xref: /openbmc/linux/drivers/md/dm-table.c (revision 8215d6ec5fee1e76545decea2cd73717efb5cb42)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <asm/atomic.h>
21 
22 #define DM_MSG_PREFIX "table"
23 
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28 
29 /*
30  * The table has always exactly one reference from either mapped_device->map
31  * or hash_cell->new_map. This reference is not counted in table->holders.
32  * A pair of dm_create_table/dm_destroy_table functions is used for table
33  * creation/destruction.
34  *
35  * Temporary references from the other code increase table->holders. A pair
36  * of dm_table_get/dm_table_put functions is used to manipulate it.
37  *
38  * When the table is about to be destroyed, we wait for table->holders to
39  * drop to zero.
40  */
41 
42 struct dm_table {
43 	struct mapped_device *md;
44 	atomic_t holders;
45 	unsigned type;
46 
47 	/* btree table */
48 	unsigned int depth;
49 	unsigned int counts[MAX_DEPTH];	/* in nodes */
50 	sector_t *index[MAX_DEPTH];
51 
52 	unsigned int num_targets;
53 	unsigned int num_allocated;
54 	sector_t *highs;
55 	struct dm_target *targets;
56 
57 	/*
58 	 * Indicates the rw permissions for the new logical
59 	 * device.  This should be a combination of FMODE_READ
60 	 * and FMODE_WRITE.
61 	 */
62 	fmode_t mode;
63 
64 	/* a list of devices used by this table */
65 	struct list_head devices;
66 
67 	/* events get handed up using this callback */
68 	void (*event_fn)(void *);
69 	void *event_context;
70 
71 	struct dm_md_mempools *mempools;
72 };
73 
74 /*
75  * Similar to ceiling(log_size(n))
76  */
77 static unsigned int int_log(unsigned int n, unsigned int base)
78 {
79 	int result = 0;
80 
81 	while (n > 1) {
82 		n = dm_div_up(n, base);
83 		result++;
84 	}
85 
86 	return result;
87 }
88 
89 /*
90  * Calculate the index of the child node of the n'th node k'th key.
91  */
92 static inline unsigned int get_child(unsigned int n, unsigned int k)
93 {
94 	return (n * CHILDREN_PER_NODE) + k;
95 }
96 
97 /*
98  * Return the n'th node of level l from table t.
99  */
100 static inline sector_t *get_node(struct dm_table *t,
101 				 unsigned int l, unsigned int n)
102 {
103 	return t->index[l] + (n * KEYS_PER_NODE);
104 }
105 
106 /*
107  * Return the highest key that you could lookup from the n'th
108  * node on level l of the btree.
109  */
110 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
111 {
112 	for (; l < t->depth - 1; l++)
113 		n = get_child(n, CHILDREN_PER_NODE - 1);
114 
115 	if (n >= t->counts[l])
116 		return (sector_t) - 1;
117 
118 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
119 }
120 
121 /*
122  * Fills in a level of the btree based on the highs of the level
123  * below it.
124  */
125 static int setup_btree_index(unsigned int l, struct dm_table *t)
126 {
127 	unsigned int n, k;
128 	sector_t *node;
129 
130 	for (n = 0U; n < t->counts[l]; n++) {
131 		node = get_node(t, l, n);
132 
133 		for (k = 0U; k < KEYS_PER_NODE; k++)
134 			node[k] = high(t, l + 1, get_child(n, k));
135 	}
136 
137 	return 0;
138 }
139 
140 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
141 {
142 	unsigned long size;
143 	void *addr;
144 
145 	/*
146 	 * Check that we're not going to overflow.
147 	 */
148 	if (nmemb > (ULONG_MAX / elem_size))
149 		return NULL;
150 
151 	size = nmemb * elem_size;
152 	addr = vmalloc(size);
153 	if (addr)
154 		memset(addr, 0, size);
155 
156 	return addr;
157 }
158 
159 /*
160  * highs, and targets are managed as dynamic arrays during a
161  * table load.
162  */
163 static int alloc_targets(struct dm_table *t, unsigned int num)
164 {
165 	sector_t *n_highs;
166 	struct dm_target *n_targets;
167 	int n = t->num_targets;
168 
169 	/*
170 	 * Allocate both the target array and offset array at once.
171 	 * Append an empty entry to catch sectors beyond the end of
172 	 * the device.
173 	 */
174 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
175 					  sizeof(sector_t));
176 	if (!n_highs)
177 		return -ENOMEM;
178 
179 	n_targets = (struct dm_target *) (n_highs + num);
180 
181 	if (n) {
182 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
183 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
184 	}
185 
186 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
187 	vfree(t->highs);
188 
189 	t->num_allocated = num;
190 	t->highs = n_highs;
191 	t->targets = n_targets;
192 
193 	return 0;
194 }
195 
196 int dm_table_create(struct dm_table **result, fmode_t mode,
197 		    unsigned num_targets, struct mapped_device *md)
198 {
199 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
200 
201 	if (!t)
202 		return -ENOMEM;
203 
204 	INIT_LIST_HEAD(&t->devices);
205 	atomic_set(&t->holders, 0);
206 
207 	if (!num_targets)
208 		num_targets = KEYS_PER_NODE;
209 
210 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
211 
212 	if (alloc_targets(t, num_targets)) {
213 		kfree(t);
214 		t = NULL;
215 		return -ENOMEM;
216 	}
217 
218 	t->mode = mode;
219 	t->md = md;
220 	*result = t;
221 	return 0;
222 }
223 
224 static void free_devices(struct list_head *devices)
225 {
226 	struct list_head *tmp, *next;
227 
228 	list_for_each_safe(tmp, next, devices) {
229 		struct dm_dev_internal *dd =
230 		    list_entry(tmp, struct dm_dev_internal, list);
231 		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
232 		       dd->dm_dev.name);
233 		kfree(dd);
234 	}
235 }
236 
237 void dm_table_destroy(struct dm_table *t)
238 {
239 	unsigned int i;
240 
241 	if (!t)
242 		return;
243 
244 	while (atomic_read(&t->holders))
245 		msleep(1);
246 	smp_mb();
247 
248 	/* free the indexes (see dm_table_complete) */
249 	if (t->depth >= 2)
250 		vfree(t->index[t->depth - 2]);
251 
252 	/* free the targets */
253 	for (i = 0; i < t->num_targets; i++) {
254 		struct dm_target *tgt = t->targets + i;
255 
256 		if (tgt->type->dtr)
257 			tgt->type->dtr(tgt);
258 
259 		dm_put_target_type(tgt->type);
260 	}
261 
262 	vfree(t->highs);
263 
264 	/* free the device list */
265 	if (t->devices.next != &t->devices)
266 		free_devices(&t->devices);
267 
268 	dm_free_md_mempools(t->mempools);
269 
270 	kfree(t);
271 }
272 
273 void dm_table_get(struct dm_table *t)
274 {
275 	atomic_inc(&t->holders);
276 }
277 
278 void dm_table_put(struct dm_table *t)
279 {
280 	if (!t)
281 		return;
282 
283 	smp_mb__before_atomic_dec();
284 	atomic_dec(&t->holders);
285 }
286 
287 /*
288  * Checks to see if we need to extend highs or targets.
289  */
290 static inline int check_space(struct dm_table *t)
291 {
292 	if (t->num_targets >= t->num_allocated)
293 		return alloc_targets(t, t->num_allocated * 2);
294 
295 	return 0;
296 }
297 
298 /*
299  * See if we've already got a device in the list.
300  */
301 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
302 {
303 	struct dm_dev_internal *dd;
304 
305 	list_for_each_entry (dd, l, list)
306 		if (dd->dm_dev.bdev->bd_dev == dev)
307 			return dd;
308 
309 	return NULL;
310 }
311 
312 /*
313  * Open a device so we can use it as a map destination.
314  */
315 static int open_dev(struct dm_dev_internal *d, dev_t dev,
316 		    struct mapped_device *md)
317 {
318 	static char *_claim_ptr = "I belong to device-mapper";
319 	struct block_device *bdev;
320 
321 	int r;
322 
323 	BUG_ON(d->dm_dev.bdev);
324 
325 	bdev = open_by_devnum(dev, d->dm_dev.mode);
326 	if (IS_ERR(bdev))
327 		return PTR_ERR(bdev);
328 	r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
329 	if (r)
330 		blkdev_put(bdev, d->dm_dev.mode);
331 	else
332 		d->dm_dev.bdev = bdev;
333 	return r;
334 }
335 
336 /*
337  * Close a device that we've been using.
338  */
339 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
340 {
341 	if (!d->dm_dev.bdev)
342 		return;
343 
344 	bd_release_from_disk(d->dm_dev.bdev, dm_disk(md));
345 	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode);
346 	d->dm_dev.bdev = NULL;
347 }
348 
349 /*
350  * If possible, this checks an area of a destination device is invalid.
351  */
352 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
353 				  sector_t start, sector_t len, void *data)
354 {
355 	struct queue_limits *limits = data;
356 	struct block_device *bdev = dev->bdev;
357 	sector_t dev_size =
358 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
359 	unsigned short logical_block_size_sectors =
360 		limits->logical_block_size >> SECTOR_SHIFT;
361 	char b[BDEVNAME_SIZE];
362 
363 	if (!dev_size)
364 		return 0;
365 
366 	if ((start >= dev_size) || (start + len > dev_size)) {
367 		DMWARN("%s: %s too small for target: "
368 		       "start=%llu, len=%llu, dev_size=%llu",
369 		       dm_device_name(ti->table->md), bdevname(bdev, b),
370 		       (unsigned long long)start,
371 		       (unsigned long long)len,
372 		       (unsigned long long)dev_size);
373 		return 1;
374 	}
375 
376 	if (logical_block_size_sectors <= 1)
377 		return 0;
378 
379 	if (start & (logical_block_size_sectors - 1)) {
380 		DMWARN("%s: start=%llu not aligned to h/w "
381 		       "logical block size %u of %s",
382 		       dm_device_name(ti->table->md),
383 		       (unsigned long long)start,
384 		       limits->logical_block_size, bdevname(bdev, b));
385 		return 1;
386 	}
387 
388 	if (len & (logical_block_size_sectors - 1)) {
389 		DMWARN("%s: len=%llu not aligned to h/w "
390 		       "logical block size %u of %s",
391 		       dm_device_name(ti->table->md),
392 		       (unsigned long long)len,
393 		       limits->logical_block_size, bdevname(bdev, b));
394 		return 1;
395 	}
396 
397 	return 0;
398 }
399 
400 /*
401  * This upgrades the mode on an already open dm_dev, being
402  * careful to leave things as they were if we fail to reopen the
403  * device and not to touch the existing bdev field in case
404  * it is accessed concurrently inside dm_table_any_congested().
405  */
406 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
407 			struct mapped_device *md)
408 {
409 	int r;
410 	struct dm_dev_internal dd_new, dd_old;
411 
412 	dd_new = dd_old = *dd;
413 
414 	dd_new.dm_dev.mode |= new_mode;
415 	dd_new.dm_dev.bdev = NULL;
416 
417 	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
418 	if (r)
419 		return r;
420 
421 	dd->dm_dev.mode |= new_mode;
422 	close_dev(&dd_old, md);
423 
424 	return 0;
425 }
426 
427 /*
428  * Add a device to the list, or just increment the usage count if
429  * it's already present.
430  */
431 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
432 		      const char *path, fmode_t mode, struct dm_dev **result)
433 {
434 	int r;
435 	dev_t uninitialized_var(dev);
436 	struct dm_dev_internal *dd;
437 	unsigned int major, minor;
438 
439 	BUG_ON(!t);
440 
441 	if (sscanf(path, "%u:%u", &major, &minor) == 2) {
442 		/* Extract the major/minor numbers */
443 		dev = MKDEV(major, minor);
444 		if (MAJOR(dev) != major || MINOR(dev) != minor)
445 			return -EOVERFLOW;
446 	} else {
447 		/* convert the path to a device */
448 		struct block_device *bdev = lookup_bdev(path);
449 
450 		if (IS_ERR(bdev))
451 			return PTR_ERR(bdev);
452 		dev = bdev->bd_dev;
453 		bdput(bdev);
454 	}
455 
456 	dd = find_device(&t->devices, dev);
457 	if (!dd) {
458 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
459 		if (!dd)
460 			return -ENOMEM;
461 
462 		dd->dm_dev.mode = mode;
463 		dd->dm_dev.bdev = NULL;
464 
465 		if ((r = open_dev(dd, dev, t->md))) {
466 			kfree(dd);
467 			return r;
468 		}
469 
470 		format_dev_t(dd->dm_dev.name, dev);
471 
472 		atomic_set(&dd->count, 0);
473 		list_add(&dd->list, &t->devices);
474 
475 	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
476 		r = upgrade_mode(dd, mode, t->md);
477 		if (r)
478 			return r;
479 	}
480 	atomic_inc(&dd->count);
481 
482 	*result = &dd->dm_dev;
483 	return 0;
484 }
485 
486 /*
487  * Returns the minimum that is _not_ zero, unless both are zero.
488  */
489 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
490 
491 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
492 			 sector_t start, sector_t len, void *data)
493 {
494 	struct queue_limits *limits = data;
495 	struct block_device *bdev = dev->bdev;
496 	struct request_queue *q = bdev_get_queue(bdev);
497 	char b[BDEVNAME_SIZE];
498 
499 	if (unlikely(!q)) {
500 		DMWARN("%s: Cannot set limits for nonexistent device %s",
501 		       dm_device_name(ti->table->md), bdevname(bdev, b));
502 		return 0;
503 	}
504 
505 	if (bdev_stack_limits(limits, bdev, start) < 0)
506 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
507 		       "physical_block_size=%u, logical_block_size=%u, "
508 		       "alignment_offset=%u, start=%llu",
509 		       dm_device_name(ti->table->md), bdevname(bdev, b),
510 		       q->limits.physical_block_size,
511 		       q->limits.logical_block_size,
512 		       q->limits.alignment_offset,
513 		       (unsigned long long) start << SECTOR_SHIFT);
514 
515 	/*
516 	 * Check if merge fn is supported.
517 	 * If not we'll force DM to use PAGE_SIZE or
518 	 * smaller I/O, just to be safe.
519 	 */
520 
521 	if (q->merge_bvec_fn && !ti->type->merge)
522 		limits->max_sectors =
523 			min_not_zero(limits->max_sectors,
524 				     (unsigned int) (PAGE_SIZE >> 9));
525 	return 0;
526 }
527 EXPORT_SYMBOL_GPL(dm_set_device_limits);
528 
529 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
530 		  struct dm_dev **result)
531 {
532 	return __table_get_device(ti->table, ti, path, mode, result);
533 }
534 
535 
536 /*
537  * Decrement a devices use count and remove it if necessary.
538  */
539 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
540 {
541 	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
542 						  dm_dev);
543 
544 	if (atomic_dec_and_test(&dd->count)) {
545 		close_dev(dd, ti->table->md);
546 		list_del(&dd->list);
547 		kfree(dd);
548 	}
549 }
550 
551 /*
552  * Checks to see if the target joins onto the end of the table.
553  */
554 static int adjoin(struct dm_table *table, struct dm_target *ti)
555 {
556 	struct dm_target *prev;
557 
558 	if (!table->num_targets)
559 		return !ti->begin;
560 
561 	prev = &table->targets[table->num_targets - 1];
562 	return (ti->begin == (prev->begin + prev->len));
563 }
564 
565 /*
566  * Used to dynamically allocate the arg array.
567  */
568 static char **realloc_argv(unsigned *array_size, char **old_argv)
569 {
570 	char **argv;
571 	unsigned new_size;
572 
573 	new_size = *array_size ? *array_size * 2 : 64;
574 	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
575 	if (argv) {
576 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
577 		*array_size = new_size;
578 	}
579 
580 	kfree(old_argv);
581 	return argv;
582 }
583 
584 /*
585  * Destructively splits up the argument list to pass to ctr.
586  */
587 int dm_split_args(int *argc, char ***argvp, char *input)
588 {
589 	char *start, *end = input, *out, **argv = NULL;
590 	unsigned array_size = 0;
591 
592 	*argc = 0;
593 
594 	if (!input) {
595 		*argvp = NULL;
596 		return 0;
597 	}
598 
599 	argv = realloc_argv(&array_size, argv);
600 	if (!argv)
601 		return -ENOMEM;
602 
603 	while (1) {
604 		/* Skip whitespace */
605 		start = skip_spaces(end);
606 
607 		if (!*start)
608 			break;	/* success, we hit the end */
609 
610 		/* 'out' is used to remove any back-quotes */
611 		end = out = start;
612 		while (*end) {
613 			/* Everything apart from '\0' can be quoted */
614 			if (*end == '\\' && *(end + 1)) {
615 				*out++ = *(end + 1);
616 				end += 2;
617 				continue;
618 			}
619 
620 			if (isspace(*end))
621 				break;	/* end of token */
622 
623 			*out++ = *end++;
624 		}
625 
626 		/* have we already filled the array ? */
627 		if ((*argc + 1) > array_size) {
628 			argv = realloc_argv(&array_size, argv);
629 			if (!argv)
630 				return -ENOMEM;
631 		}
632 
633 		/* we know this is whitespace */
634 		if (*end)
635 			end++;
636 
637 		/* terminate the string and put it in the array */
638 		*out = '\0';
639 		argv[*argc] = start;
640 		(*argc)++;
641 	}
642 
643 	*argvp = argv;
644 	return 0;
645 }
646 
647 /*
648  * Impose necessary and sufficient conditions on a devices's table such
649  * that any incoming bio which respects its logical_block_size can be
650  * processed successfully.  If it falls across the boundary between
651  * two or more targets, the size of each piece it gets split into must
652  * be compatible with the logical_block_size of the target processing it.
653  */
654 static int validate_hardware_logical_block_alignment(struct dm_table *table,
655 						 struct queue_limits *limits)
656 {
657 	/*
658 	 * This function uses arithmetic modulo the logical_block_size
659 	 * (in units of 512-byte sectors).
660 	 */
661 	unsigned short device_logical_block_size_sects =
662 		limits->logical_block_size >> SECTOR_SHIFT;
663 
664 	/*
665 	 * Offset of the start of the next table entry, mod logical_block_size.
666 	 */
667 	unsigned short next_target_start = 0;
668 
669 	/*
670 	 * Given an aligned bio that extends beyond the end of a
671 	 * target, how many sectors must the next target handle?
672 	 */
673 	unsigned short remaining = 0;
674 
675 	struct dm_target *uninitialized_var(ti);
676 	struct queue_limits ti_limits;
677 	unsigned i = 0;
678 
679 	/*
680 	 * Check each entry in the table in turn.
681 	 */
682 	while (i < dm_table_get_num_targets(table)) {
683 		ti = dm_table_get_target(table, i++);
684 
685 		blk_set_default_limits(&ti_limits);
686 
687 		/* combine all target devices' limits */
688 		if (ti->type->iterate_devices)
689 			ti->type->iterate_devices(ti, dm_set_device_limits,
690 						  &ti_limits);
691 
692 		/*
693 		 * If the remaining sectors fall entirely within this
694 		 * table entry are they compatible with its logical_block_size?
695 		 */
696 		if (remaining < ti->len &&
697 		    remaining & ((ti_limits.logical_block_size >>
698 				  SECTOR_SHIFT) - 1))
699 			break;	/* Error */
700 
701 		next_target_start =
702 		    (unsigned short) ((next_target_start + ti->len) &
703 				      (device_logical_block_size_sects - 1));
704 		remaining = next_target_start ?
705 		    device_logical_block_size_sects - next_target_start : 0;
706 	}
707 
708 	if (remaining) {
709 		DMWARN("%s: table line %u (start sect %llu len %llu) "
710 		       "not aligned to h/w logical block size %u",
711 		       dm_device_name(table->md), i,
712 		       (unsigned long long) ti->begin,
713 		       (unsigned long long) ti->len,
714 		       limits->logical_block_size);
715 		return -EINVAL;
716 	}
717 
718 	return 0;
719 }
720 
721 int dm_table_add_target(struct dm_table *t, const char *type,
722 			sector_t start, sector_t len, char *params)
723 {
724 	int r = -EINVAL, argc;
725 	char **argv;
726 	struct dm_target *tgt;
727 
728 	if ((r = check_space(t)))
729 		return r;
730 
731 	tgt = t->targets + t->num_targets;
732 	memset(tgt, 0, sizeof(*tgt));
733 
734 	if (!len) {
735 		DMERR("%s: zero-length target", dm_device_name(t->md));
736 		return -EINVAL;
737 	}
738 
739 	tgt->type = dm_get_target_type(type);
740 	if (!tgt->type) {
741 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
742 		      type);
743 		return -EINVAL;
744 	}
745 
746 	tgt->table = t;
747 	tgt->begin = start;
748 	tgt->len = len;
749 	tgt->error = "Unknown error";
750 
751 	/*
752 	 * Does this target adjoin the previous one ?
753 	 */
754 	if (!adjoin(t, tgt)) {
755 		tgt->error = "Gap in table";
756 		r = -EINVAL;
757 		goto bad;
758 	}
759 
760 	r = dm_split_args(&argc, &argv, params);
761 	if (r) {
762 		tgt->error = "couldn't split parameters (insufficient memory)";
763 		goto bad;
764 	}
765 
766 	r = tgt->type->ctr(tgt, argc, argv);
767 	kfree(argv);
768 	if (r)
769 		goto bad;
770 
771 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
772 
773 	return 0;
774 
775  bad:
776 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
777 	dm_put_target_type(tgt->type);
778 	return r;
779 }
780 
781 int dm_table_set_type(struct dm_table *t)
782 {
783 	unsigned i;
784 	unsigned bio_based = 0, request_based = 0;
785 	struct dm_target *tgt;
786 	struct dm_dev_internal *dd;
787 	struct list_head *devices;
788 
789 	for (i = 0; i < t->num_targets; i++) {
790 		tgt = t->targets + i;
791 		if (dm_target_request_based(tgt))
792 			request_based = 1;
793 		else
794 			bio_based = 1;
795 
796 		if (bio_based && request_based) {
797 			DMWARN("Inconsistent table: different target types"
798 			       " can't be mixed up");
799 			return -EINVAL;
800 		}
801 	}
802 
803 	if (bio_based) {
804 		/* We must use this table as bio-based */
805 		t->type = DM_TYPE_BIO_BASED;
806 		return 0;
807 	}
808 
809 	BUG_ON(!request_based); /* No targets in this table */
810 
811 	/* Non-request-stackable devices can't be used for request-based dm */
812 	devices = dm_table_get_devices(t);
813 	list_for_each_entry(dd, devices, list) {
814 		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
815 			DMWARN("table load rejected: including"
816 			       " non-request-stackable devices");
817 			return -EINVAL;
818 		}
819 	}
820 
821 	/*
822 	 * Request-based dm supports only tables that have a single target now.
823 	 * To support multiple targets, request splitting support is needed,
824 	 * and that needs lots of changes in the block-layer.
825 	 * (e.g. request completion process for partial completion.)
826 	 */
827 	if (t->num_targets > 1) {
828 		DMWARN("Request-based dm doesn't support multiple targets yet");
829 		return -EINVAL;
830 	}
831 
832 	t->type = DM_TYPE_REQUEST_BASED;
833 
834 	return 0;
835 }
836 
837 unsigned dm_table_get_type(struct dm_table *t)
838 {
839 	return t->type;
840 }
841 
842 bool dm_table_request_based(struct dm_table *t)
843 {
844 	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
845 }
846 
847 int dm_table_alloc_md_mempools(struct dm_table *t)
848 {
849 	unsigned type = dm_table_get_type(t);
850 
851 	if (unlikely(type == DM_TYPE_NONE)) {
852 		DMWARN("no table type is set, can't allocate mempools");
853 		return -EINVAL;
854 	}
855 
856 	t->mempools = dm_alloc_md_mempools(type);
857 	if (!t->mempools)
858 		return -ENOMEM;
859 
860 	return 0;
861 }
862 
863 void dm_table_free_md_mempools(struct dm_table *t)
864 {
865 	dm_free_md_mempools(t->mempools);
866 	t->mempools = NULL;
867 }
868 
869 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
870 {
871 	return t->mempools;
872 }
873 
874 static int setup_indexes(struct dm_table *t)
875 {
876 	int i;
877 	unsigned int total = 0;
878 	sector_t *indexes;
879 
880 	/* allocate the space for *all* the indexes */
881 	for (i = t->depth - 2; i >= 0; i--) {
882 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
883 		total += t->counts[i];
884 	}
885 
886 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
887 	if (!indexes)
888 		return -ENOMEM;
889 
890 	/* set up internal nodes, bottom-up */
891 	for (i = t->depth - 2; i >= 0; i--) {
892 		t->index[i] = indexes;
893 		indexes += (KEYS_PER_NODE * t->counts[i]);
894 		setup_btree_index(i, t);
895 	}
896 
897 	return 0;
898 }
899 
900 /*
901  * Builds the btree to index the map.
902  */
903 int dm_table_complete(struct dm_table *t)
904 {
905 	int r = 0;
906 	unsigned int leaf_nodes;
907 
908 	/* how many indexes will the btree have ? */
909 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
910 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
911 
912 	/* leaf layer has already been set up */
913 	t->counts[t->depth - 1] = leaf_nodes;
914 	t->index[t->depth - 1] = t->highs;
915 
916 	if (t->depth >= 2)
917 		r = setup_indexes(t);
918 
919 	return r;
920 }
921 
922 static DEFINE_MUTEX(_event_lock);
923 void dm_table_event_callback(struct dm_table *t,
924 			     void (*fn)(void *), void *context)
925 {
926 	mutex_lock(&_event_lock);
927 	t->event_fn = fn;
928 	t->event_context = context;
929 	mutex_unlock(&_event_lock);
930 }
931 
932 void dm_table_event(struct dm_table *t)
933 {
934 	/*
935 	 * You can no longer call dm_table_event() from interrupt
936 	 * context, use a bottom half instead.
937 	 */
938 	BUG_ON(in_interrupt());
939 
940 	mutex_lock(&_event_lock);
941 	if (t->event_fn)
942 		t->event_fn(t->event_context);
943 	mutex_unlock(&_event_lock);
944 }
945 
946 sector_t dm_table_get_size(struct dm_table *t)
947 {
948 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
949 }
950 
951 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
952 {
953 	if (index >= t->num_targets)
954 		return NULL;
955 
956 	return t->targets + index;
957 }
958 
959 /*
960  * Search the btree for the correct target.
961  *
962  * Caller should check returned pointer with dm_target_is_valid()
963  * to trap I/O beyond end of device.
964  */
965 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
966 {
967 	unsigned int l, n = 0, k = 0;
968 	sector_t *node;
969 
970 	for (l = 0; l < t->depth; l++) {
971 		n = get_child(n, k);
972 		node = get_node(t, l, n);
973 
974 		for (k = 0; k < KEYS_PER_NODE; k++)
975 			if (node[k] >= sector)
976 				break;
977 	}
978 
979 	return &t->targets[(KEYS_PER_NODE * n) + k];
980 }
981 
982 /*
983  * Establish the new table's queue_limits and validate them.
984  */
985 int dm_calculate_queue_limits(struct dm_table *table,
986 			      struct queue_limits *limits)
987 {
988 	struct dm_target *uninitialized_var(ti);
989 	struct queue_limits ti_limits;
990 	unsigned i = 0;
991 
992 	blk_set_default_limits(limits);
993 
994 	while (i < dm_table_get_num_targets(table)) {
995 		blk_set_default_limits(&ti_limits);
996 
997 		ti = dm_table_get_target(table, i++);
998 
999 		if (!ti->type->iterate_devices)
1000 			goto combine_limits;
1001 
1002 		/*
1003 		 * Combine queue limits of all the devices this target uses.
1004 		 */
1005 		ti->type->iterate_devices(ti, dm_set_device_limits,
1006 					  &ti_limits);
1007 
1008 		/* Set I/O hints portion of queue limits */
1009 		if (ti->type->io_hints)
1010 			ti->type->io_hints(ti, &ti_limits);
1011 
1012 		/*
1013 		 * Check each device area is consistent with the target's
1014 		 * overall queue limits.
1015 		 */
1016 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1017 					      &ti_limits))
1018 			return -EINVAL;
1019 
1020 combine_limits:
1021 		/*
1022 		 * Merge this target's queue limits into the overall limits
1023 		 * for the table.
1024 		 */
1025 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1026 			DMWARN("%s: adding target device "
1027 			       "(start sect %llu len %llu) "
1028 			       "caused an alignment inconsistency",
1029 			       dm_device_name(table->md),
1030 			       (unsigned long long) ti->begin,
1031 			       (unsigned long long) ti->len);
1032 	}
1033 
1034 	return validate_hardware_logical_block_alignment(table, limits);
1035 }
1036 
1037 /*
1038  * Set the integrity profile for this device if all devices used have
1039  * matching profiles.
1040  */
1041 static void dm_table_set_integrity(struct dm_table *t)
1042 {
1043 	struct list_head *devices = dm_table_get_devices(t);
1044 	struct dm_dev_internal *prev = NULL, *dd = NULL;
1045 
1046 	if (!blk_get_integrity(dm_disk(t->md)))
1047 		return;
1048 
1049 	list_for_each_entry(dd, devices, list) {
1050 		if (prev &&
1051 		    blk_integrity_compare(prev->dm_dev.bdev->bd_disk,
1052 					  dd->dm_dev.bdev->bd_disk) < 0) {
1053 			DMWARN("%s: integrity not set: %s and %s mismatch",
1054 			       dm_device_name(t->md),
1055 			       prev->dm_dev.bdev->bd_disk->disk_name,
1056 			       dd->dm_dev.bdev->bd_disk->disk_name);
1057 			goto no_integrity;
1058 		}
1059 		prev = dd;
1060 	}
1061 
1062 	if (!prev || !bdev_get_integrity(prev->dm_dev.bdev))
1063 		goto no_integrity;
1064 
1065 	blk_integrity_register(dm_disk(t->md),
1066 			       bdev_get_integrity(prev->dm_dev.bdev));
1067 
1068 	return;
1069 
1070 no_integrity:
1071 	blk_integrity_register(dm_disk(t->md), NULL);
1072 
1073 	return;
1074 }
1075 
1076 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1077 			       struct queue_limits *limits)
1078 {
1079 	/*
1080 	 * Copy table's limits to the DM device's request_queue
1081 	 */
1082 	q->limits = *limits;
1083 
1084 	if (limits->no_cluster)
1085 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1086 	else
1087 		queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
1088 
1089 	dm_table_set_integrity(t);
1090 
1091 	/*
1092 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1093 	 * visible to other CPUs because, once the flag is set, incoming bios
1094 	 * are processed by request-based dm, which refers to the queue
1095 	 * settings.
1096 	 * Until the flag set, bios are passed to bio-based dm and queued to
1097 	 * md->deferred where queue settings are not needed yet.
1098 	 * Those bios are passed to request-based dm at the resume time.
1099 	 */
1100 	smp_mb();
1101 	if (dm_table_request_based(t))
1102 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1103 }
1104 
1105 unsigned int dm_table_get_num_targets(struct dm_table *t)
1106 {
1107 	return t->num_targets;
1108 }
1109 
1110 struct list_head *dm_table_get_devices(struct dm_table *t)
1111 {
1112 	return &t->devices;
1113 }
1114 
1115 fmode_t dm_table_get_mode(struct dm_table *t)
1116 {
1117 	return t->mode;
1118 }
1119 
1120 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1121 {
1122 	int i = t->num_targets;
1123 	struct dm_target *ti = t->targets;
1124 
1125 	while (i--) {
1126 		if (postsuspend) {
1127 			if (ti->type->postsuspend)
1128 				ti->type->postsuspend(ti);
1129 		} else if (ti->type->presuspend)
1130 			ti->type->presuspend(ti);
1131 
1132 		ti++;
1133 	}
1134 }
1135 
1136 void dm_table_presuspend_targets(struct dm_table *t)
1137 {
1138 	if (!t)
1139 		return;
1140 
1141 	suspend_targets(t, 0);
1142 }
1143 
1144 void dm_table_postsuspend_targets(struct dm_table *t)
1145 {
1146 	if (!t)
1147 		return;
1148 
1149 	suspend_targets(t, 1);
1150 }
1151 
1152 int dm_table_resume_targets(struct dm_table *t)
1153 {
1154 	int i, r = 0;
1155 
1156 	for (i = 0; i < t->num_targets; i++) {
1157 		struct dm_target *ti = t->targets + i;
1158 
1159 		if (!ti->type->preresume)
1160 			continue;
1161 
1162 		r = ti->type->preresume(ti);
1163 		if (r)
1164 			return r;
1165 	}
1166 
1167 	for (i = 0; i < t->num_targets; i++) {
1168 		struct dm_target *ti = t->targets + i;
1169 
1170 		if (ti->type->resume)
1171 			ti->type->resume(ti);
1172 	}
1173 
1174 	return 0;
1175 }
1176 
1177 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1178 {
1179 	struct dm_dev_internal *dd;
1180 	struct list_head *devices = dm_table_get_devices(t);
1181 	int r = 0;
1182 
1183 	list_for_each_entry(dd, devices, list) {
1184 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1185 		char b[BDEVNAME_SIZE];
1186 
1187 		if (likely(q))
1188 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1189 		else
1190 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1191 				     dm_device_name(t->md),
1192 				     bdevname(dd->dm_dev.bdev, b));
1193 	}
1194 
1195 	return r;
1196 }
1197 
1198 int dm_table_any_busy_target(struct dm_table *t)
1199 {
1200 	unsigned i;
1201 	struct dm_target *ti;
1202 
1203 	for (i = 0; i < t->num_targets; i++) {
1204 		ti = t->targets + i;
1205 		if (ti->type->busy && ti->type->busy(ti))
1206 			return 1;
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 void dm_table_unplug_all(struct dm_table *t)
1213 {
1214 	struct dm_dev_internal *dd;
1215 	struct list_head *devices = dm_table_get_devices(t);
1216 
1217 	list_for_each_entry(dd, devices, list) {
1218 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1219 		char b[BDEVNAME_SIZE];
1220 
1221 		if (likely(q))
1222 			blk_unplug(q);
1223 		else
1224 			DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s",
1225 				     dm_device_name(t->md),
1226 				     bdevname(dd->dm_dev.bdev, b));
1227 	}
1228 }
1229 
1230 struct mapped_device *dm_table_get_md(struct dm_table *t)
1231 {
1232 	return t->md;
1233 }
1234 
1235 EXPORT_SYMBOL(dm_vcalloc);
1236 EXPORT_SYMBOL(dm_get_device);
1237 EXPORT_SYMBOL(dm_put_device);
1238 EXPORT_SYMBOL(dm_table_event);
1239 EXPORT_SYMBOL(dm_table_get_size);
1240 EXPORT_SYMBOL(dm_table_get_mode);
1241 EXPORT_SYMBOL(dm_table_get_md);
1242 EXPORT_SYMBOL(dm_table_put);
1243 EXPORT_SYMBOL(dm_table_get);
1244 EXPORT_SYMBOL(dm_table_unplug_all);
1245