xref: /openbmc/linux/drivers/md/dm-thin.c (revision c0c45238fcf44b05c86f2f7d1dda136df7a83ff9)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in various modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 
204 	/*
205 	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206 	 */
207 	PM_OUT_OF_METADATA_SPACE,
208 	PM_READ_ONLY,		/* metadata may not be changed */
209 
210 	PM_FAIL,		/* all I/O fails */
211 };
212 
213 struct pool_features {
214 	enum pool_mode mode;
215 
216 	bool zero_new_blocks:1;
217 	bool discard_enabled:1;
218 	bool discard_passdown:1;
219 	bool error_if_no_space:1;
220 };
221 
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226 
227 #define CELL_SORT_ARRAY_SIZE 8192
228 
229 struct pool {
230 	struct list_head list;
231 	struct dm_target *ti;	/* Only set if a pool target is bound */
232 
233 	struct mapped_device *pool_md;
234 	struct block_device *data_dev;
235 	struct block_device *md_dev;
236 	struct dm_pool_metadata *pmd;
237 
238 	dm_block_t low_water_blocks;
239 	uint32_t sectors_per_block;
240 	int sectors_per_block_shift;
241 
242 	struct pool_features pf;
243 	bool low_water_triggered:1;	/* A dm event has been sent */
244 	bool suspended:1;
245 	bool out_of_data_space:1;
246 
247 	struct dm_bio_prison *prison;
248 	struct dm_kcopyd_client *copier;
249 
250 	struct work_struct worker;
251 	struct workqueue_struct *wq;
252 	struct throttle throttle;
253 	struct delayed_work waker;
254 	struct delayed_work no_space_timeout;
255 
256 	unsigned long last_commit_jiffies;
257 	unsigned ref_count;
258 
259 	spinlock_t lock;
260 	struct bio_list deferred_flush_bios;
261 	struct bio_list deferred_flush_completions;
262 	struct list_head prepared_mappings;
263 	struct list_head prepared_discards;
264 	struct list_head prepared_discards_pt2;
265 	struct list_head active_thins;
266 
267 	struct dm_deferred_set *shared_read_ds;
268 	struct dm_deferred_set *all_io_ds;
269 
270 	struct dm_thin_new_mapping *next_mapping;
271 
272 	process_bio_fn process_bio;
273 	process_bio_fn process_discard;
274 
275 	process_cell_fn process_cell;
276 	process_cell_fn process_discard_cell;
277 
278 	process_mapping_fn process_prepared_mapping;
279 	process_mapping_fn process_prepared_discard;
280 	process_mapping_fn process_prepared_discard_pt2;
281 
282 	struct dm_bio_prison_cell **cell_sort_array;
283 
284 	mempool_t mapping_pool;
285 };
286 
287 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
288 
289 static enum pool_mode get_pool_mode(struct pool *pool)
290 {
291 	return pool->pf.mode;
292 }
293 
294 static void notify_of_pool_mode_change(struct pool *pool)
295 {
296 	const char *descs[] = {
297 		"write",
298 		"out-of-data-space",
299 		"read-only",
300 		"read-only",
301 		"fail"
302 	};
303 	const char *extra_desc = NULL;
304 	enum pool_mode mode = get_pool_mode(pool);
305 
306 	if (mode == PM_OUT_OF_DATA_SPACE) {
307 		if (!pool->pf.error_if_no_space)
308 			extra_desc = " (queue IO)";
309 		else
310 			extra_desc = " (error IO)";
311 	}
312 
313 	dm_table_event(pool->ti->table);
314 	DMINFO("%s: switching pool to %s%s mode",
315 	       dm_device_name(pool->pool_md),
316 	       descs[(int)mode], extra_desc ? : "");
317 }
318 
319 /*
320  * Target context for a pool.
321  */
322 struct pool_c {
323 	struct dm_target *ti;
324 	struct pool *pool;
325 	struct dm_dev *data_dev;
326 	struct dm_dev *metadata_dev;
327 
328 	dm_block_t low_water_blocks;
329 	struct pool_features requested_pf; /* Features requested during table load */
330 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
331 };
332 
333 /*
334  * Target context for a thin.
335  */
336 struct thin_c {
337 	struct list_head list;
338 	struct dm_dev *pool_dev;
339 	struct dm_dev *origin_dev;
340 	sector_t origin_size;
341 	dm_thin_id dev_id;
342 
343 	struct pool *pool;
344 	struct dm_thin_device *td;
345 	struct mapped_device *thin_md;
346 
347 	bool requeue_mode:1;
348 	spinlock_t lock;
349 	struct list_head deferred_cells;
350 	struct bio_list deferred_bio_list;
351 	struct bio_list retry_on_resume_list;
352 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
353 
354 	/*
355 	 * Ensures the thin is not destroyed until the worker has finished
356 	 * iterating the active_thins list.
357 	 */
358 	refcount_t refcount;
359 	struct completion can_destroy;
360 };
361 
362 /*----------------------------------------------------------------*/
363 
364 static bool block_size_is_power_of_two(struct pool *pool)
365 {
366 	return pool->sectors_per_block_shift >= 0;
367 }
368 
369 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
370 {
371 	return block_size_is_power_of_two(pool) ?
372 		(b << pool->sectors_per_block_shift) :
373 		(b * pool->sectors_per_block);
374 }
375 
376 /*----------------------------------------------------------------*/
377 
378 struct discard_op {
379 	struct thin_c *tc;
380 	struct blk_plug plug;
381 	struct bio *parent_bio;
382 	struct bio *bio;
383 };
384 
385 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
386 {
387 	BUG_ON(!parent);
388 
389 	op->tc = tc;
390 	blk_start_plug(&op->plug);
391 	op->parent_bio = parent;
392 	op->bio = NULL;
393 }
394 
395 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
396 {
397 	struct thin_c *tc = op->tc;
398 	sector_t s = block_to_sectors(tc->pool, data_b);
399 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
400 
401 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
402 				      GFP_NOWAIT, 0, &op->bio);
403 }
404 
405 static void end_discard(struct discard_op *op, int r)
406 {
407 	if (op->bio) {
408 		/*
409 		 * Even if one of the calls to issue_discard failed, we
410 		 * need to wait for the chain to complete.
411 		 */
412 		bio_chain(op->bio, op->parent_bio);
413 		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
414 		submit_bio(op->bio);
415 	}
416 
417 	blk_finish_plug(&op->plug);
418 
419 	/*
420 	 * Even if r is set, there could be sub discards in flight that we
421 	 * need to wait for.
422 	 */
423 	if (r && !op->parent_bio->bi_status)
424 		op->parent_bio->bi_status = errno_to_blk_status(r);
425 	bio_endio(op->parent_bio);
426 }
427 
428 /*----------------------------------------------------------------*/
429 
430 /*
431  * wake_worker() is used when new work is queued and when pool_resume is
432  * ready to continue deferred IO processing.
433  */
434 static void wake_worker(struct pool *pool)
435 {
436 	queue_work(pool->wq, &pool->worker);
437 }
438 
439 /*----------------------------------------------------------------*/
440 
441 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
442 		      struct dm_bio_prison_cell **cell_result)
443 {
444 	int r;
445 	struct dm_bio_prison_cell *cell_prealloc;
446 
447 	/*
448 	 * Allocate a cell from the prison's mempool.
449 	 * This might block but it can't fail.
450 	 */
451 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
452 
453 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
454 	if (r)
455 		/*
456 		 * We reused an old cell; we can get rid of
457 		 * the new one.
458 		 */
459 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
460 
461 	return r;
462 }
463 
464 static void cell_release(struct pool *pool,
465 			 struct dm_bio_prison_cell *cell,
466 			 struct bio_list *bios)
467 {
468 	dm_cell_release(pool->prison, cell, bios);
469 	dm_bio_prison_free_cell(pool->prison, cell);
470 }
471 
472 static void cell_visit_release(struct pool *pool,
473 			       void (*fn)(void *, struct dm_bio_prison_cell *),
474 			       void *context,
475 			       struct dm_bio_prison_cell *cell)
476 {
477 	dm_cell_visit_release(pool->prison, fn, context, cell);
478 	dm_bio_prison_free_cell(pool->prison, cell);
479 }
480 
481 static void cell_release_no_holder(struct pool *pool,
482 				   struct dm_bio_prison_cell *cell,
483 				   struct bio_list *bios)
484 {
485 	dm_cell_release_no_holder(pool->prison, cell, bios);
486 	dm_bio_prison_free_cell(pool->prison, cell);
487 }
488 
489 static void cell_error_with_code(struct pool *pool,
490 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
491 {
492 	dm_cell_error(pool->prison, cell, error_code);
493 	dm_bio_prison_free_cell(pool->prison, cell);
494 }
495 
496 static blk_status_t get_pool_io_error_code(struct pool *pool)
497 {
498 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
499 }
500 
501 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
502 {
503 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
504 }
505 
506 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
507 {
508 	cell_error_with_code(pool, cell, 0);
509 }
510 
511 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
512 {
513 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
514 }
515 
516 /*----------------------------------------------------------------*/
517 
518 /*
519  * A global list of pools that uses a struct mapped_device as a key.
520  */
521 static struct dm_thin_pool_table {
522 	struct mutex mutex;
523 	struct list_head pools;
524 } dm_thin_pool_table;
525 
526 static void pool_table_init(void)
527 {
528 	mutex_init(&dm_thin_pool_table.mutex);
529 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
530 }
531 
532 static void pool_table_exit(void)
533 {
534 	mutex_destroy(&dm_thin_pool_table.mutex);
535 }
536 
537 static void __pool_table_insert(struct pool *pool)
538 {
539 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
540 	list_add(&pool->list, &dm_thin_pool_table.pools);
541 }
542 
543 static void __pool_table_remove(struct pool *pool)
544 {
545 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
546 	list_del(&pool->list);
547 }
548 
549 static struct pool *__pool_table_lookup(struct mapped_device *md)
550 {
551 	struct pool *pool = NULL, *tmp;
552 
553 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
554 
555 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
556 		if (tmp->pool_md == md) {
557 			pool = tmp;
558 			break;
559 		}
560 	}
561 
562 	return pool;
563 }
564 
565 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
566 {
567 	struct pool *pool = NULL, *tmp;
568 
569 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
570 
571 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
572 		if (tmp->md_dev == md_dev) {
573 			pool = tmp;
574 			break;
575 		}
576 	}
577 
578 	return pool;
579 }
580 
581 /*----------------------------------------------------------------*/
582 
583 struct dm_thin_endio_hook {
584 	struct thin_c *tc;
585 	struct dm_deferred_entry *shared_read_entry;
586 	struct dm_deferred_entry *all_io_entry;
587 	struct dm_thin_new_mapping *overwrite_mapping;
588 	struct rb_node rb_node;
589 	struct dm_bio_prison_cell *cell;
590 };
591 
592 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
593 {
594 	bio_list_merge(bios, master);
595 	bio_list_init(master);
596 }
597 
598 static void error_bio_list(struct bio_list *bios, blk_status_t error)
599 {
600 	struct bio *bio;
601 
602 	while ((bio = bio_list_pop(bios))) {
603 		bio->bi_status = error;
604 		bio_endio(bio);
605 	}
606 }
607 
608 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
609 		blk_status_t error)
610 {
611 	struct bio_list bios;
612 
613 	bio_list_init(&bios);
614 
615 	spin_lock_irq(&tc->lock);
616 	__merge_bio_list(&bios, master);
617 	spin_unlock_irq(&tc->lock);
618 
619 	error_bio_list(&bios, error);
620 }
621 
622 static void requeue_deferred_cells(struct thin_c *tc)
623 {
624 	struct pool *pool = tc->pool;
625 	struct list_head cells;
626 	struct dm_bio_prison_cell *cell, *tmp;
627 
628 	INIT_LIST_HEAD(&cells);
629 
630 	spin_lock_irq(&tc->lock);
631 	list_splice_init(&tc->deferred_cells, &cells);
632 	spin_unlock_irq(&tc->lock);
633 
634 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
635 		cell_requeue(pool, cell);
636 }
637 
638 static void requeue_io(struct thin_c *tc)
639 {
640 	struct bio_list bios;
641 
642 	bio_list_init(&bios);
643 
644 	spin_lock_irq(&tc->lock);
645 	__merge_bio_list(&bios, &tc->deferred_bio_list);
646 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
647 	spin_unlock_irq(&tc->lock);
648 
649 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
650 	requeue_deferred_cells(tc);
651 }
652 
653 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
654 {
655 	struct thin_c *tc;
656 
657 	rcu_read_lock();
658 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
659 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
660 	rcu_read_unlock();
661 }
662 
663 static void error_retry_list(struct pool *pool)
664 {
665 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
666 }
667 
668 /*
669  * This section of code contains the logic for processing a thin device's IO.
670  * Much of the code depends on pool object resources (lists, workqueues, etc)
671  * but most is exclusively called from the thin target rather than the thin-pool
672  * target.
673  */
674 
675 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
676 {
677 	struct pool *pool = tc->pool;
678 	sector_t block_nr = bio->bi_iter.bi_sector;
679 
680 	if (block_size_is_power_of_two(pool))
681 		block_nr >>= pool->sectors_per_block_shift;
682 	else
683 		(void) sector_div(block_nr, pool->sectors_per_block);
684 
685 	return block_nr;
686 }
687 
688 /*
689  * Returns the _complete_ blocks that this bio covers.
690  */
691 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
692 				dm_block_t *begin, dm_block_t *end)
693 {
694 	struct pool *pool = tc->pool;
695 	sector_t b = bio->bi_iter.bi_sector;
696 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
697 
698 	b += pool->sectors_per_block - 1ull; /* so we round up */
699 
700 	if (block_size_is_power_of_two(pool)) {
701 		b >>= pool->sectors_per_block_shift;
702 		e >>= pool->sectors_per_block_shift;
703 	} else {
704 		(void) sector_div(b, pool->sectors_per_block);
705 		(void) sector_div(e, pool->sectors_per_block);
706 	}
707 
708 	if (e < b)
709 		/* Can happen if the bio is within a single block. */
710 		e = b;
711 
712 	*begin = b;
713 	*end = e;
714 }
715 
716 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
717 {
718 	struct pool *pool = tc->pool;
719 	sector_t bi_sector = bio->bi_iter.bi_sector;
720 
721 	bio_set_dev(bio, tc->pool_dev->bdev);
722 	if (block_size_is_power_of_two(pool))
723 		bio->bi_iter.bi_sector =
724 			(block << pool->sectors_per_block_shift) |
725 			(bi_sector & (pool->sectors_per_block - 1));
726 	else
727 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
728 				 sector_div(bi_sector, pool->sectors_per_block);
729 }
730 
731 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
732 {
733 	bio_set_dev(bio, tc->origin_dev->bdev);
734 }
735 
736 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
737 {
738 	return op_is_flush(bio->bi_opf) &&
739 		dm_thin_changed_this_transaction(tc->td);
740 }
741 
742 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
743 {
744 	struct dm_thin_endio_hook *h;
745 
746 	if (bio_op(bio) == REQ_OP_DISCARD)
747 		return;
748 
749 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
750 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
751 }
752 
753 static void issue(struct thin_c *tc, struct bio *bio)
754 {
755 	struct pool *pool = tc->pool;
756 
757 	if (!bio_triggers_commit(tc, bio)) {
758 		dm_submit_bio_remap(bio, NULL);
759 		return;
760 	}
761 
762 	/*
763 	 * Complete bio with an error if earlier I/O caused changes to
764 	 * the metadata that can't be committed e.g, due to I/O errors
765 	 * on the metadata device.
766 	 */
767 	if (dm_thin_aborted_changes(tc->td)) {
768 		bio_io_error(bio);
769 		return;
770 	}
771 
772 	/*
773 	 * Batch together any bios that trigger commits and then issue a
774 	 * single commit for them in process_deferred_bios().
775 	 */
776 	spin_lock_irq(&pool->lock);
777 	bio_list_add(&pool->deferred_flush_bios, bio);
778 	spin_unlock_irq(&pool->lock);
779 }
780 
781 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
782 {
783 	remap_to_origin(tc, bio);
784 	issue(tc, bio);
785 }
786 
787 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
788 			    dm_block_t block)
789 {
790 	remap(tc, bio, block);
791 	issue(tc, bio);
792 }
793 
794 /*----------------------------------------------------------------*/
795 
796 /*
797  * Bio endio functions.
798  */
799 struct dm_thin_new_mapping {
800 	struct list_head list;
801 
802 	bool pass_discard:1;
803 	bool maybe_shared:1;
804 
805 	/*
806 	 * Track quiescing, copying and zeroing preparation actions.  When this
807 	 * counter hits zero the block is prepared and can be inserted into the
808 	 * btree.
809 	 */
810 	atomic_t prepare_actions;
811 
812 	blk_status_t status;
813 	struct thin_c *tc;
814 	dm_block_t virt_begin, virt_end;
815 	dm_block_t data_block;
816 	struct dm_bio_prison_cell *cell;
817 
818 	/*
819 	 * If the bio covers the whole area of a block then we can avoid
820 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
821 	 * still be in the cell, so care has to be taken to avoid issuing
822 	 * the bio twice.
823 	 */
824 	struct bio *bio;
825 	bio_end_io_t *saved_bi_end_io;
826 };
827 
828 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
829 {
830 	struct pool *pool = m->tc->pool;
831 
832 	if (atomic_dec_and_test(&m->prepare_actions)) {
833 		list_add_tail(&m->list, &pool->prepared_mappings);
834 		wake_worker(pool);
835 	}
836 }
837 
838 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
839 {
840 	unsigned long flags;
841 	struct pool *pool = m->tc->pool;
842 
843 	spin_lock_irqsave(&pool->lock, flags);
844 	__complete_mapping_preparation(m);
845 	spin_unlock_irqrestore(&pool->lock, flags);
846 }
847 
848 static void copy_complete(int read_err, unsigned long write_err, void *context)
849 {
850 	struct dm_thin_new_mapping *m = context;
851 
852 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
853 	complete_mapping_preparation(m);
854 }
855 
856 static void overwrite_endio(struct bio *bio)
857 {
858 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
859 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
860 
861 	bio->bi_end_io = m->saved_bi_end_io;
862 
863 	m->status = bio->bi_status;
864 	complete_mapping_preparation(m);
865 }
866 
867 /*----------------------------------------------------------------*/
868 
869 /*
870  * Workqueue.
871  */
872 
873 /*
874  * Prepared mapping jobs.
875  */
876 
877 /*
878  * This sends the bios in the cell, except the original holder, back
879  * to the deferred_bios list.
880  */
881 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
882 {
883 	struct pool *pool = tc->pool;
884 	unsigned long flags;
885 	int has_work;
886 
887 	spin_lock_irqsave(&tc->lock, flags);
888 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
889 	has_work = !bio_list_empty(&tc->deferred_bio_list);
890 	spin_unlock_irqrestore(&tc->lock, flags);
891 
892 	if (has_work)
893 		wake_worker(pool);
894 }
895 
896 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
897 
898 struct remap_info {
899 	struct thin_c *tc;
900 	struct bio_list defer_bios;
901 	struct bio_list issue_bios;
902 };
903 
904 static void __inc_remap_and_issue_cell(void *context,
905 				       struct dm_bio_prison_cell *cell)
906 {
907 	struct remap_info *info = context;
908 	struct bio *bio;
909 
910 	while ((bio = bio_list_pop(&cell->bios))) {
911 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
912 			bio_list_add(&info->defer_bios, bio);
913 		else {
914 			inc_all_io_entry(info->tc->pool, bio);
915 
916 			/*
917 			 * We can't issue the bios with the bio prison lock
918 			 * held, so we add them to a list to issue on
919 			 * return from this function.
920 			 */
921 			bio_list_add(&info->issue_bios, bio);
922 		}
923 	}
924 }
925 
926 static void inc_remap_and_issue_cell(struct thin_c *tc,
927 				     struct dm_bio_prison_cell *cell,
928 				     dm_block_t block)
929 {
930 	struct bio *bio;
931 	struct remap_info info;
932 
933 	info.tc = tc;
934 	bio_list_init(&info.defer_bios);
935 	bio_list_init(&info.issue_bios);
936 
937 	/*
938 	 * We have to be careful to inc any bios we're about to issue
939 	 * before the cell is released, and avoid a race with new bios
940 	 * being added to the cell.
941 	 */
942 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
943 			   &info, cell);
944 
945 	while ((bio = bio_list_pop(&info.defer_bios)))
946 		thin_defer_bio(tc, bio);
947 
948 	while ((bio = bio_list_pop(&info.issue_bios)))
949 		remap_and_issue(info.tc, bio, block);
950 }
951 
952 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
953 {
954 	cell_error(m->tc->pool, m->cell);
955 	list_del(&m->list);
956 	mempool_free(m, &m->tc->pool->mapping_pool);
957 }
958 
959 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
960 {
961 	struct pool *pool = tc->pool;
962 
963 	/*
964 	 * If the bio has the REQ_FUA flag set we must commit the metadata
965 	 * before signaling its completion.
966 	 */
967 	if (!bio_triggers_commit(tc, bio)) {
968 		bio_endio(bio);
969 		return;
970 	}
971 
972 	/*
973 	 * Complete bio with an error if earlier I/O caused changes to the
974 	 * metadata that can't be committed, e.g, due to I/O errors on the
975 	 * metadata device.
976 	 */
977 	if (dm_thin_aborted_changes(tc->td)) {
978 		bio_io_error(bio);
979 		return;
980 	}
981 
982 	/*
983 	 * Batch together any bios that trigger commits and then issue a
984 	 * single commit for them in process_deferred_bios().
985 	 */
986 	spin_lock_irq(&pool->lock);
987 	bio_list_add(&pool->deferred_flush_completions, bio);
988 	spin_unlock_irq(&pool->lock);
989 }
990 
991 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
992 {
993 	struct thin_c *tc = m->tc;
994 	struct pool *pool = tc->pool;
995 	struct bio *bio = m->bio;
996 	int r;
997 
998 	if (m->status) {
999 		cell_error(pool, m->cell);
1000 		goto out;
1001 	}
1002 
1003 	/*
1004 	 * Commit the prepared block into the mapping btree.
1005 	 * Any I/O for this block arriving after this point will get
1006 	 * remapped to it directly.
1007 	 */
1008 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1009 	if (r) {
1010 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1011 		cell_error(pool, m->cell);
1012 		goto out;
1013 	}
1014 
1015 	/*
1016 	 * Release any bios held while the block was being provisioned.
1017 	 * If we are processing a write bio that completely covers the block,
1018 	 * we already processed it so can ignore it now when processing
1019 	 * the bios in the cell.
1020 	 */
1021 	if (bio) {
1022 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1023 		complete_overwrite_bio(tc, bio);
1024 	} else {
1025 		inc_all_io_entry(tc->pool, m->cell->holder);
1026 		remap_and_issue(tc, m->cell->holder, m->data_block);
1027 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1028 	}
1029 
1030 out:
1031 	list_del(&m->list);
1032 	mempool_free(m, &pool->mapping_pool);
1033 }
1034 
1035 /*----------------------------------------------------------------*/
1036 
1037 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1038 {
1039 	struct thin_c *tc = m->tc;
1040 	if (m->cell)
1041 		cell_defer_no_holder(tc, m->cell);
1042 	mempool_free(m, &tc->pool->mapping_pool);
1043 }
1044 
1045 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1046 {
1047 	bio_io_error(m->bio);
1048 	free_discard_mapping(m);
1049 }
1050 
1051 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1052 {
1053 	bio_endio(m->bio);
1054 	free_discard_mapping(m);
1055 }
1056 
1057 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1058 {
1059 	int r;
1060 	struct thin_c *tc = m->tc;
1061 
1062 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1063 	if (r) {
1064 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1065 		bio_io_error(m->bio);
1066 	} else
1067 		bio_endio(m->bio);
1068 
1069 	cell_defer_no_holder(tc, m->cell);
1070 	mempool_free(m, &tc->pool->mapping_pool);
1071 }
1072 
1073 /*----------------------------------------------------------------*/
1074 
1075 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1076 						   struct bio *discard_parent)
1077 {
1078 	/*
1079 	 * We've already unmapped this range of blocks, but before we
1080 	 * passdown we have to check that these blocks are now unused.
1081 	 */
1082 	int r = 0;
1083 	bool shared = true;
1084 	struct thin_c *tc = m->tc;
1085 	struct pool *pool = tc->pool;
1086 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1087 	struct discard_op op;
1088 
1089 	begin_discard(&op, tc, discard_parent);
1090 	while (b != end) {
1091 		/* find start of unmapped run */
1092 		for (; b < end; b++) {
1093 			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1094 			if (r)
1095 				goto out;
1096 
1097 			if (!shared)
1098 				break;
1099 		}
1100 
1101 		if (b == end)
1102 			break;
1103 
1104 		/* find end of run */
1105 		for (e = b + 1; e != end; e++) {
1106 			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1107 			if (r)
1108 				goto out;
1109 
1110 			if (shared)
1111 				break;
1112 		}
1113 
1114 		r = issue_discard(&op, b, e);
1115 		if (r)
1116 			goto out;
1117 
1118 		b = e;
1119 	}
1120 out:
1121 	end_discard(&op, r);
1122 }
1123 
1124 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1125 {
1126 	unsigned long flags;
1127 	struct pool *pool = m->tc->pool;
1128 
1129 	spin_lock_irqsave(&pool->lock, flags);
1130 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1131 	spin_unlock_irqrestore(&pool->lock, flags);
1132 	wake_worker(pool);
1133 }
1134 
1135 static void passdown_endio(struct bio *bio)
1136 {
1137 	/*
1138 	 * It doesn't matter if the passdown discard failed, we still want
1139 	 * to unmap (we ignore err).
1140 	 */
1141 	queue_passdown_pt2(bio->bi_private);
1142 	bio_put(bio);
1143 }
1144 
1145 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1146 {
1147 	int r;
1148 	struct thin_c *tc = m->tc;
1149 	struct pool *pool = tc->pool;
1150 	struct bio *discard_parent;
1151 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1152 
1153 	/*
1154 	 * Only this thread allocates blocks, so we can be sure that the
1155 	 * newly unmapped blocks will not be allocated before the end of
1156 	 * the function.
1157 	 */
1158 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1159 	if (r) {
1160 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1161 		bio_io_error(m->bio);
1162 		cell_defer_no_holder(tc, m->cell);
1163 		mempool_free(m, &pool->mapping_pool);
1164 		return;
1165 	}
1166 
1167 	/*
1168 	 * Increment the unmapped blocks.  This prevents a race between the
1169 	 * passdown io and reallocation of freed blocks.
1170 	 */
1171 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1172 	if (r) {
1173 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1174 		bio_io_error(m->bio);
1175 		cell_defer_no_holder(tc, m->cell);
1176 		mempool_free(m, &pool->mapping_pool);
1177 		return;
1178 	}
1179 
1180 	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1181 	discard_parent->bi_end_io = passdown_endio;
1182 	discard_parent->bi_private = m;
1183  	if (m->maybe_shared)
1184  		passdown_double_checking_shared_status(m, discard_parent);
1185  	else {
1186 		struct discard_op op;
1187 
1188 		begin_discard(&op, tc, discard_parent);
1189 		r = issue_discard(&op, m->data_block, data_end);
1190 		end_discard(&op, r);
1191 	}
1192 }
1193 
1194 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1195 {
1196 	int r;
1197 	struct thin_c *tc = m->tc;
1198 	struct pool *pool = tc->pool;
1199 
1200 	/*
1201 	 * The passdown has completed, so now we can decrement all those
1202 	 * unmapped blocks.
1203 	 */
1204 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1205 				   m->data_block + (m->virt_end - m->virt_begin));
1206 	if (r) {
1207 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1208 		bio_io_error(m->bio);
1209 	} else
1210 		bio_endio(m->bio);
1211 
1212 	cell_defer_no_holder(tc, m->cell);
1213 	mempool_free(m, &pool->mapping_pool);
1214 }
1215 
1216 static void process_prepared(struct pool *pool, struct list_head *head,
1217 			     process_mapping_fn *fn)
1218 {
1219 	struct list_head maps;
1220 	struct dm_thin_new_mapping *m, *tmp;
1221 
1222 	INIT_LIST_HEAD(&maps);
1223 	spin_lock_irq(&pool->lock);
1224 	list_splice_init(head, &maps);
1225 	spin_unlock_irq(&pool->lock);
1226 
1227 	list_for_each_entry_safe(m, tmp, &maps, list)
1228 		(*fn)(m);
1229 }
1230 
1231 /*
1232  * Deferred bio jobs.
1233  */
1234 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1235 {
1236 	return bio->bi_iter.bi_size ==
1237 		(pool->sectors_per_block << SECTOR_SHIFT);
1238 }
1239 
1240 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1241 {
1242 	return (bio_data_dir(bio) == WRITE) &&
1243 		io_overlaps_block(pool, bio);
1244 }
1245 
1246 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1247 			       bio_end_io_t *fn)
1248 {
1249 	*save = bio->bi_end_io;
1250 	bio->bi_end_io = fn;
1251 }
1252 
1253 static int ensure_next_mapping(struct pool *pool)
1254 {
1255 	if (pool->next_mapping)
1256 		return 0;
1257 
1258 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1259 
1260 	return pool->next_mapping ? 0 : -ENOMEM;
1261 }
1262 
1263 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1264 {
1265 	struct dm_thin_new_mapping *m = pool->next_mapping;
1266 
1267 	BUG_ON(!pool->next_mapping);
1268 
1269 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1270 	INIT_LIST_HEAD(&m->list);
1271 	m->bio = NULL;
1272 
1273 	pool->next_mapping = NULL;
1274 
1275 	return m;
1276 }
1277 
1278 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1279 		    sector_t begin, sector_t end)
1280 {
1281 	struct dm_io_region to;
1282 
1283 	to.bdev = tc->pool_dev->bdev;
1284 	to.sector = begin;
1285 	to.count = end - begin;
1286 
1287 	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1288 }
1289 
1290 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1291 				      dm_block_t data_begin,
1292 				      struct dm_thin_new_mapping *m)
1293 {
1294 	struct pool *pool = tc->pool;
1295 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1296 
1297 	h->overwrite_mapping = m;
1298 	m->bio = bio;
1299 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1300 	inc_all_io_entry(pool, bio);
1301 	remap_and_issue(tc, bio, data_begin);
1302 }
1303 
1304 /*
1305  * A partial copy also needs to zero the uncopied region.
1306  */
1307 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1308 			  struct dm_dev *origin, dm_block_t data_origin,
1309 			  dm_block_t data_dest,
1310 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1311 			  sector_t len)
1312 {
1313 	struct pool *pool = tc->pool;
1314 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1315 
1316 	m->tc = tc;
1317 	m->virt_begin = virt_block;
1318 	m->virt_end = virt_block + 1u;
1319 	m->data_block = data_dest;
1320 	m->cell = cell;
1321 
1322 	/*
1323 	 * quiesce action + copy action + an extra reference held for the
1324 	 * duration of this function (we may need to inc later for a
1325 	 * partial zero).
1326 	 */
1327 	atomic_set(&m->prepare_actions, 3);
1328 
1329 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1330 		complete_mapping_preparation(m); /* already quiesced */
1331 
1332 	/*
1333 	 * IO to pool_dev remaps to the pool target's data_dev.
1334 	 *
1335 	 * If the whole block of data is being overwritten, we can issue the
1336 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1337 	 */
1338 	if (io_overwrites_block(pool, bio))
1339 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1340 	else {
1341 		struct dm_io_region from, to;
1342 
1343 		from.bdev = origin->bdev;
1344 		from.sector = data_origin * pool->sectors_per_block;
1345 		from.count = len;
1346 
1347 		to.bdev = tc->pool_dev->bdev;
1348 		to.sector = data_dest * pool->sectors_per_block;
1349 		to.count = len;
1350 
1351 		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1352 			       0, copy_complete, m);
1353 
1354 		/*
1355 		 * Do we need to zero a tail region?
1356 		 */
1357 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1358 			atomic_inc(&m->prepare_actions);
1359 			ll_zero(tc, m,
1360 				data_dest * pool->sectors_per_block + len,
1361 				(data_dest + 1) * pool->sectors_per_block);
1362 		}
1363 	}
1364 
1365 	complete_mapping_preparation(m); /* drop our ref */
1366 }
1367 
1368 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1369 				   dm_block_t data_origin, dm_block_t data_dest,
1370 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1371 {
1372 	schedule_copy(tc, virt_block, tc->pool_dev,
1373 		      data_origin, data_dest, cell, bio,
1374 		      tc->pool->sectors_per_block);
1375 }
1376 
1377 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1378 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1379 			  struct bio *bio)
1380 {
1381 	struct pool *pool = tc->pool;
1382 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1383 
1384 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1385 	m->tc = tc;
1386 	m->virt_begin = virt_block;
1387 	m->virt_end = virt_block + 1u;
1388 	m->data_block = data_block;
1389 	m->cell = cell;
1390 
1391 	/*
1392 	 * If the whole block of data is being overwritten or we are not
1393 	 * zeroing pre-existing data, we can issue the bio immediately.
1394 	 * Otherwise we use kcopyd to zero the data first.
1395 	 */
1396 	if (pool->pf.zero_new_blocks) {
1397 		if (io_overwrites_block(pool, bio))
1398 			remap_and_issue_overwrite(tc, bio, data_block, m);
1399 		else
1400 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1401 				(data_block + 1) * pool->sectors_per_block);
1402 	} else
1403 		process_prepared_mapping(m);
1404 }
1405 
1406 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1407 				   dm_block_t data_dest,
1408 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1409 {
1410 	struct pool *pool = tc->pool;
1411 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1412 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1413 
1414 	if (virt_block_end <= tc->origin_size)
1415 		schedule_copy(tc, virt_block, tc->origin_dev,
1416 			      virt_block, data_dest, cell, bio,
1417 			      pool->sectors_per_block);
1418 
1419 	else if (virt_block_begin < tc->origin_size)
1420 		schedule_copy(tc, virt_block, tc->origin_dev,
1421 			      virt_block, data_dest, cell, bio,
1422 			      tc->origin_size - virt_block_begin);
1423 
1424 	else
1425 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1426 }
1427 
1428 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1429 
1430 static void requeue_bios(struct pool *pool);
1431 
1432 static bool is_read_only_pool_mode(enum pool_mode mode)
1433 {
1434 	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1435 }
1436 
1437 static bool is_read_only(struct pool *pool)
1438 {
1439 	return is_read_only_pool_mode(get_pool_mode(pool));
1440 }
1441 
1442 static void check_for_metadata_space(struct pool *pool)
1443 {
1444 	int r;
1445 	const char *ooms_reason = NULL;
1446 	dm_block_t nr_free;
1447 
1448 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1449 	if (r)
1450 		ooms_reason = "Could not get free metadata blocks";
1451 	else if (!nr_free)
1452 		ooms_reason = "No free metadata blocks";
1453 
1454 	if (ooms_reason && !is_read_only(pool)) {
1455 		DMERR("%s", ooms_reason);
1456 		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1457 	}
1458 }
1459 
1460 static void check_for_data_space(struct pool *pool)
1461 {
1462 	int r;
1463 	dm_block_t nr_free;
1464 
1465 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1466 		return;
1467 
1468 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1469 	if (r)
1470 		return;
1471 
1472 	if (nr_free) {
1473 		set_pool_mode(pool, PM_WRITE);
1474 		requeue_bios(pool);
1475 	}
1476 }
1477 
1478 /*
1479  * A non-zero return indicates read_only or fail_io mode.
1480  * Many callers don't care about the return value.
1481  */
1482 static int commit(struct pool *pool)
1483 {
1484 	int r;
1485 
1486 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1487 		return -EINVAL;
1488 
1489 	r = dm_pool_commit_metadata(pool->pmd);
1490 	if (r)
1491 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1492 	else {
1493 		check_for_metadata_space(pool);
1494 		check_for_data_space(pool);
1495 	}
1496 
1497 	return r;
1498 }
1499 
1500 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1501 {
1502 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1503 		DMWARN("%s: reached low water mark for data device: sending event.",
1504 		       dm_device_name(pool->pool_md));
1505 		spin_lock_irq(&pool->lock);
1506 		pool->low_water_triggered = true;
1507 		spin_unlock_irq(&pool->lock);
1508 		dm_table_event(pool->ti->table);
1509 	}
1510 }
1511 
1512 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1513 {
1514 	int r;
1515 	dm_block_t free_blocks;
1516 	struct pool *pool = tc->pool;
1517 
1518 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1519 		return -EINVAL;
1520 
1521 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1522 	if (r) {
1523 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1524 		return r;
1525 	}
1526 
1527 	check_low_water_mark(pool, free_blocks);
1528 
1529 	if (!free_blocks) {
1530 		/*
1531 		 * Try to commit to see if that will free up some
1532 		 * more space.
1533 		 */
1534 		r = commit(pool);
1535 		if (r)
1536 			return r;
1537 
1538 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1539 		if (r) {
1540 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1541 			return r;
1542 		}
1543 
1544 		if (!free_blocks) {
1545 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1546 			return -ENOSPC;
1547 		}
1548 	}
1549 
1550 	r = dm_pool_alloc_data_block(pool->pmd, result);
1551 	if (r) {
1552 		if (r == -ENOSPC)
1553 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1554 		else
1555 			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1556 		return r;
1557 	}
1558 
1559 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1560 	if (r) {
1561 		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1562 		return r;
1563 	}
1564 
1565 	if (!free_blocks) {
1566 		/* Let's commit before we use up the metadata reserve. */
1567 		r = commit(pool);
1568 		if (r)
1569 			return r;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 /*
1576  * If we have run out of space, queue bios until the device is
1577  * resumed, presumably after having been reloaded with more space.
1578  */
1579 static void retry_on_resume(struct bio *bio)
1580 {
1581 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1582 	struct thin_c *tc = h->tc;
1583 
1584 	spin_lock_irq(&tc->lock);
1585 	bio_list_add(&tc->retry_on_resume_list, bio);
1586 	spin_unlock_irq(&tc->lock);
1587 }
1588 
1589 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1590 {
1591 	enum pool_mode m = get_pool_mode(pool);
1592 
1593 	switch (m) {
1594 	case PM_WRITE:
1595 		/* Shouldn't get here */
1596 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1597 		return BLK_STS_IOERR;
1598 
1599 	case PM_OUT_OF_DATA_SPACE:
1600 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1601 
1602 	case PM_OUT_OF_METADATA_SPACE:
1603 	case PM_READ_ONLY:
1604 	case PM_FAIL:
1605 		return BLK_STS_IOERR;
1606 	default:
1607 		/* Shouldn't get here */
1608 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1609 		return BLK_STS_IOERR;
1610 	}
1611 }
1612 
1613 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1614 {
1615 	blk_status_t error = should_error_unserviceable_bio(pool);
1616 
1617 	if (error) {
1618 		bio->bi_status = error;
1619 		bio_endio(bio);
1620 	} else
1621 		retry_on_resume(bio);
1622 }
1623 
1624 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1625 {
1626 	struct bio *bio;
1627 	struct bio_list bios;
1628 	blk_status_t error;
1629 
1630 	error = should_error_unserviceable_bio(pool);
1631 	if (error) {
1632 		cell_error_with_code(pool, cell, error);
1633 		return;
1634 	}
1635 
1636 	bio_list_init(&bios);
1637 	cell_release(pool, cell, &bios);
1638 
1639 	while ((bio = bio_list_pop(&bios)))
1640 		retry_on_resume(bio);
1641 }
1642 
1643 static void process_discard_cell_no_passdown(struct thin_c *tc,
1644 					     struct dm_bio_prison_cell *virt_cell)
1645 {
1646 	struct pool *pool = tc->pool;
1647 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1648 
1649 	/*
1650 	 * We don't need to lock the data blocks, since there's no
1651 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1652 	 */
1653 	m->tc = tc;
1654 	m->virt_begin = virt_cell->key.block_begin;
1655 	m->virt_end = virt_cell->key.block_end;
1656 	m->cell = virt_cell;
1657 	m->bio = virt_cell->holder;
1658 
1659 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1660 		pool->process_prepared_discard(m);
1661 }
1662 
1663 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1664 				 struct bio *bio)
1665 {
1666 	struct pool *pool = tc->pool;
1667 
1668 	int r;
1669 	bool maybe_shared;
1670 	struct dm_cell_key data_key;
1671 	struct dm_bio_prison_cell *data_cell;
1672 	struct dm_thin_new_mapping *m;
1673 	dm_block_t virt_begin, virt_end, data_begin;
1674 
1675 	while (begin != end) {
1676 		r = ensure_next_mapping(pool);
1677 		if (r)
1678 			/* we did our best */
1679 			return;
1680 
1681 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1682 					      &data_begin, &maybe_shared);
1683 		if (r)
1684 			/*
1685 			 * Silently fail, letting any mappings we've
1686 			 * created complete.
1687 			 */
1688 			break;
1689 
1690 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1691 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1692 			/* contention, we'll give up with this range */
1693 			begin = virt_end;
1694 			continue;
1695 		}
1696 
1697 		/*
1698 		 * IO may still be going to the destination block.  We must
1699 		 * quiesce before we can do the removal.
1700 		 */
1701 		m = get_next_mapping(pool);
1702 		m->tc = tc;
1703 		m->maybe_shared = maybe_shared;
1704 		m->virt_begin = virt_begin;
1705 		m->virt_end = virt_end;
1706 		m->data_block = data_begin;
1707 		m->cell = data_cell;
1708 		m->bio = bio;
1709 
1710 		/*
1711 		 * The parent bio must not complete before sub discard bios are
1712 		 * chained to it (see end_discard's bio_chain)!
1713 		 *
1714 		 * This per-mapping bi_remaining increment is paired with
1715 		 * the implicit decrement that occurs via bio_endio() in
1716 		 * end_discard().
1717 		 */
1718 		bio_inc_remaining(bio);
1719 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1720 			pool->process_prepared_discard(m);
1721 
1722 		begin = virt_end;
1723 	}
1724 }
1725 
1726 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1727 {
1728 	struct bio *bio = virt_cell->holder;
1729 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1730 
1731 	/*
1732 	 * The virt_cell will only get freed once the origin bio completes.
1733 	 * This means it will remain locked while all the individual
1734 	 * passdown bios are in flight.
1735 	 */
1736 	h->cell = virt_cell;
1737 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1738 
1739 	/*
1740 	 * We complete the bio now, knowing that the bi_remaining field
1741 	 * will prevent completion until the sub range discards have
1742 	 * completed.
1743 	 */
1744 	bio_endio(bio);
1745 }
1746 
1747 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1748 {
1749 	dm_block_t begin, end;
1750 	struct dm_cell_key virt_key;
1751 	struct dm_bio_prison_cell *virt_cell;
1752 
1753 	get_bio_block_range(tc, bio, &begin, &end);
1754 	if (begin == end) {
1755 		/*
1756 		 * The discard covers less than a block.
1757 		 */
1758 		bio_endio(bio);
1759 		return;
1760 	}
1761 
1762 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1763 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1764 		/*
1765 		 * Potential starvation issue: We're relying on the
1766 		 * fs/application being well behaved, and not trying to
1767 		 * send IO to a region at the same time as discarding it.
1768 		 * If they do this persistently then it's possible this
1769 		 * cell will never be granted.
1770 		 */
1771 		return;
1772 
1773 	tc->pool->process_discard_cell(tc, virt_cell);
1774 }
1775 
1776 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1777 			  struct dm_cell_key *key,
1778 			  struct dm_thin_lookup_result *lookup_result,
1779 			  struct dm_bio_prison_cell *cell)
1780 {
1781 	int r;
1782 	dm_block_t data_block;
1783 	struct pool *pool = tc->pool;
1784 
1785 	r = alloc_data_block(tc, &data_block);
1786 	switch (r) {
1787 	case 0:
1788 		schedule_internal_copy(tc, block, lookup_result->block,
1789 				       data_block, cell, bio);
1790 		break;
1791 
1792 	case -ENOSPC:
1793 		retry_bios_on_resume(pool, cell);
1794 		break;
1795 
1796 	default:
1797 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1798 			    __func__, r);
1799 		cell_error(pool, cell);
1800 		break;
1801 	}
1802 }
1803 
1804 static void __remap_and_issue_shared_cell(void *context,
1805 					  struct dm_bio_prison_cell *cell)
1806 {
1807 	struct remap_info *info = context;
1808 	struct bio *bio;
1809 
1810 	while ((bio = bio_list_pop(&cell->bios))) {
1811 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1812 		    bio_op(bio) == REQ_OP_DISCARD)
1813 			bio_list_add(&info->defer_bios, bio);
1814 		else {
1815 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1816 
1817 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1818 			inc_all_io_entry(info->tc->pool, bio);
1819 			bio_list_add(&info->issue_bios, bio);
1820 		}
1821 	}
1822 }
1823 
1824 static void remap_and_issue_shared_cell(struct thin_c *tc,
1825 					struct dm_bio_prison_cell *cell,
1826 					dm_block_t block)
1827 {
1828 	struct bio *bio;
1829 	struct remap_info info;
1830 
1831 	info.tc = tc;
1832 	bio_list_init(&info.defer_bios);
1833 	bio_list_init(&info.issue_bios);
1834 
1835 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1836 			   &info, cell);
1837 
1838 	while ((bio = bio_list_pop(&info.defer_bios)))
1839 		thin_defer_bio(tc, bio);
1840 
1841 	while ((bio = bio_list_pop(&info.issue_bios)))
1842 		remap_and_issue(tc, bio, block);
1843 }
1844 
1845 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1846 			       dm_block_t block,
1847 			       struct dm_thin_lookup_result *lookup_result,
1848 			       struct dm_bio_prison_cell *virt_cell)
1849 {
1850 	struct dm_bio_prison_cell *data_cell;
1851 	struct pool *pool = tc->pool;
1852 	struct dm_cell_key key;
1853 
1854 	/*
1855 	 * If cell is already occupied, then sharing is already in the process
1856 	 * of being broken so we have nothing further to do here.
1857 	 */
1858 	build_data_key(tc->td, lookup_result->block, &key);
1859 	if (bio_detain(pool, &key, bio, &data_cell)) {
1860 		cell_defer_no_holder(tc, virt_cell);
1861 		return;
1862 	}
1863 
1864 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1865 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1866 		cell_defer_no_holder(tc, virt_cell);
1867 	} else {
1868 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1869 
1870 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1871 		inc_all_io_entry(pool, bio);
1872 		remap_and_issue(tc, bio, lookup_result->block);
1873 
1874 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1875 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1876 	}
1877 }
1878 
1879 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1880 			    struct dm_bio_prison_cell *cell)
1881 {
1882 	int r;
1883 	dm_block_t data_block;
1884 	struct pool *pool = tc->pool;
1885 
1886 	/*
1887 	 * Remap empty bios (flushes) immediately, without provisioning.
1888 	 */
1889 	if (!bio->bi_iter.bi_size) {
1890 		inc_all_io_entry(pool, bio);
1891 		cell_defer_no_holder(tc, cell);
1892 
1893 		remap_and_issue(tc, bio, 0);
1894 		return;
1895 	}
1896 
1897 	/*
1898 	 * Fill read bios with zeroes and complete them immediately.
1899 	 */
1900 	if (bio_data_dir(bio) == READ) {
1901 		zero_fill_bio(bio);
1902 		cell_defer_no_holder(tc, cell);
1903 		bio_endio(bio);
1904 		return;
1905 	}
1906 
1907 	r = alloc_data_block(tc, &data_block);
1908 	switch (r) {
1909 	case 0:
1910 		if (tc->origin_dev)
1911 			schedule_external_copy(tc, block, data_block, cell, bio);
1912 		else
1913 			schedule_zero(tc, block, data_block, cell, bio);
1914 		break;
1915 
1916 	case -ENOSPC:
1917 		retry_bios_on_resume(pool, cell);
1918 		break;
1919 
1920 	default:
1921 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1922 			    __func__, r);
1923 		cell_error(pool, cell);
1924 		break;
1925 	}
1926 }
1927 
1928 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1929 {
1930 	int r;
1931 	struct pool *pool = tc->pool;
1932 	struct bio *bio = cell->holder;
1933 	dm_block_t block = get_bio_block(tc, bio);
1934 	struct dm_thin_lookup_result lookup_result;
1935 
1936 	if (tc->requeue_mode) {
1937 		cell_requeue(pool, cell);
1938 		return;
1939 	}
1940 
1941 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1942 	switch (r) {
1943 	case 0:
1944 		if (lookup_result.shared)
1945 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1946 		else {
1947 			inc_all_io_entry(pool, bio);
1948 			remap_and_issue(tc, bio, lookup_result.block);
1949 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1950 		}
1951 		break;
1952 
1953 	case -ENODATA:
1954 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1955 			inc_all_io_entry(pool, bio);
1956 			cell_defer_no_holder(tc, cell);
1957 
1958 			if (bio_end_sector(bio) <= tc->origin_size)
1959 				remap_to_origin_and_issue(tc, bio);
1960 
1961 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1962 				zero_fill_bio(bio);
1963 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1964 				remap_to_origin_and_issue(tc, bio);
1965 
1966 			} else {
1967 				zero_fill_bio(bio);
1968 				bio_endio(bio);
1969 			}
1970 		} else
1971 			provision_block(tc, bio, block, cell);
1972 		break;
1973 
1974 	default:
1975 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1976 			    __func__, r);
1977 		cell_defer_no_holder(tc, cell);
1978 		bio_io_error(bio);
1979 		break;
1980 	}
1981 }
1982 
1983 static void process_bio(struct thin_c *tc, struct bio *bio)
1984 {
1985 	struct pool *pool = tc->pool;
1986 	dm_block_t block = get_bio_block(tc, bio);
1987 	struct dm_bio_prison_cell *cell;
1988 	struct dm_cell_key key;
1989 
1990 	/*
1991 	 * If cell is already occupied, then the block is already
1992 	 * being provisioned so we have nothing further to do here.
1993 	 */
1994 	build_virtual_key(tc->td, block, &key);
1995 	if (bio_detain(pool, &key, bio, &cell))
1996 		return;
1997 
1998 	process_cell(tc, cell);
1999 }
2000 
2001 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2002 				    struct dm_bio_prison_cell *cell)
2003 {
2004 	int r;
2005 	int rw = bio_data_dir(bio);
2006 	dm_block_t block = get_bio_block(tc, bio);
2007 	struct dm_thin_lookup_result lookup_result;
2008 
2009 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2010 	switch (r) {
2011 	case 0:
2012 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2013 			handle_unserviceable_bio(tc->pool, bio);
2014 			if (cell)
2015 				cell_defer_no_holder(tc, cell);
2016 		} else {
2017 			inc_all_io_entry(tc->pool, bio);
2018 			remap_and_issue(tc, bio, lookup_result.block);
2019 			if (cell)
2020 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2021 		}
2022 		break;
2023 
2024 	case -ENODATA:
2025 		if (cell)
2026 			cell_defer_no_holder(tc, cell);
2027 		if (rw != READ) {
2028 			handle_unserviceable_bio(tc->pool, bio);
2029 			break;
2030 		}
2031 
2032 		if (tc->origin_dev) {
2033 			inc_all_io_entry(tc->pool, bio);
2034 			remap_to_origin_and_issue(tc, bio);
2035 			break;
2036 		}
2037 
2038 		zero_fill_bio(bio);
2039 		bio_endio(bio);
2040 		break;
2041 
2042 	default:
2043 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2044 			    __func__, r);
2045 		if (cell)
2046 			cell_defer_no_holder(tc, cell);
2047 		bio_io_error(bio);
2048 		break;
2049 	}
2050 }
2051 
2052 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2053 {
2054 	__process_bio_read_only(tc, bio, NULL);
2055 }
2056 
2057 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2058 {
2059 	__process_bio_read_only(tc, cell->holder, cell);
2060 }
2061 
2062 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2063 {
2064 	bio_endio(bio);
2065 }
2066 
2067 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2068 {
2069 	bio_io_error(bio);
2070 }
2071 
2072 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2073 {
2074 	cell_success(tc->pool, cell);
2075 }
2076 
2077 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2078 {
2079 	cell_error(tc->pool, cell);
2080 }
2081 
2082 /*
2083  * FIXME: should we also commit due to size of transaction, measured in
2084  * metadata blocks?
2085  */
2086 static int need_commit_due_to_time(struct pool *pool)
2087 {
2088 	return !time_in_range(jiffies, pool->last_commit_jiffies,
2089 			      pool->last_commit_jiffies + COMMIT_PERIOD);
2090 }
2091 
2092 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2093 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2094 
2095 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2096 {
2097 	struct rb_node **rbp, *parent;
2098 	struct dm_thin_endio_hook *pbd;
2099 	sector_t bi_sector = bio->bi_iter.bi_sector;
2100 
2101 	rbp = &tc->sort_bio_list.rb_node;
2102 	parent = NULL;
2103 	while (*rbp) {
2104 		parent = *rbp;
2105 		pbd = thin_pbd(parent);
2106 
2107 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2108 			rbp = &(*rbp)->rb_left;
2109 		else
2110 			rbp = &(*rbp)->rb_right;
2111 	}
2112 
2113 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2114 	rb_link_node(&pbd->rb_node, parent, rbp);
2115 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2116 }
2117 
2118 static void __extract_sorted_bios(struct thin_c *tc)
2119 {
2120 	struct rb_node *node;
2121 	struct dm_thin_endio_hook *pbd;
2122 	struct bio *bio;
2123 
2124 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2125 		pbd = thin_pbd(node);
2126 		bio = thin_bio(pbd);
2127 
2128 		bio_list_add(&tc->deferred_bio_list, bio);
2129 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2130 	}
2131 
2132 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2133 }
2134 
2135 static void __sort_thin_deferred_bios(struct thin_c *tc)
2136 {
2137 	struct bio *bio;
2138 	struct bio_list bios;
2139 
2140 	bio_list_init(&bios);
2141 	bio_list_merge(&bios, &tc->deferred_bio_list);
2142 	bio_list_init(&tc->deferred_bio_list);
2143 
2144 	/* Sort deferred_bio_list using rb-tree */
2145 	while ((bio = bio_list_pop(&bios)))
2146 		__thin_bio_rb_add(tc, bio);
2147 
2148 	/*
2149 	 * Transfer the sorted bios in sort_bio_list back to
2150 	 * deferred_bio_list to allow lockless submission of
2151 	 * all bios.
2152 	 */
2153 	__extract_sorted_bios(tc);
2154 }
2155 
2156 static void process_thin_deferred_bios(struct thin_c *tc)
2157 {
2158 	struct pool *pool = tc->pool;
2159 	struct bio *bio;
2160 	struct bio_list bios;
2161 	struct blk_plug plug;
2162 	unsigned count = 0;
2163 
2164 	if (tc->requeue_mode) {
2165 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2166 				BLK_STS_DM_REQUEUE);
2167 		return;
2168 	}
2169 
2170 	bio_list_init(&bios);
2171 
2172 	spin_lock_irq(&tc->lock);
2173 
2174 	if (bio_list_empty(&tc->deferred_bio_list)) {
2175 		spin_unlock_irq(&tc->lock);
2176 		return;
2177 	}
2178 
2179 	__sort_thin_deferred_bios(tc);
2180 
2181 	bio_list_merge(&bios, &tc->deferred_bio_list);
2182 	bio_list_init(&tc->deferred_bio_list);
2183 
2184 	spin_unlock_irq(&tc->lock);
2185 
2186 	blk_start_plug(&plug);
2187 	while ((bio = bio_list_pop(&bios))) {
2188 		/*
2189 		 * If we've got no free new_mapping structs, and processing
2190 		 * this bio might require one, we pause until there are some
2191 		 * prepared mappings to process.
2192 		 */
2193 		if (ensure_next_mapping(pool)) {
2194 			spin_lock_irq(&tc->lock);
2195 			bio_list_add(&tc->deferred_bio_list, bio);
2196 			bio_list_merge(&tc->deferred_bio_list, &bios);
2197 			spin_unlock_irq(&tc->lock);
2198 			break;
2199 		}
2200 
2201 		if (bio_op(bio) == REQ_OP_DISCARD)
2202 			pool->process_discard(tc, bio);
2203 		else
2204 			pool->process_bio(tc, bio);
2205 
2206 		if ((count++ & 127) == 0) {
2207 			throttle_work_update(&pool->throttle);
2208 			dm_pool_issue_prefetches(pool->pmd);
2209 		}
2210 	}
2211 	blk_finish_plug(&plug);
2212 }
2213 
2214 static int cmp_cells(const void *lhs, const void *rhs)
2215 {
2216 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2217 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2218 
2219 	BUG_ON(!lhs_cell->holder);
2220 	BUG_ON(!rhs_cell->holder);
2221 
2222 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2223 		return -1;
2224 
2225 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2226 		return 1;
2227 
2228 	return 0;
2229 }
2230 
2231 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2232 {
2233 	unsigned count = 0;
2234 	struct dm_bio_prison_cell *cell, *tmp;
2235 
2236 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2237 		if (count >= CELL_SORT_ARRAY_SIZE)
2238 			break;
2239 
2240 		pool->cell_sort_array[count++] = cell;
2241 		list_del(&cell->user_list);
2242 	}
2243 
2244 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2245 
2246 	return count;
2247 }
2248 
2249 static void process_thin_deferred_cells(struct thin_c *tc)
2250 {
2251 	struct pool *pool = tc->pool;
2252 	struct list_head cells;
2253 	struct dm_bio_prison_cell *cell;
2254 	unsigned i, j, count;
2255 
2256 	INIT_LIST_HEAD(&cells);
2257 
2258 	spin_lock_irq(&tc->lock);
2259 	list_splice_init(&tc->deferred_cells, &cells);
2260 	spin_unlock_irq(&tc->lock);
2261 
2262 	if (list_empty(&cells))
2263 		return;
2264 
2265 	do {
2266 		count = sort_cells(tc->pool, &cells);
2267 
2268 		for (i = 0; i < count; i++) {
2269 			cell = pool->cell_sort_array[i];
2270 			BUG_ON(!cell->holder);
2271 
2272 			/*
2273 			 * If we've got no free new_mapping structs, and processing
2274 			 * this bio might require one, we pause until there are some
2275 			 * prepared mappings to process.
2276 			 */
2277 			if (ensure_next_mapping(pool)) {
2278 				for (j = i; j < count; j++)
2279 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2280 
2281 				spin_lock_irq(&tc->lock);
2282 				list_splice(&cells, &tc->deferred_cells);
2283 				spin_unlock_irq(&tc->lock);
2284 				return;
2285 			}
2286 
2287 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2288 				pool->process_discard_cell(tc, cell);
2289 			else
2290 				pool->process_cell(tc, cell);
2291 		}
2292 	} while (!list_empty(&cells));
2293 }
2294 
2295 static void thin_get(struct thin_c *tc);
2296 static void thin_put(struct thin_c *tc);
2297 
2298 /*
2299  * We can't hold rcu_read_lock() around code that can block.  So we
2300  * find a thin with the rcu lock held; bump a refcount; then drop
2301  * the lock.
2302  */
2303 static struct thin_c *get_first_thin(struct pool *pool)
2304 {
2305 	struct thin_c *tc = NULL;
2306 
2307 	rcu_read_lock();
2308 	if (!list_empty(&pool->active_thins)) {
2309 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2310 		thin_get(tc);
2311 	}
2312 	rcu_read_unlock();
2313 
2314 	return tc;
2315 }
2316 
2317 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2318 {
2319 	struct thin_c *old_tc = tc;
2320 
2321 	rcu_read_lock();
2322 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2323 		thin_get(tc);
2324 		thin_put(old_tc);
2325 		rcu_read_unlock();
2326 		return tc;
2327 	}
2328 	thin_put(old_tc);
2329 	rcu_read_unlock();
2330 
2331 	return NULL;
2332 }
2333 
2334 static void process_deferred_bios(struct pool *pool)
2335 {
2336 	struct bio *bio;
2337 	struct bio_list bios, bio_completions;
2338 	struct thin_c *tc;
2339 
2340 	tc = get_first_thin(pool);
2341 	while (tc) {
2342 		process_thin_deferred_cells(tc);
2343 		process_thin_deferred_bios(tc);
2344 		tc = get_next_thin(pool, tc);
2345 	}
2346 
2347 	/*
2348 	 * If there are any deferred flush bios, we must commit the metadata
2349 	 * before issuing them or signaling their completion.
2350 	 */
2351 	bio_list_init(&bios);
2352 	bio_list_init(&bio_completions);
2353 
2354 	spin_lock_irq(&pool->lock);
2355 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2356 	bio_list_init(&pool->deferred_flush_bios);
2357 
2358 	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2359 	bio_list_init(&pool->deferred_flush_completions);
2360 	spin_unlock_irq(&pool->lock);
2361 
2362 	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2363 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2364 		return;
2365 
2366 	if (commit(pool)) {
2367 		bio_list_merge(&bios, &bio_completions);
2368 
2369 		while ((bio = bio_list_pop(&bios)))
2370 			bio_io_error(bio);
2371 		return;
2372 	}
2373 	pool->last_commit_jiffies = jiffies;
2374 
2375 	while ((bio = bio_list_pop(&bio_completions)))
2376 		bio_endio(bio);
2377 
2378 	while ((bio = bio_list_pop(&bios))) {
2379 		/*
2380 		 * The data device was flushed as part of metadata commit,
2381 		 * so complete redundant flushes immediately.
2382 		 */
2383 		if (bio->bi_opf & REQ_PREFLUSH)
2384 			bio_endio(bio);
2385 		else
2386 			dm_submit_bio_remap(bio, NULL);
2387 	}
2388 }
2389 
2390 static void do_worker(struct work_struct *ws)
2391 {
2392 	struct pool *pool = container_of(ws, struct pool, worker);
2393 
2394 	throttle_work_start(&pool->throttle);
2395 	dm_pool_issue_prefetches(pool->pmd);
2396 	throttle_work_update(&pool->throttle);
2397 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2398 	throttle_work_update(&pool->throttle);
2399 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2400 	throttle_work_update(&pool->throttle);
2401 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2402 	throttle_work_update(&pool->throttle);
2403 	process_deferred_bios(pool);
2404 	throttle_work_complete(&pool->throttle);
2405 }
2406 
2407 /*
2408  * We want to commit periodically so that not too much
2409  * unwritten data builds up.
2410  */
2411 static void do_waker(struct work_struct *ws)
2412 {
2413 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2414 	wake_worker(pool);
2415 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2416 }
2417 
2418 /*
2419  * We're holding onto IO to allow userland time to react.  After the
2420  * timeout either the pool will have been resized (and thus back in
2421  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2422  */
2423 static void do_no_space_timeout(struct work_struct *ws)
2424 {
2425 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2426 					 no_space_timeout);
2427 
2428 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2429 		pool->pf.error_if_no_space = true;
2430 		notify_of_pool_mode_change(pool);
2431 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2432 	}
2433 }
2434 
2435 /*----------------------------------------------------------------*/
2436 
2437 struct pool_work {
2438 	struct work_struct worker;
2439 	struct completion complete;
2440 };
2441 
2442 static struct pool_work *to_pool_work(struct work_struct *ws)
2443 {
2444 	return container_of(ws, struct pool_work, worker);
2445 }
2446 
2447 static void pool_work_complete(struct pool_work *pw)
2448 {
2449 	complete(&pw->complete);
2450 }
2451 
2452 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2453 			   void (*fn)(struct work_struct *))
2454 {
2455 	INIT_WORK_ONSTACK(&pw->worker, fn);
2456 	init_completion(&pw->complete);
2457 	queue_work(pool->wq, &pw->worker);
2458 	wait_for_completion(&pw->complete);
2459 }
2460 
2461 /*----------------------------------------------------------------*/
2462 
2463 struct noflush_work {
2464 	struct pool_work pw;
2465 	struct thin_c *tc;
2466 };
2467 
2468 static struct noflush_work *to_noflush(struct work_struct *ws)
2469 {
2470 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2471 }
2472 
2473 static void do_noflush_start(struct work_struct *ws)
2474 {
2475 	struct noflush_work *w = to_noflush(ws);
2476 	w->tc->requeue_mode = true;
2477 	requeue_io(w->tc);
2478 	pool_work_complete(&w->pw);
2479 }
2480 
2481 static void do_noflush_stop(struct work_struct *ws)
2482 {
2483 	struct noflush_work *w = to_noflush(ws);
2484 	w->tc->requeue_mode = false;
2485 	pool_work_complete(&w->pw);
2486 }
2487 
2488 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2489 {
2490 	struct noflush_work w;
2491 
2492 	w.tc = tc;
2493 	pool_work_wait(&w.pw, tc->pool, fn);
2494 }
2495 
2496 /*----------------------------------------------------------------*/
2497 
2498 static bool passdown_enabled(struct pool_c *pt)
2499 {
2500 	return pt->adjusted_pf.discard_passdown;
2501 }
2502 
2503 static void set_discard_callbacks(struct pool *pool)
2504 {
2505 	struct pool_c *pt = pool->ti->private;
2506 
2507 	if (passdown_enabled(pt)) {
2508 		pool->process_discard_cell = process_discard_cell_passdown;
2509 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2510 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2511 	} else {
2512 		pool->process_discard_cell = process_discard_cell_no_passdown;
2513 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2514 	}
2515 }
2516 
2517 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2518 {
2519 	struct pool_c *pt = pool->ti->private;
2520 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2521 	enum pool_mode old_mode = get_pool_mode(pool);
2522 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2523 
2524 	/*
2525 	 * Never allow the pool to transition to PM_WRITE mode if user
2526 	 * intervention is required to verify metadata and data consistency.
2527 	 */
2528 	if (new_mode == PM_WRITE && needs_check) {
2529 		DMERR("%s: unable to switch pool to write mode until repaired.",
2530 		      dm_device_name(pool->pool_md));
2531 		if (old_mode != new_mode)
2532 			new_mode = old_mode;
2533 		else
2534 			new_mode = PM_READ_ONLY;
2535 	}
2536 	/*
2537 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2538 	 * not going to recover without a thin_repair.	So we never let the
2539 	 * pool move out of the old mode.
2540 	 */
2541 	if (old_mode == PM_FAIL)
2542 		new_mode = old_mode;
2543 
2544 	switch (new_mode) {
2545 	case PM_FAIL:
2546 		dm_pool_metadata_read_only(pool->pmd);
2547 		pool->process_bio = process_bio_fail;
2548 		pool->process_discard = process_bio_fail;
2549 		pool->process_cell = process_cell_fail;
2550 		pool->process_discard_cell = process_cell_fail;
2551 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2552 		pool->process_prepared_discard = process_prepared_discard_fail;
2553 
2554 		error_retry_list(pool);
2555 		break;
2556 
2557 	case PM_OUT_OF_METADATA_SPACE:
2558 	case PM_READ_ONLY:
2559 		dm_pool_metadata_read_only(pool->pmd);
2560 		pool->process_bio = process_bio_read_only;
2561 		pool->process_discard = process_bio_success;
2562 		pool->process_cell = process_cell_read_only;
2563 		pool->process_discard_cell = process_cell_success;
2564 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2565 		pool->process_prepared_discard = process_prepared_discard_success;
2566 
2567 		error_retry_list(pool);
2568 		break;
2569 
2570 	case PM_OUT_OF_DATA_SPACE:
2571 		/*
2572 		 * Ideally we'd never hit this state; the low water mark
2573 		 * would trigger userland to extend the pool before we
2574 		 * completely run out of data space.  However, many small
2575 		 * IOs to unprovisioned space can consume data space at an
2576 		 * alarming rate.  Adjust your low water mark if you're
2577 		 * frequently seeing this mode.
2578 		 */
2579 		pool->out_of_data_space = true;
2580 		pool->process_bio = process_bio_read_only;
2581 		pool->process_discard = process_discard_bio;
2582 		pool->process_cell = process_cell_read_only;
2583 		pool->process_prepared_mapping = process_prepared_mapping;
2584 		set_discard_callbacks(pool);
2585 
2586 		if (!pool->pf.error_if_no_space && no_space_timeout)
2587 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2588 		break;
2589 
2590 	case PM_WRITE:
2591 		if (old_mode == PM_OUT_OF_DATA_SPACE)
2592 			cancel_delayed_work_sync(&pool->no_space_timeout);
2593 		pool->out_of_data_space = false;
2594 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2595 		dm_pool_metadata_read_write(pool->pmd);
2596 		pool->process_bio = process_bio;
2597 		pool->process_discard = process_discard_bio;
2598 		pool->process_cell = process_cell;
2599 		pool->process_prepared_mapping = process_prepared_mapping;
2600 		set_discard_callbacks(pool);
2601 		break;
2602 	}
2603 
2604 	pool->pf.mode = new_mode;
2605 	/*
2606 	 * The pool mode may have changed, sync it so bind_control_target()
2607 	 * doesn't cause an unexpected mode transition on resume.
2608 	 */
2609 	pt->adjusted_pf.mode = new_mode;
2610 
2611 	if (old_mode != new_mode)
2612 		notify_of_pool_mode_change(pool);
2613 }
2614 
2615 static void abort_transaction(struct pool *pool)
2616 {
2617 	const char *dev_name = dm_device_name(pool->pool_md);
2618 
2619 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2620 	if (dm_pool_abort_metadata(pool->pmd)) {
2621 		DMERR("%s: failed to abort metadata transaction", dev_name);
2622 		set_pool_mode(pool, PM_FAIL);
2623 	}
2624 
2625 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2626 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2627 		set_pool_mode(pool, PM_FAIL);
2628 	}
2629 }
2630 
2631 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2632 {
2633 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2634 		    dm_device_name(pool->pool_md), op, r);
2635 
2636 	abort_transaction(pool);
2637 	set_pool_mode(pool, PM_READ_ONLY);
2638 }
2639 
2640 /*----------------------------------------------------------------*/
2641 
2642 /*
2643  * Mapping functions.
2644  */
2645 
2646 /*
2647  * Called only while mapping a thin bio to hand it over to the workqueue.
2648  */
2649 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2650 {
2651 	struct pool *pool = tc->pool;
2652 
2653 	spin_lock_irq(&tc->lock);
2654 	bio_list_add(&tc->deferred_bio_list, bio);
2655 	spin_unlock_irq(&tc->lock);
2656 
2657 	wake_worker(pool);
2658 }
2659 
2660 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2661 {
2662 	struct pool *pool = tc->pool;
2663 
2664 	throttle_lock(&pool->throttle);
2665 	thin_defer_bio(tc, bio);
2666 	throttle_unlock(&pool->throttle);
2667 }
2668 
2669 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2670 {
2671 	struct pool *pool = tc->pool;
2672 
2673 	throttle_lock(&pool->throttle);
2674 	spin_lock_irq(&tc->lock);
2675 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2676 	spin_unlock_irq(&tc->lock);
2677 	throttle_unlock(&pool->throttle);
2678 
2679 	wake_worker(pool);
2680 }
2681 
2682 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2683 {
2684 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2685 
2686 	h->tc = tc;
2687 	h->shared_read_entry = NULL;
2688 	h->all_io_entry = NULL;
2689 	h->overwrite_mapping = NULL;
2690 	h->cell = NULL;
2691 }
2692 
2693 /*
2694  * Non-blocking function called from the thin target's map function.
2695  */
2696 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2697 {
2698 	int r;
2699 	struct thin_c *tc = ti->private;
2700 	dm_block_t block = get_bio_block(tc, bio);
2701 	struct dm_thin_device *td = tc->td;
2702 	struct dm_thin_lookup_result result;
2703 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2704 	struct dm_cell_key key;
2705 
2706 	thin_hook_bio(tc, bio);
2707 
2708 	if (tc->requeue_mode) {
2709 		bio->bi_status = BLK_STS_DM_REQUEUE;
2710 		bio_endio(bio);
2711 		return DM_MAPIO_SUBMITTED;
2712 	}
2713 
2714 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2715 		bio_io_error(bio);
2716 		return DM_MAPIO_SUBMITTED;
2717 	}
2718 
2719 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2720 		thin_defer_bio_with_throttle(tc, bio);
2721 		return DM_MAPIO_SUBMITTED;
2722 	}
2723 
2724 	/*
2725 	 * We must hold the virtual cell before doing the lookup, otherwise
2726 	 * there's a race with discard.
2727 	 */
2728 	build_virtual_key(tc->td, block, &key);
2729 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2730 		return DM_MAPIO_SUBMITTED;
2731 
2732 	r = dm_thin_find_block(td, block, 0, &result);
2733 
2734 	/*
2735 	 * Note that we defer readahead too.
2736 	 */
2737 	switch (r) {
2738 	case 0:
2739 		if (unlikely(result.shared)) {
2740 			/*
2741 			 * We have a race condition here between the
2742 			 * result.shared value returned by the lookup and
2743 			 * snapshot creation, which may cause new
2744 			 * sharing.
2745 			 *
2746 			 * To avoid this always quiesce the origin before
2747 			 * taking the snap.  You want to do this anyway to
2748 			 * ensure a consistent application view
2749 			 * (i.e. lockfs).
2750 			 *
2751 			 * More distant ancestors are irrelevant. The
2752 			 * shared flag will be set in their case.
2753 			 */
2754 			thin_defer_cell(tc, virt_cell);
2755 			return DM_MAPIO_SUBMITTED;
2756 		}
2757 
2758 		build_data_key(tc->td, result.block, &key);
2759 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2760 			cell_defer_no_holder(tc, virt_cell);
2761 			return DM_MAPIO_SUBMITTED;
2762 		}
2763 
2764 		inc_all_io_entry(tc->pool, bio);
2765 		cell_defer_no_holder(tc, data_cell);
2766 		cell_defer_no_holder(tc, virt_cell);
2767 
2768 		remap(tc, bio, result.block);
2769 		return DM_MAPIO_REMAPPED;
2770 
2771 	case -ENODATA:
2772 	case -EWOULDBLOCK:
2773 		thin_defer_cell(tc, virt_cell);
2774 		return DM_MAPIO_SUBMITTED;
2775 
2776 	default:
2777 		/*
2778 		 * Must always call bio_io_error on failure.
2779 		 * dm_thin_find_block can fail with -EINVAL if the
2780 		 * pool is switched to fail-io mode.
2781 		 */
2782 		bio_io_error(bio);
2783 		cell_defer_no_holder(tc, virt_cell);
2784 		return DM_MAPIO_SUBMITTED;
2785 	}
2786 }
2787 
2788 static void requeue_bios(struct pool *pool)
2789 {
2790 	struct thin_c *tc;
2791 
2792 	rcu_read_lock();
2793 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2794 		spin_lock_irq(&tc->lock);
2795 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2796 		bio_list_init(&tc->retry_on_resume_list);
2797 		spin_unlock_irq(&tc->lock);
2798 	}
2799 	rcu_read_unlock();
2800 }
2801 
2802 /*----------------------------------------------------------------
2803  * Binding of control targets to a pool object
2804  *--------------------------------------------------------------*/
2805 static bool data_dev_supports_discard(struct pool_c *pt)
2806 {
2807 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2808 
2809 	return blk_queue_discard(q);
2810 }
2811 
2812 static bool is_factor(sector_t block_size, uint32_t n)
2813 {
2814 	return !sector_div(block_size, n);
2815 }
2816 
2817 /*
2818  * If discard_passdown was enabled verify that the data device
2819  * supports discards.  Disable discard_passdown if not.
2820  */
2821 static void disable_passdown_if_not_supported(struct pool_c *pt)
2822 {
2823 	struct pool *pool = pt->pool;
2824 	struct block_device *data_bdev = pt->data_dev->bdev;
2825 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2826 	const char *reason = NULL;
2827 
2828 	if (!pt->adjusted_pf.discard_passdown)
2829 		return;
2830 
2831 	if (!data_dev_supports_discard(pt))
2832 		reason = "discard unsupported";
2833 
2834 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2835 		reason = "max discard sectors smaller than a block";
2836 
2837 	if (reason) {
2838 		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2839 		pt->adjusted_pf.discard_passdown = false;
2840 	}
2841 }
2842 
2843 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2844 {
2845 	struct pool_c *pt = ti->private;
2846 
2847 	/*
2848 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2849 	 */
2850 	enum pool_mode old_mode = get_pool_mode(pool);
2851 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2852 
2853 	/*
2854 	 * Don't change the pool's mode until set_pool_mode() below.
2855 	 * Otherwise the pool's process_* function pointers may
2856 	 * not match the desired pool mode.
2857 	 */
2858 	pt->adjusted_pf.mode = old_mode;
2859 
2860 	pool->ti = ti;
2861 	pool->pf = pt->adjusted_pf;
2862 	pool->low_water_blocks = pt->low_water_blocks;
2863 
2864 	set_pool_mode(pool, new_mode);
2865 
2866 	return 0;
2867 }
2868 
2869 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2870 {
2871 	if (pool->ti == ti)
2872 		pool->ti = NULL;
2873 }
2874 
2875 /*----------------------------------------------------------------
2876  * Pool creation
2877  *--------------------------------------------------------------*/
2878 /* Initialize pool features. */
2879 static void pool_features_init(struct pool_features *pf)
2880 {
2881 	pf->mode = PM_WRITE;
2882 	pf->zero_new_blocks = true;
2883 	pf->discard_enabled = true;
2884 	pf->discard_passdown = true;
2885 	pf->error_if_no_space = false;
2886 }
2887 
2888 static void __pool_destroy(struct pool *pool)
2889 {
2890 	__pool_table_remove(pool);
2891 
2892 	vfree(pool->cell_sort_array);
2893 	if (dm_pool_metadata_close(pool->pmd) < 0)
2894 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2895 
2896 	dm_bio_prison_destroy(pool->prison);
2897 	dm_kcopyd_client_destroy(pool->copier);
2898 
2899 	if (pool->wq)
2900 		destroy_workqueue(pool->wq);
2901 
2902 	if (pool->next_mapping)
2903 		mempool_free(pool->next_mapping, &pool->mapping_pool);
2904 	mempool_exit(&pool->mapping_pool);
2905 	dm_deferred_set_destroy(pool->shared_read_ds);
2906 	dm_deferred_set_destroy(pool->all_io_ds);
2907 	kfree(pool);
2908 }
2909 
2910 static struct kmem_cache *_new_mapping_cache;
2911 
2912 static struct pool *pool_create(struct mapped_device *pool_md,
2913 				struct block_device *metadata_dev,
2914 				struct block_device *data_dev,
2915 				unsigned long block_size,
2916 				int read_only, char **error)
2917 {
2918 	int r;
2919 	void *err_p;
2920 	struct pool *pool;
2921 	struct dm_pool_metadata *pmd;
2922 	bool format_device = read_only ? false : true;
2923 
2924 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2925 	if (IS_ERR(pmd)) {
2926 		*error = "Error creating metadata object";
2927 		return (struct pool *)pmd;
2928 	}
2929 
2930 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2931 	if (!pool) {
2932 		*error = "Error allocating memory for pool";
2933 		err_p = ERR_PTR(-ENOMEM);
2934 		goto bad_pool;
2935 	}
2936 
2937 	pool->pmd = pmd;
2938 	pool->sectors_per_block = block_size;
2939 	if (block_size & (block_size - 1))
2940 		pool->sectors_per_block_shift = -1;
2941 	else
2942 		pool->sectors_per_block_shift = __ffs(block_size);
2943 	pool->low_water_blocks = 0;
2944 	pool_features_init(&pool->pf);
2945 	pool->prison = dm_bio_prison_create();
2946 	if (!pool->prison) {
2947 		*error = "Error creating pool's bio prison";
2948 		err_p = ERR_PTR(-ENOMEM);
2949 		goto bad_prison;
2950 	}
2951 
2952 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2953 	if (IS_ERR(pool->copier)) {
2954 		r = PTR_ERR(pool->copier);
2955 		*error = "Error creating pool's kcopyd client";
2956 		err_p = ERR_PTR(r);
2957 		goto bad_kcopyd_client;
2958 	}
2959 
2960 	/*
2961 	 * Create singlethreaded workqueue that will service all devices
2962 	 * that use this metadata.
2963 	 */
2964 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2965 	if (!pool->wq) {
2966 		*error = "Error creating pool's workqueue";
2967 		err_p = ERR_PTR(-ENOMEM);
2968 		goto bad_wq;
2969 	}
2970 
2971 	throttle_init(&pool->throttle);
2972 	INIT_WORK(&pool->worker, do_worker);
2973 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2974 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2975 	spin_lock_init(&pool->lock);
2976 	bio_list_init(&pool->deferred_flush_bios);
2977 	bio_list_init(&pool->deferred_flush_completions);
2978 	INIT_LIST_HEAD(&pool->prepared_mappings);
2979 	INIT_LIST_HEAD(&pool->prepared_discards);
2980 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2981 	INIT_LIST_HEAD(&pool->active_thins);
2982 	pool->low_water_triggered = false;
2983 	pool->suspended = true;
2984 	pool->out_of_data_space = false;
2985 
2986 	pool->shared_read_ds = dm_deferred_set_create();
2987 	if (!pool->shared_read_ds) {
2988 		*error = "Error creating pool's shared read deferred set";
2989 		err_p = ERR_PTR(-ENOMEM);
2990 		goto bad_shared_read_ds;
2991 	}
2992 
2993 	pool->all_io_ds = dm_deferred_set_create();
2994 	if (!pool->all_io_ds) {
2995 		*error = "Error creating pool's all io deferred set";
2996 		err_p = ERR_PTR(-ENOMEM);
2997 		goto bad_all_io_ds;
2998 	}
2999 
3000 	pool->next_mapping = NULL;
3001 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3002 				   _new_mapping_cache);
3003 	if (r) {
3004 		*error = "Error creating pool's mapping mempool";
3005 		err_p = ERR_PTR(r);
3006 		goto bad_mapping_pool;
3007 	}
3008 
3009 	pool->cell_sort_array =
3010 		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3011 				   sizeof(*pool->cell_sort_array)));
3012 	if (!pool->cell_sort_array) {
3013 		*error = "Error allocating cell sort array";
3014 		err_p = ERR_PTR(-ENOMEM);
3015 		goto bad_sort_array;
3016 	}
3017 
3018 	pool->ref_count = 1;
3019 	pool->last_commit_jiffies = jiffies;
3020 	pool->pool_md = pool_md;
3021 	pool->md_dev = metadata_dev;
3022 	pool->data_dev = data_dev;
3023 	__pool_table_insert(pool);
3024 
3025 	return pool;
3026 
3027 bad_sort_array:
3028 	mempool_exit(&pool->mapping_pool);
3029 bad_mapping_pool:
3030 	dm_deferred_set_destroy(pool->all_io_ds);
3031 bad_all_io_ds:
3032 	dm_deferred_set_destroy(pool->shared_read_ds);
3033 bad_shared_read_ds:
3034 	destroy_workqueue(pool->wq);
3035 bad_wq:
3036 	dm_kcopyd_client_destroy(pool->copier);
3037 bad_kcopyd_client:
3038 	dm_bio_prison_destroy(pool->prison);
3039 bad_prison:
3040 	kfree(pool);
3041 bad_pool:
3042 	if (dm_pool_metadata_close(pmd))
3043 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3044 
3045 	return err_p;
3046 }
3047 
3048 static void __pool_inc(struct pool *pool)
3049 {
3050 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3051 	pool->ref_count++;
3052 }
3053 
3054 static void __pool_dec(struct pool *pool)
3055 {
3056 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3057 	BUG_ON(!pool->ref_count);
3058 	if (!--pool->ref_count)
3059 		__pool_destroy(pool);
3060 }
3061 
3062 static struct pool *__pool_find(struct mapped_device *pool_md,
3063 				struct block_device *metadata_dev,
3064 				struct block_device *data_dev,
3065 				unsigned long block_size, int read_only,
3066 				char **error, int *created)
3067 {
3068 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3069 
3070 	if (pool) {
3071 		if (pool->pool_md != pool_md) {
3072 			*error = "metadata device already in use by a pool";
3073 			return ERR_PTR(-EBUSY);
3074 		}
3075 		if (pool->data_dev != data_dev) {
3076 			*error = "data device already in use by a pool";
3077 			return ERR_PTR(-EBUSY);
3078 		}
3079 		__pool_inc(pool);
3080 
3081 	} else {
3082 		pool = __pool_table_lookup(pool_md);
3083 		if (pool) {
3084 			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3085 				*error = "different pool cannot replace a pool";
3086 				return ERR_PTR(-EINVAL);
3087 			}
3088 			__pool_inc(pool);
3089 
3090 		} else {
3091 			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3092 			*created = 1;
3093 		}
3094 	}
3095 
3096 	return pool;
3097 }
3098 
3099 /*----------------------------------------------------------------
3100  * Pool target methods
3101  *--------------------------------------------------------------*/
3102 static void pool_dtr(struct dm_target *ti)
3103 {
3104 	struct pool_c *pt = ti->private;
3105 
3106 	mutex_lock(&dm_thin_pool_table.mutex);
3107 
3108 	unbind_control_target(pt->pool, ti);
3109 	__pool_dec(pt->pool);
3110 	dm_put_device(ti, pt->metadata_dev);
3111 	dm_put_device(ti, pt->data_dev);
3112 	kfree(pt);
3113 
3114 	mutex_unlock(&dm_thin_pool_table.mutex);
3115 }
3116 
3117 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3118 			       struct dm_target *ti)
3119 {
3120 	int r;
3121 	unsigned argc;
3122 	const char *arg_name;
3123 
3124 	static const struct dm_arg _args[] = {
3125 		{0, 4, "Invalid number of pool feature arguments"},
3126 	};
3127 
3128 	/*
3129 	 * No feature arguments supplied.
3130 	 */
3131 	if (!as->argc)
3132 		return 0;
3133 
3134 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3135 	if (r)
3136 		return -EINVAL;
3137 
3138 	while (argc && !r) {
3139 		arg_name = dm_shift_arg(as);
3140 		argc--;
3141 
3142 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3143 			pf->zero_new_blocks = false;
3144 
3145 		else if (!strcasecmp(arg_name, "ignore_discard"))
3146 			pf->discard_enabled = false;
3147 
3148 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3149 			pf->discard_passdown = false;
3150 
3151 		else if (!strcasecmp(arg_name, "read_only"))
3152 			pf->mode = PM_READ_ONLY;
3153 
3154 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3155 			pf->error_if_no_space = true;
3156 
3157 		else {
3158 			ti->error = "Unrecognised pool feature requested";
3159 			r = -EINVAL;
3160 			break;
3161 		}
3162 	}
3163 
3164 	return r;
3165 }
3166 
3167 static void metadata_low_callback(void *context)
3168 {
3169 	struct pool *pool = context;
3170 
3171 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3172 	       dm_device_name(pool->pool_md));
3173 
3174 	dm_table_event(pool->ti->table);
3175 }
3176 
3177 /*
3178  * We need to flush the data device **before** committing the metadata.
3179  *
3180  * This ensures that the data blocks of any newly inserted mappings are
3181  * properly written to non-volatile storage and won't be lost in case of a
3182  * crash.
3183  *
3184  * Failure to do so can result in data corruption in the case of internal or
3185  * external snapshots and in the case of newly provisioned blocks, when block
3186  * zeroing is enabled.
3187  */
3188 static int metadata_pre_commit_callback(void *context)
3189 {
3190 	struct pool *pool = context;
3191 
3192 	return blkdev_issue_flush(pool->data_dev);
3193 }
3194 
3195 static sector_t get_dev_size(struct block_device *bdev)
3196 {
3197 	return bdev_nr_sectors(bdev);
3198 }
3199 
3200 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3201 {
3202 	sector_t metadata_dev_size = get_dev_size(bdev);
3203 
3204 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3205 		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3206 		       bdev, THIN_METADATA_MAX_SECTORS);
3207 }
3208 
3209 static sector_t get_metadata_dev_size(struct block_device *bdev)
3210 {
3211 	sector_t metadata_dev_size = get_dev_size(bdev);
3212 
3213 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3214 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3215 
3216 	return metadata_dev_size;
3217 }
3218 
3219 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3220 {
3221 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3222 
3223 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3224 
3225 	return metadata_dev_size;
3226 }
3227 
3228 /*
3229  * When a metadata threshold is crossed a dm event is triggered, and
3230  * userland should respond by growing the metadata device.  We could let
3231  * userland set the threshold, like we do with the data threshold, but I'm
3232  * not sure they know enough to do this well.
3233  */
3234 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3235 {
3236 	/*
3237 	 * 4M is ample for all ops with the possible exception of thin
3238 	 * device deletion which is harmless if it fails (just retry the
3239 	 * delete after you've grown the device).
3240 	 */
3241 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3242 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3243 }
3244 
3245 /*
3246  * thin-pool <metadata dev> <data dev>
3247  *	     <data block size (sectors)>
3248  *	     <low water mark (blocks)>
3249  *	     [<#feature args> [<arg>]*]
3250  *
3251  * Optional feature arguments are:
3252  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3253  *	     ignore_discard: disable discard
3254  *	     no_discard_passdown: don't pass discards down to the data device
3255  *	     read_only: Don't allow any changes to be made to the pool metadata.
3256  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3257  */
3258 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3259 {
3260 	int r, pool_created = 0;
3261 	struct pool_c *pt;
3262 	struct pool *pool;
3263 	struct pool_features pf;
3264 	struct dm_arg_set as;
3265 	struct dm_dev *data_dev;
3266 	unsigned long block_size;
3267 	dm_block_t low_water_blocks;
3268 	struct dm_dev *metadata_dev;
3269 	fmode_t metadata_mode;
3270 
3271 	/*
3272 	 * FIXME Remove validation from scope of lock.
3273 	 */
3274 	mutex_lock(&dm_thin_pool_table.mutex);
3275 
3276 	if (argc < 4) {
3277 		ti->error = "Invalid argument count";
3278 		r = -EINVAL;
3279 		goto out_unlock;
3280 	}
3281 
3282 	as.argc = argc;
3283 	as.argv = argv;
3284 
3285 	/* make sure metadata and data are different devices */
3286 	if (!strcmp(argv[0], argv[1])) {
3287 		ti->error = "Error setting metadata or data device";
3288 		r = -EINVAL;
3289 		goto out_unlock;
3290 	}
3291 
3292 	/*
3293 	 * Set default pool features.
3294 	 */
3295 	pool_features_init(&pf);
3296 
3297 	dm_consume_args(&as, 4);
3298 	r = parse_pool_features(&as, &pf, ti);
3299 	if (r)
3300 		goto out_unlock;
3301 
3302 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3303 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3304 	if (r) {
3305 		ti->error = "Error opening metadata block device";
3306 		goto out_unlock;
3307 	}
3308 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3309 
3310 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3311 	if (r) {
3312 		ti->error = "Error getting data device";
3313 		goto out_metadata;
3314 	}
3315 
3316 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3317 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3318 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3319 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3320 		ti->error = "Invalid block size";
3321 		r = -EINVAL;
3322 		goto out;
3323 	}
3324 
3325 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3326 		ti->error = "Invalid low water mark";
3327 		r = -EINVAL;
3328 		goto out;
3329 	}
3330 
3331 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3332 	if (!pt) {
3333 		r = -ENOMEM;
3334 		goto out;
3335 	}
3336 
3337 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3338 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3339 	if (IS_ERR(pool)) {
3340 		r = PTR_ERR(pool);
3341 		goto out_free_pt;
3342 	}
3343 
3344 	/*
3345 	 * 'pool_created' reflects whether this is the first table load.
3346 	 * Top level discard support is not allowed to be changed after
3347 	 * initial load.  This would require a pool reload to trigger thin
3348 	 * device changes.
3349 	 */
3350 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3351 		ti->error = "Discard support cannot be disabled once enabled";
3352 		r = -EINVAL;
3353 		goto out_flags_changed;
3354 	}
3355 
3356 	pt->pool = pool;
3357 	pt->ti = ti;
3358 	pt->metadata_dev = metadata_dev;
3359 	pt->data_dev = data_dev;
3360 	pt->low_water_blocks = low_water_blocks;
3361 	pt->adjusted_pf = pt->requested_pf = pf;
3362 	ti->num_flush_bios = 1;
3363 
3364 	/*
3365 	 * Only need to enable discards if the pool should pass
3366 	 * them down to the data device.  The thin device's discard
3367 	 * processing will cause mappings to be removed from the btree.
3368 	 */
3369 	if (pf.discard_enabled && pf.discard_passdown) {
3370 		ti->num_discard_bios = 1;
3371 
3372 		/*
3373 		 * Setting 'discards_supported' circumvents the normal
3374 		 * stacking of discard limits (this keeps the pool and
3375 		 * thin devices' discard limits consistent).
3376 		 */
3377 		ti->discards_supported = true;
3378 	}
3379 	ti->private = pt;
3380 
3381 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3382 						calc_metadata_threshold(pt),
3383 						metadata_low_callback,
3384 						pool);
3385 	if (r)
3386 		goto out_flags_changed;
3387 
3388 	dm_pool_register_pre_commit_callback(pool->pmd,
3389 					     metadata_pre_commit_callback, pool);
3390 
3391 	mutex_unlock(&dm_thin_pool_table.mutex);
3392 
3393 	return 0;
3394 
3395 out_flags_changed:
3396 	__pool_dec(pool);
3397 out_free_pt:
3398 	kfree(pt);
3399 out:
3400 	dm_put_device(ti, data_dev);
3401 out_metadata:
3402 	dm_put_device(ti, metadata_dev);
3403 out_unlock:
3404 	mutex_unlock(&dm_thin_pool_table.mutex);
3405 
3406 	return r;
3407 }
3408 
3409 static int pool_map(struct dm_target *ti, struct bio *bio)
3410 {
3411 	int r;
3412 	struct pool_c *pt = ti->private;
3413 	struct pool *pool = pt->pool;
3414 
3415 	/*
3416 	 * As this is a singleton target, ti->begin is always zero.
3417 	 */
3418 	spin_lock_irq(&pool->lock);
3419 	bio_set_dev(bio, pt->data_dev->bdev);
3420 	r = DM_MAPIO_REMAPPED;
3421 	spin_unlock_irq(&pool->lock);
3422 
3423 	return r;
3424 }
3425 
3426 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3427 {
3428 	int r;
3429 	struct pool_c *pt = ti->private;
3430 	struct pool *pool = pt->pool;
3431 	sector_t data_size = ti->len;
3432 	dm_block_t sb_data_size;
3433 
3434 	*need_commit = false;
3435 
3436 	(void) sector_div(data_size, pool->sectors_per_block);
3437 
3438 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3439 	if (r) {
3440 		DMERR("%s: failed to retrieve data device size",
3441 		      dm_device_name(pool->pool_md));
3442 		return r;
3443 	}
3444 
3445 	if (data_size < sb_data_size) {
3446 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3447 		      dm_device_name(pool->pool_md),
3448 		      (unsigned long long)data_size, sb_data_size);
3449 		return -EINVAL;
3450 
3451 	} else if (data_size > sb_data_size) {
3452 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3453 			DMERR("%s: unable to grow the data device until repaired.",
3454 			      dm_device_name(pool->pool_md));
3455 			return 0;
3456 		}
3457 
3458 		if (sb_data_size)
3459 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3460 			       dm_device_name(pool->pool_md),
3461 			       sb_data_size, (unsigned long long)data_size);
3462 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3463 		if (r) {
3464 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3465 			return r;
3466 		}
3467 
3468 		*need_commit = true;
3469 	}
3470 
3471 	return 0;
3472 }
3473 
3474 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3475 {
3476 	int r;
3477 	struct pool_c *pt = ti->private;
3478 	struct pool *pool = pt->pool;
3479 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3480 
3481 	*need_commit = false;
3482 
3483 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3484 
3485 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3486 	if (r) {
3487 		DMERR("%s: failed to retrieve metadata device size",
3488 		      dm_device_name(pool->pool_md));
3489 		return r;
3490 	}
3491 
3492 	if (metadata_dev_size < sb_metadata_dev_size) {
3493 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3494 		      dm_device_name(pool->pool_md),
3495 		      metadata_dev_size, sb_metadata_dev_size);
3496 		return -EINVAL;
3497 
3498 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3499 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3500 			DMERR("%s: unable to grow the metadata device until repaired.",
3501 			      dm_device_name(pool->pool_md));
3502 			return 0;
3503 		}
3504 
3505 		warn_if_metadata_device_too_big(pool->md_dev);
3506 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3507 		       dm_device_name(pool->pool_md),
3508 		       sb_metadata_dev_size, metadata_dev_size);
3509 
3510 		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3511 			set_pool_mode(pool, PM_WRITE);
3512 
3513 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3514 		if (r) {
3515 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3516 			return r;
3517 		}
3518 
3519 		*need_commit = true;
3520 	}
3521 
3522 	return 0;
3523 }
3524 
3525 /*
3526  * Retrieves the number of blocks of the data device from
3527  * the superblock and compares it to the actual device size,
3528  * thus resizing the data device in case it has grown.
3529  *
3530  * This both copes with opening preallocated data devices in the ctr
3531  * being followed by a resume
3532  * -and-
3533  * calling the resume method individually after userspace has
3534  * grown the data device in reaction to a table event.
3535  */
3536 static int pool_preresume(struct dm_target *ti)
3537 {
3538 	int r;
3539 	bool need_commit1, need_commit2;
3540 	struct pool_c *pt = ti->private;
3541 	struct pool *pool = pt->pool;
3542 
3543 	/*
3544 	 * Take control of the pool object.
3545 	 */
3546 	r = bind_control_target(pool, ti);
3547 	if (r)
3548 		return r;
3549 
3550 	r = maybe_resize_data_dev(ti, &need_commit1);
3551 	if (r)
3552 		return r;
3553 
3554 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3555 	if (r)
3556 		return r;
3557 
3558 	if (need_commit1 || need_commit2)
3559 		(void) commit(pool);
3560 
3561 	return 0;
3562 }
3563 
3564 static void pool_suspend_active_thins(struct pool *pool)
3565 {
3566 	struct thin_c *tc;
3567 
3568 	/* Suspend all active thin devices */
3569 	tc = get_first_thin(pool);
3570 	while (tc) {
3571 		dm_internal_suspend_noflush(tc->thin_md);
3572 		tc = get_next_thin(pool, tc);
3573 	}
3574 }
3575 
3576 static void pool_resume_active_thins(struct pool *pool)
3577 {
3578 	struct thin_c *tc;
3579 
3580 	/* Resume all active thin devices */
3581 	tc = get_first_thin(pool);
3582 	while (tc) {
3583 		dm_internal_resume(tc->thin_md);
3584 		tc = get_next_thin(pool, tc);
3585 	}
3586 }
3587 
3588 static void pool_resume(struct dm_target *ti)
3589 {
3590 	struct pool_c *pt = ti->private;
3591 	struct pool *pool = pt->pool;
3592 
3593 	/*
3594 	 * Must requeue active_thins' bios and then resume
3595 	 * active_thins _before_ clearing 'suspend' flag.
3596 	 */
3597 	requeue_bios(pool);
3598 	pool_resume_active_thins(pool);
3599 
3600 	spin_lock_irq(&pool->lock);
3601 	pool->low_water_triggered = false;
3602 	pool->suspended = false;
3603 	spin_unlock_irq(&pool->lock);
3604 
3605 	do_waker(&pool->waker.work);
3606 }
3607 
3608 static void pool_presuspend(struct dm_target *ti)
3609 {
3610 	struct pool_c *pt = ti->private;
3611 	struct pool *pool = pt->pool;
3612 
3613 	spin_lock_irq(&pool->lock);
3614 	pool->suspended = true;
3615 	spin_unlock_irq(&pool->lock);
3616 
3617 	pool_suspend_active_thins(pool);
3618 }
3619 
3620 static void pool_presuspend_undo(struct dm_target *ti)
3621 {
3622 	struct pool_c *pt = ti->private;
3623 	struct pool *pool = pt->pool;
3624 
3625 	pool_resume_active_thins(pool);
3626 
3627 	spin_lock_irq(&pool->lock);
3628 	pool->suspended = false;
3629 	spin_unlock_irq(&pool->lock);
3630 }
3631 
3632 static void pool_postsuspend(struct dm_target *ti)
3633 {
3634 	struct pool_c *pt = ti->private;
3635 	struct pool *pool = pt->pool;
3636 
3637 	cancel_delayed_work_sync(&pool->waker);
3638 	cancel_delayed_work_sync(&pool->no_space_timeout);
3639 	flush_workqueue(pool->wq);
3640 	(void) commit(pool);
3641 }
3642 
3643 static int check_arg_count(unsigned argc, unsigned args_required)
3644 {
3645 	if (argc != args_required) {
3646 		DMWARN("Message received with %u arguments instead of %u.",
3647 		       argc, args_required);
3648 		return -EINVAL;
3649 	}
3650 
3651 	return 0;
3652 }
3653 
3654 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3655 {
3656 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3657 	    *dev_id <= MAX_DEV_ID)
3658 		return 0;
3659 
3660 	if (warning)
3661 		DMWARN("Message received with invalid device id: %s", arg);
3662 
3663 	return -EINVAL;
3664 }
3665 
3666 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3667 {
3668 	dm_thin_id dev_id;
3669 	int r;
3670 
3671 	r = check_arg_count(argc, 2);
3672 	if (r)
3673 		return r;
3674 
3675 	r = read_dev_id(argv[1], &dev_id, 1);
3676 	if (r)
3677 		return r;
3678 
3679 	r = dm_pool_create_thin(pool->pmd, dev_id);
3680 	if (r) {
3681 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3682 		       argv[1]);
3683 		return r;
3684 	}
3685 
3686 	return 0;
3687 }
3688 
3689 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3690 {
3691 	dm_thin_id dev_id;
3692 	dm_thin_id origin_dev_id;
3693 	int r;
3694 
3695 	r = check_arg_count(argc, 3);
3696 	if (r)
3697 		return r;
3698 
3699 	r = read_dev_id(argv[1], &dev_id, 1);
3700 	if (r)
3701 		return r;
3702 
3703 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3704 	if (r)
3705 		return r;
3706 
3707 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3708 	if (r) {
3709 		DMWARN("Creation of new snapshot %s of device %s failed.",
3710 		       argv[1], argv[2]);
3711 		return r;
3712 	}
3713 
3714 	return 0;
3715 }
3716 
3717 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3718 {
3719 	dm_thin_id dev_id;
3720 	int r;
3721 
3722 	r = check_arg_count(argc, 2);
3723 	if (r)
3724 		return r;
3725 
3726 	r = read_dev_id(argv[1], &dev_id, 1);
3727 	if (r)
3728 		return r;
3729 
3730 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3731 	if (r)
3732 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3733 
3734 	return r;
3735 }
3736 
3737 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3738 {
3739 	dm_thin_id old_id, new_id;
3740 	int r;
3741 
3742 	r = check_arg_count(argc, 3);
3743 	if (r)
3744 		return r;
3745 
3746 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3747 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3748 		return -EINVAL;
3749 	}
3750 
3751 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3752 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3753 		return -EINVAL;
3754 	}
3755 
3756 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3757 	if (r) {
3758 		DMWARN("Failed to change transaction id from %s to %s.",
3759 		       argv[1], argv[2]);
3760 		return r;
3761 	}
3762 
3763 	return 0;
3764 }
3765 
3766 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3767 {
3768 	int r;
3769 
3770 	r = check_arg_count(argc, 1);
3771 	if (r)
3772 		return r;
3773 
3774 	(void) commit(pool);
3775 
3776 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3777 	if (r)
3778 		DMWARN("reserve_metadata_snap message failed.");
3779 
3780 	return r;
3781 }
3782 
3783 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3784 {
3785 	int r;
3786 
3787 	r = check_arg_count(argc, 1);
3788 	if (r)
3789 		return r;
3790 
3791 	r = dm_pool_release_metadata_snap(pool->pmd);
3792 	if (r)
3793 		DMWARN("release_metadata_snap message failed.");
3794 
3795 	return r;
3796 }
3797 
3798 /*
3799  * Messages supported:
3800  *   create_thin	<dev_id>
3801  *   create_snap	<dev_id> <origin_id>
3802  *   delete		<dev_id>
3803  *   set_transaction_id <current_trans_id> <new_trans_id>
3804  *   reserve_metadata_snap
3805  *   release_metadata_snap
3806  */
3807 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3808 			char *result, unsigned maxlen)
3809 {
3810 	int r = -EINVAL;
3811 	struct pool_c *pt = ti->private;
3812 	struct pool *pool = pt->pool;
3813 
3814 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3815 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3816 		      dm_device_name(pool->pool_md));
3817 		return -EOPNOTSUPP;
3818 	}
3819 
3820 	if (!strcasecmp(argv[0], "create_thin"))
3821 		r = process_create_thin_mesg(argc, argv, pool);
3822 
3823 	else if (!strcasecmp(argv[0], "create_snap"))
3824 		r = process_create_snap_mesg(argc, argv, pool);
3825 
3826 	else if (!strcasecmp(argv[0], "delete"))
3827 		r = process_delete_mesg(argc, argv, pool);
3828 
3829 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3830 		r = process_set_transaction_id_mesg(argc, argv, pool);
3831 
3832 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3833 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3834 
3835 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3836 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3837 
3838 	else
3839 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3840 
3841 	if (!r)
3842 		(void) commit(pool);
3843 
3844 	return r;
3845 }
3846 
3847 static void emit_flags(struct pool_features *pf, char *result,
3848 		       unsigned sz, unsigned maxlen)
3849 {
3850 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3851 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3852 		pf->error_if_no_space;
3853 	DMEMIT("%u ", count);
3854 
3855 	if (!pf->zero_new_blocks)
3856 		DMEMIT("skip_block_zeroing ");
3857 
3858 	if (!pf->discard_enabled)
3859 		DMEMIT("ignore_discard ");
3860 
3861 	if (!pf->discard_passdown)
3862 		DMEMIT("no_discard_passdown ");
3863 
3864 	if (pf->mode == PM_READ_ONLY)
3865 		DMEMIT("read_only ");
3866 
3867 	if (pf->error_if_no_space)
3868 		DMEMIT("error_if_no_space ");
3869 }
3870 
3871 /*
3872  * Status line is:
3873  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3874  *    <used data sectors>/<total data sectors> <held metadata root>
3875  *    <pool mode> <discard config> <no space config> <needs_check>
3876  */
3877 static void pool_status(struct dm_target *ti, status_type_t type,
3878 			unsigned status_flags, char *result, unsigned maxlen)
3879 {
3880 	int r;
3881 	unsigned sz = 0;
3882 	uint64_t transaction_id;
3883 	dm_block_t nr_free_blocks_data;
3884 	dm_block_t nr_free_blocks_metadata;
3885 	dm_block_t nr_blocks_data;
3886 	dm_block_t nr_blocks_metadata;
3887 	dm_block_t held_root;
3888 	enum pool_mode mode;
3889 	char buf[BDEVNAME_SIZE];
3890 	char buf2[BDEVNAME_SIZE];
3891 	struct pool_c *pt = ti->private;
3892 	struct pool *pool = pt->pool;
3893 
3894 	switch (type) {
3895 	case STATUSTYPE_INFO:
3896 		if (get_pool_mode(pool) == PM_FAIL) {
3897 			DMEMIT("Fail");
3898 			break;
3899 		}
3900 
3901 		/* Commit to ensure statistics aren't out-of-date */
3902 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3903 			(void) commit(pool);
3904 
3905 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3906 		if (r) {
3907 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3908 			      dm_device_name(pool->pool_md), r);
3909 			goto err;
3910 		}
3911 
3912 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3913 		if (r) {
3914 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3915 			      dm_device_name(pool->pool_md), r);
3916 			goto err;
3917 		}
3918 
3919 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3920 		if (r) {
3921 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3922 			      dm_device_name(pool->pool_md), r);
3923 			goto err;
3924 		}
3925 
3926 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3927 		if (r) {
3928 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3929 			      dm_device_name(pool->pool_md), r);
3930 			goto err;
3931 		}
3932 
3933 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3934 		if (r) {
3935 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3936 			      dm_device_name(pool->pool_md), r);
3937 			goto err;
3938 		}
3939 
3940 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3941 		if (r) {
3942 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3943 			      dm_device_name(pool->pool_md), r);
3944 			goto err;
3945 		}
3946 
3947 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3948 		       (unsigned long long)transaction_id,
3949 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3950 		       (unsigned long long)nr_blocks_metadata,
3951 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3952 		       (unsigned long long)nr_blocks_data);
3953 
3954 		if (held_root)
3955 			DMEMIT("%llu ", held_root);
3956 		else
3957 			DMEMIT("- ");
3958 
3959 		mode = get_pool_mode(pool);
3960 		if (mode == PM_OUT_OF_DATA_SPACE)
3961 			DMEMIT("out_of_data_space ");
3962 		else if (is_read_only_pool_mode(mode))
3963 			DMEMIT("ro ");
3964 		else
3965 			DMEMIT("rw ");
3966 
3967 		if (!pool->pf.discard_enabled)
3968 			DMEMIT("ignore_discard ");
3969 		else if (pool->pf.discard_passdown)
3970 			DMEMIT("discard_passdown ");
3971 		else
3972 			DMEMIT("no_discard_passdown ");
3973 
3974 		if (pool->pf.error_if_no_space)
3975 			DMEMIT("error_if_no_space ");
3976 		else
3977 			DMEMIT("queue_if_no_space ");
3978 
3979 		if (dm_pool_metadata_needs_check(pool->pmd))
3980 			DMEMIT("needs_check ");
3981 		else
3982 			DMEMIT("- ");
3983 
3984 		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3985 
3986 		break;
3987 
3988 	case STATUSTYPE_TABLE:
3989 		DMEMIT("%s %s %lu %llu ",
3990 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3991 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3992 		       (unsigned long)pool->sectors_per_block,
3993 		       (unsigned long long)pt->low_water_blocks);
3994 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3995 		break;
3996 
3997 	case STATUSTYPE_IMA:
3998 		*result = '\0';
3999 		break;
4000 	}
4001 	return;
4002 
4003 err:
4004 	DMEMIT("Error");
4005 }
4006 
4007 static int pool_iterate_devices(struct dm_target *ti,
4008 				iterate_devices_callout_fn fn, void *data)
4009 {
4010 	struct pool_c *pt = ti->private;
4011 
4012 	return fn(ti, pt->data_dev, 0, ti->len, data);
4013 }
4014 
4015 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4016 {
4017 	struct pool_c *pt = ti->private;
4018 	struct pool *pool = pt->pool;
4019 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4020 
4021 	/*
4022 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4023 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4024 	 * This is especially beneficial when the pool's data device is a RAID
4025 	 * device that has a full stripe width that matches pool->sectors_per_block
4026 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4027 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4028 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4029 	 */
4030 	if (limits->max_sectors < pool->sectors_per_block) {
4031 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4032 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4033 				limits->max_sectors--;
4034 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4035 		}
4036 	}
4037 
4038 	/*
4039 	 * If the system-determined stacked limits are compatible with the
4040 	 * pool's blocksize (io_opt is a factor) do not override them.
4041 	 */
4042 	if (io_opt_sectors < pool->sectors_per_block ||
4043 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4044 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4045 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4046 		else
4047 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4048 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4049 	}
4050 
4051 	/*
4052 	 * pt->adjusted_pf is a staging area for the actual features to use.
4053 	 * They get transferred to the live pool in bind_control_target()
4054 	 * called from pool_preresume().
4055 	 */
4056 	if (!pt->adjusted_pf.discard_enabled) {
4057 		/*
4058 		 * Must explicitly disallow stacking discard limits otherwise the
4059 		 * block layer will stack them if pool's data device has support.
4060 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4061 		 * user to see that, so make sure to set all discard limits to 0.
4062 		 */
4063 		limits->discard_granularity = 0;
4064 		return;
4065 	}
4066 
4067 	disable_passdown_if_not_supported(pt);
4068 
4069 	/*
4070 	 * The pool uses the same discard limits as the underlying data
4071 	 * device.  DM core has already set this up.
4072 	 */
4073 }
4074 
4075 static struct target_type pool_target = {
4076 	.name = "thin-pool",
4077 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4078 		    DM_TARGET_IMMUTABLE,
4079 	.version = {1, 22, 0},
4080 	.module = THIS_MODULE,
4081 	.ctr = pool_ctr,
4082 	.dtr = pool_dtr,
4083 	.map = pool_map,
4084 	.presuspend = pool_presuspend,
4085 	.presuspend_undo = pool_presuspend_undo,
4086 	.postsuspend = pool_postsuspend,
4087 	.preresume = pool_preresume,
4088 	.resume = pool_resume,
4089 	.message = pool_message,
4090 	.status = pool_status,
4091 	.iterate_devices = pool_iterate_devices,
4092 	.io_hints = pool_io_hints,
4093 };
4094 
4095 /*----------------------------------------------------------------
4096  * Thin target methods
4097  *--------------------------------------------------------------*/
4098 static void thin_get(struct thin_c *tc)
4099 {
4100 	refcount_inc(&tc->refcount);
4101 }
4102 
4103 static void thin_put(struct thin_c *tc)
4104 {
4105 	if (refcount_dec_and_test(&tc->refcount))
4106 		complete(&tc->can_destroy);
4107 }
4108 
4109 static void thin_dtr(struct dm_target *ti)
4110 {
4111 	struct thin_c *tc = ti->private;
4112 
4113 	spin_lock_irq(&tc->pool->lock);
4114 	list_del_rcu(&tc->list);
4115 	spin_unlock_irq(&tc->pool->lock);
4116 	synchronize_rcu();
4117 
4118 	thin_put(tc);
4119 	wait_for_completion(&tc->can_destroy);
4120 
4121 	mutex_lock(&dm_thin_pool_table.mutex);
4122 
4123 	__pool_dec(tc->pool);
4124 	dm_pool_close_thin_device(tc->td);
4125 	dm_put_device(ti, tc->pool_dev);
4126 	if (tc->origin_dev)
4127 		dm_put_device(ti, tc->origin_dev);
4128 	kfree(tc);
4129 
4130 	mutex_unlock(&dm_thin_pool_table.mutex);
4131 }
4132 
4133 /*
4134  * Thin target parameters:
4135  *
4136  * <pool_dev> <dev_id> [origin_dev]
4137  *
4138  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4139  * dev_id: the internal device identifier
4140  * origin_dev: a device external to the pool that should act as the origin
4141  *
4142  * If the pool device has discards disabled, they get disabled for the thin
4143  * device as well.
4144  */
4145 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4146 {
4147 	int r;
4148 	struct thin_c *tc;
4149 	struct dm_dev *pool_dev, *origin_dev;
4150 	struct mapped_device *pool_md;
4151 
4152 	mutex_lock(&dm_thin_pool_table.mutex);
4153 
4154 	if (argc != 2 && argc != 3) {
4155 		ti->error = "Invalid argument count";
4156 		r = -EINVAL;
4157 		goto out_unlock;
4158 	}
4159 
4160 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4161 	if (!tc) {
4162 		ti->error = "Out of memory";
4163 		r = -ENOMEM;
4164 		goto out_unlock;
4165 	}
4166 	tc->thin_md = dm_table_get_md(ti->table);
4167 	spin_lock_init(&tc->lock);
4168 	INIT_LIST_HEAD(&tc->deferred_cells);
4169 	bio_list_init(&tc->deferred_bio_list);
4170 	bio_list_init(&tc->retry_on_resume_list);
4171 	tc->sort_bio_list = RB_ROOT;
4172 
4173 	if (argc == 3) {
4174 		if (!strcmp(argv[0], argv[2])) {
4175 			ti->error = "Error setting origin device";
4176 			r = -EINVAL;
4177 			goto bad_origin_dev;
4178 		}
4179 
4180 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4181 		if (r) {
4182 			ti->error = "Error opening origin device";
4183 			goto bad_origin_dev;
4184 		}
4185 		tc->origin_dev = origin_dev;
4186 	}
4187 
4188 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4189 	if (r) {
4190 		ti->error = "Error opening pool device";
4191 		goto bad_pool_dev;
4192 	}
4193 	tc->pool_dev = pool_dev;
4194 
4195 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4196 		ti->error = "Invalid device id";
4197 		r = -EINVAL;
4198 		goto bad_common;
4199 	}
4200 
4201 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4202 	if (!pool_md) {
4203 		ti->error = "Couldn't get pool mapped device";
4204 		r = -EINVAL;
4205 		goto bad_common;
4206 	}
4207 
4208 	tc->pool = __pool_table_lookup(pool_md);
4209 	if (!tc->pool) {
4210 		ti->error = "Couldn't find pool object";
4211 		r = -EINVAL;
4212 		goto bad_pool_lookup;
4213 	}
4214 	__pool_inc(tc->pool);
4215 
4216 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4217 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4218 		r = -EINVAL;
4219 		goto bad_pool;
4220 	}
4221 
4222 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4223 	if (r) {
4224 		ti->error = "Couldn't open thin internal device";
4225 		goto bad_pool;
4226 	}
4227 
4228 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4229 	if (r)
4230 		goto bad;
4231 
4232 	ti->num_flush_bios = 1;
4233 	ti->flush_supported = true;
4234 	ti->accounts_remapped_io = true;
4235 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4236 
4237 	/* In case the pool supports discards, pass them on. */
4238 	if (tc->pool->pf.discard_enabled) {
4239 		ti->discards_supported = true;
4240 		ti->num_discard_bios = 1;
4241 	}
4242 
4243 	mutex_unlock(&dm_thin_pool_table.mutex);
4244 
4245 	spin_lock_irq(&tc->pool->lock);
4246 	if (tc->pool->suspended) {
4247 		spin_unlock_irq(&tc->pool->lock);
4248 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4249 		ti->error = "Unable to activate thin device while pool is suspended";
4250 		r = -EINVAL;
4251 		goto bad;
4252 	}
4253 	refcount_set(&tc->refcount, 1);
4254 	init_completion(&tc->can_destroy);
4255 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4256 	spin_unlock_irq(&tc->pool->lock);
4257 	/*
4258 	 * This synchronize_rcu() call is needed here otherwise we risk a
4259 	 * wake_worker() call finding no bios to process (because the newly
4260 	 * added tc isn't yet visible).  So this reduces latency since we
4261 	 * aren't then dependent on the periodic commit to wake_worker().
4262 	 */
4263 	synchronize_rcu();
4264 
4265 	dm_put(pool_md);
4266 
4267 	return 0;
4268 
4269 bad:
4270 	dm_pool_close_thin_device(tc->td);
4271 bad_pool:
4272 	__pool_dec(tc->pool);
4273 bad_pool_lookup:
4274 	dm_put(pool_md);
4275 bad_common:
4276 	dm_put_device(ti, tc->pool_dev);
4277 bad_pool_dev:
4278 	if (tc->origin_dev)
4279 		dm_put_device(ti, tc->origin_dev);
4280 bad_origin_dev:
4281 	kfree(tc);
4282 out_unlock:
4283 	mutex_unlock(&dm_thin_pool_table.mutex);
4284 
4285 	return r;
4286 }
4287 
4288 static int thin_map(struct dm_target *ti, struct bio *bio)
4289 {
4290 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4291 
4292 	return thin_bio_map(ti, bio);
4293 }
4294 
4295 static int thin_endio(struct dm_target *ti, struct bio *bio,
4296 		blk_status_t *err)
4297 {
4298 	unsigned long flags;
4299 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4300 	struct list_head work;
4301 	struct dm_thin_new_mapping *m, *tmp;
4302 	struct pool *pool = h->tc->pool;
4303 
4304 	if (h->shared_read_entry) {
4305 		INIT_LIST_HEAD(&work);
4306 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4307 
4308 		spin_lock_irqsave(&pool->lock, flags);
4309 		list_for_each_entry_safe(m, tmp, &work, list) {
4310 			list_del(&m->list);
4311 			__complete_mapping_preparation(m);
4312 		}
4313 		spin_unlock_irqrestore(&pool->lock, flags);
4314 	}
4315 
4316 	if (h->all_io_entry) {
4317 		INIT_LIST_HEAD(&work);
4318 		dm_deferred_entry_dec(h->all_io_entry, &work);
4319 		if (!list_empty(&work)) {
4320 			spin_lock_irqsave(&pool->lock, flags);
4321 			list_for_each_entry_safe(m, tmp, &work, list)
4322 				list_add_tail(&m->list, &pool->prepared_discards);
4323 			spin_unlock_irqrestore(&pool->lock, flags);
4324 			wake_worker(pool);
4325 		}
4326 	}
4327 
4328 	if (h->cell)
4329 		cell_defer_no_holder(h->tc, h->cell);
4330 
4331 	return DM_ENDIO_DONE;
4332 }
4333 
4334 static void thin_presuspend(struct dm_target *ti)
4335 {
4336 	struct thin_c *tc = ti->private;
4337 
4338 	if (dm_noflush_suspending(ti))
4339 		noflush_work(tc, do_noflush_start);
4340 }
4341 
4342 static void thin_postsuspend(struct dm_target *ti)
4343 {
4344 	struct thin_c *tc = ti->private;
4345 
4346 	/*
4347 	 * The dm_noflush_suspending flag has been cleared by now, so
4348 	 * unfortunately we must always run this.
4349 	 */
4350 	noflush_work(tc, do_noflush_stop);
4351 }
4352 
4353 static int thin_preresume(struct dm_target *ti)
4354 {
4355 	struct thin_c *tc = ti->private;
4356 
4357 	if (tc->origin_dev)
4358 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4359 
4360 	return 0;
4361 }
4362 
4363 /*
4364  * <nr mapped sectors> <highest mapped sector>
4365  */
4366 static void thin_status(struct dm_target *ti, status_type_t type,
4367 			unsigned status_flags, char *result, unsigned maxlen)
4368 {
4369 	int r;
4370 	ssize_t sz = 0;
4371 	dm_block_t mapped, highest;
4372 	char buf[BDEVNAME_SIZE];
4373 	struct thin_c *tc = ti->private;
4374 
4375 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4376 		DMEMIT("Fail");
4377 		return;
4378 	}
4379 
4380 	if (!tc->td)
4381 		DMEMIT("-");
4382 	else {
4383 		switch (type) {
4384 		case STATUSTYPE_INFO:
4385 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4386 			if (r) {
4387 				DMERR("dm_thin_get_mapped_count returned %d", r);
4388 				goto err;
4389 			}
4390 
4391 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4392 			if (r < 0) {
4393 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4394 				goto err;
4395 			}
4396 
4397 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4398 			if (r)
4399 				DMEMIT("%llu", ((highest + 1) *
4400 						tc->pool->sectors_per_block) - 1);
4401 			else
4402 				DMEMIT("-");
4403 			break;
4404 
4405 		case STATUSTYPE_TABLE:
4406 			DMEMIT("%s %lu",
4407 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4408 			       (unsigned long) tc->dev_id);
4409 			if (tc->origin_dev)
4410 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4411 			break;
4412 
4413 		case STATUSTYPE_IMA:
4414 			*result = '\0';
4415 			break;
4416 		}
4417 	}
4418 
4419 	return;
4420 
4421 err:
4422 	DMEMIT("Error");
4423 }
4424 
4425 static int thin_iterate_devices(struct dm_target *ti,
4426 				iterate_devices_callout_fn fn, void *data)
4427 {
4428 	sector_t blocks;
4429 	struct thin_c *tc = ti->private;
4430 	struct pool *pool = tc->pool;
4431 
4432 	/*
4433 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4434 	 * we follow a more convoluted path through to the pool's target.
4435 	 */
4436 	if (!pool->ti)
4437 		return 0;	/* nothing is bound */
4438 
4439 	blocks = pool->ti->len;
4440 	(void) sector_div(blocks, pool->sectors_per_block);
4441 	if (blocks)
4442 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4443 
4444 	return 0;
4445 }
4446 
4447 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4448 {
4449 	struct thin_c *tc = ti->private;
4450 	struct pool *pool = tc->pool;
4451 
4452 	if (!pool->pf.discard_enabled)
4453 		return;
4454 
4455 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4456 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4457 }
4458 
4459 static struct target_type thin_target = {
4460 	.name = "thin",
4461 	.version = {1, 22, 0},
4462 	.module	= THIS_MODULE,
4463 	.ctr = thin_ctr,
4464 	.dtr = thin_dtr,
4465 	.map = thin_map,
4466 	.end_io = thin_endio,
4467 	.preresume = thin_preresume,
4468 	.presuspend = thin_presuspend,
4469 	.postsuspend = thin_postsuspend,
4470 	.status = thin_status,
4471 	.iterate_devices = thin_iterate_devices,
4472 	.io_hints = thin_io_hints,
4473 };
4474 
4475 /*----------------------------------------------------------------*/
4476 
4477 static int __init dm_thin_init(void)
4478 {
4479 	int r = -ENOMEM;
4480 
4481 	pool_table_init();
4482 
4483 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4484 	if (!_new_mapping_cache)
4485 		return r;
4486 
4487 	r = dm_register_target(&thin_target);
4488 	if (r)
4489 		goto bad_new_mapping_cache;
4490 
4491 	r = dm_register_target(&pool_target);
4492 	if (r)
4493 		goto bad_thin_target;
4494 
4495 	return 0;
4496 
4497 bad_thin_target:
4498 	dm_unregister_target(&thin_target);
4499 bad_new_mapping_cache:
4500 	kmem_cache_destroy(_new_mapping_cache);
4501 
4502 	return r;
4503 }
4504 
4505 static void dm_thin_exit(void)
4506 {
4507 	dm_unregister_target(&thin_target);
4508 	dm_unregister_target(&pool_target);
4509 
4510 	kmem_cache_destroy(_new_mapping_cache);
4511 
4512 	pool_table_exit();
4513 }
4514 
4515 module_init(dm_thin_init);
4516 module_exit(dm_thin_exit);
4517 
4518 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4519 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4520 
4521 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4522 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4523 MODULE_LICENSE("GPL");
4524