xref: /openbmc/linux/drivers/md/dm-thin-metadata.c (revision e705d397965811ac528d7213b42d74ffe43caf38)
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 40
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX   "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81 
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91 
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94 
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99 	__le32 csum;	/* Checksum of superblock except for this field. */
100 	__le32 flags;
101 	__le64 blocknr;	/* This block number, dm_block_t. */
102 
103 	__u8 uuid[16];
104 	__le64 magic;
105 	__le32 version;
106 	__le32 time;
107 
108 	__le64 trans_id;
109 
110 	/*
111 	 * Root held by userspace transactions.
112 	 */
113 	__le64 held_root;
114 
115 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117 
118 	/*
119 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 	 */
121 	__le64 data_mapping_root;
122 
123 	/*
124 	 * Device detail root mapping dev_id -> device_details
125 	 */
126 	__le64 device_details_root;
127 
128 	__le32 data_block_size;		/* In 512-byte sectors. */
129 
130 	__le32 metadata_block_size;	/* In 512-byte sectors. */
131 	__le64 metadata_nr_blocks;
132 
133 	__le32 compat_flags;
134 	__le32 compat_ro_flags;
135 	__le32 incompat_flags;
136 } __packed;
137 
138 struct disk_device_details {
139 	__le64 mapped_blocks;
140 	__le64 transaction_id;		/* When created. */
141 	__le32 creation_time;
142 	__le32 snapshotted_time;
143 } __packed;
144 
145 struct dm_pool_metadata {
146 	struct hlist_node hash;
147 
148 	struct block_device *bdev;
149 	struct dm_block_manager *bm;
150 	struct dm_space_map *metadata_sm;
151 	struct dm_space_map *data_sm;
152 	struct dm_transaction_manager *tm;
153 	struct dm_transaction_manager *nb_tm;
154 
155 	/*
156 	 * Two-level btree.
157 	 * First level holds thin_dev_t.
158 	 * Second level holds mappings.
159 	 */
160 	struct dm_btree_info info;
161 
162 	/*
163 	 * Non-blocking version of the above.
164 	 */
165 	struct dm_btree_info nb_info;
166 
167 	/*
168 	 * Just the top level for deleting whole devices.
169 	 */
170 	struct dm_btree_info tl_info;
171 
172 	/*
173 	 * Just the bottom level for creating new devices.
174 	 */
175 	struct dm_btree_info bl_info;
176 
177 	/*
178 	 * Describes the device details btree.
179 	 */
180 	struct dm_btree_info details_info;
181 
182 	struct rw_semaphore root_lock;
183 	uint32_t time;
184 	dm_block_t root;
185 	dm_block_t details_root;
186 	struct list_head thin_devices;
187 	uint64_t trans_id;
188 	unsigned long flags;
189 	sector_t data_block_size;
190 
191 	/*
192 	 * Pre-commit callback.
193 	 *
194 	 * This allows the thin provisioning target to run a callback before
195 	 * the metadata are committed.
196 	 */
197 	dm_pool_pre_commit_fn pre_commit_fn;
198 	void *pre_commit_context;
199 
200 	/*
201 	 * We reserve a section of the metadata for commit overhead.
202 	 * All reported space does *not* include this.
203 	 */
204 	dm_block_t metadata_reserve;
205 
206 	/*
207 	 * Set if a transaction has to be aborted but the attempt to roll back
208 	 * to the previous (good) transaction failed.  The only pool metadata
209 	 * operation possible in this state is the closing of the device.
210 	 */
211 	bool fail_io:1;
212 
213 	/*
214 	 * Set once a thin-pool has been accessed through one of the interfaces
215 	 * that imply the pool is in-service (e.g. thin devices created/deleted,
216 	 * thin-pool message, metadata snapshots, etc).
217 	 */
218 	bool in_service:1;
219 
220 	/*
221 	 * Reading the space map roots can fail, so we read it into these
222 	 * buffers before the superblock is locked and updated.
223 	 */
224 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
226 };
227 
228 struct dm_thin_device {
229 	struct list_head list;
230 	struct dm_pool_metadata *pmd;
231 	dm_thin_id id;
232 
233 	int open_count;
234 	bool changed:1;
235 	bool aborted_with_changes:1;
236 	uint64_t mapped_blocks;
237 	uint64_t transaction_id;
238 	uint32_t creation_time;
239 	uint32_t snapshotted_time;
240 };
241 
242 /*----------------------------------------------------------------
243  * superblock validator
244  *--------------------------------------------------------------*/
245 
246 #define SUPERBLOCK_CSUM_XOR 160774
247 
248 static void sb_prepare_for_write(struct dm_block_validator *v,
249 				 struct dm_block *b,
250 				 size_t block_size)
251 {
252 	struct thin_disk_superblock *disk_super = dm_block_data(b);
253 
254 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256 						      block_size - sizeof(__le32),
257 						      SUPERBLOCK_CSUM_XOR));
258 }
259 
260 static int sb_check(struct dm_block_validator *v,
261 		    struct dm_block *b,
262 		    size_t block_size)
263 {
264 	struct thin_disk_superblock *disk_super = dm_block_data(b);
265 	__le32 csum_le;
266 
267 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268 		DMERR("sb_check failed: blocknr %llu: "
269 		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
270 		      (unsigned long long)dm_block_location(b));
271 		return -ENOTBLK;
272 	}
273 
274 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275 		DMERR("sb_check failed: magic %llu: "
276 		      "wanted %llu", le64_to_cpu(disk_super->magic),
277 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
278 		return -EILSEQ;
279 	}
280 
281 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282 					     block_size - sizeof(__le32),
283 					     SUPERBLOCK_CSUM_XOR));
284 	if (csum_le != disk_super->csum) {
285 		DMERR("sb_check failed: csum %u: wanted %u",
286 		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
287 		return -EILSEQ;
288 	}
289 
290 	return 0;
291 }
292 
293 static struct dm_block_validator sb_validator = {
294 	.name = "superblock",
295 	.prepare_for_write = sb_prepare_for_write,
296 	.check = sb_check
297 };
298 
299 /*----------------------------------------------------------------
300  * Methods for the btree value types
301  *--------------------------------------------------------------*/
302 
303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
304 {
305 	return (b << 24) | t;
306 }
307 
308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
309 {
310 	*b = v >> 24;
311 	*t = v & ((1 << 24) - 1);
312 }
313 
314 static void data_block_inc(void *context, const void *value_le)
315 {
316 	struct dm_space_map *sm = context;
317 	__le64 v_le;
318 	uint64_t b;
319 	uint32_t t;
320 
321 	memcpy(&v_le, value_le, sizeof(v_le));
322 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
323 	dm_sm_inc_block(sm, b);
324 }
325 
326 static void data_block_dec(void *context, const void *value_le)
327 {
328 	struct dm_space_map *sm = context;
329 	__le64 v_le;
330 	uint64_t b;
331 	uint32_t t;
332 
333 	memcpy(&v_le, value_le, sizeof(v_le));
334 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
335 	dm_sm_dec_block(sm, b);
336 }
337 
338 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
339 {
340 	__le64 v1_le, v2_le;
341 	uint64_t b1, b2;
342 	uint32_t t;
343 
344 	memcpy(&v1_le, value1_le, sizeof(v1_le));
345 	memcpy(&v2_le, value2_le, sizeof(v2_le));
346 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
347 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
348 
349 	return b1 == b2;
350 }
351 
352 static void subtree_inc(void *context, const void *value)
353 {
354 	struct dm_btree_info *info = context;
355 	__le64 root_le;
356 	uint64_t root;
357 
358 	memcpy(&root_le, value, sizeof(root_le));
359 	root = le64_to_cpu(root_le);
360 	dm_tm_inc(info->tm, root);
361 }
362 
363 static void subtree_dec(void *context, const void *value)
364 {
365 	struct dm_btree_info *info = context;
366 	__le64 root_le;
367 	uint64_t root;
368 
369 	memcpy(&root_le, value, sizeof(root_le));
370 	root = le64_to_cpu(root_le);
371 	if (dm_btree_del(info, root))
372 		DMERR("btree delete failed");
373 }
374 
375 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
376 {
377 	__le64 v1_le, v2_le;
378 	memcpy(&v1_le, value1_le, sizeof(v1_le));
379 	memcpy(&v2_le, value2_le, sizeof(v2_le));
380 
381 	return v1_le == v2_le;
382 }
383 
384 /*----------------------------------------------------------------*/
385 
386 /*
387  * Variant that is used for in-core only changes or code that
388  * shouldn't put the pool in service on its own (e.g. commit).
389  */
390 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
391 	__acquires(pmd->root_lock)
392 {
393 	down_write(&pmd->root_lock);
394 }
395 
396 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
397 {
398 	pmd_write_lock_in_core(pmd);
399 	if (unlikely(!pmd->in_service))
400 		pmd->in_service = true;
401 }
402 
403 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
404 	__releases(pmd->root_lock)
405 {
406 	up_write(&pmd->root_lock);
407 }
408 
409 /*----------------------------------------------------------------*/
410 
411 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
412 				struct dm_block **sblock)
413 {
414 	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
415 				     &sb_validator, sblock);
416 }
417 
418 static int superblock_lock(struct dm_pool_metadata *pmd,
419 			   struct dm_block **sblock)
420 {
421 	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
422 				&sb_validator, sblock);
423 }
424 
425 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
426 {
427 	int r;
428 	unsigned i;
429 	struct dm_block *b;
430 	__le64 *data_le, zero = cpu_to_le64(0);
431 	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
432 
433 	/*
434 	 * We can't use a validator here - it may be all zeroes.
435 	 */
436 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
437 	if (r)
438 		return r;
439 
440 	data_le = dm_block_data(b);
441 	*result = 1;
442 	for (i = 0; i < block_size; i++) {
443 		if (data_le[i] != zero) {
444 			*result = 0;
445 			break;
446 		}
447 	}
448 
449 	dm_bm_unlock(b);
450 
451 	return 0;
452 }
453 
454 static void __setup_btree_details(struct dm_pool_metadata *pmd)
455 {
456 	pmd->info.tm = pmd->tm;
457 	pmd->info.levels = 2;
458 	pmd->info.value_type.context = pmd->data_sm;
459 	pmd->info.value_type.size = sizeof(__le64);
460 	pmd->info.value_type.inc = data_block_inc;
461 	pmd->info.value_type.dec = data_block_dec;
462 	pmd->info.value_type.equal = data_block_equal;
463 
464 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
465 	pmd->nb_info.tm = pmd->nb_tm;
466 
467 	pmd->tl_info.tm = pmd->tm;
468 	pmd->tl_info.levels = 1;
469 	pmd->tl_info.value_type.context = &pmd->bl_info;
470 	pmd->tl_info.value_type.size = sizeof(__le64);
471 	pmd->tl_info.value_type.inc = subtree_inc;
472 	pmd->tl_info.value_type.dec = subtree_dec;
473 	pmd->tl_info.value_type.equal = subtree_equal;
474 
475 	pmd->bl_info.tm = pmd->tm;
476 	pmd->bl_info.levels = 1;
477 	pmd->bl_info.value_type.context = pmd->data_sm;
478 	pmd->bl_info.value_type.size = sizeof(__le64);
479 	pmd->bl_info.value_type.inc = data_block_inc;
480 	pmd->bl_info.value_type.dec = data_block_dec;
481 	pmd->bl_info.value_type.equal = data_block_equal;
482 
483 	pmd->details_info.tm = pmd->tm;
484 	pmd->details_info.levels = 1;
485 	pmd->details_info.value_type.context = NULL;
486 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
487 	pmd->details_info.value_type.inc = NULL;
488 	pmd->details_info.value_type.dec = NULL;
489 	pmd->details_info.value_type.equal = NULL;
490 }
491 
492 static int save_sm_roots(struct dm_pool_metadata *pmd)
493 {
494 	int r;
495 	size_t len;
496 
497 	r = dm_sm_root_size(pmd->metadata_sm, &len);
498 	if (r < 0)
499 		return r;
500 
501 	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
502 	if (r < 0)
503 		return r;
504 
505 	r = dm_sm_root_size(pmd->data_sm, &len);
506 	if (r < 0)
507 		return r;
508 
509 	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
510 }
511 
512 static void copy_sm_roots(struct dm_pool_metadata *pmd,
513 			  struct thin_disk_superblock *disk)
514 {
515 	memcpy(&disk->metadata_space_map_root,
516 	       &pmd->metadata_space_map_root,
517 	       sizeof(pmd->metadata_space_map_root));
518 
519 	memcpy(&disk->data_space_map_root,
520 	       &pmd->data_space_map_root,
521 	       sizeof(pmd->data_space_map_root));
522 }
523 
524 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
525 {
526 	int r;
527 	struct dm_block *sblock;
528 	struct thin_disk_superblock *disk_super;
529 	sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
530 
531 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
532 		bdev_size = THIN_METADATA_MAX_SECTORS;
533 
534 	r = dm_sm_commit(pmd->data_sm);
535 	if (r < 0)
536 		return r;
537 
538 	r = dm_tm_pre_commit(pmd->tm);
539 	if (r < 0)
540 		return r;
541 
542 	r = save_sm_roots(pmd);
543 	if (r < 0)
544 		return r;
545 
546 	r = superblock_lock_zero(pmd, &sblock);
547 	if (r)
548 		return r;
549 
550 	disk_super = dm_block_data(sblock);
551 	disk_super->flags = 0;
552 	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
553 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
554 	disk_super->version = cpu_to_le32(THIN_VERSION);
555 	disk_super->time = 0;
556 	disk_super->trans_id = 0;
557 	disk_super->held_root = 0;
558 
559 	copy_sm_roots(pmd, disk_super);
560 
561 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
562 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
563 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
564 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
565 	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
566 
567 	return dm_tm_commit(pmd->tm, sblock);
568 }
569 
570 static int __format_metadata(struct dm_pool_metadata *pmd)
571 {
572 	int r;
573 
574 	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
575 				 &pmd->tm, &pmd->metadata_sm);
576 	if (r < 0) {
577 		DMERR("tm_create_with_sm failed");
578 		return r;
579 	}
580 
581 	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
582 	if (IS_ERR(pmd->data_sm)) {
583 		DMERR("sm_disk_create failed");
584 		r = PTR_ERR(pmd->data_sm);
585 		goto bad_cleanup_tm;
586 	}
587 
588 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
589 	if (!pmd->nb_tm) {
590 		DMERR("could not create non-blocking clone tm");
591 		r = -ENOMEM;
592 		goto bad_cleanup_data_sm;
593 	}
594 
595 	__setup_btree_details(pmd);
596 
597 	r = dm_btree_empty(&pmd->info, &pmd->root);
598 	if (r < 0)
599 		goto bad_cleanup_nb_tm;
600 
601 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
602 	if (r < 0) {
603 		DMERR("couldn't create devices root");
604 		goto bad_cleanup_nb_tm;
605 	}
606 
607 	r = __write_initial_superblock(pmd);
608 	if (r)
609 		goto bad_cleanup_nb_tm;
610 
611 	return 0;
612 
613 bad_cleanup_nb_tm:
614 	dm_tm_destroy(pmd->nb_tm);
615 bad_cleanup_data_sm:
616 	dm_sm_destroy(pmd->data_sm);
617 bad_cleanup_tm:
618 	dm_tm_destroy(pmd->tm);
619 	dm_sm_destroy(pmd->metadata_sm);
620 
621 	return r;
622 }
623 
624 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
625 				     struct dm_pool_metadata *pmd)
626 {
627 	uint32_t features;
628 
629 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
630 	if (features) {
631 		DMERR("could not access metadata due to unsupported optional features (%lx).",
632 		      (unsigned long)features);
633 		return -EINVAL;
634 	}
635 
636 	/*
637 	 * Check for read-only metadata to skip the following RDWR checks.
638 	 */
639 	if (get_disk_ro(pmd->bdev->bd_disk))
640 		return 0;
641 
642 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
643 	if (features) {
644 		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
645 		      (unsigned long)features);
646 		return -EINVAL;
647 	}
648 
649 	return 0;
650 }
651 
652 static int __open_metadata(struct dm_pool_metadata *pmd)
653 {
654 	int r;
655 	struct dm_block *sblock;
656 	struct thin_disk_superblock *disk_super;
657 
658 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
659 			    &sb_validator, &sblock);
660 	if (r < 0) {
661 		DMERR("couldn't read superblock");
662 		return r;
663 	}
664 
665 	disk_super = dm_block_data(sblock);
666 
667 	/* Verify the data block size hasn't changed */
668 	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
669 		DMERR("changing the data block size (from %u to %llu) is not supported",
670 		      le32_to_cpu(disk_super->data_block_size),
671 		      (unsigned long long)pmd->data_block_size);
672 		r = -EINVAL;
673 		goto bad_unlock_sblock;
674 	}
675 
676 	r = __check_incompat_features(disk_super, pmd);
677 	if (r < 0)
678 		goto bad_unlock_sblock;
679 
680 	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
681 			       disk_super->metadata_space_map_root,
682 			       sizeof(disk_super->metadata_space_map_root),
683 			       &pmd->tm, &pmd->metadata_sm);
684 	if (r < 0) {
685 		DMERR("tm_open_with_sm failed");
686 		goto bad_unlock_sblock;
687 	}
688 
689 	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
690 				       sizeof(disk_super->data_space_map_root));
691 	if (IS_ERR(pmd->data_sm)) {
692 		DMERR("sm_disk_open failed");
693 		r = PTR_ERR(pmd->data_sm);
694 		goto bad_cleanup_tm;
695 	}
696 
697 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
698 	if (!pmd->nb_tm) {
699 		DMERR("could not create non-blocking clone tm");
700 		r = -ENOMEM;
701 		goto bad_cleanup_data_sm;
702 	}
703 
704 	__setup_btree_details(pmd);
705 	dm_bm_unlock(sblock);
706 
707 	return 0;
708 
709 bad_cleanup_data_sm:
710 	dm_sm_destroy(pmd->data_sm);
711 bad_cleanup_tm:
712 	dm_tm_destroy(pmd->tm);
713 	dm_sm_destroy(pmd->metadata_sm);
714 bad_unlock_sblock:
715 	dm_bm_unlock(sblock);
716 
717 	return r;
718 }
719 
720 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
721 {
722 	int r, unformatted;
723 
724 	r = __superblock_all_zeroes(pmd->bm, &unformatted);
725 	if (r)
726 		return r;
727 
728 	if (unformatted)
729 		return format_device ? __format_metadata(pmd) : -EPERM;
730 
731 	return __open_metadata(pmd);
732 }
733 
734 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
735 {
736 	int r;
737 
738 	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
739 					  THIN_MAX_CONCURRENT_LOCKS);
740 	if (IS_ERR(pmd->bm)) {
741 		DMERR("could not create block manager");
742 		r = PTR_ERR(pmd->bm);
743 		pmd->bm = NULL;
744 		return r;
745 	}
746 
747 	r = __open_or_format_metadata(pmd, format_device);
748 	if (r) {
749 		dm_block_manager_destroy(pmd->bm);
750 		pmd->bm = NULL;
751 	}
752 
753 	return r;
754 }
755 
756 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
757 {
758 	dm_sm_destroy(pmd->data_sm);
759 	dm_sm_destroy(pmd->metadata_sm);
760 	dm_tm_destroy(pmd->nb_tm);
761 	dm_tm_destroy(pmd->tm);
762 	dm_block_manager_destroy(pmd->bm);
763 }
764 
765 static int __begin_transaction(struct dm_pool_metadata *pmd)
766 {
767 	int r;
768 	struct thin_disk_superblock *disk_super;
769 	struct dm_block *sblock;
770 
771 	/*
772 	 * We re-read the superblock every time.  Shouldn't need to do this
773 	 * really.
774 	 */
775 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
776 			    &sb_validator, &sblock);
777 	if (r)
778 		return r;
779 
780 	disk_super = dm_block_data(sblock);
781 	pmd->time = le32_to_cpu(disk_super->time);
782 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
783 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
784 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
785 	pmd->flags = le32_to_cpu(disk_super->flags);
786 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
787 
788 	dm_bm_unlock(sblock);
789 	return 0;
790 }
791 
792 static int __write_changed_details(struct dm_pool_metadata *pmd)
793 {
794 	int r;
795 	struct dm_thin_device *td, *tmp;
796 	struct disk_device_details details;
797 	uint64_t key;
798 
799 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
800 		if (!td->changed)
801 			continue;
802 
803 		key = td->id;
804 
805 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
806 		details.transaction_id = cpu_to_le64(td->transaction_id);
807 		details.creation_time = cpu_to_le32(td->creation_time);
808 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
809 		__dm_bless_for_disk(&details);
810 
811 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
812 				    &key, &details, &pmd->details_root);
813 		if (r)
814 			return r;
815 
816 		if (td->open_count)
817 			td->changed = false;
818 		else {
819 			list_del(&td->list);
820 			kfree(td);
821 		}
822 	}
823 
824 	return 0;
825 }
826 
827 static int __commit_transaction(struct dm_pool_metadata *pmd)
828 {
829 	int r;
830 	struct thin_disk_superblock *disk_super;
831 	struct dm_block *sblock;
832 
833 	/*
834 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
835 	 */
836 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
837 	BUG_ON(!rwsem_is_locked(&pmd->root_lock));
838 
839 	if (unlikely(!pmd->in_service))
840 		return 0;
841 
842 	if (pmd->pre_commit_fn) {
843 		r = pmd->pre_commit_fn(pmd->pre_commit_context);
844 		if (r < 0) {
845 			DMERR("pre-commit callback failed");
846 			return r;
847 		}
848 	}
849 
850 	r = __write_changed_details(pmd);
851 	if (r < 0)
852 		return r;
853 
854 	r = dm_sm_commit(pmd->data_sm);
855 	if (r < 0)
856 		return r;
857 
858 	r = dm_tm_pre_commit(pmd->tm);
859 	if (r < 0)
860 		return r;
861 
862 	r = save_sm_roots(pmd);
863 	if (r < 0)
864 		return r;
865 
866 	r = superblock_lock(pmd, &sblock);
867 	if (r)
868 		return r;
869 
870 	disk_super = dm_block_data(sblock);
871 	disk_super->time = cpu_to_le32(pmd->time);
872 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
873 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
874 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
875 	disk_super->flags = cpu_to_le32(pmd->flags);
876 
877 	copy_sm_roots(pmd, disk_super);
878 
879 	return dm_tm_commit(pmd->tm, sblock);
880 }
881 
882 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
883 {
884 	int r;
885 	dm_block_t total;
886 	dm_block_t max_blocks = 4096; /* 16M */
887 
888 	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
889 	if (r) {
890 		DMERR("could not get size of metadata device");
891 		pmd->metadata_reserve = max_blocks;
892 	} else
893 		pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
894 }
895 
896 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
897 					       sector_t data_block_size,
898 					       bool format_device)
899 {
900 	int r;
901 	struct dm_pool_metadata *pmd;
902 
903 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
904 	if (!pmd) {
905 		DMERR("could not allocate metadata struct");
906 		return ERR_PTR(-ENOMEM);
907 	}
908 
909 	init_rwsem(&pmd->root_lock);
910 	pmd->time = 0;
911 	INIT_LIST_HEAD(&pmd->thin_devices);
912 	pmd->fail_io = false;
913 	pmd->in_service = false;
914 	pmd->bdev = bdev;
915 	pmd->data_block_size = data_block_size;
916 	pmd->pre_commit_fn = NULL;
917 	pmd->pre_commit_context = NULL;
918 
919 	r = __create_persistent_data_objects(pmd, format_device);
920 	if (r) {
921 		kfree(pmd);
922 		return ERR_PTR(r);
923 	}
924 
925 	r = __begin_transaction(pmd);
926 	if (r < 0) {
927 		if (dm_pool_metadata_close(pmd) < 0)
928 			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
929 		return ERR_PTR(r);
930 	}
931 
932 	__set_metadata_reserve(pmd);
933 
934 	return pmd;
935 }
936 
937 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
938 {
939 	int r;
940 	unsigned open_devices = 0;
941 	struct dm_thin_device *td, *tmp;
942 
943 	down_read(&pmd->root_lock);
944 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
945 		if (td->open_count)
946 			open_devices++;
947 		else {
948 			list_del(&td->list);
949 			kfree(td);
950 		}
951 	}
952 	up_read(&pmd->root_lock);
953 
954 	if (open_devices) {
955 		DMERR("attempt to close pmd when %u device(s) are still open",
956 		       open_devices);
957 		return -EBUSY;
958 	}
959 
960 	pmd_write_lock_in_core(pmd);
961 	if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
962 		r = __commit_transaction(pmd);
963 		if (r < 0)
964 			DMWARN("%s: __commit_transaction() failed, error = %d",
965 			       __func__, r);
966 	}
967 	pmd_write_unlock(pmd);
968 	if (!pmd->fail_io)
969 		__destroy_persistent_data_objects(pmd);
970 
971 	kfree(pmd);
972 	return 0;
973 }
974 
975 /*
976  * __open_device: Returns @td corresponding to device with id @dev,
977  * creating it if @create is set and incrementing @td->open_count.
978  * On failure, @td is undefined.
979  */
980 static int __open_device(struct dm_pool_metadata *pmd,
981 			 dm_thin_id dev, int create,
982 			 struct dm_thin_device **td)
983 {
984 	int r, changed = 0;
985 	struct dm_thin_device *td2;
986 	uint64_t key = dev;
987 	struct disk_device_details details_le;
988 
989 	/*
990 	 * If the device is already open, return it.
991 	 */
992 	list_for_each_entry(td2, &pmd->thin_devices, list)
993 		if (td2->id == dev) {
994 			/*
995 			 * May not create an already-open device.
996 			 */
997 			if (create)
998 				return -EEXIST;
999 
1000 			td2->open_count++;
1001 			*td = td2;
1002 			return 0;
1003 		}
1004 
1005 	/*
1006 	 * Check the device exists.
1007 	 */
1008 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1009 			    &key, &details_le);
1010 	if (r) {
1011 		if (r != -ENODATA || !create)
1012 			return r;
1013 
1014 		/*
1015 		 * Create new device.
1016 		 */
1017 		changed = 1;
1018 		details_le.mapped_blocks = 0;
1019 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1020 		details_le.creation_time = cpu_to_le32(pmd->time);
1021 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
1022 	}
1023 
1024 	*td = kmalloc(sizeof(**td), GFP_NOIO);
1025 	if (!*td)
1026 		return -ENOMEM;
1027 
1028 	(*td)->pmd = pmd;
1029 	(*td)->id = dev;
1030 	(*td)->open_count = 1;
1031 	(*td)->changed = changed;
1032 	(*td)->aborted_with_changes = false;
1033 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1034 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1035 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
1036 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1037 
1038 	list_add(&(*td)->list, &pmd->thin_devices);
1039 
1040 	return 0;
1041 }
1042 
1043 static void __close_device(struct dm_thin_device *td)
1044 {
1045 	--td->open_count;
1046 }
1047 
1048 static int __create_thin(struct dm_pool_metadata *pmd,
1049 			 dm_thin_id dev)
1050 {
1051 	int r;
1052 	dm_block_t dev_root;
1053 	uint64_t key = dev;
1054 	struct disk_device_details details_le;
1055 	struct dm_thin_device *td;
1056 	__le64 value;
1057 
1058 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1059 			    &key, &details_le);
1060 	if (!r)
1061 		return -EEXIST;
1062 
1063 	/*
1064 	 * Create an empty btree for the mappings.
1065 	 */
1066 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1067 	if (r)
1068 		return r;
1069 
1070 	/*
1071 	 * Insert it into the main mapping tree.
1072 	 */
1073 	value = cpu_to_le64(dev_root);
1074 	__dm_bless_for_disk(&value);
1075 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1076 	if (r) {
1077 		dm_btree_del(&pmd->bl_info, dev_root);
1078 		return r;
1079 	}
1080 
1081 	r = __open_device(pmd, dev, 1, &td);
1082 	if (r) {
1083 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1084 		dm_btree_del(&pmd->bl_info, dev_root);
1085 		return r;
1086 	}
1087 	__close_device(td);
1088 
1089 	return r;
1090 }
1091 
1092 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1093 {
1094 	int r = -EINVAL;
1095 
1096 	pmd_write_lock(pmd);
1097 	if (!pmd->fail_io)
1098 		r = __create_thin(pmd, dev);
1099 	pmd_write_unlock(pmd);
1100 
1101 	return r;
1102 }
1103 
1104 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1105 				  struct dm_thin_device *snap,
1106 				  dm_thin_id origin, uint32_t time)
1107 {
1108 	int r;
1109 	struct dm_thin_device *td;
1110 
1111 	r = __open_device(pmd, origin, 0, &td);
1112 	if (r)
1113 		return r;
1114 
1115 	td->changed = true;
1116 	td->snapshotted_time = time;
1117 
1118 	snap->mapped_blocks = td->mapped_blocks;
1119 	snap->snapshotted_time = time;
1120 	__close_device(td);
1121 
1122 	return 0;
1123 }
1124 
1125 static int __create_snap(struct dm_pool_metadata *pmd,
1126 			 dm_thin_id dev, dm_thin_id origin)
1127 {
1128 	int r;
1129 	dm_block_t origin_root;
1130 	uint64_t key = origin, dev_key = dev;
1131 	struct dm_thin_device *td;
1132 	struct disk_device_details details_le;
1133 	__le64 value;
1134 
1135 	/* check this device is unused */
1136 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1137 			    &dev_key, &details_le);
1138 	if (!r)
1139 		return -EEXIST;
1140 
1141 	/* find the mapping tree for the origin */
1142 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1143 	if (r)
1144 		return r;
1145 	origin_root = le64_to_cpu(value);
1146 
1147 	/* clone the origin, an inc will do */
1148 	dm_tm_inc(pmd->tm, origin_root);
1149 
1150 	/* insert into the main mapping tree */
1151 	value = cpu_to_le64(origin_root);
1152 	__dm_bless_for_disk(&value);
1153 	key = dev;
1154 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1155 	if (r) {
1156 		dm_tm_dec(pmd->tm, origin_root);
1157 		return r;
1158 	}
1159 
1160 	pmd->time++;
1161 
1162 	r = __open_device(pmd, dev, 1, &td);
1163 	if (r)
1164 		goto bad;
1165 
1166 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1167 	__close_device(td);
1168 
1169 	if (r)
1170 		goto bad;
1171 
1172 	return 0;
1173 
1174 bad:
1175 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1176 	dm_btree_remove(&pmd->details_info, pmd->details_root,
1177 			&key, &pmd->details_root);
1178 	return r;
1179 }
1180 
1181 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1182 				 dm_thin_id dev,
1183 				 dm_thin_id origin)
1184 {
1185 	int r = -EINVAL;
1186 
1187 	pmd_write_lock(pmd);
1188 	if (!pmd->fail_io)
1189 		r = __create_snap(pmd, dev, origin);
1190 	pmd_write_unlock(pmd);
1191 
1192 	return r;
1193 }
1194 
1195 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1196 {
1197 	int r;
1198 	uint64_t key = dev;
1199 	struct dm_thin_device *td;
1200 
1201 	/* TODO: failure should mark the transaction invalid */
1202 	r = __open_device(pmd, dev, 0, &td);
1203 	if (r)
1204 		return r;
1205 
1206 	if (td->open_count > 1) {
1207 		__close_device(td);
1208 		return -EBUSY;
1209 	}
1210 
1211 	list_del(&td->list);
1212 	kfree(td);
1213 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1214 			    &key, &pmd->details_root);
1215 	if (r)
1216 		return r;
1217 
1218 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1219 	if (r)
1220 		return r;
1221 
1222 	return 0;
1223 }
1224 
1225 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1226 			       dm_thin_id dev)
1227 {
1228 	int r = -EINVAL;
1229 
1230 	pmd_write_lock(pmd);
1231 	if (!pmd->fail_io)
1232 		r = __delete_device(pmd, dev);
1233 	pmd_write_unlock(pmd);
1234 
1235 	return r;
1236 }
1237 
1238 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1239 					uint64_t current_id,
1240 					uint64_t new_id)
1241 {
1242 	int r = -EINVAL;
1243 
1244 	pmd_write_lock(pmd);
1245 
1246 	if (pmd->fail_io)
1247 		goto out;
1248 
1249 	if (pmd->trans_id != current_id) {
1250 		DMERR("mismatched transaction id");
1251 		goto out;
1252 	}
1253 
1254 	pmd->trans_id = new_id;
1255 	r = 0;
1256 
1257 out:
1258 	pmd_write_unlock(pmd);
1259 
1260 	return r;
1261 }
1262 
1263 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1264 					uint64_t *result)
1265 {
1266 	int r = -EINVAL;
1267 
1268 	down_read(&pmd->root_lock);
1269 	if (!pmd->fail_io) {
1270 		*result = pmd->trans_id;
1271 		r = 0;
1272 	}
1273 	up_read(&pmd->root_lock);
1274 
1275 	return r;
1276 }
1277 
1278 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1279 {
1280 	int r, inc;
1281 	struct thin_disk_superblock *disk_super;
1282 	struct dm_block *copy, *sblock;
1283 	dm_block_t held_root;
1284 
1285 	/*
1286 	 * We commit to ensure the btree roots which we increment in a
1287 	 * moment are up to date.
1288 	 */
1289 	r = __commit_transaction(pmd);
1290 	if (r < 0) {
1291 		DMWARN("%s: __commit_transaction() failed, error = %d",
1292 		       __func__, r);
1293 		return r;
1294 	}
1295 
1296 	/*
1297 	 * Copy the superblock.
1298 	 */
1299 	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1300 	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1301 			       &sb_validator, &copy, &inc);
1302 	if (r)
1303 		return r;
1304 
1305 	BUG_ON(!inc);
1306 
1307 	held_root = dm_block_location(copy);
1308 	disk_super = dm_block_data(copy);
1309 
1310 	if (le64_to_cpu(disk_super->held_root)) {
1311 		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1312 
1313 		dm_tm_dec(pmd->tm, held_root);
1314 		dm_tm_unlock(pmd->tm, copy);
1315 		return -EBUSY;
1316 	}
1317 
1318 	/*
1319 	 * Wipe the spacemap since we're not publishing this.
1320 	 */
1321 	memset(&disk_super->data_space_map_root, 0,
1322 	       sizeof(disk_super->data_space_map_root));
1323 	memset(&disk_super->metadata_space_map_root, 0,
1324 	       sizeof(disk_super->metadata_space_map_root));
1325 
1326 	/*
1327 	 * Increment the data structures that need to be preserved.
1328 	 */
1329 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1330 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1331 	dm_tm_unlock(pmd->tm, copy);
1332 
1333 	/*
1334 	 * Write the held root into the superblock.
1335 	 */
1336 	r = superblock_lock(pmd, &sblock);
1337 	if (r) {
1338 		dm_tm_dec(pmd->tm, held_root);
1339 		return r;
1340 	}
1341 
1342 	disk_super = dm_block_data(sblock);
1343 	disk_super->held_root = cpu_to_le64(held_root);
1344 	dm_bm_unlock(sblock);
1345 	return 0;
1346 }
1347 
1348 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1349 {
1350 	int r = -EINVAL;
1351 
1352 	pmd_write_lock(pmd);
1353 	if (!pmd->fail_io)
1354 		r = __reserve_metadata_snap(pmd);
1355 	pmd_write_unlock(pmd);
1356 
1357 	return r;
1358 }
1359 
1360 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1361 {
1362 	int r;
1363 	struct thin_disk_superblock *disk_super;
1364 	struct dm_block *sblock, *copy;
1365 	dm_block_t held_root;
1366 
1367 	r = superblock_lock(pmd, &sblock);
1368 	if (r)
1369 		return r;
1370 
1371 	disk_super = dm_block_data(sblock);
1372 	held_root = le64_to_cpu(disk_super->held_root);
1373 	disk_super->held_root = cpu_to_le64(0);
1374 
1375 	dm_bm_unlock(sblock);
1376 
1377 	if (!held_root) {
1378 		DMWARN("No pool metadata snapshot found: nothing to release.");
1379 		return -EINVAL;
1380 	}
1381 
1382 	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1383 	if (r)
1384 		return r;
1385 
1386 	disk_super = dm_block_data(copy);
1387 	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1388 	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1389 	dm_sm_dec_block(pmd->metadata_sm, held_root);
1390 
1391 	dm_tm_unlock(pmd->tm, copy);
1392 
1393 	return 0;
1394 }
1395 
1396 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1397 {
1398 	int r = -EINVAL;
1399 
1400 	pmd_write_lock(pmd);
1401 	if (!pmd->fail_io)
1402 		r = __release_metadata_snap(pmd);
1403 	pmd_write_unlock(pmd);
1404 
1405 	return r;
1406 }
1407 
1408 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1409 			       dm_block_t *result)
1410 {
1411 	int r;
1412 	struct thin_disk_superblock *disk_super;
1413 	struct dm_block *sblock;
1414 
1415 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1416 			    &sb_validator, &sblock);
1417 	if (r)
1418 		return r;
1419 
1420 	disk_super = dm_block_data(sblock);
1421 	*result = le64_to_cpu(disk_super->held_root);
1422 
1423 	dm_bm_unlock(sblock);
1424 
1425 	return 0;
1426 }
1427 
1428 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1429 			      dm_block_t *result)
1430 {
1431 	int r = -EINVAL;
1432 
1433 	down_read(&pmd->root_lock);
1434 	if (!pmd->fail_io)
1435 		r = __get_metadata_snap(pmd, result);
1436 	up_read(&pmd->root_lock);
1437 
1438 	return r;
1439 }
1440 
1441 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1442 			     struct dm_thin_device **td)
1443 {
1444 	int r = -EINVAL;
1445 
1446 	pmd_write_lock_in_core(pmd);
1447 	if (!pmd->fail_io)
1448 		r = __open_device(pmd, dev, 0, td);
1449 	pmd_write_unlock(pmd);
1450 
1451 	return r;
1452 }
1453 
1454 int dm_pool_close_thin_device(struct dm_thin_device *td)
1455 {
1456 	pmd_write_lock_in_core(td->pmd);
1457 	__close_device(td);
1458 	pmd_write_unlock(td->pmd);
1459 
1460 	return 0;
1461 }
1462 
1463 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1464 {
1465 	return td->id;
1466 }
1467 
1468 /*
1469  * Check whether @time (of block creation) is older than @td's last snapshot.
1470  * If so then the associated block is shared with the last snapshot device.
1471  * Any block on a device created *after* the device last got snapshotted is
1472  * necessarily not shared.
1473  */
1474 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1475 {
1476 	return td->snapshotted_time > time;
1477 }
1478 
1479 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1480 				 struct dm_thin_lookup_result *result)
1481 {
1482 	uint64_t block_time = 0;
1483 	dm_block_t exception_block;
1484 	uint32_t exception_time;
1485 
1486 	block_time = le64_to_cpu(value);
1487 	unpack_block_time(block_time, &exception_block, &exception_time);
1488 	result->block = exception_block;
1489 	result->shared = __snapshotted_since(td, exception_time);
1490 }
1491 
1492 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1493 			int can_issue_io, struct dm_thin_lookup_result *result)
1494 {
1495 	int r;
1496 	__le64 value;
1497 	struct dm_pool_metadata *pmd = td->pmd;
1498 	dm_block_t keys[2] = { td->id, block };
1499 	struct dm_btree_info *info;
1500 
1501 	if (can_issue_io) {
1502 		info = &pmd->info;
1503 	} else
1504 		info = &pmd->nb_info;
1505 
1506 	r = dm_btree_lookup(info, pmd->root, keys, &value);
1507 	if (!r)
1508 		unpack_lookup_result(td, value, result);
1509 
1510 	return r;
1511 }
1512 
1513 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1514 		       int can_issue_io, struct dm_thin_lookup_result *result)
1515 {
1516 	int r;
1517 	struct dm_pool_metadata *pmd = td->pmd;
1518 
1519 	down_read(&pmd->root_lock);
1520 	if (pmd->fail_io) {
1521 		up_read(&pmd->root_lock);
1522 		return -EINVAL;
1523 	}
1524 
1525 	r = __find_block(td, block, can_issue_io, result);
1526 
1527 	up_read(&pmd->root_lock);
1528 	return r;
1529 }
1530 
1531 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1532 					  dm_block_t *vblock,
1533 					  struct dm_thin_lookup_result *result)
1534 {
1535 	int r;
1536 	__le64 value;
1537 	struct dm_pool_metadata *pmd = td->pmd;
1538 	dm_block_t keys[2] = { td->id, block };
1539 
1540 	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1541 	if (!r)
1542 		unpack_lookup_result(td, value, result);
1543 
1544 	return r;
1545 }
1546 
1547 static int __find_mapped_range(struct dm_thin_device *td,
1548 			       dm_block_t begin, dm_block_t end,
1549 			       dm_block_t *thin_begin, dm_block_t *thin_end,
1550 			       dm_block_t *pool_begin, bool *maybe_shared)
1551 {
1552 	int r;
1553 	dm_block_t pool_end;
1554 	struct dm_thin_lookup_result lookup;
1555 
1556 	if (end < begin)
1557 		return -ENODATA;
1558 
1559 	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1560 	if (r)
1561 		return r;
1562 
1563 	if (begin >= end)
1564 		return -ENODATA;
1565 
1566 	*thin_begin = begin;
1567 	*pool_begin = lookup.block;
1568 	*maybe_shared = lookup.shared;
1569 
1570 	begin++;
1571 	pool_end = *pool_begin + 1;
1572 	while (begin != end) {
1573 		r = __find_block(td, begin, true, &lookup);
1574 		if (r) {
1575 			if (r == -ENODATA)
1576 				break;
1577 			else
1578 				return r;
1579 		}
1580 
1581 		if ((lookup.block != pool_end) ||
1582 		    (lookup.shared != *maybe_shared))
1583 			break;
1584 
1585 		pool_end++;
1586 		begin++;
1587 	}
1588 
1589 	*thin_end = begin;
1590 	return 0;
1591 }
1592 
1593 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1594 			      dm_block_t begin, dm_block_t end,
1595 			      dm_block_t *thin_begin, dm_block_t *thin_end,
1596 			      dm_block_t *pool_begin, bool *maybe_shared)
1597 {
1598 	int r = -EINVAL;
1599 	struct dm_pool_metadata *pmd = td->pmd;
1600 
1601 	down_read(&pmd->root_lock);
1602 	if (!pmd->fail_io) {
1603 		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1604 					pool_begin, maybe_shared);
1605 	}
1606 	up_read(&pmd->root_lock);
1607 
1608 	return r;
1609 }
1610 
1611 static int __insert(struct dm_thin_device *td, dm_block_t block,
1612 		    dm_block_t data_block)
1613 {
1614 	int r, inserted;
1615 	__le64 value;
1616 	struct dm_pool_metadata *pmd = td->pmd;
1617 	dm_block_t keys[2] = { td->id, block };
1618 
1619 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1620 	__dm_bless_for_disk(&value);
1621 
1622 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1623 				   &pmd->root, &inserted);
1624 	if (r)
1625 		return r;
1626 
1627 	td->changed = true;
1628 	if (inserted)
1629 		td->mapped_blocks++;
1630 
1631 	return 0;
1632 }
1633 
1634 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1635 			 dm_block_t data_block)
1636 {
1637 	int r = -EINVAL;
1638 
1639 	pmd_write_lock(td->pmd);
1640 	if (!td->pmd->fail_io)
1641 		r = __insert(td, block, data_block);
1642 	pmd_write_unlock(td->pmd);
1643 
1644 	return r;
1645 }
1646 
1647 static int __remove(struct dm_thin_device *td, dm_block_t block)
1648 {
1649 	int r;
1650 	struct dm_pool_metadata *pmd = td->pmd;
1651 	dm_block_t keys[2] = { td->id, block };
1652 
1653 	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1654 	if (r)
1655 		return r;
1656 
1657 	td->mapped_blocks--;
1658 	td->changed = true;
1659 
1660 	return 0;
1661 }
1662 
1663 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1664 {
1665 	int r;
1666 	unsigned count, total_count = 0;
1667 	struct dm_pool_metadata *pmd = td->pmd;
1668 	dm_block_t keys[1] = { td->id };
1669 	__le64 value;
1670 	dm_block_t mapping_root;
1671 
1672 	/*
1673 	 * Find the mapping tree
1674 	 */
1675 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1676 	if (r)
1677 		return r;
1678 
1679 	/*
1680 	 * Remove from the mapping tree, taking care to inc the
1681 	 * ref count so it doesn't get deleted.
1682 	 */
1683 	mapping_root = le64_to_cpu(value);
1684 	dm_tm_inc(pmd->tm, mapping_root);
1685 	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1686 	if (r)
1687 		return r;
1688 
1689 	/*
1690 	 * Remove leaves stops at the first unmapped entry, so we have to
1691 	 * loop round finding mapped ranges.
1692 	 */
1693 	while (begin < end) {
1694 		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1695 		if (r == -ENODATA)
1696 			break;
1697 
1698 		if (r)
1699 			return r;
1700 
1701 		if (begin >= end)
1702 			break;
1703 
1704 		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1705 		if (r)
1706 			return r;
1707 
1708 		total_count += count;
1709 	}
1710 
1711 	td->mapped_blocks -= total_count;
1712 	td->changed = true;
1713 
1714 	/*
1715 	 * Reinsert the mapping tree.
1716 	 */
1717 	value = cpu_to_le64(mapping_root);
1718 	__dm_bless_for_disk(&value);
1719 	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1720 }
1721 
1722 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1723 {
1724 	int r = -EINVAL;
1725 
1726 	pmd_write_lock(td->pmd);
1727 	if (!td->pmd->fail_io)
1728 		r = __remove(td, block);
1729 	pmd_write_unlock(td->pmd);
1730 
1731 	return r;
1732 }
1733 
1734 int dm_thin_remove_range(struct dm_thin_device *td,
1735 			 dm_block_t begin, dm_block_t end)
1736 {
1737 	int r = -EINVAL;
1738 
1739 	pmd_write_lock(td->pmd);
1740 	if (!td->pmd->fail_io)
1741 		r = __remove_range(td, begin, end);
1742 	pmd_write_unlock(td->pmd);
1743 
1744 	return r;
1745 }
1746 
1747 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1748 {
1749 	int r;
1750 	uint32_t ref_count;
1751 
1752 	down_read(&pmd->root_lock);
1753 	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1754 	if (!r)
1755 		*result = (ref_count > 1);
1756 	up_read(&pmd->root_lock);
1757 
1758 	return r;
1759 }
1760 
1761 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1762 {
1763 	int r = 0;
1764 
1765 	pmd_write_lock(pmd);
1766 	for (; b != e; b++) {
1767 		r = dm_sm_inc_block(pmd->data_sm, b);
1768 		if (r)
1769 			break;
1770 	}
1771 	pmd_write_unlock(pmd);
1772 
1773 	return r;
1774 }
1775 
1776 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1777 {
1778 	int r = 0;
1779 
1780 	pmd_write_lock(pmd);
1781 	for (; b != e; b++) {
1782 		r = dm_sm_dec_block(pmd->data_sm, b);
1783 		if (r)
1784 			break;
1785 	}
1786 	pmd_write_unlock(pmd);
1787 
1788 	return r;
1789 }
1790 
1791 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1792 {
1793 	int r;
1794 
1795 	down_read(&td->pmd->root_lock);
1796 	r = td->changed;
1797 	up_read(&td->pmd->root_lock);
1798 
1799 	return r;
1800 }
1801 
1802 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1803 {
1804 	bool r = false;
1805 	struct dm_thin_device *td, *tmp;
1806 
1807 	down_read(&pmd->root_lock);
1808 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1809 		if (td->changed) {
1810 			r = td->changed;
1811 			break;
1812 		}
1813 	}
1814 	up_read(&pmd->root_lock);
1815 
1816 	return r;
1817 }
1818 
1819 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1820 {
1821 	bool r;
1822 
1823 	down_read(&td->pmd->root_lock);
1824 	r = td->aborted_with_changes;
1825 	up_read(&td->pmd->root_lock);
1826 
1827 	return r;
1828 }
1829 
1830 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1831 {
1832 	int r = -EINVAL;
1833 
1834 	pmd_write_lock(pmd);
1835 	if (!pmd->fail_io)
1836 		r = dm_sm_new_block(pmd->data_sm, result);
1837 	pmd_write_unlock(pmd);
1838 
1839 	return r;
1840 }
1841 
1842 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1843 {
1844 	int r = -EINVAL;
1845 
1846 	/*
1847 	 * Care is taken to not have commit be what
1848 	 * triggers putting the thin-pool in-service.
1849 	 */
1850 	pmd_write_lock_in_core(pmd);
1851 	if (pmd->fail_io)
1852 		goto out;
1853 
1854 	r = __commit_transaction(pmd);
1855 	if (r < 0)
1856 		goto out;
1857 
1858 	/*
1859 	 * Open the next transaction.
1860 	 */
1861 	r = __begin_transaction(pmd);
1862 out:
1863 	pmd_write_unlock(pmd);
1864 	return r;
1865 }
1866 
1867 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1868 {
1869 	struct dm_thin_device *td;
1870 
1871 	list_for_each_entry(td, &pmd->thin_devices, list)
1872 		td->aborted_with_changes = td->changed;
1873 }
1874 
1875 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1876 {
1877 	int r = -EINVAL;
1878 
1879 	pmd_write_lock(pmd);
1880 	if (pmd->fail_io)
1881 		goto out;
1882 
1883 	__set_abort_with_changes_flags(pmd);
1884 	__destroy_persistent_data_objects(pmd);
1885 	r = __create_persistent_data_objects(pmd, false);
1886 	if (r)
1887 		pmd->fail_io = true;
1888 
1889 out:
1890 	pmd_write_unlock(pmd);
1891 
1892 	return r;
1893 }
1894 
1895 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1896 {
1897 	int r = -EINVAL;
1898 
1899 	down_read(&pmd->root_lock);
1900 	if (!pmd->fail_io)
1901 		r = dm_sm_get_nr_free(pmd->data_sm, result);
1902 	up_read(&pmd->root_lock);
1903 
1904 	return r;
1905 }
1906 
1907 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1908 					  dm_block_t *result)
1909 {
1910 	int r = -EINVAL;
1911 
1912 	down_read(&pmd->root_lock);
1913 	if (!pmd->fail_io)
1914 		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1915 
1916 	if (!r) {
1917 		if (*result < pmd->metadata_reserve)
1918 			*result = 0;
1919 		else
1920 			*result -= pmd->metadata_reserve;
1921 	}
1922 	up_read(&pmd->root_lock);
1923 
1924 	return r;
1925 }
1926 
1927 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1928 				  dm_block_t *result)
1929 {
1930 	int r = -EINVAL;
1931 
1932 	down_read(&pmd->root_lock);
1933 	if (!pmd->fail_io)
1934 		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1935 	up_read(&pmd->root_lock);
1936 
1937 	return r;
1938 }
1939 
1940 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1941 {
1942 	int r = -EINVAL;
1943 
1944 	down_read(&pmd->root_lock);
1945 	if (!pmd->fail_io)
1946 		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1947 	up_read(&pmd->root_lock);
1948 
1949 	return r;
1950 }
1951 
1952 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1953 {
1954 	int r = -EINVAL;
1955 	struct dm_pool_metadata *pmd = td->pmd;
1956 
1957 	down_read(&pmd->root_lock);
1958 	if (!pmd->fail_io) {
1959 		*result = td->mapped_blocks;
1960 		r = 0;
1961 	}
1962 	up_read(&pmd->root_lock);
1963 
1964 	return r;
1965 }
1966 
1967 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1968 {
1969 	int r;
1970 	__le64 value_le;
1971 	dm_block_t thin_root;
1972 	struct dm_pool_metadata *pmd = td->pmd;
1973 
1974 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1975 	if (r)
1976 		return r;
1977 
1978 	thin_root = le64_to_cpu(value_le);
1979 
1980 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1981 }
1982 
1983 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1984 				     dm_block_t *result)
1985 {
1986 	int r = -EINVAL;
1987 	struct dm_pool_metadata *pmd = td->pmd;
1988 
1989 	down_read(&pmd->root_lock);
1990 	if (!pmd->fail_io)
1991 		r = __highest_block(td, result);
1992 	up_read(&pmd->root_lock);
1993 
1994 	return r;
1995 }
1996 
1997 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1998 {
1999 	int r;
2000 	dm_block_t old_count;
2001 
2002 	r = dm_sm_get_nr_blocks(sm, &old_count);
2003 	if (r)
2004 		return r;
2005 
2006 	if (new_count == old_count)
2007 		return 0;
2008 
2009 	if (new_count < old_count) {
2010 		DMERR("cannot reduce size of space map");
2011 		return -EINVAL;
2012 	}
2013 
2014 	return dm_sm_extend(sm, new_count - old_count);
2015 }
2016 
2017 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2018 {
2019 	int r = -EINVAL;
2020 
2021 	pmd_write_lock(pmd);
2022 	if (!pmd->fail_io)
2023 		r = __resize_space_map(pmd->data_sm, new_count);
2024 	pmd_write_unlock(pmd);
2025 
2026 	return r;
2027 }
2028 
2029 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2030 {
2031 	int r = -EINVAL;
2032 
2033 	pmd_write_lock(pmd);
2034 	if (!pmd->fail_io) {
2035 		r = __resize_space_map(pmd->metadata_sm, new_count);
2036 		if (!r)
2037 			__set_metadata_reserve(pmd);
2038 	}
2039 	pmd_write_unlock(pmd);
2040 
2041 	return r;
2042 }
2043 
2044 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2045 {
2046 	pmd_write_lock_in_core(pmd);
2047 	dm_bm_set_read_only(pmd->bm);
2048 	pmd_write_unlock(pmd);
2049 }
2050 
2051 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2052 {
2053 	pmd_write_lock_in_core(pmd);
2054 	dm_bm_set_read_write(pmd->bm);
2055 	pmd_write_unlock(pmd);
2056 }
2057 
2058 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2059 					dm_block_t threshold,
2060 					dm_sm_threshold_fn fn,
2061 					void *context)
2062 {
2063 	int r;
2064 
2065 	pmd_write_lock_in_core(pmd);
2066 	r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2067 	pmd_write_unlock(pmd);
2068 
2069 	return r;
2070 }
2071 
2072 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2073 					  dm_pool_pre_commit_fn fn,
2074 					  void *context)
2075 {
2076 	pmd_write_lock_in_core(pmd);
2077 	pmd->pre_commit_fn = fn;
2078 	pmd->pre_commit_context = context;
2079 	pmd_write_unlock(pmd);
2080 }
2081 
2082 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2083 {
2084 	int r = -EINVAL;
2085 	struct dm_block *sblock;
2086 	struct thin_disk_superblock *disk_super;
2087 
2088 	pmd_write_lock(pmd);
2089 	if (pmd->fail_io)
2090 		goto out;
2091 
2092 	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2093 
2094 	r = superblock_lock(pmd, &sblock);
2095 	if (r) {
2096 		DMERR("couldn't lock superblock");
2097 		goto out;
2098 	}
2099 
2100 	disk_super = dm_block_data(sblock);
2101 	disk_super->flags = cpu_to_le32(pmd->flags);
2102 
2103 	dm_bm_unlock(sblock);
2104 out:
2105 	pmd_write_unlock(pmd);
2106 	return r;
2107 }
2108 
2109 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2110 {
2111 	bool needs_check;
2112 
2113 	down_read(&pmd->root_lock);
2114 	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2115 	up_read(&pmd->root_lock);
2116 
2117 	return needs_check;
2118 }
2119 
2120 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2121 {
2122 	down_read(&pmd->root_lock);
2123 	if (!pmd->fail_io)
2124 		dm_tm_issue_prefetches(pmd->tm);
2125 	up_read(&pmd->root_lock);
2126 }
2127