xref: /openbmc/linux/drivers/md/dm-table.c (revision 82b1519b345d61dcfae526e3fcb08128f39f9bcc)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <asm/atomic.h>
19 
20 #define DM_MSG_PREFIX "table"
21 
22 #define MAX_DEPTH 16
23 #define NODE_SIZE L1_CACHE_BYTES
24 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
25 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
26 
27 struct dm_table {
28 	struct mapped_device *md;
29 	atomic_t holders;
30 
31 	/* btree table */
32 	unsigned int depth;
33 	unsigned int counts[MAX_DEPTH];	/* in nodes */
34 	sector_t *index[MAX_DEPTH];
35 
36 	unsigned int num_targets;
37 	unsigned int num_allocated;
38 	sector_t *highs;
39 	struct dm_target *targets;
40 
41 	/*
42 	 * Indicates the rw permissions for the new logical
43 	 * device.  This should be a combination of FMODE_READ
44 	 * and FMODE_WRITE.
45 	 */
46 	int mode;
47 
48 	/* a list of devices used by this table */
49 	struct list_head devices;
50 
51 	/*
52 	 * These are optimistic limits taken from all the
53 	 * targets, some targets will need smaller limits.
54 	 */
55 	struct io_restrictions limits;
56 
57 	/* events get handed up using this callback */
58 	void (*event_fn)(void *);
59 	void *event_context;
60 };
61 
62 /*
63  * Similar to ceiling(log_size(n))
64  */
65 static unsigned int int_log(unsigned int n, unsigned int base)
66 {
67 	int result = 0;
68 
69 	while (n > 1) {
70 		n = dm_div_up(n, base);
71 		result++;
72 	}
73 
74 	return result;
75 }
76 
77 /*
78  * Returns the minimum that is _not_ zero, unless both are zero.
79  */
80 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
81 
82 /*
83  * Combine two io_restrictions, always taking the lower value.
84  */
85 static void combine_restrictions_low(struct io_restrictions *lhs,
86 				     struct io_restrictions *rhs)
87 {
88 	lhs->max_sectors =
89 		min_not_zero(lhs->max_sectors, rhs->max_sectors);
90 
91 	lhs->max_phys_segments =
92 		min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
93 
94 	lhs->max_hw_segments =
95 		min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
96 
97 	lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
98 
99 	lhs->max_segment_size =
100 		min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
101 
102 	lhs->max_hw_sectors =
103 		min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors);
104 
105 	lhs->seg_boundary_mask =
106 		min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
107 
108 	lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn);
109 
110 	lhs->no_cluster |= rhs->no_cluster;
111 }
112 
113 /*
114  * Calculate the index of the child node of the n'th node k'th key.
115  */
116 static inline unsigned int get_child(unsigned int n, unsigned int k)
117 {
118 	return (n * CHILDREN_PER_NODE) + k;
119 }
120 
121 /*
122  * Return the n'th node of level l from table t.
123  */
124 static inline sector_t *get_node(struct dm_table *t,
125 				 unsigned int l, unsigned int n)
126 {
127 	return t->index[l] + (n * KEYS_PER_NODE);
128 }
129 
130 /*
131  * Return the highest key that you could lookup from the n'th
132  * node on level l of the btree.
133  */
134 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
135 {
136 	for (; l < t->depth - 1; l++)
137 		n = get_child(n, CHILDREN_PER_NODE - 1);
138 
139 	if (n >= t->counts[l])
140 		return (sector_t) - 1;
141 
142 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
143 }
144 
145 /*
146  * Fills in a level of the btree based on the highs of the level
147  * below it.
148  */
149 static int setup_btree_index(unsigned int l, struct dm_table *t)
150 {
151 	unsigned int n, k;
152 	sector_t *node;
153 
154 	for (n = 0U; n < t->counts[l]; n++) {
155 		node = get_node(t, l, n);
156 
157 		for (k = 0U; k < KEYS_PER_NODE; k++)
158 			node[k] = high(t, l + 1, get_child(n, k));
159 	}
160 
161 	return 0;
162 }
163 
164 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
165 {
166 	unsigned long size;
167 	void *addr;
168 
169 	/*
170 	 * Check that we're not going to overflow.
171 	 */
172 	if (nmemb > (ULONG_MAX / elem_size))
173 		return NULL;
174 
175 	size = nmemb * elem_size;
176 	addr = vmalloc(size);
177 	if (addr)
178 		memset(addr, 0, size);
179 
180 	return addr;
181 }
182 
183 /*
184  * highs, and targets are managed as dynamic arrays during a
185  * table load.
186  */
187 static int alloc_targets(struct dm_table *t, unsigned int num)
188 {
189 	sector_t *n_highs;
190 	struct dm_target *n_targets;
191 	int n = t->num_targets;
192 
193 	/*
194 	 * Allocate both the target array and offset array at once.
195 	 * Append an empty entry to catch sectors beyond the end of
196 	 * the device.
197 	 */
198 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
199 					  sizeof(sector_t));
200 	if (!n_highs)
201 		return -ENOMEM;
202 
203 	n_targets = (struct dm_target *) (n_highs + num);
204 
205 	if (n) {
206 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
207 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
208 	}
209 
210 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
211 	vfree(t->highs);
212 
213 	t->num_allocated = num;
214 	t->highs = n_highs;
215 	t->targets = n_targets;
216 
217 	return 0;
218 }
219 
220 int dm_table_create(struct dm_table **result, int mode,
221 		    unsigned num_targets, struct mapped_device *md)
222 {
223 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
224 
225 	if (!t)
226 		return -ENOMEM;
227 
228 	INIT_LIST_HEAD(&t->devices);
229 	atomic_set(&t->holders, 1);
230 
231 	if (!num_targets)
232 		num_targets = KEYS_PER_NODE;
233 
234 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
235 
236 	if (alloc_targets(t, num_targets)) {
237 		kfree(t);
238 		t = NULL;
239 		return -ENOMEM;
240 	}
241 
242 	t->mode = mode;
243 	t->md = md;
244 	*result = t;
245 	return 0;
246 }
247 
248 static void free_devices(struct list_head *devices)
249 {
250 	struct list_head *tmp, *next;
251 
252 	list_for_each_safe(tmp, next, devices) {
253 		struct dm_dev_internal *dd =
254 		    list_entry(tmp, struct dm_dev_internal, list);
255 		kfree(dd);
256 	}
257 }
258 
259 static void table_destroy(struct dm_table *t)
260 {
261 	unsigned int i;
262 
263 	/* free the indexes (see dm_table_complete) */
264 	if (t->depth >= 2)
265 		vfree(t->index[t->depth - 2]);
266 
267 	/* free the targets */
268 	for (i = 0; i < t->num_targets; i++) {
269 		struct dm_target *tgt = t->targets + i;
270 
271 		if (tgt->type->dtr)
272 			tgt->type->dtr(tgt);
273 
274 		dm_put_target_type(tgt->type);
275 	}
276 
277 	vfree(t->highs);
278 
279 	/* free the device list */
280 	if (t->devices.next != &t->devices) {
281 		DMWARN("devices still present during destroy: "
282 		       "dm_table_remove_device calls missing");
283 
284 		free_devices(&t->devices);
285 	}
286 
287 	kfree(t);
288 }
289 
290 void dm_table_get(struct dm_table *t)
291 {
292 	atomic_inc(&t->holders);
293 }
294 
295 void dm_table_put(struct dm_table *t)
296 {
297 	if (!t)
298 		return;
299 
300 	if (atomic_dec_and_test(&t->holders))
301 		table_destroy(t);
302 }
303 
304 /*
305  * Checks to see if we need to extend highs or targets.
306  */
307 static inline int check_space(struct dm_table *t)
308 {
309 	if (t->num_targets >= t->num_allocated)
310 		return alloc_targets(t, t->num_allocated * 2);
311 
312 	return 0;
313 }
314 
315 /*
316  * Convert a device path to a dev_t.
317  */
318 static int lookup_device(const char *path, dev_t *dev)
319 {
320 	struct block_device *bdev = lookup_bdev(path);
321 	if (IS_ERR(bdev))
322 		return PTR_ERR(bdev);
323 	*dev = bdev->bd_dev;
324 	bdput(bdev);
325 	return 0;
326 }
327 
328 /*
329  * See if we've already got a device in the list.
330  */
331 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
332 {
333 	struct dm_dev_internal *dd;
334 
335 	list_for_each_entry (dd, l, list)
336 		if (dd->dm_dev.bdev->bd_dev == dev)
337 			return dd;
338 
339 	return NULL;
340 }
341 
342 /*
343  * Open a device so we can use it as a map destination.
344  */
345 static int open_dev(struct dm_dev_internal *d, dev_t dev,
346 		    struct mapped_device *md)
347 {
348 	static char *_claim_ptr = "I belong to device-mapper";
349 	struct block_device *bdev;
350 
351 	int r;
352 
353 	BUG_ON(d->dm_dev.bdev);
354 
355 	bdev = open_by_devnum(dev, d->dm_dev.mode);
356 	if (IS_ERR(bdev))
357 		return PTR_ERR(bdev);
358 	r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
359 	if (r)
360 		blkdev_put(bdev);
361 	else
362 		d->dm_dev.bdev = bdev;
363 	return r;
364 }
365 
366 /*
367  * Close a device that we've been using.
368  */
369 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
370 {
371 	if (!d->dm_dev.bdev)
372 		return;
373 
374 	bd_release_from_disk(d->dm_dev.bdev, dm_disk(md));
375 	blkdev_put(d->dm_dev.bdev);
376 	d->dm_dev.bdev = NULL;
377 }
378 
379 /*
380  * If possible, this checks an area of a destination device is valid.
381  */
382 static int check_device_area(struct dm_dev_internal *dd, sector_t start,
383 			     sector_t len)
384 {
385 	sector_t dev_size = dd->dm_dev.bdev->bd_inode->i_size >> SECTOR_SHIFT;
386 
387 	if (!dev_size)
388 		return 1;
389 
390 	return ((start < dev_size) && (len <= (dev_size - start)));
391 }
392 
393 /*
394  * This upgrades the mode on an already open dm_dev.  Being
395  * careful to leave things as they were if we fail to reopen the
396  * device.
397  */
398 static int upgrade_mode(struct dm_dev_internal *dd, int new_mode,
399 			struct mapped_device *md)
400 {
401 	int r;
402 	struct dm_dev_internal dd_copy;
403 	dev_t dev = dd->dm_dev.bdev->bd_dev;
404 
405 	dd_copy = *dd;
406 
407 	dd->dm_dev.mode |= new_mode;
408 	dd->dm_dev.bdev = NULL;
409 	r = open_dev(dd, dev, md);
410 	if (!r)
411 		close_dev(&dd_copy, md);
412 	else
413 		*dd = dd_copy;
414 
415 	return r;
416 }
417 
418 /*
419  * Add a device to the list, or just increment the usage count if
420  * it's already present.
421  */
422 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
423 			      const char *path, sector_t start, sector_t len,
424 			      int mode, struct dm_dev **result)
425 {
426 	int r;
427 	dev_t uninitialized_var(dev);
428 	struct dm_dev_internal *dd;
429 	unsigned int major, minor;
430 
431 	BUG_ON(!t);
432 
433 	if (sscanf(path, "%u:%u", &major, &minor) == 2) {
434 		/* Extract the major/minor numbers */
435 		dev = MKDEV(major, minor);
436 		if (MAJOR(dev) != major || MINOR(dev) != minor)
437 			return -EOVERFLOW;
438 	} else {
439 		/* convert the path to a device */
440 		if ((r = lookup_device(path, &dev)))
441 			return r;
442 	}
443 
444 	dd = find_device(&t->devices, dev);
445 	if (!dd) {
446 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
447 		if (!dd)
448 			return -ENOMEM;
449 
450 		dd->dm_dev.mode = mode;
451 		dd->dm_dev.bdev = NULL;
452 
453 		if ((r = open_dev(dd, dev, t->md))) {
454 			kfree(dd);
455 			return r;
456 		}
457 
458 		format_dev_t(dd->dm_dev.name, dev);
459 
460 		atomic_set(&dd->count, 0);
461 		list_add(&dd->list, &t->devices);
462 
463 	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
464 		r = upgrade_mode(dd, mode, t->md);
465 		if (r)
466 			return r;
467 	}
468 	atomic_inc(&dd->count);
469 
470 	if (!check_device_area(dd, start, len)) {
471 		DMWARN("device %s too small for target", path);
472 		dm_put_device(ti, &dd->dm_dev);
473 		return -EINVAL;
474 	}
475 
476 	*result = &dd->dm_dev;
477 
478 	return 0;
479 }
480 
481 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
482 {
483 	struct request_queue *q = bdev_get_queue(bdev);
484 	struct io_restrictions *rs = &ti->limits;
485 
486 	/*
487 	 * Combine the device limits low.
488 	 *
489 	 * FIXME: if we move an io_restriction struct
490 	 *        into q this would just be a call to
491 	 *        combine_restrictions_low()
492 	 */
493 	rs->max_sectors =
494 		min_not_zero(rs->max_sectors, q->max_sectors);
495 
496 	/*
497 	 * Check if merge fn is supported.
498 	 * If not we'll force DM to use PAGE_SIZE or
499 	 * smaller I/O, just to be safe.
500 	 */
501 
502 	if (q->merge_bvec_fn && !ti->type->merge)
503 		rs->max_sectors =
504 			min_not_zero(rs->max_sectors,
505 				     (unsigned int) (PAGE_SIZE >> 9));
506 
507 	rs->max_phys_segments =
508 		min_not_zero(rs->max_phys_segments,
509 			     q->max_phys_segments);
510 
511 	rs->max_hw_segments =
512 		min_not_zero(rs->max_hw_segments, q->max_hw_segments);
513 
514 	rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
515 
516 	rs->max_segment_size =
517 		min_not_zero(rs->max_segment_size, q->max_segment_size);
518 
519 	rs->max_hw_sectors =
520 		min_not_zero(rs->max_hw_sectors, q->max_hw_sectors);
521 
522 	rs->seg_boundary_mask =
523 		min_not_zero(rs->seg_boundary_mask,
524 			     q->seg_boundary_mask);
525 
526 	rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn);
527 
528 	rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
529 }
530 EXPORT_SYMBOL_GPL(dm_set_device_limits);
531 
532 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
533 		  sector_t len, int mode, struct dm_dev **result)
534 {
535 	int r = __table_get_device(ti->table, ti, path,
536 				   start, len, mode, result);
537 
538 	if (!r)
539 		dm_set_device_limits(ti, (*result)->bdev);
540 
541 	return r;
542 }
543 
544 /*
545  * Decrement a devices use count and remove it if necessary.
546  */
547 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
548 {
549 	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
550 						  dm_dev);
551 
552 	if (atomic_dec_and_test(&dd->count)) {
553 		close_dev(dd, ti->table->md);
554 		list_del(&dd->list);
555 		kfree(dd);
556 	}
557 }
558 
559 /*
560  * Checks to see if the target joins onto the end of the table.
561  */
562 static int adjoin(struct dm_table *table, struct dm_target *ti)
563 {
564 	struct dm_target *prev;
565 
566 	if (!table->num_targets)
567 		return !ti->begin;
568 
569 	prev = &table->targets[table->num_targets - 1];
570 	return (ti->begin == (prev->begin + prev->len));
571 }
572 
573 /*
574  * Used to dynamically allocate the arg array.
575  */
576 static char **realloc_argv(unsigned *array_size, char **old_argv)
577 {
578 	char **argv;
579 	unsigned new_size;
580 
581 	new_size = *array_size ? *array_size * 2 : 64;
582 	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
583 	if (argv) {
584 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
585 		*array_size = new_size;
586 	}
587 
588 	kfree(old_argv);
589 	return argv;
590 }
591 
592 /*
593  * Destructively splits up the argument list to pass to ctr.
594  */
595 int dm_split_args(int *argc, char ***argvp, char *input)
596 {
597 	char *start, *end = input, *out, **argv = NULL;
598 	unsigned array_size = 0;
599 
600 	*argc = 0;
601 
602 	if (!input) {
603 		*argvp = NULL;
604 		return 0;
605 	}
606 
607 	argv = realloc_argv(&array_size, argv);
608 	if (!argv)
609 		return -ENOMEM;
610 
611 	while (1) {
612 		start = end;
613 
614 		/* Skip whitespace */
615 		while (*start && isspace(*start))
616 			start++;
617 
618 		if (!*start)
619 			break;	/* success, we hit the end */
620 
621 		/* 'out' is used to remove any back-quotes */
622 		end = out = start;
623 		while (*end) {
624 			/* Everything apart from '\0' can be quoted */
625 			if (*end == '\\' && *(end + 1)) {
626 				*out++ = *(end + 1);
627 				end += 2;
628 				continue;
629 			}
630 
631 			if (isspace(*end))
632 				break;	/* end of token */
633 
634 			*out++ = *end++;
635 		}
636 
637 		/* have we already filled the array ? */
638 		if ((*argc + 1) > array_size) {
639 			argv = realloc_argv(&array_size, argv);
640 			if (!argv)
641 				return -ENOMEM;
642 		}
643 
644 		/* we know this is whitespace */
645 		if (*end)
646 			end++;
647 
648 		/* terminate the string and put it in the array */
649 		*out = '\0';
650 		argv[*argc] = start;
651 		(*argc)++;
652 	}
653 
654 	*argvp = argv;
655 	return 0;
656 }
657 
658 static void check_for_valid_limits(struct io_restrictions *rs)
659 {
660 	if (!rs->max_sectors)
661 		rs->max_sectors = SAFE_MAX_SECTORS;
662 	if (!rs->max_hw_sectors)
663 		rs->max_hw_sectors = SAFE_MAX_SECTORS;
664 	if (!rs->max_phys_segments)
665 		rs->max_phys_segments = MAX_PHYS_SEGMENTS;
666 	if (!rs->max_hw_segments)
667 		rs->max_hw_segments = MAX_HW_SEGMENTS;
668 	if (!rs->hardsect_size)
669 		rs->hardsect_size = 1 << SECTOR_SHIFT;
670 	if (!rs->max_segment_size)
671 		rs->max_segment_size = MAX_SEGMENT_SIZE;
672 	if (!rs->seg_boundary_mask)
673 		rs->seg_boundary_mask = -1;
674 	if (!rs->bounce_pfn)
675 		rs->bounce_pfn = -1;
676 }
677 
678 int dm_table_add_target(struct dm_table *t, const char *type,
679 			sector_t start, sector_t len, char *params)
680 {
681 	int r = -EINVAL, argc;
682 	char **argv;
683 	struct dm_target *tgt;
684 
685 	if ((r = check_space(t)))
686 		return r;
687 
688 	tgt = t->targets + t->num_targets;
689 	memset(tgt, 0, sizeof(*tgt));
690 
691 	if (!len) {
692 		DMERR("%s: zero-length target", dm_device_name(t->md));
693 		return -EINVAL;
694 	}
695 
696 	tgt->type = dm_get_target_type(type);
697 	if (!tgt->type) {
698 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
699 		      type);
700 		return -EINVAL;
701 	}
702 
703 	tgt->table = t;
704 	tgt->begin = start;
705 	tgt->len = len;
706 	tgt->error = "Unknown error";
707 
708 	/*
709 	 * Does this target adjoin the previous one ?
710 	 */
711 	if (!adjoin(t, tgt)) {
712 		tgt->error = "Gap in table";
713 		r = -EINVAL;
714 		goto bad;
715 	}
716 
717 	r = dm_split_args(&argc, &argv, params);
718 	if (r) {
719 		tgt->error = "couldn't split parameters (insufficient memory)";
720 		goto bad;
721 	}
722 
723 	r = tgt->type->ctr(tgt, argc, argv);
724 	kfree(argv);
725 	if (r)
726 		goto bad;
727 
728 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
729 
730 	/* FIXME: the plan is to combine high here and then have
731 	 * the merge fn apply the target level restrictions. */
732 	combine_restrictions_low(&t->limits, &tgt->limits);
733 	return 0;
734 
735  bad:
736 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
737 	dm_put_target_type(tgt->type);
738 	return r;
739 }
740 
741 static int setup_indexes(struct dm_table *t)
742 {
743 	int i;
744 	unsigned int total = 0;
745 	sector_t *indexes;
746 
747 	/* allocate the space for *all* the indexes */
748 	for (i = t->depth - 2; i >= 0; i--) {
749 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
750 		total += t->counts[i];
751 	}
752 
753 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
754 	if (!indexes)
755 		return -ENOMEM;
756 
757 	/* set up internal nodes, bottom-up */
758 	for (i = t->depth - 2; i >= 0; i--) {
759 		t->index[i] = indexes;
760 		indexes += (KEYS_PER_NODE * t->counts[i]);
761 		setup_btree_index(i, t);
762 	}
763 
764 	return 0;
765 }
766 
767 /*
768  * Builds the btree to index the map.
769  */
770 int dm_table_complete(struct dm_table *t)
771 {
772 	int r = 0;
773 	unsigned int leaf_nodes;
774 
775 	check_for_valid_limits(&t->limits);
776 
777 	/* how many indexes will the btree have ? */
778 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
779 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
780 
781 	/* leaf layer has already been set up */
782 	t->counts[t->depth - 1] = leaf_nodes;
783 	t->index[t->depth - 1] = t->highs;
784 
785 	if (t->depth >= 2)
786 		r = setup_indexes(t);
787 
788 	return r;
789 }
790 
791 static DEFINE_MUTEX(_event_lock);
792 void dm_table_event_callback(struct dm_table *t,
793 			     void (*fn)(void *), void *context)
794 {
795 	mutex_lock(&_event_lock);
796 	t->event_fn = fn;
797 	t->event_context = context;
798 	mutex_unlock(&_event_lock);
799 }
800 
801 void dm_table_event(struct dm_table *t)
802 {
803 	/*
804 	 * You can no longer call dm_table_event() from interrupt
805 	 * context, use a bottom half instead.
806 	 */
807 	BUG_ON(in_interrupt());
808 
809 	mutex_lock(&_event_lock);
810 	if (t->event_fn)
811 		t->event_fn(t->event_context);
812 	mutex_unlock(&_event_lock);
813 }
814 
815 sector_t dm_table_get_size(struct dm_table *t)
816 {
817 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
818 }
819 
820 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
821 {
822 	if (index >= t->num_targets)
823 		return NULL;
824 
825 	return t->targets + index;
826 }
827 
828 /*
829  * Search the btree for the correct target.
830  *
831  * Caller should check returned pointer with dm_target_is_valid()
832  * to trap I/O beyond end of device.
833  */
834 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
835 {
836 	unsigned int l, n = 0, k = 0;
837 	sector_t *node;
838 
839 	for (l = 0; l < t->depth; l++) {
840 		n = get_child(n, k);
841 		node = get_node(t, l, n);
842 
843 		for (k = 0; k < KEYS_PER_NODE; k++)
844 			if (node[k] >= sector)
845 				break;
846 	}
847 
848 	return &t->targets[(KEYS_PER_NODE * n) + k];
849 }
850 
851 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
852 {
853 	/*
854 	 * Make sure we obey the optimistic sub devices
855 	 * restrictions.
856 	 */
857 	blk_queue_max_sectors(q, t->limits.max_sectors);
858 	q->max_phys_segments = t->limits.max_phys_segments;
859 	q->max_hw_segments = t->limits.max_hw_segments;
860 	q->hardsect_size = t->limits.hardsect_size;
861 	q->max_segment_size = t->limits.max_segment_size;
862 	q->max_hw_sectors = t->limits.max_hw_sectors;
863 	q->seg_boundary_mask = t->limits.seg_boundary_mask;
864 	q->bounce_pfn = t->limits.bounce_pfn;
865 
866 	if (t->limits.no_cluster)
867 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
868 	else
869 		queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
870 
871 }
872 
873 unsigned int dm_table_get_num_targets(struct dm_table *t)
874 {
875 	return t->num_targets;
876 }
877 
878 struct list_head *dm_table_get_devices(struct dm_table *t)
879 {
880 	return &t->devices;
881 }
882 
883 int dm_table_get_mode(struct dm_table *t)
884 {
885 	return t->mode;
886 }
887 
888 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
889 {
890 	int i = t->num_targets;
891 	struct dm_target *ti = t->targets;
892 
893 	while (i--) {
894 		if (postsuspend) {
895 			if (ti->type->postsuspend)
896 				ti->type->postsuspend(ti);
897 		} else if (ti->type->presuspend)
898 			ti->type->presuspend(ti);
899 
900 		ti++;
901 	}
902 }
903 
904 void dm_table_presuspend_targets(struct dm_table *t)
905 {
906 	if (!t)
907 		return;
908 
909 	suspend_targets(t, 0);
910 }
911 
912 void dm_table_postsuspend_targets(struct dm_table *t)
913 {
914 	if (!t)
915 		return;
916 
917 	suspend_targets(t, 1);
918 }
919 
920 int dm_table_resume_targets(struct dm_table *t)
921 {
922 	int i, r = 0;
923 
924 	for (i = 0; i < t->num_targets; i++) {
925 		struct dm_target *ti = t->targets + i;
926 
927 		if (!ti->type->preresume)
928 			continue;
929 
930 		r = ti->type->preresume(ti);
931 		if (r)
932 			return r;
933 	}
934 
935 	for (i = 0; i < t->num_targets; i++) {
936 		struct dm_target *ti = t->targets + i;
937 
938 		if (ti->type->resume)
939 			ti->type->resume(ti);
940 	}
941 
942 	return 0;
943 }
944 
945 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
946 {
947 	struct dm_dev_internal *dd;
948 	struct list_head *devices = dm_table_get_devices(t);
949 	int r = 0;
950 
951 	list_for_each_entry(dd, devices, list) {
952 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
953 		r |= bdi_congested(&q->backing_dev_info, bdi_bits);
954 	}
955 
956 	return r;
957 }
958 
959 void dm_table_unplug_all(struct dm_table *t)
960 {
961 	struct dm_dev_internal *dd;
962 	struct list_head *devices = dm_table_get_devices(t);
963 
964 	list_for_each_entry(dd, devices, list) {
965 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
966 
967 		blk_unplug(q);
968 	}
969 }
970 
971 struct mapped_device *dm_table_get_md(struct dm_table *t)
972 {
973 	dm_get(t->md);
974 
975 	return t->md;
976 }
977 
978 EXPORT_SYMBOL(dm_vcalloc);
979 EXPORT_SYMBOL(dm_get_device);
980 EXPORT_SYMBOL(dm_put_device);
981 EXPORT_SYMBOL(dm_table_event);
982 EXPORT_SYMBOL(dm_table_get_size);
983 EXPORT_SYMBOL(dm_table_get_mode);
984 EXPORT_SYMBOL(dm_table_get_md);
985 EXPORT_SYMBOL(dm_table_put);
986 EXPORT_SYMBOL(dm_table_get);
987 EXPORT_SYMBOL(dm_table_unplug_all);
988