1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <asm/atomic.h> 18 19 #define MAX_DEPTH 16 20 #define NODE_SIZE L1_CACHE_BYTES 21 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 22 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 23 24 struct dm_table { 25 atomic_t holders; 26 27 /* btree table */ 28 unsigned int depth; 29 unsigned int counts[MAX_DEPTH]; /* in nodes */ 30 sector_t *index[MAX_DEPTH]; 31 32 unsigned int num_targets; 33 unsigned int num_allocated; 34 sector_t *highs; 35 struct dm_target *targets; 36 37 /* 38 * Indicates the rw permissions for the new logical 39 * device. This should be a combination of FMODE_READ 40 * and FMODE_WRITE. 41 */ 42 int mode; 43 44 /* a list of devices used by this table */ 45 struct list_head devices; 46 47 /* 48 * These are optimistic limits taken from all the 49 * targets, some targets will need smaller limits. 50 */ 51 struct io_restrictions limits; 52 53 /* events get handed up using this callback */ 54 void (*event_fn)(void *); 55 void *event_context; 56 }; 57 58 /* 59 * Similar to ceiling(log_size(n)) 60 */ 61 static unsigned int int_log(unsigned int n, unsigned int base) 62 { 63 int result = 0; 64 65 while (n > 1) { 66 n = dm_div_up(n, base); 67 result++; 68 } 69 70 return result; 71 } 72 73 /* 74 * Returns the minimum that is _not_ zero, unless both are zero. 75 */ 76 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 77 78 /* 79 * Combine two io_restrictions, always taking the lower value. 80 */ 81 static void combine_restrictions_low(struct io_restrictions *lhs, 82 struct io_restrictions *rhs) 83 { 84 lhs->max_sectors = 85 min_not_zero(lhs->max_sectors, rhs->max_sectors); 86 87 lhs->max_phys_segments = 88 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments); 89 90 lhs->max_hw_segments = 91 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments); 92 93 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size); 94 95 lhs->max_segment_size = 96 min_not_zero(lhs->max_segment_size, rhs->max_segment_size); 97 98 lhs->seg_boundary_mask = 99 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask); 100 } 101 102 /* 103 * Calculate the index of the child node of the n'th node k'th key. 104 */ 105 static inline unsigned int get_child(unsigned int n, unsigned int k) 106 { 107 return (n * CHILDREN_PER_NODE) + k; 108 } 109 110 /* 111 * Return the n'th node of level l from table t. 112 */ 113 static inline sector_t *get_node(struct dm_table *t, 114 unsigned int l, unsigned int n) 115 { 116 return t->index[l] + (n * KEYS_PER_NODE); 117 } 118 119 /* 120 * Return the highest key that you could lookup from the n'th 121 * node on level l of the btree. 122 */ 123 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 124 { 125 for (; l < t->depth - 1; l++) 126 n = get_child(n, CHILDREN_PER_NODE - 1); 127 128 if (n >= t->counts[l]) 129 return (sector_t) - 1; 130 131 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 132 } 133 134 /* 135 * Fills in a level of the btree based on the highs of the level 136 * below it. 137 */ 138 static int setup_btree_index(unsigned int l, struct dm_table *t) 139 { 140 unsigned int n, k; 141 sector_t *node; 142 143 for (n = 0U; n < t->counts[l]; n++) { 144 node = get_node(t, l, n); 145 146 for (k = 0U; k < KEYS_PER_NODE; k++) 147 node[k] = high(t, l + 1, get_child(n, k)); 148 } 149 150 return 0; 151 } 152 153 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 154 { 155 unsigned long size; 156 void *addr; 157 158 /* 159 * Check that we're not going to overflow. 160 */ 161 if (nmemb > (ULONG_MAX / elem_size)) 162 return NULL; 163 164 size = nmemb * elem_size; 165 addr = vmalloc(size); 166 if (addr) 167 memset(addr, 0, size); 168 169 return addr; 170 } 171 172 /* 173 * highs, and targets are managed as dynamic arrays during a 174 * table load. 175 */ 176 static int alloc_targets(struct dm_table *t, unsigned int num) 177 { 178 sector_t *n_highs; 179 struct dm_target *n_targets; 180 int n = t->num_targets; 181 182 /* 183 * Allocate both the target array and offset array at once. 184 */ 185 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) + 186 sizeof(sector_t)); 187 if (!n_highs) 188 return -ENOMEM; 189 190 n_targets = (struct dm_target *) (n_highs + num); 191 192 if (n) { 193 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 194 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 195 } 196 197 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 198 vfree(t->highs); 199 200 t->num_allocated = num; 201 t->highs = n_highs; 202 t->targets = n_targets; 203 204 return 0; 205 } 206 207 int dm_table_create(struct dm_table **result, int mode, unsigned num_targets) 208 { 209 struct dm_table *t = kmalloc(sizeof(*t), GFP_KERNEL); 210 211 if (!t) 212 return -ENOMEM; 213 214 memset(t, 0, sizeof(*t)); 215 INIT_LIST_HEAD(&t->devices); 216 atomic_set(&t->holders, 1); 217 218 if (!num_targets) 219 num_targets = KEYS_PER_NODE; 220 221 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 222 223 if (alloc_targets(t, num_targets)) { 224 kfree(t); 225 t = NULL; 226 return -ENOMEM; 227 } 228 229 t->mode = mode; 230 *result = t; 231 return 0; 232 } 233 234 static void free_devices(struct list_head *devices) 235 { 236 struct list_head *tmp, *next; 237 238 for (tmp = devices->next; tmp != devices; tmp = next) { 239 struct dm_dev *dd = list_entry(tmp, struct dm_dev, list); 240 next = tmp->next; 241 kfree(dd); 242 } 243 } 244 245 static void table_destroy(struct dm_table *t) 246 { 247 unsigned int i; 248 249 /* free the indexes (see dm_table_complete) */ 250 if (t->depth >= 2) 251 vfree(t->index[t->depth - 2]); 252 253 /* free the targets */ 254 for (i = 0; i < t->num_targets; i++) { 255 struct dm_target *tgt = t->targets + i; 256 257 if (tgt->type->dtr) 258 tgt->type->dtr(tgt); 259 260 dm_put_target_type(tgt->type); 261 } 262 263 vfree(t->highs); 264 265 /* free the device list */ 266 if (t->devices.next != &t->devices) { 267 DMWARN("devices still present during destroy: " 268 "dm_table_remove_device calls missing"); 269 270 free_devices(&t->devices); 271 } 272 273 kfree(t); 274 } 275 276 void dm_table_get(struct dm_table *t) 277 { 278 atomic_inc(&t->holders); 279 } 280 281 void dm_table_put(struct dm_table *t) 282 { 283 if (!t) 284 return; 285 286 if (atomic_dec_and_test(&t->holders)) 287 table_destroy(t); 288 } 289 290 /* 291 * Checks to see if we need to extend highs or targets. 292 */ 293 static inline int check_space(struct dm_table *t) 294 { 295 if (t->num_targets >= t->num_allocated) 296 return alloc_targets(t, t->num_allocated * 2); 297 298 return 0; 299 } 300 301 /* 302 * Convert a device path to a dev_t. 303 */ 304 static int lookup_device(const char *path, dev_t *dev) 305 { 306 int r; 307 struct nameidata nd; 308 struct inode *inode; 309 310 if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd))) 311 return r; 312 313 inode = nd.dentry->d_inode; 314 if (!inode) { 315 r = -ENOENT; 316 goto out; 317 } 318 319 if (!S_ISBLK(inode->i_mode)) { 320 r = -ENOTBLK; 321 goto out; 322 } 323 324 *dev = inode->i_rdev; 325 326 out: 327 path_release(&nd); 328 return r; 329 } 330 331 /* 332 * See if we've already got a device in the list. 333 */ 334 static struct dm_dev *find_device(struct list_head *l, dev_t dev) 335 { 336 struct dm_dev *dd; 337 338 list_for_each_entry (dd, l, list) 339 if (dd->bdev->bd_dev == dev) 340 return dd; 341 342 return NULL; 343 } 344 345 /* 346 * Open a device so we can use it as a map destination. 347 */ 348 static int open_dev(struct dm_dev *d, dev_t dev) 349 { 350 static char *_claim_ptr = "I belong to device-mapper"; 351 struct block_device *bdev; 352 353 int r; 354 355 if (d->bdev) 356 BUG(); 357 358 bdev = open_by_devnum(dev, d->mode); 359 if (IS_ERR(bdev)) 360 return PTR_ERR(bdev); 361 r = bd_claim(bdev, _claim_ptr); 362 if (r) 363 blkdev_put(bdev); 364 else 365 d->bdev = bdev; 366 return r; 367 } 368 369 /* 370 * Close a device that we've been using. 371 */ 372 static void close_dev(struct dm_dev *d) 373 { 374 if (!d->bdev) 375 return; 376 377 bd_release(d->bdev); 378 blkdev_put(d->bdev); 379 d->bdev = NULL; 380 } 381 382 /* 383 * If possible (ie. blk_size[major] is set), this checks an area 384 * of a destination device is valid. 385 */ 386 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len) 387 { 388 sector_t dev_size; 389 dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT; 390 return ((start < dev_size) && (len <= (dev_size - start))); 391 } 392 393 /* 394 * This upgrades the mode on an already open dm_dev. Being 395 * careful to leave things as they were if we fail to reopen the 396 * device. 397 */ 398 static int upgrade_mode(struct dm_dev *dd, int new_mode) 399 { 400 int r; 401 struct dm_dev dd_copy; 402 dev_t dev = dd->bdev->bd_dev; 403 404 dd_copy = *dd; 405 406 dd->mode |= new_mode; 407 dd->bdev = NULL; 408 r = open_dev(dd, dev); 409 if (!r) 410 close_dev(&dd_copy); 411 else 412 *dd = dd_copy; 413 414 return r; 415 } 416 417 /* 418 * Add a device to the list, or just increment the usage count if 419 * it's already present. 420 */ 421 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 422 const char *path, sector_t start, sector_t len, 423 int mode, struct dm_dev **result) 424 { 425 int r; 426 dev_t dev; 427 struct dm_dev *dd; 428 unsigned int major, minor; 429 430 if (!t) 431 BUG(); 432 433 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 434 /* Extract the major/minor numbers */ 435 dev = MKDEV(major, minor); 436 if (MAJOR(dev) != major || MINOR(dev) != minor) 437 return -EOVERFLOW; 438 } else { 439 /* convert the path to a device */ 440 if ((r = lookup_device(path, &dev))) 441 return r; 442 } 443 444 dd = find_device(&t->devices, dev); 445 if (!dd) { 446 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 447 if (!dd) 448 return -ENOMEM; 449 450 dd->mode = mode; 451 dd->bdev = NULL; 452 453 if ((r = open_dev(dd, dev))) { 454 kfree(dd); 455 return r; 456 } 457 458 format_dev_t(dd->name, dev); 459 460 atomic_set(&dd->count, 0); 461 list_add(&dd->list, &t->devices); 462 463 } else if (dd->mode != (mode | dd->mode)) { 464 r = upgrade_mode(dd, mode); 465 if (r) 466 return r; 467 } 468 atomic_inc(&dd->count); 469 470 if (!check_device_area(dd, start, len)) { 471 DMWARN("device %s too small for target", path); 472 dm_put_device(ti, dd); 473 return -EINVAL; 474 } 475 476 *result = dd; 477 478 return 0; 479 } 480 481 482 int dm_get_device(struct dm_target *ti, const char *path, sector_t start, 483 sector_t len, int mode, struct dm_dev **result) 484 { 485 int r = __table_get_device(ti->table, ti, path, 486 start, len, mode, result); 487 if (!r) { 488 request_queue_t *q = bdev_get_queue((*result)->bdev); 489 struct io_restrictions *rs = &ti->limits; 490 491 /* 492 * Combine the device limits low. 493 * 494 * FIXME: if we move an io_restriction struct 495 * into q this would just be a call to 496 * combine_restrictions_low() 497 */ 498 rs->max_sectors = 499 min_not_zero(rs->max_sectors, q->max_sectors); 500 501 /* FIXME: Device-Mapper on top of RAID-0 breaks because DM 502 * currently doesn't honor MD's merge_bvec_fn routine. 503 * In this case, we'll force DM to use PAGE_SIZE or 504 * smaller I/O, just to be safe. A better fix is in the 505 * works, but add this for the time being so it will at 506 * least operate correctly. 507 */ 508 if (q->merge_bvec_fn) 509 rs->max_sectors = 510 min_not_zero(rs->max_sectors, 511 (unsigned short)(PAGE_SIZE >> 9)); 512 513 rs->max_phys_segments = 514 min_not_zero(rs->max_phys_segments, 515 q->max_phys_segments); 516 517 rs->max_hw_segments = 518 min_not_zero(rs->max_hw_segments, q->max_hw_segments); 519 520 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size); 521 522 rs->max_segment_size = 523 min_not_zero(rs->max_segment_size, q->max_segment_size); 524 525 rs->seg_boundary_mask = 526 min_not_zero(rs->seg_boundary_mask, 527 q->seg_boundary_mask); 528 } 529 530 return r; 531 } 532 533 /* 534 * Decrement a devices use count and remove it if necessary. 535 */ 536 void dm_put_device(struct dm_target *ti, struct dm_dev *dd) 537 { 538 if (atomic_dec_and_test(&dd->count)) { 539 close_dev(dd); 540 list_del(&dd->list); 541 kfree(dd); 542 } 543 } 544 545 /* 546 * Checks to see if the target joins onto the end of the table. 547 */ 548 static int adjoin(struct dm_table *table, struct dm_target *ti) 549 { 550 struct dm_target *prev; 551 552 if (!table->num_targets) 553 return !ti->begin; 554 555 prev = &table->targets[table->num_targets - 1]; 556 return (ti->begin == (prev->begin + prev->len)); 557 } 558 559 /* 560 * Used to dynamically allocate the arg array. 561 */ 562 static char **realloc_argv(unsigned *array_size, char **old_argv) 563 { 564 char **argv; 565 unsigned new_size; 566 567 new_size = *array_size ? *array_size * 2 : 64; 568 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 569 if (argv) { 570 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 571 *array_size = new_size; 572 } 573 574 kfree(old_argv); 575 return argv; 576 } 577 578 /* 579 * Destructively splits up the argument list to pass to ctr. 580 */ 581 int dm_split_args(int *argc, char ***argvp, char *input) 582 { 583 char *start, *end = input, *out, **argv = NULL; 584 unsigned array_size = 0; 585 586 *argc = 0; 587 argv = realloc_argv(&array_size, argv); 588 if (!argv) 589 return -ENOMEM; 590 591 while (1) { 592 start = end; 593 594 /* Skip whitespace */ 595 while (*start && isspace(*start)) 596 start++; 597 598 if (!*start) 599 break; /* success, we hit the end */ 600 601 /* 'out' is used to remove any back-quotes */ 602 end = out = start; 603 while (*end) { 604 /* Everything apart from '\0' can be quoted */ 605 if (*end == '\\' && *(end + 1)) { 606 *out++ = *(end + 1); 607 end += 2; 608 continue; 609 } 610 611 if (isspace(*end)) 612 break; /* end of token */ 613 614 *out++ = *end++; 615 } 616 617 /* have we already filled the array ? */ 618 if ((*argc + 1) > array_size) { 619 argv = realloc_argv(&array_size, argv); 620 if (!argv) 621 return -ENOMEM; 622 } 623 624 /* we know this is whitespace */ 625 if (*end) 626 end++; 627 628 /* terminate the string and put it in the array */ 629 *out = '\0'; 630 argv[*argc] = start; 631 (*argc)++; 632 } 633 634 *argvp = argv; 635 return 0; 636 } 637 638 static void check_for_valid_limits(struct io_restrictions *rs) 639 { 640 if (!rs->max_sectors) 641 rs->max_sectors = MAX_SECTORS; 642 if (!rs->max_phys_segments) 643 rs->max_phys_segments = MAX_PHYS_SEGMENTS; 644 if (!rs->max_hw_segments) 645 rs->max_hw_segments = MAX_HW_SEGMENTS; 646 if (!rs->hardsect_size) 647 rs->hardsect_size = 1 << SECTOR_SHIFT; 648 if (!rs->max_segment_size) 649 rs->max_segment_size = MAX_SEGMENT_SIZE; 650 if (!rs->seg_boundary_mask) 651 rs->seg_boundary_mask = -1; 652 } 653 654 int dm_table_add_target(struct dm_table *t, const char *type, 655 sector_t start, sector_t len, char *params) 656 { 657 int r = -EINVAL, argc; 658 char **argv; 659 struct dm_target *tgt; 660 661 if ((r = check_space(t))) 662 return r; 663 664 tgt = t->targets + t->num_targets; 665 memset(tgt, 0, sizeof(*tgt)); 666 667 if (!len) { 668 tgt->error = "zero-length target"; 669 DMERR("%s", tgt->error); 670 return -EINVAL; 671 } 672 673 tgt->type = dm_get_target_type(type); 674 if (!tgt->type) { 675 tgt->error = "unknown target type"; 676 DMERR("%s", tgt->error); 677 return -EINVAL; 678 } 679 680 tgt->table = t; 681 tgt->begin = start; 682 tgt->len = len; 683 tgt->error = "Unknown error"; 684 685 /* 686 * Does this target adjoin the previous one ? 687 */ 688 if (!adjoin(t, tgt)) { 689 tgt->error = "Gap in table"; 690 r = -EINVAL; 691 goto bad; 692 } 693 694 r = dm_split_args(&argc, &argv, params); 695 if (r) { 696 tgt->error = "couldn't split parameters (insufficient memory)"; 697 goto bad; 698 } 699 700 r = tgt->type->ctr(tgt, argc, argv); 701 kfree(argv); 702 if (r) 703 goto bad; 704 705 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 706 707 /* FIXME: the plan is to combine high here and then have 708 * the merge fn apply the target level restrictions. */ 709 combine_restrictions_low(&t->limits, &tgt->limits); 710 return 0; 711 712 bad: 713 DMERR("%s", tgt->error); 714 dm_put_target_type(tgt->type); 715 return r; 716 } 717 718 static int setup_indexes(struct dm_table *t) 719 { 720 int i; 721 unsigned int total = 0; 722 sector_t *indexes; 723 724 /* allocate the space for *all* the indexes */ 725 for (i = t->depth - 2; i >= 0; i--) { 726 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 727 total += t->counts[i]; 728 } 729 730 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 731 if (!indexes) 732 return -ENOMEM; 733 734 /* set up internal nodes, bottom-up */ 735 for (i = t->depth - 2, total = 0; i >= 0; i--) { 736 t->index[i] = indexes; 737 indexes += (KEYS_PER_NODE * t->counts[i]); 738 setup_btree_index(i, t); 739 } 740 741 return 0; 742 } 743 744 /* 745 * Builds the btree to index the map. 746 */ 747 int dm_table_complete(struct dm_table *t) 748 { 749 int r = 0; 750 unsigned int leaf_nodes; 751 752 check_for_valid_limits(&t->limits); 753 754 /* how many indexes will the btree have ? */ 755 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 756 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 757 758 /* leaf layer has already been set up */ 759 t->counts[t->depth - 1] = leaf_nodes; 760 t->index[t->depth - 1] = t->highs; 761 762 if (t->depth >= 2) 763 r = setup_indexes(t); 764 765 return r; 766 } 767 768 static DECLARE_MUTEX(_event_lock); 769 void dm_table_event_callback(struct dm_table *t, 770 void (*fn)(void *), void *context) 771 { 772 down(&_event_lock); 773 t->event_fn = fn; 774 t->event_context = context; 775 up(&_event_lock); 776 } 777 778 void dm_table_event(struct dm_table *t) 779 { 780 /* 781 * You can no longer call dm_table_event() from interrupt 782 * context, use a bottom half instead. 783 */ 784 BUG_ON(in_interrupt()); 785 786 down(&_event_lock); 787 if (t->event_fn) 788 t->event_fn(t->event_context); 789 up(&_event_lock); 790 } 791 792 sector_t dm_table_get_size(struct dm_table *t) 793 { 794 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 795 } 796 797 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 798 { 799 if (index > t->num_targets) 800 return NULL; 801 802 return t->targets + index; 803 } 804 805 /* 806 * Search the btree for the correct target. 807 */ 808 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 809 { 810 unsigned int l, n = 0, k = 0; 811 sector_t *node; 812 813 for (l = 0; l < t->depth; l++) { 814 n = get_child(n, k); 815 node = get_node(t, l, n); 816 817 for (k = 0; k < KEYS_PER_NODE; k++) 818 if (node[k] >= sector) 819 break; 820 } 821 822 return &t->targets[(KEYS_PER_NODE * n) + k]; 823 } 824 825 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q) 826 { 827 /* 828 * Make sure we obey the optimistic sub devices 829 * restrictions. 830 */ 831 blk_queue_max_sectors(q, t->limits.max_sectors); 832 q->max_phys_segments = t->limits.max_phys_segments; 833 q->max_hw_segments = t->limits.max_hw_segments; 834 q->hardsect_size = t->limits.hardsect_size; 835 q->max_segment_size = t->limits.max_segment_size; 836 q->seg_boundary_mask = t->limits.seg_boundary_mask; 837 } 838 839 unsigned int dm_table_get_num_targets(struct dm_table *t) 840 { 841 return t->num_targets; 842 } 843 844 struct list_head *dm_table_get_devices(struct dm_table *t) 845 { 846 return &t->devices; 847 } 848 849 int dm_table_get_mode(struct dm_table *t) 850 { 851 return t->mode; 852 } 853 854 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 855 { 856 int i = t->num_targets; 857 struct dm_target *ti = t->targets; 858 859 while (i--) { 860 if (postsuspend) { 861 if (ti->type->postsuspend) 862 ti->type->postsuspend(ti); 863 } else if (ti->type->presuspend) 864 ti->type->presuspend(ti); 865 866 ti++; 867 } 868 } 869 870 void dm_table_presuspend_targets(struct dm_table *t) 871 { 872 if (!t) 873 return; 874 875 return suspend_targets(t, 0); 876 } 877 878 void dm_table_postsuspend_targets(struct dm_table *t) 879 { 880 if (!t) 881 return; 882 883 return suspend_targets(t, 1); 884 } 885 886 void dm_table_resume_targets(struct dm_table *t) 887 { 888 int i; 889 890 for (i = 0; i < t->num_targets; i++) { 891 struct dm_target *ti = t->targets + i; 892 893 if (ti->type->resume) 894 ti->type->resume(ti); 895 } 896 } 897 898 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 899 { 900 struct list_head *d, *devices; 901 int r = 0; 902 903 devices = dm_table_get_devices(t); 904 for (d = devices->next; d != devices; d = d->next) { 905 struct dm_dev *dd = list_entry(d, struct dm_dev, list); 906 request_queue_t *q = bdev_get_queue(dd->bdev); 907 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 908 } 909 910 return r; 911 } 912 913 void dm_table_unplug_all(struct dm_table *t) 914 { 915 struct list_head *d, *devices = dm_table_get_devices(t); 916 917 for (d = devices->next; d != devices; d = d->next) { 918 struct dm_dev *dd = list_entry(d, struct dm_dev, list); 919 request_queue_t *q = bdev_get_queue(dd->bdev); 920 921 if (q->unplug_fn) 922 q->unplug_fn(q); 923 } 924 } 925 926 int dm_table_flush_all(struct dm_table *t) 927 { 928 struct list_head *d, *devices = dm_table_get_devices(t); 929 int ret = 0; 930 931 for (d = devices->next; d != devices; d = d->next) { 932 struct dm_dev *dd = list_entry(d, struct dm_dev, list); 933 request_queue_t *q = bdev_get_queue(dd->bdev); 934 int err; 935 936 if (!q->issue_flush_fn) 937 err = -EOPNOTSUPP; 938 else 939 err = q->issue_flush_fn(q, dd->bdev->bd_disk, NULL); 940 941 if (!ret) 942 ret = err; 943 } 944 945 return ret; 946 } 947 948 EXPORT_SYMBOL(dm_vcalloc); 949 EXPORT_SYMBOL(dm_get_device); 950 EXPORT_SYMBOL(dm_put_device); 951 EXPORT_SYMBOL(dm_table_event); 952 EXPORT_SYMBOL(dm_table_get_size); 953 EXPORT_SYMBOL(dm_table_get_mode); 954 EXPORT_SYMBOL(dm_table_put); 955 EXPORT_SYMBOL(dm_table_get); 956 EXPORT_SYMBOL(dm_table_unplug_all); 957 EXPORT_SYMBOL(dm_table_flush_all); 958