xref: /openbmc/linux/drivers/md/dm-thin-metadata.c (revision a1ed4d9e937678d15990694c32e1d104e54e97a3)
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX   "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81 
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91 
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94 
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99 	__le32 csum;	/* Checksum of superblock except for this field. */
100 	__le32 flags;
101 	__le64 blocknr;	/* This block number, dm_block_t. */
102 
103 	__u8 uuid[16];
104 	__le64 magic;
105 	__le32 version;
106 	__le32 time;
107 
108 	__le64 trans_id;
109 
110 	/*
111 	 * Root held by userspace transactions.
112 	 */
113 	__le64 held_root;
114 
115 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117 
118 	/*
119 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 	 */
121 	__le64 data_mapping_root;
122 
123 	/*
124 	 * Device detail root mapping dev_id -> device_details
125 	 */
126 	__le64 device_details_root;
127 
128 	__le32 data_block_size;		/* In 512-byte sectors. */
129 
130 	__le32 metadata_block_size;	/* In 512-byte sectors. */
131 	__le64 metadata_nr_blocks;
132 
133 	__le32 compat_flags;
134 	__le32 compat_ro_flags;
135 	__le32 incompat_flags;
136 } __packed;
137 
138 struct disk_device_details {
139 	__le64 mapped_blocks;
140 	__le64 transaction_id;		/* When created. */
141 	__le32 creation_time;
142 	__le32 snapshotted_time;
143 } __packed;
144 
145 struct dm_pool_metadata {
146 	struct hlist_node hash;
147 
148 	struct block_device *bdev;
149 	struct dm_block_manager *bm;
150 	struct dm_space_map *metadata_sm;
151 	struct dm_space_map *data_sm;
152 	struct dm_transaction_manager *tm;
153 	struct dm_transaction_manager *nb_tm;
154 
155 	/*
156 	 * Two-level btree.
157 	 * First level holds thin_dev_t.
158 	 * Second level holds mappings.
159 	 */
160 	struct dm_btree_info info;
161 
162 	/*
163 	 * Non-blocking version of the above.
164 	 */
165 	struct dm_btree_info nb_info;
166 
167 	/*
168 	 * Just the top level for deleting whole devices.
169 	 */
170 	struct dm_btree_info tl_info;
171 
172 	/*
173 	 * Just the bottom level for creating new devices.
174 	 */
175 	struct dm_btree_info bl_info;
176 
177 	/*
178 	 * Describes the device details btree.
179 	 */
180 	struct dm_btree_info details_info;
181 
182 	struct rw_semaphore root_lock;
183 	uint32_t time;
184 	dm_block_t root;
185 	dm_block_t details_root;
186 	struct list_head thin_devices;
187 	uint64_t trans_id;
188 	unsigned long flags;
189 	sector_t data_block_size;
190 
191 	/*
192 	 * We reserve a section of the metadata for commit overhead.
193 	 * All reported space does *not* include this.
194 	 */
195 	dm_block_t metadata_reserve;
196 
197 	/*
198 	 * Set if a transaction has to be aborted but the attempt to roll back
199 	 * to the previous (good) transaction failed.  The only pool metadata
200 	 * operation possible in this state is the closing of the device.
201 	 */
202 	bool fail_io:1;
203 
204 	/*
205 	 * Reading the space map roots can fail, so we read it into these
206 	 * buffers before the superblock is locked and updated.
207 	 */
208 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
209 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
210 };
211 
212 struct dm_thin_device {
213 	struct list_head list;
214 	struct dm_pool_metadata *pmd;
215 	dm_thin_id id;
216 
217 	int open_count;
218 	bool changed:1;
219 	bool aborted_with_changes:1;
220 	uint64_t mapped_blocks;
221 	uint64_t transaction_id;
222 	uint32_t creation_time;
223 	uint32_t snapshotted_time;
224 };
225 
226 /*----------------------------------------------------------------
227  * superblock validator
228  *--------------------------------------------------------------*/
229 
230 #define SUPERBLOCK_CSUM_XOR 160774
231 
232 static void sb_prepare_for_write(struct dm_block_validator *v,
233 				 struct dm_block *b,
234 				 size_t block_size)
235 {
236 	struct thin_disk_superblock *disk_super = dm_block_data(b);
237 
238 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
239 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
240 						      block_size - sizeof(__le32),
241 						      SUPERBLOCK_CSUM_XOR));
242 }
243 
244 static int sb_check(struct dm_block_validator *v,
245 		    struct dm_block *b,
246 		    size_t block_size)
247 {
248 	struct thin_disk_superblock *disk_super = dm_block_data(b);
249 	__le32 csum_le;
250 
251 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
252 		DMERR("sb_check failed: blocknr %llu: "
253 		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
254 		      (unsigned long long)dm_block_location(b));
255 		return -ENOTBLK;
256 	}
257 
258 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
259 		DMERR("sb_check failed: magic %llu: "
260 		      "wanted %llu", le64_to_cpu(disk_super->magic),
261 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
262 		return -EILSEQ;
263 	}
264 
265 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
266 					     block_size - sizeof(__le32),
267 					     SUPERBLOCK_CSUM_XOR));
268 	if (csum_le != disk_super->csum) {
269 		DMERR("sb_check failed: csum %u: wanted %u",
270 		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
271 		return -EILSEQ;
272 	}
273 
274 	return 0;
275 }
276 
277 static struct dm_block_validator sb_validator = {
278 	.name = "superblock",
279 	.prepare_for_write = sb_prepare_for_write,
280 	.check = sb_check
281 };
282 
283 /*----------------------------------------------------------------
284  * Methods for the btree value types
285  *--------------------------------------------------------------*/
286 
287 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
288 {
289 	return (b << 24) | t;
290 }
291 
292 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
293 {
294 	*b = v >> 24;
295 	*t = v & ((1 << 24) - 1);
296 }
297 
298 static void data_block_inc(void *context, const void *value_le)
299 {
300 	struct dm_space_map *sm = context;
301 	__le64 v_le;
302 	uint64_t b;
303 	uint32_t t;
304 
305 	memcpy(&v_le, value_le, sizeof(v_le));
306 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
307 	dm_sm_inc_block(sm, b);
308 }
309 
310 static void data_block_dec(void *context, const void *value_le)
311 {
312 	struct dm_space_map *sm = context;
313 	__le64 v_le;
314 	uint64_t b;
315 	uint32_t t;
316 
317 	memcpy(&v_le, value_le, sizeof(v_le));
318 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
319 	dm_sm_dec_block(sm, b);
320 }
321 
322 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
323 {
324 	__le64 v1_le, v2_le;
325 	uint64_t b1, b2;
326 	uint32_t t;
327 
328 	memcpy(&v1_le, value1_le, sizeof(v1_le));
329 	memcpy(&v2_le, value2_le, sizeof(v2_le));
330 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
331 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
332 
333 	return b1 == b2;
334 }
335 
336 static void subtree_inc(void *context, const void *value)
337 {
338 	struct dm_btree_info *info = context;
339 	__le64 root_le;
340 	uint64_t root;
341 
342 	memcpy(&root_le, value, sizeof(root_le));
343 	root = le64_to_cpu(root_le);
344 	dm_tm_inc(info->tm, root);
345 }
346 
347 static void subtree_dec(void *context, const void *value)
348 {
349 	struct dm_btree_info *info = context;
350 	__le64 root_le;
351 	uint64_t root;
352 
353 	memcpy(&root_le, value, sizeof(root_le));
354 	root = le64_to_cpu(root_le);
355 	if (dm_btree_del(info, root))
356 		DMERR("btree delete failed");
357 }
358 
359 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
360 {
361 	__le64 v1_le, v2_le;
362 	memcpy(&v1_le, value1_le, sizeof(v1_le));
363 	memcpy(&v2_le, value2_le, sizeof(v2_le));
364 
365 	return v1_le == v2_le;
366 }
367 
368 /*----------------------------------------------------------------*/
369 
370 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
371 				struct dm_block **sblock)
372 {
373 	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
374 				     &sb_validator, sblock);
375 }
376 
377 static int superblock_lock(struct dm_pool_metadata *pmd,
378 			   struct dm_block **sblock)
379 {
380 	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
381 				&sb_validator, sblock);
382 }
383 
384 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
385 {
386 	int r;
387 	unsigned i;
388 	struct dm_block *b;
389 	__le64 *data_le, zero = cpu_to_le64(0);
390 	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
391 
392 	/*
393 	 * We can't use a validator here - it may be all zeroes.
394 	 */
395 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
396 	if (r)
397 		return r;
398 
399 	data_le = dm_block_data(b);
400 	*result = 1;
401 	for (i = 0; i < block_size; i++) {
402 		if (data_le[i] != zero) {
403 			*result = 0;
404 			break;
405 		}
406 	}
407 
408 	dm_bm_unlock(b);
409 
410 	return 0;
411 }
412 
413 static void __setup_btree_details(struct dm_pool_metadata *pmd)
414 {
415 	pmd->info.tm = pmd->tm;
416 	pmd->info.levels = 2;
417 	pmd->info.value_type.context = pmd->data_sm;
418 	pmd->info.value_type.size = sizeof(__le64);
419 	pmd->info.value_type.inc = data_block_inc;
420 	pmd->info.value_type.dec = data_block_dec;
421 	pmd->info.value_type.equal = data_block_equal;
422 
423 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
424 	pmd->nb_info.tm = pmd->nb_tm;
425 
426 	pmd->tl_info.tm = pmd->tm;
427 	pmd->tl_info.levels = 1;
428 	pmd->tl_info.value_type.context = &pmd->bl_info;
429 	pmd->tl_info.value_type.size = sizeof(__le64);
430 	pmd->tl_info.value_type.inc = subtree_inc;
431 	pmd->tl_info.value_type.dec = subtree_dec;
432 	pmd->tl_info.value_type.equal = subtree_equal;
433 
434 	pmd->bl_info.tm = pmd->tm;
435 	pmd->bl_info.levels = 1;
436 	pmd->bl_info.value_type.context = pmd->data_sm;
437 	pmd->bl_info.value_type.size = sizeof(__le64);
438 	pmd->bl_info.value_type.inc = data_block_inc;
439 	pmd->bl_info.value_type.dec = data_block_dec;
440 	pmd->bl_info.value_type.equal = data_block_equal;
441 
442 	pmd->details_info.tm = pmd->tm;
443 	pmd->details_info.levels = 1;
444 	pmd->details_info.value_type.context = NULL;
445 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
446 	pmd->details_info.value_type.inc = NULL;
447 	pmd->details_info.value_type.dec = NULL;
448 	pmd->details_info.value_type.equal = NULL;
449 }
450 
451 static int save_sm_roots(struct dm_pool_metadata *pmd)
452 {
453 	int r;
454 	size_t len;
455 
456 	r = dm_sm_root_size(pmd->metadata_sm, &len);
457 	if (r < 0)
458 		return r;
459 
460 	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
461 	if (r < 0)
462 		return r;
463 
464 	r = dm_sm_root_size(pmd->data_sm, &len);
465 	if (r < 0)
466 		return r;
467 
468 	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
469 }
470 
471 static void copy_sm_roots(struct dm_pool_metadata *pmd,
472 			  struct thin_disk_superblock *disk)
473 {
474 	memcpy(&disk->metadata_space_map_root,
475 	       &pmd->metadata_space_map_root,
476 	       sizeof(pmd->metadata_space_map_root));
477 
478 	memcpy(&disk->data_space_map_root,
479 	       &pmd->data_space_map_root,
480 	       sizeof(pmd->data_space_map_root));
481 }
482 
483 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
484 {
485 	int r;
486 	struct dm_block *sblock;
487 	struct thin_disk_superblock *disk_super;
488 	sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
489 
490 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
491 		bdev_size = THIN_METADATA_MAX_SECTORS;
492 
493 	r = dm_sm_commit(pmd->data_sm);
494 	if (r < 0)
495 		return r;
496 
497 	r = dm_tm_pre_commit(pmd->tm);
498 	if (r < 0)
499 		return r;
500 
501 	r = save_sm_roots(pmd);
502 	if (r < 0)
503 		return r;
504 
505 	r = superblock_lock_zero(pmd, &sblock);
506 	if (r)
507 		return r;
508 
509 	disk_super = dm_block_data(sblock);
510 	disk_super->flags = 0;
511 	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
512 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
513 	disk_super->version = cpu_to_le32(THIN_VERSION);
514 	disk_super->time = 0;
515 	disk_super->trans_id = 0;
516 	disk_super->held_root = 0;
517 
518 	copy_sm_roots(pmd, disk_super);
519 
520 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
521 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
522 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
523 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
524 	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
525 
526 	return dm_tm_commit(pmd->tm, sblock);
527 }
528 
529 static int __format_metadata(struct dm_pool_metadata *pmd)
530 {
531 	int r;
532 
533 	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
534 				 &pmd->tm, &pmd->metadata_sm);
535 	if (r < 0) {
536 		DMERR("tm_create_with_sm failed");
537 		return r;
538 	}
539 
540 	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
541 	if (IS_ERR(pmd->data_sm)) {
542 		DMERR("sm_disk_create failed");
543 		r = PTR_ERR(pmd->data_sm);
544 		goto bad_cleanup_tm;
545 	}
546 
547 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
548 	if (!pmd->nb_tm) {
549 		DMERR("could not create non-blocking clone tm");
550 		r = -ENOMEM;
551 		goto bad_cleanup_data_sm;
552 	}
553 
554 	__setup_btree_details(pmd);
555 
556 	r = dm_btree_empty(&pmd->info, &pmd->root);
557 	if (r < 0)
558 		goto bad_cleanup_nb_tm;
559 
560 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
561 	if (r < 0) {
562 		DMERR("couldn't create devices root");
563 		goto bad_cleanup_nb_tm;
564 	}
565 
566 	r = __write_initial_superblock(pmd);
567 	if (r)
568 		goto bad_cleanup_nb_tm;
569 
570 	return 0;
571 
572 bad_cleanup_nb_tm:
573 	dm_tm_destroy(pmd->nb_tm);
574 bad_cleanup_data_sm:
575 	dm_sm_destroy(pmd->data_sm);
576 bad_cleanup_tm:
577 	dm_tm_destroy(pmd->tm);
578 	dm_sm_destroy(pmd->metadata_sm);
579 
580 	return r;
581 }
582 
583 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
584 				     struct dm_pool_metadata *pmd)
585 {
586 	uint32_t features;
587 
588 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
589 	if (features) {
590 		DMERR("could not access metadata due to unsupported optional features (%lx).",
591 		      (unsigned long)features);
592 		return -EINVAL;
593 	}
594 
595 	/*
596 	 * Check for read-only metadata to skip the following RDWR checks.
597 	 */
598 	if (get_disk_ro(pmd->bdev->bd_disk))
599 		return 0;
600 
601 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
602 	if (features) {
603 		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
604 		      (unsigned long)features);
605 		return -EINVAL;
606 	}
607 
608 	return 0;
609 }
610 
611 static int __open_metadata(struct dm_pool_metadata *pmd)
612 {
613 	int r;
614 	struct dm_block *sblock;
615 	struct thin_disk_superblock *disk_super;
616 
617 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
618 			    &sb_validator, &sblock);
619 	if (r < 0) {
620 		DMERR("couldn't read superblock");
621 		return r;
622 	}
623 
624 	disk_super = dm_block_data(sblock);
625 
626 	/* Verify the data block size hasn't changed */
627 	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
628 		DMERR("changing the data block size (from %u to %llu) is not supported",
629 		      le32_to_cpu(disk_super->data_block_size),
630 		      (unsigned long long)pmd->data_block_size);
631 		r = -EINVAL;
632 		goto bad_unlock_sblock;
633 	}
634 
635 	r = __check_incompat_features(disk_super, pmd);
636 	if (r < 0)
637 		goto bad_unlock_sblock;
638 
639 	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
640 			       disk_super->metadata_space_map_root,
641 			       sizeof(disk_super->metadata_space_map_root),
642 			       &pmd->tm, &pmd->metadata_sm);
643 	if (r < 0) {
644 		DMERR("tm_open_with_sm failed");
645 		goto bad_unlock_sblock;
646 	}
647 
648 	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
649 				       sizeof(disk_super->data_space_map_root));
650 	if (IS_ERR(pmd->data_sm)) {
651 		DMERR("sm_disk_open failed");
652 		r = PTR_ERR(pmd->data_sm);
653 		goto bad_cleanup_tm;
654 	}
655 
656 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
657 	if (!pmd->nb_tm) {
658 		DMERR("could not create non-blocking clone tm");
659 		r = -ENOMEM;
660 		goto bad_cleanup_data_sm;
661 	}
662 
663 	__setup_btree_details(pmd);
664 	dm_bm_unlock(sblock);
665 
666 	return 0;
667 
668 bad_cleanup_data_sm:
669 	dm_sm_destroy(pmd->data_sm);
670 bad_cleanup_tm:
671 	dm_tm_destroy(pmd->tm);
672 	dm_sm_destroy(pmd->metadata_sm);
673 bad_unlock_sblock:
674 	dm_bm_unlock(sblock);
675 
676 	return r;
677 }
678 
679 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
680 {
681 	int r, unformatted;
682 
683 	r = __superblock_all_zeroes(pmd->bm, &unformatted);
684 	if (r)
685 		return r;
686 
687 	if (unformatted)
688 		return format_device ? __format_metadata(pmd) : -EPERM;
689 
690 	return __open_metadata(pmd);
691 }
692 
693 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
694 {
695 	int r;
696 
697 	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
698 					  THIN_MAX_CONCURRENT_LOCKS);
699 	if (IS_ERR(pmd->bm)) {
700 		DMERR("could not create block manager");
701 		return PTR_ERR(pmd->bm);
702 	}
703 
704 	r = __open_or_format_metadata(pmd, format_device);
705 	if (r)
706 		dm_block_manager_destroy(pmd->bm);
707 
708 	return r;
709 }
710 
711 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
712 {
713 	dm_sm_destroy(pmd->data_sm);
714 	dm_sm_destroy(pmd->metadata_sm);
715 	dm_tm_destroy(pmd->nb_tm);
716 	dm_tm_destroy(pmd->tm);
717 	dm_block_manager_destroy(pmd->bm);
718 }
719 
720 static int __begin_transaction(struct dm_pool_metadata *pmd)
721 {
722 	int r;
723 	struct thin_disk_superblock *disk_super;
724 	struct dm_block *sblock;
725 
726 	/*
727 	 * We re-read the superblock every time.  Shouldn't need to do this
728 	 * really.
729 	 */
730 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
731 			    &sb_validator, &sblock);
732 	if (r)
733 		return r;
734 
735 	disk_super = dm_block_data(sblock);
736 	pmd->time = le32_to_cpu(disk_super->time);
737 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
738 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
739 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
740 	pmd->flags = le32_to_cpu(disk_super->flags);
741 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
742 
743 	dm_bm_unlock(sblock);
744 	return 0;
745 }
746 
747 static int __write_changed_details(struct dm_pool_metadata *pmd)
748 {
749 	int r;
750 	struct dm_thin_device *td, *tmp;
751 	struct disk_device_details details;
752 	uint64_t key;
753 
754 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
755 		if (!td->changed)
756 			continue;
757 
758 		key = td->id;
759 
760 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
761 		details.transaction_id = cpu_to_le64(td->transaction_id);
762 		details.creation_time = cpu_to_le32(td->creation_time);
763 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
764 		__dm_bless_for_disk(&details);
765 
766 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
767 				    &key, &details, &pmd->details_root);
768 		if (r)
769 			return r;
770 
771 		if (td->open_count)
772 			td->changed = 0;
773 		else {
774 			list_del(&td->list);
775 			kfree(td);
776 		}
777 	}
778 
779 	return 0;
780 }
781 
782 static int __commit_transaction(struct dm_pool_metadata *pmd)
783 {
784 	int r;
785 	struct thin_disk_superblock *disk_super;
786 	struct dm_block *sblock;
787 
788 	/*
789 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
790 	 */
791 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
792 
793 	r = __write_changed_details(pmd);
794 	if (r < 0)
795 		return r;
796 
797 	r = dm_sm_commit(pmd->data_sm);
798 	if (r < 0)
799 		return r;
800 
801 	r = dm_tm_pre_commit(pmd->tm);
802 	if (r < 0)
803 		return r;
804 
805 	r = save_sm_roots(pmd);
806 	if (r < 0)
807 		return r;
808 
809 	r = superblock_lock(pmd, &sblock);
810 	if (r)
811 		return r;
812 
813 	disk_super = dm_block_data(sblock);
814 	disk_super->time = cpu_to_le32(pmd->time);
815 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
816 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
817 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
818 	disk_super->flags = cpu_to_le32(pmd->flags);
819 
820 	copy_sm_roots(pmd, disk_super);
821 
822 	return dm_tm_commit(pmd->tm, sblock);
823 }
824 
825 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
826 {
827 	int r;
828 	dm_block_t total;
829 	dm_block_t max_blocks = 4096; /* 16M */
830 
831 	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
832 	if (r) {
833 		DMERR("could not get size of metadata device");
834 		pmd->metadata_reserve = max_blocks;
835 	} else
836 		pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
837 }
838 
839 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
840 					       sector_t data_block_size,
841 					       bool format_device)
842 {
843 	int r;
844 	struct dm_pool_metadata *pmd;
845 
846 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
847 	if (!pmd) {
848 		DMERR("could not allocate metadata struct");
849 		return ERR_PTR(-ENOMEM);
850 	}
851 
852 	init_rwsem(&pmd->root_lock);
853 	pmd->time = 0;
854 	INIT_LIST_HEAD(&pmd->thin_devices);
855 	pmd->fail_io = false;
856 	pmd->bdev = bdev;
857 	pmd->data_block_size = data_block_size;
858 
859 	r = __create_persistent_data_objects(pmd, format_device);
860 	if (r) {
861 		kfree(pmd);
862 		return ERR_PTR(r);
863 	}
864 
865 	r = __begin_transaction(pmd);
866 	if (r < 0) {
867 		if (dm_pool_metadata_close(pmd) < 0)
868 			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
869 		return ERR_PTR(r);
870 	}
871 
872 	__set_metadata_reserve(pmd);
873 
874 	return pmd;
875 }
876 
877 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
878 {
879 	int r;
880 	unsigned open_devices = 0;
881 	struct dm_thin_device *td, *tmp;
882 
883 	down_read(&pmd->root_lock);
884 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
885 		if (td->open_count)
886 			open_devices++;
887 		else {
888 			list_del(&td->list);
889 			kfree(td);
890 		}
891 	}
892 	up_read(&pmd->root_lock);
893 
894 	if (open_devices) {
895 		DMERR("attempt to close pmd when %u device(s) are still open",
896 		       open_devices);
897 		return -EBUSY;
898 	}
899 
900 	if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
901 		r = __commit_transaction(pmd);
902 		if (r < 0)
903 			DMWARN("%s: __commit_transaction() failed, error = %d",
904 			       __func__, r);
905 	}
906 
907 	if (!pmd->fail_io)
908 		__destroy_persistent_data_objects(pmd);
909 
910 	kfree(pmd);
911 	return 0;
912 }
913 
914 /*
915  * __open_device: Returns @td corresponding to device with id @dev,
916  * creating it if @create is set and incrementing @td->open_count.
917  * On failure, @td is undefined.
918  */
919 static int __open_device(struct dm_pool_metadata *pmd,
920 			 dm_thin_id dev, int create,
921 			 struct dm_thin_device **td)
922 {
923 	int r, changed = 0;
924 	struct dm_thin_device *td2;
925 	uint64_t key = dev;
926 	struct disk_device_details details_le;
927 
928 	/*
929 	 * If the device is already open, return it.
930 	 */
931 	list_for_each_entry(td2, &pmd->thin_devices, list)
932 		if (td2->id == dev) {
933 			/*
934 			 * May not create an already-open device.
935 			 */
936 			if (create)
937 				return -EEXIST;
938 
939 			td2->open_count++;
940 			*td = td2;
941 			return 0;
942 		}
943 
944 	/*
945 	 * Check the device exists.
946 	 */
947 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
948 			    &key, &details_le);
949 	if (r) {
950 		if (r != -ENODATA || !create)
951 			return r;
952 
953 		/*
954 		 * Create new device.
955 		 */
956 		changed = 1;
957 		details_le.mapped_blocks = 0;
958 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
959 		details_le.creation_time = cpu_to_le32(pmd->time);
960 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
961 	}
962 
963 	*td = kmalloc(sizeof(**td), GFP_NOIO);
964 	if (!*td)
965 		return -ENOMEM;
966 
967 	(*td)->pmd = pmd;
968 	(*td)->id = dev;
969 	(*td)->open_count = 1;
970 	(*td)->changed = changed;
971 	(*td)->aborted_with_changes = false;
972 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
973 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
974 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
975 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
976 
977 	list_add(&(*td)->list, &pmd->thin_devices);
978 
979 	return 0;
980 }
981 
982 static void __close_device(struct dm_thin_device *td)
983 {
984 	--td->open_count;
985 }
986 
987 static int __create_thin(struct dm_pool_metadata *pmd,
988 			 dm_thin_id dev)
989 {
990 	int r;
991 	dm_block_t dev_root;
992 	uint64_t key = dev;
993 	struct disk_device_details details_le;
994 	struct dm_thin_device *td;
995 	__le64 value;
996 
997 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
998 			    &key, &details_le);
999 	if (!r)
1000 		return -EEXIST;
1001 
1002 	/*
1003 	 * Create an empty btree for the mappings.
1004 	 */
1005 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1006 	if (r)
1007 		return r;
1008 
1009 	/*
1010 	 * Insert it into the main mapping tree.
1011 	 */
1012 	value = cpu_to_le64(dev_root);
1013 	__dm_bless_for_disk(&value);
1014 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1015 	if (r) {
1016 		dm_btree_del(&pmd->bl_info, dev_root);
1017 		return r;
1018 	}
1019 
1020 	r = __open_device(pmd, dev, 1, &td);
1021 	if (r) {
1022 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1023 		dm_btree_del(&pmd->bl_info, dev_root);
1024 		return r;
1025 	}
1026 	__close_device(td);
1027 
1028 	return r;
1029 }
1030 
1031 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1032 {
1033 	int r = -EINVAL;
1034 
1035 	down_write(&pmd->root_lock);
1036 	if (!pmd->fail_io)
1037 		r = __create_thin(pmd, dev);
1038 	up_write(&pmd->root_lock);
1039 
1040 	return r;
1041 }
1042 
1043 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1044 				  struct dm_thin_device *snap,
1045 				  dm_thin_id origin, uint32_t time)
1046 {
1047 	int r;
1048 	struct dm_thin_device *td;
1049 
1050 	r = __open_device(pmd, origin, 0, &td);
1051 	if (r)
1052 		return r;
1053 
1054 	td->changed = 1;
1055 	td->snapshotted_time = time;
1056 
1057 	snap->mapped_blocks = td->mapped_blocks;
1058 	snap->snapshotted_time = time;
1059 	__close_device(td);
1060 
1061 	return 0;
1062 }
1063 
1064 static int __create_snap(struct dm_pool_metadata *pmd,
1065 			 dm_thin_id dev, dm_thin_id origin)
1066 {
1067 	int r;
1068 	dm_block_t origin_root;
1069 	uint64_t key = origin, dev_key = dev;
1070 	struct dm_thin_device *td;
1071 	struct disk_device_details details_le;
1072 	__le64 value;
1073 
1074 	/* check this device is unused */
1075 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1076 			    &dev_key, &details_le);
1077 	if (!r)
1078 		return -EEXIST;
1079 
1080 	/* find the mapping tree for the origin */
1081 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1082 	if (r)
1083 		return r;
1084 	origin_root = le64_to_cpu(value);
1085 
1086 	/* clone the origin, an inc will do */
1087 	dm_tm_inc(pmd->tm, origin_root);
1088 
1089 	/* insert into the main mapping tree */
1090 	value = cpu_to_le64(origin_root);
1091 	__dm_bless_for_disk(&value);
1092 	key = dev;
1093 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1094 	if (r) {
1095 		dm_tm_dec(pmd->tm, origin_root);
1096 		return r;
1097 	}
1098 
1099 	pmd->time++;
1100 
1101 	r = __open_device(pmd, dev, 1, &td);
1102 	if (r)
1103 		goto bad;
1104 
1105 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1106 	__close_device(td);
1107 
1108 	if (r)
1109 		goto bad;
1110 
1111 	return 0;
1112 
1113 bad:
1114 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1115 	dm_btree_remove(&pmd->details_info, pmd->details_root,
1116 			&key, &pmd->details_root);
1117 	return r;
1118 }
1119 
1120 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1121 				 dm_thin_id dev,
1122 				 dm_thin_id origin)
1123 {
1124 	int r = -EINVAL;
1125 
1126 	down_write(&pmd->root_lock);
1127 	if (!pmd->fail_io)
1128 		r = __create_snap(pmd, dev, origin);
1129 	up_write(&pmd->root_lock);
1130 
1131 	return r;
1132 }
1133 
1134 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1135 {
1136 	int r;
1137 	uint64_t key = dev;
1138 	struct dm_thin_device *td;
1139 
1140 	/* TODO: failure should mark the transaction invalid */
1141 	r = __open_device(pmd, dev, 0, &td);
1142 	if (r)
1143 		return r;
1144 
1145 	if (td->open_count > 1) {
1146 		__close_device(td);
1147 		return -EBUSY;
1148 	}
1149 
1150 	list_del(&td->list);
1151 	kfree(td);
1152 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1153 			    &key, &pmd->details_root);
1154 	if (r)
1155 		return r;
1156 
1157 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1158 	if (r)
1159 		return r;
1160 
1161 	return 0;
1162 }
1163 
1164 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1165 			       dm_thin_id dev)
1166 {
1167 	int r = -EINVAL;
1168 
1169 	down_write(&pmd->root_lock);
1170 	if (!pmd->fail_io)
1171 		r = __delete_device(pmd, dev);
1172 	up_write(&pmd->root_lock);
1173 
1174 	return r;
1175 }
1176 
1177 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1178 					uint64_t current_id,
1179 					uint64_t new_id)
1180 {
1181 	int r = -EINVAL;
1182 
1183 	down_write(&pmd->root_lock);
1184 
1185 	if (pmd->fail_io)
1186 		goto out;
1187 
1188 	if (pmd->trans_id != current_id) {
1189 		DMERR("mismatched transaction id");
1190 		goto out;
1191 	}
1192 
1193 	pmd->trans_id = new_id;
1194 	r = 0;
1195 
1196 out:
1197 	up_write(&pmd->root_lock);
1198 
1199 	return r;
1200 }
1201 
1202 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1203 					uint64_t *result)
1204 {
1205 	int r = -EINVAL;
1206 
1207 	down_read(&pmd->root_lock);
1208 	if (!pmd->fail_io) {
1209 		*result = pmd->trans_id;
1210 		r = 0;
1211 	}
1212 	up_read(&pmd->root_lock);
1213 
1214 	return r;
1215 }
1216 
1217 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1218 {
1219 	int r, inc;
1220 	struct thin_disk_superblock *disk_super;
1221 	struct dm_block *copy, *sblock;
1222 	dm_block_t held_root;
1223 
1224 	/*
1225 	 * We commit to ensure the btree roots which we increment in a
1226 	 * moment are up to date.
1227 	 */
1228 	r = __commit_transaction(pmd);
1229 	if (r < 0) {
1230 		DMWARN("%s: __commit_transaction() failed, error = %d",
1231 		       __func__, r);
1232 		return r;
1233 	}
1234 
1235 	/*
1236 	 * Copy the superblock.
1237 	 */
1238 	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1239 	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1240 			       &sb_validator, &copy, &inc);
1241 	if (r)
1242 		return r;
1243 
1244 	BUG_ON(!inc);
1245 
1246 	held_root = dm_block_location(copy);
1247 	disk_super = dm_block_data(copy);
1248 
1249 	if (le64_to_cpu(disk_super->held_root)) {
1250 		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1251 
1252 		dm_tm_dec(pmd->tm, held_root);
1253 		dm_tm_unlock(pmd->tm, copy);
1254 		return -EBUSY;
1255 	}
1256 
1257 	/*
1258 	 * Wipe the spacemap since we're not publishing this.
1259 	 */
1260 	memset(&disk_super->data_space_map_root, 0,
1261 	       sizeof(disk_super->data_space_map_root));
1262 	memset(&disk_super->metadata_space_map_root, 0,
1263 	       sizeof(disk_super->metadata_space_map_root));
1264 
1265 	/*
1266 	 * Increment the data structures that need to be preserved.
1267 	 */
1268 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1269 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1270 	dm_tm_unlock(pmd->tm, copy);
1271 
1272 	/*
1273 	 * Write the held root into the superblock.
1274 	 */
1275 	r = superblock_lock(pmd, &sblock);
1276 	if (r) {
1277 		dm_tm_dec(pmd->tm, held_root);
1278 		return r;
1279 	}
1280 
1281 	disk_super = dm_block_data(sblock);
1282 	disk_super->held_root = cpu_to_le64(held_root);
1283 	dm_bm_unlock(sblock);
1284 	return 0;
1285 }
1286 
1287 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1288 {
1289 	int r = -EINVAL;
1290 
1291 	down_write(&pmd->root_lock);
1292 	if (!pmd->fail_io)
1293 		r = __reserve_metadata_snap(pmd);
1294 	up_write(&pmd->root_lock);
1295 
1296 	return r;
1297 }
1298 
1299 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1300 {
1301 	int r;
1302 	struct thin_disk_superblock *disk_super;
1303 	struct dm_block *sblock, *copy;
1304 	dm_block_t held_root;
1305 
1306 	r = superblock_lock(pmd, &sblock);
1307 	if (r)
1308 		return r;
1309 
1310 	disk_super = dm_block_data(sblock);
1311 	held_root = le64_to_cpu(disk_super->held_root);
1312 	disk_super->held_root = cpu_to_le64(0);
1313 
1314 	dm_bm_unlock(sblock);
1315 
1316 	if (!held_root) {
1317 		DMWARN("No pool metadata snapshot found: nothing to release.");
1318 		return -EINVAL;
1319 	}
1320 
1321 	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1322 	if (r)
1323 		return r;
1324 
1325 	disk_super = dm_block_data(copy);
1326 	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1327 	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1328 	dm_sm_dec_block(pmd->metadata_sm, held_root);
1329 
1330 	dm_tm_unlock(pmd->tm, copy);
1331 
1332 	return 0;
1333 }
1334 
1335 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1336 {
1337 	int r = -EINVAL;
1338 
1339 	down_write(&pmd->root_lock);
1340 	if (!pmd->fail_io)
1341 		r = __release_metadata_snap(pmd);
1342 	up_write(&pmd->root_lock);
1343 
1344 	return r;
1345 }
1346 
1347 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1348 			       dm_block_t *result)
1349 {
1350 	int r;
1351 	struct thin_disk_superblock *disk_super;
1352 	struct dm_block *sblock;
1353 
1354 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1355 			    &sb_validator, &sblock);
1356 	if (r)
1357 		return r;
1358 
1359 	disk_super = dm_block_data(sblock);
1360 	*result = le64_to_cpu(disk_super->held_root);
1361 
1362 	dm_bm_unlock(sblock);
1363 
1364 	return 0;
1365 }
1366 
1367 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1368 			      dm_block_t *result)
1369 {
1370 	int r = -EINVAL;
1371 
1372 	down_read(&pmd->root_lock);
1373 	if (!pmd->fail_io)
1374 		r = __get_metadata_snap(pmd, result);
1375 	up_read(&pmd->root_lock);
1376 
1377 	return r;
1378 }
1379 
1380 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1381 			     struct dm_thin_device **td)
1382 {
1383 	int r = -EINVAL;
1384 
1385 	down_write(&pmd->root_lock);
1386 	if (!pmd->fail_io)
1387 		r = __open_device(pmd, dev, 0, td);
1388 	up_write(&pmd->root_lock);
1389 
1390 	return r;
1391 }
1392 
1393 int dm_pool_close_thin_device(struct dm_thin_device *td)
1394 {
1395 	down_write(&td->pmd->root_lock);
1396 	__close_device(td);
1397 	up_write(&td->pmd->root_lock);
1398 
1399 	return 0;
1400 }
1401 
1402 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1403 {
1404 	return td->id;
1405 }
1406 
1407 /*
1408  * Check whether @time (of block creation) is older than @td's last snapshot.
1409  * If so then the associated block is shared with the last snapshot device.
1410  * Any block on a device created *after* the device last got snapshotted is
1411  * necessarily not shared.
1412  */
1413 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1414 {
1415 	return td->snapshotted_time > time;
1416 }
1417 
1418 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1419 				 struct dm_thin_lookup_result *result)
1420 {
1421 	uint64_t block_time = 0;
1422 	dm_block_t exception_block;
1423 	uint32_t exception_time;
1424 
1425 	block_time = le64_to_cpu(value);
1426 	unpack_block_time(block_time, &exception_block, &exception_time);
1427 	result->block = exception_block;
1428 	result->shared = __snapshotted_since(td, exception_time);
1429 }
1430 
1431 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1432 			int can_issue_io, struct dm_thin_lookup_result *result)
1433 {
1434 	int r;
1435 	__le64 value;
1436 	struct dm_pool_metadata *pmd = td->pmd;
1437 	dm_block_t keys[2] = { td->id, block };
1438 	struct dm_btree_info *info;
1439 
1440 	if (can_issue_io) {
1441 		info = &pmd->info;
1442 	} else
1443 		info = &pmd->nb_info;
1444 
1445 	r = dm_btree_lookup(info, pmd->root, keys, &value);
1446 	if (!r)
1447 		unpack_lookup_result(td, value, result);
1448 
1449 	return r;
1450 }
1451 
1452 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1453 		       int can_issue_io, struct dm_thin_lookup_result *result)
1454 {
1455 	int r;
1456 	struct dm_pool_metadata *pmd = td->pmd;
1457 
1458 	down_read(&pmd->root_lock);
1459 	if (pmd->fail_io) {
1460 		up_read(&pmd->root_lock);
1461 		return -EINVAL;
1462 	}
1463 
1464 	r = __find_block(td, block, can_issue_io, result);
1465 
1466 	up_read(&pmd->root_lock);
1467 	return r;
1468 }
1469 
1470 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1471 					  dm_block_t *vblock,
1472 					  struct dm_thin_lookup_result *result)
1473 {
1474 	int r;
1475 	__le64 value;
1476 	struct dm_pool_metadata *pmd = td->pmd;
1477 	dm_block_t keys[2] = { td->id, block };
1478 
1479 	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1480 	if (!r)
1481 		unpack_lookup_result(td, value, result);
1482 
1483 	return r;
1484 }
1485 
1486 static int __find_mapped_range(struct dm_thin_device *td,
1487 			       dm_block_t begin, dm_block_t end,
1488 			       dm_block_t *thin_begin, dm_block_t *thin_end,
1489 			       dm_block_t *pool_begin, bool *maybe_shared)
1490 {
1491 	int r;
1492 	dm_block_t pool_end;
1493 	struct dm_thin_lookup_result lookup;
1494 
1495 	if (end < begin)
1496 		return -ENODATA;
1497 
1498 	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1499 	if (r)
1500 		return r;
1501 
1502 	if (begin >= end)
1503 		return -ENODATA;
1504 
1505 	*thin_begin = begin;
1506 	*pool_begin = lookup.block;
1507 	*maybe_shared = lookup.shared;
1508 
1509 	begin++;
1510 	pool_end = *pool_begin + 1;
1511 	while (begin != end) {
1512 		r = __find_block(td, begin, true, &lookup);
1513 		if (r) {
1514 			if (r == -ENODATA)
1515 				break;
1516 			else
1517 				return r;
1518 		}
1519 
1520 		if ((lookup.block != pool_end) ||
1521 		    (lookup.shared != *maybe_shared))
1522 			break;
1523 
1524 		pool_end++;
1525 		begin++;
1526 	}
1527 
1528 	*thin_end = begin;
1529 	return 0;
1530 }
1531 
1532 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1533 			      dm_block_t begin, dm_block_t end,
1534 			      dm_block_t *thin_begin, dm_block_t *thin_end,
1535 			      dm_block_t *pool_begin, bool *maybe_shared)
1536 {
1537 	int r = -EINVAL;
1538 	struct dm_pool_metadata *pmd = td->pmd;
1539 
1540 	down_read(&pmd->root_lock);
1541 	if (!pmd->fail_io) {
1542 		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1543 					pool_begin, maybe_shared);
1544 	}
1545 	up_read(&pmd->root_lock);
1546 
1547 	return r;
1548 }
1549 
1550 static int __insert(struct dm_thin_device *td, dm_block_t block,
1551 		    dm_block_t data_block)
1552 {
1553 	int r, inserted;
1554 	__le64 value;
1555 	struct dm_pool_metadata *pmd = td->pmd;
1556 	dm_block_t keys[2] = { td->id, block };
1557 
1558 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1559 	__dm_bless_for_disk(&value);
1560 
1561 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1562 				   &pmd->root, &inserted);
1563 	if (r)
1564 		return r;
1565 
1566 	td->changed = 1;
1567 	if (inserted)
1568 		td->mapped_blocks++;
1569 
1570 	return 0;
1571 }
1572 
1573 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1574 			 dm_block_t data_block)
1575 {
1576 	int r = -EINVAL;
1577 
1578 	down_write(&td->pmd->root_lock);
1579 	if (!td->pmd->fail_io)
1580 		r = __insert(td, block, data_block);
1581 	up_write(&td->pmd->root_lock);
1582 
1583 	return r;
1584 }
1585 
1586 static int __remove(struct dm_thin_device *td, dm_block_t block)
1587 {
1588 	int r;
1589 	struct dm_pool_metadata *pmd = td->pmd;
1590 	dm_block_t keys[2] = { td->id, block };
1591 
1592 	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1593 	if (r)
1594 		return r;
1595 
1596 	td->mapped_blocks--;
1597 	td->changed = 1;
1598 
1599 	return 0;
1600 }
1601 
1602 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1603 {
1604 	int r;
1605 	unsigned count, total_count = 0;
1606 	struct dm_pool_metadata *pmd = td->pmd;
1607 	dm_block_t keys[1] = { td->id };
1608 	__le64 value;
1609 	dm_block_t mapping_root;
1610 
1611 	/*
1612 	 * Find the mapping tree
1613 	 */
1614 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1615 	if (r)
1616 		return r;
1617 
1618 	/*
1619 	 * Remove from the mapping tree, taking care to inc the
1620 	 * ref count so it doesn't get deleted.
1621 	 */
1622 	mapping_root = le64_to_cpu(value);
1623 	dm_tm_inc(pmd->tm, mapping_root);
1624 	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1625 	if (r)
1626 		return r;
1627 
1628 	/*
1629 	 * Remove leaves stops at the first unmapped entry, so we have to
1630 	 * loop round finding mapped ranges.
1631 	 */
1632 	while (begin < end) {
1633 		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1634 		if (r == -ENODATA)
1635 			break;
1636 
1637 		if (r)
1638 			return r;
1639 
1640 		if (begin >= end)
1641 			break;
1642 
1643 		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1644 		if (r)
1645 			return r;
1646 
1647 		total_count += count;
1648 	}
1649 
1650 	td->mapped_blocks -= total_count;
1651 	td->changed = 1;
1652 
1653 	/*
1654 	 * Reinsert the mapping tree.
1655 	 */
1656 	value = cpu_to_le64(mapping_root);
1657 	__dm_bless_for_disk(&value);
1658 	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1659 }
1660 
1661 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1662 {
1663 	int r = -EINVAL;
1664 
1665 	down_write(&td->pmd->root_lock);
1666 	if (!td->pmd->fail_io)
1667 		r = __remove(td, block);
1668 	up_write(&td->pmd->root_lock);
1669 
1670 	return r;
1671 }
1672 
1673 int dm_thin_remove_range(struct dm_thin_device *td,
1674 			 dm_block_t begin, dm_block_t end)
1675 {
1676 	int r = -EINVAL;
1677 
1678 	down_write(&td->pmd->root_lock);
1679 	if (!td->pmd->fail_io)
1680 		r = __remove_range(td, begin, end);
1681 	up_write(&td->pmd->root_lock);
1682 
1683 	return r;
1684 }
1685 
1686 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1687 {
1688 	int r;
1689 	uint32_t ref_count;
1690 
1691 	down_read(&pmd->root_lock);
1692 	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1693 	if (!r)
1694 		*result = (ref_count > 1);
1695 	up_read(&pmd->root_lock);
1696 
1697 	return r;
1698 }
1699 
1700 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1701 {
1702 	int r = 0;
1703 
1704 	down_write(&pmd->root_lock);
1705 	for (; b != e; b++) {
1706 		r = dm_sm_inc_block(pmd->data_sm, b);
1707 		if (r)
1708 			break;
1709 	}
1710 	up_write(&pmd->root_lock);
1711 
1712 	return r;
1713 }
1714 
1715 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1716 {
1717 	int r = 0;
1718 
1719 	down_write(&pmd->root_lock);
1720 	for (; b != e; b++) {
1721 		r = dm_sm_dec_block(pmd->data_sm, b);
1722 		if (r)
1723 			break;
1724 	}
1725 	up_write(&pmd->root_lock);
1726 
1727 	return r;
1728 }
1729 
1730 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1731 {
1732 	int r;
1733 
1734 	down_read(&td->pmd->root_lock);
1735 	r = td->changed;
1736 	up_read(&td->pmd->root_lock);
1737 
1738 	return r;
1739 }
1740 
1741 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1742 {
1743 	bool r = false;
1744 	struct dm_thin_device *td, *tmp;
1745 
1746 	down_read(&pmd->root_lock);
1747 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1748 		if (td->changed) {
1749 			r = td->changed;
1750 			break;
1751 		}
1752 	}
1753 	up_read(&pmd->root_lock);
1754 
1755 	return r;
1756 }
1757 
1758 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1759 {
1760 	bool r;
1761 
1762 	down_read(&td->pmd->root_lock);
1763 	r = td->aborted_with_changes;
1764 	up_read(&td->pmd->root_lock);
1765 
1766 	return r;
1767 }
1768 
1769 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1770 {
1771 	int r = -EINVAL;
1772 
1773 	down_write(&pmd->root_lock);
1774 	if (!pmd->fail_io)
1775 		r = dm_sm_new_block(pmd->data_sm, result);
1776 	up_write(&pmd->root_lock);
1777 
1778 	return r;
1779 }
1780 
1781 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1782 {
1783 	int r = -EINVAL;
1784 
1785 	down_write(&pmd->root_lock);
1786 	if (pmd->fail_io)
1787 		goto out;
1788 
1789 	r = __commit_transaction(pmd);
1790 	if (r <= 0)
1791 		goto out;
1792 
1793 	/*
1794 	 * Open the next transaction.
1795 	 */
1796 	r = __begin_transaction(pmd);
1797 out:
1798 	up_write(&pmd->root_lock);
1799 	return r;
1800 }
1801 
1802 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1803 {
1804 	struct dm_thin_device *td;
1805 
1806 	list_for_each_entry(td, &pmd->thin_devices, list)
1807 		td->aborted_with_changes = td->changed;
1808 }
1809 
1810 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1811 {
1812 	int r = -EINVAL;
1813 
1814 	down_write(&pmd->root_lock);
1815 	if (pmd->fail_io)
1816 		goto out;
1817 
1818 	__set_abort_with_changes_flags(pmd);
1819 	__destroy_persistent_data_objects(pmd);
1820 	r = __create_persistent_data_objects(pmd, false);
1821 	if (r)
1822 		pmd->fail_io = true;
1823 
1824 out:
1825 	up_write(&pmd->root_lock);
1826 
1827 	return r;
1828 }
1829 
1830 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1831 {
1832 	int r = -EINVAL;
1833 
1834 	down_read(&pmd->root_lock);
1835 	if (!pmd->fail_io)
1836 		r = dm_sm_get_nr_free(pmd->data_sm, result);
1837 	up_read(&pmd->root_lock);
1838 
1839 	return r;
1840 }
1841 
1842 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1843 					  dm_block_t *result)
1844 {
1845 	int r = -EINVAL;
1846 
1847 	down_read(&pmd->root_lock);
1848 	if (!pmd->fail_io)
1849 		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1850 
1851 	if (!r) {
1852 		if (*result < pmd->metadata_reserve)
1853 			*result = 0;
1854 		else
1855 			*result -= pmd->metadata_reserve;
1856 	}
1857 	up_read(&pmd->root_lock);
1858 
1859 	return r;
1860 }
1861 
1862 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1863 				  dm_block_t *result)
1864 {
1865 	int r = -EINVAL;
1866 
1867 	down_read(&pmd->root_lock);
1868 	if (!pmd->fail_io)
1869 		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1870 	up_read(&pmd->root_lock);
1871 
1872 	return r;
1873 }
1874 
1875 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1876 {
1877 	int r = -EINVAL;
1878 
1879 	down_read(&pmd->root_lock);
1880 	if (!pmd->fail_io)
1881 		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1882 	up_read(&pmd->root_lock);
1883 
1884 	return r;
1885 }
1886 
1887 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1888 {
1889 	int r = -EINVAL;
1890 	struct dm_pool_metadata *pmd = td->pmd;
1891 
1892 	down_read(&pmd->root_lock);
1893 	if (!pmd->fail_io) {
1894 		*result = td->mapped_blocks;
1895 		r = 0;
1896 	}
1897 	up_read(&pmd->root_lock);
1898 
1899 	return r;
1900 }
1901 
1902 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1903 {
1904 	int r;
1905 	__le64 value_le;
1906 	dm_block_t thin_root;
1907 	struct dm_pool_metadata *pmd = td->pmd;
1908 
1909 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1910 	if (r)
1911 		return r;
1912 
1913 	thin_root = le64_to_cpu(value_le);
1914 
1915 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1916 }
1917 
1918 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1919 				     dm_block_t *result)
1920 {
1921 	int r = -EINVAL;
1922 	struct dm_pool_metadata *pmd = td->pmd;
1923 
1924 	down_read(&pmd->root_lock);
1925 	if (!pmd->fail_io)
1926 		r = __highest_block(td, result);
1927 	up_read(&pmd->root_lock);
1928 
1929 	return r;
1930 }
1931 
1932 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1933 {
1934 	int r;
1935 	dm_block_t old_count;
1936 
1937 	r = dm_sm_get_nr_blocks(sm, &old_count);
1938 	if (r)
1939 		return r;
1940 
1941 	if (new_count == old_count)
1942 		return 0;
1943 
1944 	if (new_count < old_count) {
1945 		DMERR("cannot reduce size of space map");
1946 		return -EINVAL;
1947 	}
1948 
1949 	return dm_sm_extend(sm, new_count - old_count);
1950 }
1951 
1952 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1953 {
1954 	int r = -EINVAL;
1955 
1956 	down_write(&pmd->root_lock);
1957 	if (!pmd->fail_io)
1958 		r = __resize_space_map(pmd->data_sm, new_count);
1959 	up_write(&pmd->root_lock);
1960 
1961 	return r;
1962 }
1963 
1964 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1965 {
1966 	int r = -EINVAL;
1967 
1968 	down_write(&pmd->root_lock);
1969 	if (!pmd->fail_io) {
1970 		r = __resize_space_map(pmd->metadata_sm, new_count);
1971 		if (!r)
1972 			__set_metadata_reserve(pmd);
1973 	}
1974 	up_write(&pmd->root_lock);
1975 
1976 	return r;
1977 }
1978 
1979 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1980 {
1981 	down_write(&pmd->root_lock);
1982 	dm_bm_set_read_only(pmd->bm);
1983 	up_write(&pmd->root_lock);
1984 }
1985 
1986 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1987 {
1988 	down_write(&pmd->root_lock);
1989 	dm_bm_set_read_write(pmd->bm);
1990 	up_write(&pmd->root_lock);
1991 }
1992 
1993 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1994 					dm_block_t threshold,
1995 					dm_sm_threshold_fn fn,
1996 					void *context)
1997 {
1998 	int r;
1999 
2000 	down_write(&pmd->root_lock);
2001 	r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2002 	up_write(&pmd->root_lock);
2003 
2004 	return r;
2005 }
2006 
2007 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2008 {
2009 	int r;
2010 	struct dm_block *sblock;
2011 	struct thin_disk_superblock *disk_super;
2012 
2013 	down_write(&pmd->root_lock);
2014 	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2015 
2016 	r = superblock_lock(pmd, &sblock);
2017 	if (r) {
2018 		DMERR("couldn't read superblock");
2019 		goto out;
2020 	}
2021 
2022 	disk_super = dm_block_data(sblock);
2023 	disk_super->flags = cpu_to_le32(pmd->flags);
2024 
2025 	dm_bm_unlock(sblock);
2026 out:
2027 	up_write(&pmd->root_lock);
2028 	return r;
2029 }
2030 
2031 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2032 {
2033 	bool needs_check;
2034 
2035 	down_read(&pmd->root_lock);
2036 	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2037 	up_read(&pmd->root_lock);
2038 
2039 	return needs_check;
2040 }
2041 
2042 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2043 {
2044 	down_read(&pmd->root_lock);
2045 	if (!pmd->fail_io)
2046 		dm_tm_issue_prefetches(pmd->tm);
2047 	up_read(&pmd->root_lock);
2048 }
2049