1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2015 Google, Inc. 4 * 5 * Author: Sami Tolvanen <samitolvanen@google.com> 6 */ 7 8 #include "dm-verity-fec.h" 9 #include <linux/math64.h> 10 11 #define DM_MSG_PREFIX "verity-fec" 12 13 /* 14 * If error correction has been configured, returns true. 15 */ 16 bool verity_fec_is_enabled(struct dm_verity *v) 17 { 18 return v->fec && v->fec->dev; 19 } 20 21 /* 22 * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable 23 * length fields. 24 */ 25 static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io) 26 { 27 return (struct dm_verity_fec_io *) 28 ((char *)io + io->v->ti->per_io_data_size - sizeof(struct dm_verity_fec_io)); 29 } 30 31 /* 32 * Return an interleaved offset for a byte in RS block. 33 */ 34 static inline u64 fec_interleave(struct dm_verity *v, u64 offset) 35 { 36 u32 mod; 37 38 mod = do_div(offset, v->fec->rsn); 39 return offset + mod * (v->fec->rounds << v->data_dev_block_bits); 40 } 41 42 /* 43 * Decode an RS block using Reed-Solomon. 44 */ 45 static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio, 46 u8 *data, u8 *fec, int neras) 47 { 48 int i; 49 uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN]; 50 51 for (i = 0; i < v->fec->roots; i++) 52 par[i] = fec[i]; 53 54 return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras, 55 fio->erasures, 0, NULL); 56 } 57 58 /* 59 * Read error-correcting codes for the requested RS block. Returns a pointer 60 * to the data block. Caller is responsible for releasing buf. 61 */ 62 static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index, 63 unsigned int *offset, unsigned int par_buf_offset, 64 struct dm_buffer **buf) 65 { 66 u64 position, block, rem; 67 u8 *res; 68 69 /* We have already part of parity bytes read, skip to the next block */ 70 if (par_buf_offset) 71 index++; 72 73 position = (index + rsb) * v->fec->roots; 74 block = div64_u64_rem(position, v->fec->io_size, &rem); 75 *offset = par_buf_offset ? 0 : (unsigned int)rem; 76 77 res = dm_bufio_read(v->fec->bufio, block, buf); 78 if (IS_ERR(res)) { 79 DMERR("%s: FEC %llu: parity read failed (block %llu): %ld", 80 v->data_dev->name, (unsigned long long)rsb, 81 (unsigned long long)block, PTR_ERR(res)); 82 *buf = NULL; 83 } 84 85 return res; 86 } 87 88 /* Loop over each preallocated buffer slot. */ 89 #define fec_for_each_prealloc_buffer(__i) \ 90 for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++) 91 92 /* Loop over each extra buffer slot. */ 93 #define fec_for_each_extra_buffer(io, __i) \ 94 for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++) 95 96 /* Loop over each allocated buffer. */ 97 #define fec_for_each_buffer(io, __i) \ 98 for (__i = 0; __i < (io)->nbufs; __i++) 99 100 /* Loop over each RS block in each allocated buffer. */ 101 #define fec_for_each_buffer_rs_block(io, __i, __j) \ 102 fec_for_each_buffer(io, __i) \ 103 for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++) 104 105 /* 106 * Return a pointer to the current RS block when called inside 107 * fec_for_each_buffer_rs_block. 108 */ 109 static inline u8 *fec_buffer_rs_block(struct dm_verity *v, 110 struct dm_verity_fec_io *fio, 111 unsigned int i, unsigned int j) 112 { 113 return &fio->bufs[i][j * v->fec->rsn]; 114 } 115 116 /* 117 * Return an index to the current RS block when called inside 118 * fec_for_each_buffer_rs_block. 119 */ 120 static inline unsigned int fec_buffer_rs_index(unsigned int i, unsigned int j) 121 { 122 return (i << DM_VERITY_FEC_BUF_RS_BITS) + j; 123 } 124 125 /* 126 * Decode all RS blocks from buffers and copy corrected bytes into fio->output 127 * starting from block_offset. 128 */ 129 static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio, 130 u64 rsb, int byte_index, unsigned int block_offset, 131 int neras) 132 { 133 int r, corrected = 0, res; 134 struct dm_buffer *buf; 135 unsigned int n, i, offset, par_buf_offset = 0; 136 u8 *par, *block, par_buf[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN]; 137 138 par = fec_read_parity(v, rsb, block_offset, &offset, 139 par_buf_offset, &buf); 140 if (IS_ERR(par)) 141 return PTR_ERR(par); 142 143 /* 144 * Decode the RS blocks we have in bufs. Each RS block results in 145 * one corrected target byte and consumes fec->roots parity bytes. 146 */ 147 fec_for_each_buffer_rs_block(fio, n, i) { 148 block = fec_buffer_rs_block(v, fio, n, i); 149 memcpy(&par_buf[par_buf_offset], &par[offset], v->fec->roots - par_buf_offset); 150 res = fec_decode_rs8(v, fio, block, par_buf, neras); 151 if (res < 0) { 152 r = res; 153 goto error; 154 } 155 156 corrected += res; 157 fio->output[block_offset] = block[byte_index]; 158 159 block_offset++; 160 if (block_offset >= 1 << v->data_dev_block_bits) 161 goto done; 162 163 /* Read the next block when we run out of parity bytes */ 164 offset += (v->fec->roots - par_buf_offset); 165 /* Check if parity bytes are split between blocks */ 166 if (offset < v->fec->io_size && (offset + v->fec->roots) > v->fec->io_size) { 167 par_buf_offset = v->fec->io_size - offset; 168 memcpy(par_buf, &par[offset], par_buf_offset); 169 offset += par_buf_offset; 170 } else 171 par_buf_offset = 0; 172 173 if (offset >= v->fec->io_size) { 174 dm_bufio_release(buf); 175 176 par = fec_read_parity(v, rsb, block_offset, &offset, 177 par_buf_offset, &buf); 178 if (IS_ERR(par)) 179 return PTR_ERR(par); 180 } 181 } 182 done: 183 r = corrected; 184 error: 185 dm_bufio_release(buf); 186 187 if (r < 0 && neras) 188 DMERR_LIMIT("%s: FEC %llu: failed to correct: %d", 189 v->data_dev->name, (unsigned long long)rsb, r); 190 else if (r > 0) 191 DMWARN_LIMIT("%s: FEC %llu: corrected %d errors", 192 v->data_dev->name, (unsigned long long)rsb, r); 193 194 return r; 195 } 196 197 /* 198 * Locate data block erasures using verity hashes. 199 */ 200 static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io, 201 u8 *want_digest, u8 *data) 202 { 203 if (unlikely(verity_hash(v, verity_io_hash_req(v, io), 204 data, 1 << v->data_dev_block_bits, 205 verity_io_real_digest(v, io), true))) 206 return 0; 207 208 return memcmp(verity_io_real_digest(v, io), want_digest, 209 v->digest_size) != 0; 210 } 211 212 /* 213 * Read data blocks that are part of the RS block and deinterleave as much as 214 * fits into buffers. Check for erasure locations if @neras is non-NULL. 215 */ 216 static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io, 217 u64 rsb, u64 target, unsigned int block_offset, 218 int *neras) 219 { 220 bool is_zero; 221 int i, j, target_index = -1; 222 struct dm_buffer *buf; 223 struct dm_bufio_client *bufio; 224 struct dm_verity_fec_io *fio = fec_io(io); 225 u64 block, ileaved; 226 u8 *bbuf, *rs_block; 227 u8 want_digest[HASH_MAX_DIGESTSIZE]; 228 unsigned int n, k; 229 230 if (neras) 231 *neras = 0; 232 233 if (WARN_ON(v->digest_size > sizeof(want_digest))) 234 return -EINVAL; 235 236 /* 237 * read each of the rsn data blocks that are part of the RS block, and 238 * interleave contents to available bufs 239 */ 240 for (i = 0; i < v->fec->rsn; i++) { 241 ileaved = fec_interleave(v, rsb * v->fec->rsn + i); 242 243 /* 244 * target is the data block we want to correct, target_index is 245 * the index of this block within the rsn RS blocks 246 */ 247 if (ileaved == target) 248 target_index = i; 249 250 block = ileaved >> v->data_dev_block_bits; 251 bufio = v->fec->data_bufio; 252 253 if (block >= v->data_blocks) { 254 block -= v->data_blocks; 255 256 /* 257 * blocks outside the area were assumed to contain 258 * zeros when encoding data was generated 259 */ 260 if (unlikely(block >= v->fec->hash_blocks)) 261 continue; 262 263 block += v->hash_start; 264 bufio = v->bufio; 265 } 266 267 bbuf = dm_bufio_read(bufio, block, &buf); 268 if (IS_ERR(bbuf)) { 269 DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld", 270 v->data_dev->name, 271 (unsigned long long)rsb, 272 (unsigned long long)block, PTR_ERR(bbuf)); 273 274 /* assume the block is corrupted */ 275 if (neras && *neras <= v->fec->roots) 276 fio->erasures[(*neras)++] = i; 277 278 continue; 279 } 280 281 /* locate erasures if the block is on the data device */ 282 if (bufio == v->fec->data_bufio && 283 verity_hash_for_block(v, io, block, want_digest, 284 &is_zero) == 0) { 285 /* skip known zero blocks entirely */ 286 if (is_zero) 287 goto done; 288 289 /* 290 * skip if we have already found the theoretical 291 * maximum number (i.e. fec->roots) of erasures 292 */ 293 if (neras && *neras <= v->fec->roots && 294 fec_is_erasure(v, io, want_digest, bbuf)) 295 fio->erasures[(*neras)++] = i; 296 } 297 298 /* 299 * deinterleave and copy the bytes that fit into bufs, 300 * starting from block_offset 301 */ 302 fec_for_each_buffer_rs_block(fio, n, j) { 303 k = fec_buffer_rs_index(n, j) + block_offset; 304 305 if (k >= 1 << v->data_dev_block_bits) 306 goto done; 307 308 rs_block = fec_buffer_rs_block(v, fio, n, j); 309 rs_block[i] = bbuf[k]; 310 } 311 done: 312 dm_bufio_release(buf); 313 } 314 315 return target_index; 316 } 317 318 /* 319 * Allocate RS control structure and FEC buffers from preallocated mempools, 320 * and attempt to allocate as many extra buffers as available. 321 */ 322 static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio) 323 { 324 unsigned int n; 325 326 if (!fio->rs) 327 fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO); 328 329 fec_for_each_prealloc_buffer(n) { 330 if (fio->bufs[n]) 331 continue; 332 333 fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT); 334 if (unlikely(!fio->bufs[n])) { 335 DMERR("failed to allocate FEC buffer"); 336 return -ENOMEM; 337 } 338 } 339 340 /* try to allocate the maximum number of buffers */ 341 fec_for_each_extra_buffer(fio, n) { 342 if (fio->bufs[n]) 343 continue; 344 345 fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT); 346 /* we can manage with even one buffer if necessary */ 347 if (unlikely(!fio->bufs[n])) 348 break; 349 } 350 fio->nbufs = n; 351 352 if (!fio->output) 353 fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO); 354 355 return 0; 356 } 357 358 /* 359 * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are 360 * zeroed before deinterleaving. 361 */ 362 static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio) 363 { 364 unsigned int n; 365 366 fec_for_each_buffer(fio, n) 367 memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS); 368 369 memset(fio->erasures, 0, sizeof(fio->erasures)); 370 } 371 372 /* 373 * Decode all RS blocks in a single data block and return the target block 374 * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses 375 * hashes to locate erasures. 376 */ 377 static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io, 378 struct dm_verity_fec_io *fio, u64 rsb, u64 offset, 379 bool use_erasures) 380 { 381 int r, neras = 0; 382 unsigned int pos; 383 384 r = fec_alloc_bufs(v, fio); 385 if (unlikely(r < 0)) 386 return r; 387 388 for (pos = 0; pos < 1 << v->data_dev_block_bits; ) { 389 fec_init_bufs(v, fio); 390 391 r = fec_read_bufs(v, io, rsb, offset, pos, 392 use_erasures ? &neras : NULL); 393 if (unlikely(r < 0)) 394 return r; 395 396 r = fec_decode_bufs(v, fio, rsb, r, pos, neras); 397 if (r < 0) 398 return r; 399 400 pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS; 401 } 402 403 /* Always re-validate the corrected block against the expected hash */ 404 r = verity_hash(v, verity_io_hash_req(v, io), fio->output, 405 1 << v->data_dev_block_bits, 406 verity_io_real_digest(v, io), true); 407 if (unlikely(r < 0)) 408 return r; 409 410 if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io), 411 v->digest_size)) { 412 DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)", 413 v->data_dev->name, (unsigned long long)rsb, neras); 414 return -EILSEQ; 415 } 416 417 return 0; 418 } 419 420 static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data, 421 size_t len) 422 { 423 struct dm_verity_fec_io *fio = fec_io(io); 424 425 memcpy(data, &fio->output[fio->output_pos], len); 426 fio->output_pos += len; 427 428 return 0; 429 } 430 431 /* 432 * Correct errors in a block. Copies corrected block to dest if non-NULL, 433 * otherwise to a bio_vec starting from iter. 434 */ 435 int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io, 436 enum verity_block_type type, sector_t block, u8 *dest, 437 struct bvec_iter *iter) 438 { 439 int r; 440 struct dm_verity_fec_io *fio = fec_io(io); 441 u64 offset, res, rsb; 442 443 if (!verity_fec_is_enabled(v)) 444 return -EOPNOTSUPP; 445 446 if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) { 447 DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name); 448 return -EIO; 449 } 450 451 fio->level++; 452 453 if (type == DM_VERITY_BLOCK_TYPE_METADATA) 454 block = block - v->hash_start + v->data_blocks; 455 456 /* 457 * For RS(M, N), the continuous FEC data is divided into blocks of N 458 * bytes. Since block size may not be divisible by N, the last block 459 * is zero padded when decoding. 460 * 461 * Each byte of the block is covered by a different RS(M, N) code, 462 * and each code is interleaved over N blocks to make it less likely 463 * that bursty corruption will leave us in unrecoverable state. 464 */ 465 466 offset = block << v->data_dev_block_bits; 467 res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits); 468 469 /* 470 * The base RS block we can feed to the interleaver to find out all 471 * blocks required for decoding. 472 */ 473 rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits); 474 475 /* 476 * Locating erasures is slow, so attempt to recover the block without 477 * them first. Do a second attempt with erasures if the corruption is 478 * bad enough. 479 */ 480 r = fec_decode_rsb(v, io, fio, rsb, offset, false); 481 if (r < 0) { 482 r = fec_decode_rsb(v, io, fio, rsb, offset, true); 483 if (r < 0) 484 goto done; 485 } 486 487 if (dest) 488 memcpy(dest, fio->output, 1 << v->data_dev_block_bits); 489 else if (iter) { 490 fio->output_pos = 0; 491 r = verity_for_bv_block(v, io, iter, fec_bv_copy); 492 } 493 494 done: 495 fio->level--; 496 return r; 497 } 498 499 /* 500 * Clean up per-bio data. 501 */ 502 void verity_fec_finish_io(struct dm_verity_io *io) 503 { 504 unsigned int n; 505 struct dm_verity_fec *f = io->v->fec; 506 struct dm_verity_fec_io *fio = fec_io(io); 507 508 if (!verity_fec_is_enabled(io->v)) 509 return; 510 511 mempool_free(fio->rs, &f->rs_pool); 512 513 fec_for_each_prealloc_buffer(n) 514 mempool_free(fio->bufs[n], &f->prealloc_pool); 515 516 fec_for_each_extra_buffer(fio, n) 517 mempool_free(fio->bufs[n], &f->extra_pool); 518 519 mempool_free(fio->output, &f->output_pool); 520 } 521 522 /* 523 * Initialize per-bio data. 524 */ 525 void verity_fec_init_io(struct dm_verity_io *io) 526 { 527 struct dm_verity_fec_io *fio = fec_io(io); 528 529 if (!verity_fec_is_enabled(io->v)) 530 return; 531 532 fio->rs = NULL; 533 memset(fio->bufs, 0, sizeof(fio->bufs)); 534 fio->nbufs = 0; 535 fio->output = NULL; 536 fio->level = 0; 537 } 538 539 /* 540 * Append feature arguments and values to the status table. 541 */ 542 unsigned int verity_fec_status_table(struct dm_verity *v, unsigned int sz, 543 char *result, unsigned int maxlen) 544 { 545 if (!verity_fec_is_enabled(v)) 546 return sz; 547 548 DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s " 549 DM_VERITY_OPT_FEC_BLOCKS " %llu " 550 DM_VERITY_OPT_FEC_START " %llu " 551 DM_VERITY_OPT_FEC_ROOTS " %d", 552 v->fec->dev->name, 553 (unsigned long long)v->fec->blocks, 554 (unsigned long long)v->fec->start, 555 v->fec->roots); 556 557 return sz; 558 } 559 560 void verity_fec_dtr(struct dm_verity *v) 561 { 562 struct dm_verity_fec *f = v->fec; 563 564 if (!verity_fec_is_enabled(v)) 565 goto out; 566 567 mempool_exit(&f->rs_pool); 568 mempool_exit(&f->prealloc_pool); 569 mempool_exit(&f->extra_pool); 570 mempool_exit(&f->output_pool); 571 kmem_cache_destroy(f->cache); 572 573 if (f->data_bufio) 574 dm_bufio_client_destroy(f->data_bufio); 575 if (f->bufio) 576 dm_bufio_client_destroy(f->bufio); 577 578 if (f->dev) 579 dm_put_device(v->ti, f->dev); 580 out: 581 kfree(f); 582 v->fec = NULL; 583 } 584 585 static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data) 586 { 587 struct dm_verity *v = pool_data; 588 589 return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask); 590 } 591 592 static void fec_rs_free(void *element, void *pool_data) 593 { 594 struct rs_control *rs = element; 595 596 if (rs) 597 free_rs(rs); 598 } 599 600 bool verity_is_fec_opt_arg(const char *arg_name) 601 { 602 return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) || 603 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) || 604 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) || 605 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)); 606 } 607 608 int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v, 609 unsigned int *argc, const char *arg_name) 610 { 611 int r; 612 struct dm_target *ti = v->ti; 613 const char *arg_value; 614 unsigned long long num_ll; 615 unsigned char num_c; 616 char dummy; 617 618 if (!*argc) { 619 ti->error = "FEC feature arguments require a value"; 620 return -EINVAL; 621 } 622 623 arg_value = dm_shift_arg(as); 624 (*argc)--; 625 626 if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) { 627 r = dm_get_device(ti, arg_value, BLK_OPEN_READ, &v->fec->dev); 628 if (r) { 629 ti->error = "FEC device lookup failed"; 630 return r; 631 } 632 633 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) { 634 if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 || 635 ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) 636 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) { 637 ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS; 638 return -EINVAL; 639 } 640 v->fec->blocks = num_ll; 641 642 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) { 643 if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 || 644 ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >> 645 (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) { 646 ti->error = "Invalid " DM_VERITY_OPT_FEC_START; 647 return -EINVAL; 648 } 649 v->fec->start = num_ll; 650 651 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) { 652 if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c || 653 num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) || 654 num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) { 655 ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS; 656 return -EINVAL; 657 } 658 v->fec->roots = num_c; 659 660 } else { 661 ti->error = "Unrecognized verity FEC feature request"; 662 return -EINVAL; 663 } 664 665 return 0; 666 } 667 668 /* 669 * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr. 670 */ 671 int verity_fec_ctr_alloc(struct dm_verity *v) 672 { 673 struct dm_verity_fec *f; 674 675 f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL); 676 if (!f) { 677 v->ti->error = "Cannot allocate FEC structure"; 678 return -ENOMEM; 679 } 680 v->fec = f; 681 682 return 0; 683 } 684 685 /* 686 * Validate arguments and preallocate memory. Must be called after arguments 687 * have been parsed using verity_fec_parse_opt_args. 688 */ 689 int verity_fec_ctr(struct dm_verity *v) 690 { 691 struct dm_verity_fec *f = v->fec; 692 struct dm_target *ti = v->ti; 693 u64 hash_blocks, fec_blocks; 694 int ret; 695 696 if (!verity_fec_is_enabled(v)) { 697 verity_fec_dtr(v); 698 return 0; 699 } 700 701 /* 702 * FEC is computed over data blocks, possible metadata, and 703 * hash blocks. In other words, FEC covers total of fec_blocks 704 * blocks consisting of the following: 705 * 706 * data blocks | hash blocks | metadata (optional) 707 * 708 * We allow metadata after hash blocks to support a use case 709 * where all data is stored on the same device and FEC covers 710 * the entire area. 711 * 712 * If metadata is included, we require it to be available on the 713 * hash device after the hash blocks. 714 */ 715 716 hash_blocks = v->hash_blocks - v->hash_start; 717 718 /* 719 * Require matching block sizes for data and hash devices for 720 * simplicity. 721 */ 722 if (v->data_dev_block_bits != v->hash_dev_block_bits) { 723 ti->error = "Block sizes must match to use FEC"; 724 return -EINVAL; 725 } 726 727 if (!f->roots) { 728 ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS; 729 return -EINVAL; 730 } 731 f->rsn = DM_VERITY_FEC_RSM - f->roots; 732 733 if (!f->blocks) { 734 ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS; 735 return -EINVAL; 736 } 737 738 f->rounds = f->blocks; 739 if (sector_div(f->rounds, f->rsn)) 740 f->rounds++; 741 742 /* 743 * Due to optional metadata, f->blocks can be larger than 744 * data_blocks and hash_blocks combined. 745 */ 746 if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) { 747 ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS; 748 return -EINVAL; 749 } 750 751 /* 752 * Metadata is accessed through the hash device, so we require 753 * it to be large enough. 754 */ 755 f->hash_blocks = f->blocks - v->data_blocks; 756 if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) { 757 ti->error = "Hash device is too small for " 758 DM_VERITY_OPT_FEC_BLOCKS; 759 return -E2BIG; 760 } 761 762 f->io_size = 1 << v->data_dev_block_bits; 763 764 f->bufio = dm_bufio_client_create(f->dev->bdev, 765 f->io_size, 766 1, 0, NULL, NULL, 0); 767 if (IS_ERR(f->bufio)) { 768 ti->error = "Cannot initialize FEC bufio client"; 769 return PTR_ERR(f->bufio); 770 } 771 772 dm_bufio_set_sector_offset(f->bufio, f->start << (v->data_dev_block_bits - SECTOR_SHIFT)); 773 774 fec_blocks = div64_u64(f->rounds * f->roots, v->fec->roots << SECTOR_SHIFT); 775 if (dm_bufio_get_device_size(f->bufio) < fec_blocks) { 776 ti->error = "FEC device is too small"; 777 return -E2BIG; 778 } 779 780 f->data_bufio = dm_bufio_client_create(v->data_dev->bdev, 781 1 << v->data_dev_block_bits, 782 1, 0, NULL, NULL, 0); 783 if (IS_ERR(f->data_bufio)) { 784 ti->error = "Cannot initialize FEC data bufio client"; 785 return PTR_ERR(f->data_bufio); 786 } 787 788 if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) { 789 ti->error = "Data device is too small"; 790 return -E2BIG; 791 } 792 793 /* Preallocate an rs_control structure for each worker thread */ 794 ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc, 795 fec_rs_free, (void *) v); 796 if (ret) { 797 ti->error = "Cannot allocate RS pool"; 798 return ret; 799 } 800 801 f->cache = kmem_cache_create("dm_verity_fec_buffers", 802 f->rsn << DM_VERITY_FEC_BUF_RS_BITS, 803 0, 0, NULL); 804 if (!f->cache) { 805 ti->error = "Cannot create FEC buffer cache"; 806 return -ENOMEM; 807 } 808 809 /* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */ 810 ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() * 811 DM_VERITY_FEC_BUF_PREALLOC, 812 f->cache); 813 if (ret) { 814 ti->error = "Cannot allocate FEC buffer prealloc pool"; 815 return ret; 816 } 817 818 ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache); 819 if (ret) { 820 ti->error = "Cannot allocate FEC buffer extra pool"; 821 return ret; 822 } 823 824 /* Preallocate an output buffer for each thread */ 825 ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(), 826 1 << v->data_dev_block_bits); 827 if (ret) { 828 ti->error = "Cannot allocate FEC output pool"; 829 return ret; 830 } 831 832 /* Reserve space for our per-bio data */ 833 ti->per_io_data_size += sizeof(struct dm_verity_fec_io); 834 835 return 0; 836 } 837