xref: /openbmc/linux/drivers/md/dm-table.c (revision cf222b3769c3759488579441ab724ed33a2da5f4)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <asm/atomic.h>
18 
19 #define MAX_DEPTH 16
20 #define NODE_SIZE L1_CACHE_BYTES
21 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
22 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
23 
24 struct dm_table {
25 	atomic_t holders;
26 
27 	/* btree table */
28 	unsigned int depth;
29 	unsigned int counts[MAX_DEPTH];	/* in nodes */
30 	sector_t *index[MAX_DEPTH];
31 
32 	unsigned int num_targets;
33 	unsigned int num_allocated;
34 	sector_t *highs;
35 	struct dm_target *targets;
36 
37 	/*
38 	 * Indicates the rw permissions for the new logical
39 	 * device.  This should be a combination of FMODE_READ
40 	 * and FMODE_WRITE.
41 	 */
42 	int mode;
43 
44 	/* a list of devices used by this table */
45 	struct list_head devices;
46 
47 	/*
48 	 * These are optimistic limits taken from all the
49 	 * targets, some targets will need smaller limits.
50 	 */
51 	struct io_restrictions limits;
52 
53 	/* events get handed up using this callback */
54 	void (*event_fn)(void *);
55 	void *event_context;
56 };
57 
58 /*
59  * Similar to ceiling(log_size(n))
60  */
61 static unsigned int int_log(unsigned int n, unsigned int base)
62 {
63 	int result = 0;
64 
65 	while (n > 1) {
66 		n = dm_div_up(n, base);
67 		result++;
68 	}
69 
70 	return result;
71 }
72 
73 /*
74  * Returns the minimum that is _not_ zero, unless both are zero.
75  */
76 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
77 
78 /*
79  * Combine two io_restrictions, always taking the lower value.
80  */
81 static void combine_restrictions_low(struct io_restrictions *lhs,
82 				     struct io_restrictions *rhs)
83 {
84 	lhs->max_sectors =
85 		min_not_zero(lhs->max_sectors, rhs->max_sectors);
86 
87 	lhs->max_phys_segments =
88 		min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
89 
90 	lhs->max_hw_segments =
91 		min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
92 
93 	lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
94 
95 	lhs->max_segment_size =
96 		min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
97 
98 	lhs->seg_boundary_mask =
99 		min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
100 }
101 
102 /*
103  * Calculate the index of the child node of the n'th node k'th key.
104  */
105 static inline unsigned int get_child(unsigned int n, unsigned int k)
106 {
107 	return (n * CHILDREN_PER_NODE) + k;
108 }
109 
110 /*
111  * Return the n'th node of level l from table t.
112  */
113 static inline sector_t *get_node(struct dm_table *t,
114 				 unsigned int l, unsigned int n)
115 {
116 	return t->index[l] + (n * KEYS_PER_NODE);
117 }
118 
119 /*
120  * Return the highest key that you could lookup from the n'th
121  * node on level l of the btree.
122  */
123 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
124 {
125 	for (; l < t->depth - 1; l++)
126 		n = get_child(n, CHILDREN_PER_NODE - 1);
127 
128 	if (n >= t->counts[l])
129 		return (sector_t) - 1;
130 
131 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
132 }
133 
134 /*
135  * Fills in a level of the btree based on the highs of the level
136  * below it.
137  */
138 static int setup_btree_index(unsigned int l, struct dm_table *t)
139 {
140 	unsigned int n, k;
141 	sector_t *node;
142 
143 	for (n = 0U; n < t->counts[l]; n++) {
144 		node = get_node(t, l, n);
145 
146 		for (k = 0U; k < KEYS_PER_NODE; k++)
147 			node[k] = high(t, l + 1, get_child(n, k));
148 	}
149 
150 	return 0;
151 }
152 
153 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
154 {
155 	unsigned long size;
156 	void *addr;
157 
158 	/*
159 	 * Check that we're not going to overflow.
160 	 */
161 	if (nmemb > (ULONG_MAX / elem_size))
162 		return NULL;
163 
164 	size = nmemb * elem_size;
165 	addr = vmalloc(size);
166 	if (addr)
167 		memset(addr, 0, size);
168 
169 	return addr;
170 }
171 
172 /*
173  * highs, and targets are managed as dynamic arrays during a
174  * table load.
175  */
176 static int alloc_targets(struct dm_table *t, unsigned int num)
177 {
178 	sector_t *n_highs;
179 	struct dm_target *n_targets;
180 	int n = t->num_targets;
181 
182 	/*
183 	 * Allocate both the target array and offset array at once.
184 	 */
185 	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
186 					  sizeof(sector_t));
187 	if (!n_highs)
188 		return -ENOMEM;
189 
190 	n_targets = (struct dm_target *) (n_highs + num);
191 
192 	if (n) {
193 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
194 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
195 	}
196 
197 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
198 	vfree(t->highs);
199 
200 	t->num_allocated = num;
201 	t->highs = n_highs;
202 	t->targets = n_targets;
203 
204 	return 0;
205 }
206 
207 int dm_table_create(struct dm_table **result, int mode, unsigned num_targets)
208 {
209 	struct dm_table *t = kmalloc(sizeof(*t), GFP_KERNEL);
210 
211 	if (!t)
212 		return -ENOMEM;
213 
214 	memset(t, 0, sizeof(*t));
215 	INIT_LIST_HEAD(&t->devices);
216 	atomic_set(&t->holders, 1);
217 
218 	if (!num_targets)
219 		num_targets = KEYS_PER_NODE;
220 
221 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
222 
223 	if (alloc_targets(t, num_targets)) {
224 		kfree(t);
225 		t = NULL;
226 		return -ENOMEM;
227 	}
228 
229 	t->mode = mode;
230 	*result = t;
231 	return 0;
232 }
233 
234 static void free_devices(struct list_head *devices)
235 {
236 	struct list_head *tmp, *next;
237 
238 	for (tmp = devices->next; tmp != devices; tmp = next) {
239 		struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
240 		next = tmp->next;
241 		kfree(dd);
242 	}
243 }
244 
245 static void table_destroy(struct dm_table *t)
246 {
247 	unsigned int i;
248 
249 	/* free the indexes (see dm_table_complete) */
250 	if (t->depth >= 2)
251 		vfree(t->index[t->depth - 2]);
252 
253 	/* free the targets */
254 	for (i = 0; i < t->num_targets; i++) {
255 		struct dm_target *tgt = t->targets + i;
256 
257 		if (tgt->type->dtr)
258 			tgt->type->dtr(tgt);
259 
260 		dm_put_target_type(tgt->type);
261 	}
262 
263 	vfree(t->highs);
264 
265 	/* free the device list */
266 	if (t->devices.next != &t->devices) {
267 		DMWARN("devices still present during destroy: "
268 		       "dm_table_remove_device calls missing");
269 
270 		free_devices(&t->devices);
271 	}
272 
273 	kfree(t);
274 }
275 
276 void dm_table_get(struct dm_table *t)
277 {
278 	atomic_inc(&t->holders);
279 }
280 
281 void dm_table_put(struct dm_table *t)
282 {
283 	if (!t)
284 		return;
285 
286 	if (atomic_dec_and_test(&t->holders))
287 		table_destroy(t);
288 }
289 
290 /*
291  * Checks to see if we need to extend highs or targets.
292  */
293 static inline int check_space(struct dm_table *t)
294 {
295 	if (t->num_targets >= t->num_allocated)
296 		return alloc_targets(t, t->num_allocated * 2);
297 
298 	return 0;
299 }
300 
301 /*
302  * Convert a device path to a dev_t.
303  */
304 static int lookup_device(const char *path, dev_t *dev)
305 {
306 	int r;
307 	struct nameidata nd;
308 	struct inode *inode;
309 
310 	if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd)))
311 		return r;
312 
313 	inode = nd.dentry->d_inode;
314 	if (!inode) {
315 		r = -ENOENT;
316 		goto out;
317 	}
318 
319 	if (!S_ISBLK(inode->i_mode)) {
320 		r = -ENOTBLK;
321 		goto out;
322 	}
323 
324 	*dev = inode->i_rdev;
325 
326  out:
327 	path_release(&nd);
328 	return r;
329 }
330 
331 /*
332  * See if we've already got a device in the list.
333  */
334 static struct dm_dev *find_device(struct list_head *l, dev_t dev)
335 {
336 	struct dm_dev *dd;
337 
338 	list_for_each_entry (dd, l, list)
339 		if (dd->bdev->bd_dev == dev)
340 			return dd;
341 
342 	return NULL;
343 }
344 
345 /*
346  * Open a device so we can use it as a map destination.
347  */
348 static int open_dev(struct dm_dev *d, dev_t dev)
349 {
350 	static char *_claim_ptr = "I belong to device-mapper";
351 	struct block_device *bdev;
352 
353 	int r;
354 
355 	if (d->bdev)
356 		BUG();
357 
358 	bdev = open_by_devnum(dev, d->mode);
359 	if (IS_ERR(bdev))
360 		return PTR_ERR(bdev);
361 	r = bd_claim(bdev, _claim_ptr);
362 	if (r)
363 		blkdev_put(bdev);
364 	else
365 		d->bdev = bdev;
366 	return r;
367 }
368 
369 /*
370  * Close a device that we've been using.
371  */
372 static void close_dev(struct dm_dev *d)
373 {
374 	if (!d->bdev)
375 		return;
376 
377 	bd_release(d->bdev);
378 	blkdev_put(d->bdev);
379 	d->bdev = NULL;
380 }
381 
382 /*
383  * If possible (ie. blk_size[major] is set), this checks an area
384  * of a destination device is valid.
385  */
386 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len)
387 {
388 	sector_t dev_size;
389 	dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT;
390 	return ((start < dev_size) && (len <= (dev_size - start)));
391 }
392 
393 /*
394  * This upgrades the mode on an already open dm_dev.  Being
395  * careful to leave things as they were if we fail to reopen the
396  * device.
397  */
398 static int upgrade_mode(struct dm_dev *dd, int new_mode)
399 {
400 	int r;
401 	struct dm_dev dd_copy;
402 	dev_t dev = dd->bdev->bd_dev;
403 
404 	dd_copy = *dd;
405 
406 	dd->mode |= new_mode;
407 	dd->bdev = NULL;
408 	r = open_dev(dd, dev);
409 	if (!r)
410 		close_dev(&dd_copy);
411 	else
412 		*dd = dd_copy;
413 
414 	return r;
415 }
416 
417 /*
418  * Add a device to the list, or just increment the usage count if
419  * it's already present.
420  */
421 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
422 			      const char *path, sector_t start, sector_t len,
423 			      int mode, struct dm_dev **result)
424 {
425 	int r;
426 	dev_t dev;
427 	struct dm_dev *dd;
428 	unsigned int major, minor;
429 
430 	if (!t)
431 		BUG();
432 
433 	if (sscanf(path, "%u:%u", &major, &minor) == 2) {
434 		/* Extract the major/minor numbers */
435 		dev = MKDEV(major, minor);
436 		if (MAJOR(dev) != major || MINOR(dev) != minor)
437 			return -EOVERFLOW;
438 	} else {
439 		/* convert the path to a device */
440 		if ((r = lookup_device(path, &dev)))
441 			return r;
442 	}
443 
444 	dd = find_device(&t->devices, dev);
445 	if (!dd) {
446 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
447 		if (!dd)
448 			return -ENOMEM;
449 
450 		dd->mode = mode;
451 		dd->bdev = NULL;
452 
453 		if ((r = open_dev(dd, dev))) {
454 			kfree(dd);
455 			return r;
456 		}
457 
458 		format_dev_t(dd->name, dev);
459 
460 		atomic_set(&dd->count, 0);
461 		list_add(&dd->list, &t->devices);
462 
463 	} else if (dd->mode != (mode | dd->mode)) {
464 		r = upgrade_mode(dd, mode);
465 		if (r)
466 			return r;
467 	}
468 	atomic_inc(&dd->count);
469 
470 	if (!check_device_area(dd, start, len)) {
471 		DMWARN("device %s too small for target", path);
472 		dm_put_device(ti, dd);
473 		return -EINVAL;
474 	}
475 
476 	*result = dd;
477 
478 	return 0;
479 }
480 
481 
482 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
483 		  sector_t len, int mode, struct dm_dev **result)
484 {
485 	int r = __table_get_device(ti->table, ti, path,
486 				   start, len, mode, result);
487 	if (!r) {
488 		request_queue_t *q = bdev_get_queue((*result)->bdev);
489 		struct io_restrictions *rs = &ti->limits;
490 
491 		/*
492 		 * Combine the device limits low.
493 		 *
494 		 * FIXME: if we move an io_restriction struct
495 		 *        into q this would just be a call to
496 		 *        combine_restrictions_low()
497 		 */
498 		rs->max_sectors =
499 			min_not_zero(rs->max_sectors, q->max_sectors);
500 
501 		/* FIXME: Device-Mapper on top of RAID-0 breaks because DM
502 		 *        currently doesn't honor MD's merge_bvec_fn routine.
503 		 *        In this case, we'll force DM to use PAGE_SIZE or
504 		 *        smaller I/O, just to be safe. A better fix is in the
505 		 *        works, but add this for the time being so it will at
506 		 *        least operate correctly.
507 		 */
508 		if (q->merge_bvec_fn)
509 			rs->max_sectors =
510 				min_not_zero(rs->max_sectors,
511 					     (unsigned short)(PAGE_SIZE >> 9));
512 
513 		rs->max_phys_segments =
514 			min_not_zero(rs->max_phys_segments,
515 				     q->max_phys_segments);
516 
517 		rs->max_hw_segments =
518 			min_not_zero(rs->max_hw_segments, q->max_hw_segments);
519 
520 		rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
521 
522 		rs->max_segment_size =
523 			min_not_zero(rs->max_segment_size, q->max_segment_size);
524 
525 		rs->seg_boundary_mask =
526 			min_not_zero(rs->seg_boundary_mask,
527 				     q->seg_boundary_mask);
528 	}
529 
530 	return r;
531 }
532 
533 /*
534  * Decrement a devices use count and remove it if necessary.
535  */
536 void dm_put_device(struct dm_target *ti, struct dm_dev *dd)
537 {
538 	if (atomic_dec_and_test(&dd->count)) {
539 		close_dev(dd);
540 		list_del(&dd->list);
541 		kfree(dd);
542 	}
543 }
544 
545 /*
546  * Checks to see if the target joins onto the end of the table.
547  */
548 static int adjoin(struct dm_table *table, struct dm_target *ti)
549 {
550 	struct dm_target *prev;
551 
552 	if (!table->num_targets)
553 		return !ti->begin;
554 
555 	prev = &table->targets[table->num_targets - 1];
556 	return (ti->begin == (prev->begin + prev->len));
557 }
558 
559 /*
560  * Used to dynamically allocate the arg array.
561  */
562 static char **realloc_argv(unsigned *array_size, char **old_argv)
563 {
564 	char **argv;
565 	unsigned new_size;
566 
567 	new_size = *array_size ? *array_size * 2 : 64;
568 	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
569 	if (argv) {
570 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
571 		*array_size = new_size;
572 	}
573 
574 	kfree(old_argv);
575 	return argv;
576 }
577 
578 /*
579  * Destructively splits up the argument list to pass to ctr.
580  */
581 int dm_split_args(int *argc, char ***argvp, char *input)
582 {
583 	char *start, *end = input, *out, **argv = NULL;
584 	unsigned array_size = 0;
585 
586 	*argc = 0;
587 	argv = realloc_argv(&array_size, argv);
588 	if (!argv)
589 		return -ENOMEM;
590 
591 	while (1) {
592 		start = end;
593 
594 		/* Skip whitespace */
595 		while (*start && isspace(*start))
596 			start++;
597 
598 		if (!*start)
599 			break;	/* success, we hit the end */
600 
601 		/* 'out' is used to remove any back-quotes */
602 		end = out = start;
603 		while (*end) {
604 			/* Everything apart from '\0' can be quoted */
605 			if (*end == '\\' && *(end + 1)) {
606 				*out++ = *(end + 1);
607 				end += 2;
608 				continue;
609 			}
610 
611 			if (isspace(*end))
612 				break;	/* end of token */
613 
614 			*out++ = *end++;
615 		}
616 
617 		/* have we already filled the array ? */
618 		if ((*argc + 1) > array_size) {
619 			argv = realloc_argv(&array_size, argv);
620 			if (!argv)
621 				return -ENOMEM;
622 		}
623 
624 		/* we know this is whitespace */
625 		if (*end)
626 			end++;
627 
628 		/* terminate the string and put it in the array */
629 		*out = '\0';
630 		argv[*argc] = start;
631 		(*argc)++;
632 	}
633 
634 	*argvp = argv;
635 	return 0;
636 }
637 
638 static void check_for_valid_limits(struct io_restrictions *rs)
639 {
640 	if (!rs->max_sectors)
641 		rs->max_sectors = MAX_SECTORS;
642 	if (!rs->max_phys_segments)
643 		rs->max_phys_segments = MAX_PHYS_SEGMENTS;
644 	if (!rs->max_hw_segments)
645 		rs->max_hw_segments = MAX_HW_SEGMENTS;
646 	if (!rs->hardsect_size)
647 		rs->hardsect_size = 1 << SECTOR_SHIFT;
648 	if (!rs->max_segment_size)
649 		rs->max_segment_size = MAX_SEGMENT_SIZE;
650 	if (!rs->seg_boundary_mask)
651 		rs->seg_boundary_mask = -1;
652 }
653 
654 int dm_table_add_target(struct dm_table *t, const char *type,
655 			sector_t start, sector_t len, char *params)
656 {
657 	int r = -EINVAL, argc;
658 	char **argv;
659 	struct dm_target *tgt;
660 
661 	if ((r = check_space(t)))
662 		return r;
663 
664 	tgt = t->targets + t->num_targets;
665 	memset(tgt, 0, sizeof(*tgt));
666 
667 	if (!len) {
668 		tgt->error = "zero-length target";
669 		DMERR("%s", tgt->error);
670 		return -EINVAL;
671 	}
672 
673 	tgt->type = dm_get_target_type(type);
674 	if (!tgt->type) {
675 		tgt->error = "unknown target type";
676 		DMERR("%s", tgt->error);
677 		return -EINVAL;
678 	}
679 
680 	tgt->table = t;
681 	tgt->begin = start;
682 	tgt->len = len;
683 	tgt->error = "Unknown error";
684 
685 	/*
686 	 * Does this target adjoin the previous one ?
687 	 */
688 	if (!adjoin(t, tgt)) {
689 		tgt->error = "Gap in table";
690 		r = -EINVAL;
691 		goto bad;
692 	}
693 
694 	r = dm_split_args(&argc, &argv, params);
695 	if (r) {
696 		tgt->error = "couldn't split parameters (insufficient memory)";
697 		goto bad;
698 	}
699 
700 	r = tgt->type->ctr(tgt, argc, argv);
701 	kfree(argv);
702 	if (r)
703 		goto bad;
704 
705 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
706 
707 	/* FIXME: the plan is to combine high here and then have
708 	 * the merge fn apply the target level restrictions. */
709 	combine_restrictions_low(&t->limits, &tgt->limits);
710 	return 0;
711 
712  bad:
713 	DMERR("%s", tgt->error);
714 	dm_put_target_type(tgt->type);
715 	return r;
716 }
717 
718 static int setup_indexes(struct dm_table *t)
719 {
720 	int i;
721 	unsigned int total = 0;
722 	sector_t *indexes;
723 
724 	/* allocate the space for *all* the indexes */
725 	for (i = t->depth - 2; i >= 0; i--) {
726 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
727 		total += t->counts[i];
728 	}
729 
730 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
731 	if (!indexes)
732 		return -ENOMEM;
733 
734 	/* set up internal nodes, bottom-up */
735 	for (i = t->depth - 2, total = 0; i >= 0; i--) {
736 		t->index[i] = indexes;
737 		indexes += (KEYS_PER_NODE * t->counts[i]);
738 		setup_btree_index(i, t);
739 	}
740 
741 	return 0;
742 }
743 
744 /*
745  * Builds the btree to index the map.
746  */
747 int dm_table_complete(struct dm_table *t)
748 {
749 	int r = 0;
750 	unsigned int leaf_nodes;
751 
752 	check_for_valid_limits(&t->limits);
753 
754 	/* how many indexes will the btree have ? */
755 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
756 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
757 
758 	/* leaf layer has already been set up */
759 	t->counts[t->depth - 1] = leaf_nodes;
760 	t->index[t->depth - 1] = t->highs;
761 
762 	if (t->depth >= 2)
763 		r = setup_indexes(t);
764 
765 	return r;
766 }
767 
768 static DECLARE_MUTEX(_event_lock);
769 void dm_table_event_callback(struct dm_table *t,
770 			     void (*fn)(void *), void *context)
771 {
772 	down(&_event_lock);
773 	t->event_fn = fn;
774 	t->event_context = context;
775 	up(&_event_lock);
776 }
777 
778 void dm_table_event(struct dm_table *t)
779 {
780 	/*
781 	 * You can no longer call dm_table_event() from interrupt
782 	 * context, use a bottom half instead.
783 	 */
784 	BUG_ON(in_interrupt());
785 
786 	down(&_event_lock);
787 	if (t->event_fn)
788 		t->event_fn(t->event_context);
789 	up(&_event_lock);
790 }
791 
792 sector_t dm_table_get_size(struct dm_table *t)
793 {
794 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
795 }
796 
797 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
798 {
799 	if (index > t->num_targets)
800 		return NULL;
801 
802 	return t->targets + index;
803 }
804 
805 /*
806  * Search the btree for the correct target.
807  */
808 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
809 {
810 	unsigned int l, n = 0, k = 0;
811 	sector_t *node;
812 
813 	for (l = 0; l < t->depth; l++) {
814 		n = get_child(n, k);
815 		node = get_node(t, l, n);
816 
817 		for (k = 0; k < KEYS_PER_NODE; k++)
818 			if (node[k] >= sector)
819 				break;
820 	}
821 
822 	return &t->targets[(KEYS_PER_NODE * n) + k];
823 }
824 
825 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
826 {
827 	/*
828 	 * Make sure we obey the optimistic sub devices
829 	 * restrictions.
830 	 */
831 	blk_queue_max_sectors(q, t->limits.max_sectors);
832 	q->max_phys_segments = t->limits.max_phys_segments;
833 	q->max_hw_segments = t->limits.max_hw_segments;
834 	q->hardsect_size = t->limits.hardsect_size;
835 	q->max_segment_size = t->limits.max_segment_size;
836 	q->seg_boundary_mask = t->limits.seg_boundary_mask;
837 }
838 
839 unsigned int dm_table_get_num_targets(struct dm_table *t)
840 {
841 	return t->num_targets;
842 }
843 
844 struct list_head *dm_table_get_devices(struct dm_table *t)
845 {
846 	return &t->devices;
847 }
848 
849 int dm_table_get_mode(struct dm_table *t)
850 {
851 	return t->mode;
852 }
853 
854 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
855 {
856 	int i = t->num_targets;
857 	struct dm_target *ti = t->targets;
858 
859 	while (i--) {
860 		if (postsuspend) {
861 			if (ti->type->postsuspend)
862 				ti->type->postsuspend(ti);
863 		} else if (ti->type->presuspend)
864 			ti->type->presuspend(ti);
865 
866 		ti++;
867 	}
868 }
869 
870 void dm_table_presuspend_targets(struct dm_table *t)
871 {
872 	if (!t)
873 		return;
874 
875 	return suspend_targets(t, 0);
876 }
877 
878 void dm_table_postsuspend_targets(struct dm_table *t)
879 {
880 	if (!t)
881 		return;
882 
883 	return suspend_targets(t, 1);
884 }
885 
886 void dm_table_resume_targets(struct dm_table *t)
887 {
888 	int i;
889 
890 	for (i = 0; i < t->num_targets; i++) {
891 		struct dm_target *ti = t->targets + i;
892 
893 		if (ti->type->resume)
894 			ti->type->resume(ti);
895 	}
896 }
897 
898 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
899 {
900 	struct list_head *d, *devices;
901 	int r = 0;
902 
903 	devices = dm_table_get_devices(t);
904 	for (d = devices->next; d != devices; d = d->next) {
905 		struct dm_dev *dd = list_entry(d, struct dm_dev, list);
906 		request_queue_t *q = bdev_get_queue(dd->bdev);
907 		r |= bdi_congested(&q->backing_dev_info, bdi_bits);
908 	}
909 
910 	return r;
911 }
912 
913 void dm_table_unplug_all(struct dm_table *t)
914 {
915 	struct list_head *d, *devices = dm_table_get_devices(t);
916 
917 	for (d = devices->next; d != devices; d = d->next) {
918 		struct dm_dev *dd = list_entry(d, struct dm_dev, list);
919 		request_queue_t *q = bdev_get_queue(dd->bdev);
920 
921 		if (q->unplug_fn)
922 			q->unplug_fn(q);
923 	}
924 }
925 
926 int dm_table_flush_all(struct dm_table *t)
927 {
928 	struct list_head *d, *devices = dm_table_get_devices(t);
929 	int ret = 0;
930 
931 	for (d = devices->next; d != devices; d = d->next) {
932 		struct dm_dev *dd = list_entry(d, struct dm_dev, list);
933 		request_queue_t *q = bdev_get_queue(dd->bdev);
934 		int err;
935 
936 		if (!q->issue_flush_fn)
937 			err = -EOPNOTSUPP;
938 		else
939 			err = q->issue_flush_fn(q, dd->bdev->bd_disk, NULL);
940 
941 		if (!ret)
942 			ret = err;
943 	}
944 
945 	return ret;
946 }
947 
948 EXPORT_SYMBOL(dm_vcalloc);
949 EXPORT_SYMBOL(dm_get_device);
950 EXPORT_SYMBOL(dm_put_device);
951 EXPORT_SYMBOL(dm_table_event);
952 EXPORT_SYMBOL(dm_table_get_size);
953 EXPORT_SYMBOL(dm_table_get_mode);
954 EXPORT_SYMBOL(dm_table_put);
955 EXPORT_SYMBOL(dm_table_get);
956 EXPORT_SYMBOL(dm_table_unplug_all);
957 EXPORT_SYMBOL(dm_table_flush_all);
958