1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <linux/mutex.h> 18 #include <linux/delay.h> 19 #include <asm/atomic.h> 20 21 #define DM_MSG_PREFIX "table" 22 23 #define MAX_DEPTH 16 24 #define NODE_SIZE L1_CACHE_BYTES 25 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 26 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 27 28 /* 29 * The table has always exactly one reference from either mapped_device->map 30 * or hash_cell->new_map. This reference is not counted in table->holders. 31 * A pair of dm_create_table/dm_destroy_table functions is used for table 32 * creation/destruction. 33 * 34 * Temporary references from the other code increase table->holders. A pair 35 * of dm_table_get/dm_table_put functions is used to manipulate it. 36 * 37 * When the table is about to be destroyed, we wait for table->holders to 38 * drop to zero. 39 */ 40 41 struct dm_table { 42 struct mapped_device *md; 43 atomic_t holders; 44 45 /* btree table */ 46 unsigned int depth; 47 unsigned int counts[MAX_DEPTH]; /* in nodes */ 48 sector_t *index[MAX_DEPTH]; 49 50 unsigned int num_targets; 51 unsigned int num_allocated; 52 sector_t *highs; 53 struct dm_target *targets; 54 55 unsigned barriers_supported:1; 56 57 /* 58 * Indicates the rw permissions for the new logical 59 * device. This should be a combination of FMODE_READ 60 * and FMODE_WRITE. 61 */ 62 fmode_t mode; 63 64 /* a list of devices used by this table */ 65 struct list_head devices; 66 67 /* 68 * These are optimistic limits taken from all the 69 * targets, some targets will need smaller limits. 70 */ 71 struct io_restrictions limits; 72 73 /* events get handed up using this callback */ 74 void (*event_fn)(void *); 75 void *event_context; 76 }; 77 78 /* 79 * Similar to ceiling(log_size(n)) 80 */ 81 static unsigned int int_log(unsigned int n, unsigned int base) 82 { 83 int result = 0; 84 85 while (n > 1) { 86 n = dm_div_up(n, base); 87 result++; 88 } 89 90 return result; 91 } 92 93 /* 94 * Returns the minimum that is _not_ zero, unless both are zero. 95 */ 96 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 97 98 /* 99 * Combine two io_restrictions, always taking the lower value. 100 */ 101 static void combine_restrictions_low(struct io_restrictions *lhs, 102 struct io_restrictions *rhs) 103 { 104 lhs->max_sectors = 105 min_not_zero(lhs->max_sectors, rhs->max_sectors); 106 107 lhs->max_phys_segments = 108 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments); 109 110 lhs->max_hw_segments = 111 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments); 112 113 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size); 114 115 lhs->max_segment_size = 116 min_not_zero(lhs->max_segment_size, rhs->max_segment_size); 117 118 lhs->max_hw_sectors = 119 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors); 120 121 lhs->seg_boundary_mask = 122 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask); 123 124 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn); 125 126 lhs->no_cluster |= rhs->no_cluster; 127 } 128 129 /* 130 * Calculate the index of the child node of the n'th node k'th key. 131 */ 132 static inline unsigned int get_child(unsigned int n, unsigned int k) 133 { 134 return (n * CHILDREN_PER_NODE) + k; 135 } 136 137 /* 138 * Return the n'th node of level l from table t. 139 */ 140 static inline sector_t *get_node(struct dm_table *t, 141 unsigned int l, unsigned int n) 142 { 143 return t->index[l] + (n * KEYS_PER_NODE); 144 } 145 146 /* 147 * Return the highest key that you could lookup from the n'th 148 * node on level l of the btree. 149 */ 150 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 151 { 152 for (; l < t->depth - 1; l++) 153 n = get_child(n, CHILDREN_PER_NODE - 1); 154 155 if (n >= t->counts[l]) 156 return (sector_t) - 1; 157 158 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 159 } 160 161 /* 162 * Fills in a level of the btree based on the highs of the level 163 * below it. 164 */ 165 static int setup_btree_index(unsigned int l, struct dm_table *t) 166 { 167 unsigned int n, k; 168 sector_t *node; 169 170 for (n = 0U; n < t->counts[l]; n++) { 171 node = get_node(t, l, n); 172 173 for (k = 0U; k < KEYS_PER_NODE; k++) 174 node[k] = high(t, l + 1, get_child(n, k)); 175 } 176 177 return 0; 178 } 179 180 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 181 { 182 unsigned long size; 183 void *addr; 184 185 /* 186 * Check that we're not going to overflow. 187 */ 188 if (nmemb > (ULONG_MAX / elem_size)) 189 return NULL; 190 191 size = nmemb * elem_size; 192 addr = vmalloc(size); 193 if (addr) 194 memset(addr, 0, size); 195 196 return addr; 197 } 198 199 /* 200 * highs, and targets are managed as dynamic arrays during a 201 * table load. 202 */ 203 static int alloc_targets(struct dm_table *t, unsigned int num) 204 { 205 sector_t *n_highs; 206 struct dm_target *n_targets; 207 int n = t->num_targets; 208 209 /* 210 * Allocate both the target array and offset array at once. 211 * Append an empty entry to catch sectors beyond the end of 212 * the device. 213 */ 214 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 215 sizeof(sector_t)); 216 if (!n_highs) 217 return -ENOMEM; 218 219 n_targets = (struct dm_target *) (n_highs + num); 220 221 if (n) { 222 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 223 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 224 } 225 226 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 227 vfree(t->highs); 228 229 t->num_allocated = num; 230 t->highs = n_highs; 231 t->targets = n_targets; 232 233 return 0; 234 } 235 236 int dm_table_create(struct dm_table **result, fmode_t mode, 237 unsigned num_targets, struct mapped_device *md) 238 { 239 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 240 241 if (!t) 242 return -ENOMEM; 243 244 INIT_LIST_HEAD(&t->devices); 245 atomic_set(&t->holders, 0); 246 t->barriers_supported = 1; 247 248 if (!num_targets) 249 num_targets = KEYS_PER_NODE; 250 251 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 252 253 if (alloc_targets(t, num_targets)) { 254 kfree(t); 255 t = NULL; 256 return -ENOMEM; 257 } 258 259 t->mode = mode; 260 t->md = md; 261 *result = t; 262 return 0; 263 } 264 265 static void free_devices(struct list_head *devices) 266 { 267 struct list_head *tmp, *next; 268 269 list_for_each_safe(tmp, next, devices) { 270 struct dm_dev_internal *dd = 271 list_entry(tmp, struct dm_dev_internal, list); 272 kfree(dd); 273 } 274 } 275 276 void dm_table_destroy(struct dm_table *t) 277 { 278 unsigned int i; 279 280 while (atomic_read(&t->holders)) 281 msleep(1); 282 smp_mb(); 283 284 /* free the indexes (see dm_table_complete) */ 285 if (t->depth >= 2) 286 vfree(t->index[t->depth - 2]); 287 288 /* free the targets */ 289 for (i = 0; i < t->num_targets; i++) { 290 struct dm_target *tgt = t->targets + i; 291 292 if (tgt->type->dtr) 293 tgt->type->dtr(tgt); 294 295 dm_put_target_type(tgt->type); 296 } 297 298 vfree(t->highs); 299 300 /* free the device list */ 301 if (t->devices.next != &t->devices) { 302 DMWARN("devices still present during destroy: " 303 "dm_table_remove_device calls missing"); 304 305 free_devices(&t->devices); 306 } 307 308 kfree(t); 309 } 310 311 void dm_table_get(struct dm_table *t) 312 { 313 atomic_inc(&t->holders); 314 } 315 316 void dm_table_put(struct dm_table *t) 317 { 318 if (!t) 319 return; 320 321 smp_mb__before_atomic_dec(); 322 atomic_dec(&t->holders); 323 } 324 325 /* 326 * Checks to see if we need to extend highs or targets. 327 */ 328 static inline int check_space(struct dm_table *t) 329 { 330 if (t->num_targets >= t->num_allocated) 331 return alloc_targets(t, t->num_allocated * 2); 332 333 return 0; 334 } 335 336 /* 337 * See if we've already got a device in the list. 338 */ 339 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 340 { 341 struct dm_dev_internal *dd; 342 343 list_for_each_entry (dd, l, list) 344 if (dd->dm_dev.bdev->bd_dev == dev) 345 return dd; 346 347 return NULL; 348 } 349 350 /* 351 * Open a device so we can use it as a map destination. 352 */ 353 static int open_dev(struct dm_dev_internal *d, dev_t dev, 354 struct mapped_device *md) 355 { 356 static char *_claim_ptr = "I belong to device-mapper"; 357 struct block_device *bdev; 358 359 int r; 360 361 BUG_ON(d->dm_dev.bdev); 362 363 bdev = open_by_devnum(dev, d->dm_dev.mode); 364 if (IS_ERR(bdev)) 365 return PTR_ERR(bdev); 366 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); 367 if (r) 368 blkdev_put(bdev, d->dm_dev.mode); 369 else 370 d->dm_dev.bdev = bdev; 371 return r; 372 } 373 374 /* 375 * Close a device that we've been using. 376 */ 377 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 378 { 379 if (!d->dm_dev.bdev) 380 return; 381 382 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md)); 383 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode); 384 d->dm_dev.bdev = NULL; 385 } 386 387 /* 388 * If possible, this checks an area of a destination device is valid. 389 */ 390 static int check_device_area(struct dm_dev_internal *dd, sector_t start, 391 sector_t len) 392 { 393 sector_t dev_size = dd->dm_dev.bdev->bd_inode->i_size >> SECTOR_SHIFT; 394 395 if (!dev_size) 396 return 1; 397 398 return ((start < dev_size) && (len <= (dev_size - start))); 399 } 400 401 /* 402 * This upgrades the mode on an already open dm_dev, being 403 * careful to leave things as they were if we fail to reopen the 404 * device and not to touch the existing bdev field in case 405 * it is accessed concurrently inside dm_table_any_congested(). 406 */ 407 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 408 struct mapped_device *md) 409 { 410 int r; 411 struct dm_dev_internal dd_new, dd_old; 412 413 dd_new = dd_old = *dd; 414 415 dd_new.dm_dev.mode |= new_mode; 416 dd_new.dm_dev.bdev = NULL; 417 418 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 419 if (r) 420 return r; 421 422 dd->dm_dev.mode |= new_mode; 423 close_dev(&dd_old, md); 424 425 return 0; 426 } 427 428 /* 429 * Add a device to the list, or just increment the usage count if 430 * it's already present. 431 */ 432 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 433 const char *path, sector_t start, sector_t len, 434 fmode_t mode, struct dm_dev **result) 435 { 436 int r; 437 dev_t uninitialized_var(dev); 438 struct dm_dev_internal *dd; 439 unsigned int major, minor; 440 441 BUG_ON(!t); 442 443 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 444 /* Extract the major/minor numbers */ 445 dev = MKDEV(major, minor); 446 if (MAJOR(dev) != major || MINOR(dev) != minor) 447 return -EOVERFLOW; 448 } else { 449 /* convert the path to a device */ 450 struct block_device *bdev = lookup_bdev(path); 451 452 if (IS_ERR(bdev)) 453 return PTR_ERR(bdev); 454 dev = bdev->bd_dev; 455 bdput(bdev); 456 } 457 458 dd = find_device(&t->devices, dev); 459 if (!dd) { 460 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 461 if (!dd) 462 return -ENOMEM; 463 464 dd->dm_dev.mode = mode; 465 dd->dm_dev.bdev = NULL; 466 467 if ((r = open_dev(dd, dev, t->md))) { 468 kfree(dd); 469 return r; 470 } 471 472 format_dev_t(dd->dm_dev.name, dev); 473 474 atomic_set(&dd->count, 0); 475 list_add(&dd->list, &t->devices); 476 477 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 478 r = upgrade_mode(dd, mode, t->md); 479 if (r) 480 return r; 481 } 482 atomic_inc(&dd->count); 483 484 if (!check_device_area(dd, start, len)) { 485 DMWARN("device %s too small for target", path); 486 dm_put_device(ti, &dd->dm_dev); 487 return -EINVAL; 488 } 489 490 *result = &dd->dm_dev; 491 492 return 0; 493 } 494 495 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev) 496 { 497 struct request_queue *q = bdev_get_queue(bdev); 498 struct io_restrictions *rs = &ti->limits; 499 char b[BDEVNAME_SIZE]; 500 501 if (unlikely(!q)) { 502 DMWARN("%s: Cannot set limits for nonexistent device %s", 503 dm_device_name(ti->table->md), bdevname(bdev, b)); 504 return; 505 } 506 507 /* 508 * Combine the device limits low. 509 * 510 * FIXME: if we move an io_restriction struct 511 * into q this would just be a call to 512 * combine_restrictions_low() 513 */ 514 rs->max_sectors = 515 min_not_zero(rs->max_sectors, q->max_sectors); 516 517 /* 518 * Check if merge fn is supported. 519 * If not we'll force DM to use PAGE_SIZE or 520 * smaller I/O, just to be safe. 521 */ 522 523 if (q->merge_bvec_fn && !ti->type->merge) 524 rs->max_sectors = 525 min_not_zero(rs->max_sectors, 526 (unsigned int) (PAGE_SIZE >> 9)); 527 528 rs->max_phys_segments = 529 min_not_zero(rs->max_phys_segments, 530 q->max_phys_segments); 531 532 rs->max_hw_segments = 533 min_not_zero(rs->max_hw_segments, q->max_hw_segments); 534 535 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size); 536 537 rs->max_segment_size = 538 min_not_zero(rs->max_segment_size, q->max_segment_size); 539 540 rs->max_hw_sectors = 541 min_not_zero(rs->max_hw_sectors, q->max_hw_sectors); 542 543 rs->seg_boundary_mask = 544 min_not_zero(rs->seg_boundary_mask, 545 q->seg_boundary_mask); 546 547 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn); 548 549 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags); 550 } 551 EXPORT_SYMBOL_GPL(dm_set_device_limits); 552 553 int dm_get_device(struct dm_target *ti, const char *path, sector_t start, 554 sector_t len, fmode_t mode, struct dm_dev **result) 555 { 556 int r = __table_get_device(ti->table, ti, path, 557 start, len, mode, result); 558 559 if (!r) 560 dm_set_device_limits(ti, (*result)->bdev); 561 562 return r; 563 } 564 565 /* 566 * Decrement a devices use count and remove it if necessary. 567 */ 568 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 569 { 570 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 571 dm_dev); 572 573 if (atomic_dec_and_test(&dd->count)) { 574 close_dev(dd, ti->table->md); 575 list_del(&dd->list); 576 kfree(dd); 577 } 578 } 579 580 /* 581 * Checks to see if the target joins onto the end of the table. 582 */ 583 static int adjoin(struct dm_table *table, struct dm_target *ti) 584 { 585 struct dm_target *prev; 586 587 if (!table->num_targets) 588 return !ti->begin; 589 590 prev = &table->targets[table->num_targets - 1]; 591 return (ti->begin == (prev->begin + prev->len)); 592 } 593 594 /* 595 * Used to dynamically allocate the arg array. 596 */ 597 static char **realloc_argv(unsigned *array_size, char **old_argv) 598 { 599 char **argv; 600 unsigned new_size; 601 602 new_size = *array_size ? *array_size * 2 : 64; 603 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 604 if (argv) { 605 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 606 *array_size = new_size; 607 } 608 609 kfree(old_argv); 610 return argv; 611 } 612 613 /* 614 * Destructively splits up the argument list to pass to ctr. 615 */ 616 int dm_split_args(int *argc, char ***argvp, char *input) 617 { 618 char *start, *end = input, *out, **argv = NULL; 619 unsigned array_size = 0; 620 621 *argc = 0; 622 623 if (!input) { 624 *argvp = NULL; 625 return 0; 626 } 627 628 argv = realloc_argv(&array_size, argv); 629 if (!argv) 630 return -ENOMEM; 631 632 while (1) { 633 start = end; 634 635 /* Skip whitespace */ 636 while (*start && isspace(*start)) 637 start++; 638 639 if (!*start) 640 break; /* success, we hit the end */ 641 642 /* 'out' is used to remove any back-quotes */ 643 end = out = start; 644 while (*end) { 645 /* Everything apart from '\0' can be quoted */ 646 if (*end == '\\' && *(end + 1)) { 647 *out++ = *(end + 1); 648 end += 2; 649 continue; 650 } 651 652 if (isspace(*end)) 653 break; /* end of token */ 654 655 *out++ = *end++; 656 } 657 658 /* have we already filled the array ? */ 659 if ((*argc + 1) > array_size) { 660 argv = realloc_argv(&array_size, argv); 661 if (!argv) 662 return -ENOMEM; 663 } 664 665 /* we know this is whitespace */ 666 if (*end) 667 end++; 668 669 /* terminate the string and put it in the array */ 670 *out = '\0'; 671 argv[*argc] = start; 672 (*argc)++; 673 } 674 675 *argvp = argv; 676 return 0; 677 } 678 679 static void check_for_valid_limits(struct io_restrictions *rs) 680 { 681 if (!rs->max_sectors) 682 rs->max_sectors = SAFE_MAX_SECTORS; 683 if (!rs->max_hw_sectors) 684 rs->max_hw_sectors = SAFE_MAX_SECTORS; 685 if (!rs->max_phys_segments) 686 rs->max_phys_segments = MAX_PHYS_SEGMENTS; 687 if (!rs->max_hw_segments) 688 rs->max_hw_segments = MAX_HW_SEGMENTS; 689 if (!rs->hardsect_size) 690 rs->hardsect_size = 1 << SECTOR_SHIFT; 691 if (!rs->max_segment_size) 692 rs->max_segment_size = MAX_SEGMENT_SIZE; 693 if (!rs->seg_boundary_mask) 694 rs->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 695 if (!rs->bounce_pfn) 696 rs->bounce_pfn = -1; 697 } 698 699 int dm_table_add_target(struct dm_table *t, const char *type, 700 sector_t start, sector_t len, char *params) 701 { 702 int r = -EINVAL, argc; 703 char **argv; 704 struct dm_target *tgt; 705 706 if ((r = check_space(t))) 707 return r; 708 709 tgt = t->targets + t->num_targets; 710 memset(tgt, 0, sizeof(*tgt)); 711 712 if (!len) { 713 DMERR("%s: zero-length target", dm_device_name(t->md)); 714 return -EINVAL; 715 } 716 717 tgt->type = dm_get_target_type(type); 718 if (!tgt->type) { 719 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 720 type); 721 return -EINVAL; 722 } 723 724 tgt->table = t; 725 tgt->begin = start; 726 tgt->len = len; 727 tgt->error = "Unknown error"; 728 729 /* 730 * Does this target adjoin the previous one ? 731 */ 732 if (!adjoin(t, tgt)) { 733 tgt->error = "Gap in table"; 734 r = -EINVAL; 735 goto bad; 736 } 737 738 r = dm_split_args(&argc, &argv, params); 739 if (r) { 740 tgt->error = "couldn't split parameters (insufficient memory)"; 741 goto bad; 742 } 743 744 r = tgt->type->ctr(tgt, argc, argv); 745 kfree(argv); 746 if (r) 747 goto bad; 748 749 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 750 751 /* FIXME: the plan is to combine high here and then have 752 * the merge fn apply the target level restrictions. */ 753 combine_restrictions_low(&t->limits, &tgt->limits); 754 755 if (!(tgt->type->features & DM_TARGET_SUPPORTS_BARRIERS)) 756 t->barriers_supported = 0; 757 758 return 0; 759 760 bad: 761 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 762 dm_put_target_type(tgt->type); 763 return r; 764 } 765 766 static int setup_indexes(struct dm_table *t) 767 { 768 int i; 769 unsigned int total = 0; 770 sector_t *indexes; 771 772 /* allocate the space for *all* the indexes */ 773 for (i = t->depth - 2; i >= 0; i--) { 774 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 775 total += t->counts[i]; 776 } 777 778 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 779 if (!indexes) 780 return -ENOMEM; 781 782 /* set up internal nodes, bottom-up */ 783 for (i = t->depth - 2; i >= 0; i--) { 784 t->index[i] = indexes; 785 indexes += (KEYS_PER_NODE * t->counts[i]); 786 setup_btree_index(i, t); 787 } 788 789 return 0; 790 } 791 792 /* 793 * Builds the btree to index the map. 794 */ 795 int dm_table_complete(struct dm_table *t) 796 { 797 int r = 0; 798 unsigned int leaf_nodes; 799 800 check_for_valid_limits(&t->limits); 801 802 /* 803 * We only support barriers if there is exactly one underlying device. 804 */ 805 if (!list_is_singular(&t->devices)) 806 t->barriers_supported = 0; 807 808 /* how many indexes will the btree have ? */ 809 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 810 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 811 812 /* leaf layer has already been set up */ 813 t->counts[t->depth - 1] = leaf_nodes; 814 t->index[t->depth - 1] = t->highs; 815 816 if (t->depth >= 2) 817 r = setup_indexes(t); 818 819 return r; 820 } 821 822 static DEFINE_MUTEX(_event_lock); 823 void dm_table_event_callback(struct dm_table *t, 824 void (*fn)(void *), void *context) 825 { 826 mutex_lock(&_event_lock); 827 t->event_fn = fn; 828 t->event_context = context; 829 mutex_unlock(&_event_lock); 830 } 831 832 void dm_table_event(struct dm_table *t) 833 { 834 /* 835 * You can no longer call dm_table_event() from interrupt 836 * context, use a bottom half instead. 837 */ 838 BUG_ON(in_interrupt()); 839 840 mutex_lock(&_event_lock); 841 if (t->event_fn) 842 t->event_fn(t->event_context); 843 mutex_unlock(&_event_lock); 844 } 845 846 sector_t dm_table_get_size(struct dm_table *t) 847 { 848 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 849 } 850 851 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 852 { 853 if (index >= t->num_targets) 854 return NULL; 855 856 return t->targets + index; 857 } 858 859 /* 860 * Search the btree for the correct target. 861 * 862 * Caller should check returned pointer with dm_target_is_valid() 863 * to trap I/O beyond end of device. 864 */ 865 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 866 { 867 unsigned int l, n = 0, k = 0; 868 sector_t *node; 869 870 for (l = 0; l < t->depth; l++) { 871 n = get_child(n, k); 872 node = get_node(t, l, n); 873 874 for (k = 0; k < KEYS_PER_NODE; k++) 875 if (node[k] >= sector) 876 break; 877 } 878 879 return &t->targets[(KEYS_PER_NODE * n) + k]; 880 } 881 882 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q) 883 { 884 /* 885 * Make sure we obey the optimistic sub devices 886 * restrictions. 887 */ 888 blk_queue_max_sectors(q, t->limits.max_sectors); 889 q->max_phys_segments = t->limits.max_phys_segments; 890 q->max_hw_segments = t->limits.max_hw_segments; 891 q->hardsect_size = t->limits.hardsect_size; 892 q->max_segment_size = t->limits.max_segment_size; 893 q->max_hw_sectors = t->limits.max_hw_sectors; 894 q->seg_boundary_mask = t->limits.seg_boundary_mask; 895 q->bounce_pfn = t->limits.bounce_pfn; 896 897 if (t->limits.no_cluster) 898 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 899 else 900 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q); 901 902 } 903 904 unsigned int dm_table_get_num_targets(struct dm_table *t) 905 { 906 return t->num_targets; 907 } 908 909 struct list_head *dm_table_get_devices(struct dm_table *t) 910 { 911 return &t->devices; 912 } 913 914 fmode_t dm_table_get_mode(struct dm_table *t) 915 { 916 return t->mode; 917 } 918 919 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 920 { 921 int i = t->num_targets; 922 struct dm_target *ti = t->targets; 923 924 while (i--) { 925 if (postsuspend) { 926 if (ti->type->postsuspend) 927 ti->type->postsuspend(ti); 928 } else if (ti->type->presuspend) 929 ti->type->presuspend(ti); 930 931 ti++; 932 } 933 } 934 935 void dm_table_presuspend_targets(struct dm_table *t) 936 { 937 if (!t) 938 return; 939 940 suspend_targets(t, 0); 941 } 942 943 void dm_table_postsuspend_targets(struct dm_table *t) 944 { 945 if (!t) 946 return; 947 948 suspend_targets(t, 1); 949 } 950 951 int dm_table_resume_targets(struct dm_table *t) 952 { 953 int i, r = 0; 954 955 for (i = 0; i < t->num_targets; i++) { 956 struct dm_target *ti = t->targets + i; 957 958 if (!ti->type->preresume) 959 continue; 960 961 r = ti->type->preresume(ti); 962 if (r) 963 return r; 964 } 965 966 for (i = 0; i < t->num_targets; i++) { 967 struct dm_target *ti = t->targets + i; 968 969 if (ti->type->resume) 970 ti->type->resume(ti); 971 } 972 973 return 0; 974 } 975 976 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 977 { 978 struct dm_dev_internal *dd; 979 struct list_head *devices = dm_table_get_devices(t); 980 int r = 0; 981 982 list_for_each_entry(dd, devices, list) { 983 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 984 char b[BDEVNAME_SIZE]; 985 986 if (likely(q)) 987 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 988 else 989 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 990 dm_device_name(t->md), 991 bdevname(dd->dm_dev.bdev, b)); 992 } 993 994 return r; 995 } 996 997 void dm_table_unplug_all(struct dm_table *t) 998 { 999 struct dm_dev_internal *dd; 1000 struct list_head *devices = dm_table_get_devices(t); 1001 1002 list_for_each_entry(dd, devices, list) { 1003 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1004 char b[BDEVNAME_SIZE]; 1005 1006 if (likely(q)) 1007 blk_unplug(q); 1008 else 1009 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s", 1010 dm_device_name(t->md), 1011 bdevname(dd->dm_dev.bdev, b)); 1012 } 1013 } 1014 1015 struct mapped_device *dm_table_get_md(struct dm_table *t) 1016 { 1017 dm_get(t->md); 1018 1019 return t->md; 1020 } 1021 1022 int dm_table_barrier_ok(struct dm_table *t) 1023 { 1024 return t->barriers_supported; 1025 } 1026 EXPORT_SYMBOL(dm_table_barrier_ok); 1027 1028 EXPORT_SYMBOL(dm_vcalloc); 1029 EXPORT_SYMBOL(dm_get_device); 1030 EXPORT_SYMBOL(dm_put_device); 1031 EXPORT_SYMBOL(dm_table_event); 1032 EXPORT_SYMBOL(dm_table_get_size); 1033 EXPORT_SYMBOL(dm_table_get_mode); 1034 EXPORT_SYMBOL(dm_table_get_md); 1035 EXPORT_SYMBOL(dm_table_put); 1036 EXPORT_SYMBOL(dm_table_get); 1037 EXPORT_SYMBOL(dm_table_unplug_all); 1038