1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <asm/atomic.h> 21 22 #define DM_MSG_PREFIX "table" 23 24 #define MAX_DEPTH 16 25 #define NODE_SIZE L1_CACHE_BYTES 26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 28 29 /* 30 * The table has always exactly one reference from either mapped_device->map 31 * or hash_cell->new_map. This reference is not counted in table->holders. 32 * A pair of dm_create_table/dm_destroy_table functions is used for table 33 * creation/destruction. 34 * 35 * Temporary references from the other code increase table->holders. A pair 36 * of dm_table_get/dm_table_put functions is used to manipulate it. 37 * 38 * When the table is about to be destroyed, we wait for table->holders to 39 * drop to zero. 40 */ 41 42 struct dm_table { 43 struct mapped_device *md; 44 atomic_t holders; 45 unsigned type; 46 47 /* btree table */ 48 unsigned int depth; 49 unsigned int counts[MAX_DEPTH]; /* in nodes */ 50 sector_t *index[MAX_DEPTH]; 51 52 unsigned int num_targets; 53 unsigned int num_allocated; 54 sector_t *highs; 55 struct dm_target *targets; 56 57 /* 58 * Indicates the rw permissions for the new logical 59 * device. This should be a combination of FMODE_READ 60 * and FMODE_WRITE. 61 */ 62 fmode_t mode; 63 64 /* a list of devices used by this table */ 65 struct list_head devices; 66 67 /* events get handed up using this callback */ 68 void (*event_fn)(void *); 69 void *event_context; 70 71 struct dm_md_mempools *mempools; 72 }; 73 74 /* 75 * Similar to ceiling(log_size(n)) 76 */ 77 static unsigned int int_log(unsigned int n, unsigned int base) 78 { 79 int result = 0; 80 81 while (n > 1) { 82 n = dm_div_up(n, base); 83 result++; 84 } 85 86 return result; 87 } 88 89 /* 90 * Calculate the index of the child node of the n'th node k'th key. 91 */ 92 static inline unsigned int get_child(unsigned int n, unsigned int k) 93 { 94 return (n * CHILDREN_PER_NODE) + k; 95 } 96 97 /* 98 * Return the n'th node of level l from table t. 99 */ 100 static inline sector_t *get_node(struct dm_table *t, 101 unsigned int l, unsigned int n) 102 { 103 return t->index[l] + (n * KEYS_PER_NODE); 104 } 105 106 /* 107 * Return the highest key that you could lookup from the n'th 108 * node on level l of the btree. 109 */ 110 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 111 { 112 for (; l < t->depth - 1; l++) 113 n = get_child(n, CHILDREN_PER_NODE - 1); 114 115 if (n >= t->counts[l]) 116 return (sector_t) - 1; 117 118 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 119 } 120 121 /* 122 * Fills in a level of the btree based on the highs of the level 123 * below it. 124 */ 125 static int setup_btree_index(unsigned int l, struct dm_table *t) 126 { 127 unsigned int n, k; 128 sector_t *node; 129 130 for (n = 0U; n < t->counts[l]; n++) { 131 node = get_node(t, l, n); 132 133 for (k = 0U; k < KEYS_PER_NODE; k++) 134 node[k] = high(t, l + 1, get_child(n, k)); 135 } 136 137 return 0; 138 } 139 140 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 141 { 142 unsigned long size; 143 void *addr; 144 145 /* 146 * Check that we're not going to overflow. 147 */ 148 if (nmemb > (ULONG_MAX / elem_size)) 149 return NULL; 150 151 size = nmemb * elem_size; 152 addr = vmalloc(size); 153 if (addr) 154 memset(addr, 0, size); 155 156 return addr; 157 } 158 159 /* 160 * highs, and targets are managed as dynamic arrays during a 161 * table load. 162 */ 163 static int alloc_targets(struct dm_table *t, unsigned int num) 164 { 165 sector_t *n_highs; 166 struct dm_target *n_targets; 167 int n = t->num_targets; 168 169 /* 170 * Allocate both the target array and offset array at once. 171 * Append an empty entry to catch sectors beyond the end of 172 * the device. 173 */ 174 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 175 sizeof(sector_t)); 176 if (!n_highs) 177 return -ENOMEM; 178 179 n_targets = (struct dm_target *) (n_highs + num); 180 181 if (n) { 182 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 183 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 184 } 185 186 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 187 vfree(t->highs); 188 189 t->num_allocated = num; 190 t->highs = n_highs; 191 t->targets = n_targets; 192 193 return 0; 194 } 195 196 int dm_table_create(struct dm_table **result, fmode_t mode, 197 unsigned num_targets, struct mapped_device *md) 198 { 199 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 200 201 if (!t) 202 return -ENOMEM; 203 204 INIT_LIST_HEAD(&t->devices); 205 atomic_set(&t->holders, 0); 206 207 if (!num_targets) 208 num_targets = KEYS_PER_NODE; 209 210 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 211 212 if (alloc_targets(t, num_targets)) { 213 kfree(t); 214 t = NULL; 215 return -ENOMEM; 216 } 217 218 t->mode = mode; 219 t->md = md; 220 *result = t; 221 return 0; 222 } 223 224 static void free_devices(struct list_head *devices) 225 { 226 struct list_head *tmp, *next; 227 228 list_for_each_safe(tmp, next, devices) { 229 struct dm_dev_internal *dd = 230 list_entry(tmp, struct dm_dev_internal, list); 231 DMWARN("dm_table_destroy: dm_put_device call missing for %s", 232 dd->dm_dev.name); 233 kfree(dd); 234 } 235 } 236 237 void dm_table_destroy(struct dm_table *t) 238 { 239 unsigned int i; 240 241 if (!t) 242 return; 243 244 while (atomic_read(&t->holders)) 245 msleep(1); 246 smp_mb(); 247 248 /* free the indexes (see dm_table_complete) */ 249 if (t->depth >= 2) 250 vfree(t->index[t->depth - 2]); 251 252 /* free the targets */ 253 for (i = 0; i < t->num_targets; i++) { 254 struct dm_target *tgt = t->targets + i; 255 256 if (tgt->type->dtr) 257 tgt->type->dtr(tgt); 258 259 dm_put_target_type(tgt->type); 260 } 261 262 vfree(t->highs); 263 264 /* free the device list */ 265 if (t->devices.next != &t->devices) 266 free_devices(&t->devices); 267 268 dm_free_md_mempools(t->mempools); 269 270 kfree(t); 271 } 272 273 void dm_table_get(struct dm_table *t) 274 { 275 atomic_inc(&t->holders); 276 } 277 278 void dm_table_put(struct dm_table *t) 279 { 280 if (!t) 281 return; 282 283 smp_mb__before_atomic_dec(); 284 atomic_dec(&t->holders); 285 } 286 287 /* 288 * Checks to see if we need to extend highs or targets. 289 */ 290 static inline int check_space(struct dm_table *t) 291 { 292 if (t->num_targets >= t->num_allocated) 293 return alloc_targets(t, t->num_allocated * 2); 294 295 return 0; 296 } 297 298 /* 299 * See if we've already got a device in the list. 300 */ 301 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 302 { 303 struct dm_dev_internal *dd; 304 305 list_for_each_entry (dd, l, list) 306 if (dd->dm_dev.bdev->bd_dev == dev) 307 return dd; 308 309 return NULL; 310 } 311 312 /* 313 * Open a device so we can use it as a map destination. 314 */ 315 static int open_dev(struct dm_dev_internal *d, dev_t dev, 316 struct mapped_device *md) 317 { 318 static char *_claim_ptr = "I belong to device-mapper"; 319 struct block_device *bdev; 320 321 int r; 322 323 BUG_ON(d->dm_dev.bdev); 324 325 bdev = open_by_devnum(dev, d->dm_dev.mode); 326 if (IS_ERR(bdev)) 327 return PTR_ERR(bdev); 328 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); 329 if (r) 330 blkdev_put(bdev, d->dm_dev.mode); 331 else 332 d->dm_dev.bdev = bdev; 333 return r; 334 } 335 336 /* 337 * Close a device that we've been using. 338 */ 339 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 340 { 341 if (!d->dm_dev.bdev) 342 return; 343 344 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md)); 345 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode); 346 d->dm_dev.bdev = NULL; 347 } 348 349 /* 350 * If possible, this checks an area of a destination device is invalid. 351 */ 352 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 353 sector_t start, sector_t len, void *data) 354 { 355 struct queue_limits *limits = data; 356 struct block_device *bdev = dev->bdev; 357 sector_t dev_size = 358 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 359 unsigned short logical_block_size_sectors = 360 limits->logical_block_size >> SECTOR_SHIFT; 361 char b[BDEVNAME_SIZE]; 362 363 if (!dev_size) 364 return 0; 365 366 if ((start >= dev_size) || (start + len > dev_size)) { 367 DMWARN("%s: %s too small for target: " 368 "start=%llu, len=%llu, dev_size=%llu", 369 dm_device_name(ti->table->md), bdevname(bdev, b), 370 (unsigned long long)start, 371 (unsigned long long)len, 372 (unsigned long long)dev_size); 373 return 1; 374 } 375 376 if (logical_block_size_sectors <= 1) 377 return 0; 378 379 if (start & (logical_block_size_sectors - 1)) { 380 DMWARN("%s: start=%llu not aligned to h/w " 381 "logical block size %u of %s", 382 dm_device_name(ti->table->md), 383 (unsigned long long)start, 384 limits->logical_block_size, bdevname(bdev, b)); 385 return 1; 386 } 387 388 if (len & (logical_block_size_sectors - 1)) { 389 DMWARN("%s: len=%llu not aligned to h/w " 390 "logical block size %u of %s", 391 dm_device_name(ti->table->md), 392 (unsigned long long)len, 393 limits->logical_block_size, bdevname(bdev, b)); 394 return 1; 395 } 396 397 return 0; 398 } 399 400 /* 401 * This upgrades the mode on an already open dm_dev, being 402 * careful to leave things as they were if we fail to reopen the 403 * device and not to touch the existing bdev field in case 404 * it is accessed concurrently inside dm_table_any_congested(). 405 */ 406 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 407 struct mapped_device *md) 408 { 409 int r; 410 struct dm_dev_internal dd_new, dd_old; 411 412 dd_new = dd_old = *dd; 413 414 dd_new.dm_dev.mode |= new_mode; 415 dd_new.dm_dev.bdev = NULL; 416 417 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 418 if (r) 419 return r; 420 421 dd->dm_dev.mode |= new_mode; 422 close_dev(&dd_old, md); 423 424 return 0; 425 } 426 427 /* 428 * Add a device to the list, or just increment the usage count if 429 * it's already present. 430 */ 431 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 432 const char *path, fmode_t mode, struct dm_dev **result) 433 { 434 int r; 435 dev_t uninitialized_var(dev); 436 struct dm_dev_internal *dd; 437 unsigned int major, minor; 438 439 BUG_ON(!t); 440 441 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 442 /* Extract the major/minor numbers */ 443 dev = MKDEV(major, minor); 444 if (MAJOR(dev) != major || MINOR(dev) != minor) 445 return -EOVERFLOW; 446 } else { 447 /* convert the path to a device */ 448 struct block_device *bdev = lookup_bdev(path); 449 450 if (IS_ERR(bdev)) 451 return PTR_ERR(bdev); 452 dev = bdev->bd_dev; 453 bdput(bdev); 454 } 455 456 dd = find_device(&t->devices, dev); 457 if (!dd) { 458 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 459 if (!dd) 460 return -ENOMEM; 461 462 dd->dm_dev.mode = mode; 463 dd->dm_dev.bdev = NULL; 464 465 if ((r = open_dev(dd, dev, t->md))) { 466 kfree(dd); 467 return r; 468 } 469 470 format_dev_t(dd->dm_dev.name, dev); 471 472 atomic_set(&dd->count, 0); 473 list_add(&dd->list, &t->devices); 474 475 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 476 r = upgrade_mode(dd, mode, t->md); 477 if (r) 478 return r; 479 } 480 atomic_inc(&dd->count); 481 482 *result = &dd->dm_dev; 483 return 0; 484 } 485 486 /* 487 * Returns the minimum that is _not_ zero, unless both are zero. 488 */ 489 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 490 491 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 492 sector_t start, sector_t len, void *data) 493 { 494 struct queue_limits *limits = data; 495 struct block_device *bdev = dev->bdev; 496 struct request_queue *q = bdev_get_queue(bdev); 497 char b[BDEVNAME_SIZE]; 498 499 if (unlikely(!q)) { 500 DMWARN("%s: Cannot set limits for nonexistent device %s", 501 dm_device_name(ti->table->md), bdevname(bdev, b)); 502 return 0; 503 } 504 505 if (bdev_stack_limits(limits, bdev, start) < 0) 506 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 507 "physical_block_size=%u, logical_block_size=%u, " 508 "alignment_offset=%u, start=%llu", 509 dm_device_name(ti->table->md), bdevname(bdev, b), 510 q->limits.physical_block_size, 511 q->limits.logical_block_size, 512 q->limits.alignment_offset, 513 (unsigned long long) start << SECTOR_SHIFT); 514 515 /* 516 * Check if merge fn is supported. 517 * If not we'll force DM to use PAGE_SIZE or 518 * smaller I/O, just to be safe. 519 */ 520 521 if (q->merge_bvec_fn && !ti->type->merge) 522 limits->max_sectors = 523 min_not_zero(limits->max_sectors, 524 (unsigned int) (PAGE_SIZE >> 9)); 525 return 0; 526 } 527 EXPORT_SYMBOL_GPL(dm_set_device_limits); 528 529 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 530 struct dm_dev **result) 531 { 532 return __table_get_device(ti->table, ti, path, mode, result); 533 } 534 535 536 /* 537 * Decrement a devices use count and remove it if necessary. 538 */ 539 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 540 { 541 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 542 dm_dev); 543 544 if (atomic_dec_and_test(&dd->count)) { 545 close_dev(dd, ti->table->md); 546 list_del(&dd->list); 547 kfree(dd); 548 } 549 } 550 551 /* 552 * Checks to see if the target joins onto the end of the table. 553 */ 554 static int adjoin(struct dm_table *table, struct dm_target *ti) 555 { 556 struct dm_target *prev; 557 558 if (!table->num_targets) 559 return !ti->begin; 560 561 prev = &table->targets[table->num_targets - 1]; 562 return (ti->begin == (prev->begin + prev->len)); 563 } 564 565 /* 566 * Used to dynamically allocate the arg array. 567 */ 568 static char **realloc_argv(unsigned *array_size, char **old_argv) 569 { 570 char **argv; 571 unsigned new_size; 572 573 new_size = *array_size ? *array_size * 2 : 64; 574 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 575 if (argv) { 576 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 577 *array_size = new_size; 578 } 579 580 kfree(old_argv); 581 return argv; 582 } 583 584 /* 585 * Destructively splits up the argument list to pass to ctr. 586 */ 587 int dm_split_args(int *argc, char ***argvp, char *input) 588 { 589 char *start, *end = input, *out, **argv = NULL; 590 unsigned array_size = 0; 591 592 *argc = 0; 593 594 if (!input) { 595 *argvp = NULL; 596 return 0; 597 } 598 599 argv = realloc_argv(&array_size, argv); 600 if (!argv) 601 return -ENOMEM; 602 603 while (1) { 604 /* Skip whitespace */ 605 start = skip_spaces(end); 606 607 if (!*start) 608 break; /* success, we hit the end */ 609 610 /* 'out' is used to remove any back-quotes */ 611 end = out = start; 612 while (*end) { 613 /* Everything apart from '\0' can be quoted */ 614 if (*end == '\\' && *(end + 1)) { 615 *out++ = *(end + 1); 616 end += 2; 617 continue; 618 } 619 620 if (isspace(*end)) 621 break; /* end of token */ 622 623 *out++ = *end++; 624 } 625 626 /* have we already filled the array ? */ 627 if ((*argc + 1) > array_size) { 628 argv = realloc_argv(&array_size, argv); 629 if (!argv) 630 return -ENOMEM; 631 } 632 633 /* we know this is whitespace */ 634 if (*end) 635 end++; 636 637 /* terminate the string and put it in the array */ 638 *out = '\0'; 639 argv[*argc] = start; 640 (*argc)++; 641 } 642 643 *argvp = argv; 644 return 0; 645 } 646 647 /* 648 * Impose necessary and sufficient conditions on a devices's table such 649 * that any incoming bio which respects its logical_block_size can be 650 * processed successfully. If it falls across the boundary between 651 * two or more targets, the size of each piece it gets split into must 652 * be compatible with the logical_block_size of the target processing it. 653 */ 654 static int validate_hardware_logical_block_alignment(struct dm_table *table, 655 struct queue_limits *limits) 656 { 657 /* 658 * This function uses arithmetic modulo the logical_block_size 659 * (in units of 512-byte sectors). 660 */ 661 unsigned short device_logical_block_size_sects = 662 limits->logical_block_size >> SECTOR_SHIFT; 663 664 /* 665 * Offset of the start of the next table entry, mod logical_block_size. 666 */ 667 unsigned short next_target_start = 0; 668 669 /* 670 * Given an aligned bio that extends beyond the end of a 671 * target, how many sectors must the next target handle? 672 */ 673 unsigned short remaining = 0; 674 675 struct dm_target *uninitialized_var(ti); 676 struct queue_limits ti_limits; 677 unsigned i = 0; 678 679 /* 680 * Check each entry in the table in turn. 681 */ 682 while (i < dm_table_get_num_targets(table)) { 683 ti = dm_table_get_target(table, i++); 684 685 blk_set_default_limits(&ti_limits); 686 687 /* combine all target devices' limits */ 688 if (ti->type->iterate_devices) 689 ti->type->iterate_devices(ti, dm_set_device_limits, 690 &ti_limits); 691 692 /* 693 * If the remaining sectors fall entirely within this 694 * table entry are they compatible with its logical_block_size? 695 */ 696 if (remaining < ti->len && 697 remaining & ((ti_limits.logical_block_size >> 698 SECTOR_SHIFT) - 1)) 699 break; /* Error */ 700 701 next_target_start = 702 (unsigned short) ((next_target_start + ti->len) & 703 (device_logical_block_size_sects - 1)); 704 remaining = next_target_start ? 705 device_logical_block_size_sects - next_target_start : 0; 706 } 707 708 if (remaining) { 709 DMWARN("%s: table line %u (start sect %llu len %llu) " 710 "not aligned to h/w logical block size %u", 711 dm_device_name(table->md), i, 712 (unsigned long long) ti->begin, 713 (unsigned long long) ti->len, 714 limits->logical_block_size); 715 return -EINVAL; 716 } 717 718 return 0; 719 } 720 721 int dm_table_add_target(struct dm_table *t, const char *type, 722 sector_t start, sector_t len, char *params) 723 { 724 int r = -EINVAL, argc; 725 char **argv; 726 struct dm_target *tgt; 727 728 if ((r = check_space(t))) 729 return r; 730 731 tgt = t->targets + t->num_targets; 732 memset(tgt, 0, sizeof(*tgt)); 733 734 if (!len) { 735 DMERR("%s: zero-length target", dm_device_name(t->md)); 736 return -EINVAL; 737 } 738 739 tgt->type = dm_get_target_type(type); 740 if (!tgt->type) { 741 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 742 type); 743 return -EINVAL; 744 } 745 746 tgt->table = t; 747 tgt->begin = start; 748 tgt->len = len; 749 tgt->error = "Unknown error"; 750 751 /* 752 * Does this target adjoin the previous one ? 753 */ 754 if (!adjoin(t, tgt)) { 755 tgt->error = "Gap in table"; 756 r = -EINVAL; 757 goto bad; 758 } 759 760 r = dm_split_args(&argc, &argv, params); 761 if (r) { 762 tgt->error = "couldn't split parameters (insufficient memory)"; 763 goto bad; 764 } 765 766 r = tgt->type->ctr(tgt, argc, argv); 767 kfree(argv); 768 if (r) 769 goto bad; 770 771 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 772 773 return 0; 774 775 bad: 776 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 777 dm_put_target_type(tgt->type); 778 return r; 779 } 780 781 int dm_table_set_type(struct dm_table *t) 782 { 783 unsigned i; 784 unsigned bio_based = 0, request_based = 0; 785 struct dm_target *tgt; 786 struct dm_dev_internal *dd; 787 struct list_head *devices; 788 789 for (i = 0; i < t->num_targets; i++) { 790 tgt = t->targets + i; 791 if (dm_target_request_based(tgt)) 792 request_based = 1; 793 else 794 bio_based = 1; 795 796 if (bio_based && request_based) { 797 DMWARN("Inconsistent table: different target types" 798 " can't be mixed up"); 799 return -EINVAL; 800 } 801 } 802 803 if (bio_based) { 804 /* We must use this table as bio-based */ 805 t->type = DM_TYPE_BIO_BASED; 806 return 0; 807 } 808 809 BUG_ON(!request_based); /* No targets in this table */ 810 811 /* Non-request-stackable devices can't be used for request-based dm */ 812 devices = dm_table_get_devices(t); 813 list_for_each_entry(dd, devices, list) { 814 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) { 815 DMWARN("table load rejected: including" 816 " non-request-stackable devices"); 817 return -EINVAL; 818 } 819 } 820 821 /* 822 * Request-based dm supports only tables that have a single target now. 823 * To support multiple targets, request splitting support is needed, 824 * and that needs lots of changes in the block-layer. 825 * (e.g. request completion process for partial completion.) 826 */ 827 if (t->num_targets > 1) { 828 DMWARN("Request-based dm doesn't support multiple targets yet"); 829 return -EINVAL; 830 } 831 832 t->type = DM_TYPE_REQUEST_BASED; 833 834 return 0; 835 } 836 837 unsigned dm_table_get_type(struct dm_table *t) 838 { 839 return t->type; 840 } 841 842 bool dm_table_request_based(struct dm_table *t) 843 { 844 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; 845 } 846 847 int dm_table_alloc_md_mempools(struct dm_table *t) 848 { 849 unsigned type = dm_table_get_type(t); 850 851 if (unlikely(type == DM_TYPE_NONE)) { 852 DMWARN("no table type is set, can't allocate mempools"); 853 return -EINVAL; 854 } 855 856 t->mempools = dm_alloc_md_mempools(type); 857 if (!t->mempools) 858 return -ENOMEM; 859 860 return 0; 861 } 862 863 void dm_table_free_md_mempools(struct dm_table *t) 864 { 865 dm_free_md_mempools(t->mempools); 866 t->mempools = NULL; 867 } 868 869 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 870 { 871 return t->mempools; 872 } 873 874 static int setup_indexes(struct dm_table *t) 875 { 876 int i; 877 unsigned int total = 0; 878 sector_t *indexes; 879 880 /* allocate the space for *all* the indexes */ 881 for (i = t->depth - 2; i >= 0; i--) { 882 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 883 total += t->counts[i]; 884 } 885 886 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 887 if (!indexes) 888 return -ENOMEM; 889 890 /* set up internal nodes, bottom-up */ 891 for (i = t->depth - 2; i >= 0; i--) { 892 t->index[i] = indexes; 893 indexes += (KEYS_PER_NODE * t->counts[i]); 894 setup_btree_index(i, t); 895 } 896 897 return 0; 898 } 899 900 /* 901 * Builds the btree to index the map. 902 */ 903 int dm_table_complete(struct dm_table *t) 904 { 905 int r = 0; 906 unsigned int leaf_nodes; 907 908 /* how many indexes will the btree have ? */ 909 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 910 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 911 912 /* leaf layer has already been set up */ 913 t->counts[t->depth - 1] = leaf_nodes; 914 t->index[t->depth - 1] = t->highs; 915 916 if (t->depth >= 2) 917 r = setup_indexes(t); 918 919 return r; 920 } 921 922 static DEFINE_MUTEX(_event_lock); 923 void dm_table_event_callback(struct dm_table *t, 924 void (*fn)(void *), void *context) 925 { 926 mutex_lock(&_event_lock); 927 t->event_fn = fn; 928 t->event_context = context; 929 mutex_unlock(&_event_lock); 930 } 931 932 void dm_table_event(struct dm_table *t) 933 { 934 /* 935 * You can no longer call dm_table_event() from interrupt 936 * context, use a bottom half instead. 937 */ 938 BUG_ON(in_interrupt()); 939 940 mutex_lock(&_event_lock); 941 if (t->event_fn) 942 t->event_fn(t->event_context); 943 mutex_unlock(&_event_lock); 944 } 945 946 sector_t dm_table_get_size(struct dm_table *t) 947 { 948 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 949 } 950 951 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 952 { 953 if (index >= t->num_targets) 954 return NULL; 955 956 return t->targets + index; 957 } 958 959 /* 960 * Search the btree for the correct target. 961 * 962 * Caller should check returned pointer with dm_target_is_valid() 963 * to trap I/O beyond end of device. 964 */ 965 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 966 { 967 unsigned int l, n = 0, k = 0; 968 sector_t *node; 969 970 for (l = 0; l < t->depth; l++) { 971 n = get_child(n, k); 972 node = get_node(t, l, n); 973 974 for (k = 0; k < KEYS_PER_NODE; k++) 975 if (node[k] >= sector) 976 break; 977 } 978 979 return &t->targets[(KEYS_PER_NODE * n) + k]; 980 } 981 982 /* 983 * Establish the new table's queue_limits and validate them. 984 */ 985 int dm_calculate_queue_limits(struct dm_table *table, 986 struct queue_limits *limits) 987 { 988 struct dm_target *uninitialized_var(ti); 989 struct queue_limits ti_limits; 990 unsigned i = 0; 991 992 blk_set_default_limits(limits); 993 994 while (i < dm_table_get_num_targets(table)) { 995 blk_set_default_limits(&ti_limits); 996 997 ti = dm_table_get_target(table, i++); 998 999 if (!ti->type->iterate_devices) 1000 goto combine_limits; 1001 1002 /* 1003 * Combine queue limits of all the devices this target uses. 1004 */ 1005 ti->type->iterate_devices(ti, dm_set_device_limits, 1006 &ti_limits); 1007 1008 /* Set I/O hints portion of queue limits */ 1009 if (ti->type->io_hints) 1010 ti->type->io_hints(ti, &ti_limits); 1011 1012 /* 1013 * Check each device area is consistent with the target's 1014 * overall queue limits. 1015 */ 1016 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1017 &ti_limits)) 1018 return -EINVAL; 1019 1020 combine_limits: 1021 /* 1022 * Merge this target's queue limits into the overall limits 1023 * for the table. 1024 */ 1025 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1026 DMWARN("%s: adding target device " 1027 "(start sect %llu len %llu) " 1028 "caused an alignment inconsistency", 1029 dm_device_name(table->md), 1030 (unsigned long long) ti->begin, 1031 (unsigned long long) ti->len); 1032 } 1033 1034 return validate_hardware_logical_block_alignment(table, limits); 1035 } 1036 1037 /* 1038 * Set the integrity profile for this device if all devices used have 1039 * matching profiles. 1040 */ 1041 static void dm_table_set_integrity(struct dm_table *t) 1042 { 1043 struct list_head *devices = dm_table_get_devices(t); 1044 struct dm_dev_internal *prev = NULL, *dd = NULL; 1045 1046 if (!blk_get_integrity(dm_disk(t->md))) 1047 return; 1048 1049 list_for_each_entry(dd, devices, list) { 1050 if (prev && 1051 blk_integrity_compare(prev->dm_dev.bdev->bd_disk, 1052 dd->dm_dev.bdev->bd_disk) < 0) { 1053 DMWARN("%s: integrity not set: %s and %s mismatch", 1054 dm_device_name(t->md), 1055 prev->dm_dev.bdev->bd_disk->disk_name, 1056 dd->dm_dev.bdev->bd_disk->disk_name); 1057 goto no_integrity; 1058 } 1059 prev = dd; 1060 } 1061 1062 if (!prev || !bdev_get_integrity(prev->dm_dev.bdev)) 1063 goto no_integrity; 1064 1065 blk_integrity_register(dm_disk(t->md), 1066 bdev_get_integrity(prev->dm_dev.bdev)); 1067 1068 return; 1069 1070 no_integrity: 1071 blk_integrity_register(dm_disk(t->md), NULL); 1072 1073 return; 1074 } 1075 1076 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1077 struct queue_limits *limits) 1078 { 1079 /* 1080 * Copy table's limits to the DM device's request_queue 1081 */ 1082 q->limits = *limits; 1083 1084 if (limits->no_cluster) 1085 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 1086 else 1087 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q); 1088 1089 dm_table_set_integrity(t); 1090 1091 /* 1092 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1093 * visible to other CPUs because, once the flag is set, incoming bios 1094 * are processed by request-based dm, which refers to the queue 1095 * settings. 1096 * Until the flag set, bios are passed to bio-based dm and queued to 1097 * md->deferred where queue settings are not needed yet. 1098 * Those bios are passed to request-based dm at the resume time. 1099 */ 1100 smp_mb(); 1101 if (dm_table_request_based(t)) 1102 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1103 } 1104 1105 unsigned int dm_table_get_num_targets(struct dm_table *t) 1106 { 1107 return t->num_targets; 1108 } 1109 1110 struct list_head *dm_table_get_devices(struct dm_table *t) 1111 { 1112 return &t->devices; 1113 } 1114 1115 fmode_t dm_table_get_mode(struct dm_table *t) 1116 { 1117 return t->mode; 1118 } 1119 1120 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 1121 { 1122 int i = t->num_targets; 1123 struct dm_target *ti = t->targets; 1124 1125 while (i--) { 1126 if (postsuspend) { 1127 if (ti->type->postsuspend) 1128 ti->type->postsuspend(ti); 1129 } else if (ti->type->presuspend) 1130 ti->type->presuspend(ti); 1131 1132 ti++; 1133 } 1134 } 1135 1136 void dm_table_presuspend_targets(struct dm_table *t) 1137 { 1138 if (!t) 1139 return; 1140 1141 suspend_targets(t, 0); 1142 } 1143 1144 void dm_table_postsuspend_targets(struct dm_table *t) 1145 { 1146 if (!t) 1147 return; 1148 1149 suspend_targets(t, 1); 1150 } 1151 1152 int dm_table_resume_targets(struct dm_table *t) 1153 { 1154 int i, r = 0; 1155 1156 for (i = 0; i < t->num_targets; i++) { 1157 struct dm_target *ti = t->targets + i; 1158 1159 if (!ti->type->preresume) 1160 continue; 1161 1162 r = ti->type->preresume(ti); 1163 if (r) 1164 return r; 1165 } 1166 1167 for (i = 0; i < t->num_targets; i++) { 1168 struct dm_target *ti = t->targets + i; 1169 1170 if (ti->type->resume) 1171 ti->type->resume(ti); 1172 } 1173 1174 return 0; 1175 } 1176 1177 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1178 { 1179 struct dm_dev_internal *dd; 1180 struct list_head *devices = dm_table_get_devices(t); 1181 int r = 0; 1182 1183 list_for_each_entry(dd, devices, list) { 1184 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1185 char b[BDEVNAME_SIZE]; 1186 1187 if (likely(q)) 1188 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1189 else 1190 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1191 dm_device_name(t->md), 1192 bdevname(dd->dm_dev.bdev, b)); 1193 } 1194 1195 return r; 1196 } 1197 1198 int dm_table_any_busy_target(struct dm_table *t) 1199 { 1200 unsigned i; 1201 struct dm_target *ti; 1202 1203 for (i = 0; i < t->num_targets; i++) { 1204 ti = t->targets + i; 1205 if (ti->type->busy && ti->type->busy(ti)) 1206 return 1; 1207 } 1208 1209 return 0; 1210 } 1211 1212 void dm_table_unplug_all(struct dm_table *t) 1213 { 1214 struct dm_dev_internal *dd; 1215 struct list_head *devices = dm_table_get_devices(t); 1216 1217 list_for_each_entry(dd, devices, list) { 1218 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1219 char b[BDEVNAME_SIZE]; 1220 1221 if (likely(q)) 1222 blk_unplug(q); 1223 else 1224 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s", 1225 dm_device_name(t->md), 1226 bdevname(dd->dm_dev.bdev, b)); 1227 } 1228 } 1229 1230 struct mapped_device *dm_table_get_md(struct dm_table *t) 1231 { 1232 return t->md; 1233 } 1234 1235 EXPORT_SYMBOL(dm_vcalloc); 1236 EXPORT_SYMBOL(dm_get_device); 1237 EXPORT_SYMBOL(dm_put_device); 1238 EXPORT_SYMBOL(dm_table_event); 1239 EXPORT_SYMBOL(dm_table_get_size); 1240 EXPORT_SYMBOL(dm_table_get_mode); 1241 EXPORT_SYMBOL(dm_table_get_md); 1242 EXPORT_SYMBOL(dm_table_put); 1243 EXPORT_SYMBOL(dm_table_get); 1244 EXPORT_SYMBOL(dm_table_unplug_all); 1245