everyone (including functions in this file), should use this 613 * function to access the md->map field, and make sure they call 614 * dm_put_live_table() when finished. 615 */ 616 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 617 { 618 *srcu_idx = srcu_read_lock(&md->io_barrier); 619 620 return srcu_dereference(md->map, &md->io_barrier); 621 } 622 623 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 624 { 625 srcu_read_unlock(&md->io_barrier, srcu_idx); 626 } 627 628 void dm_sync_table(struct mapped_device *md) 629 { 630 synchronize_srcu(&md->io_barrier); 631 synchronize_rcu_expedited(); 632 } 633 634 /* 635 * A fast alternative to dm_get_live_table/dm_put_live_table. 636 * The caller must not block between these two functions. 637 */ 638 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 639 { 640 rcu_read_lock(); 641 return rcu_dereference(md->map); 642 } 643 644 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 645 { 646 rcu_read_unlock(); 647 } 648 649 static char *_dm_claim_ptr = "I belong to device-mapper"; 650 651 /* 652 * Open a table device so we can use it as a map destination. 653 */ 654 static int open_table_device(struct table_device *td, dev_t dev, 655 struct mapped_device *md) 656 { 657 struct block_device *bdev; 658 u64 part_off; 659 int r; 660 661 BUG_ON(td->dm_dev.bdev); 662 663 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 664 if (IS_ERR(bdev)) 665 return PTR_ERR(bdev); 666 667 r = bd_link_disk_holder(bdev, dm_disk(md)); 668 if (r) { 669 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 670 return r; 671 } 672 673 td->dm_dev.bdev = bdev; 674 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 675 return 0; 676 } 677 678 /* 679 * Close a table device that we've been using. 680 */ 681 static void close_table_device(struct table_device *td, struct mapped_device *md) 682 { 683 if (!td->dm_dev.bdev) 684 return; 685 686 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 687 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 688 put_dax(td->dm_dev.dax_dev); 689 td->dm_dev.bdev = NULL; 690 td->dm_dev.dax_dev = NULL; 691 } 692 693 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 694 fmode_t mode) 695 { 696 struct table_device *td; 697 698 list_for_each_entry(td, l, list) 699 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 700 return td; 701 702 return NULL; 703 } 704 705 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 706 struct dm_dev **result) 707 { 708 int r; 709 struct table_device *td; 710 711 mutex_lock(&md->table_devices_lock); 712 td = find_table_device(&md->table_devices, dev, mode); 713 if (!td) { 714 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 715 if (!td) { 716 mutex_unlock(&md->table_devices_lock); 717 return -ENOMEM; 718 } 719 720 td->dm_dev.mode = mode; 721 td->dm_dev.bdev = NULL; 722 723 if ((r = open_table_device(td, dev, md))) { 724 mutex_unlock(&md->table_devices_lock); 725 kfree(td); 726 return r; 727 } 728 729 format_dev_t(td->dm_dev.name, dev); 730 731 refcount_set(&td->count, 1); 732 list_add(&td->list, &md->table_devices); 733 } else { 734 refcount_inc(&td->count); 735 } 736 mutex_unlock(&md->table_devices_lock); 737 738 *result = &td->dm_dev; 739 return 0; 740 } 741 742 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 743 { 744 struct table_device *td = container_of(d, struct table_device, dm_dev); 745 746 mutex_lock(&md->table_devices_lock); 747 if (refcount_dec_and_test(&td->count)) { 748 close_table_device(td, md); 749 list_del(&td->list); 750 kfree(td); 751 } 752 mutex_unlock(&md->table_devices_lock); 753 } 754 755 static void free_table_devices(struct list_head *devices) 756 { 757 struct list_head *tmp, *next; 758 759 list_for_each_safe(tmp, next, devices) { 760 struct table_device *td = list_entry(tmp, struct table_device, list); 761 762 DMWARN("dm_destroy: %s still exists with %d references", 763 td->dm_dev.name, refcount_read(&td->count)); 764 kfree(td); 765 } 766 } 767 768 /* 769 * Get the geometry associated with a dm device 770 */ 771 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 772 { 773 *geo = md->geometry; 774 775 return 0; 776 } 777 778 /* 779 * Set the geometry of a device. 780 */ 781 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 782 { 783 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 784 785 if (geo->start > sz) { 786 DMWARN("Start sector is beyond the geometry limits."); 787 return -EINVAL; 788 } 789 790 md->geometry = *geo; 791 792 return 0; 793 } 794 795 static int __noflush_suspending(struct mapped_device *md) 796 { 797 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 798 } 799 800 /* 801 * Decrements the number of outstanding ios that a bio has been 802 * cloned into, completing the original io if necc. 803 */ 804 void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 805 { 806 unsigned long flags; 807 blk_status_t io_error; 808 struct bio *bio; 809 struct mapped_device *md = io->md; 810 811 /* Push-back supersedes any I/O errors */ 812 if (unlikely(error)) { 813 spin_lock_irqsave(&io->endio_lock, flags); 814 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 815 io->status = error; 816 spin_unlock_irqrestore(&io->endio_lock, flags); 817 } 818 819 if (atomic_dec_and_test(&io->io_count)) { 820 bio = io->orig_bio; 821 if (io->status == BLK_STS_DM_REQUEUE) { 822 /* 823 * Target requested pushing back the I/O. 824 */ 825 spin_lock_irqsave(&md->deferred_lock, flags); 826 if (__noflush_suspending(md) && 827 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 828 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 829 bio_list_add_head(&md->deferred, bio); 830 } else { 831 /* 832 * noflush suspend was interrupted or this is 833 * a write to a zoned target. 834 */ 835 io->status = BLK_STS_IOERR; 836 } 837 spin_unlock_irqrestore(&md->deferred_lock, flags); 838 } 839 840 io_error = io->status; 841 dm_end_io_acct(io); 842 free_io(io); 843 smp_wmb(); 844 this_cpu_dec(*md->pending_io); 845 846 /* nudge anyone waiting on suspend queue */ 847 if (unlikely(wq_has_sleeper(&md->wait))) 848 wake_up(&md->wait); 849 850 if (io_error == BLK_STS_DM_REQUEUE) 851 return; 852 853 if (bio_is_flush_with_data(bio)) { 854 /* 855 * Preflush done for flush with data, reissue 856 * without REQ_PREFLUSH. 857 */ 858 bio->bi_opf &= ~REQ_PREFLUSH; 859 queue_io(md, bio); 860 } else { 861 /* done with normal IO or empty flush */ 862 if (io_error) 863 bio->bi_status = io_error; 864 bio_endio(bio); 865 } 866 } 867 } 868 869 void disable_discard(struct mapped_device *md) 870 { 871 struct queue_limits *limits = dm_get_queue_limits(md); 872 873 /* device doesn't really support DISCARD, disable it */ 874 limits->max_discard_sectors = 0; 875 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 876 } 877 878 void disable_write_same(struct mapped_device *md) 879 { 880 struct queue_limits *limits = dm_get_queue_limits(md); 881 882 /* device doesn't really support WRITE SAME, disable it */ 883 limits->max_write_same_sectors = 0; 884 } 885 886 void disable_write_zeroes(struct mapped_device *md) 887 { 888 struct queue_limits *limits = dm_get_queue_limits(md); 889 890 /* device doesn't really support WRITE ZEROES, disable it */ 891 limits->max_write_zeroes_sectors = 0; 892 } 893 894 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 895 { 896 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 897 } 898 899 static void clone_endio(struct bio *bio) 900 { 901 blk_status_t error = bio->bi_status; 902 struct dm_target_io *tio = clone_to_tio(bio); 903 struct dm_io *io = tio->io; 904 struct mapped_device *md = tio->io->md; 905 dm_endio_fn endio = tio->ti->type->end_io; 906 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 907 908 if (unlikely(error == BLK_STS_TARGET)) { 909 if (bio_op(bio) == REQ_OP_DISCARD && 910 !q->limits.max_discard_sectors) 911 disable_discard(md); 912 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 913 !q->limits.max_write_same_sectors) 914 disable_write_same(md); 915 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 916 !q->limits.max_write_zeroes_sectors) 917 disable_write_zeroes(md); 918 } 919 920 if (blk_queue_is_zoned(q)) 921 dm_zone_endio(io, bio); 922 923 if (endio) { 924 int r = endio(tio->ti, bio, &error); 925 switch (r) { 926 case DM_ENDIO_REQUEUE: 927 /* 928 * Requeuing writes to a sequential zone of a zoned 929 * target will break the sequential write pattern: 930 * fail such IO. 931 */ 932 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 933 error = BLK_STS_IOERR; 934 else 935 error = BLK_STS_DM_REQUEUE; 936 fallthrough; 937 case DM_ENDIO_DONE: 938 break; 939 case DM_ENDIO_INCOMPLETE: 940 /* The target will handle the io */ 941 return; 942 default: 943 DMWARN("unimplemented target endio return value: %d", r); 944 BUG(); 945 } 946 } 947 948 if (unlikely(swap_bios_limit(tio->ti, bio))) { 949 struct mapped_device *md = io->md; 950 up(&md->swap_bios_semaphore); 951 } 952 953 free_tio(bio); 954 dm_io_dec_pending(io, error); 955 } 956 957 /* 958 * Return maximum size of I/O possible at the supplied sector up to the current 959 * target boundary. 960 */ 961 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 962 sector_t target_offset) 963 { 964 return ti->len - target_offset; 965 } 966 967 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 968 { 969 sector_t target_offset = dm_target_offset(ti, sector); 970 sector_t len = max_io_len_target_boundary(ti, target_offset); 971 sector_t max_len; 972 973 /* 974 * Does the target need to split IO even further? 975 * - varied (per target) IO splitting is a tenet of DM; this 976 * explains why stacked chunk_sectors based splitting via 977 * blk_max_size_offset() isn't possible here. So pass in 978 * ti->max_io_len to override stacked chunk_sectors. 979 */ 980 if (ti->max_io_len) { 981 max_len = blk_max_size_offset(ti->table->md->queue, 982 target_offset, ti->max_io_len); 983 if (len > max_len) 984 len = max_len; 985 } 986 987 return len; 988 } 989 990 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 991 { 992 if (len > UINT_MAX) { 993 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 994 (unsigned long long)len, UINT_MAX); 995 ti->error = "Maximum size of target IO is too large"; 996 return -EINVAL; 997 } 998 999 ti->max_io_len = (uint32_t) len; 1000 1001 return 0; 1002 } 1003 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1004 1005 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1006 sector_t sector, int *srcu_idx) 1007 __acquires(md->io_barrier) 1008 { 1009 struct dm_table *map; 1010 struct dm_target *ti; 1011 1012 map = dm_get_live_table(md, srcu_idx); 1013 if (!map) 1014 return NULL; 1015 1016 ti = dm_table_find_target(map, sector); 1017 if (!ti) 1018 return NULL; 1019 1020 return ti; 1021 } 1022 1023 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1024 long nr_pages, void **kaddr, pfn_t *pfn) 1025 { 1026 struct mapped_device *md = dax_get_private(dax_dev); 1027 sector_t sector = pgoff * PAGE_SECTORS; 1028 struct dm_target *ti; 1029 long len, ret = -EIO; 1030 int srcu_idx; 1031 1032 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1033 1034 if (!ti) 1035 goto out; 1036 if (!ti->type->direct_access) 1037 goto out; 1038 len = max_io_len(ti, sector) / PAGE_SECTORS; 1039 if (len < 1) 1040 goto out; 1041 nr_pages = min(len, nr_pages); 1042 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1043 1044 out: 1045 dm_put_live_table(md, srcu_idx); 1046 1047 return ret; 1048 } 1049 1050 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1051 size_t nr_pages) 1052 { 1053 struct mapped_device *md = dax_get_private(dax_dev); 1054 sector_t sector = pgoff * PAGE_SECTORS; 1055 struct dm_target *ti; 1056 int ret = -EIO; 1057 int srcu_idx; 1058 1059 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1060 1061 if (!ti) 1062 goto out; 1063 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1064 /* 1065 * ->zero_page_range() is mandatory dax operation. If we are 1066 * here, something is wrong. 1067 */ 1068 goto out; 1069 } 1070 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1071 out: 1072 dm_put_live_table(md, srcu_idx); 1073 1074 return ret; 1075 } 1076 1077 /* 1078 * A target may call dm_accept_partial_bio only from the map routine. It is 1079 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1080 * operations and REQ_OP_ZONE_APPEND (zone append writes). 1081 * 1082 * dm_accept_partial_bio informs the dm that the target only wants to process 1083 * additional n_sectors sectors of the bio and the rest of the data should be 1084 * sent in a next bio. 1085 * 1086 * A diagram that explains the arithmetics: 1087 * +--------------------+---------------+-------+ 1088 * | 1 | 2 | 3 | 1089 * +--------------------+---------------+-------+ 1090 * 1091 * <-------------- *tio->len_ptr ---------------> 1092 * <------- bi_size -------> 1093 * <-- n_sectors --> 1094 * 1095 * Region 1 was already iterated over with bio_advance or similar function. 1096 * (it may be empty if the target doesn't use bio_advance) 1097 * Region 2 is the remaining bio size that the target wants to process. 1098 * (it may be empty if region 1 is non-empty, although there is no reason 1099 * to make it empty) 1100 * The target requires that region 3 is to be sent in the next bio. 1101 * 1102 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1103 * the partially processed part (the sum of regions 1+2) must be the same for all 1104 * copies of the bio. 1105 */ 1106 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1107 { 1108 struct dm_target_io *tio = clone_to_tio(bio); 1109 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1110 1111 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1112 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1113 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1114 BUG_ON(bi_size > *tio->len_ptr); 1115 BUG_ON(n_sectors > bi_size); 1116 1117 *tio->len_ptr -= bi_size - n_sectors; 1118 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1119 } 1120 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1121 1122 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1123 { 1124 mutex_lock(&md->swap_bios_lock); 1125 while (latch < md->swap_bios) { 1126 cond_resched(); 1127 down(&md->swap_bios_semaphore); 1128 md->swap_bios--; 1129 } 1130 while (latch > md->swap_bios) { 1131 cond_resched(); 1132 up(&md->swap_bios_semaphore); 1133 md->swap_bios++; 1134 } 1135 mutex_unlock(&md->swap_bios_lock); 1136 } 1137 1138 static void __map_bio(struct bio *clone) 1139 { 1140 struct dm_target_io *tio = clone_to_tio(clone); 1141 int r; 1142 sector_t sector; 1143 struct dm_io *io = tio->io; 1144 struct dm_target *ti = tio->ti; 1145 1146 clone->bi_end_io = clone_endio; 1147 1148 /* 1149 * Map the clone. If r == 0 we don't need to do 1150 * anything, the target has assumed ownership of 1151 * this io. 1152 */ 1153 dm_io_inc_pending(io); 1154 sector = clone->bi_iter.bi_sector; 1155 1156 if (unlikely(swap_bios_limit(ti, clone))) { 1157 struct mapped_device *md = io->md; 1158 int latch = get_swap_bios(); 1159 if (unlikely(latch != md->swap_bios)) 1160 __set_swap_bios_limit(md, latch); 1161 down(&md->swap_bios_semaphore); 1162 } 1163 1164 /* 1165 * Check if the IO needs a special mapping due to zone append emulation 1166 * on zoned target. In this case, dm_zone_map_bio() calls the target 1167 * map operation. 1168 */ 1169 if (dm_emulate_zone_append(io->md)) 1170 r = dm_zone_map_bio(tio); 1171 else 1172 r = ti->type->map(ti, clone); 1173 1174 switch (r) { 1175 case DM_MAPIO_SUBMITTED: 1176 break; 1177 case DM_MAPIO_REMAPPED: 1178 /* the bio has been remapped so dispatch it */ 1179 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector); 1180 submit_bio_noacct(clone); 1181 break; 1182 case DM_MAPIO_KILL: 1183 case DM_MAPIO_REQUEUE: 1184 if (unlikely(swap_bios_limit(ti, clone))) 1185 up(&io->md->swap_bios_semaphore); 1186 free_tio(clone); 1187 if (r == DM_MAPIO_KILL) 1188 dm_io_dec_pending(io, BLK_STS_IOERR); 1189 else 1190 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1191 break; 1192 default: 1193 DMWARN("unimplemented target map return value: %d", r); 1194 BUG(); 1195 } 1196 } 1197 1198 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1199 { 1200 bio->bi_iter.bi_sector = sector; 1201 bio->bi_iter.bi_size = to_bytes(len); 1202 } 1203 1204 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1205 struct dm_target *ti, unsigned num_bios, 1206 unsigned *len) 1207 { 1208 struct bio *bio; 1209 int try; 1210 1211 for (try = 0; try < 2; try++) { 1212 int bio_nr; 1213 1214 if (try) 1215 mutex_lock(&ci->io->md->table_devices_lock); 1216 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1217 bio = alloc_tio(ci, ti, bio_nr, len, 1218 try ? GFP_NOIO : GFP_NOWAIT); 1219 if (!bio) 1220 break; 1221 1222 bio_list_add(blist, bio); 1223 } 1224 if (try) 1225 mutex_unlock(&ci->io->md->table_devices_lock); 1226 if (bio_nr == num_bios) 1227 return; 1228 1229 while ((bio = bio_list_pop(blist))) 1230 free_tio(bio); 1231 } 1232 } 1233 1234 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1235 unsigned num_bios, unsigned *len) 1236 { 1237 struct bio_list blist = BIO_EMPTY_LIST; 1238 struct bio *clone; 1239 1240 switch (num_bios) { 1241 case 0: 1242 break; 1243 case 1: 1244 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1245 if (len) 1246 bio_setup_sector(clone, ci->sector, *len); 1247 __map_bio(clone); 1248 break; 1249 default: 1250 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1251 while ((clone = bio_list_pop(&blist))) { 1252 if (len) 1253 bio_setup_sector(clone, ci->sector, *len); 1254 __map_bio(clone); 1255 } 1256 break; 1257 } 1258 } 1259 1260 static int __send_empty_flush(struct clone_info *ci) 1261 { 1262 unsigned target_nr = 0; 1263 struct dm_target *ti; 1264 struct bio flush_bio; 1265 1266 /* 1267 * Use an on-stack bio for this, it's safe since we don't 1268 * need to reference it after submit. It's just used as 1269 * the basis for the clone(s). 1270 */ 1271 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1272 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1273 1274 ci->bio = &flush_bio; 1275 ci->sector_count = 0; 1276 1277 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1278 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1279 1280 bio_uninit(ci->bio); 1281 return 0; 1282 } 1283 1284 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1285 unsigned num_bios) 1286 { 1287 unsigned len; 1288 1289 /* 1290 * Even though the device advertised support for this type of 1291 * request, that does not mean every target supports it, and 1292 * reconfiguration might also have changed that since the 1293 * check was performed. 1294 */ 1295 if (!num_bios) 1296 return -EOPNOTSUPP; 1297 1298 len = min_t(sector_t, ci->sector_count, 1299 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1300 1301 __send_duplicate_bios(ci, ti, num_bios, &len); 1302 1303 ci->sector += len; 1304 ci->sector_count -= len; 1305 1306 return 0; 1307 } 1308 1309 static bool is_abnormal_io(struct bio *bio) 1310 { 1311 bool r = false; 1312 1313 switch (bio_op(bio)) { 1314 case REQ_OP_DISCARD: 1315 case REQ_OP_SECURE_ERASE: 1316 case REQ_OP_WRITE_SAME: 1317 case REQ_OP_WRITE_ZEROES: 1318 r = true; 1319 break; 1320 } 1321 1322 return r; 1323 } 1324 1325 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1326 int *result) 1327 { 1328 struct bio *bio = ci->bio; 1329 unsigned num_bios = 0; 1330 1331 switch (bio_op(bio)) { 1332 case REQ_OP_DISCARD: 1333 num_bios = ti->num_discard_bios; 1334 break; 1335 case REQ_OP_SECURE_ERASE: 1336 num_bios = ti->num_secure_erase_bios; 1337 break; 1338 case REQ_OP_WRITE_SAME: 1339 num_bios = ti->num_write_same_bios; 1340 break; 1341 case REQ_OP_WRITE_ZEROES: 1342 num_bios = ti->num_write_zeroes_bios; 1343 break; 1344 default: 1345 return false; 1346 } 1347 1348 *result = __send_changing_extent_only(ci, ti, num_bios); 1349 return true; 1350 } 1351 1352 /* 1353 * Select the correct strategy for processing a non-flush bio. 1354 */ 1355 static int __split_and_process_bio(struct clone_info *ci) 1356 { 1357 struct bio *clone; 1358 struct dm_target *ti; 1359 unsigned len; 1360 int r; 1361 1362 ti = dm_table_find_target(ci->map, ci->sector); 1363 if (!ti) 1364 return -EIO; 1365 1366 if (__process_abnormal_io(ci, ti, &r)) 1367 return r; 1368 1369 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1370 1371 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1372 bio_advance(clone, to_bytes(ci->sector - clone->bi_iter.bi_sector)); 1373 clone->bi_iter.bi_size = to_bytes(len); 1374 if (bio_integrity(clone)) 1375 bio_integrity_trim(clone); 1376 1377 __map_bio(clone); 1378 1379 ci->sector += len; 1380 ci->sector_count -= len; 1381 1382 return 0; 1383 } 1384 1385 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1386 struct dm_table *map, struct bio *bio) 1387 { 1388 ci->map = map; 1389 ci->io = alloc_io(md, bio); 1390 ci->bio = bio; 1391 ci->sector = bio->bi_iter.bi_sector; 1392 ci->sector_count = bio_sectors(bio); 1393 1394 /* Shouldn't happen but sector_count was being set to 0 so... */ 1395 if (WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1396 ci->sector_count = 0; 1397 } 1398 1399 /* 1400 * Entry point to split a bio into clones and submit them to the targets. 1401 */ 1402 static void dm_split_and_process_bio(struct mapped_device *md, 1403 struct dm_table *map, struct bio *bio) 1404 { 1405 struct clone_info ci; 1406 struct bio *b; 1407 int error = 0; 1408 1409 init_clone_info(&ci, md, map, bio); 1410 1411 if (bio->bi_opf & REQ_PREFLUSH) { 1412 error = __send_empty_flush(&ci); 1413 /* dm_io_dec_pending submits any data associated with flush */ 1414 goto out; 1415 } 1416 1417 error = __split_and_process_bio(&ci); 1418 if (error || !ci.sector_count) 1419 goto out; 1420 1421 /* 1422 * Remainder must be passed to submit_bio_noacct() so it gets handled 1423 * *after* bios already submitted have been completely processed. 1424 * We take a clone of the original to store in ci.io->orig_bio to be 1425 * used by dm_end_io_acct() and for dm_io_dec_pending() to use for 1426 * completion handling. 1427 */ 1428 b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1429 GFP_NOIO, &md->queue->bio_split); 1430 ci.io->orig_bio = b; 1431 1432 bio_chain(b, bio); 1433 trace_block_split(b, bio->bi_iter.bi_sector); 1434 submit_bio_noacct(bio); 1435 out: 1436 dm_start_io_acct(ci.io); 1437 /* drop the extra reference count */ 1438 dm_io_dec_pending(ci.io, errno_to_blk_status(error)); 1439 } 1440 1441 static void dm_submit_bio(struct bio *bio) 1442 { 1443 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1444 int srcu_idx; 1445 struct dm_table *map; 1446 1447 map = dm_get_live_table(md, &srcu_idx); 1448 if (unlikely(!map)) { 1449 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 1450 dm_device_name(md)); 1451 bio_io_error(bio); 1452 goto out; 1453 } 1454 1455 /* If suspended, queue this IO for later */ 1456 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1457 if (bio->bi_opf & REQ_NOWAIT) 1458 bio_wouldblock_error(bio); 1459 else if (bio->bi_opf & REQ_RAHEAD) 1460 bio_io_error(bio); 1461 else 1462 queue_io(md, bio); 1463 goto out; 1464 } 1465 1466 /* 1467 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc) 1468 * otherwise associated queue_limits won't be imposed. 1469 */ 1470 if (is_abnormal_io(bio)) 1471 blk_queue_split(&bio); 1472 1473 dm_split_and_process_bio(md, map, bio); 1474 out: 1475 dm_put_live_table(md, srcu_idx); 1476 } 1477 1478 /*----------------------------------------------------------------- 1479 * An IDR is used to keep track of allocated minor numbers. 1480 *---------------------------------------------------------------*/ 1481 static void free_minor(int minor) 1482 { 1483 spin_lock(&_minor_lock); 1484 idr_remove(&_minor_idr, minor); 1485 spin_unlock(&_minor_lock); 1486 } 1487 1488 /* 1489 * See if the device with a specific minor # is free. 1490 */ 1491 static int specific_minor(int minor) 1492 { 1493 int r; 1494 1495 if (minor >= (1 << MINORBITS)) 1496 return -EINVAL; 1497 1498 idr_preload(GFP_KERNEL); 1499 spin_lock(&_minor_lock); 1500 1501 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1502 1503 spin_unlock(&_minor_lock); 1504 idr_preload_end(); 1505 if (r < 0) 1506 return r == -ENOSPC ? -EBUSY : r; 1507 return 0; 1508 } 1509 1510 static int next_free_minor(int *minor) 1511 { 1512 int r; 1513 1514 idr_preload(GFP_KERNEL); 1515 spin_lock(&_minor_lock); 1516 1517 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1518 1519 spin_unlock(&_minor_lock); 1520 idr_preload_end(); 1521 if (r < 0) 1522 return r; 1523 *minor = r; 1524 return 0; 1525 } 1526 1527 static const struct block_device_operations dm_blk_dops; 1528 static const struct block_device_operations dm_rq_blk_dops; 1529 static const struct dax_operations dm_dax_ops; 1530 1531 static void dm_wq_work(struct work_struct *work); 1532 1533 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1534 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1535 { 1536 dm_destroy_crypto_profile(q->crypto_profile); 1537 } 1538 1539 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1540 1541 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1542 { 1543 } 1544 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1545 1546 static void cleanup_mapped_device(struct mapped_device *md) 1547 { 1548 if (md->wq) 1549 destroy_workqueue(md->wq); 1550 bioset_exit(&md->bs); 1551 bioset_exit(&md->io_bs); 1552 1553 if (md->dax_dev) { 1554 dax_remove_host(md->disk); 1555 kill_dax(md->dax_dev); 1556 put_dax(md->dax_dev); 1557 md->dax_dev = NULL; 1558 } 1559 1560 if (md->disk) { 1561 spin_lock(&_minor_lock); 1562 md->disk->private_data = NULL; 1563 spin_unlock(&_minor_lock); 1564 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1565 dm_sysfs_exit(md); 1566 del_gendisk(md->disk); 1567 } 1568 dm_queue_destroy_crypto_profile(md->queue); 1569 blk_cleanup_disk(md->disk); 1570 } 1571 1572 if (md->pending_io) { 1573 free_percpu(md->pending_io); 1574 md->pending_io = NULL; 1575 } 1576 1577 cleanup_srcu_struct(&md->io_barrier); 1578 1579 mutex_destroy(&md->suspend_lock); 1580 mutex_destroy(&md->type_lock); 1581 mutex_destroy(&md->table_devices_lock); 1582 mutex_destroy(&md->swap_bios_lock); 1583 1584 dm_mq_cleanup_mapped_device(md); 1585 dm_cleanup_zoned_dev(md); 1586 } 1587 1588 /* 1589 * Allocate and initialise a blank device with a given minor. 1590 */ 1591 static struct mapped_device *alloc_dev(int minor) 1592 { 1593 int r, numa_node_id = dm_get_numa_node(); 1594 struct mapped_device *md; 1595 void *old_md; 1596 1597 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1598 if (!md) { 1599 DMWARN("unable to allocate device, out of memory."); 1600 return NULL; 1601 } 1602 1603 if (!try_module_get(THIS_MODULE)) 1604 goto bad_module_get; 1605 1606 /* get a minor number for the dev */ 1607 if (minor == DM_ANY_MINOR) 1608 r = next_free_minor(&minor); 1609 else 1610 r = specific_minor(minor); 1611 if (r < 0) 1612 goto bad_minor; 1613 1614 r = init_srcu_struct(&md->io_barrier); 1615 if (r < 0) 1616 goto bad_io_barrier; 1617 1618 md->numa_node_id = numa_node_id; 1619 md->init_tio_pdu = false; 1620 md->type = DM_TYPE_NONE; 1621 mutex_init(&md->suspend_lock); 1622 mutex_init(&md->type_lock); 1623 mutex_init(&md->table_devices_lock); 1624 spin_lock_init(&md->deferred_lock); 1625 atomic_set(&md->holders, 1); 1626 atomic_set(&md->open_count, 0); 1627 atomic_set(&md->event_nr, 0); 1628 atomic_set(&md->uevent_seq, 0); 1629 INIT_LIST_HEAD(&md->uevent_list); 1630 INIT_LIST_HEAD(&md->table_devices); 1631 spin_lock_init(&md->uevent_lock); 1632 1633 /* 1634 * default to bio-based until DM table is loaded and md->type 1635 * established. If request-based table is loaded: blk-mq will 1636 * override accordingly. 1637 */ 1638 md->disk = blk_alloc_disk(md->numa_node_id); 1639 if (!md->disk) 1640 goto bad; 1641 md->queue = md->disk->queue; 1642 1643 init_waitqueue_head(&md->wait); 1644 INIT_WORK(&md->work, dm_wq_work); 1645 init_waitqueue_head(&md->eventq); 1646 init_completion(&md->kobj_holder.completion); 1647 1648 md->swap_bios = get_swap_bios(); 1649 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1650 mutex_init(&md->swap_bios_lock); 1651 1652 md->disk->major = _major; 1653 md->disk->first_minor = minor; 1654 md->disk->minors = 1; 1655 md->disk->flags |= GENHD_FL_NO_PART; 1656 md->disk->fops = &dm_blk_dops; 1657 md->disk->queue = md->queue; 1658 md->disk->private_data = md; 1659 sprintf(md->disk->disk_name, "dm-%d", minor); 1660 1661 if (IS_ENABLED(CONFIG_FS_DAX)) { 1662 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1663 if (IS_ERR(md->dax_dev)) { 1664 md->dax_dev = NULL; 1665 goto bad; 1666 } 1667 set_dax_nocache(md->dax_dev); 1668 set_dax_nomc(md->dax_dev); 1669 if (dax_add_host(md->dax_dev, md->disk)) 1670 goto bad; 1671 } 1672 1673 format_dev_t(md->name, MKDEV(_major, minor)); 1674 1675 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 1676 if (!md->wq) 1677 goto bad; 1678 1679 md->pending_io = alloc_percpu(unsigned long); 1680 if (!md->pending_io) 1681 goto bad; 1682 1683 dm_stats_init(&md->stats); 1684 1685 /* Populate the mapping, nobody knows we exist yet */ 1686 spin_lock(&_minor_lock); 1687 old_md = idr_replace(&_minor_idr, md, minor); 1688 spin_unlock(&_minor_lock); 1689 1690 BUG_ON(old_md != MINOR_ALLOCED); 1691 1692 return md; 1693 1694 bad: 1695 cleanup_mapped_device(md); 1696 bad_io_barrier: 1697 free_minor(minor); 1698 bad_minor: 1699 module_put(THIS_MODULE); 1700 bad_module_get: 1701 kvfree(md); 1702 return NULL; 1703 } 1704 1705 static void unlock_fs(struct mapped_device *md); 1706 1707 static void free_dev(struct mapped_device *md) 1708 { 1709 int minor = MINOR(disk_devt(md->disk)); 1710 1711 unlock_fs(md); 1712 1713 cleanup_mapped_device(md); 1714 1715 free_table_devices(&md->table_devices); 1716 dm_stats_cleanup(&md->stats); 1717 free_minor(minor); 1718 1719 module_put(THIS_MODULE); 1720 kvfree(md); 1721 } 1722 1723 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1724 { 1725 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1726 int ret = 0; 1727 1728 if (dm_table_bio_based(t)) { 1729 /* 1730 * The md may already have mempools that need changing. 1731 * If so, reload bioset because front_pad may have changed 1732 * because a different table was loaded. 1733 */ 1734 bioset_exit(&md->bs); 1735 bioset_exit(&md->io_bs); 1736 1737 } else if (bioset_initialized(&md->bs)) { 1738 /* 1739 * There's no need to reload with request-based dm 1740 * because the size of front_pad doesn't change. 1741 * Note for future: If you are to reload bioset, 1742 * prep-ed requests in the queue may refer 1743 * to bio from the old bioset, so you must walk 1744 * through the queue to unprep. 1745 */ 1746 goto out; 1747 } 1748 1749 BUG_ON(!p || 1750 bioset_initialized(&md->bs) || 1751 bioset_initialized(&md->io_bs)); 1752 1753 ret = bioset_init_from_src(&md->bs, &p->bs); 1754 if (ret) 1755 goto out; 1756 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 1757 if (ret) 1758 bioset_exit(&md->bs); 1759 out: 1760 /* mempool bind completed, no longer need any mempools in the table */ 1761 dm_table_free_md_mempools(t); 1762 return ret; 1763 } 1764 1765 /* 1766 * Bind a table to the device. 1767 */ 1768 static void event_callback(void *context) 1769 { 1770 unsigned long flags; 1771 LIST_HEAD(uevents); 1772 struct mapped_device *md = (struct mapped_device *) context; 1773 1774 spin_lock_irqsave(&md->uevent_lock, flags); 1775 list_splice_init(&md->uevent_list, &uevents); 1776 spin_unlock_irqrestore(&md->uevent_lock, flags); 1777 1778 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1779 1780 atomic_inc(&md->event_nr); 1781 wake_up(&md->eventq); 1782 dm_issue_global_event(); 1783 } 1784 1785 /* 1786 * Returns old map, which caller must destroy. 1787 */ 1788 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1789 struct queue_limits *limits) 1790 { 1791 struct dm_table *old_map; 1792 struct request_queue *q = md->queue; 1793 bool request_based = dm_table_request_based(t); 1794 sector_t size; 1795 int ret; 1796 1797 lockdep_assert_held(&md->suspend_lock); 1798 1799 size = dm_table_get_size(t); 1800 1801 /* 1802 * Wipe any geometry if the size of the table changed. 1803 */ 1804 if (size != dm_get_size(md)) 1805 memset(&md->geometry, 0, sizeof(md->geometry)); 1806 1807 if (!get_capacity(md->disk)) 1808 set_capacity(md->disk, size); 1809 else 1810 set_capacity_and_notify(md->disk, size); 1811 1812 dm_table_event_callback(t, event_callback, md); 1813 1814 if (request_based) { 1815 /* 1816 * Leverage the fact that request-based DM targets are 1817 * immutable singletons - used to optimize dm_mq_queue_rq. 1818 */ 1819 md->immutable_target = dm_table_get_immutable_target(t); 1820 } 1821 1822 ret = __bind_mempools(md, t); 1823 if (ret) { 1824 old_map = ERR_PTR(ret); 1825 goto out; 1826 } 1827 1828 ret = dm_table_set_restrictions(t, q, limits); 1829 if (ret) { 1830 old_map = ERR_PTR(ret); 1831 goto out; 1832 } 1833 1834 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1835 rcu_assign_pointer(md->map, (void *)t); 1836 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1837 1838 if (old_map) 1839 dm_sync_table(md); 1840 1841 out: 1842 return old_map; 1843 } 1844 1845 /* 1846 * Returns unbound table for the caller to free. 1847 */ 1848 static struct dm_table *__unbind(struct mapped_device *md) 1849 { 1850 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1851 1852 if (!map) 1853 return NULL; 1854 1855 dm_table_event_callback(map, NULL, NULL); 1856 RCU_INIT_POINTER(md->map, NULL); 1857 dm_sync_table(md); 1858 1859 return map; 1860 } 1861 1862 /* 1863 * Constructor for a new device. 1864 */ 1865 int dm_create(int minor, struct mapped_device **result) 1866 { 1867 struct mapped_device *md; 1868 1869 md = alloc_dev(minor); 1870 if (!md) 1871 return -ENXIO; 1872 1873 dm_ima_reset_data(md); 1874 1875 *result = md; 1876 return 0; 1877 } 1878 1879 /* 1880 * Functions to manage md->type. 1881 * All are required to hold md->type_lock. 1882 */ 1883 void dm_lock_md_type(struct mapped_device *md) 1884 { 1885 mutex_lock(&md->type_lock); 1886 } 1887 1888 void dm_unlock_md_type(struct mapped_device *md) 1889 { 1890 mutex_unlock(&md->type_lock); 1891 } 1892 1893 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 1894 { 1895 BUG_ON(!mutex_is_locked(&md->type_lock)); 1896 md->type = type; 1897 } 1898 1899 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 1900 { 1901 return md->type; 1902 } 1903 1904 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1905 { 1906 return md->immutable_target_type; 1907 } 1908 1909 /* 1910 * The queue_limits are only valid as long as you have a reference 1911 * count on 'md'. 1912 */ 1913 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1914 { 1915 BUG_ON(!atomic_read(&md->holders)); 1916 return &md->queue->limits; 1917 } 1918 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1919 1920 /* 1921 * Setup the DM device's queue based on md's type 1922 */ 1923 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1924 { 1925 enum dm_queue_mode type = dm_table_get_type(t); 1926 struct queue_limits limits; 1927 int r; 1928 1929 switch (type) { 1930 case DM_TYPE_REQUEST_BASED: 1931 md->disk->fops = &dm_rq_blk_dops; 1932 r = dm_mq_init_request_queue(md, t); 1933 if (r) { 1934 DMERR("Cannot initialize queue for request-based dm mapped device"); 1935 return r; 1936 } 1937 break; 1938 case DM_TYPE_BIO_BASED: 1939 case DM_TYPE_DAX_BIO_BASED: 1940 break; 1941 case DM_TYPE_NONE: 1942 WARN_ON_ONCE(true); 1943 break; 1944 } 1945 1946 r = dm_calculate_queue_limits(t, &limits); 1947 if (r) { 1948 DMERR("Cannot calculate initial queue limits"); 1949 return r; 1950 } 1951 r = dm_table_set_restrictions(t, md->queue, &limits); 1952 if (r) 1953 return r; 1954 1955 r = add_disk(md->disk); 1956 if (r) 1957 return r; 1958 1959 r = dm_sysfs_init(md); 1960 if (r) { 1961 del_gendisk(md->disk); 1962 return r; 1963 } 1964 md->type = type; 1965 return 0; 1966 } 1967 1968 struct mapped_device *dm_get_md(dev_t dev) 1969 { 1970 struct mapped_device *md; 1971 unsigned minor = MINOR(dev); 1972 1973 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1974 return NULL; 1975 1976 spin_lock(&_minor_lock); 1977 1978 md = idr_find(&_minor_idr, minor); 1979 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 1980 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 1981 md = NULL; 1982 goto out; 1983 } 1984 dm_get(md); 1985 out: 1986 spin_unlock(&_minor_lock); 1987 1988 return md; 1989 } 1990 EXPORT_SYMBOL_GPL(dm_get_md); 1991 1992 void *dm_get_mdptr(struct mapped_device *md) 1993 { 1994 return md->interface_ptr; 1995 } 1996 1997 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1998 { 1999 md->interface_ptr = ptr; 2000 } 2001 2002 void dm_get(struct mapped_device *md) 2003 { 2004 atomic_inc(&md->holders); 2005 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2006 } 2007 2008 int dm_hold(struct mapped_device *md) 2009 { 2010 spin_lock(&_minor_lock); 2011 if (test_bit(DMF_FREEING, &md->flags)) { 2012 spin_unlock(&_minor_lock); 2013 return -EBUSY; 2014 } 2015 dm_get(md); 2016 spin_unlock(&_minor_lock); 2017 return 0; 2018 } 2019 EXPORT_SYMBOL_GPL(dm_hold); 2020 2021 const char *dm_device_name(struct mapped_device *md) 2022 { 2023 return md->name; 2024 } 2025 EXPORT_SYMBOL_GPL(dm_device_name); 2026 2027 static void __dm_destroy(struct mapped_device *md, bool wait) 2028 { 2029 struct dm_table *map; 2030 int srcu_idx; 2031 2032 might_sleep(); 2033 2034 spin_lock(&_minor_lock); 2035 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2036 set_bit(DMF_FREEING, &md->flags); 2037 spin_unlock(&_minor_lock); 2038 2039 blk_set_queue_dying(md->queue); 2040 2041 /* 2042 * Take suspend_lock so that presuspend and postsuspend methods 2043 * do not race with internal suspend. 2044 */ 2045 mutex_lock(&md->suspend_lock); 2046 map = dm_get_live_table(md, &srcu_idx); 2047 if (!dm_suspended_md(md)) { 2048 dm_table_presuspend_targets(map); 2049 set_bit(DMF_SUSPENDED, &md->flags); 2050 set_bit(DMF_POST_SUSPENDING, &md->flags); 2051 dm_table_postsuspend_targets(map); 2052 } 2053 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2054 dm_put_live_table(md, srcu_idx); 2055 mutex_unlock(&md->suspend_lock); 2056 2057 /* 2058 * Rare, but there may be I/O requests still going to complete, 2059 * for example. Wait for all references to disappear. 2060 * No one should increment the reference count of the mapped_device, 2061 * after the mapped_device state becomes DMF_FREEING. 2062 */ 2063 if (wait) 2064 while (atomic_read(&md->holders)) 2065 msleep(1); 2066 else if (atomic_read(&md->holders)) 2067 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2068 dm_device_name(md), atomic_read(&md->holders)); 2069 2070 dm_table_destroy(__unbind(md)); 2071 free_dev(md); 2072 } 2073 2074 void dm_destroy(struct mapped_device *md) 2075 { 2076 __dm_destroy(md, true); 2077 } 2078 2079 void dm_destroy_immediate(struct mapped_device *md) 2080 { 2081 __dm_destroy(md, false); 2082 } 2083 2084 void dm_put(struct mapped_device *md) 2085 { 2086 atomic_dec(&md->holders); 2087 } 2088 EXPORT_SYMBOL_GPL(dm_put); 2089 2090 static bool dm_in_flight_bios(struct mapped_device *md) 2091 { 2092 int cpu; 2093 unsigned long sum = 0; 2094 2095 for_each_possible_cpu(cpu) 2096 sum += *per_cpu_ptr(md->pending_io, cpu); 2097 2098 return sum != 0; 2099 } 2100 2101 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2102 { 2103 int r = 0; 2104 DEFINE_WAIT(wait); 2105 2106 while (true) { 2107 prepare_to_wait(&md->wait, &wait, task_state); 2108 2109 if (!dm_in_flight_bios(md)) 2110 break; 2111 2112 if (signal_pending_state(task_state, current)) { 2113 r = -EINTR; 2114 break; 2115 } 2116 2117 io_schedule(); 2118 } 2119 finish_wait(&md->wait, &wait); 2120 2121 smp_rmb(); 2122 2123 return r; 2124 } 2125 2126 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2127 { 2128 int r = 0; 2129 2130 if (!queue_is_mq(md->queue)) 2131 return dm_wait_for_bios_completion(md, task_state); 2132 2133 while (true) { 2134 if (!blk_mq_queue_inflight(md->queue)) 2135 break; 2136 2137 if (signal_pending_state(task_state, current)) { 2138 r = -EINTR; 2139 break; 2140 } 2141 2142 msleep(5); 2143 } 2144 2145 return r; 2146 } 2147 2148 /* 2149 * Process the deferred bios 2150 */ 2151 static void dm_wq_work(struct work_struct *work) 2152 { 2153 struct mapped_device *md = container_of(work, struct mapped_device, work); 2154 struct bio *bio; 2155 2156 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2157 spin_lock_irq(&md->deferred_lock); 2158 bio = bio_list_pop(&md->deferred); 2159 spin_unlock_irq(&md->deferred_lock); 2160 2161 if (!bio) 2162 break; 2163 2164 submit_bio_noacct(bio); 2165 } 2166 } 2167 2168 static void dm_queue_flush(struct mapped_device *md) 2169 { 2170 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2171 smp_mb__after_atomic(); 2172 queue_work(md->wq, &md->work); 2173 } 2174 2175 /* 2176 * Swap in a new table, returning the old one for the caller to destroy. 2177 */ 2178 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2179 { 2180 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2181 struct queue_limits limits; 2182 int r; 2183 2184 mutex_lock(&md->suspend_lock); 2185 2186 /* device must be suspended */ 2187 if (!dm_suspended_md(md)) 2188 goto out; 2189 2190 /* 2191 * If the new table has no data devices, retain the existing limits. 2192 * This helps multipath with queue_if_no_path if all paths disappear, 2193 * then new I/O is queued based on these limits, and then some paths 2194 * reappear. 2195 */ 2196 if (dm_table_has_no_data_devices(table)) { 2197 live_map = dm_get_live_table_fast(md); 2198 if (live_map) 2199 limits = md->queue->limits; 2200 dm_put_live_table_fast(md); 2201 } 2202 2203 if (!live_map) { 2204 r = dm_calculate_queue_limits(table, &limits); 2205 if (r) { 2206 map = ERR_PTR(r); 2207 goto out; 2208 } 2209 } 2210 2211 map = __bind(md, table, &limits); 2212 dm_issue_global_event(); 2213 2214 out: 2215 mutex_unlock(&md->suspend_lock); 2216 return map; 2217 } 2218 2219 /* 2220 * Functions to lock and unlock any filesystem running on the 2221 * device. 2222 */ 2223 static int lock_fs(struct mapped_device *md) 2224 { 2225 int r; 2226 2227 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2228 2229 r = freeze_bdev(md->disk->part0); 2230 if (!r) 2231 set_bit(DMF_FROZEN, &md->flags); 2232 return r; 2233 } 2234 2235 static void unlock_fs(struct mapped_device *md) 2236 { 2237 if (!test_bit(DMF_FROZEN, &md->flags)) 2238 return; 2239 thaw_bdev(md->disk->part0); 2240 clear_bit(DMF_FROZEN, &md->flags); 2241 } 2242 2243 /* 2244 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2245 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2246 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2247 * 2248 * If __dm_suspend returns 0, the device is completely quiescent 2249 * now. There is no request-processing activity. All new requests 2250 * are being added to md->deferred list. 2251 */ 2252 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2253 unsigned suspend_flags, unsigned int task_state, 2254 int dmf_suspended_flag) 2255 { 2256 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2257 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2258 int r; 2259 2260 lockdep_assert_held(&md->suspend_lock); 2261 2262 /* 2263 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2264 * This flag is cleared before dm_suspend returns. 2265 */ 2266 if (noflush) 2267 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2268 else 2269 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2270 2271 /* 2272 * This gets reverted if there's an error later and the targets 2273 * provide the .presuspend_undo hook. 2274 */ 2275 dm_table_presuspend_targets(map); 2276 2277 /* 2278 * Flush I/O to the device. 2279 * Any I/O submitted after lock_fs() may not be flushed. 2280 * noflush takes precedence over do_lockfs. 2281 * (lock_fs() flushes I/Os and waits for them to complete.) 2282 */ 2283 if (!noflush && do_lockfs) { 2284 r = lock_fs(md); 2285 if (r) { 2286 dm_table_presuspend_undo_targets(map); 2287 return r; 2288 } 2289 } 2290 2291 /* 2292 * Here we must make sure that no processes are submitting requests 2293 * to target drivers i.e. no one may be executing 2294 * dm_split_and_process_bio from dm_submit_bio. 2295 * 2296 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2297 * we take the write lock. To prevent any process from reentering 2298 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2299 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2300 * flush_workqueue(md->wq). 2301 */ 2302 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2303 if (map) 2304 synchronize_srcu(&md->io_barrier); 2305 2306 /* 2307 * Stop md->queue before flushing md->wq in case request-based 2308 * dm defers requests to md->wq from md->queue. 2309 */ 2310 if (dm_request_based(md)) 2311 dm_stop_queue(md->queue); 2312 2313 flush_workqueue(md->wq); 2314 2315 /* 2316 * At this point no more requests are entering target request routines. 2317 * We call dm_wait_for_completion to wait for all existing requests 2318 * to finish. 2319 */ 2320 r = dm_wait_for_completion(md, task_state); 2321 if (!r) 2322 set_bit(dmf_suspended_flag, &md->flags); 2323 2324 if (noflush) 2325 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2326 if (map) 2327 synchronize_srcu(&md->io_barrier); 2328 2329 /* were we interrupted ? */ 2330 if (r < 0) { 2331 dm_queue_flush(md); 2332 2333 if (dm_request_based(md)) 2334 dm_start_queue(md->queue); 2335 2336 unlock_fs(md); 2337 dm_table_presuspend_undo_targets(map); 2338 /* pushback list is already flushed, so skip flush */ 2339 } 2340 2341 return r; 2342 } 2343 2344 /* 2345 * We need to be able to change a mapping table under a mounted 2346 * filesystem. For example we might want to move some data in 2347 * the background. Before the table can be swapped with 2348 * dm_bind_table, dm_suspend must be called to flush any in 2349 * flight bios and ensure that any further io gets deferred. 2350 */ 2351 /* 2352 * Suspend mechanism in request-based dm. 2353 * 2354 * 1. Flush all I/Os by lock_fs() if needed. 2355 * 2. Stop dispatching any I/O by stopping the request_queue. 2356 * 3. Wait for all in-flight I/Os to be completed or requeued. 2357 * 2358 * To abort suspend, start the request_queue. 2359 */ 2360 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2361 { 2362 struct dm_table *map = NULL; 2363 int r = 0; 2364 2365 retry: 2366 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2367 2368 if (dm_suspended_md(md)) { 2369 r = -EINVAL; 2370 goto out_unlock; 2371 } 2372 2373 if (dm_suspended_internally_md(md)) { 2374 /* already internally suspended, wait for internal resume */ 2375 mutex_unlock(&md->suspend_lock); 2376 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2377 if (r) 2378 return r; 2379 goto retry; 2380 } 2381 2382 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2383 2384 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2385 if (r) 2386 goto out_unlock; 2387 2388 set_bit(DMF_POST_SUSPENDING, &md->flags); 2389 dm_table_postsuspend_targets(map); 2390 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2391 2392 out_unlock: 2393 mutex_unlock(&md->suspend_lock); 2394 return r; 2395 } 2396 2397 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2398 { 2399 if (map) { 2400 int r = dm_table_resume_targets(map); 2401 if (r) 2402 return r; 2403 } 2404 2405 dm_queue_flush(md); 2406 2407 /* 2408 * Flushing deferred I/Os must be done after targets are resumed 2409 * so that mapping of targets can work correctly. 2410 * Request-based dm is queueing the deferred I/Os in its request_queue. 2411 */ 2412 if (dm_request_based(md)) 2413 dm_start_queue(md->queue); 2414 2415 unlock_fs(md); 2416 2417 return 0; 2418 } 2419 2420 int dm_resume(struct mapped_device *md) 2421 { 2422 int r; 2423 struct dm_table *map = NULL; 2424 2425 retry: 2426 r = -EINVAL; 2427 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2428 2429 if (!dm_suspended_md(md)) 2430 goto out; 2431 2432 if (dm_suspended_internally_md(md)) { 2433 /* already internally suspended, wait for internal resume */ 2434 mutex_unlock(&md->suspend_lock); 2435 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2436 if (r) 2437 return r; 2438 goto retry; 2439 } 2440 2441 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2442 if (!map || !dm_table_get_size(map)) 2443 goto out; 2444 2445 r = __dm_resume(md, map); 2446 if (r) 2447 goto out; 2448 2449 clear_bit(DMF_SUSPENDED, &md->flags); 2450 out: 2451 mutex_unlock(&md->suspend_lock); 2452 2453 return r; 2454 } 2455 2456 /* 2457 * Internal suspend/resume works like userspace-driven suspend. It waits 2458 * until all bios finish and prevents issuing new bios to the target drivers. 2459 * It may be used only from the kernel. 2460 */ 2461 2462 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2463 { 2464 struct dm_table *map = NULL; 2465 2466 lockdep_assert_held(&md->suspend_lock); 2467 2468 if (md->internal_suspend_count++) 2469 return; /* nested internal suspend */ 2470 2471 if (dm_suspended_md(md)) { 2472 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2473 return; /* nest suspend */ 2474 } 2475 2476 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2477 2478 /* 2479 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2480 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2481 * would require changing .presuspend to return an error -- avoid this 2482 * until there is a need for more elaborate variants of internal suspend. 2483 */ 2484 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2485 DMF_SUSPENDED_INTERNALLY); 2486 2487 set_bit(DMF_POST_SUSPENDING, &md->flags); 2488 dm_table_postsuspend_targets(map); 2489 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2490 } 2491 2492 static void __dm_internal_resume(struct mapped_device *md) 2493 { 2494 BUG_ON(!md->internal_suspend_count); 2495 2496 if (--md->internal_suspend_count) 2497 return; /* resume from nested internal suspend */ 2498 2499 if (dm_suspended_md(md)) 2500 goto done; /* resume from nested suspend */ 2501 2502 /* 2503 * NOTE: existing callers don't need to call dm_table_resume_targets 2504 * (which may fail -- so best to avoid it for now by passing NULL map) 2505 */ 2506 (void) __dm_resume(md, NULL); 2507 2508 done: 2509 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2510 smp_mb__after_atomic(); 2511 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2512 } 2513 2514 void dm_internal_suspend_noflush(struct mapped_device *md) 2515 { 2516 mutex_lock(&md->suspend_lock); 2517 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2518 mutex_unlock(&md->suspend_lock); 2519 } 2520 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2521 2522 void dm_internal_resume(struct mapped_device *md) 2523 { 2524 mutex_lock(&md->suspend_lock); 2525 __dm_internal_resume(md); 2526 mutex_unlock(&md->suspend_lock); 2527 } 2528 EXPORT_SYMBOL_GPL(dm_internal_resume); 2529 2530 /* 2531 * Fast variants of internal suspend/resume hold md->suspend_lock, 2532 * which prevents interaction with userspace-driven suspend. 2533 */ 2534 2535 void dm_internal_suspend_fast(struct mapped_device *md) 2536 { 2537 mutex_lock(&md->suspend_lock); 2538 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2539 return; 2540 2541 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2542 synchronize_srcu(&md->io_barrier); 2543 flush_workqueue(md->wq); 2544 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2545 } 2546 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2547 2548 void dm_internal_resume_fast(struct mapped_device *md) 2549 { 2550 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2551 goto done; 2552 2553 dm_queue_flush(md); 2554 2555 done: 2556 mutex_unlock(&md->suspend_lock); 2557 } 2558 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2559 2560 /*----------------------------------------------------------------- 2561 * Event notification. 2562 *---------------------------------------------------------------*/ 2563 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2564 unsigned cookie) 2565 { 2566 int r; 2567 unsigned noio_flag; 2568 char udev_cookie[DM_COOKIE_LENGTH]; 2569 char *envp[] = { udev_cookie, NULL }; 2570 2571 noio_flag = memalloc_noio_save(); 2572 2573 if (!cookie) 2574 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2575 else { 2576 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2577 DM_COOKIE_ENV_VAR_NAME, cookie); 2578 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2579 action, envp); 2580 } 2581 2582 memalloc_noio_restore(noio_flag); 2583 2584 return r; 2585 } 2586 2587 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2588 { 2589 return atomic_add_return(1, &md->uevent_seq); 2590 } 2591 2592 uint32_t dm_get_event_nr(struct mapped_device *md) 2593 { 2594 return atomic_read(&md->event_nr); 2595 } 2596 2597 int dm_wait_event(struct mapped_device *md, int event_nr) 2598 { 2599 return wait_event_interruptible(md->eventq, 2600 (event_nr != atomic_read(&md->event_nr))); 2601 } 2602 2603 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2604 { 2605 unsigned long flags; 2606 2607 spin_lock_irqsave(&md->uevent_lock, flags); 2608 list_add(elist, &md->uevent_list); 2609 spin_unlock_irqrestore(&md->uevent_lock, flags); 2610 } 2611 2612 /* 2613 * The gendisk is only valid as long as you have a reference 2614 * count on 'md'. 2615 */ 2616 struct gendisk *dm_disk(struct mapped_device *md) 2617 { 2618 return md->disk; 2619 } 2620 EXPORT_SYMBOL_GPL(dm_disk); 2621 2622 struct kobject *dm_kobject(struct mapped_device *md) 2623 { 2624 return &md->kobj_holder.kobj; 2625 } 2626 2627 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2628 { 2629 struct mapped_device *md; 2630 2631 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2632 2633 spin_lock(&_minor_lock); 2634 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2635 md = NULL; 2636 goto out; 2637 } 2638 dm_get(md); 2639 out: 2640 spin_unlock(&_minor_lock); 2641 2642 return md; 2643 } 2644 2645 int dm_suspended_md(struct mapped_device *md) 2646 { 2647 return test_bit(DMF_SUSPENDED, &md->flags); 2648 } 2649 2650 static int dm_post_suspending_md(struct mapped_device *md) 2651 { 2652 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2653 } 2654 2655 int dm_suspended_internally_md(struct mapped_device *md) 2656 { 2657 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2658 } 2659 2660 int dm_test_deferred_remove_flag(struct mapped_device *md) 2661 { 2662 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2663 } 2664 2665 int dm_suspended(struct dm_target *ti) 2666 { 2667 return dm_suspended_md(ti->table->md); 2668 } 2669 EXPORT_SYMBOL_GPL(dm_suspended); 2670 2671 int dm_post_suspending(struct dm_target *ti) 2672 { 2673 return dm_post_suspending_md(ti->table->md); 2674 } 2675 EXPORT_SYMBOL_GPL(dm_post_suspending); 2676 2677 int dm_noflush_suspending(struct dm_target *ti) 2678 { 2679 return __noflush_suspending(ti->table->md); 2680 } 2681 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2682 2683 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2684 unsigned integrity, unsigned per_io_data_size, 2685 unsigned min_pool_size) 2686 { 2687 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2688 unsigned int pool_size = 0; 2689 unsigned int front_pad, io_front_pad; 2690 int ret; 2691 2692 if (!pools) 2693 return NULL; 2694 2695 switch (type) { 2696 case DM_TYPE_BIO_BASED: 2697 case DM_TYPE_DAX_BIO_BASED: 2698 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2699 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2700 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2701 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2702 if (ret) 2703 goto out; 2704 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2705 goto out; 2706 break; 2707 case DM_TYPE_REQUEST_BASED: 2708 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2709 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2710 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2711 break; 2712 default: 2713 BUG(); 2714 } 2715 2716 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2717 if (ret) 2718 goto out; 2719 2720 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2721 goto out; 2722 2723 return pools; 2724 2725 out: 2726 dm_free_md_mempools(pools); 2727 2728 return NULL; 2729 } 2730 2731 void dm_free_md_mempools(struct dm_md_mempools *pools) 2732 { 2733 if (!pools) 2734 return; 2735 2736 bioset_exit(&pools->bs); 2737 bioset_exit(&pools->io_bs); 2738 2739 kfree(pools); 2740 } 2741 2742 struct dm_pr { 2743 u64 old_key; 2744 u64 new_key; 2745 u32 flags; 2746 bool fail_early; 2747 }; 2748 2749 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2750 void *data) 2751 { 2752 struct mapped_device *md = bdev->bd_disk->private_data; 2753 struct dm_table *table; 2754 struct dm_target *ti; 2755 int ret = -ENOTTY, srcu_idx; 2756 2757 table = dm_get_live_table(md, &srcu_idx); 2758 if (!table || !dm_table_get_size(table)) 2759 goto out; 2760 2761 /* We only support devices that have a single target */ 2762 if (dm_table_get_num_targets(table) != 1) 2763 goto out; 2764 ti = dm_table_get_target(table, 0); 2765 2766 ret = -EINVAL; 2767 if (!ti->type->iterate_devices) 2768 goto out; 2769 2770 ret = ti->type->iterate_devices(ti, fn, data); 2771 out: 2772 dm_put_live_table(md, srcu_idx); 2773 return ret; 2774 } 2775 2776 /* 2777 * For register / unregister we need to manually call out to every path. 2778 */ 2779 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2780 sector_t start, sector_t len, void *data) 2781 { 2782 struct dm_pr *pr = data; 2783 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2784 2785 if (!ops || !ops->pr_register) 2786 return -EOPNOTSUPP; 2787 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2788 } 2789 2790 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2791 u32 flags) 2792 { 2793 struct dm_pr pr = { 2794 .old_key = old_key, 2795 .new_key = new_key, 2796 .flags = flags, 2797 .fail_early = true, 2798 }; 2799 int ret; 2800 2801 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2802 if (ret && new_key) { 2803 /* unregister all paths if we failed to register any path */ 2804 pr.old_key = new_key; 2805 pr.new_key = 0; 2806 pr.flags = 0; 2807 pr.fail_early = false; 2808 dm_call_pr(bdev, __dm_pr_register, &pr); 2809 } 2810 2811 return ret; 2812 } 2813 2814 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2815 u32 flags) 2816 { 2817 struct mapped_device *md = bdev->bd_disk->private_data; 2818 const struct pr_ops *ops; 2819 int r, srcu_idx; 2820 2821 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2822 if (r < 0) 2823 goto out; 2824 2825 ops = bdev->bd_disk->fops->pr_ops; 2826 if (ops && ops->pr_reserve) 2827 r = ops->pr_reserve(bdev, key, type, flags); 2828 else 2829 r = -EOPNOTSUPP; 2830 out: 2831 dm_unprepare_ioctl(md, srcu_idx); 2832 return r; 2833 } 2834 2835 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2836 { 2837 struct mapped_device *md = bdev->bd_disk->private_data; 2838 const struct pr_ops *ops; 2839 int r, srcu_idx; 2840 2841 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2842 if (r < 0) 2843 goto out; 2844 2845 ops = bdev->bd_disk->fops->pr_ops; 2846 if (ops && ops->pr_release) 2847 r = ops->pr_release(bdev, key, type); 2848 else 2849 r = -EOPNOTSUPP; 2850 out: 2851 dm_unprepare_ioctl(md, srcu_idx); 2852 return r; 2853 } 2854 2855 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2856 enum pr_type type, bool abort) 2857 { 2858 struct mapped_device *md = bdev->bd_disk->private_data; 2859 const struct pr_ops *ops; 2860 int r, srcu_idx; 2861 2862 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2863 if (r < 0) 2864 goto out; 2865 2866 ops = bdev->bd_disk->fops->pr_ops; 2867 if (ops && ops->pr_preempt) 2868 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2869 else 2870 r = -EOPNOTSUPP; 2871 out: 2872 dm_unprepare_ioctl(md, srcu_idx); 2873 return r; 2874 } 2875 2876 static int dm_pr_clear(struct block_device *bdev, u64 key) 2877 { 2878 struct mapped_device *md = bdev->bd_disk->private_data; 2879 const struct pr_ops *ops; 2880 int r, srcu_idx; 2881 2882 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2883 if (r < 0) 2884 goto out; 2885 2886 ops = bdev->bd_disk->fops->pr_ops; 2887 if (ops && ops->pr_clear) 2888 r = ops->pr_clear(bdev, key); 2889 else 2890 r = -EOPNOTSUPP; 2891 out: 2892 dm_unprepare_ioctl(md, srcu_idx); 2893 return r; 2894 } 2895 2896 static const struct pr_ops dm_pr_ops = { 2897 .pr_register = dm_pr_register, 2898 .pr_reserve = dm_pr_reserve, 2899 .pr_release = dm_pr_release, 2900 .pr_preempt = dm_pr_preempt, 2901 .pr_clear = dm_pr_clear, 2902 }; 2903 2904 static const struct block_device_operations dm_blk_dops = { 2905 .submit_bio = dm_submit_bio, 2906 .open = dm_blk_open, 2907 .release = dm_blk_close, 2908 .ioctl = dm_blk_ioctl, 2909 .getgeo = dm_blk_getgeo, 2910 .report_zones = dm_blk_report_zones, 2911 .pr_ops = &dm_pr_ops, 2912 .owner = THIS_MODULE 2913 }; 2914 2915 static const struct block_device_operations dm_rq_blk_dops = { 2916 .open = dm_blk_open, 2917 .release = dm_blk_close, 2918 .ioctl = dm_blk_ioctl, 2919 .getgeo = dm_blk_getgeo, 2920 .pr_ops = &dm_pr_ops, 2921 .owner = THIS_MODULE 2922 }; 2923 2924 static const struct dax_operations dm_dax_ops = { 2925 .direct_access = dm_dax_direct_access, 2926 .zero_page_range = dm_dax_zero_page_range, 2927 }; 2928 2929 /* 2930 * module hooks 2931 */ 2932 module_init(dm_init); 2933 module_exit(dm_exit); 2934 2935 module_param(major, uint, 0); 2936 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2937 2938 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2939 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2940 2941 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2942 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2943 2944 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 2945 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 2946 2947 MODULE_DESCRIPTION(DM_NAME " driver"); 2948 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2949 MODULE_LICENSE("GPL"); 2950