xref: /openbmc/linux/drivers/md/dm-thin-metadata.c (revision 2c55d703391acf7e9101da596d0c15ee03b318a3)
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 40
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX   "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81 
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91 
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94 
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99 	__le32 csum;	/* Checksum of superblock except for this field. */
100 	__le32 flags;
101 	__le64 blocknr;	/* This block number, dm_block_t. */
102 
103 	__u8 uuid[16];
104 	__le64 magic;
105 	__le32 version;
106 	__le32 time;
107 
108 	__le64 trans_id;
109 
110 	/*
111 	 * Root held by userspace transactions.
112 	 */
113 	__le64 held_root;
114 
115 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117 
118 	/*
119 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 	 */
121 	__le64 data_mapping_root;
122 
123 	/*
124 	 * Device detail root mapping dev_id -> device_details
125 	 */
126 	__le64 device_details_root;
127 
128 	__le32 data_block_size;		/* In 512-byte sectors. */
129 
130 	__le32 metadata_block_size;	/* In 512-byte sectors. */
131 	__le64 metadata_nr_blocks;
132 
133 	__le32 compat_flags;
134 	__le32 compat_ro_flags;
135 	__le32 incompat_flags;
136 } __packed;
137 
138 struct disk_device_details {
139 	__le64 mapped_blocks;
140 	__le64 transaction_id;		/* When created. */
141 	__le32 creation_time;
142 	__le32 snapshotted_time;
143 } __packed;
144 
145 struct dm_pool_metadata {
146 	struct hlist_node hash;
147 
148 	struct block_device *bdev;
149 	struct dm_block_manager *bm;
150 	struct dm_space_map *metadata_sm;
151 	struct dm_space_map *data_sm;
152 	struct dm_transaction_manager *tm;
153 	struct dm_transaction_manager *nb_tm;
154 
155 	/*
156 	 * Two-level btree.
157 	 * First level holds thin_dev_t.
158 	 * Second level holds mappings.
159 	 */
160 	struct dm_btree_info info;
161 
162 	/*
163 	 * Non-blocking version of the above.
164 	 */
165 	struct dm_btree_info nb_info;
166 
167 	/*
168 	 * Just the top level for deleting whole devices.
169 	 */
170 	struct dm_btree_info tl_info;
171 
172 	/*
173 	 * Just the bottom level for creating new devices.
174 	 */
175 	struct dm_btree_info bl_info;
176 
177 	/*
178 	 * Describes the device details btree.
179 	 */
180 	struct dm_btree_info details_info;
181 
182 	struct rw_semaphore root_lock;
183 	uint32_t time;
184 	dm_block_t root;
185 	dm_block_t details_root;
186 	struct list_head thin_devices;
187 	uint64_t trans_id;
188 	unsigned long flags;
189 	sector_t data_block_size;
190 
191 	/*
192 	 * Pre-commit callback.
193 	 *
194 	 * This allows the thin provisioning target to run a callback before
195 	 * the metadata are committed.
196 	 */
197 	dm_pool_pre_commit_fn pre_commit_fn;
198 	void *pre_commit_context;
199 
200 	/*
201 	 * We reserve a section of the metadata for commit overhead.
202 	 * All reported space does *not* include this.
203 	 */
204 	dm_block_t metadata_reserve;
205 
206 	/*
207 	 * Set if a transaction has to be aborted but the attempt to roll back
208 	 * to the previous (good) transaction failed.  The only pool metadata
209 	 * operation possible in this state is the closing of the device.
210 	 */
211 	bool fail_io:1;
212 
213 	/*
214 	 * Set once a thin-pool has been accessed through one of the interfaces
215 	 * that imply the pool is in-service (e.g. thin devices created/deleted,
216 	 * thin-pool message, metadata snapshots, etc).
217 	 */
218 	bool in_service:1;
219 
220 	/*
221 	 * Reading the space map roots can fail, so we read it into these
222 	 * buffers before the superblock is locked and updated.
223 	 */
224 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
226 };
227 
228 struct dm_thin_device {
229 	struct list_head list;
230 	struct dm_pool_metadata *pmd;
231 	dm_thin_id id;
232 
233 	int open_count;
234 	bool changed:1;
235 	bool aborted_with_changes:1;
236 	uint64_t mapped_blocks;
237 	uint64_t transaction_id;
238 	uint32_t creation_time;
239 	uint32_t snapshotted_time;
240 };
241 
242 /*----------------------------------------------------------------
243  * superblock validator
244  *--------------------------------------------------------------*/
245 
246 #define SUPERBLOCK_CSUM_XOR 160774
247 
248 static void sb_prepare_for_write(struct dm_block_validator *v,
249 				 struct dm_block *b,
250 				 size_t block_size)
251 {
252 	struct thin_disk_superblock *disk_super = dm_block_data(b);
253 
254 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256 						      block_size - sizeof(__le32),
257 						      SUPERBLOCK_CSUM_XOR));
258 }
259 
260 static int sb_check(struct dm_block_validator *v,
261 		    struct dm_block *b,
262 		    size_t block_size)
263 {
264 	struct thin_disk_superblock *disk_super = dm_block_data(b);
265 	__le32 csum_le;
266 
267 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268 		DMERR("sb_check failed: blocknr %llu: "
269 		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
270 		      (unsigned long long)dm_block_location(b));
271 		return -ENOTBLK;
272 	}
273 
274 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275 		DMERR("sb_check failed: magic %llu: "
276 		      "wanted %llu", le64_to_cpu(disk_super->magic),
277 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
278 		return -EILSEQ;
279 	}
280 
281 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282 					     block_size - sizeof(__le32),
283 					     SUPERBLOCK_CSUM_XOR));
284 	if (csum_le != disk_super->csum) {
285 		DMERR("sb_check failed: csum %u: wanted %u",
286 		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
287 		return -EILSEQ;
288 	}
289 
290 	return 0;
291 }
292 
293 static struct dm_block_validator sb_validator = {
294 	.name = "superblock",
295 	.prepare_for_write = sb_prepare_for_write,
296 	.check = sb_check
297 };
298 
299 /*----------------------------------------------------------------
300  * Methods for the btree value types
301  *--------------------------------------------------------------*/
302 
303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
304 {
305 	return (b << 24) | t;
306 }
307 
308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
309 {
310 	*b = v >> 24;
311 	*t = v & ((1 << 24) - 1);
312 }
313 
314 /*
315  * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as
316  * possible.  'with_runs' reads contiguous runs of blocks, and calls the
317  * given sm function.
318  */
319 typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t);
320 
321 static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned count, run_fn fn)
322 {
323 	uint64_t b, begin, end;
324 	uint32_t t;
325 	bool in_run = false;
326 	unsigned i;
327 
328 	for (i = 0; i < count; i++, value_le++) {
329 		/* We know value_le is 8 byte aligned */
330 		unpack_block_time(le64_to_cpu(*value_le), &b, &t);
331 
332 		if (in_run) {
333 			if (b == end) {
334 				end++;
335 			} else {
336 				fn(sm, begin, end);
337 				begin = b;
338 				end = b + 1;
339 			}
340 		} else {
341 			in_run = true;
342 			begin = b;
343 			end = b + 1;
344 		}
345 	}
346 
347 	if (in_run)
348 		fn(sm, begin, end);
349 }
350 
351 static void data_block_inc(void *context, const void *value_le, unsigned count)
352 {
353 	with_runs((struct dm_space_map *) context,
354 		  (const __le64 *) value_le, count, dm_sm_inc_blocks);
355 }
356 
357 static void data_block_dec(void *context, const void *value_le, unsigned count)
358 {
359 	with_runs((struct dm_space_map *) context,
360 		  (const __le64 *) value_le, count, dm_sm_dec_blocks);
361 }
362 
363 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
364 {
365 	__le64 v1_le, v2_le;
366 	uint64_t b1, b2;
367 	uint32_t t;
368 
369 	memcpy(&v1_le, value1_le, sizeof(v1_le));
370 	memcpy(&v2_le, value2_le, sizeof(v2_le));
371 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
372 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
373 
374 	return b1 == b2;
375 }
376 
377 static void subtree_inc(void *context, const void *value, unsigned count)
378 {
379 	struct dm_btree_info *info = context;
380 	const __le64 *root_le = value;
381 	unsigned i;
382 
383 	for (i = 0; i < count; i++, root_le++)
384 		dm_tm_inc(info->tm, le64_to_cpu(*root_le));
385 }
386 
387 static void subtree_dec(void *context, const void *value, unsigned count)
388 {
389 	struct dm_btree_info *info = context;
390 	const __le64 *root_le = value;
391 	unsigned i;
392 
393 	for (i = 0; i < count; i++, root_le++)
394 		if (dm_btree_del(info, le64_to_cpu(*root_le)))
395 			DMERR("btree delete failed");
396 }
397 
398 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
399 {
400 	__le64 v1_le, v2_le;
401 	memcpy(&v1_le, value1_le, sizeof(v1_le));
402 	memcpy(&v2_le, value2_le, sizeof(v2_le));
403 
404 	return v1_le == v2_le;
405 }
406 
407 /*----------------------------------------------------------------*/
408 
409 /*
410  * Variant that is used for in-core only changes or code that
411  * shouldn't put the pool in service on its own (e.g. commit).
412  */
413 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
414 	__acquires(pmd->root_lock)
415 {
416 	down_write(&pmd->root_lock);
417 }
418 
419 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
420 {
421 	pmd_write_lock_in_core(pmd);
422 	if (unlikely(!pmd->in_service))
423 		pmd->in_service = true;
424 }
425 
426 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
427 	__releases(pmd->root_lock)
428 {
429 	up_write(&pmd->root_lock);
430 }
431 
432 /*----------------------------------------------------------------*/
433 
434 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
435 				struct dm_block **sblock)
436 {
437 	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
438 				     &sb_validator, sblock);
439 }
440 
441 static int superblock_lock(struct dm_pool_metadata *pmd,
442 			   struct dm_block **sblock)
443 {
444 	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
445 				&sb_validator, sblock);
446 }
447 
448 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
449 {
450 	int r;
451 	unsigned i;
452 	struct dm_block *b;
453 	__le64 *data_le, zero = cpu_to_le64(0);
454 	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
455 
456 	/*
457 	 * We can't use a validator here - it may be all zeroes.
458 	 */
459 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
460 	if (r)
461 		return r;
462 
463 	data_le = dm_block_data(b);
464 	*result = 1;
465 	for (i = 0; i < block_size; i++) {
466 		if (data_le[i] != zero) {
467 			*result = 0;
468 			break;
469 		}
470 	}
471 
472 	dm_bm_unlock(b);
473 
474 	return 0;
475 }
476 
477 static void __setup_btree_details(struct dm_pool_metadata *pmd)
478 {
479 	pmd->info.tm = pmd->tm;
480 	pmd->info.levels = 2;
481 	pmd->info.value_type.context = pmd->data_sm;
482 	pmd->info.value_type.size = sizeof(__le64);
483 	pmd->info.value_type.inc = data_block_inc;
484 	pmd->info.value_type.dec = data_block_dec;
485 	pmd->info.value_type.equal = data_block_equal;
486 
487 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
488 	pmd->nb_info.tm = pmd->nb_tm;
489 
490 	pmd->tl_info.tm = pmd->tm;
491 	pmd->tl_info.levels = 1;
492 	pmd->tl_info.value_type.context = &pmd->bl_info;
493 	pmd->tl_info.value_type.size = sizeof(__le64);
494 	pmd->tl_info.value_type.inc = subtree_inc;
495 	pmd->tl_info.value_type.dec = subtree_dec;
496 	pmd->tl_info.value_type.equal = subtree_equal;
497 
498 	pmd->bl_info.tm = pmd->tm;
499 	pmd->bl_info.levels = 1;
500 	pmd->bl_info.value_type.context = pmd->data_sm;
501 	pmd->bl_info.value_type.size = sizeof(__le64);
502 	pmd->bl_info.value_type.inc = data_block_inc;
503 	pmd->bl_info.value_type.dec = data_block_dec;
504 	pmd->bl_info.value_type.equal = data_block_equal;
505 
506 	pmd->details_info.tm = pmd->tm;
507 	pmd->details_info.levels = 1;
508 	pmd->details_info.value_type.context = NULL;
509 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
510 	pmd->details_info.value_type.inc = NULL;
511 	pmd->details_info.value_type.dec = NULL;
512 	pmd->details_info.value_type.equal = NULL;
513 }
514 
515 static int save_sm_roots(struct dm_pool_metadata *pmd)
516 {
517 	int r;
518 	size_t len;
519 
520 	r = dm_sm_root_size(pmd->metadata_sm, &len);
521 	if (r < 0)
522 		return r;
523 
524 	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
525 	if (r < 0)
526 		return r;
527 
528 	r = dm_sm_root_size(pmd->data_sm, &len);
529 	if (r < 0)
530 		return r;
531 
532 	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
533 }
534 
535 static void copy_sm_roots(struct dm_pool_metadata *pmd,
536 			  struct thin_disk_superblock *disk)
537 {
538 	memcpy(&disk->metadata_space_map_root,
539 	       &pmd->metadata_space_map_root,
540 	       sizeof(pmd->metadata_space_map_root));
541 
542 	memcpy(&disk->data_space_map_root,
543 	       &pmd->data_space_map_root,
544 	       sizeof(pmd->data_space_map_root));
545 }
546 
547 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
548 {
549 	int r;
550 	struct dm_block *sblock;
551 	struct thin_disk_superblock *disk_super;
552 	sector_t bdev_size = bdev_nr_sectors(pmd->bdev);
553 
554 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
555 		bdev_size = THIN_METADATA_MAX_SECTORS;
556 
557 	r = dm_sm_commit(pmd->data_sm);
558 	if (r < 0)
559 		return r;
560 
561 	r = dm_tm_pre_commit(pmd->tm);
562 	if (r < 0)
563 		return r;
564 
565 	r = save_sm_roots(pmd);
566 	if (r < 0)
567 		return r;
568 
569 	r = superblock_lock_zero(pmd, &sblock);
570 	if (r)
571 		return r;
572 
573 	disk_super = dm_block_data(sblock);
574 	disk_super->flags = 0;
575 	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
576 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
577 	disk_super->version = cpu_to_le32(THIN_VERSION);
578 	disk_super->time = 0;
579 	disk_super->trans_id = 0;
580 	disk_super->held_root = 0;
581 
582 	copy_sm_roots(pmd, disk_super);
583 
584 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
585 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
586 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
587 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
588 	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
589 
590 	return dm_tm_commit(pmd->tm, sblock);
591 }
592 
593 static int __format_metadata(struct dm_pool_metadata *pmd)
594 {
595 	int r;
596 
597 	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
598 				 &pmd->tm, &pmd->metadata_sm);
599 	if (r < 0) {
600 		DMERR("tm_create_with_sm failed");
601 		return r;
602 	}
603 
604 	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
605 	if (IS_ERR(pmd->data_sm)) {
606 		DMERR("sm_disk_create failed");
607 		r = PTR_ERR(pmd->data_sm);
608 		goto bad_cleanup_tm;
609 	}
610 
611 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
612 	if (!pmd->nb_tm) {
613 		DMERR("could not create non-blocking clone tm");
614 		r = -ENOMEM;
615 		goto bad_cleanup_data_sm;
616 	}
617 
618 	__setup_btree_details(pmd);
619 
620 	r = dm_btree_empty(&pmd->info, &pmd->root);
621 	if (r < 0)
622 		goto bad_cleanup_nb_tm;
623 
624 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
625 	if (r < 0) {
626 		DMERR("couldn't create devices root");
627 		goto bad_cleanup_nb_tm;
628 	}
629 
630 	r = __write_initial_superblock(pmd);
631 	if (r)
632 		goto bad_cleanup_nb_tm;
633 
634 	return 0;
635 
636 bad_cleanup_nb_tm:
637 	dm_tm_destroy(pmd->nb_tm);
638 bad_cleanup_data_sm:
639 	dm_sm_destroy(pmd->data_sm);
640 bad_cleanup_tm:
641 	dm_tm_destroy(pmd->tm);
642 	dm_sm_destroy(pmd->metadata_sm);
643 
644 	return r;
645 }
646 
647 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
648 				     struct dm_pool_metadata *pmd)
649 {
650 	uint32_t features;
651 
652 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
653 	if (features) {
654 		DMERR("could not access metadata due to unsupported optional features (%lx).",
655 		      (unsigned long)features);
656 		return -EINVAL;
657 	}
658 
659 	/*
660 	 * Check for read-only metadata to skip the following RDWR checks.
661 	 */
662 	if (bdev_read_only(pmd->bdev))
663 		return 0;
664 
665 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
666 	if (features) {
667 		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
668 		      (unsigned long)features);
669 		return -EINVAL;
670 	}
671 
672 	return 0;
673 }
674 
675 static int __open_metadata(struct dm_pool_metadata *pmd)
676 {
677 	int r;
678 	struct dm_block *sblock;
679 	struct thin_disk_superblock *disk_super;
680 
681 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
682 			    &sb_validator, &sblock);
683 	if (r < 0) {
684 		DMERR("couldn't read superblock");
685 		return r;
686 	}
687 
688 	disk_super = dm_block_data(sblock);
689 
690 	/* Verify the data block size hasn't changed */
691 	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
692 		DMERR("changing the data block size (from %u to %llu) is not supported",
693 		      le32_to_cpu(disk_super->data_block_size),
694 		      (unsigned long long)pmd->data_block_size);
695 		r = -EINVAL;
696 		goto bad_unlock_sblock;
697 	}
698 
699 	r = __check_incompat_features(disk_super, pmd);
700 	if (r < 0)
701 		goto bad_unlock_sblock;
702 
703 	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
704 			       disk_super->metadata_space_map_root,
705 			       sizeof(disk_super->metadata_space_map_root),
706 			       &pmd->tm, &pmd->metadata_sm);
707 	if (r < 0) {
708 		DMERR("tm_open_with_sm failed");
709 		goto bad_unlock_sblock;
710 	}
711 
712 	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
713 				       sizeof(disk_super->data_space_map_root));
714 	if (IS_ERR(pmd->data_sm)) {
715 		DMERR("sm_disk_open failed");
716 		r = PTR_ERR(pmd->data_sm);
717 		goto bad_cleanup_tm;
718 	}
719 
720 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
721 	if (!pmd->nb_tm) {
722 		DMERR("could not create non-blocking clone tm");
723 		r = -ENOMEM;
724 		goto bad_cleanup_data_sm;
725 	}
726 
727 	/*
728 	 * For pool metadata opening process, root setting is redundant
729 	 * because it will be set again in __begin_transaction(). But dm
730 	 * pool aborting process really needs to get last transaction's
731 	 * root to avoid accessing broken btree.
732 	 */
733 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
734 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
735 
736 	__setup_btree_details(pmd);
737 	dm_bm_unlock(sblock);
738 
739 	return 0;
740 
741 bad_cleanup_data_sm:
742 	dm_sm_destroy(pmd->data_sm);
743 bad_cleanup_tm:
744 	dm_tm_destroy(pmd->tm);
745 	dm_sm_destroy(pmd->metadata_sm);
746 bad_unlock_sblock:
747 	dm_bm_unlock(sblock);
748 
749 	return r;
750 }
751 
752 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
753 {
754 	int r, unformatted;
755 
756 	r = __superblock_all_zeroes(pmd->bm, &unformatted);
757 	if (r)
758 		return r;
759 
760 	if (unformatted)
761 		return format_device ? __format_metadata(pmd) : -EPERM;
762 
763 	return __open_metadata(pmd);
764 }
765 
766 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
767 {
768 	int r;
769 
770 	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
771 					  THIN_MAX_CONCURRENT_LOCKS);
772 	if (IS_ERR(pmd->bm)) {
773 		DMERR("could not create block manager");
774 		r = PTR_ERR(pmd->bm);
775 		pmd->bm = NULL;
776 		return r;
777 	}
778 
779 	r = __open_or_format_metadata(pmd, format_device);
780 	if (r) {
781 		dm_block_manager_destroy(pmd->bm);
782 		pmd->bm = NULL;
783 	}
784 
785 	return r;
786 }
787 
788 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd,
789 					      bool destroy_bm)
790 {
791 	dm_sm_destroy(pmd->data_sm);
792 	dm_sm_destroy(pmd->metadata_sm);
793 	dm_tm_destroy(pmd->nb_tm);
794 	dm_tm_destroy(pmd->tm);
795 	if (destroy_bm)
796 		dm_block_manager_destroy(pmd->bm);
797 }
798 
799 static int __begin_transaction(struct dm_pool_metadata *pmd)
800 {
801 	int r;
802 	struct thin_disk_superblock *disk_super;
803 	struct dm_block *sblock;
804 
805 	/*
806 	 * We re-read the superblock every time.  Shouldn't need to do this
807 	 * really.
808 	 */
809 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
810 			    &sb_validator, &sblock);
811 	if (r)
812 		return r;
813 
814 	disk_super = dm_block_data(sblock);
815 	pmd->time = le32_to_cpu(disk_super->time);
816 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
817 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
818 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
819 	pmd->flags = le32_to_cpu(disk_super->flags);
820 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
821 
822 	dm_bm_unlock(sblock);
823 	return 0;
824 }
825 
826 static int __write_changed_details(struct dm_pool_metadata *pmd)
827 {
828 	int r;
829 	struct dm_thin_device *td, *tmp;
830 	struct disk_device_details details;
831 	uint64_t key;
832 
833 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
834 		if (!td->changed)
835 			continue;
836 
837 		key = td->id;
838 
839 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
840 		details.transaction_id = cpu_to_le64(td->transaction_id);
841 		details.creation_time = cpu_to_le32(td->creation_time);
842 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
843 		__dm_bless_for_disk(&details);
844 
845 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
846 				    &key, &details, &pmd->details_root);
847 		if (r)
848 			return r;
849 
850 		if (td->open_count)
851 			td->changed = false;
852 		else {
853 			list_del(&td->list);
854 			kfree(td);
855 		}
856 	}
857 
858 	return 0;
859 }
860 
861 static int __commit_transaction(struct dm_pool_metadata *pmd)
862 {
863 	int r;
864 	struct thin_disk_superblock *disk_super;
865 	struct dm_block *sblock;
866 
867 	/*
868 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
869 	 */
870 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
871 	BUG_ON(!rwsem_is_locked(&pmd->root_lock));
872 
873 	if (unlikely(!pmd->in_service))
874 		return 0;
875 
876 	if (pmd->pre_commit_fn) {
877 		r = pmd->pre_commit_fn(pmd->pre_commit_context);
878 		if (r < 0) {
879 			DMERR("pre-commit callback failed");
880 			return r;
881 		}
882 	}
883 
884 	r = __write_changed_details(pmd);
885 	if (r < 0)
886 		return r;
887 
888 	r = dm_sm_commit(pmd->data_sm);
889 	if (r < 0)
890 		return r;
891 
892 	r = dm_tm_pre_commit(pmd->tm);
893 	if (r < 0)
894 		return r;
895 
896 	r = save_sm_roots(pmd);
897 	if (r < 0)
898 		return r;
899 
900 	r = superblock_lock(pmd, &sblock);
901 	if (r)
902 		return r;
903 
904 	disk_super = dm_block_data(sblock);
905 	disk_super->time = cpu_to_le32(pmd->time);
906 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
907 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
908 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
909 	disk_super->flags = cpu_to_le32(pmd->flags);
910 
911 	copy_sm_roots(pmd, disk_super);
912 
913 	return dm_tm_commit(pmd->tm, sblock);
914 }
915 
916 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
917 {
918 	int r;
919 	dm_block_t total;
920 	dm_block_t max_blocks = 4096; /* 16M */
921 
922 	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
923 	if (r) {
924 		DMERR("could not get size of metadata device");
925 		pmd->metadata_reserve = max_blocks;
926 	} else
927 		pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
928 }
929 
930 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
931 					       sector_t data_block_size,
932 					       bool format_device)
933 {
934 	int r;
935 	struct dm_pool_metadata *pmd;
936 
937 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
938 	if (!pmd) {
939 		DMERR("could not allocate metadata struct");
940 		return ERR_PTR(-ENOMEM);
941 	}
942 
943 	init_rwsem(&pmd->root_lock);
944 	pmd->time = 0;
945 	INIT_LIST_HEAD(&pmd->thin_devices);
946 	pmd->fail_io = false;
947 	pmd->in_service = false;
948 	pmd->bdev = bdev;
949 	pmd->data_block_size = data_block_size;
950 	pmd->pre_commit_fn = NULL;
951 	pmd->pre_commit_context = NULL;
952 
953 	r = __create_persistent_data_objects(pmd, format_device);
954 	if (r) {
955 		kfree(pmd);
956 		return ERR_PTR(r);
957 	}
958 
959 	r = __begin_transaction(pmd);
960 	if (r < 0) {
961 		if (dm_pool_metadata_close(pmd) < 0)
962 			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
963 		return ERR_PTR(r);
964 	}
965 
966 	__set_metadata_reserve(pmd);
967 
968 	return pmd;
969 }
970 
971 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
972 {
973 	int r;
974 	unsigned open_devices = 0;
975 	struct dm_thin_device *td, *tmp;
976 
977 	down_read(&pmd->root_lock);
978 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
979 		if (td->open_count)
980 			open_devices++;
981 		else {
982 			list_del(&td->list);
983 			kfree(td);
984 		}
985 	}
986 	up_read(&pmd->root_lock);
987 
988 	if (open_devices) {
989 		DMERR("attempt to close pmd when %u device(s) are still open",
990 		       open_devices);
991 		return -EBUSY;
992 	}
993 
994 	pmd_write_lock_in_core(pmd);
995 	if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
996 		r = __commit_transaction(pmd);
997 		if (r < 0)
998 			DMWARN("%s: __commit_transaction() failed, error = %d",
999 			       __func__, r);
1000 	}
1001 	pmd_write_unlock(pmd);
1002 	if (!pmd->fail_io)
1003 		__destroy_persistent_data_objects(pmd, true);
1004 
1005 	kfree(pmd);
1006 	return 0;
1007 }
1008 
1009 /*
1010  * __open_device: Returns @td corresponding to device with id @dev,
1011  * creating it if @create is set and incrementing @td->open_count.
1012  * On failure, @td is undefined.
1013  */
1014 static int __open_device(struct dm_pool_metadata *pmd,
1015 			 dm_thin_id dev, int create,
1016 			 struct dm_thin_device **td)
1017 {
1018 	int r, changed = 0;
1019 	struct dm_thin_device *td2;
1020 	uint64_t key = dev;
1021 	struct disk_device_details details_le;
1022 
1023 	/*
1024 	 * If the device is already open, return it.
1025 	 */
1026 	list_for_each_entry(td2, &pmd->thin_devices, list)
1027 		if (td2->id == dev) {
1028 			/*
1029 			 * May not create an already-open device.
1030 			 */
1031 			if (create)
1032 				return -EEXIST;
1033 
1034 			td2->open_count++;
1035 			*td = td2;
1036 			return 0;
1037 		}
1038 
1039 	/*
1040 	 * Check the device exists.
1041 	 */
1042 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1043 			    &key, &details_le);
1044 	if (r) {
1045 		if (r != -ENODATA || !create)
1046 			return r;
1047 
1048 		/*
1049 		 * Create new device.
1050 		 */
1051 		changed = 1;
1052 		details_le.mapped_blocks = 0;
1053 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1054 		details_le.creation_time = cpu_to_le32(pmd->time);
1055 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
1056 	}
1057 
1058 	*td = kmalloc(sizeof(**td), GFP_NOIO);
1059 	if (!*td)
1060 		return -ENOMEM;
1061 
1062 	(*td)->pmd = pmd;
1063 	(*td)->id = dev;
1064 	(*td)->open_count = 1;
1065 	(*td)->changed = changed;
1066 	(*td)->aborted_with_changes = false;
1067 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1068 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1069 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
1070 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1071 
1072 	list_add(&(*td)->list, &pmd->thin_devices);
1073 
1074 	return 0;
1075 }
1076 
1077 static void __close_device(struct dm_thin_device *td)
1078 {
1079 	--td->open_count;
1080 }
1081 
1082 static int __create_thin(struct dm_pool_metadata *pmd,
1083 			 dm_thin_id dev)
1084 {
1085 	int r;
1086 	dm_block_t dev_root;
1087 	uint64_t key = dev;
1088 	struct dm_thin_device *td;
1089 	__le64 value;
1090 
1091 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1092 			    &key, NULL);
1093 	if (!r)
1094 		return -EEXIST;
1095 
1096 	/*
1097 	 * Create an empty btree for the mappings.
1098 	 */
1099 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1100 	if (r)
1101 		return r;
1102 
1103 	/*
1104 	 * Insert it into the main mapping tree.
1105 	 */
1106 	value = cpu_to_le64(dev_root);
1107 	__dm_bless_for_disk(&value);
1108 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1109 	if (r) {
1110 		dm_btree_del(&pmd->bl_info, dev_root);
1111 		return r;
1112 	}
1113 
1114 	r = __open_device(pmd, dev, 1, &td);
1115 	if (r) {
1116 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1117 		dm_btree_del(&pmd->bl_info, dev_root);
1118 		return r;
1119 	}
1120 	__close_device(td);
1121 
1122 	return r;
1123 }
1124 
1125 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1126 {
1127 	int r = -EINVAL;
1128 
1129 	pmd_write_lock(pmd);
1130 	if (!pmd->fail_io)
1131 		r = __create_thin(pmd, dev);
1132 	pmd_write_unlock(pmd);
1133 
1134 	return r;
1135 }
1136 
1137 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1138 				  struct dm_thin_device *snap,
1139 				  dm_thin_id origin, uint32_t time)
1140 {
1141 	int r;
1142 	struct dm_thin_device *td;
1143 
1144 	r = __open_device(pmd, origin, 0, &td);
1145 	if (r)
1146 		return r;
1147 
1148 	td->changed = true;
1149 	td->snapshotted_time = time;
1150 
1151 	snap->mapped_blocks = td->mapped_blocks;
1152 	snap->snapshotted_time = time;
1153 	__close_device(td);
1154 
1155 	return 0;
1156 }
1157 
1158 static int __create_snap(struct dm_pool_metadata *pmd,
1159 			 dm_thin_id dev, dm_thin_id origin)
1160 {
1161 	int r;
1162 	dm_block_t origin_root;
1163 	uint64_t key = origin, dev_key = dev;
1164 	struct dm_thin_device *td;
1165 	__le64 value;
1166 
1167 	/* check this device is unused */
1168 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1169 			    &dev_key, NULL);
1170 	if (!r)
1171 		return -EEXIST;
1172 
1173 	/* find the mapping tree for the origin */
1174 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1175 	if (r)
1176 		return r;
1177 	origin_root = le64_to_cpu(value);
1178 
1179 	/* clone the origin, an inc will do */
1180 	dm_tm_inc(pmd->tm, origin_root);
1181 
1182 	/* insert into the main mapping tree */
1183 	value = cpu_to_le64(origin_root);
1184 	__dm_bless_for_disk(&value);
1185 	key = dev;
1186 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1187 	if (r) {
1188 		dm_tm_dec(pmd->tm, origin_root);
1189 		return r;
1190 	}
1191 
1192 	pmd->time++;
1193 
1194 	r = __open_device(pmd, dev, 1, &td);
1195 	if (r)
1196 		goto bad;
1197 
1198 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1199 	__close_device(td);
1200 
1201 	if (r)
1202 		goto bad;
1203 
1204 	return 0;
1205 
1206 bad:
1207 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1208 	dm_btree_remove(&pmd->details_info, pmd->details_root,
1209 			&key, &pmd->details_root);
1210 	return r;
1211 }
1212 
1213 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1214 				 dm_thin_id dev,
1215 				 dm_thin_id origin)
1216 {
1217 	int r = -EINVAL;
1218 
1219 	pmd_write_lock(pmd);
1220 	if (!pmd->fail_io)
1221 		r = __create_snap(pmd, dev, origin);
1222 	pmd_write_unlock(pmd);
1223 
1224 	return r;
1225 }
1226 
1227 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1228 {
1229 	int r;
1230 	uint64_t key = dev;
1231 	struct dm_thin_device *td;
1232 
1233 	/* TODO: failure should mark the transaction invalid */
1234 	r = __open_device(pmd, dev, 0, &td);
1235 	if (r)
1236 		return r;
1237 
1238 	if (td->open_count > 1) {
1239 		__close_device(td);
1240 		return -EBUSY;
1241 	}
1242 
1243 	list_del(&td->list);
1244 	kfree(td);
1245 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1246 			    &key, &pmd->details_root);
1247 	if (r)
1248 		return r;
1249 
1250 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1251 	if (r)
1252 		return r;
1253 
1254 	return 0;
1255 }
1256 
1257 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1258 			       dm_thin_id dev)
1259 {
1260 	int r = -EINVAL;
1261 
1262 	pmd_write_lock(pmd);
1263 	if (!pmd->fail_io)
1264 		r = __delete_device(pmd, dev);
1265 	pmd_write_unlock(pmd);
1266 
1267 	return r;
1268 }
1269 
1270 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1271 					uint64_t current_id,
1272 					uint64_t new_id)
1273 {
1274 	int r = -EINVAL;
1275 
1276 	pmd_write_lock(pmd);
1277 
1278 	if (pmd->fail_io)
1279 		goto out;
1280 
1281 	if (pmd->trans_id != current_id) {
1282 		DMERR("mismatched transaction id");
1283 		goto out;
1284 	}
1285 
1286 	pmd->trans_id = new_id;
1287 	r = 0;
1288 
1289 out:
1290 	pmd_write_unlock(pmd);
1291 
1292 	return r;
1293 }
1294 
1295 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1296 					uint64_t *result)
1297 {
1298 	int r = -EINVAL;
1299 
1300 	down_read(&pmd->root_lock);
1301 	if (!pmd->fail_io) {
1302 		*result = pmd->trans_id;
1303 		r = 0;
1304 	}
1305 	up_read(&pmd->root_lock);
1306 
1307 	return r;
1308 }
1309 
1310 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1311 {
1312 	int r, inc;
1313 	struct thin_disk_superblock *disk_super;
1314 	struct dm_block *copy, *sblock;
1315 	dm_block_t held_root;
1316 
1317 	/*
1318 	 * We commit to ensure the btree roots which we increment in a
1319 	 * moment are up to date.
1320 	 */
1321 	r = __commit_transaction(pmd);
1322 	if (r < 0) {
1323 		DMWARN("%s: __commit_transaction() failed, error = %d",
1324 		       __func__, r);
1325 		return r;
1326 	}
1327 
1328 	/*
1329 	 * Copy the superblock.
1330 	 */
1331 	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1332 	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1333 			       &sb_validator, &copy, &inc);
1334 	if (r)
1335 		return r;
1336 
1337 	BUG_ON(!inc);
1338 
1339 	held_root = dm_block_location(copy);
1340 	disk_super = dm_block_data(copy);
1341 
1342 	if (le64_to_cpu(disk_super->held_root)) {
1343 		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1344 
1345 		dm_tm_dec(pmd->tm, held_root);
1346 		dm_tm_unlock(pmd->tm, copy);
1347 		return -EBUSY;
1348 	}
1349 
1350 	/*
1351 	 * Wipe the spacemap since we're not publishing this.
1352 	 */
1353 	memset(&disk_super->data_space_map_root, 0,
1354 	       sizeof(disk_super->data_space_map_root));
1355 	memset(&disk_super->metadata_space_map_root, 0,
1356 	       sizeof(disk_super->metadata_space_map_root));
1357 
1358 	/*
1359 	 * Increment the data structures that need to be preserved.
1360 	 */
1361 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1362 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1363 	dm_tm_unlock(pmd->tm, copy);
1364 
1365 	/*
1366 	 * Write the held root into the superblock.
1367 	 */
1368 	r = superblock_lock(pmd, &sblock);
1369 	if (r) {
1370 		dm_tm_dec(pmd->tm, held_root);
1371 		return r;
1372 	}
1373 
1374 	disk_super = dm_block_data(sblock);
1375 	disk_super->held_root = cpu_to_le64(held_root);
1376 	dm_bm_unlock(sblock);
1377 	return 0;
1378 }
1379 
1380 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1381 {
1382 	int r = -EINVAL;
1383 
1384 	pmd_write_lock(pmd);
1385 	if (!pmd->fail_io)
1386 		r = __reserve_metadata_snap(pmd);
1387 	pmd_write_unlock(pmd);
1388 
1389 	return r;
1390 }
1391 
1392 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1393 {
1394 	int r;
1395 	struct thin_disk_superblock *disk_super;
1396 	struct dm_block *sblock, *copy;
1397 	dm_block_t held_root;
1398 
1399 	r = superblock_lock(pmd, &sblock);
1400 	if (r)
1401 		return r;
1402 
1403 	disk_super = dm_block_data(sblock);
1404 	held_root = le64_to_cpu(disk_super->held_root);
1405 	disk_super->held_root = cpu_to_le64(0);
1406 
1407 	dm_bm_unlock(sblock);
1408 
1409 	if (!held_root) {
1410 		DMWARN("No pool metadata snapshot found: nothing to release.");
1411 		return -EINVAL;
1412 	}
1413 
1414 	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1415 	if (r)
1416 		return r;
1417 
1418 	disk_super = dm_block_data(copy);
1419 	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1420 	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1421 	dm_sm_dec_block(pmd->metadata_sm, held_root);
1422 
1423 	dm_tm_unlock(pmd->tm, copy);
1424 
1425 	return 0;
1426 }
1427 
1428 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1429 {
1430 	int r = -EINVAL;
1431 
1432 	pmd_write_lock(pmd);
1433 	if (!pmd->fail_io)
1434 		r = __release_metadata_snap(pmd);
1435 	pmd_write_unlock(pmd);
1436 
1437 	return r;
1438 }
1439 
1440 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1441 			       dm_block_t *result)
1442 {
1443 	int r;
1444 	struct thin_disk_superblock *disk_super;
1445 	struct dm_block *sblock;
1446 
1447 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1448 			    &sb_validator, &sblock);
1449 	if (r)
1450 		return r;
1451 
1452 	disk_super = dm_block_data(sblock);
1453 	*result = le64_to_cpu(disk_super->held_root);
1454 
1455 	dm_bm_unlock(sblock);
1456 
1457 	return 0;
1458 }
1459 
1460 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1461 			      dm_block_t *result)
1462 {
1463 	int r = -EINVAL;
1464 
1465 	down_read(&pmd->root_lock);
1466 	if (!pmd->fail_io)
1467 		r = __get_metadata_snap(pmd, result);
1468 	up_read(&pmd->root_lock);
1469 
1470 	return r;
1471 }
1472 
1473 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1474 			     struct dm_thin_device **td)
1475 {
1476 	int r = -EINVAL;
1477 
1478 	pmd_write_lock_in_core(pmd);
1479 	if (!pmd->fail_io)
1480 		r = __open_device(pmd, dev, 0, td);
1481 	pmd_write_unlock(pmd);
1482 
1483 	return r;
1484 }
1485 
1486 int dm_pool_close_thin_device(struct dm_thin_device *td)
1487 {
1488 	pmd_write_lock_in_core(td->pmd);
1489 	__close_device(td);
1490 	pmd_write_unlock(td->pmd);
1491 
1492 	return 0;
1493 }
1494 
1495 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1496 {
1497 	return td->id;
1498 }
1499 
1500 /*
1501  * Check whether @time (of block creation) is older than @td's last snapshot.
1502  * If so then the associated block is shared with the last snapshot device.
1503  * Any block on a device created *after* the device last got snapshotted is
1504  * necessarily not shared.
1505  */
1506 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1507 {
1508 	return td->snapshotted_time > time;
1509 }
1510 
1511 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1512 				 struct dm_thin_lookup_result *result)
1513 {
1514 	uint64_t block_time = 0;
1515 	dm_block_t exception_block;
1516 	uint32_t exception_time;
1517 
1518 	block_time = le64_to_cpu(value);
1519 	unpack_block_time(block_time, &exception_block, &exception_time);
1520 	result->block = exception_block;
1521 	result->shared = __snapshotted_since(td, exception_time);
1522 }
1523 
1524 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1525 			int can_issue_io, struct dm_thin_lookup_result *result)
1526 {
1527 	int r;
1528 	__le64 value;
1529 	struct dm_pool_metadata *pmd = td->pmd;
1530 	dm_block_t keys[2] = { td->id, block };
1531 	struct dm_btree_info *info;
1532 
1533 	if (can_issue_io) {
1534 		info = &pmd->info;
1535 	} else
1536 		info = &pmd->nb_info;
1537 
1538 	r = dm_btree_lookup(info, pmd->root, keys, &value);
1539 	if (!r)
1540 		unpack_lookup_result(td, value, result);
1541 
1542 	return r;
1543 }
1544 
1545 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1546 		       int can_issue_io, struct dm_thin_lookup_result *result)
1547 {
1548 	int r;
1549 	struct dm_pool_metadata *pmd = td->pmd;
1550 
1551 	down_read(&pmd->root_lock);
1552 	if (pmd->fail_io) {
1553 		up_read(&pmd->root_lock);
1554 		return -EINVAL;
1555 	}
1556 
1557 	r = __find_block(td, block, can_issue_io, result);
1558 
1559 	up_read(&pmd->root_lock);
1560 	return r;
1561 }
1562 
1563 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1564 					  dm_block_t *vblock,
1565 					  struct dm_thin_lookup_result *result)
1566 {
1567 	int r;
1568 	__le64 value;
1569 	struct dm_pool_metadata *pmd = td->pmd;
1570 	dm_block_t keys[2] = { td->id, block };
1571 
1572 	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1573 	if (!r)
1574 		unpack_lookup_result(td, value, result);
1575 
1576 	return r;
1577 }
1578 
1579 static int __find_mapped_range(struct dm_thin_device *td,
1580 			       dm_block_t begin, dm_block_t end,
1581 			       dm_block_t *thin_begin, dm_block_t *thin_end,
1582 			       dm_block_t *pool_begin, bool *maybe_shared)
1583 {
1584 	int r;
1585 	dm_block_t pool_end;
1586 	struct dm_thin_lookup_result lookup;
1587 
1588 	if (end < begin)
1589 		return -ENODATA;
1590 
1591 	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1592 	if (r)
1593 		return r;
1594 
1595 	if (begin >= end)
1596 		return -ENODATA;
1597 
1598 	*thin_begin = begin;
1599 	*pool_begin = lookup.block;
1600 	*maybe_shared = lookup.shared;
1601 
1602 	begin++;
1603 	pool_end = *pool_begin + 1;
1604 	while (begin != end) {
1605 		r = __find_block(td, begin, true, &lookup);
1606 		if (r) {
1607 			if (r == -ENODATA)
1608 				break;
1609 			else
1610 				return r;
1611 		}
1612 
1613 		if ((lookup.block != pool_end) ||
1614 		    (lookup.shared != *maybe_shared))
1615 			break;
1616 
1617 		pool_end++;
1618 		begin++;
1619 	}
1620 
1621 	*thin_end = begin;
1622 	return 0;
1623 }
1624 
1625 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1626 			      dm_block_t begin, dm_block_t end,
1627 			      dm_block_t *thin_begin, dm_block_t *thin_end,
1628 			      dm_block_t *pool_begin, bool *maybe_shared)
1629 {
1630 	int r = -EINVAL;
1631 	struct dm_pool_metadata *pmd = td->pmd;
1632 
1633 	down_read(&pmd->root_lock);
1634 	if (!pmd->fail_io) {
1635 		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1636 					pool_begin, maybe_shared);
1637 	}
1638 	up_read(&pmd->root_lock);
1639 
1640 	return r;
1641 }
1642 
1643 static int __insert(struct dm_thin_device *td, dm_block_t block,
1644 		    dm_block_t data_block)
1645 {
1646 	int r, inserted;
1647 	__le64 value;
1648 	struct dm_pool_metadata *pmd = td->pmd;
1649 	dm_block_t keys[2] = { td->id, block };
1650 
1651 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1652 	__dm_bless_for_disk(&value);
1653 
1654 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1655 				   &pmd->root, &inserted);
1656 	if (r)
1657 		return r;
1658 
1659 	td->changed = true;
1660 	if (inserted)
1661 		td->mapped_blocks++;
1662 
1663 	return 0;
1664 }
1665 
1666 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1667 			 dm_block_t data_block)
1668 {
1669 	int r = -EINVAL;
1670 
1671 	pmd_write_lock(td->pmd);
1672 	if (!td->pmd->fail_io)
1673 		r = __insert(td, block, data_block);
1674 	pmd_write_unlock(td->pmd);
1675 
1676 	return r;
1677 }
1678 
1679 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1680 {
1681 	int r;
1682 	unsigned count, total_count = 0;
1683 	struct dm_pool_metadata *pmd = td->pmd;
1684 	dm_block_t keys[1] = { td->id };
1685 	__le64 value;
1686 	dm_block_t mapping_root;
1687 
1688 	/*
1689 	 * Find the mapping tree
1690 	 */
1691 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1692 	if (r)
1693 		return r;
1694 
1695 	/*
1696 	 * Remove from the mapping tree, taking care to inc the
1697 	 * ref count so it doesn't get deleted.
1698 	 */
1699 	mapping_root = le64_to_cpu(value);
1700 	dm_tm_inc(pmd->tm, mapping_root);
1701 	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1702 	if (r)
1703 		return r;
1704 
1705 	/*
1706 	 * Remove leaves stops at the first unmapped entry, so we have to
1707 	 * loop round finding mapped ranges.
1708 	 */
1709 	while (begin < end) {
1710 		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1711 		if (r == -ENODATA)
1712 			break;
1713 
1714 		if (r)
1715 			return r;
1716 
1717 		if (begin >= end)
1718 			break;
1719 
1720 		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1721 		if (r)
1722 			return r;
1723 
1724 		total_count += count;
1725 	}
1726 
1727 	td->mapped_blocks -= total_count;
1728 	td->changed = true;
1729 
1730 	/*
1731 	 * Reinsert the mapping tree.
1732 	 */
1733 	value = cpu_to_le64(mapping_root);
1734 	__dm_bless_for_disk(&value);
1735 	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1736 }
1737 
1738 int dm_thin_remove_range(struct dm_thin_device *td,
1739 			 dm_block_t begin, dm_block_t end)
1740 {
1741 	int r = -EINVAL;
1742 
1743 	pmd_write_lock(td->pmd);
1744 	if (!td->pmd->fail_io)
1745 		r = __remove_range(td, begin, end);
1746 	pmd_write_unlock(td->pmd);
1747 
1748 	return r;
1749 }
1750 
1751 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1752 {
1753 	int r;
1754 	uint32_t ref_count;
1755 
1756 	down_read(&pmd->root_lock);
1757 	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1758 	if (!r)
1759 		*result = (ref_count > 1);
1760 	up_read(&pmd->root_lock);
1761 
1762 	return r;
1763 }
1764 
1765 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1766 {
1767 	int r = 0;
1768 
1769 	pmd_write_lock(pmd);
1770 	r = dm_sm_inc_blocks(pmd->data_sm, b, e);
1771 	pmd_write_unlock(pmd);
1772 
1773 	return r;
1774 }
1775 
1776 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1777 {
1778 	int r = 0;
1779 
1780 	pmd_write_lock(pmd);
1781 	r = dm_sm_dec_blocks(pmd->data_sm, b, e);
1782 	pmd_write_unlock(pmd);
1783 
1784 	return r;
1785 }
1786 
1787 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1788 {
1789 	int r;
1790 
1791 	down_read(&td->pmd->root_lock);
1792 	r = td->changed;
1793 	up_read(&td->pmd->root_lock);
1794 
1795 	return r;
1796 }
1797 
1798 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1799 {
1800 	bool r = false;
1801 	struct dm_thin_device *td, *tmp;
1802 
1803 	down_read(&pmd->root_lock);
1804 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1805 		if (td->changed) {
1806 			r = td->changed;
1807 			break;
1808 		}
1809 	}
1810 	up_read(&pmd->root_lock);
1811 
1812 	return r;
1813 }
1814 
1815 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1816 {
1817 	bool r;
1818 
1819 	down_read(&td->pmd->root_lock);
1820 	r = td->aborted_with_changes;
1821 	up_read(&td->pmd->root_lock);
1822 
1823 	return r;
1824 }
1825 
1826 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1827 {
1828 	int r = -EINVAL;
1829 
1830 	pmd_write_lock(pmd);
1831 	if (!pmd->fail_io)
1832 		r = dm_sm_new_block(pmd->data_sm, result);
1833 	pmd_write_unlock(pmd);
1834 
1835 	return r;
1836 }
1837 
1838 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1839 {
1840 	int r = -EINVAL;
1841 
1842 	/*
1843 	 * Care is taken to not have commit be what
1844 	 * triggers putting the thin-pool in-service.
1845 	 */
1846 	pmd_write_lock_in_core(pmd);
1847 	if (pmd->fail_io)
1848 		goto out;
1849 
1850 	r = __commit_transaction(pmd);
1851 	if (r < 0)
1852 		goto out;
1853 
1854 	/*
1855 	 * Open the next transaction.
1856 	 */
1857 	r = __begin_transaction(pmd);
1858 out:
1859 	pmd_write_unlock(pmd);
1860 	return r;
1861 }
1862 
1863 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1864 {
1865 	struct dm_thin_device *td;
1866 
1867 	list_for_each_entry(td, &pmd->thin_devices, list)
1868 		td->aborted_with_changes = td->changed;
1869 }
1870 
1871 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1872 {
1873 	int r = -EINVAL;
1874 	struct dm_block_manager *old_bm = NULL, *new_bm = NULL;
1875 
1876 	/* fail_io is double-checked with pmd->root_lock held below */
1877 	if (unlikely(pmd->fail_io))
1878 		return r;
1879 
1880 	/*
1881 	 * Replacement block manager (new_bm) is created and old_bm destroyed outside of
1882 	 * pmd root_lock to avoid ABBA deadlock that would result (due to life-cycle of
1883 	 * shrinker associated with the block manager's bufio client vs pmd root_lock).
1884 	 * - must take shrinker_rwsem without holding pmd->root_lock
1885 	 */
1886 	new_bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
1887 					 THIN_MAX_CONCURRENT_LOCKS);
1888 
1889 	pmd_write_lock(pmd);
1890 	if (pmd->fail_io) {
1891 		pmd_write_unlock(pmd);
1892 		goto out;
1893 	}
1894 
1895 	__set_abort_with_changes_flags(pmd);
1896 	__destroy_persistent_data_objects(pmd, false);
1897 	old_bm = pmd->bm;
1898 	if (IS_ERR(new_bm)) {
1899 		DMERR("could not create block manager during abort");
1900 		pmd->bm = NULL;
1901 		r = PTR_ERR(new_bm);
1902 		goto out_unlock;
1903 	}
1904 
1905 	pmd->bm = new_bm;
1906 	r = __open_or_format_metadata(pmd, false);
1907 	if (r) {
1908 		pmd->bm = NULL;
1909 		goto out_unlock;
1910 	}
1911 	new_bm = NULL;
1912 out_unlock:
1913 	if (r)
1914 		pmd->fail_io = true;
1915 	pmd_write_unlock(pmd);
1916 	dm_block_manager_destroy(old_bm);
1917 out:
1918 	if (new_bm && !IS_ERR(new_bm))
1919 		dm_block_manager_destroy(new_bm);
1920 
1921 	return r;
1922 }
1923 
1924 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1925 {
1926 	int r = -EINVAL;
1927 
1928 	down_read(&pmd->root_lock);
1929 	if (!pmd->fail_io)
1930 		r = dm_sm_get_nr_free(pmd->data_sm, result);
1931 	up_read(&pmd->root_lock);
1932 
1933 	return r;
1934 }
1935 
1936 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1937 					  dm_block_t *result)
1938 {
1939 	int r = -EINVAL;
1940 
1941 	down_read(&pmd->root_lock);
1942 	if (!pmd->fail_io)
1943 		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1944 
1945 	if (!r) {
1946 		if (*result < pmd->metadata_reserve)
1947 			*result = 0;
1948 		else
1949 			*result -= pmd->metadata_reserve;
1950 	}
1951 	up_read(&pmd->root_lock);
1952 
1953 	return r;
1954 }
1955 
1956 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1957 				  dm_block_t *result)
1958 {
1959 	int r = -EINVAL;
1960 
1961 	down_read(&pmd->root_lock);
1962 	if (!pmd->fail_io)
1963 		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1964 	up_read(&pmd->root_lock);
1965 
1966 	return r;
1967 }
1968 
1969 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1970 {
1971 	int r = -EINVAL;
1972 
1973 	down_read(&pmd->root_lock);
1974 	if (!pmd->fail_io)
1975 		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1976 	up_read(&pmd->root_lock);
1977 
1978 	return r;
1979 }
1980 
1981 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1982 {
1983 	int r = -EINVAL;
1984 	struct dm_pool_metadata *pmd = td->pmd;
1985 
1986 	down_read(&pmd->root_lock);
1987 	if (!pmd->fail_io) {
1988 		*result = td->mapped_blocks;
1989 		r = 0;
1990 	}
1991 	up_read(&pmd->root_lock);
1992 
1993 	return r;
1994 }
1995 
1996 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1997 {
1998 	int r;
1999 	__le64 value_le;
2000 	dm_block_t thin_root;
2001 	struct dm_pool_metadata *pmd = td->pmd;
2002 
2003 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
2004 	if (r)
2005 		return r;
2006 
2007 	thin_root = le64_to_cpu(value_le);
2008 
2009 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
2010 }
2011 
2012 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
2013 				     dm_block_t *result)
2014 {
2015 	int r = -EINVAL;
2016 	struct dm_pool_metadata *pmd = td->pmd;
2017 
2018 	down_read(&pmd->root_lock);
2019 	if (!pmd->fail_io)
2020 		r = __highest_block(td, result);
2021 	up_read(&pmd->root_lock);
2022 
2023 	return r;
2024 }
2025 
2026 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
2027 {
2028 	int r;
2029 	dm_block_t old_count;
2030 
2031 	r = dm_sm_get_nr_blocks(sm, &old_count);
2032 	if (r)
2033 		return r;
2034 
2035 	if (new_count == old_count)
2036 		return 0;
2037 
2038 	if (new_count < old_count) {
2039 		DMERR("cannot reduce size of space map");
2040 		return -EINVAL;
2041 	}
2042 
2043 	return dm_sm_extend(sm, new_count - old_count);
2044 }
2045 
2046 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2047 {
2048 	int r = -EINVAL;
2049 
2050 	pmd_write_lock(pmd);
2051 	if (!pmd->fail_io)
2052 		r = __resize_space_map(pmd->data_sm, new_count);
2053 	pmd_write_unlock(pmd);
2054 
2055 	return r;
2056 }
2057 
2058 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2059 {
2060 	int r = -EINVAL;
2061 
2062 	pmd_write_lock(pmd);
2063 	if (!pmd->fail_io) {
2064 		r = __resize_space_map(pmd->metadata_sm, new_count);
2065 		if (!r)
2066 			__set_metadata_reserve(pmd);
2067 	}
2068 	pmd_write_unlock(pmd);
2069 
2070 	return r;
2071 }
2072 
2073 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2074 {
2075 	pmd_write_lock_in_core(pmd);
2076 	dm_bm_set_read_only(pmd->bm);
2077 	pmd_write_unlock(pmd);
2078 }
2079 
2080 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2081 {
2082 	pmd_write_lock_in_core(pmd);
2083 	dm_bm_set_read_write(pmd->bm);
2084 	pmd_write_unlock(pmd);
2085 }
2086 
2087 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2088 					dm_block_t threshold,
2089 					dm_sm_threshold_fn fn,
2090 					void *context)
2091 {
2092 	int r = -EINVAL;
2093 
2094 	pmd_write_lock_in_core(pmd);
2095 	if (!pmd->fail_io) {
2096 		r = dm_sm_register_threshold_callback(pmd->metadata_sm,
2097 						      threshold, fn, context);
2098 	}
2099 	pmd_write_unlock(pmd);
2100 
2101 	return r;
2102 }
2103 
2104 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2105 					  dm_pool_pre_commit_fn fn,
2106 					  void *context)
2107 {
2108 	pmd_write_lock_in_core(pmd);
2109 	pmd->pre_commit_fn = fn;
2110 	pmd->pre_commit_context = context;
2111 	pmd_write_unlock(pmd);
2112 }
2113 
2114 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2115 {
2116 	int r = -EINVAL;
2117 	struct dm_block *sblock;
2118 	struct thin_disk_superblock *disk_super;
2119 
2120 	pmd_write_lock(pmd);
2121 	if (pmd->fail_io)
2122 		goto out;
2123 
2124 	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2125 
2126 	r = superblock_lock(pmd, &sblock);
2127 	if (r) {
2128 		DMERR("couldn't lock superblock");
2129 		goto out;
2130 	}
2131 
2132 	disk_super = dm_block_data(sblock);
2133 	disk_super->flags = cpu_to_le32(pmd->flags);
2134 
2135 	dm_bm_unlock(sblock);
2136 out:
2137 	pmd_write_unlock(pmd);
2138 	return r;
2139 }
2140 
2141 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2142 {
2143 	bool needs_check;
2144 
2145 	down_read(&pmd->root_lock);
2146 	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2147 	up_read(&pmd->root_lock);
2148 
2149 	return needs_check;
2150 }
2151 
2152 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2153 {
2154 	down_read(&pmd->root_lock);
2155 	if (!pmd->fail_io)
2156 		dm_tm_issue_prefetches(pmd->tm);
2157 	up_read(&pmd->root_lock);
2158 }
2159