xref: /openbmc/linux/drivers/md/dm-raid1.c (revision 586e80e6ee0d137c7d79fbae183bb37bc60ee97e)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include <linux/device-mapper.h>
8 
9 #include "dm-bio-list.h"
10 #include "dm-bio-record.h"
11 
12 #include <linux/ctype.h>
13 #include <linux/init.h>
14 #include <linux/mempool.h>
15 #include <linux/module.h>
16 #include <linux/pagemap.h>
17 #include <linux/slab.h>
18 #include <linux/time.h>
19 #include <linux/vmalloc.h>
20 #include <linux/workqueue.h>
21 #include <linux/log2.h>
22 #include <linux/hardirq.h>
23 #include <linux/dm-io.h>
24 #include <linux/dm-dirty-log.h>
25 #include <linux/dm-kcopyd.h>
26 
27 #define DM_MSG_PREFIX "raid1"
28 #define DM_IO_PAGES 64
29 
30 #define DM_RAID1_HANDLE_ERRORS 0x01
31 #define errors_handled(p)	((p)->features & DM_RAID1_HANDLE_ERRORS)
32 
33 static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped);
34 
35 /*-----------------------------------------------------------------
36  * Region hash
37  *
38  * The mirror splits itself up into discrete regions.  Each
39  * region can be in one of three states: clean, dirty,
40  * nosync.  There is no need to put clean regions in the hash.
41  *
42  * In addition to being present in the hash table a region _may_
43  * be present on one of three lists.
44  *
45  *   clean_regions: Regions on this list have no io pending to
46  *   them, they are in sync, we are no longer interested in them,
47  *   they are dull.  rh_update_states() will remove them from the
48  *   hash table.
49  *
50  *   quiesced_regions: These regions have been spun down, ready
51  *   for recovery.  rh_recovery_start() will remove regions from
52  *   this list and hand them to kmirrord, which will schedule the
53  *   recovery io with kcopyd.
54  *
55  *   recovered_regions: Regions that kcopyd has successfully
56  *   recovered.  rh_update_states() will now schedule any delayed
57  *   io, up the recovery_count, and remove the region from the
58  *   hash.
59  *
60  * There are 2 locks:
61  *   A rw spin lock 'hash_lock' protects just the hash table,
62  *   this is never held in write mode from interrupt context,
63  *   which I believe means that we only have to disable irqs when
64  *   doing a write lock.
65  *
66  *   An ordinary spin lock 'region_lock' that protects the three
67  *   lists in the region_hash, with the 'state', 'list' and
68  *   'bhs_delayed' fields of the regions.  This is used from irq
69  *   context, so all other uses will have to suspend local irqs.
70  *---------------------------------------------------------------*/
71 struct mirror_set;
72 struct region_hash {
73 	struct mirror_set *ms;
74 	uint32_t region_size;
75 	unsigned region_shift;
76 
77 	/* holds persistent region state */
78 	struct dm_dirty_log *log;
79 
80 	/* hash table */
81 	rwlock_t hash_lock;
82 	mempool_t *region_pool;
83 	unsigned int mask;
84 	unsigned int nr_buckets;
85 	struct list_head *buckets;
86 
87 	spinlock_t region_lock;
88 	atomic_t recovery_in_flight;
89 	struct semaphore recovery_count;
90 	struct list_head clean_regions;
91 	struct list_head quiesced_regions;
92 	struct list_head recovered_regions;
93 	struct list_head failed_recovered_regions;
94 };
95 
96 enum {
97 	RH_CLEAN,
98 	RH_DIRTY,
99 	RH_NOSYNC,
100 	RH_RECOVERING
101 };
102 
103 struct region {
104 	struct region_hash *rh;	/* FIXME: can we get rid of this ? */
105 	region_t key;
106 	int state;
107 
108 	struct list_head hash_list;
109 	struct list_head list;
110 
111 	atomic_t pending;
112 	struct bio_list delayed_bios;
113 };
114 
115 
116 /*-----------------------------------------------------------------
117  * Mirror set structures.
118  *---------------------------------------------------------------*/
119 enum dm_raid1_error {
120 	DM_RAID1_WRITE_ERROR,
121 	DM_RAID1_SYNC_ERROR,
122 	DM_RAID1_READ_ERROR
123 };
124 
125 struct mirror {
126 	struct mirror_set *ms;
127 	atomic_t error_count;
128 	unsigned long error_type;
129 	struct dm_dev *dev;
130 	sector_t offset;
131 };
132 
133 struct mirror_set {
134 	struct dm_target *ti;
135 	struct list_head list;
136 	struct region_hash rh;
137 	struct dm_kcopyd_client *kcopyd_client;
138 	uint64_t features;
139 
140 	spinlock_t lock;	/* protects the lists */
141 	struct bio_list reads;
142 	struct bio_list writes;
143 	struct bio_list failures;
144 
145 	struct dm_io_client *io_client;
146 	mempool_t *read_record_pool;
147 
148 	/* recovery */
149 	region_t nr_regions;
150 	int in_sync;
151 	int log_failure;
152 	atomic_t suspend;
153 
154 	atomic_t default_mirror;	/* Default mirror */
155 
156 	struct workqueue_struct *kmirrord_wq;
157 	struct work_struct kmirrord_work;
158 	struct timer_list timer;
159 	unsigned long timer_pending;
160 
161 	struct work_struct trigger_event;
162 
163 	unsigned int nr_mirrors;
164 	struct mirror mirror[0];
165 };
166 
167 /*
168  * Conversion fns
169  */
170 static inline region_t bio_to_region(struct region_hash *rh, struct bio *bio)
171 {
172 	return (bio->bi_sector - rh->ms->ti->begin) >> rh->region_shift;
173 }
174 
175 static inline sector_t region_to_sector(struct region_hash *rh, region_t region)
176 {
177 	return region << rh->region_shift;
178 }
179 
180 static void wake(struct mirror_set *ms)
181 {
182 	queue_work(ms->kmirrord_wq, &ms->kmirrord_work);
183 }
184 
185 static void delayed_wake_fn(unsigned long data)
186 {
187 	struct mirror_set *ms = (struct mirror_set *) data;
188 
189 	clear_bit(0, &ms->timer_pending);
190 	wake(ms);
191 }
192 
193 static void delayed_wake(struct mirror_set *ms)
194 {
195 	if (test_and_set_bit(0, &ms->timer_pending))
196 		return;
197 
198 	ms->timer.expires = jiffies + HZ / 5;
199 	ms->timer.data = (unsigned long) ms;
200 	ms->timer.function = delayed_wake_fn;
201 	add_timer(&ms->timer);
202 }
203 
204 /* FIXME move this */
205 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw);
206 
207 #define MIN_REGIONS 64
208 #define MAX_RECOVERY 1
209 static int rh_init(struct region_hash *rh, struct mirror_set *ms,
210 		   struct dm_dirty_log *log, uint32_t region_size,
211 		   region_t nr_regions)
212 {
213 	unsigned int nr_buckets, max_buckets;
214 	size_t i;
215 
216 	/*
217 	 * Calculate a suitable number of buckets for our hash
218 	 * table.
219 	 */
220 	max_buckets = nr_regions >> 6;
221 	for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1)
222 		;
223 	nr_buckets >>= 1;
224 
225 	rh->ms = ms;
226 	rh->log = log;
227 	rh->region_size = region_size;
228 	rh->region_shift = ffs(region_size) - 1;
229 	rwlock_init(&rh->hash_lock);
230 	rh->mask = nr_buckets - 1;
231 	rh->nr_buckets = nr_buckets;
232 
233 	rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets));
234 	if (!rh->buckets) {
235 		DMERR("unable to allocate region hash memory");
236 		return -ENOMEM;
237 	}
238 
239 	for (i = 0; i < nr_buckets; i++)
240 		INIT_LIST_HEAD(rh->buckets + i);
241 
242 	spin_lock_init(&rh->region_lock);
243 	sema_init(&rh->recovery_count, 0);
244 	atomic_set(&rh->recovery_in_flight, 0);
245 	INIT_LIST_HEAD(&rh->clean_regions);
246 	INIT_LIST_HEAD(&rh->quiesced_regions);
247 	INIT_LIST_HEAD(&rh->recovered_regions);
248 	INIT_LIST_HEAD(&rh->failed_recovered_regions);
249 
250 	rh->region_pool = mempool_create_kmalloc_pool(MIN_REGIONS,
251 						      sizeof(struct region));
252 	if (!rh->region_pool) {
253 		vfree(rh->buckets);
254 		rh->buckets = NULL;
255 		return -ENOMEM;
256 	}
257 
258 	return 0;
259 }
260 
261 static void rh_exit(struct region_hash *rh)
262 {
263 	unsigned int h;
264 	struct region *reg, *nreg;
265 
266 	BUG_ON(!list_empty(&rh->quiesced_regions));
267 	for (h = 0; h < rh->nr_buckets; h++) {
268 		list_for_each_entry_safe(reg, nreg, rh->buckets + h, hash_list) {
269 			BUG_ON(atomic_read(&reg->pending));
270 			mempool_free(reg, rh->region_pool);
271 		}
272 	}
273 
274 	if (rh->log)
275 		dm_dirty_log_destroy(rh->log);
276 	if (rh->region_pool)
277 		mempool_destroy(rh->region_pool);
278 	vfree(rh->buckets);
279 }
280 
281 #define RH_HASH_MULT 2654435387U
282 
283 static inline unsigned int rh_hash(struct region_hash *rh, region_t region)
284 {
285 	return (unsigned int) ((region * RH_HASH_MULT) >> 12) & rh->mask;
286 }
287 
288 static struct region *__rh_lookup(struct region_hash *rh, region_t region)
289 {
290 	struct region *reg;
291 
292 	list_for_each_entry (reg, rh->buckets + rh_hash(rh, region), hash_list)
293 		if (reg->key == region)
294 			return reg;
295 
296 	return NULL;
297 }
298 
299 static void __rh_insert(struct region_hash *rh, struct region *reg)
300 {
301 	unsigned int h = rh_hash(rh, reg->key);
302 	list_add(&reg->hash_list, rh->buckets + h);
303 }
304 
305 static struct region *__rh_alloc(struct region_hash *rh, region_t region)
306 {
307 	struct region *reg, *nreg;
308 
309 	read_unlock(&rh->hash_lock);
310 	nreg = mempool_alloc(rh->region_pool, GFP_ATOMIC);
311 	if (unlikely(!nreg))
312 		nreg = kmalloc(sizeof(struct region), GFP_NOIO);
313 	nreg->state = rh->log->type->in_sync(rh->log, region, 1) ?
314 		RH_CLEAN : RH_NOSYNC;
315 	nreg->rh = rh;
316 	nreg->key = region;
317 
318 	INIT_LIST_HEAD(&nreg->list);
319 
320 	atomic_set(&nreg->pending, 0);
321 	bio_list_init(&nreg->delayed_bios);
322 	write_lock_irq(&rh->hash_lock);
323 
324 	reg = __rh_lookup(rh, region);
325 	if (reg)
326 		/* we lost the race */
327 		mempool_free(nreg, rh->region_pool);
328 
329 	else {
330 		__rh_insert(rh, nreg);
331 		if (nreg->state == RH_CLEAN) {
332 			spin_lock(&rh->region_lock);
333 			list_add(&nreg->list, &rh->clean_regions);
334 			spin_unlock(&rh->region_lock);
335 		}
336 		reg = nreg;
337 	}
338 	write_unlock_irq(&rh->hash_lock);
339 	read_lock(&rh->hash_lock);
340 
341 	return reg;
342 }
343 
344 static inline struct region *__rh_find(struct region_hash *rh, region_t region)
345 {
346 	struct region *reg;
347 
348 	reg = __rh_lookup(rh, region);
349 	if (!reg)
350 		reg = __rh_alloc(rh, region);
351 
352 	return reg;
353 }
354 
355 static int rh_state(struct region_hash *rh, region_t region, int may_block)
356 {
357 	int r;
358 	struct region *reg;
359 
360 	read_lock(&rh->hash_lock);
361 	reg = __rh_lookup(rh, region);
362 	read_unlock(&rh->hash_lock);
363 
364 	if (reg)
365 		return reg->state;
366 
367 	/*
368 	 * The region wasn't in the hash, so we fall back to the
369 	 * dirty log.
370 	 */
371 	r = rh->log->type->in_sync(rh->log, region, may_block);
372 
373 	/*
374 	 * Any error from the dirty log (eg. -EWOULDBLOCK) gets
375 	 * taken as a RH_NOSYNC
376 	 */
377 	return r == 1 ? RH_CLEAN : RH_NOSYNC;
378 }
379 
380 static inline int rh_in_sync(struct region_hash *rh,
381 			     region_t region, int may_block)
382 {
383 	int state = rh_state(rh, region, may_block);
384 	return state == RH_CLEAN || state == RH_DIRTY;
385 }
386 
387 static void dispatch_bios(struct mirror_set *ms, struct bio_list *bio_list)
388 {
389 	struct bio *bio;
390 
391 	while ((bio = bio_list_pop(bio_list))) {
392 		queue_bio(ms, bio, WRITE);
393 	}
394 }
395 
396 static void complete_resync_work(struct region *reg, int success)
397 {
398 	struct region_hash *rh = reg->rh;
399 
400 	rh->log->type->set_region_sync(rh->log, reg->key, success);
401 
402 	/*
403 	 * Dispatch the bios before we call 'wake_up_all'.
404 	 * This is important because if we are suspending,
405 	 * we want to know that recovery is complete and
406 	 * the work queue is flushed.  If we wake_up_all
407 	 * before we dispatch_bios (queue bios and call wake()),
408 	 * then we risk suspending before the work queue
409 	 * has been properly flushed.
410 	 */
411 	dispatch_bios(rh->ms, &reg->delayed_bios);
412 	if (atomic_dec_and_test(&rh->recovery_in_flight))
413 		wake_up_all(&_kmirrord_recovery_stopped);
414 	up(&rh->recovery_count);
415 }
416 
417 static void rh_update_states(struct region_hash *rh)
418 {
419 	struct region *reg, *next;
420 
421 	LIST_HEAD(clean);
422 	LIST_HEAD(recovered);
423 	LIST_HEAD(failed_recovered);
424 
425 	/*
426 	 * Quickly grab the lists.
427 	 */
428 	write_lock_irq(&rh->hash_lock);
429 	spin_lock(&rh->region_lock);
430 	if (!list_empty(&rh->clean_regions)) {
431 		list_splice_init(&rh->clean_regions, &clean);
432 
433 		list_for_each_entry(reg, &clean, list)
434 			list_del(&reg->hash_list);
435 	}
436 
437 	if (!list_empty(&rh->recovered_regions)) {
438 		list_splice_init(&rh->recovered_regions, &recovered);
439 
440 		list_for_each_entry (reg, &recovered, list)
441 			list_del(&reg->hash_list);
442 	}
443 
444 	if (!list_empty(&rh->failed_recovered_regions)) {
445 		list_splice_init(&rh->failed_recovered_regions,
446 				 &failed_recovered);
447 
448 		list_for_each_entry(reg, &failed_recovered, list)
449 			list_del(&reg->hash_list);
450 	}
451 
452 	spin_unlock(&rh->region_lock);
453 	write_unlock_irq(&rh->hash_lock);
454 
455 	/*
456 	 * All the regions on the recovered and clean lists have
457 	 * now been pulled out of the system, so no need to do
458 	 * any more locking.
459 	 */
460 	list_for_each_entry_safe (reg, next, &recovered, list) {
461 		rh->log->type->clear_region(rh->log, reg->key);
462 		complete_resync_work(reg, 1);
463 		mempool_free(reg, rh->region_pool);
464 	}
465 
466 	list_for_each_entry_safe(reg, next, &failed_recovered, list) {
467 		complete_resync_work(reg, errors_handled(rh->ms) ? 0 : 1);
468 		mempool_free(reg, rh->region_pool);
469 	}
470 
471 	list_for_each_entry_safe(reg, next, &clean, list) {
472 		rh->log->type->clear_region(rh->log, reg->key);
473 		mempool_free(reg, rh->region_pool);
474 	}
475 
476 	rh->log->type->flush(rh->log);
477 }
478 
479 static void rh_inc(struct region_hash *rh, region_t region)
480 {
481 	struct region *reg;
482 
483 	read_lock(&rh->hash_lock);
484 	reg = __rh_find(rh, region);
485 
486 	spin_lock_irq(&rh->region_lock);
487 	atomic_inc(&reg->pending);
488 
489 	if (reg->state == RH_CLEAN) {
490 		reg->state = RH_DIRTY;
491 		list_del_init(&reg->list);	/* take off the clean list */
492 		spin_unlock_irq(&rh->region_lock);
493 
494 		rh->log->type->mark_region(rh->log, reg->key);
495 	} else
496 		spin_unlock_irq(&rh->region_lock);
497 
498 
499 	read_unlock(&rh->hash_lock);
500 }
501 
502 static void rh_inc_pending(struct region_hash *rh, struct bio_list *bios)
503 {
504 	struct bio *bio;
505 
506 	for (bio = bios->head; bio; bio = bio->bi_next)
507 		rh_inc(rh, bio_to_region(rh, bio));
508 }
509 
510 static void rh_dec(struct region_hash *rh, region_t region)
511 {
512 	unsigned long flags;
513 	struct region *reg;
514 	int should_wake = 0;
515 
516 	read_lock(&rh->hash_lock);
517 	reg = __rh_lookup(rh, region);
518 	read_unlock(&rh->hash_lock);
519 
520 	spin_lock_irqsave(&rh->region_lock, flags);
521 	if (atomic_dec_and_test(&reg->pending)) {
522 		/*
523 		 * There is no pending I/O for this region.
524 		 * We can move the region to corresponding list for next action.
525 		 * At this point, the region is not yet connected to any list.
526 		 *
527 		 * If the state is RH_NOSYNC, the region should be kept off
528 		 * from clean list.
529 		 * The hash entry for RH_NOSYNC will remain in memory
530 		 * until the region is recovered or the map is reloaded.
531 		 */
532 
533 		/* do nothing for RH_NOSYNC */
534 		if (reg->state == RH_RECOVERING) {
535 			list_add_tail(&reg->list, &rh->quiesced_regions);
536 		} else if (reg->state == RH_DIRTY) {
537 			reg->state = RH_CLEAN;
538 			list_add(&reg->list, &rh->clean_regions);
539 		}
540 		should_wake = 1;
541 	}
542 	spin_unlock_irqrestore(&rh->region_lock, flags);
543 
544 	if (should_wake)
545 		wake(rh->ms);
546 }
547 
548 /*
549  * Starts quiescing a region in preparation for recovery.
550  */
551 static int __rh_recovery_prepare(struct region_hash *rh)
552 {
553 	int r;
554 	struct region *reg;
555 	region_t region;
556 
557 	/*
558 	 * Ask the dirty log what's next.
559 	 */
560 	r = rh->log->type->get_resync_work(rh->log, &region);
561 	if (r <= 0)
562 		return r;
563 
564 	/*
565 	 * Get this region, and start it quiescing by setting the
566 	 * recovering flag.
567 	 */
568 	read_lock(&rh->hash_lock);
569 	reg = __rh_find(rh, region);
570 	read_unlock(&rh->hash_lock);
571 
572 	spin_lock_irq(&rh->region_lock);
573 	reg->state = RH_RECOVERING;
574 
575 	/* Already quiesced ? */
576 	if (atomic_read(&reg->pending))
577 		list_del_init(&reg->list);
578 	else
579 		list_move(&reg->list, &rh->quiesced_regions);
580 
581 	spin_unlock_irq(&rh->region_lock);
582 
583 	return 1;
584 }
585 
586 static void rh_recovery_prepare(struct region_hash *rh)
587 {
588 	/* Extra reference to avoid race with rh_stop_recovery */
589 	atomic_inc(&rh->recovery_in_flight);
590 
591 	while (!down_trylock(&rh->recovery_count)) {
592 		atomic_inc(&rh->recovery_in_flight);
593 		if (__rh_recovery_prepare(rh) <= 0) {
594 			atomic_dec(&rh->recovery_in_flight);
595 			up(&rh->recovery_count);
596 			break;
597 		}
598 	}
599 
600 	/* Drop the extra reference */
601 	if (atomic_dec_and_test(&rh->recovery_in_flight))
602 		wake_up_all(&_kmirrord_recovery_stopped);
603 }
604 
605 /*
606  * Returns any quiesced regions.
607  */
608 static struct region *rh_recovery_start(struct region_hash *rh)
609 {
610 	struct region *reg = NULL;
611 
612 	spin_lock_irq(&rh->region_lock);
613 	if (!list_empty(&rh->quiesced_regions)) {
614 		reg = list_entry(rh->quiesced_regions.next,
615 				 struct region, list);
616 		list_del_init(&reg->list);	/* remove from the quiesced list */
617 	}
618 	spin_unlock_irq(&rh->region_lock);
619 
620 	return reg;
621 }
622 
623 static void rh_recovery_end(struct region *reg, int success)
624 {
625 	struct region_hash *rh = reg->rh;
626 
627 	spin_lock_irq(&rh->region_lock);
628 	if (success)
629 		list_add(&reg->list, &reg->rh->recovered_regions);
630 	else {
631 		reg->state = RH_NOSYNC;
632 		list_add(&reg->list, &reg->rh->failed_recovered_regions);
633 	}
634 	spin_unlock_irq(&rh->region_lock);
635 
636 	wake(rh->ms);
637 }
638 
639 static int rh_flush(struct region_hash *rh)
640 {
641 	return rh->log->type->flush(rh->log);
642 }
643 
644 static void rh_delay(struct region_hash *rh, struct bio *bio)
645 {
646 	struct region *reg;
647 
648 	read_lock(&rh->hash_lock);
649 	reg = __rh_find(rh, bio_to_region(rh, bio));
650 	bio_list_add(&reg->delayed_bios, bio);
651 	read_unlock(&rh->hash_lock);
652 }
653 
654 static void rh_stop_recovery(struct region_hash *rh)
655 {
656 	int i;
657 
658 	/* wait for any recovering regions */
659 	for (i = 0; i < MAX_RECOVERY; i++)
660 		down(&rh->recovery_count);
661 }
662 
663 static void rh_start_recovery(struct region_hash *rh)
664 {
665 	int i;
666 
667 	for (i = 0; i < MAX_RECOVERY; i++)
668 		up(&rh->recovery_count);
669 
670 	wake(rh->ms);
671 }
672 
673 #define MIN_READ_RECORDS 20
674 struct dm_raid1_read_record {
675 	struct mirror *m;
676 	struct dm_bio_details details;
677 };
678 
679 /*
680  * Every mirror should look like this one.
681  */
682 #define DEFAULT_MIRROR 0
683 
684 /*
685  * This is yucky.  We squirrel the mirror struct away inside
686  * bi_next for read/write buffers.  This is safe since the bh
687  * doesn't get submitted to the lower levels of block layer.
688  */
689 static struct mirror *bio_get_m(struct bio *bio)
690 {
691 	return (struct mirror *) bio->bi_next;
692 }
693 
694 static void bio_set_m(struct bio *bio, struct mirror *m)
695 {
696 	bio->bi_next = (struct bio *) m;
697 }
698 
699 static struct mirror *get_default_mirror(struct mirror_set *ms)
700 {
701 	return &ms->mirror[atomic_read(&ms->default_mirror)];
702 }
703 
704 static void set_default_mirror(struct mirror *m)
705 {
706 	struct mirror_set *ms = m->ms;
707 	struct mirror *m0 = &(ms->mirror[0]);
708 
709 	atomic_set(&ms->default_mirror, m - m0);
710 }
711 
712 /* fail_mirror
713  * @m: mirror device to fail
714  * @error_type: one of the enum's, DM_RAID1_*_ERROR
715  *
716  * If errors are being handled, record the type of
717  * error encountered for this device.  If this type
718  * of error has already been recorded, we can return;
719  * otherwise, we must signal userspace by triggering
720  * an event.  Additionally, if the device is the
721  * primary device, we must choose a new primary, but
722  * only if the mirror is in-sync.
723  *
724  * This function must not block.
725  */
726 static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type)
727 {
728 	struct mirror_set *ms = m->ms;
729 	struct mirror *new;
730 
731 	if (!errors_handled(ms))
732 		return;
733 
734 	/*
735 	 * error_count is used for nothing more than a
736 	 * simple way to tell if a device has encountered
737 	 * errors.
738 	 */
739 	atomic_inc(&m->error_count);
740 
741 	if (test_and_set_bit(error_type, &m->error_type))
742 		return;
743 
744 	if (m != get_default_mirror(ms))
745 		goto out;
746 
747 	if (!ms->in_sync) {
748 		/*
749 		 * Better to issue requests to same failing device
750 		 * than to risk returning corrupt data.
751 		 */
752 		DMERR("Primary mirror (%s) failed while out-of-sync: "
753 		      "Reads may fail.", m->dev->name);
754 		goto out;
755 	}
756 
757 	for (new = ms->mirror; new < ms->mirror + ms->nr_mirrors; new++)
758 		if (!atomic_read(&new->error_count)) {
759 			set_default_mirror(new);
760 			break;
761 		}
762 
763 	if (unlikely(new == ms->mirror + ms->nr_mirrors))
764 		DMWARN("All sides of mirror have failed.");
765 
766 out:
767 	schedule_work(&ms->trigger_event);
768 }
769 
770 /*-----------------------------------------------------------------
771  * Recovery.
772  *
773  * When a mirror is first activated we may find that some regions
774  * are in the no-sync state.  We have to recover these by
775  * recopying from the default mirror to all the others.
776  *---------------------------------------------------------------*/
777 static void recovery_complete(int read_err, unsigned long write_err,
778 			      void *context)
779 {
780 	struct region *reg = (struct region *)context;
781 	struct mirror_set *ms = reg->rh->ms;
782 	int m, bit = 0;
783 
784 	if (read_err) {
785 		/* Read error means the failure of default mirror. */
786 		DMERR_LIMIT("Unable to read primary mirror during recovery");
787 		fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR);
788 	}
789 
790 	if (write_err) {
791 		DMERR_LIMIT("Write error during recovery (error = 0x%lx)",
792 			    write_err);
793 		/*
794 		 * Bits correspond to devices (excluding default mirror).
795 		 * The default mirror cannot change during recovery.
796 		 */
797 		for (m = 0; m < ms->nr_mirrors; m++) {
798 			if (&ms->mirror[m] == get_default_mirror(ms))
799 				continue;
800 			if (test_bit(bit, &write_err))
801 				fail_mirror(ms->mirror + m,
802 					    DM_RAID1_SYNC_ERROR);
803 			bit++;
804 		}
805 	}
806 
807 	rh_recovery_end(reg, !(read_err || write_err));
808 }
809 
810 static int recover(struct mirror_set *ms, struct region *reg)
811 {
812 	int r;
813 	unsigned int i;
814 	struct dm_io_region from, to[DM_KCOPYD_MAX_REGIONS], *dest;
815 	struct mirror *m;
816 	unsigned long flags = 0;
817 
818 	/* fill in the source */
819 	m = get_default_mirror(ms);
820 	from.bdev = m->dev->bdev;
821 	from.sector = m->offset + region_to_sector(reg->rh, reg->key);
822 	if (reg->key == (ms->nr_regions - 1)) {
823 		/*
824 		 * The final region may be smaller than
825 		 * region_size.
826 		 */
827 		from.count = ms->ti->len & (reg->rh->region_size - 1);
828 		if (!from.count)
829 			from.count = reg->rh->region_size;
830 	} else
831 		from.count = reg->rh->region_size;
832 
833 	/* fill in the destinations */
834 	for (i = 0, dest = to; i < ms->nr_mirrors; i++) {
835 		if (&ms->mirror[i] == get_default_mirror(ms))
836 			continue;
837 
838 		m = ms->mirror + i;
839 		dest->bdev = m->dev->bdev;
840 		dest->sector = m->offset + region_to_sector(reg->rh, reg->key);
841 		dest->count = from.count;
842 		dest++;
843 	}
844 
845 	/* hand to kcopyd */
846 	if (!errors_handled(ms))
847 		set_bit(DM_KCOPYD_IGNORE_ERROR, &flags);
848 
849 	r = dm_kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to,
850 			   flags, recovery_complete, reg);
851 
852 	return r;
853 }
854 
855 static void do_recovery(struct mirror_set *ms)
856 {
857 	int r;
858 	struct region *reg;
859 	struct dm_dirty_log *log = ms->rh.log;
860 
861 	/*
862 	 * Start quiescing some regions.
863 	 */
864 	rh_recovery_prepare(&ms->rh);
865 
866 	/*
867 	 * Copy any already quiesced regions.
868 	 */
869 	while ((reg = rh_recovery_start(&ms->rh))) {
870 		r = recover(ms, reg);
871 		if (r)
872 			rh_recovery_end(reg, 0);
873 	}
874 
875 	/*
876 	 * Update the in sync flag.
877 	 */
878 	if (!ms->in_sync &&
879 	    (log->type->get_sync_count(log) == ms->nr_regions)) {
880 		/* the sync is complete */
881 		dm_table_event(ms->ti->table);
882 		ms->in_sync = 1;
883 	}
884 }
885 
886 /*-----------------------------------------------------------------
887  * Reads
888  *---------------------------------------------------------------*/
889 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector)
890 {
891 	struct mirror *m = get_default_mirror(ms);
892 
893 	do {
894 		if (likely(!atomic_read(&m->error_count)))
895 			return m;
896 
897 		if (m-- == ms->mirror)
898 			m += ms->nr_mirrors;
899 	} while (m != get_default_mirror(ms));
900 
901 	return NULL;
902 }
903 
904 static int default_ok(struct mirror *m)
905 {
906 	struct mirror *default_mirror = get_default_mirror(m->ms);
907 
908 	return !atomic_read(&default_mirror->error_count);
909 }
910 
911 static int mirror_available(struct mirror_set *ms, struct bio *bio)
912 {
913 	region_t region = bio_to_region(&ms->rh, bio);
914 
915 	if (ms->rh.log->type->in_sync(ms->rh.log, region, 0))
916 		return choose_mirror(ms,  bio->bi_sector) ? 1 : 0;
917 
918 	return 0;
919 }
920 
921 /*
922  * remap a buffer to a particular mirror.
923  */
924 static sector_t map_sector(struct mirror *m, struct bio *bio)
925 {
926 	return m->offset + (bio->bi_sector - m->ms->ti->begin);
927 }
928 
929 static void map_bio(struct mirror *m, struct bio *bio)
930 {
931 	bio->bi_bdev = m->dev->bdev;
932 	bio->bi_sector = map_sector(m, bio);
933 }
934 
935 static void map_region(struct dm_io_region *io, struct mirror *m,
936 		       struct bio *bio)
937 {
938 	io->bdev = m->dev->bdev;
939 	io->sector = map_sector(m, bio);
940 	io->count = bio->bi_size >> 9;
941 }
942 
943 /*-----------------------------------------------------------------
944  * Reads
945  *---------------------------------------------------------------*/
946 static void read_callback(unsigned long error, void *context)
947 {
948 	struct bio *bio = context;
949 	struct mirror *m;
950 
951 	m = bio_get_m(bio);
952 	bio_set_m(bio, NULL);
953 
954 	if (likely(!error)) {
955 		bio_endio(bio, 0);
956 		return;
957 	}
958 
959 	fail_mirror(m, DM_RAID1_READ_ERROR);
960 
961 	if (likely(default_ok(m)) || mirror_available(m->ms, bio)) {
962 		DMWARN_LIMIT("Read failure on mirror device %s.  "
963 			     "Trying alternative device.",
964 			     m->dev->name);
965 		queue_bio(m->ms, bio, bio_rw(bio));
966 		return;
967 	}
968 
969 	DMERR_LIMIT("Read failure on mirror device %s.  Failing I/O.",
970 		    m->dev->name);
971 	bio_endio(bio, -EIO);
972 }
973 
974 /* Asynchronous read. */
975 static void read_async_bio(struct mirror *m, struct bio *bio)
976 {
977 	struct dm_io_region io;
978 	struct dm_io_request io_req = {
979 		.bi_rw = READ,
980 		.mem.type = DM_IO_BVEC,
981 		.mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
982 		.notify.fn = read_callback,
983 		.notify.context = bio,
984 		.client = m->ms->io_client,
985 	};
986 
987 	map_region(&io, m, bio);
988 	bio_set_m(bio, m);
989 	(void) dm_io(&io_req, 1, &io, NULL);
990 }
991 
992 static void do_reads(struct mirror_set *ms, struct bio_list *reads)
993 {
994 	region_t region;
995 	struct bio *bio;
996 	struct mirror *m;
997 
998 	while ((bio = bio_list_pop(reads))) {
999 		region = bio_to_region(&ms->rh, bio);
1000 		m = get_default_mirror(ms);
1001 
1002 		/*
1003 		 * We can only read balance if the region is in sync.
1004 		 */
1005 		if (likely(rh_in_sync(&ms->rh, region, 1)))
1006 			m = choose_mirror(ms, bio->bi_sector);
1007 		else if (m && atomic_read(&m->error_count))
1008 			m = NULL;
1009 
1010 		if (likely(m))
1011 			read_async_bio(m, bio);
1012 		else
1013 			bio_endio(bio, -EIO);
1014 	}
1015 }
1016 
1017 /*-----------------------------------------------------------------
1018  * Writes.
1019  *
1020  * We do different things with the write io depending on the
1021  * state of the region that it's in:
1022  *
1023  * SYNC: 	increment pending, use kcopyd to write to *all* mirrors
1024  * RECOVERING:	delay the io until recovery completes
1025  * NOSYNC:	increment pending, just write to the default mirror
1026  *---------------------------------------------------------------*/
1027 
1028 /* __bio_mark_nosync
1029  * @ms
1030  * @bio
1031  * @done
1032  * @error
1033  *
1034  * The bio was written on some mirror(s) but failed on other mirror(s).
1035  * We can successfully endio the bio but should avoid the region being
1036  * marked clean by setting the state RH_NOSYNC.
1037  *
1038  * This function is _not_ safe in interrupt context!
1039  */
1040 static void __bio_mark_nosync(struct mirror_set *ms,
1041 			      struct bio *bio, unsigned done, int error)
1042 {
1043 	unsigned long flags;
1044 	struct region_hash *rh = &ms->rh;
1045 	struct dm_dirty_log *log = ms->rh.log;
1046 	struct region *reg;
1047 	region_t region = bio_to_region(rh, bio);
1048 	int recovering = 0;
1049 
1050 	/* We must inform the log that the sync count has changed. */
1051 	log->type->set_region_sync(log, region, 0);
1052 	ms->in_sync = 0;
1053 
1054 	read_lock(&rh->hash_lock);
1055 	reg = __rh_find(rh, region);
1056 	read_unlock(&rh->hash_lock);
1057 
1058 	/* region hash entry should exist because write was in-flight */
1059 	BUG_ON(!reg);
1060 	BUG_ON(!list_empty(&reg->list));
1061 
1062 	spin_lock_irqsave(&rh->region_lock, flags);
1063 	/*
1064 	 * Possible cases:
1065 	 *   1) RH_DIRTY
1066 	 *   2) RH_NOSYNC: was dirty, other preceeding writes failed
1067 	 *   3) RH_RECOVERING: flushing pending writes
1068 	 * Either case, the region should have not been connected to list.
1069 	 */
1070 	recovering = (reg->state == RH_RECOVERING);
1071 	reg->state = RH_NOSYNC;
1072 	BUG_ON(!list_empty(&reg->list));
1073 	spin_unlock_irqrestore(&rh->region_lock, flags);
1074 
1075 	bio_endio(bio, error);
1076 	if (recovering)
1077 		complete_resync_work(reg, 0);
1078 }
1079 
1080 static void write_callback(unsigned long error, void *context)
1081 {
1082 	unsigned i, ret = 0;
1083 	struct bio *bio = (struct bio *) context;
1084 	struct mirror_set *ms;
1085 	int uptodate = 0;
1086 	int should_wake = 0;
1087 	unsigned long flags;
1088 
1089 	ms = bio_get_m(bio)->ms;
1090 	bio_set_m(bio, NULL);
1091 
1092 	/*
1093 	 * NOTE: We don't decrement the pending count here,
1094 	 * instead it is done by the targets endio function.
1095 	 * This way we handle both writes to SYNC and NOSYNC
1096 	 * regions with the same code.
1097 	 */
1098 	if (likely(!error))
1099 		goto out;
1100 
1101 	for (i = 0; i < ms->nr_mirrors; i++)
1102 		if (test_bit(i, &error))
1103 			fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR);
1104 		else
1105 			uptodate = 1;
1106 
1107 	if (unlikely(!uptodate)) {
1108 		DMERR("All replicated volumes dead, failing I/O");
1109 		/* None of the writes succeeded, fail the I/O. */
1110 		ret = -EIO;
1111 	} else if (errors_handled(ms)) {
1112 		/*
1113 		 * Need to raise event.  Since raising
1114 		 * events can block, we need to do it in
1115 		 * the main thread.
1116 		 */
1117 		spin_lock_irqsave(&ms->lock, flags);
1118 		if (!ms->failures.head)
1119 			should_wake = 1;
1120 		bio_list_add(&ms->failures, bio);
1121 		spin_unlock_irqrestore(&ms->lock, flags);
1122 		if (should_wake)
1123 			wake(ms);
1124 		return;
1125 	}
1126 out:
1127 	bio_endio(bio, ret);
1128 }
1129 
1130 static void do_write(struct mirror_set *ms, struct bio *bio)
1131 {
1132 	unsigned int i;
1133 	struct dm_io_region io[ms->nr_mirrors], *dest = io;
1134 	struct mirror *m;
1135 	struct dm_io_request io_req = {
1136 		.bi_rw = WRITE,
1137 		.mem.type = DM_IO_BVEC,
1138 		.mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
1139 		.notify.fn = write_callback,
1140 		.notify.context = bio,
1141 		.client = ms->io_client,
1142 	};
1143 
1144 	for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++)
1145 		map_region(dest++, m, bio);
1146 
1147 	/*
1148 	 * Use default mirror because we only need it to retrieve the reference
1149 	 * to the mirror set in write_callback().
1150 	 */
1151 	bio_set_m(bio, get_default_mirror(ms));
1152 
1153 	(void) dm_io(&io_req, ms->nr_mirrors, io, NULL);
1154 }
1155 
1156 static void do_writes(struct mirror_set *ms, struct bio_list *writes)
1157 {
1158 	int state;
1159 	struct bio *bio;
1160 	struct bio_list sync, nosync, recover, *this_list = NULL;
1161 
1162 	if (!writes->head)
1163 		return;
1164 
1165 	/*
1166 	 * Classify each write.
1167 	 */
1168 	bio_list_init(&sync);
1169 	bio_list_init(&nosync);
1170 	bio_list_init(&recover);
1171 
1172 	while ((bio = bio_list_pop(writes))) {
1173 		state = rh_state(&ms->rh, bio_to_region(&ms->rh, bio), 1);
1174 		switch (state) {
1175 		case RH_CLEAN:
1176 		case RH_DIRTY:
1177 			this_list = &sync;
1178 			break;
1179 
1180 		case RH_NOSYNC:
1181 			this_list = &nosync;
1182 			break;
1183 
1184 		case RH_RECOVERING:
1185 			this_list = &recover;
1186 			break;
1187 		}
1188 
1189 		bio_list_add(this_list, bio);
1190 	}
1191 
1192 	/*
1193 	 * Increment the pending counts for any regions that will
1194 	 * be written to (writes to recover regions are going to
1195 	 * be delayed).
1196 	 */
1197 	rh_inc_pending(&ms->rh, &sync);
1198 	rh_inc_pending(&ms->rh, &nosync);
1199 	ms->log_failure = rh_flush(&ms->rh) ? 1 : 0;
1200 
1201 	/*
1202 	 * Dispatch io.
1203 	 */
1204 	if (unlikely(ms->log_failure)) {
1205 		spin_lock_irq(&ms->lock);
1206 		bio_list_merge(&ms->failures, &sync);
1207 		spin_unlock_irq(&ms->lock);
1208 		wake(ms);
1209 	} else
1210 		while ((bio = bio_list_pop(&sync)))
1211 			do_write(ms, bio);
1212 
1213 	while ((bio = bio_list_pop(&recover)))
1214 		rh_delay(&ms->rh, bio);
1215 
1216 	while ((bio = bio_list_pop(&nosync))) {
1217 		map_bio(get_default_mirror(ms), bio);
1218 		generic_make_request(bio);
1219 	}
1220 }
1221 
1222 static void do_failures(struct mirror_set *ms, struct bio_list *failures)
1223 {
1224 	struct bio *bio;
1225 
1226 	if (!failures->head)
1227 		return;
1228 
1229 	if (!ms->log_failure) {
1230 		while ((bio = bio_list_pop(failures)))
1231 			__bio_mark_nosync(ms, bio, bio->bi_size, 0);
1232 		return;
1233 	}
1234 
1235 	/*
1236 	 * If the log has failed, unattempted writes are being
1237 	 * put on the failures list.  We can't issue those writes
1238 	 * until a log has been marked, so we must store them.
1239 	 *
1240 	 * If a 'noflush' suspend is in progress, we can requeue
1241 	 * the I/O's to the core.  This give userspace a chance
1242 	 * to reconfigure the mirror, at which point the core
1243 	 * will reissue the writes.  If the 'noflush' flag is
1244 	 * not set, we have no choice but to return errors.
1245 	 *
1246 	 * Some writes on the failures list may have been
1247 	 * submitted before the log failure and represent a
1248 	 * failure to write to one of the devices.  It is ok
1249 	 * for us to treat them the same and requeue them
1250 	 * as well.
1251 	 */
1252 	if (dm_noflush_suspending(ms->ti)) {
1253 		while ((bio = bio_list_pop(failures)))
1254 			bio_endio(bio, DM_ENDIO_REQUEUE);
1255 		return;
1256 	}
1257 
1258 	if (atomic_read(&ms->suspend)) {
1259 		while ((bio = bio_list_pop(failures)))
1260 			bio_endio(bio, -EIO);
1261 		return;
1262 	}
1263 
1264 	spin_lock_irq(&ms->lock);
1265 	bio_list_merge(&ms->failures, failures);
1266 	spin_unlock_irq(&ms->lock);
1267 
1268 	delayed_wake(ms);
1269 }
1270 
1271 static void trigger_event(struct work_struct *work)
1272 {
1273 	struct mirror_set *ms =
1274 		container_of(work, struct mirror_set, trigger_event);
1275 
1276 	dm_table_event(ms->ti->table);
1277 }
1278 
1279 /*-----------------------------------------------------------------
1280  * kmirrord
1281  *---------------------------------------------------------------*/
1282 static void do_mirror(struct work_struct *work)
1283 {
1284 	struct mirror_set *ms =container_of(work, struct mirror_set,
1285 					    kmirrord_work);
1286 	struct bio_list reads, writes, failures;
1287 	unsigned long flags;
1288 
1289 	spin_lock_irqsave(&ms->lock, flags);
1290 	reads = ms->reads;
1291 	writes = ms->writes;
1292 	failures = ms->failures;
1293 	bio_list_init(&ms->reads);
1294 	bio_list_init(&ms->writes);
1295 	bio_list_init(&ms->failures);
1296 	spin_unlock_irqrestore(&ms->lock, flags);
1297 
1298 	rh_update_states(&ms->rh);
1299 	do_recovery(ms);
1300 	do_reads(ms, &reads);
1301 	do_writes(ms, &writes);
1302 	do_failures(ms, &failures);
1303 
1304 	dm_table_unplug_all(ms->ti->table);
1305 }
1306 
1307 
1308 /*-----------------------------------------------------------------
1309  * Target functions
1310  *---------------------------------------------------------------*/
1311 static struct mirror_set *alloc_context(unsigned int nr_mirrors,
1312 					uint32_t region_size,
1313 					struct dm_target *ti,
1314 					struct dm_dirty_log *dl)
1315 {
1316 	size_t len;
1317 	struct mirror_set *ms = NULL;
1318 
1319 	len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors);
1320 
1321 	ms = kzalloc(len, GFP_KERNEL);
1322 	if (!ms) {
1323 		ti->error = "Cannot allocate mirror context";
1324 		return NULL;
1325 	}
1326 
1327 	spin_lock_init(&ms->lock);
1328 
1329 	ms->ti = ti;
1330 	ms->nr_mirrors = nr_mirrors;
1331 	ms->nr_regions = dm_sector_div_up(ti->len, region_size);
1332 	ms->in_sync = 0;
1333 	ms->log_failure = 0;
1334 	atomic_set(&ms->suspend, 0);
1335 	atomic_set(&ms->default_mirror, DEFAULT_MIRROR);
1336 
1337 	len = sizeof(struct dm_raid1_read_record);
1338 	ms->read_record_pool = mempool_create_kmalloc_pool(MIN_READ_RECORDS,
1339 							   len);
1340 	if (!ms->read_record_pool) {
1341 		ti->error = "Error creating mirror read_record_pool";
1342 		kfree(ms);
1343 		return NULL;
1344 	}
1345 
1346 	ms->io_client = dm_io_client_create(DM_IO_PAGES);
1347 	if (IS_ERR(ms->io_client)) {
1348 		ti->error = "Error creating dm_io client";
1349 		mempool_destroy(ms->read_record_pool);
1350 		kfree(ms);
1351  		return NULL;
1352 	}
1353 
1354 	if (rh_init(&ms->rh, ms, dl, region_size, ms->nr_regions)) {
1355 		ti->error = "Error creating dirty region hash";
1356 		dm_io_client_destroy(ms->io_client);
1357 		mempool_destroy(ms->read_record_pool);
1358 		kfree(ms);
1359 		return NULL;
1360 	}
1361 
1362 	return ms;
1363 }
1364 
1365 static void free_context(struct mirror_set *ms, struct dm_target *ti,
1366 			 unsigned int m)
1367 {
1368 	while (m--)
1369 		dm_put_device(ti, ms->mirror[m].dev);
1370 
1371 	dm_io_client_destroy(ms->io_client);
1372 	rh_exit(&ms->rh);
1373 	mempool_destroy(ms->read_record_pool);
1374 	kfree(ms);
1375 }
1376 
1377 static inline int _check_region_size(struct dm_target *ti, uint32_t size)
1378 {
1379 	return !(size % (PAGE_SIZE >> 9) || !is_power_of_2(size) ||
1380 		 size > ti->len);
1381 }
1382 
1383 static int get_mirror(struct mirror_set *ms, struct dm_target *ti,
1384 		      unsigned int mirror, char **argv)
1385 {
1386 	unsigned long long offset;
1387 
1388 	if (sscanf(argv[1], "%llu", &offset) != 1) {
1389 		ti->error = "Invalid offset";
1390 		return -EINVAL;
1391 	}
1392 
1393 	if (dm_get_device(ti, argv[0], offset, ti->len,
1394 			  dm_table_get_mode(ti->table),
1395 			  &ms->mirror[mirror].dev)) {
1396 		ti->error = "Device lookup failure";
1397 		return -ENXIO;
1398 	}
1399 
1400 	ms->mirror[mirror].ms = ms;
1401 	atomic_set(&(ms->mirror[mirror].error_count), 0);
1402 	ms->mirror[mirror].error_type = 0;
1403 	ms->mirror[mirror].offset = offset;
1404 
1405 	return 0;
1406 }
1407 
1408 /*
1409  * Create dirty log: log_type #log_params <log_params>
1410  */
1411 static struct dm_dirty_log *create_dirty_log(struct dm_target *ti,
1412 					  unsigned int argc, char **argv,
1413 					  unsigned int *args_used)
1414 {
1415 	unsigned int param_count;
1416 	struct dm_dirty_log *dl;
1417 
1418 	if (argc < 2) {
1419 		ti->error = "Insufficient mirror log arguments";
1420 		return NULL;
1421 	}
1422 
1423 	if (sscanf(argv[1], "%u", &param_count) != 1) {
1424 		ti->error = "Invalid mirror log argument count";
1425 		return NULL;
1426 	}
1427 
1428 	*args_used = 2 + param_count;
1429 
1430 	if (argc < *args_used) {
1431 		ti->error = "Insufficient mirror log arguments";
1432 		return NULL;
1433 	}
1434 
1435 	dl = dm_dirty_log_create(argv[0], ti, param_count, argv + 2);
1436 	if (!dl) {
1437 		ti->error = "Error creating mirror dirty log";
1438 		return NULL;
1439 	}
1440 
1441 	if (!_check_region_size(ti, dl->type->get_region_size(dl))) {
1442 		ti->error = "Invalid region size";
1443 		dm_dirty_log_destroy(dl);
1444 		return NULL;
1445 	}
1446 
1447 	return dl;
1448 }
1449 
1450 static int parse_features(struct mirror_set *ms, unsigned argc, char **argv,
1451 			  unsigned *args_used)
1452 {
1453 	unsigned num_features;
1454 	struct dm_target *ti = ms->ti;
1455 
1456 	*args_used = 0;
1457 
1458 	if (!argc)
1459 		return 0;
1460 
1461 	if (sscanf(argv[0], "%u", &num_features) != 1) {
1462 		ti->error = "Invalid number of features";
1463 		return -EINVAL;
1464 	}
1465 
1466 	argc--;
1467 	argv++;
1468 	(*args_used)++;
1469 
1470 	if (num_features > argc) {
1471 		ti->error = "Not enough arguments to support feature count";
1472 		return -EINVAL;
1473 	}
1474 
1475 	if (!strcmp("handle_errors", argv[0]))
1476 		ms->features |= DM_RAID1_HANDLE_ERRORS;
1477 	else {
1478 		ti->error = "Unrecognised feature requested";
1479 		return -EINVAL;
1480 	}
1481 
1482 	(*args_used)++;
1483 
1484 	return 0;
1485 }
1486 
1487 /*
1488  * Construct a mirror mapping:
1489  *
1490  * log_type #log_params <log_params>
1491  * #mirrors [mirror_path offset]{2,}
1492  * [#features <features>]
1493  *
1494  * log_type is "core" or "disk"
1495  * #log_params is between 1 and 3
1496  *
1497  * If present, features must be "handle_errors".
1498  */
1499 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1500 {
1501 	int r;
1502 	unsigned int nr_mirrors, m, args_used;
1503 	struct mirror_set *ms;
1504 	struct dm_dirty_log *dl;
1505 
1506 	dl = create_dirty_log(ti, argc, argv, &args_used);
1507 	if (!dl)
1508 		return -EINVAL;
1509 
1510 	argv += args_used;
1511 	argc -= args_used;
1512 
1513 	if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 ||
1514 	    nr_mirrors < 2 || nr_mirrors > DM_KCOPYD_MAX_REGIONS + 1) {
1515 		ti->error = "Invalid number of mirrors";
1516 		dm_dirty_log_destroy(dl);
1517 		return -EINVAL;
1518 	}
1519 
1520 	argv++, argc--;
1521 
1522 	if (argc < nr_mirrors * 2) {
1523 		ti->error = "Too few mirror arguments";
1524 		dm_dirty_log_destroy(dl);
1525 		return -EINVAL;
1526 	}
1527 
1528 	ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl);
1529 	if (!ms) {
1530 		dm_dirty_log_destroy(dl);
1531 		return -ENOMEM;
1532 	}
1533 
1534 	/* Get the mirror parameter sets */
1535 	for (m = 0; m < nr_mirrors; m++) {
1536 		r = get_mirror(ms, ti, m, argv);
1537 		if (r) {
1538 			free_context(ms, ti, m);
1539 			return r;
1540 		}
1541 		argv += 2;
1542 		argc -= 2;
1543 	}
1544 
1545 	ti->private = ms;
1546  	ti->split_io = ms->rh.region_size;
1547 
1548 	ms->kmirrord_wq = create_singlethread_workqueue("kmirrord");
1549 	if (!ms->kmirrord_wq) {
1550 		DMERR("couldn't start kmirrord");
1551 		r = -ENOMEM;
1552 		goto err_free_context;
1553 	}
1554 	INIT_WORK(&ms->kmirrord_work, do_mirror);
1555 	init_timer(&ms->timer);
1556 	ms->timer_pending = 0;
1557 	INIT_WORK(&ms->trigger_event, trigger_event);
1558 
1559 	r = parse_features(ms, argc, argv, &args_used);
1560 	if (r)
1561 		goto err_destroy_wq;
1562 
1563 	argv += args_used;
1564 	argc -= args_used;
1565 
1566 	/*
1567 	 * Any read-balancing addition depends on the
1568 	 * DM_RAID1_HANDLE_ERRORS flag being present.
1569 	 * This is because the decision to balance depends
1570 	 * on the sync state of a region.  If the above
1571 	 * flag is not present, we ignore errors; and
1572 	 * the sync state may be inaccurate.
1573 	 */
1574 
1575 	if (argc) {
1576 		ti->error = "Too many mirror arguments";
1577 		r = -EINVAL;
1578 		goto err_destroy_wq;
1579 	}
1580 
1581 	r = dm_kcopyd_client_create(DM_IO_PAGES, &ms->kcopyd_client);
1582 	if (r)
1583 		goto err_destroy_wq;
1584 
1585 	wake(ms);
1586 	return 0;
1587 
1588 err_destroy_wq:
1589 	destroy_workqueue(ms->kmirrord_wq);
1590 err_free_context:
1591 	free_context(ms, ti, ms->nr_mirrors);
1592 	return r;
1593 }
1594 
1595 static void mirror_dtr(struct dm_target *ti)
1596 {
1597 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1598 
1599 	del_timer_sync(&ms->timer);
1600 	flush_workqueue(ms->kmirrord_wq);
1601 	dm_kcopyd_client_destroy(ms->kcopyd_client);
1602 	destroy_workqueue(ms->kmirrord_wq);
1603 	free_context(ms, ti, ms->nr_mirrors);
1604 }
1605 
1606 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw)
1607 {
1608 	unsigned long flags;
1609 	int should_wake = 0;
1610 	struct bio_list *bl;
1611 
1612 	bl = (rw == WRITE) ? &ms->writes : &ms->reads;
1613 	spin_lock_irqsave(&ms->lock, flags);
1614 	should_wake = !(bl->head);
1615 	bio_list_add(bl, bio);
1616 	spin_unlock_irqrestore(&ms->lock, flags);
1617 
1618 	if (should_wake)
1619 		wake(ms);
1620 }
1621 
1622 /*
1623  * Mirror mapping function
1624  */
1625 static int mirror_map(struct dm_target *ti, struct bio *bio,
1626 		      union map_info *map_context)
1627 {
1628 	int r, rw = bio_rw(bio);
1629 	struct mirror *m;
1630 	struct mirror_set *ms = ti->private;
1631 	struct dm_raid1_read_record *read_record = NULL;
1632 
1633 	if (rw == WRITE) {
1634 		/* Save region for mirror_end_io() handler */
1635 		map_context->ll = bio_to_region(&ms->rh, bio);
1636 		queue_bio(ms, bio, rw);
1637 		return DM_MAPIO_SUBMITTED;
1638 	}
1639 
1640 	r = ms->rh.log->type->in_sync(ms->rh.log,
1641 				      bio_to_region(&ms->rh, bio), 0);
1642 	if (r < 0 && r != -EWOULDBLOCK)
1643 		return r;
1644 
1645 	/*
1646 	 * If region is not in-sync queue the bio.
1647 	 */
1648 	if (!r || (r == -EWOULDBLOCK)) {
1649 		if (rw == READA)
1650 			return -EWOULDBLOCK;
1651 
1652 		queue_bio(ms, bio, rw);
1653 		return DM_MAPIO_SUBMITTED;
1654 	}
1655 
1656 	/*
1657 	 * The region is in-sync and we can perform reads directly.
1658 	 * Store enough information so we can retry if it fails.
1659 	 */
1660 	m = choose_mirror(ms, bio->bi_sector);
1661 	if (unlikely(!m))
1662 		return -EIO;
1663 
1664 	read_record = mempool_alloc(ms->read_record_pool, GFP_NOIO);
1665 	if (likely(read_record)) {
1666 		dm_bio_record(&read_record->details, bio);
1667 		map_context->ptr = read_record;
1668 		read_record->m = m;
1669 	}
1670 
1671 	map_bio(m, bio);
1672 
1673 	return DM_MAPIO_REMAPPED;
1674 }
1675 
1676 static int mirror_end_io(struct dm_target *ti, struct bio *bio,
1677 			 int error, union map_info *map_context)
1678 {
1679 	int rw = bio_rw(bio);
1680 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1681 	struct mirror *m = NULL;
1682 	struct dm_bio_details *bd = NULL;
1683 	struct dm_raid1_read_record *read_record = map_context->ptr;
1684 
1685 	/*
1686 	 * We need to dec pending if this was a write.
1687 	 */
1688 	if (rw == WRITE) {
1689 		rh_dec(&ms->rh, map_context->ll);
1690 		return error;
1691 	}
1692 
1693 	if (error == -EOPNOTSUPP)
1694 		goto out;
1695 
1696 	if ((error == -EWOULDBLOCK) && bio_rw_ahead(bio))
1697 		goto out;
1698 
1699 	if (unlikely(error)) {
1700 		if (!read_record) {
1701 			/*
1702 			 * There wasn't enough memory to record necessary
1703 			 * information for a retry or there was no other
1704 			 * mirror in-sync.
1705 			 */
1706 			DMERR_LIMIT("Mirror read failed.");
1707 			return -EIO;
1708 		}
1709 
1710 		m = read_record->m;
1711 
1712 		DMERR("Mirror read failed from %s. Trying alternative device.",
1713 		      m->dev->name);
1714 
1715 		fail_mirror(m, DM_RAID1_READ_ERROR);
1716 
1717 		/*
1718 		 * A failed read is requeued for another attempt using an intact
1719 		 * mirror.
1720 		 */
1721 		if (default_ok(m) || mirror_available(ms, bio)) {
1722 			bd = &read_record->details;
1723 
1724 			dm_bio_restore(bd, bio);
1725 			mempool_free(read_record, ms->read_record_pool);
1726 			map_context->ptr = NULL;
1727 			queue_bio(ms, bio, rw);
1728 			return 1;
1729 		}
1730 		DMERR("All replicated volumes dead, failing I/O");
1731 	}
1732 
1733 out:
1734 	if (read_record) {
1735 		mempool_free(read_record, ms->read_record_pool);
1736 		map_context->ptr = NULL;
1737 	}
1738 
1739 	return error;
1740 }
1741 
1742 static void mirror_presuspend(struct dm_target *ti)
1743 {
1744 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1745 	struct dm_dirty_log *log = ms->rh.log;
1746 
1747 	atomic_set(&ms->suspend, 1);
1748 
1749 	/*
1750 	 * We must finish up all the work that we've
1751 	 * generated (i.e. recovery work).
1752 	 */
1753 	rh_stop_recovery(&ms->rh);
1754 
1755 	wait_event(_kmirrord_recovery_stopped,
1756 		   !atomic_read(&ms->rh.recovery_in_flight));
1757 
1758 	if (log->type->presuspend && log->type->presuspend(log))
1759 		/* FIXME: need better error handling */
1760 		DMWARN("log presuspend failed");
1761 
1762 	/*
1763 	 * Now that recovery is complete/stopped and the
1764 	 * delayed bios are queued, we need to wait for
1765 	 * the worker thread to complete.  This way,
1766 	 * we know that all of our I/O has been pushed.
1767 	 */
1768 	flush_workqueue(ms->kmirrord_wq);
1769 }
1770 
1771 static void mirror_postsuspend(struct dm_target *ti)
1772 {
1773 	struct mirror_set *ms = ti->private;
1774 	struct dm_dirty_log *log = ms->rh.log;
1775 
1776 	if (log->type->postsuspend && log->type->postsuspend(log))
1777 		/* FIXME: need better error handling */
1778 		DMWARN("log postsuspend failed");
1779 }
1780 
1781 static void mirror_resume(struct dm_target *ti)
1782 {
1783 	struct mirror_set *ms = ti->private;
1784 	struct dm_dirty_log *log = ms->rh.log;
1785 
1786 	atomic_set(&ms->suspend, 0);
1787 	if (log->type->resume && log->type->resume(log))
1788 		/* FIXME: need better error handling */
1789 		DMWARN("log resume failed");
1790 	rh_start_recovery(&ms->rh);
1791 }
1792 
1793 /*
1794  * device_status_char
1795  * @m: mirror device/leg we want the status of
1796  *
1797  * We return one character representing the most severe error
1798  * we have encountered.
1799  *    A => Alive - No failures
1800  *    D => Dead - A write failure occurred leaving mirror out-of-sync
1801  *    S => Sync - A sychronization failure occurred, mirror out-of-sync
1802  *    R => Read - A read failure occurred, mirror data unaffected
1803  *
1804  * Returns: <char>
1805  */
1806 static char device_status_char(struct mirror *m)
1807 {
1808 	if (!atomic_read(&(m->error_count)))
1809 		return 'A';
1810 
1811 	return (test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' :
1812 		(test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' :
1813 		(test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U';
1814 }
1815 
1816 
1817 static int mirror_status(struct dm_target *ti, status_type_t type,
1818 			 char *result, unsigned int maxlen)
1819 {
1820 	unsigned int m, sz = 0;
1821 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1822 	struct dm_dirty_log *log = ms->rh.log;
1823 	char buffer[ms->nr_mirrors + 1];
1824 
1825 	switch (type) {
1826 	case STATUSTYPE_INFO:
1827 		DMEMIT("%d ", ms->nr_mirrors);
1828 		for (m = 0; m < ms->nr_mirrors; m++) {
1829 			DMEMIT("%s ", ms->mirror[m].dev->name);
1830 			buffer[m] = device_status_char(&(ms->mirror[m]));
1831 		}
1832 		buffer[m] = '\0';
1833 
1834 		DMEMIT("%llu/%llu 1 %s ",
1835 		      (unsigned long long)log->type->get_sync_count(ms->rh.log),
1836 		      (unsigned long long)ms->nr_regions, buffer);
1837 
1838 		sz += log->type->status(ms->rh.log, type, result+sz, maxlen-sz);
1839 
1840 		break;
1841 
1842 	case STATUSTYPE_TABLE:
1843 		sz = log->type->status(ms->rh.log, type, result, maxlen);
1844 
1845 		DMEMIT("%d", ms->nr_mirrors);
1846 		for (m = 0; m < ms->nr_mirrors; m++)
1847 			DMEMIT(" %s %llu", ms->mirror[m].dev->name,
1848 			       (unsigned long long)ms->mirror[m].offset);
1849 
1850 		if (ms->features & DM_RAID1_HANDLE_ERRORS)
1851 			DMEMIT(" 1 handle_errors");
1852 	}
1853 
1854 	return 0;
1855 }
1856 
1857 static struct target_type mirror_target = {
1858 	.name	 = "mirror",
1859 	.version = {1, 0, 20},
1860 	.module	 = THIS_MODULE,
1861 	.ctr	 = mirror_ctr,
1862 	.dtr	 = mirror_dtr,
1863 	.map	 = mirror_map,
1864 	.end_io	 = mirror_end_io,
1865 	.presuspend = mirror_presuspend,
1866 	.postsuspend = mirror_postsuspend,
1867 	.resume	 = mirror_resume,
1868 	.status	 = mirror_status,
1869 };
1870 
1871 static int __init dm_mirror_init(void)
1872 {
1873 	int r;
1874 
1875 	r = dm_register_target(&mirror_target);
1876 	if (r < 0)
1877 		DMERR("Failed to register mirror target");
1878 
1879 	return r;
1880 }
1881 
1882 static void __exit dm_mirror_exit(void)
1883 {
1884 	int r;
1885 
1886 	r = dm_unregister_target(&mirror_target);
1887 	if (r < 0)
1888 		DMERR("unregister failed %d", r);
1889 }
1890 
1891 /* Module hooks */
1892 module_init(dm_mirror_init);
1893 module_exit(dm_mirror_exit);
1894 
1895 MODULE_DESCRIPTION(DM_NAME " mirror target");
1896 MODULE_AUTHOR("Joe Thornber");
1897 MODULE_LICENSE("GPL");
1898