1 /* 2 * Copyright (C) 2011-2012 Red Hat, Inc. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "persistent-data/dm-btree.h" 9 #include "persistent-data/dm-space-map.h" 10 #include "persistent-data/dm-space-map-disk.h" 11 #include "persistent-data/dm-transaction-manager.h" 12 13 #include <linux/list.h> 14 #include <linux/device-mapper.h> 15 #include <linux/workqueue.h> 16 17 /*-------------------------------------------------------------------------- 18 * As far as the metadata goes, there is: 19 * 20 * - A superblock in block zero, taking up fewer than 512 bytes for 21 * atomic writes. 22 * 23 * - A space map managing the metadata blocks. 24 * 25 * - A space map managing the data blocks. 26 * 27 * - A btree mapping our internal thin dev ids onto struct disk_device_details. 28 * 29 * - A hierarchical btree, with 2 levels which effectively maps (thin 30 * dev id, virtual block) -> block_time. Block time is a 64-bit 31 * field holding the time in the low 24 bits, and block in the top 48 32 * bits. 33 * 34 * BTrees consist solely of btree_nodes, that fill a block. Some are 35 * internal nodes, as such their values are a __le64 pointing to other 36 * nodes. Leaf nodes can store data of any reasonable size (ie. much 37 * smaller than the block size). The nodes consist of the header, 38 * followed by an array of keys, followed by an array of values. We have 39 * to binary search on the keys so they're all held together to help the 40 * cpu cache. 41 * 42 * Space maps have 2 btrees: 43 * 44 * - One maps a uint64_t onto a struct index_entry. Which points to a 45 * bitmap block, and has some details about how many free entries there 46 * are etc. 47 * 48 * - The bitmap blocks have a header (for the checksum). Then the rest 49 * of the block is pairs of bits. With the meaning being: 50 * 51 * 0 - ref count is 0 52 * 1 - ref count is 1 53 * 2 - ref count is 2 54 * 3 - ref count is higher than 2 55 * 56 * - If the count is higher than 2 then the ref count is entered in a 57 * second btree that directly maps the block_address to a uint32_t ref 58 * count. 59 * 60 * The space map metadata variant doesn't have a bitmaps btree. Instead 61 * it has one single blocks worth of index_entries. This avoids 62 * recursive issues with the bitmap btree needing to allocate space in 63 * order to insert. With a small data block size such as 64k the 64 * metadata support data devices that are hundreds of terrabytes. 65 * 66 * The space maps allocate space linearly from front to back. Space that 67 * is freed in a transaction is never recycled within that transaction. 68 * To try and avoid fragmenting _free_ space the allocator always goes 69 * back and fills in gaps. 70 * 71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks 72 * from the block manager. 73 *--------------------------------------------------------------------------*/ 74 75 #define DM_MSG_PREFIX "thin metadata" 76 77 #define THIN_SUPERBLOCK_MAGIC 27022010 78 #define THIN_SUPERBLOCK_LOCATION 0 79 #define THIN_VERSION 2 80 #define SECTOR_TO_BLOCK_SHIFT 3 81 82 /* 83 * For btree insert: 84 * 3 for btree insert + 85 * 2 for btree lookup used within space map 86 * For btree remove: 87 * 2 for shadow spine + 88 * 4 for rebalance 3 child node 89 */ 90 #define THIN_MAX_CONCURRENT_LOCKS 6 91 92 /* This should be plenty */ 93 #define SPACE_MAP_ROOT_SIZE 128 94 95 /* 96 * Little endian on-disk superblock and device details. 97 */ 98 struct thin_disk_superblock { 99 __le32 csum; /* Checksum of superblock except for this field. */ 100 __le32 flags; 101 __le64 blocknr; /* This block number, dm_block_t. */ 102 103 __u8 uuid[16]; 104 __le64 magic; 105 __le32 version; 106 __le32 time; 107 108 __le64 trans_id; 109 110 /* 111 * Root held by userspace transactions. 112 */ 113 __le64 held_root; 114 115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 117 118 /* 119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block 120 */ 121 __le64 data_mapping_root; 122 123 /* 124 * Device detail root mapping dev_id -> device_details 125 */ 126 __le64 device_details_root; 127 128 __le32 data_block_size; /* In 512-byte sectors. */ 129 130 __le32 metadata_block_size; /* In 512-byte sectors. */ 131 __le64 metadata_nr_blocks; 132 133 __le32 compat_flags; 134 __le32 compat_ro_flags; 135 __le32 incompat_flags; 136 } __packed; 137 138 struct disk_device_details { 139 __le64 mapped_blocks; 140 __le64 transaction_id; /* When created. */ 141 __le32 creation_time; 142 __le32 snapshotted_time; 143 } __packed; 144 145 struct dm_pool_metadata { 146 struct hlist_node hash; 147 148 struct block_device *bdev; 149 struct dm_block_manager *bm; 150 struct dm_space_map *metadata_sm; 151 struct dm_space_map *data_sm; 152 struct dm_transaction_manager *tm; 153 struct dm_transaction_manager *nb_tm; 154 155 /* 156 * Two-level btree. 157 * First level holds thin_dev_t. 158 * Second level holds mappings. 159 */ 160 struct dm_btree_info info; 161 162 /* 163 * Non-blocking version of the above. 164 */ 165 struct dm_btree_info nb_info; 166 167 /* 168 * Just the top level for deleting whole devices. 169 */ 170 struct dm_btree_info tl_info; 171 172 /* 173 * Just the bottom level for creating new devices. 174 */ 175 struct dm_btree_info bl_info; 176 177 /* 178 * Describes the device details btree. 179 */ 180 struct dm_btree_info details_info; 181 182 struct rw_semaphore root_lock; 183 uint32_t time; 184 dm_block_t root; 185 dm_block_t details_root; 186 struct list_head thin_devices; 187 uint64_t trans_id; 188 unsigned long flags; 189 sector_t data_block_size; 190 191 /* 192 * Pre-commit callback. 193 * 194 * This allows the thin provisioning target to run a callback before 195 * the metadata are committed. 196 */ 197 dm_pool_pre_commit_fn pre_commit_fn; 198 void *pre_commit_context; 199 200 /* 201 * We reserve a section of the metadata for commit overhead. 202 * All reported space does *not* include this. 203 */ 204 dm_block_t metadata_reserve; 205 206 /* 207 * Set if a transaction has to be aborted but the attempt to roll back 208 * to the previous (good) transaction failed. The only pool metadata 209 * operation possible in this state is the closing of the device. 210 */ 211 bool fail_io:1; 212 213 /* 214 * Set once a thin-pool has been accessed through one of the interfaces 215 * that imply the pool is in-service (e.g. thin devices created/deleted, 216 * thin-pool message, metadata snapshots, etc). 217 */ 218 bool in_service:1; 219 220 /* 221 * Reading the space map roots can fail, so we read it into these 222 * buffers before the superblock is locked and updated. 223 */ 224 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 225 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 226 }; 227 228 struct dm_thin_device { 229 struct list_head list; 230 struct dm_pool_metadata *pmd; 231 dm_thin_id id; 232 233 int open_count; 234 bool changed:1; 235 bool aborted_with_changes:1; 236 uint64_t mapped_blocks; 237 uint64_t transaction_id; 238 uint32_t creation_time; 239 uint32_t snapshotted_time; 240 }; 241 242 /*---------------------------------------------------------------- 243 * superblock validator 244 *--------------------------------------------------------------*/ 245 246 #define SUPERBLOCK_CSUM_XOR 160774 247 248 static void sb_prepare_for_write(struct dm_block_validator *v, 249 struct dm_block *b, 250 size_t block_size) 251 { 252 struct thin_disk_superblock *disk_super = dm_block_data(b); 253 254 disk_super->blocknr = cpu_to_le64(dm_block_location(b)); 255 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 256 block_size - sizeof(__le32), 257 SUPERBLOCK_CSUM_XOR)); 258 } 259 260 static int sb_check(struct dm_block_validator *v, 261 struct dm_block *b, 262 size_t block_size) 263 { 264 struct thin_disk_superblock *disk_super = dm_block_data(b); 265 __le32 csum_le; 266 267 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) { 268 DMERR("sb_check failed: blocknr %llu: " 269 "wanted %llu", le64_to_cpu(disk_super->blocknr), 270 (unsigned long long)dm_block_location(b)); 271 return -ENOTBLK; 272 } 273 274 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) { 275 DMERR("sb_check failed: magic %llu: " 276 "wanted %llu", le64_to_cpu(disk_super->magic), 277 (unsigned long long)THIN_SUPERBLOCK_MAGIC); 278 return -EILSEQ; 279 } 280 281 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 282 block_size - sizeof(__le32), 283 SUPERBLOCK_CSUM_XOR)); 284 if (csum_le != disk_super->csum) { 285 DMERR("sb_check failed: csum %u: wanted %u", 286 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum)); 287 return -EILSEQ; 288 } 289 290 return 0; 291 } 292 293 static struct dm_block_validator sb_validator = { 294 .name = "superblock", 295 .prepare_for_write = sb_prepare_for_write, 296 .check = sb_check 297 }; 298 299 /*---------------------------------------------------------------- 300 * Methods for the btree value types 301 *--------------------------------------------------------------*/ 302 303 static uint64_t pack_block_time(dm_block_t b, uint32_t t) 304 { 305 return (b << 24) | t; 306 } 307 308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t) 309 { 310 *b = v >> 24; 311 *t = v & ((1 << 24) - 1); 312 } 313 314 static void data_block_inc(void *context, const void *value_le) 315 { 316 struct dm_space_map *sm = context; 317 __le64 v_le; 318 uint64_t b; 319 uint32_t t; 320 321 memcpy(&v_le, value_le, sizeof(v_le)); 322 unpack_block_time(le64_to_cpu(v_le), &b, &t); 323 dm_sm_inc_block(sm, b); 324 } 325 326 static void data_block_dec(void *context, const void *value_le) 327 { 328 struct dm_space_map *sm = context; 329 __le64 v_le; 330 uint64_t b; 331 uint32_t t; 332 333 memcpy(&v_le, value_le, sizeof(v_le)); 334 unpack_block_time(le64_to_cpu(v_le), &b, &t); 335 dm_sm_dec_block(sm, b); 336 } 337 338 static int data_block_equal(void *context, const void *value1_le, const void *value2_le) 339 { 340 __le64 v1_le, v2_le; 341 uint64_t b1, b2; 342 uint32_t t; 343 344 memcpy(&v1_le, value1_le, sizeof(v1_le)); 345 memcpy(&v2_le, value2_le, sizeof(v2_le)); 346 unpack_block_time(le64_to_cpu(v1_le), &b1, &t); 347 unpack_block_time(le64_to_cpu(v2_le), &b2, &t); 348 349 return b1 == b2; 350 } 351 352 static void subtree_inc(void *context, const void *value) 353 { 354 struct dm_btree_info *info = context; 355 __le64 root_le; 356 uint64_t root; 357 358 memcpy(&root_le, value, sizeof(root_le)); 359 root = le64_to_cpu(root_le); 360 dm_tm_inc(info->tm, root); 361 } 362 363 static void subtree_dec(void *context, const void *value) 364 { 365 struct dm_btree_info *info = context; 366 __le64 root_le; 367 uint64_t root; 368 369 memcpy(&root_le, value, sizeof(root_le)); 370 root = le64_to_cpu(root_le); 371 if (dm_btree_del(info, root)) 372 DMERR("btree delete failed"); 373 } 374 375 static int subtree_equal(void *context, const void *value1_le, const void *value2_le) 376 { 377 __le64 v1_le, v2_le; 378 memcpy(&v1_le, value1_le, sizeof(v1_le)); 379 memcpy(&v2_le, value2_le, sizeof(v2_le)); 380 381 return v1_le == v2_le; 382 } 383 384 /*----------------------------------------------------------------*/ 385 386 /* 387 * Variant that is used for in-core only changes or code that 388 * shouldn't put the pool in service on its own (e.g. commit). 389 */ 390 static inline void __pmd_write_lock(struct dm_pool_metadata *pmd) 391 __acquires(pmd->root_lock) 392 { 393 down_write(&pmd->root_lock); 394 } 395 #define pmd_write_lock_in_core(pmd) __pmd_write_lock((pmd)) 396 397 static inline void pmd_write_lock(struct dm_pool_metadata *pmd) 398 { 399 __pmd_write_lock(pmd); 400 if (unlikely(!pmd->in_service)) 401 pmd->in_service = true; 402 } 403 404 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd) 405 __releases(pmd->root_lock) 406 { 407 up_write(&pmd->root_lock); 408 } 409 410 /*----------------------------------------------------------------*/ 411 412 static int superblock_lock_zero(struct dm_pool_metadata *pmd, 413 struct dm_block **sblock) 414 { 415 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION, 416 &sb_validator, sblock); 417 } 418 419 static int superblock_lock(struct dm_pool_metadata *pmd, 420 struct dm_block **sblock) 421 { 422 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 423 &sb_validator, sblock); 424 } 425 426 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result) 427 { 428 int r; 429 unsigned i; 430 struct dm_block *b; 431 __le64 *data_le, zero = cpu_to_le64(0); 432 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64); 433 434 /* 435 * We can't use a validator here - it may be all zeroes. 436 */ 437 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b); 438 if (r) 439 return r; 440 441 data_le = dm_block_data(b); 442 *result = 1; 443 for (i = 0; i < block_size; i++) { 444 if (data_le[i] != zero) { 445 *result = 0; 446 break; 447 } 448 } 449 450 dm_bm_unlock(b); 451 452 return 0; 453 } 454 455 static void __setup_btree_details(struct dm_pool_metadata *pmd) 456 { 457 pmd->info.tm = pmd->tm; 458 pmd->info.levels = 2; 459 pmd->info.value_type.context = pmd->data_sm; 460 pmd->info.value_type.size = sizeof(__le64); 461 pmd->info.value_type.inc = data_block_inc; 462 pmd->info.value_type.dec = data_block_dec; 463 pmd->info.value_type.equal = data_block_equal; 464 465 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info)); 466 pmd->nb_info.tm = pmd->nb_tm; 467 468 pmd->tl_info.tm = pmd->tm; 469 pmd->tl_info.levels = 1; 470 pmd->tl_info.value_type.context = &pmd->bl_info; 471 pmd->tl_info.value_type.size = sizeof(__le64); 472 pmd->tl_info.value_type.inc = subtree_inc; 473 pmd->tl_info.value_type.dec = subtree_dec; 474 pmd->tl_info.value_type.equal = subtree_equal; 475 476 pmd->bl_info.tm = pmd->tm; 477 pmd->bl_info.levels = 1; 478 pmd->bl_info.value_type.context = pmd->data_sm; 479 pmd->bl_info.value_type.size = sizeof(__le64); 480 pmd->bl_info.value_type.inc = data_block_inc; 481 pmd->bl_info.value_type.dec = data_block_dec; 482 pmd->bl_info.value_type.equal = data_block_equal; 483 484 pmd->details_info.tm = pmd->tm; 485 pmd->details_info.levels = 1; 486 pmd->details_info.value_type.context = NULL; 487 pmd->details_info.value_type.size = sizeof(struct disk_device_details); 488 pmd->details_info.value_type.inc = NULL; 489 pmd->details_info.value_type.dec = NULL; 490 pmd->details_info.value_type.equal = NULL; 491 } 492 493 static int save_sm_roots(struct dm_pool_metadata *pmd) 494 { 495 int r; 496 size_t len; 497 498 r = dm_sm_root_size(pmd->metadata_sm, &len); 499 if (r < 0) 500 return r; 501 502 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len); 503 if (r < 0) 504 return r; 505 506 r = dm_sm_root_size(pmd->data_sm, &len); 507 if (r < 0) 508 return r; 509 510 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len); 511 } 512 513 static void copy_sm_roots(struct dm_pool_metadata *pmd, 514 struct thin_disk_superblock *disk) 515 { 516 memcpy(&disk->metadata_space_map_root, 517 &pmd->metadata_space_map_root, 518 sizeof(pmd->metadata_space_map_root)); 519 520 memcpy(&disk->data_space_map_root, 521 &pmd->data_space_map_root, 522 sizeof(pmd->data_space_map_root)); 523 } 524 525 static int __write_initial_superblock(struct dm_pool_metadata *pmd) 526 { 527 int r; 528 struct dm_block *sblock; 529 struct thin_disk_superblock *disk_super; 530 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT; 531 532 if (bdev_size > THIN_METADATA_MAX_SECTORS) 533 bdev_size = THIN_METADATA_MAX_SECTORS; 534 535 r = dm_sm_commit(pmd->data_sm); 536 if (r < 0) 537 return r; 538 539 r = dm_tm_pre_commit(pmd->tm); 540 if (r < 0) 541 return r; 542 543 r = save_sm_roots(pmd); 544 if (r < 0) 545 return r; 546 547 r = superblock_lock_zero(pmd, &sblock); 548 if (r) 549 return r; 550 551 disk_super = dm_block_data(sblock); 552 disk_super->flags = 0; 553 memset(disk_super->uuid, 0, sizeof(disk_super->uuid)); 554 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC); 555 disk_super->version = cpu_to_le32(THIN_VERSION); 556 disk_super->time = 0; 557 disk_super->trans_id = 0; 558 disk_super->held_root = 0; 559 560 copy_sm_roots(pmd, disk_super); 561 562 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 563 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 564 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE); 565 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT); 566 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size); 567 568 return dm_tm_commit(pmd->tm, sblock); 569 } 570 571 static int __format_metadata(struct dm_pool_metadata *pmd) 572 { 573 int r; 574 575 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 576 &pmd->tm, &pmd->metadata_sm); 577 if (r < 0) { 578 DMERR("tm_create_with_sm failed"); 579 return r; 580 } 581 582 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0); 583 if (IS_ERR(pmd->data_sm)) { 584 DMERR("sm_disk_create failed"); 585 r = PTR_ERR(pmd->data_sm); 586 goto bad_cleanup_tm; 587 } 588 589 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 590 if (!pmd->nb_tm) { 591 DMERR("could not create non-blocking clone tm"); 592 r = -ENOMEM; 593 goto bad_cleanup_data_sm; 594 } 595 596 __setup_btree_details(pmd); 597 598 r = dm_btree_empty(&pmd->info, &pmd->root); 599 if (r < 0) 600 goto bad_cleanup_nb_tm; 601 602 r = dm_btree_empty(&pmd->details_info, &pmd->details_root); 603 if (r < 0) { 604 DMERR("couldn't create devices root"); 605 goto bad_cleanup_nb_tm; 606 } 607 608 r = __write_initial_superblock(pmd); 609 if (r) 610 goto bad_cleanup_nb_tm; 611 612 return 0; 613 614 bad_cleanup_nb_tm: 615 dm_tm_destroy(pmd->nb_tm); 616 bad_cleanup_data_sm: 617 dm_sm_destroy(pmd->data_sm); 618 bad_cleanup_tm: 619 dm_tm_destroy(pmd->tm); 620 dm_sm_destroy(pmd->metadata_sm); 621 622 return r; 623 } 624 625 static int __check_incompat_features(struct thin_disk_superblock *disk_super, 626 struct dm_pool_metadata *pmd) 627 { 628 uint32_t features; 629 630 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP; 631 if (features) { 632 DMERR("could not access metadata due to unsupported optional features (%lx).", 633 (unsigned long)features); 634 return -EINVAL; 635 } 636 637 /* 638 * Check for read-only metadata to skip the following RDWR checks. 639 */ 640 if (get_disk_ro(pmd->bdev->bd_disk)) 641 return 0; 642 643 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP; 644 if (features) { 645 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).", 646 (unsigned long)features); 647 return -EINVAL; 648 } 649 650 return 0; 651 } 652 653 static int __open_metadata(struct dm_pool_metadata *pmd) 654 { 655 int r; 656 struct dm_block *sblock; 657 struct thin_disk_superblock *disk_super; 658 659 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 660 &sb_validator, &sblock); 661 if (r < 0) { 662 DMERR("couldn't read superblock"); 663 return r; 664 } 665 666 disk_super = dm_block_data(sblock); 667 668 /* Verify the data block size hasn't changed */ 669 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) { 670 DMERR("changing the data block size (from %u to %llu) is not supported", 671 le32_to_cpu(disk_super->data_block_size), 672 (unsigned long long)pmd->data_block_size); 673 r = -EINVAL; 674 goto bad_unlock_sblock; 675 } 676 677 r = __check_incompat_features(disk_super, pmd); 678 if (r < 0) 679 goto bad_unlock_sblock; 680 681 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 682 disk_super->metadata_space_map_root, 683 sizeof(disk_super->metadata_space_map_root), 684 &pmd->tm, &pmd->metadata_sm); 685 if (r < 0) { 686 DMERR("tm_open_with_sm failed"); 687 goto bad_unlock_sblock; 688 } 689 690 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root, 691 sizeof(disk_super->data_space_map_root)); 692 if (IS_ERR(pmd->data_sm)) { 693 DMERR("sm_disk_open failed"); 694 r = PTR_ERR(pmd->data_sm); 695 goto bad_cleanup_tm; 696 } 697 698 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 699 if (!pmd->nb_tm) { 700 DMERR("could not create non-blocking clone tm"); 701 r = -ENOMEM; 702 goto bad_cleanup_data_sm; 703 } 704 705 __setup_btree_details(pmd); 706 dm_bm_unlock(sblock); 707 708 return 0; 709 710 bad_cleanup_data_sm: 711 dm_sm_destroy(pmd->data_sm); 712 bad_cleanup_tm: 713 dm_tm_destroy(pmd->tm); 714 dm_sm_destroy(pmd->metadata_sm); 715 bad_unlock_sblock: 716 dm_bm_unlock(sblock); 717 718 return r; 719 } 720 721 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device) 722 { 723 int r, unformatted; 724 725 r = __superblock_all_zeroes(pmd->bm, &unformatted); 726 if (r) 727 return r; 728 729 if (unformatted) 730 return format_device ? __format_metadata(pmd) : -EPERM; 731 732 return __open_metadata(pmd); 733 } 734 735 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device) 736 { 737 int r; 738 739 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT, 740 THIN_MAX_CONCURRENT_LOCKS); 741 if (IS_ERR(pmd->bm)) { 742 DMERR("could not create block manager"); 743 return PTR_ERR(pmd->bm); 744 } 745 746 r = __open_or_format_metadata(pmd, format_device); 747 if (r) 748 dm_block_manager_destroy(pmd->bm); 749 750 return r; 751 } 752 753 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd) 754 { 755 dm_sm_destroy(pmd->data_sm); 756 dm_sm_destroy(pmd->metadata_sm); 757 dm_tm_destroy(pmd->nb_tm); 758 dm_tm_destroy(pmd->tm); 759 dm_block_manager_destroy(pmd->bm); 760 } 761 762 static int __begin_transaction(struct dm_pool_metadata *pmd) 763 { 764 int r; 765 struct thin_disk_superblock *disk_super; 766 struct dm_block *sblock; 767 768 /* 769 * We re-read the superblock every time. Shouldn't need to do this 770 * really. 771 */ 772 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 773 &sb_validator, &sblock); 774 if (r) 775 return r; 776 777 disk_super = dm_block_data(sblock); 778 pmd->time = le32_to_cpu(disk_super->time); 779 pmd->root = le64_to_cpu(disk_super->data_mapping_root); 780 pmd->details_root = le64_to_cpu(disk_super->device_details_root); 781 pmd->trans_id = le64_to_cpu(disk_super->trans_id); 782 pmd->flags = le32_to_cpu(disk_super->flags); 783 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size); 784 785 dm_bm_unlock(sblock); 786 return 0; 787 } 788 789 static int __write_changed_details(struct dm_pool_metadata *pmd) 790 { 791 int r; 792 struct dm_thin_device *td, *tmp; 793 struct disk_device_details details; 794 uint64_t key; 795 796 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 797 if (!td->changed) 798 continue; 799 800 key = td->id; 801 802 details.mapped_blocks = cpu_to_le64(td->mapped_blocks); 803 details.transaction_id = cpu_to_le64(td->transaction_id); 804 details.creation_time = cpu_to_le32(td->creation_time); 805 details.snapshotted_time = cpu_to_le32(td->snapshotted_time); 806 __dm_bless_for_disk(&details); 807 808 r = dm_btree_insert(&pmd->details_info, pmd->details_root, 809 &key, &details, &pmd->details_root); 810 if (r) 811 return r; 812 813 if (td->open_count) 814 td->changed = false; 815 else { 816 list_del(&td->list); 817 kfree(td); 818 } 819 } 820 821 return 0; 822 } 823 824 static int __commit_transaction(struct dm_pool_metadata *pmd) 825 { 826 int r; 827 struct thin_disk_superblock *disk_super; 828 struct dm_block *sblock; 829 830 /* 831 * We need to know if the thin_disk_superblock exceeds a 512-byte sector. 832 */ 833 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512); 834 835 if (unlikely(!pmd->in_service)) 836 return 0; 837 838 if (pmd->pre_commit_fn) { 839 r = pmd->pre_commit_fn(pmd->pre_commit_context); 840 if (r < 0) { 841 DMERR("pre-commit callback failed"); 842 return r; 843 } 844 } 845 846 r = __write_changed_details(pmd); 847 if (r < 0) 848 return r; 849 850 r = dm_sm_commit(pmd->data_sm); 851 if (r < 0) 852 return r; 853 854 r = dm_tm_pre_commit(pmd->tm); 855 if (r < 0) 856 return r; 857 858 r = save_sm_roots(pmd); 859 if (r < 0) 860 return r; 861 862 r = superblock_lock(pmd, &sblock); 863 if (r) 864 return r; 865 866 disk_super = dm_block_data(sblock); 867 disk_super->time = cpu_to_le32(pmd->time); 868 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 869 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 870 disk_super->trans_id = cpu_to_le64(pmd->trans_id); 871 disk_super->flags = cpu_to_le32(pmd->flags); 872 873 copy_sm_roots(pmd, disk_super); 874 875 return dm_tm_commit(pmd->tm, sblock); 876 } 877 878 static void __set_metadata_reserve(struct dm_pool_metadata *pmd) 879 { 880 int r; 881 dm_block_t total; 882 dm_block_t max_blocks = 4096; /* 16M */ 883 884 r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total); 885 if (r) { 886 DMERR("could not get size of metadata device"); 887 pmd->metadata_reserve = max_blocks; 888 } else 889 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10)); 890 } 891 892 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev, 893 sector_t data_block_size, 894 bool format_device) 895 { 896 int r; 897 struct dm_pool_metadata *pmd; 898 899 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL); 900 if (!pmd) { 901 DMERR("could not allocate metadata struct"); 902 return ERR_PTR(-ENOMEM); 903 } 904 905 init_rwsem(&pmd->root_lock); 906 pmd->time = 0; 907 INIT_LIST_HEAD(&pmd->thin_devices); 908 pmd->fail_io = false; 909 pmd->in_service = false; 910 pmd->bdev = bdev; 911 pmd->data_block_size = data_block_size; 912 pmd->pre_commit_fn = NULL; 913 pmd->pre_commit_context = NULL; 914 915 r = __create_persistent_data_objects(pmd, format_device); 916 if (r) { 917 kfree(pmd); 918 return ERR_PTR(r); 919 } 920 921 r = __begin_transaction(pmd); 922 if (r < 0) { 923 if (dm_pool_metadata_close(pmd) < 0) 924 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 925 return ERR_PTR(r); 926 } 927 928 __set_metadata_reserve(pmd); 929 930 return pmd; 931 } 932 933 int dm_pool_metadata_close(struct dm_pool_metadata *pmd) 934 { 935 int r; 936 unsigned open_devices = 0; 937 struct dm_thin_device *td, *tmp; 938 939 down_read(&pmd->root_lock); 940 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 941 if (td->open_count) 942 open_devices++; 943 else { 944 list_del(&td->list); 945 kfree(td); 946 } 947 } 948 up_read(&pmd->root_lock); 949 950 if (open_devices) { 951 DMERR("attempt to close pmd when %u device(s) are still open", 952 open_devices); 953 return -EBUSY; 954 } 955 956 if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) { 957 r = __commit_transaction(pmd); 958 if (r < 0) 959 DMWARN("%s: __commit_transaction() failed, error = %d", 960 __func__, r); 961 } 962 if (!pmd->fail_io) 963 __destroy_persistent_data_objects(pmd); 964 965 kfree(pmd); 966 return 0; 967 } 968 969 /* 970 * __open_device: Returns @td corresponding to device with id @dev, 971 * creating it if @create is set and incrementing @td->open_count. 972 * On failure, @td is undefined. 973 */ 974 static int __open_device(struct dm_pool_metadata *pmd, 975 dm_thin_id dev, int create, 976 struct dm_thin_device **td) 977 { 978 int r, changed = 0; 979 struct dm_thin_device *td2; 980 uint64_t key = dev; 981 struct disk_device_details details_le; 982 983 /* 984 * If the device is already open, return it. 985 */ 986 list_for_each_entry(td2, &pmd->thin_devices, list) 987 if (td2->id == dev) { 988 /* 989 * May not create an already-open device. 990 */ 991 if (create) 992 return -EEXIST; 993 994 td2->open_count++; 995 *td = td2; 996 return 0; 997 } 998 999 /* 1000 * Check the device exists. 1001 */ 1002 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1003 &key, &details_le); 1004 if (r) { 1005 if (r != -ENODATA || !create) 1006 return r; 1007 1008 /* 1009 * Create new device. 1010 */ 1011 changed = 1; 1012 details_le.mapped_blocks = 0; 1013 details_le.transaction_id = cpu_to_le64(pmd->trans_id); 1014 details_le.creation_time = cpu_to_le32(pmd->time); 1015 details_le.snapshotted_time = cpu_to_le32(pmd->time); 1016 } 1017 1018 *td = kmalloc(sizeof(**td), GFP_NOIO); 1019 if (!*td) 1020 return -ENOMEM; 1021 1022 (*td)->pmd = pmd; 1023 (*td)->id = dev; 1024 (*td)->open_count = 1; 1025 (*td)->changed = changed; 1026 (*td)->aborted_with_changes = false; 1027 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks); 1028 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id); 1029 (*td)->creation_time = le32_to_cpu(details_le.creation_time); 1030 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time); 1031 1032 list_add(&(*td)->list, &pmd->thin_devices); 1033 1034 return 0; 1035 } 1036 1037 static void __close_device(struct dm_thin_device *td) 1038 { 1039 --td->open_count; 1040 } 1041 1042 static int __create_thin(struct dm_pool_metadata *pmd, 1043 dm_thin_id dev) 1044 { 1045 int r; 1046 dm_block_t dev_root; 1047 uint64_t key = dev; 1048 struct disk_device_details details_le; 1049 struct dm_thin_device *td; 1050 __le64 value; 1051 1052 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1053 &key, &details_le); 1054 if (!r) 1055 return -EEXIST; 1056 1057 /* 1058 * Create an empty btree for the mappings. 1059 */ 1060 r = dm_btree_empty(&pmd->bl_info, &dev_root); 1061 if (r) 1062 return r; 1063 1064 /* 1065 * Insert it into the main mapping tree. 1066 */ 1067 value = cpu_to_le64(dev_root); 1068 __dm_bless_for_disk(&value); 1069 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1070 if (r) { 1071 dm_btree_del(&pmd->bl_info, dev_root); 1072 return r; 1073 } 1074 1075 r = __open_device(pmd, dev, 1, &td); 1076 if (r) { 1077 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1078 dm_btree_del(&pmd->bl_info, dev_root); 1079 return r; 1080 } 1081 __close_device(td); 1082 1083 return r; 1084 } 1085 1086 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev) 1087 { 1088 int r = -EINVAL; 1089 1090 pmd_write_lock(pmd); 1091 if (!pmd->fail_io) 1092 r = __create_thin(pmd, dev); 1093 pmd_write_unlock(pmd); 1094 1095 return r; 1096 } 1097 1098 static int __set_snapshot_details(struct dm_pool_metadata *pmd, 1099 struct dm_thin_device *snap, 1100 dm_thin_id origin, uint32_t time) 1101 { 1102 int r; 1103 struct dm_thin_device *td; 1104 1105 r = __open_device(pmd, origin, 0, &td); 1106 if (r) 1107 return r; 1108 1109 td->changed = true; 1110 td->snapshotted_time = time; 1111 1112 snap->mapped_blocks = td->mapped_blocks; 1113 snap->snapshotted_time = time; 1114 __close_device(td); 1115 1116 return 0; 1117 } 1118 1119 static int __create_snap(struct dm_pool_metadata *pmd, 1120 dm_thin_id dev, dm_thin_id origin) 1121 { 1122 int r; 1123 dm_block_t origin_root; 1124 uint64_t key = origin, dev_key = dev; 1125 struct dm_thin_device *td; 1126 struct disk_device_details details_le; 1127 __le64 value; 1128 1129 /* check this device is unused */ 1130 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1131 &dev_key, &details_le); 1132 if (!r) 1133 return -EEXIST; 1134 1135 /* find the mapping tree for the origin */ 1136 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value); 1137 if (r) 1138 return r; 1139 origin_root = le64_to_cpu(value); 1140 1141 /* clone the origin, an inc will do */ 1142 dm_tm_inc(pmd->tm, origin_root); 1143 1144 /* insert into the main mapping tree */ 1145 value = cpu_to_le64(origin_root); 1146 __dm_bless_for_disk(&value); 1147 key = dev; 1148 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1149 if (r) { 1150 dm_tm_dec(pmd->tm, origin_root); 1151 return r; 1152 } 1153 1154 pmd->time++; 1155 1156 r = __open_device(pmd, dev, 1, &td); 1157 if (r) 1158 goto bad; 1159 1160 r = __set_snapshot_details(pmd, td, origin, pmd->time); 1161 __close_device(td); 1162 1163 if (r) 1164 goto bad; 1165 1166 return 0; 1167 1168 bad: 1169 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1170 dm_btree_remove(&pmd->details_info, pmd->details_root, 1171 &key, &pmd->details_root); 1172 return r; 1173 } 1174 1175 int dm_pool_create_snap(struct dm_pool_metadata *pmd, 1176 dm_thin_id dev, 1177 dm_thin_id origin) 1178 { 1179 int r = -EINVAL; 1180 1181 pmd_write_lock(pmd); 1182 if (!pmd->fail_io) 1183 r = __create_snap(pmd, dev, origin); 1184 pmd_write_unlock(pmd); 1185 1186 return r; 1187 } 1188 1189 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev) 1190 { 1191 int r; 1192 uint64_t key = dev; 1193 struct dm_thin_device *td; 1194 1195 /* TODO: failure should mark the transaction invalid */ 1196 r = __open_device(pmd, dev, 0, &td); 1197 if (r) 1198 return r; 1199 1200 if (td->open_count > 1) { 1201 __close_device(td); 1202 return -EBUSY; 1203 } 1204 1205 list_del(&td->list); 1206 kfree(td); 1207 r = dm_btree_remove(&pmd->details_info, pmd->details_root, 1208 &key, &pmd->details_root); 1209 if (r) 1210 return r; 1211 1212 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1213 if (r) 1214 return r; 1215 1216 return 0; 1217 } 1218 1219 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd, 1220 dm_thin_id dev) 1221 { 1222 int r = -EINVAL; 1223 1224 pmd_write_lock(pmd); 1225 if (!pmd->fail_io) 1226 r = __delete_device(pmd, dev); 1227 pmd_write_unlock(pmd); 1228 1229 return r; 1230 } 1231 1232 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd, 1233 uint64_t current_id, 1234 uint64_t new_id) 1235 { 1236 int r = -EINVAL; 1237 1238 pmd_write_lock(pmd); 1239 1240 if (pmd->fail_io) 1241 goto out; 1242 1243 if (pmd->trans_id != current_id) { 1244 DMERR("mismatched transaction id"); 1245 goto out; 1246 } 1247 1248 pmd->trans_id = new_id; 1249 r = 0; 1250 1251 out: 1252 pmd_write_unlock(pmd); 1253 1254 return r; 1255 } 1256 1257 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd, 1258 uint64_t *result) 1259 { 1260 int r = -EINVAL; 1261 1262 down_read(&pmd->root_lock); 1263 if (!pmd->fail_io) { 1264 *result = pmd->trans_id; 1265 r = 0; 1266 } 1267 up_read(&pmd->root_lock); 1268 1269 return r; 1270 } 1271 1272 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd) 1273 { 1274 int r, inc; 1275 struct thin_disk_superblock *disk_super; 1276 struct dm_block *copy, *sblock; 1277 dm_block_t held_root; 1278 1279 /* 1280 * We commit to ensure the btree roots which we increment in a 1281 * moment are up to date. 1282 */ 1283 r = __commit_transaction(pmd); 1284 if (r < 0) { 1285 DMWARN("%s: __commit_transaction() failed, error = %d", 1286 __func__, r); 1287 return r; 1288 } 1289 1290 /* 1291 * Copy the superblock. 1292 */ 1293 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION); 1294 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION, 1295 &sb_validator, ©, &inc); 1296 if (r) 1297 return r; 1298 1299 BUG_ON(!inc); 1300 1301 held_root = dm_block_location(copy); 1302 disk_super = dm_block_data(copy); 1303 1304 if (le64_to_cpu(disk_super->held_root)) { 1305 DMWARN("Pool metadata snapshot already exists: release this before taking another."); 1306 1307 dm_tm_dec(pmd->tm, held_root); 1308 dm_tm_unlock(pmd->tm, copy); 1309 return -EBUSY; 1310 } 1311 1312 /* 1313 * Wipe the spacemap since we're not publishing this. 1314 */ 1315 memset(&disk_super->data_space_map_root, 0, 1316 sizeof(disk_super->data_space_map_root)); 1317 memset(&disk_super->metadata_space_map_root, 0, 1318 sizeof(disk_super->metadata_space_map_root)); 1319 1320 /* 1321 * Increment the data structures that need to be preserved. 1322 */ 1323 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root)); 1324 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root)); 1325 dm_tm_unlock(pmd->tm, copy); 1326 1327 /* 1328 * Write the held root into the superblock. 1329 */ 1330 r = superblock_lock(pmd, &sblock); 1331 if (r) { 1332 dm_tm_dec(pmd->tm, held_root); 1333 return r; 1334 } 1335 1336 disk_super = dm_block_data(sblock); 1337 disk_super->held_root = cpu_to_le64(held_root); 1338 dm_bm_unlock(sblock); 1339 return 0; 1340 } 1341 1342 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd) 1343 { 1344 int r = -EINVAL; 1345 1346 pmd_write_lock(pmd); 1347 if (!pmd->fail_io) 1348 r = __reserve_metadata_snap(pmd); 1349 pmd_write_unlock(pmd); 1350 1351 return r; 1352 } 1353 1354 static int __release_metadata_snap(struct dm_pool_metadata *pmd) 1355 { 1356 int r; 1357 struct thin_disk_superblock *disk_super; 1358 struct dm_block *sblock, *copy; 1359 dm_block_t held_root; 1360 1361 r = superblock_lock(pmd, &sblock); 1362 if (r) 1363 return r; 1364 1365 disk_super = dm_block_data(sblock); 1366 held_root = le64_to_cpu(disk_super->held_root); 1367 disk_super->held_root = cpu_to_le64(0); 1368 1369 dm_bm_unlock(sblock); 1370 1371 if (!held_root) { 1372 DMWARN("No pool metadata snapshot found: nothing to release."); 1373 return -EINVAL; 1374 } 1375 1376 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, ©); 1377 if (r) 1378 return r; 1379 1380 disk_super = dm_block_data(copy); 1381 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root)); 1382 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root)); 1383 dm_sm_dec_block(pmd->metadata_sm, held_root); 1384 1385 dm_tm_unlock(pmd->tm, copy); 1386 1387 return 0; 1388 } 1389 1390 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd) 1391 { 1392 int r = -EINVAL; 1393 1394 pmd_write_lock(pmd); 1395 if (!pmd->fail_io) 1396 r = __release_metadata_snap(pmd); 1397 pmd_write_unlock(pmd); 1398 1399 return r; 1400 } 1401 1402 static int __get_metadata_snap(struct dm_pool_metadata *pmd, 1403 dm_block_t *result) 1404 { 1405 int r; 1406 struct thin_disk_superblock *disk_super; 1407 struct dm_block *sblock; 1408 1409 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 1410 &sb_validator, &sblock); 1411 if (r) 1412 return r; 1413 1414 disk_super = dm_block_data(sblock); 1415 *result = le64_to_cpu(disk_super->held_root); 1416 1417 dm_bm_unlock(sblock); 1418 1419 return 0; 1420 } 1421 1422 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd, 1423 dm_block_t *result) 1424 { 1425 int r = -EINVAL; 1426 1427 down_read(&pmd->root_lock); 1428 if (!pmd->fail_io) 1429 r = __get_metadata_snap(pmd, result); 1430 up_read(&pmd->root_lock); 1431 1432 return r; 1433 } 1434 1435 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev, 1436 struct dm_thin_device **td) 1437 { 1438 int r = -EINVAL; 1439 1440 pmd_write_lock_in_core(pmd); 1441 if (!pmd->fail_io) 1442 r = __open_device(pmd, dev, 0, td); 1443 pmd_write_unlock(pmd); 1444 1445 return r; 1446 } 1447 1448 int dm_pool_close_thin_device(struct dm_thin_device *td) 1449 { 1450 pmd_write_lock_in_core(td->pmd); 1451 __close_device(td); 1452 pmd_write_unlock(td->pmd); 1453 1454 return 0; 1455 } 1456 1457 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td) 1458 { 1459 return td->id; 1460 } 1461 1462 /* 1463 * Check whether @time (of block creation) is older than @td's last snapshot. 1464 * If so then the associated block is shared with the last snapshot device. 1465 * Any block on a device created *after* the device last got snapshotted is 1466 * necessarily not shared. 1467 */ 1468 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time) 1469 { 1470 return td->snapshotted_time > time; 1471 } 1472 1473 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value, 1474 struct dm_thin_lookup_result *result) 1475 { 1476 uint64_t block_time = 0; 1477 dm_block_t exception_block; 1478 uint32_t exception_time; 1479 1480 block_time = le64_to_cpu(value); 1481 unpack_block_time(block_time, &exception_block, &exception_time); 1482 result->block = exception_block; 1483 result->shared = __snapshotted_since(td, exception_time); 1484 } 1485 1486 static int __find_block(struct dm_thin_device *td, dm_block_t block, 1487 int can_issue_io, struct dm_thin_lookup_result *result) 1488 { 1489 int r; 1490 __le64 value; 1491 struct dm_pool_metadata *pmd = td->pmd; 1492 dm_block_t keys[2] = { td->id, block }; 1493 struct dm_btree_info *info; 1494 1495 if (can_issue_io) { 1496 info = &pmd->info; 1497 } else 1498 info = &pmd->nb_info; 1499 1500 r = dm_btree_lookup(info, pmd->root, keys, &value); 1501 if (!r) 1502 unpack_lookup_result(td, value, result); 1503 1504 return r; 1505 } 1506 1507 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block, 1508 int can_issue_io, struct dm_thin_lookup_result *result) 1509 { 1510 int r; 1511 struct dm_pool_metadata *pmd = td->pmd; 1512 1513 down_read(&pmd->root_lock); 1514 if (pmd->fail_io) { 1515 up_read(&pmd->root_lock); 1516 return -EINVAL; 1517 } 1518 1519 r = __find_block(td, block, can_issue_io, result); 1520 1521 up_read(&pmd->root_lock); 1522 return r; 1523 } 1524 1525 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block, 1526 dm_block_t *vblock, 1527 struct dm_thin_lookup_result *result) 1528 { 1529 int r; 1530 __le64 value; 1531 struct dm_pool_metadata *pmd = td->pmd; 1532 dm_block_t keys[2] = { td->id, block }; 1533 1534 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value); 1535 if (!r) 1536 unpack_lookup_result(td, value, result); 1537 1538 return r; 1539 } 1540 1541 static int __find_mapped_range(struct dm_thin_device *td, 1542 dm_block_t begin, dm_block_t end, 1543 dm_block_t *thin_begin, dm_block_t *thin_end, 1544 dm_block_t *pool_begin, bool *maybe_shared) 1545 { 1546 int r; 1547 dm_block_t pool_end; 1548 struct dm_thin_lookup_result lookup; 1549 1550 if (end < begin) 1551 return -ENODATA; 1552 1553 r = __find_next_mapped_block(td, begin, &begin, &lookup); 1554 if (r) 1555 return r; 1556 1557 if (begin >= end) 1558 return -ENODATA; 1559 1560 *thin_begin = begin; 1561 *pool_begin = lookup.block; 1562 *maybe_shared = lookup.shared; 1563 1564 begin++; 1565 pool_end = *pool_begin + 1; 1566 while (begin != end) { 1567 r = __find_block(td, begin, true, &lookup); 1568 if (r) { 1569 if (r == -ENODATA) 1570 break; 1571 else 1572 return r; 1573 } 1574 1575 if ((lookup.block != pool_end) || 1576 (lookup.shared != *maybe_shared)) 1577 break; 1578 1579 pool_end++; 1580 begin++; 1581 } 1582 1583 *thin_end = begin; 1584 return 0; 1585 } 1586 1587 int dm_thin_find_mapped_range(struct dm_thin_device *td, 1588 dm_block_t begin, dm_block_t end, 1589 dm_block_t *thin_begin, dm_block_t *thin_end, 1590 dm_block_t *pool_begin, bool *maybe_shared) 1591 { 1592 int r = -EINVAL; 1593 struct dm_pool_metadata *pmd = td->pmd; 1594 1595 down_read(&pmd->root_lock); 1596 if (!pmd->fail_io) { 1597 r = __find_mapped_range(td, begin, end, thin_begin, thin_end, 1598 pool_begin, maybe_shared); 1599 } 1600 up_read(&pmd->root_lock); 1601 1602 return r; 1603 } 1604 1605 static int __insert(struct dm_thin_device *td, dm_block_t block, 1606 dm_block_t data_block) 1607 { 1608 int r, inserted; 1609 __le64 value; 1610 struct dm_pool_metadata *pmd = td->pmd; 1611 dm_block_t keys[2] = { td->id, block }; 1612 1613 value = cpu_to_le64(pack_block_time(data_block, pmd->time)); 1614 __dm_bless_for_disk(&value); 1615 1616 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value, 1617 &pmd->root, &inserted); 1618 if (r) 1619 return r; 1620 1621 td->changed = true; 1622 if (inserted) 1623 td->mapped_blocks++; 1624 1625 return 0; 1626 } 1627 1628 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block, 1629 dm_block_t data_block) 1630 { 1631 int r = -EINVAL; 1632 1633 pmd_write_lock(td->pmd); 1634 if (!td->pmd->fail_io) 1635 r = __insert(td, block, data_block); 1636 pmd_write_unlock(td->pmd); 1637 1638 return r; 1639 } 1640 1641 static int __remove(struct dm_thin_device *td, dm_block_t block) 1642 { 1643 int r; 1644 struct dm_pool_metadata *pmd = td->pmd; 1645 dm_block_t keys[2] = { td->id, block }; 1646 1647 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root); 1648 if (r) 1649 return r; 1650 1651 td->mapped_blocks--; 1652 td->changed = true; 1653 1654 return 0; 1655 } 1656 1657 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end) 1658 { 1659 int r; 1660 unsigned count, total_count = 0; 1661 struct dm_pool_metadata *pmd = td->pmd; 1662 dm_block_t keys[1] = { td->id }; 1663 __le64 value; 1664 dm_block_t mapping_root; 1665 1666 /* 1667 * Find the mapping tree 1668 */ 1669 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value); 1670 if (r) 1671 return r; 1672 1673 /* 1674 * Remove from the mapping tree, taking care to inc the 1675 * ref count so it doesn't get deleted. 1676 */ 1677 mapping_root = le64_to_cpu(value); 1678 dm_tm_inc(pmd->tm, mapping_root); 1679 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root); 1680 if (r) 1681 return r; 1682 1683 /* 1684 * Remove leaves stops at the first unmapped entry, so we have to 1685 * loop round finding mapped ranges. 1686 */ 1687 while (begin < end) { 1688 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value); 1689 if (r == -ENODATA) 1690 break; 1691 1692 if (r) 1693 return r; 1694 1695 if (begin >= end) 1696 break; 1697 1698 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count); 1699 if (r) 1700 return r; 1701 1702 total_count += count; 1703 } 1704 1705 td->mapped_blocks -= total_count; 1706 td->changed = true; 1707 1708 /* 1709 * Reinsert the mapping tree. 1710 */ 1711 value = cpu_to_le64(mapping_root); 1712 __dm_bless_for_disk(&value); 1713 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root); 1714 } 1715 1716 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block) 1717 { 1718 int r = -EINVAL; 1719 1720 pmd_write_lock(td->pmd); 1721 if (!td->pmd->fail_io) 1722 r = __remove(td, block); 1723 pmd_write_unlock(td->pmd); 1724 1725 return r; 1726 } 1727 1728 int dm_thin_remove_range(struct dm_thin_device *td, 1729 dm_block_t begin, dm_block_t end) 1730 { 1731 int r = -EINVAL; 1732 1733 pmd_write_lock(td->pmd); 1734 if (!td->pmd->fail_io) 1735 r = __remove_range(td, begin, end); 1736 pmd_write_unlock(td->pmd); 1737 1738 return r; 1739 } 1740 1741 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result) 1742 { 1743 int r; 1744 uint32_t ref_count; 1745 1746 down_read(&pmd->root_lock); 1747 r = dm_sm_get_count(pmd->data_sm, b, &ref_count); 1748 if (!r) 1749 *result = (ref_count > 1); 1750 up_read(&pmd->root_lock); 1751 1752 return r; 1753 } 1754 1755 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) 1756 { 1757 int r = 0; 1758 1759 pmd_write_lock(pmd); 1760 for (; b != e; b++) { 1761 r = dm_sm_inc_block(pmd->data_sm, b); 1762 if (r) 1763 break; 1764 } 1765 pmd_write_unlock(pmd); 1766 1767 return r; 1768 } 1769 1770 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) 1771 { 1772 int r = 0; 1773 1774 pmd_write_lock(pmd); 1775 for (; b != e; b++) { 1776 r = dm_sm_dec_block(pmd->data_sm, b); 1777 if (r) 1778 break; 1779 } 1780 pmd_write_unlock(pmd); 1781 1782 return r; 1783 } 1784 1785 bool dm_thin_changed_this_transaction(struct dm_thin_device *td) 1786 { 1787 int r; 1788 1789 down_read(&td->pmd->root_lock); 1790 r = td->changed; 1791 up_read(&td->pmd->root_lock); 1792 1793 return r; 1794 } 1795 1796 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd) 1797 { 1798 bool r = false; 1799 struct dm_thin_device *td, *tmp; 1800 1801 down_read(&pmd->root_lock); 1802 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 1803 if (td->changed) { 1804 r = td->changed; 1805 break; 1806 } 1807 } 1808 up_read(&pmd->root_lock); 1809 1810 return r; 1811 } 1812 1813 bool dm_thin_aborted_changes(struct dm_thin_device *td) 1814 { 1815 bool r; 1816 1817 down_read(&td->pmd->root_lock); 1818 r = td->aborted_with_changes; 1819 up_read(&td->pmd->root_lock); 1820 1821 return r; 1822 } 1823 1824 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result) 1825 { 1826 int r = -EINVAL; 1827 1828 pmd_write_lock(pmd); 1829 if (!pmd->fail_io) 1830 r = dm_sm_new_block(pmd->data_sm, result); 1831 pmd_write_unlock(pmd); 1832 1833 return r; 1834 } 1835 1836 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd) 1837 { 1838 int r = -EINVAL; 1839 1840 /* 1841 * Care is taken to not have commit be what 1842 * triggers putting the thin-pool in-service. 1843 */ 1844 __pmd_write_lock(pmd); 1845 if (pmd->fail_io) 1846 goto out; 1847 1848 r = __commit_transaction(pmd); 1849 if (r < 0) 1850 goto out; 1851 1852 /* 1853 * Open the next transaction. 1854 */ 1855 r = __begin_transaction(pmd); 1856 out: 1857 pmd_write_unlock(pmd); 1858 return r; 1859 } 1860 1861 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd) 1862 { 1863 struct dm_thin_device *td; 1864 1865 list_for_each_entry(td, &pmd->thin_devices, list) 1866 td->aborted_with_changes = td->changed; 1867 } 1868 1869 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd) 1870 { 1871 int r = -EINVAL; 1872 1873 pmd_write_lock(pmd); 1874 if (pmd->fail_io) 1875 goto out; 1876 1877 __set_abort_with_changes_flags(pmd); 1878 __destroy_persistent_data_objects(pmd); 1879 r = __create_persistent_data_objects(pmd, false); 1880 if (r) 1881 pmd->fail_io = true; 1882 1883 out: 1884 pmd_write_unlock(pmd); 1885 1886 return r; 1887 } 1888 1889 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result) 1890 { 1891 int r = -EINVAL; 1892 1893 down_read(&pmd->root_lock); 1894 if (!pmd->fail_io) 1895 r = dm_sm_get_nr_free(pmd->data_sm, result); 1896 up_read(&pmd->root_lock); 1897 1898 return r; 1899 } 1900 1901 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd, 1902 dm_block_t *result) 1903 { 1904 int r = -EINVAL; 1905 1906 down_read(&pmd->root_lock); 1907 if (!pmd->fail_io) 1908 r = dm_sm_get_nr_free(pmd->metadata_sm, result); 1909 1910 if (!r) { 1911 if (*result < pmd->metadata_reserve) 1912 *result = 0; 1913 else 1914 *result -= pmd->metadata_reserve; 1915 } 1916 up_read(&pmd->root_lock); 1917 1918 return r; 1919 } 1920 1921 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd, 1922 dm_block_t *result) 1923 { 1924 int r = -EINVAL; 1925 1926 down_read(&pmd->root_lock); 1927 if (!pmd->fail_io) 1928 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result); 1929 up_read(&pmd->root_lock); 1930 1931 return r; 1932 } 1933 1934 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result) 1935 { 1936 int r = -EINVAL; 1937 1938 down_read(&pmd->root_lock); 1939 if (!pmd->fail_io) 1940 r = dm_sm_get_nr_blocks(pmd->data_sm, result); 1941 up_read(&pmd->root_lock); 1942 1943 return r; 1944 } 1945 1946 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result) 1947 { 1948 int r = -EINVAL; 1949 struct dm_pool_metadata *pmd = td->pmd; 1950 1951 down_read(&pmd->root_lock); 1952 if (!pmd->fail_io) { 1953 *result = td->mapped_blocks; 1954 r = 0; 1955 } 1956 up_read(&pmd->root_lock); 1957 1958 return r; 1959 } 1960 1961 static int __highest_block(struct dm_thin_device *td, dm_block_t *result) 1962 { 1963 int r; 1964 __le64 value_le; 1965 dm_block_t thin_root; 1966 struct dm_pool_metadata *pmd = td->pmd; 1967 1968 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le); 1969 if (r) 1970 return r; 1971 1972 thin_root = le64_to_cpu(value_le); 1973 1974 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result); 1975 } 1976 1977 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td, 1978 dm_block_t *result) 1979 { 1980 int r = -EINVAL; 1981 struct dm_pool_metadata *pmd = td->pmd; 1982 1983 down_read(&pmd->root_lock); 1984 if (!pmd->fail_io) 1985 r = __highest_block(td, result); 1986 up_read(&pmd->root_lock); 1987 1988 return r; 1989 } 1990 1991 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count) 1992 { 1993 int r; 1994 dm_block_t old_count; 1995 1996 r = dm_sm_get_nr_blocks(sm, &old_count); 1997 if (r) 1998 return r; 1999 2000 if (new_count == old_count) 2001 return 0; 2002 2003 if (new_count < old_count) { 2004 DMERR("cannot reduce size of space map"); 2005 return -EINVAL; 2006 } 2007 2008 return dm_sm_extend(sm, new_count - old_count); 2009 } 2010 2011 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 2012 { 2013 int r = -EINVAL; 2014 2015 pmd_write_lock(pmd); 2016 if (!pmd->fail_io) 2017 r = __resize_space_map(pmd->data_sm, new_count); 2018 pmd_write_unlock(pmd); 2019 2020 return r; 2021 } 2022 2023 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 2024 { 2025 int r = -EINVAL; 2026 2027 pmd_write_lock(pmd); 2028 if (!pmd->fail_io) { 2029 r = __resize_space_map(pmd->metadata_sm, new_count); 2030 if (!r) 2031 __set_metadata_reserve(pmd); 2032 } 2033 pmd_write_unlock(pmd); 2034 2035 return r; 2036 } 2037 2038 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd) 2039 { 2040 pmd_write_lock_in_core(pmd); 2041 dm_bm_set_read_only(pmd->bm); 2042 pmd_write_unlock(pmd); 2043 } 2044 2045 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd) 2046 { 2047 pmd_write_lock_in_core(pmd); 2048 dm_bm_set_read_write(pmd->bm); 2049 pmd_write_unlock(pmd); 2050 } 2051 2052 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd, 2053 dm_block_t threshold, 2054 dm_sm_threshold_fn fn, 2055 void *context) 2056 { 2057 int r; 2058 2059 pmd_write_lock_in_core(pmd); 2060 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context); 2061 pmd_write_unlock(pmd); 2062 2063 return r; 2064 } 2065 2066 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd, 2067 dm_pool_pre_commit_fn fn, 2068 void *context) 2069 { 2070 pmd_write_lock_in_core(pmd); 2071 pmd->pre_commit_fn = fn; 2072 pmd->pre_commit_context = context; 2073 pmd_write_unlock(pmd); 2074 } 2075 2076 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd) 2077 { 2078 int r = -EINVAL; 2079 struct dm_block *sblock; 2080 struct thin_disk_superblock *disk_super; 2081 2082 pmd_write_lock(pmd); 2083 if (pmd->fail_io) 2084 goto out; 2085 2086 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG; 2087 2088 r = superblock_lock(pmd, &sblock); 2089 if (r) { 2090 DMERR("couldn't lock superblock"); 2091 goto out; 2092 } 2093 2094 disk_super = dm_block_data(sblock); 2095 disk_super->flags = cpu_to_le32(pmd->flags); 2096 2097 dm_bm_unlock(sblock); 2098 out: 2099 pmd_write_unlock(pmd); 2100 return r; 2101 } 2102 2103 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd) 2104 { 2105 bool needs_check; 2106 2107 down_read(&pmd->root_lock); 2108 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG; 2109 up_read(&pmd->root_lock); 2110 2111 return needs_check; 2112 } 2113 2114 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd) 2115 { 2116 down_read(&pmd->root_lock); 2117 if (!pmd->fail_io) 2118 dm_tm_issue_prefetches(pmd->tm); 2119 up_read(&pmd->root_lock); 2120 } 2121