1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <linux/mutex.h> 18 #include <asm/atomic.h> 19 20 #define DM_MSG_PREFIX "table" 21 22 #define MAX_DEPTH 16 23 #define NODE_SIZE L1_CACHE_BYTES 24 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 25 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 26 27 struct dm_table { 28 struct mapped_device *md; 29 atomic_t holders; 30 31 /* btree table */ 32 unsigned int depth; 33 unsigned int counts[MAX_DEPTH]; /* in nodes */ 34 sector_t *index[MAX_DEPTH]; 35 36 unsigned int num_targets; 37 unsigned int num_allocated; 38 sector_t *highs; 39 struct dm_target *targets; 40 41 /* 42 * Indicates the rw permissions for the new logical 43 * device. This should be a combination of FMODE_READ 44 * and FMODE_WRITE. 45 */ 46 int mode; 47 48 /* a list of devices used by this table */ 49 struct list_head devices; 50 51 /* 52 * These are optimistic limits taken from all the 53 * targets, some targets will need smaller limits. 54 */ 55 struct io_restrictions limits; 56 57 /* events get handed up using this callback */ 58 void (*event_fn)(void *); 59 void *event_context; 60 }; 61 62 /* 63 * Similar to ceiling(log_size(n)) 64 */ 65 static unsigned int int_log(unsigned int n, unsigned int base) 66 { 67 int result = 0; 68 69 while (n > 1) { 70 n = dm_div_up(n, base); 71 result++; 72 } 73 74 return result; 75 } 76 77 /* 78 * Returns the minimum that is _not_ zero, unless both are zero. 79 */ 80 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 81 82 /* 83 * Combine two io_restrictions, always taking the lower value. 84 */ 85 static void combine_restrictions_low(struct io_restrictions *lhs, 86 struct io_restrictions *rhs) 87 { 88 lhs->max_sectors = 89 min_not_zero(lhs->max_sectors, rhs->max_sectors); 90 91 lhs->max_phys_segments = 92 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments); 93 94 lhs->max_hw_segments = 95 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments); 96 97 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size); 98 99 lhs->max_segment_size = 100 min_not_zero(lhs->max_segment_size, rhs->max_segment_size); 101 102 lhs->max_hw_sectors = 103 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors); 104 105 lhs->seg_boundary_mask = 106 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask); 107 108 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn); 109 110 lhs->no_cluster |= rhs->no_cluster; 111 } 112 113 /* 114 * Calculate the index of the child node of the n'th node k'th key. 115 */ 116 static inline unsigned int get_child(unsigned int n, unsigned int k) 117 { 118 return (n * CHILDREN_PER_NODE) + k; 119 } 120 121 /* 122 * Return the n'th node of level l from table t. 123 */ 124 static inline sector_t *get_node(struct dm_table *t, 125 unsigned int l, unsigned int n) 126 { 127 return t->index[l] + (n * KEYS_PER_NODE); 128 } 129 130 /* 131 * Return the highest key that you could lookup from the n'th 132 * node on level l of the btree. 133 */ 134 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 135 { 136 for (; l < t->depth - 1; l++) 137 n = get_child(n, CHILDREN_PER_NODE - 1); 138 139 if (n >= t->counts[l]) 140 return (sector_t) - 1; 141 142 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 143 } 144 145 /* 146 * Fills in a level of the btree based on the highs of the level 147 * below it. 148 */ 149 static int setup_btree_index(unsigned int l, struct dm_table *t) 150 { 151 unsigned int n, k; 152 sector_t *node; 153 154 for (n = 0U; n < t->counts[l]; n++) { 155 node = get_node(t, l, n); 156 157 for (k = 0U; k < KEYS_PER_NODE; k++) 158 node[k] = high(t, l + 1, get_child(n, k)); 159 } 160 161 return 0; 162 } 163 164 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 165 { 166 unsigned long size; 167 void *addr; 168 169 /* 170 * Check that we're not going to overflow. 171 */ 172 if (nmemb > (ULONG_MAX / elem_size)) 173 return NULL; 174 175 size = nmemb * elem_size; 176 addr = vmalloc(size); 177 if (addr) 178 memset(addr, 0, size); 179 180 return addr; 181 } 182 183 /* 184 * highs, and targets are managed as dynamic arrays during a 185 * table load. 186 */ 187 static int alloc_targets(struct dm_table *t, unsigned int num) 188 { 189 sector_t *n_highs; 190 struct dm_target *n_targets; 191 int n = t->num_targets; 192 193 /* 194 * Allocate both the target array and offset array at once. 195 * Append an empty entry to catch sectors beyond the end of 196 * the device. 197 */ 198 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 199 sizeof(sector_t)); 200 if (!n_highs) 201 return -ENOMEM; 202 203 n_targets = (struct dm_target *) (n_highs + num); 204 205 if (n) { 206 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 207 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 208 } 209 210 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 211 vfree(t->highs); 212 213 t->num_allocated = num; 214 t->highs = n_highs; 215 t->targets = n_targets; 216 217 return 0; 218 } 219 220 int dm_table_create(struct dm_table **result, int mode, 221 unsigned num_targets, struct mapped_device *md) 222 { 223 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 224 225 if (!t) 226 return -ENOMEM; 227 228 INIT_LIST_HEAD(&t->devices); 229 atomic_set(&t->holders, 1); 230 231 if (!num_targets) 232 num_targets = KEYS_PER_NODE; 233 234 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 235 236 if (alloc_targets(t, num_targets)) { 237 kfree(t); 238 t = NULL; 239 return -ENOMEM; 240 } 241 242 t->mode = mode; 243 t->md = md; 244 *result = t; 245 return 0; 246 } 247 248 static void free_devices(struct list_head *devices) 249 { 250 struct list_head *tmp, *next; 251 252 list_for_each_safe(tmp, next, devices) { 253 struct dm_dev_internal *dd = 254 list_entry(tmp, struct dm_dev_internal, list); 255 kfree(dd); 256 } 257 } 258 259 static void table_destroy(struct dm_table *t) 260 { 261 unsigned int i; 262 263 /* free the indexes (see dm_table_complete) */ 264 if (t->depth >= 2) 265 vfree(t->index[t->depth - 2]); 266 267 /* free the targets */ 268 for (i = 0; i < t->num_targets; i++) { 269 struct dm_target *tgt = t->targets + i; 270 271 if (tgt->type->dtr) 272 tgt->type->dtr(tgt); 273 274 dm_put_target_type(tgt->type); 275 } 276 277 vfree(t->highs); 278 279 /* free the device list */ 280 if (t->devices.next != &t->devices) { 281 DMWARN("devices still present during destroy: " 282 "dm_table_remove_device calls missing"); 283 284 free_devices(&t->devices); 285 } 286 287 kfree(t); 288 } 289 290 void dm_table_get(struct dm_table *t) 291 { 292 atomic_inc(&t->holders); 293 } 294 295 void dm_table_put(struct dm_table *t) 296 { 297 if (!t) 298 return; 299 300 if (atomic_dec_and_test(&t->holders)) 301 table_destroy(t); 302 } 303 304 /* 305 * Checks to see if we need to extend highs or targets. 306 */ 307 static inline int check_space(struct dm_table *t) 308 { 309 if (t->num_targets >= t->num_allocated) 310 return alloc_targets(t, t->num_allocated * 2); 311 312 return 0; 313 } 314 315 /* 316 * Convert a device path to a dev_t. 317 */ 318 static int lookup_device(const char *path, dev_t *dev) 319 { 320 struct block_device *bdev = lookup_bdev(path); 321 if (IS_ERR(bdev)) 322 return PTR_ERR(bdev); 323 *dev = bdev->bd_dev; 324 bdput(bdev); 325 return 0; 326 } 327 328 /* 329 * See if we've already got a device in the list. 330 */ 331 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 332 { 333 struct dm_dev_internal *dd; 334 335 list_for_each_entry (dd, l, list) 336 if (dd->dm_dev.bdev->bd_dev == dev) 337 return dd; 338 339 return NULL; 340 } 341 342 /* 343 * Open a device so we can use it as a map destination. 344 */ 345 static int open_dev(struct dm_dev_internal *d, dev_t dev, 346 struct mapped_device *md) 347 { 348 static char *_claim_ptr = "I belong to device-mapper"; 349 struct block_device *bdev; 350 351 int r; 352 353 BUG_ON(d->dm_dev.bdev); 354 355 bdev = open_by_devnum(dev, d->dm_dev.mode); 356 if (IS_ERR(bdev)) 357 return PTR_ERR(bdev); 358 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); 359 if (r) 360 blkdev_put(bdev); 361 else 362 d->dm_dev.bdev = bdev; 363 return r; 364 } 365 366 /* 367 * Close a device that we've been using. 368 */ 369 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 370 { 371 if (!d->dm_dev.bdev) 372 return; 373 374 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md)); 375 blkdev_put(d->dm_dev.bdev); 376 d->dm_dev.bdev = NULL; 377 } 378 379 /* 380 * If possible, this checks an area of a destination device is valid. 381 */ 382 static int check_device_area(struct dm_dev_internal *dd, sector_t start, 383 sector_t len) 384 { 385 sector_t dev_size = dd->dm_dev.bdev->bd_inode->i_size >> SECTOR_SHIFT; 386 387 if (!dev_size) 388 return 1; 389 390 return ((start < dev_size) && (len <= (dev_size - start))); 391 } 392 393 /* 394 * This upgrades the mode on an already open dm_dev. Being 395 * careful to leave things as they were if we fail to reopen the 396 * device. 397 */ 398 static int upgrade_mode(struct dm_dev_internal *dd, int new_mode, 399 struct mapped_device *md) 400 { 401 int r; 402 struct dm_dev_internal dd_copy; 403 dev_t dev = dd->dm_dev.bdev->bd_dev; 404 405 dd_copy = *dd; 406 407 dd->dm_dev.mode |= new_mode; 408 dd->dm_dev.bdev = NULL; 409 r = open_dev(dd, dev, md); 410 if (!r) 411 close_dev(&dd_copy, md); 412 else 413 *dd = dd_copy; 414 415 return r; 416 } 417 418 /* 419 * Add a device to the list, or just increment the usage count if 420 * it's already present. 421 */ 422 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 423 const char *path, sector_t start, sector_t len, 424 int mode, struct dm_dev **result) 425 { 426 int r; 427 dev_t uninitialized_var(dev); 428 struct dm_dev_internal *dd; 429 unsigned int major, minor; 430 431 BUG_ON(!t); 432 433 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 434 /* Extract the major/minor numbers */ 435 dev = MKDEV(major, minor); 436 if (MAJOR(dev) != major || MINOR(dev) != minor) 437 return -EOVERFLOW; 438 } else { 439 /* convert the path to a device */ 440 if ((r = lookup_device(path, &dev))) 441 return r; 442 } 443 444 dd = find_device(&t->devices, dev); 445 if (!dd) { 446 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 447 if (!dd) 448 return -ENOMEM; 449 450 dd->dm_dev.mode = mode; 451 dd->dm_dev.bdev = NULL; 452 453 if ((r = open_dev(dd, dev, t->md))) { 454 kfree(dd); 455 return r; 456 } 457 458 format_dev_t(dd->dm_dev.name, dev); 459 460 atomic_set(&dd->count, 0); 461 list_add(&dd->list, &t->devices); 462 463 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 464 r = upgrade_mode(dd, mode, t->md); 465 if (r) 466 return r; 467 } 468 atomic_inc(&dd->count); 469 470 if (!check_device_area(dd, start, len)) { 471 DMWARN("device %s too small for target", path); 472 dm_put_device(ti, &dd->dm_dev); 473 return -EINVAL; 474 } 475 476 *result = &dd->dm_dev; 477 478 return 0; 479 } 480 481 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev) 482 { 483 struct request_queue *q = bdev_get_queue(bdev); 484 struct io_restrictions *rs = &ti->limits; 485 486 /* 487 * Combine the device limits low. 488 * 489 * FIXME: if we move an io_restriction struct 490 * into q this would just be a call to 491 * combine_restrictions_low() 492 */ 493 rs->max_sectors = 494 min_not_zero(rs->max_sectors, q->max_sectors); 495 496 /* 497 * Check if merge fn is supported. 498 * If not we'll force DM to use PAGE_SIZE or 499 * smaller I/O, just to be safe. 500 */ 501 502 if (q->merge_bvec_fn && !ti->type->merge) 503 rs->max_sectors = 504 min_not_zero(rs->max_sectors, 505 (unsigned int) (PAGE_SIZE >> 9)); 506 507 rs->max_phys_segments = 508 min_not_zero(rs->max_phys_segments, 509 q->max_phys_segments); 510 511 rs->max_hw_segments = 512 min_not_zero(rs->max_hw_segments, q->max_hw_segments); 513 514 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size); 515 516 rs->max_segment_size = 517 min_not_zero(rs->max_segment_size, q->max_segment_size); 518 519 rs->max_hw_sectors = 520 min_not_zero(rs->max_hw_sectors, q->max_hw_sectors); 521 522 rs->seg_boundary_mask = 523 min_not_zero(rs->seg_boundary_mask, 524 q->seg_boundary_mask); 525 526 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn); 527 528 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags); 529 } 530 EXPORT_SYMBOL_GPL(dm_set_device_limits); 531 532 int dm_get_device(struct dm_target *ti, const char *path, sector_t start, 533 sector_t len, int mode, struct dm_dev **result) 534 { 535 int r = __table_get_device(ti->table, ti, path, 536 start, len, mode, result); 537 538 if (!r) 539 dm_set_device_limits(ti, (*result)->bdev); 540 541 return r; 542 } 543 544 /* 545 * Decrement a devices use count and remove it if necessary. 546 */ 547 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 548 { 549 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 550 dm_dev); 551 552 if (atomic_dec_and_test(&dd->count)) { 553 close_dev(dd, ti->table->md); 554 list_del(&dd->list); 555 kfree(dd); 556 } 557 } 558 559 /* 560 * Checks to see if the target joins onto the end of the table. 561 */ 562 static int adjoin(struct dm_table *table, struct dm_target *ti) 563 { 564 struct dm_target *prev; 565 566 if (!table->num_targets) 567 return !ti->begin; 568 569 prev = &table->targets[table->num_targets - 1]; 570 return (ti->begin == (prev->begin + prev->len)); 571 } 572 573 /* 574 * Used to dynamically allocate the arg array. 575 */ 576 static char **realloc_argv(unsigned *array_size, char **old_argv) 577 { 578 char **argv; 579 unsigned new_size; 580 581 new_size = *array_size ? *array_size * 2 : 64; 582 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 583 if (argv) { 584 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 585 *array_size = new_size; 586 } 587 588 kfree(old_argv); 589 return argv; 590 } 591 592 /* 593 * Destructively splits up the argument list to pass to ctr. 594 */ 595 int dm_split_args(int *argc, char ***argvp, char *input) 596 { 597 char *start, *end = input, *out, **argv = NULL; 598 unsigned array_size = 0; 599 600 *argc = 0; 601 602 if (!input) { 603 *argvp = NULL; 604 return 0; 605 } 606 607 argv = realloc_argv(&array_size, argv); 608 if (!argv) 609 return -ENOMEM; 610 611 while (1) { 612 start = end; 613 614 /* Skip whitespace */ 615 while (*start && isspace(*start)) 616 start++; 617 618 if (!*start) 619 break; /* success, we hit the end */ 620 621 /* 'out' is used to remove any back-quotes */ 622 end = out = start; 623 while (*end) { 624 /* Everything apart from '\0' can be quoted */ 625 if (*end == '\\' && *(end + 1)) { 626 *out++ = *(end + 1); 627 end += 2; 628 continue; 629 } 630 631 if (isspace(*end)) 632 break; /* end of token */ 633 634 *out++ = *end++; 635 } 636 637 /* have we already filled the array ? */ 638 if ((*argc + 1) > array_size) { 639 argv = realloc_argv(&array_size, argv); 640 if (!argv) 641 return -ENOMEM; 642 } 643 644 /* we know this is whitespace */ 645 if (*end) 646 end++; 647 648 /* terminate the string and put it in the array */ 649 *out = '\0'; 650 argv[*argc] = start; 651 (*argc)++; 652 } 653 654 *argvp = argv; 655 return 0; 656 } 657 658 static void check_for_valid_limits(struct io_restrictions *rs) 659 { 660 if (!rs->max_sectors) 661 rs->max_sectors = SAFE_MAX_SECTORS; 662 if (!rs->max_hw_sectors) 663 rs->max_hw_sectors = SAFE_MAX_SECTORS; 664 if (!rs->max_phys_segments) 665 rs->max_phys_segments = MAX_PHYS_SEGMENTS; 666 if (!rs->max_hw_segments) 667 rs->max_hw_segments = MAX_HW_SEGMENTS; 668 if (!rs->hardsect_size) 669 rs->hardsect_size = 1 << SECTOR_SHIFT; 670 if (!rs->max_segment_size) 671 rs->max_segment_size = MAX_SEGMENT_SIZE; 672 if (!rs->seg_boundary_mask) 673 rs->seg_boundary_mask = -1; 674 if (!rs->bounce_pfn) 675 rs->bounce_pfn = -1; 676 } 677 678 int dm_table_add_target(struct dm_table *t, const char *type, 679 sector_t start, sector_t len, char *params) 680 { 681 int r = -EINVAL, argc; 682 char **argv; 683 struct dm_target *tgt; 684 685 if ((r = check_space(t))) 686 return r; 687 688 tgt = t->targets + t->num_targets; 689 memset(tgt, 0, sizeof(*tgt)); 690 691 if (!len) { 692 DMERR("%s: zero-length target", dm_device_name(t->md)); 693 return -EINVAL; 694 } 695 696 tgt->type = dm_get_target_type(type); 697 if (!tgt->type) { 698 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 699 type); 700 return -EINVAL; 701 } 702 703 tgt->table = t; 704 tgt->begin = start; 705 tgt->len = len; 706 tgt->error = "Unknown error"; 707 708 /* 709 * Does this target adjoin the previous one ? 710 */ 711 if (!adjoin(t, tgt)) { 712 tgt->error = "Gap in table"; 713 r = -EINVAL; 714 goto bad; 715 } 716 717 r = dm_split_args(&argc, &argv, params); 718 if (r) { 719 tgt->error = "couldn't split parameters (insufficient memory)"; 720 goto bad; 721 } 722 723 r = tgt->type->ctr(tgt, argc, argv); 724 kfree(argv); 725 if (r) 726 goto bad; 727 728 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 729 730 /* FIXME: the plan is to combine high here and then have 731 * the merge fn apply the target level restrictions. */ 732 combine_restrictions_low(&t->limits, &tgt->limits); 733 return 0; 734 735 bad: 736 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 737 dm_put_target_type(tgt->type); 738 return r; 739 } 740 741 static int setup_indexes(struct dm_table *t) 742 { 743 int i; 744 unsigned int total = 0; 745 sector_t *indexes; 746 747 /* allocate the space for *all* the indexes */ 748 for (i = t->depth - 2; i >= 0; i--) { 749 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 750 total += t->counts[i]; 751 } 752 753 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 754 if (!indexes) 755 return -ENOMEM; 756 757 /* set up internal nodes, bottom-up */ 758 for (i = t->depth - 2; i >= 0; i--) { 759 t->index[i] = indexes; 760 indexes += (KEYS_PER_NODE * t->counts[i]); 761 setup_btree_index(i, t); 762 } 763 764 return 0; 765 } 766 767 /* 768 * Builds the btree to index the map. 769 */ 770 int dm_table_complete(struct dm_table *t) 771 { 772 int r = 0; 773 unsigned int leaf_nodes; 774 775 check_for_valid_limits(&t->limits); 776 777 /* how many indexes will the btree have ? */ 778 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 779 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 780 781 /* leaf layer has already been set up */ 782 t->counts[t->depth - 1] = leaf_nodes; 783 t->index[t->depth - 1] = t->highs; 784 785 if (t->depth >= 2) 786 r = setup_indexes(t); 787 788 return r; 789 } 790 791 static DEFINE_MUTEX(_event_lock); 792 void dm_table_event_callback(struct dm_table *t, 793 void (*fn)(void *), void *context) 794 { 795 mutex_lock(&_event_lock); 796 t->event_fn = fn; 797 t->event_context = context; 798 mutex_unlock(&_event_lock); 799 } 800 801 void dm_table_event(struct dm_table *t) 802 { 803 /* 804 * You can no longer call dm_table_event() from interrupt 805 * context, use a bottom half instead. 806 */ 807 BUG_ON(in_interrupt()); 808 809 mutex_lock(&_event_lock); 810 if (t->event_fn) 811 t->event_fn(t->event_context); 812 mutex_unlock(&_event_lock); 813 } 814 815 sector_t dm_table_get_size(struct dm_table *t) 816 { 817 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 818 } 819 820 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 821 { 822 if (index >= t->num_targets) 823 return NULL; 824 825 return t->targets + index; 826 } 827 828 /* 829 * Search the btree for the correct target. 830 * 831 * Caller should check returned pointer with dm_target_is_valid() 832 * to trap I/O beyond end of device. 833 */ 834 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 835 { 836 unsigned int l, n = 0, k = 0; 837 sector_t *node; 838 839 for (l = 0; l < t->depth; l++) { 840 n = get_child(n, k); 841 node = get_node(t, l, n); 842 843 for (k = 0; k < KEYS_PER_NODE; k++) 844 if (node[k] >= sector) 845 break; 846 } 847 848 return &t->targets[(KEYS_PER_NODE * n) + k]; 849 } 850 851 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q) 852 { 853 /* 854 * Make sure we obey the optimistic sub devices 855 * restrictions. 856 */ 857 blk_queue_max_sectors(q, t->limits.max_sectors); 858 q->max_phys_segments = t->limits.max_phys_segments; 859 q->max_hw_segments = t->limits.max_hw_segments; 860 q->hardsect_size = t->limits.hardsect_size; 861 q->max_segment_size = t->limits.max_segment_size; 862 q->max_hw_sectors = t->limits.max_hw_sectors; 863 q->seg_boundary_mask = t->limits.seg_boundary_mask; 864 q->bounce_pfn = t->limits.bounce_pfn; 865 866 if (t->limits.no_cluster) 867 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 868 else 869 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q); 870 871 } 872 873 unsigned int dm_table_get_num_targets(struct dm_table *t) 874 { 875 return t->num_targets; 876 } 877 878 struct list_head *dm_table_get_devices(struct dm_table *t) 879 { 880 return &t->devices; 881 } 882 883 int dm_table_get_mode(struct dm_table *t) 884 { 885 return t->mode; 886 } 887 888 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 889 { 890 int i = t->num_targets; 891 struct dm_target *ti = t->targets; 892 893 while (i--) { 894 if (postsuspend) { 895 if (ti->type->postsuspend) 896 ti->type->postsuspend(ti); 897 } else if (ti->type->presuspend) 898 ti->type->presuspend(ti); 899 900 ti++; 901 } 902 } 903 904 void dm_table_presuspend_targets(struct dm_table *t) 905 { 906 if (!t) 907 return; 908 909 suspend_targets(t, 0); 910 } 911 912 void dm_table_postsuspend_targets(struct dm_table *t) 913 { 914 if (!t) 915 return; 916 917 suspend_targets(t, 1); 918 } 919 920 int dm_table_resume_targets(struct dm_table *t) 921 { 922 int i, r = 0; 923 924 for (i = 0; i < t->num_targets; i++) { 925 struct dm_target *ti = t->targets + i; 926 927 if (!ti->type->preresume) 928 continue; 929 930 r = ti->type->preresume(ti); 931 if (r) 932 return r; 933 } 934 935 for (i = 0; i < t->num_targets; i++) { 936 struct dm_target *ti = t->targets + i; 937 938 if (ti->type->resume) 939 ti->type->resume(ti); 940 } 941 942 return 0; 943 } 944 945 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 946 { 947 struct dm_dev_internal *dd; 948 struct list_head *devices = dm_table_get_devices(t); 949 int r = 0; 950 951 list_for_each_entry(dd, devices, list) { 952 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 953 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 954 } 955 956 return r; 957 } 958 959 void dm_table_unplug_all(struct dm_table *t) 960 { 961 struct dm_dev_internal *dd; 962 struct list_head *devices = dm_table_get_devices(t); 963 964 list_for_each_entry(dd, devices, list) { 965 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 966 967 blk_unplug(q); 968 } 969 } 970 971 struct mapped_device *dm_table_get_md(struct dm_table *t) 972 { 973 dm_get(t->md); 974 975 return t->md; 976 } 977 978 EXPORT_SYMBOL(dm_vcalloc); 979 EXPORT_SYMBOL(dm_get_device); 980 EXPORT_SYMBOL(dm_put_device); 981 EXPORT_SYMBOL(dm_table_event); 982 EXPORT_SYMBOL(dm_table_get_size); 983 EXPORT_SYMBOL(dm_table_get_mode); 984 EXPORT_SYMBOL(dm_table_get_md); 985 EXPORT_SYMBOL(dm_table_put); 986 EXPORT_SYMBOL(dm_table_get); 987 EXPORT_SYMBOL(dm_table_unplug_all); 988