1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include <linux/device-mapper.h> 8 9 #include "dm-bio-list.h" 10 #include "dm-bio-record.h" 11 12 #include <linux/ctype.h> 13 #include <linux/init.h> 14 #include <linux/mempool.h> 15 #include <linux/module.h> 16 #include <linux/pagemap.h> 17 #include <linux/slab.h> 18 #include <linux/time.h> 19 #include <linux/vmalloc.h> 20 #include <linux/workqueue.h> 21 #include <linux/log2.h> 22 #include <linux/hardirq.h> 23 #include <linux/dm-io.h> 24 #include <linux/dm-dirty-log.h> 25 #include <linux/dm-kcopyd.h> 26 27 #define DM_MSG_PREFIX "raid1" 28 #define DM_IO_PAGES 64 29 30 #define DM_RAID1_HANDLE_ERRORS 0x01 31 #define errors_handled(p) ((p)->features & DM_RAID1_HANDLE_ERRORS) 32 33 static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped); 34 35 /*----------------------------------------------------------------- 36 * Region hash 37 * 38 * The mirror splits itself up into discrete regions. Each 39 * region can be in one of three states: clean, dirty, 40 * nosync. There is no need to put clean regions in the hash. 41 * 42 * In addition to being present in the hash table a region _may_ 43 * be present on one of three lists. 44 * 45 * clean_regions: Regions on this list have no io pending to 46 * them, they are in sync, we are no longer interested in them, 47 * they are dull. rh_update_states() will remove them from the 48 * hash table. 49 * 50 * quiesced_regions: These regions have been spun down, ready 51 * for recovery. rh_recovery_start() will remove regions from 52 * this list and hand them to kmirrord, which will schedule the 53 * recovery io with kcopyd. 54 * 55 * recovered_regions: Regions that kcopyd has successfully 56 * recovered. rh_update_states() will now schedule any delayed 57 * io, up the recovery_count, and remove the region from the 58 * hash. 59 * 60 * There are 2 locks: 61 * A rw spin lock 'hash_lock' protects just the hash table, 62 * this is never held in write mode from interrupt context, 63 * which I believe means that we only have to disable irqs when 64 * doing a write lock. 65 * 66 * An ordinary spin lock 'region_lock' that protects the three 67 * lists in the region_hash, with the 'state', 'list' and 68 * 'bhs_delayed' fields of the regions. This is used from irq 69 * context, so all other uses will have to suspend local irqs. 70 *---------------------------------------------------------------*/ 71 struct mirror_set; 72 struct region_hash { 73 struct mirror_set *ms; 74 uint32_t region_size; 75 unsigned region_shift; 76 77 /* holds persistent region state */ 78 struct dm_dirty_log *log; 79 80 /* hash table */ 81 rwlock_t hash_lock; 82 mempool_t *region_pool; 83 unsigned int mask; 84 unsigned int nr_buckets; 85 struct list_head *buckets; 86 87 spinlock_t region_lock; 88 atomic_t recovery_in_flight; 89 struct semaphore recovery_count; 90 struct list_head clean_regions; 91 struct list_head quiesced_regions; 92 struct list_head recovered_regions; 93 struct list_head failed_recovered_regions; 94 }; 95 96 enum { 97 RH_CLEAN, 98 RH_DIRTY, 99 RH_NOSYNC, 100 RH_RECOVERING 101 }; 102 103 struct region { 104 struct region_hash *rh; /* FIXME: can we get rid of this ? */ 105 region_t key; 106 int state; 107 108 struct list_head hash_list; 109 struct list_head list; 110 111 atomic_t pending; 112 struct bio_list delayed_bios; 113 }; 114 115 116 /*----------------------------------------------------------------- 117 * Mirror set structures. 118 *---------------------------------------------------------------*/ 119 enum dm_raid1_error { 120 DM_RAID1_WRITE_ERROR, 121 DM_RAID1_SYNC_ERROR, 122 DM_RAID1_READ_ERROR 123 }; 124 125 struct mirror { 126 struct mirror_set *ms; 127 atomic_t error_count; 128 unsigned long error_type; 129 struct dm_dev *dev; 130 sector_t offset; 131 }; 132 133 struct mirror_set { 134 struct dm_target *ti; 135 struct list_head list; 136 struct region_hash rh; 137 struct dm_kcopyd_client *kcopyd_client; 138 uint64_t features; 139 140 spinlock_t lock; /* protects the lists */ 141 struct bio_list reads; 142 struct bio_list writes; 143 struct bio_list failures; 144 145 struct dm_io_client *io_client; 146 mempool_t *read_record_pool; 147 148 /* recovery */ 149 region_t nr_regions; 150 int in_sync; 151 int log_failure; 152 atomic_t suspend; 153 154 atomic_t default_mirror; /* Default mirror */ 155 156 struct workqueue_struct *kmirrord_wq; 157 struct work_struct kmirrord_work; 158 struct timer_list timer; 159 unsigned long timer_pending; 160 161 struct work_struct trigger_event; 162 163 unsigned int nr_mirrors; 164 struct mirror mirror[0]; 165 }; 166 167 /* 168 * Conversion fns 169 */ 170 static inline region_t bio_to_region(struct region_hash *rh, struct bio *bio) 171 { 172 return (bio->bi_sector - rh->ms->ti->begin) >> rh->region_shift; 173 } 174 175 static inline sector_t region_to_sector(struct region_hash *rh, region_t region) 176 { 177 return region << rh->region_shift; 178 } 179 180 static void wake(struct mirror_set *ms) 181 { 182 queue_work(ms->kmirrord_wq, &ms->kmirrord_work); 183 } 184 185 static void delayed_wake_fn(unsigned long data) 186 { 187 struct mirror_set *ms = (struct mirror_set *) data; 188 189 clear_bit(0, &ms->timer_pending); 190 wake(ms); 191 } 192 193 static void delayed_wake(struct mirror_set *ms) 194 { 195 if (test_and_set_bit(0, &ms->timer_pending)) 196 return; 197 198 ms->timer.expires = jiffies + HZ / 5; 199 ms->timer.data = (unsigned long) ms; 200 ms->timer.function = delayed_wake_fn; 201 add_timer(&ms->timer); 202 } 203 204 /* FIXME move this */ 205 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw); 206 207 #define MIN_REGIONS 64 208 #define MAX_RECOVERY 1 209 static int rh_init(struct region_hash *rh, struct mirror_set *ms, 210 struct dm_dirty_log *log, uint32_t region_size, 211 region_t nr_regions) 212 { 213 unsigned int nr_buckets, max_buckets; 214 size_t i; 215 216 /* 217 * Calculate a suitable number of buckets for our hash 218 * table. 219 */ 220 max_buckets = nr_regions >> 6; 221 for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1) 222 ; 223 nr_buckets >>= 1; 224 225 rh->ms = ms; 226 rh->log = log; 227 rh->region_size = region_size; 228 rh->region_shift = ffs(region_size) - 1; 229 rwlock_init(&rh->hash_lock); 230 rh->mask = nr_buckets - 1; 231 rh->nr_buckets = nr_buckets; 232 233 rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets)); 234 if (!rh->buckets) { 235 DMERR("unable to allocate region hash memory"); 236 return -ENOMEM; 237 } 238 239 for (i = 0; i < nr_buckets; i++) 240 INIT_LIST_HEAD(rh->buckets + i); 241 242 spin_lock_init(&rh->region_lock); 243 sema_init(&rh->recovery_count, 0); 244 atomic_set(&rh->recovery_in_flight, 0); 245 INIT_LIST_HEAD(&rh->clean_regions); 246 INIT_LIST_HEAD(&rh->quiesced_regions); 247 INIT_LIST_HEAD(&rh->recovered_regions); 248 INIT_LIST_HEAD(&rh->failed_recovered_regions); 249 250 rh->region_pool = mempool_create_kmalloc_pool(MIN_REGIONS, 251 sizeof(struct region)); 252 if (!rh->region_pool) { 253 vfree(rh->buckets); 254 rh->buckets = NULL; 255 return -ENOMEM; 256 } 257 258 return 0; 259 } 260 261 static void rh_exit(struct region_hash *rh) 262 { 263 unsigned int h; 264 struct region *reg, *nreg; 265 266 BUG_ON(!list_empty(&rh->quiesced_regions)); 267 for (h = 0; h < rh->nr_buckets; h++) { 268 list_for_each_entry_safe(reg, nreg, rh->buckets + h, hash_list) { 269 BUG_ON(atomic_read(®->pending)); 270 mempool_free(reg, rh->region_pool); 271 } 272 } 273 274 if (rh->log) 275 dm_dirty_log_destroy(rh->log); 276 if (rh->region_pool) 277 mempool_destroy(rh->region_pool); 278 vfree(rh->buckets); 279 } 280 281 #define RH_HASH_MULT 2654435387U 282 283 static inline unsigned int rh_hash(struct region_hash *rh, region_t region) 284 { 285 return (unsigned int) ((region * RH_HASH_MULT) >> 12) & rh->mask; 286 } 287 288 static struct region *__rh_lookup(struct region_hash *rh, region_t region) 289 { 290 struct region *reg; 291 292 list_for_each_entry (reg, rh->buckets + rh_hash(rh, region), hash_list) 293 if (reg->key == region) 294 return reg; 295 296 return NULL; 297 } 298 299 static void __rh_insert(struct region_hash *rh, struct region *reg) 300 { 301 unsigned int h = rh_hash(rh, reg->key); 302 list_add(®->hash_list, rh->buckets + h); 303 } 304 305 static struct region *__rh_alloc(struct region_hash *rh, region_t region) 306 { 307 struct region *reg, *nreg; 308 309 read_unlock(&rh->hash_lock); 310 nreg = mempool_alloc(rh->region_pool, GFP_ATOMIC); 311 if (unlikely(!nreg)) 312 nreg = kmalloc(sizeof(struct region), GFP_NOIO); 313 nreg->state = rh->log->type->in_sync(rh->log, region, 1) ? 314 RH_CLEAN : RH_NOSYNC; 315 nreg->rh = rh; 316 nreg->key = region; 317 318 INIT_LIST_HEAD(&nreg->list); 319 320 atomic_set(&nreg->pending, 0); 321 bio_list_init(&nreg->delayed_bios); 322 write_lock_irq(&rh->hash_lock); 323 324 reg = __rh_lookup(rh, region); 325 if (reg) 326 /* we lost the race */ 327 mempool_free(nreg, rh->region_pool); 328 329 else { 330 __rh_insert(rh, nreg); 331 if (nreg->state == RH_CLEAN) { 332 spin_lock(&rh->region_lock); 333 list_add(&nreg->list, &rh->clean_regions); 334 spin_unlock(&rh->region_lock); 335 } 336 reg = nreg; 337 } 338 write_unlock_irq(&rh->hash_lock); 339 read_lock(&rh->hash_lock); 340 341 return reg; 342 } 343 344 static inline struct region *__rh_find(struct region_hash *rh, region_t region) 345 { 346 struct region *reg; 347 348 reg = __rh_lookup(rh, region); 349 if (!reg) 350 reg = __rh_alloc(rh, region); 351 352 return reg; 353 } 354 355 static int rh_state(struct region_hash *rh, region_t region, int may_block) 356 { 357 int r; 358 struct region *reg; 359 360 read_lock(&rh->hash_lock); 361 reg = __rh_lookup(rh, region); 362 read_unlock(&rh->hash_lock); 363 364 if (reg) 365 return reg->state; 366 367 /* 368 * The region wasn't in the hash, so we fall back to the 369 * dirty log. 370 */ 371 r = rh->log->type->in_sync(rh->log, region, may_block); 372 373 /* 374 * Any error from the dirty log (eg. -EWOULDBLOCK) gets 375 * taken as a RH_NOSYNC 376 */ 377 return r == 1 ? RH_CLEAN : RH_NOSYNC; 378 } 379 380 static inline int rh_in_sync(struct region_hash *rh, 381 region_t region, int may_block) 382 { 383 int state = rh_state(rh, region, may_block); 384 return state == RH_CLEAN || state == RH_DIRTY; 385 } 386 387 static void dispatch_bios(struct mirror_set *ms, struct bio_list *bio_list) 388 { 389 struct bio *bio; 390 391 while ((bio = bio_list_pop(bio_list))) { 392 queue_bio(ms, bio, WRITE); 393 } 394 } 395 396 static void complete_resync_work(struct region *reg, int success) 397 { 398 struct region_hash *rh = reg->rh; 399 400 rh->log->type->set_region_sync(rh->log, reg->key, success); 401 402 /* 403 * Dispatch the bios before we call 'wake_up_all'. 404 * This is important because if we are suspending, 405 * we want to know that recovery is complete and 406 * the work queue is flushed. If we wake_up_all 407 * before we dispatch_bios (queue bios and call wake()), 408 * then we risk suspending before the work queue 409 * has been properly flushed. 410 */ 411 dispatch_bios(rh->ms, ®->delayed_bios); 412 if (atomic_dec_and_test(&rh->recovery_in_flight)) 413 wake_up_all(&_kmirrord_recovery_stopped); 414 up(&rh->recovery_count); 415 } 416 417 static void rh_update_states(struct region_hash *rh) 418 { 419 struct region *reg, *next; 420 421 LIST_HEAD(clean); 422 LIST_HEAD(recovered); 423 LIST_HEAD(failed_recovered); 424 425 /* 426 * Quickly grab the lists. 427 */ 428 write_lock_irq(&rh->hash_lock); 429 spin_lock(&rh->region_lock); 430 if (!list_empty(&rh->clean_regions)) { 431 list_splice_init(&rh->clean_regions, &clean); 432 433 list_for_each_entry(reg, &clean, list) 434 list_del(®->hash_list); 435 } 436 437 if (!list_empty(&rh->recovered_regions)) { 438 list_splice_init(&rh->recovered_regions, &recovered); 439 440 list_for_each_entry (reg, &recovered, list) 441 list_del(®->hash_list); 442 } 443 444 if (!list_empty(&rh->failed_recovered_regions)) { 445 list_splice_init(&rh->failed_recovered_regions, 446 &failed_recovered); 447 448 list_for_each_entry(reg, &failed_recovered, list) 449 list_del(®->hash_list); 450 } 451 452 spin_unlock(&rh->region_lock); 453 write_unlock_irq(&rh->hash_lock); 454 455 /* 456 * All the regions on the recovered and clean lists have 457 * now been pulled out of the system, so no need to do 458 * any more locking. 459 */ 460 list_for_each_entry_safe (reg, next, &recovered, list) { 461 rh->log->type->clear_region(rh->log, reg->key); 462 complete_resync_work(reg, 1); 463 mempool_free(reg, rh->region_pool); 464 } 465 466 list_for_each_entry_safe(reg, next, &failed_recovered, list) { 467 complete_resync_work(reg, errors_handled(rh->ms) ? 0 : 1); 468 mempool_free(reg, rh->region_pool); 469 } 470 471 list_for_each_entry_safe(reg, next, &clean, list) { 472 rh->log->type->clear_region(rh->log, reg->key); 473 mempool_free(reg, rh->region_pool); 474 } 475 476 rh->log->type->flush(rh->log); 477 } 478 479 static void rh_inc(struct region_hash *rh, region_t region) 480 { 481 struct region *reg; 482 483 read_lock(&rh->hash_lock); 484 reg = __rh_find(rh, region); 485 486 spin_lock_irq(&rh->region_lock); 487 atomic_inc(®->pending); 488 489 if (reg->state == RH_CLEAN) { 490 reg->state = RH_DIRTY; 491 list_del_init(®->list); /* take off the clean list */ 492 spin_unlock_irq(&rh->region_lock); 493 494 rh->log->type->mark_region(rh->log, reg->key); 495 } else 496 spin_unlock_irq(&rh->region_lock); 497 498 499 read_unlock(&rh->hash_lock); 500 } 501 502 static void rh_inc_pending(struct region_hash *rh, struct bio_list *bios) 503 { 504 struct bio *bio; 505 506 for (bio = bios->head; bio; bio = bio->bi_next) 507 rh_inc(rh, bio_to_region(rh, bio)); 508 } 509 510 static void rh_dec(struct region_hash *rh, region_t region) 511 { 512 unsigned long flags; 513 struct region *reg; 514 int should_wake = 0; 515 516 read_lock(&rh->hash_lock); 517 reg = __rh_lookup(rh, region); 518 read_unlock(&rh->hash_lock); 519 520 spin_lock_irqsave(&rh->region_lock, flags); 521 if (atomic_dec_and_test(®->pending)) { 522 /* 523 * There is no pending I/O for this region. 524 * We can move the region to corresponding list for next action. 525 * At this point, the region is not yet connected to any list. 526 * 527 * If the state is RH_NOSYNC, the region should be kept off 528 * from clean list. 529 * The hash entry for RH_NOSYNC will remain in memory 530 * until the region is recovered or the map is reloaded. 531 */ 532 533 /* do nothing for RH_NOSYNC */ 534 if (reg->state == RH_RECOVERING) { 535 list_add_tail(®->list, &rh->quiesced_regions); 536 } else if (reg->state == RH_DIRTY) { 537 reg->state = RH_CLEAN; 538 list_add(®->list, &rh->clean_regions); 539 } 540 should_wake = 1; 541 } 542 spin_unlock_irqrestore(&rh->region_lock, flags); 543 544 if (should_wake) 545 wake(rh->ms); 546 } 547 548 /* 549 * Starts quiescing a region in preparation for recovery. 550 */ 551 static int __rh_recovery_prepare(struct region_hash *rh) 552 { 553 int r; 554 struct region *reg; 555 region_t region; 556 557 /* 558 * Ask the dirty log what's next. 559 */ 560 r = rh->log->type->get_resync_work(rh->log, ®ion); 561 if (r <= 0) 562 return r; 563 564 /* 565 * Get this region, and start it quiescing by setting the 566 * recovering flag. 567 */ 568 read_lock(&rh->hash_lock); 569 reg = __rh_find(rh, region); 570 read_unlock(&rh->hash_lock); 571 572 spin_lock_irq(&rh->region_lock); 573 reg->state = RH_RECOVERING; 574 575 /* Already quiesced ? */ 576 if (atomic_read(®->pending)) 577 list_del_init(®->list); 578 else 579 list_move(®->list, &rh->quiesced_regions); 580 581 spin_unlock_irq(&rh->region_lock); 582 583 return 1; 584 } 585 586 static void rh_recovery_prepare(struct region_hash *rh) 587 { 588 /* Extra reference to avoid race with rh_stop_recovery */ 589 atomic_inc(&rh->recovery_in_flight); 590 591 while (!down_trylock(&rh->recovery_count)) { 592 atomic_inc(&rh->recovery_in_flight); 593 if (__rh_recovery_prepare(rh) <= 0) { 594 atomic_dec(&rh->recovery_in_flight); 595 up(&rh->recovery_count); 596 break; 597 } 598 } 599 600 /* Drop the extra reference */ 601 if (atomic_dec_and_test(&rh->recovery_in_flight)) 602 wake_up_all(&_kmirrord_recovery_stopped); 603 } 604 605 /* 606 * Returns any quiesced regions. 607 */ 608 static struct region *rh_recovery_start(struct region_hash *rh) 609 { 610 struct region *reg = NULL; 611 612 spin_lock_irq(&rh->region_lock); 613 if (!list_empty(&rh->quiesced_regions)) { 614 reg = list_entry(rh->quiesced_regions.next, 615 struct region, list); 616 list_del_init(®->list); /* remove from the quiesced list */ 617 } 618 spin_unlock_irq(&rh->region_lock); 619 620 return reg; 621 } 622 623 static void rh_recovery_end(struct region *reg, int success) 624 { 625 struct region_hash *rh = reg->rh; 626 627 spin_lock_irq(&rh->region_lock); 628 if (success) 629 list_add(®->list, ®->rh->recovered_regions); 630 else { 631 reg->state = RH_NOSYNC; 632 list_add(®->list, ®->rh->failed_recovered_regions); 633 } 634 spin_unlock_irq(&rh->region_lock); 635 636 wake(rh->ms); 637 } 638 639 static int rh_flush(struct region_hash *rh) 640 { 641 return rh->log->type->flush(rh->log); 642 } 643 644 static void rh_delay(struct region_hash *rh, struct bio *bio) 645 { 646 struct region *reg; 647 648 read_lock(&rh->hash_lock); 649 reg = __rh_find(rh, bio_to_region(rh, bio)); 650 bio_list_add(®->delayed_bios, bio); 651 read_unlock(&rh->hash_lock); 652 } 653 654 static void rh_stop_recovery(struct region_hash *rh) 655 { 656 int i; 657 658 /* wait for any recovering regions */ 659 for (i = 0; i < MAX_RECOVERY; i++) 660 down(&rh->recovery_count); 661 } 662 663 static void rh_start_recovery(struct region_hash *rh) 664 { 665 int i; 666 667 for (i = 0; i < MAX_RECOVERY; i++) 668 up(&rh->recovery_count); 669 670 wake(rh->ms); 671 } 672 673 #define MIN_READ_RECORDS 20 674 struct dm_raid1_read_record { 675 struct mirror *m; 676 struct dm_bio_details details; 677 }; 678 679 /* 680 * Every mirror should look like this one. 681 */ 682 #define DEFAULT_MIRROR 0 683 684 /* 685 * This is yucky. We squirrel the mirror struct away inside 686 * bi_next for read/write buffers. This is safe since the bh 687 * doesn't get submitted to the lower levels of block layer. 688 */ 689 static struct mirror *bio_get_m(struct bio *bio) 690 { 691 return (struct mirror *) bio->bi_next; 692 } 693 694 static void bio_set_m(struct bio *bio, struct mirror *m) 695 { 696 bio->bi_next = (struct bio *) m; 697 } 698 699 static struct mirror *get_default_mirror(struct mirror_set *ms) 700 { 701 return &ms->mirror[atomic_read(&ms->default_mirror)]; 702 } 703 704 static void set_default_mirror(struct mirror *m) 705 { 706 struct mirror_set *ms = m->ms; 707 struct mirror *m0 = &(ms->mirror[0]); 708 709 atomic_set(&ms->default_mirror, m - m0); 710 } 711 712 /* fail_mirror 713 * @m: mirror device to fail 714 * @error_type: one of the enum's, DM_RAID1_*_ERROR 715 * 716 * If errors are being handled, record the type of 717 * error encountered for this device. If this type 718 * of error has already been recorded, we can return; 719 * otherwise, we must signal userspace by triggering 720 * an event. Additionally, if the device is the 721 * primary device, we must choose a new primary, but 722 * only if the mirror is in-sync. 723 * 724 * This function must not block. 725 */ 726 static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type) 727 { 728 struct mirror_set *ms = m->ms; 729 struct mirror *new; 730 731 if (!errors_handled(ms)) 732 return; 733 734 /* 735 * error_count is used for nothing more than a 736 * simple way to tell if a device has encountered 737 * errors. 738 */ 739 atomic_inc(&m->error_count); 740 741 if (test_and_set_bit(error_type, &m->error_type)) 742 return; 743 744 if (m != get_default_mirror(ms)) 745 goto out; 746 747 if (!ms->in_sync) { 748 /* 749 * Better to issue requests to same failing device 750 * than to risk returning corrupt data. 751 */ 752 DMERR("Primary mirror (%s) failed while out-of-sync: " 753 "Reads may fail.", m->dev->name); 754 goto out; 755 } 756 757 for (new = ms->mirror; new < ms->mirror + ms->nr_mirrors; new++) 758 if (!atomic_read(&new->error_count)) { 759 set_default_mirror(new); 760 break; 761 } 762 763 if (unlikely(new == ms->mirror + ms->nr_mirrors)) 764 DMWARN("All sides of mirror have failed."); 765 766 out: 767 schedule_work(&ms->trigger_event); 768 } 769 770 /*----------------------------------------------------------------- 771 * Recovery. 772 * 773 * When a mirror is first activated we may find that some regions 774 * are in the no-sync state. We have to recover these by 775 * recopying from the default mirror to all the others. 776 *---------------------------------------------------------------*/ 777 static void recovery_complete(int read_err, unsigned long write_err, 778 void *context) 779 { 780 struct region *reg = (struct region *)context; 781 struct mirror_set *ms = reg->rh->ms; 782 int m, bit = 0; 783 784 if (read_err) { 785 /* Read error means the failure of default mirror. */ 786 DMERR_LIMIT("Unable to read primary mirror during recovery"); 787 fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR); 788 } 789 790 if (write_err) { 791 DMERR_LIMIT("Write error during recovery (error = 0x%lx)", 792 write_err); 793 /* 794 * Bits correspond to devices (excluding default mirror). 795 * The default mirror cannot change during recovery. 796 */ 797 for (m = 0; m < ms->nr_mirrors; m++) { 798 if (&ms->mirror[m] == get_default_mirror(ms)) 799 continue; 800 if (test_bit(bit, &write_err)) 801 fail_mirror(ms->mirror + m, 802 DM_RAID1_SYNC_ERROR); 803 bit++; 804 } 805 } 806 807 rh_recovery_end(reg, !(read_err || write_err)); 808 } 809 810 static int recover(struct mirror_set *ms, struct region *reg) 811 { 812 int r; 813 unsigned int i; 814 struct dm_io_region from, to[DM_KCOPYD_MAX_REGIONS], *dest; 815 struct mirror *m; 816 unsigned long flags = 0; 817 818 /* fill in the source */ 819 m = get_default_mirror(ms); 820 from.bdev = m->dev->bdev; 821 from.sector = m->offset + region_to_sector(reg->rh, reg->key); 822 if (reg->key == (ms->nr_regions - 1)) { 823 /* 824 * The final region may be smaller than 825 * region_size. 826 */ 827 from.count = ms->ti->len & (reg->rh->region_size - 1); 828 if (!from.count) 829 from.count = reg->rh->region_size; 830 } else 831 from.count = reg->rh->region_size; 832 833 /* fill in the destinations */ 834 for (i = 0, dest = to; i < ms->nr_mirrors; i++) { 835 if (&ms->mirror[i] == get_default_mirror(ms)) 836 continue; 837 838 m = ms->mirror + i; 839 dest->bdev = m->dev->bdev; 840 dest->sector = m->offset + region_to_sector(reg->rh, reg->key); 841 dest->count = from.count; 842 dest++; 843 } 844 845 /* hand to kcopyd */ 846 if (!errors_handled(ms)) 847 set_bit(DM_KCOPYD_IGNORE_ERROR, &flags); 848 849 r = dm_kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to, 850 flags, recovery_complete, reg); 851 852 return r; 853 } 854 855 static void do_recovery(struct mirror_set *ms) 856 { 857 int r; 858 struct region *reg; 859 struct dm_dirty_log *log = ms->rh.log; 860 861 /* 862 * Start quiescing some regions. 863 */ 864 rh_recovery_prepare(&ms->rh); 865 866 /* 867 * Copy any already quiesced regions. 868 */ 869 while ((reg = rh_recovery_start(&ms->rh))) { 870 r = recover(ms, reg); 871 if (r) 872 rh_recovery_end(reg, 0); 873 } 874 875 /* 876 * Update the in sync flag. 877 */ 878 if (!ms->in_sync && 879 (log->type->get_sync_count(log) == ms->nr_regions)) { 880 /* the sync is complete */ 881 dm_table_event(ms->ti->table); 882 ms->in_sync = 1; 883 } 884 } 885 886 /*----------------------------------------------------------------- 887 * Reads 888 *---------------------------------------------------------------*/ 889 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector) 890 { 891 struct mirror *m = get_default_mirror(ms); 892 893 do { 894 if (likely(!atomic_read(&m->error_count))) 895 return m; 896 897 if (m-- == ms->mirror) 898 m += ms->nr_mirrors; 899 } while (m != get_default_mirror(ms)); 900 901 return NULL; 902 } 903 904 static int default_ok(struct mirror *m) 905 { 906 struct mirror *default_mirror = get_default_mirror(m->ms); 907 908 return !atomic_read(&default_mirror->error_count); 909 } 910 911 static int mirror_available(struct mirror_set *ms, struct bio *bio) 912 { 913 region_t region = bio_to_region(&ms->rh, bio); 914 915 if (ms->rh.log->type->in_sync(ms->rh.log, region, 0)) 916 return choose_mirror(ms, bio->bi_sector) ? 1 : 0; 917 918 return 0; 919 } 920 921 /* 922 * remap a buffer to a particular mirror. 923 */ 924 static sector_t map_sector(struct mirror *m, struct bio *bio) 925 { 926 return m->offset + (bio->bi_sector - m->ms->ti->begin); 927 } 928 929 static void map_bio(struct mirror *m, struct bio *bio) 930 { 931 bio->bi_bdev = m->dev->bdev; 932 bio->bi_sector = map_sector(m, bio); 933 } 934 935 static void map_region(struct dm_io_region *io, struct mirror *m, 936 struct bio *bio) 937 { 938 io->bdev = m->dev->bdev; 939 io->sector = map_sector(m, bio); 940 io->count = bio->bi_size >> 9; 941 } 942 943 /*----------------------------------------------------------------- 944 * Reads 945 *---------------------------------------------------------------*/ 946 static void read_callback(unsigned long error, void *context) 947 { 948 struct bio *bio = context; 949 struct mirror *m; 950 951 m = bio_get_m(bio); 952 bio_set_m(bio, NULL); 953 954 if (likely(!error)) { 955 bio_endio(bio, 0); 956 return; 957 } 958 959 fail_mirror(m, DM_RAID1_READ_ERROR); 960 961 if (likely(default_ok(m)) || mirror_available(m->ms, bio)) { 962 DMWARN_LIMIT("Read failure on mirror device %s. " 963 "Trying alternative device.", 964 m->dev->name); 965 queue_bio(m->ms, bio, bio_rw(bio)); 966 return; 967 } 968 969 DMERR_LIMIT("Read failure on mirror device %s. Failing I/O.", 970 m->dev->name); 971 bio_endio(bio, -EIO); 972 } 973 974 /* Asynchronous read. */ 975 static void read_async_bio(struct mirror *m, struct bio *bio) 976 { 977 struct dm_io_region io; 978 struct dm_io_request io_req = { 979 .bi_rw = READ, 980 .mem.type = DM_IO_BVEC, 981 .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx, 982 .notify.fn = read_callback, 983 .notify.context = bio, 984 .client = m->ms->io_client, 985 }; 986 987 map_region(&io, m, bio); 988 bio_set_m(bio, m); 989 (void) dm_io(&io_req, 1, &io, NULL); 990 } 991 992 static void do_reads(struct mirror_set *ms, struct bio_list *reads) 993 { 994 region_t region; 995 struct bio *bio; 996 struct mirror *m; 997 998 while ((bio = bio_list_pop(reads))) { 999 region = bio_to_region(&ms->rh, bio); 1000 m = get_default_mirror(ms); 1001 1002 /* 1003 * We can only read balance if the region is in sync. 1004 */ 1005 if (likely(rh_in_sync(&ms->rh, region, 1))) 1006 m = choose_mirror(ms, bio->bi_sector); 1007 else if (m && atomic_read(&m->error_count)) 1008 m = NULL; 1009 1010 if (likely(m)) 1011 read_async_bio(m, bio); 1012 else 1013 bio_endio(bio, -EIO); 1014 } 1015 } 1016 1017 /*----------------------------------------------------------------- 1018 * Writes. 1019 * 1020 * We do different things with the write io depending on the 1021 * state of the region that it's in: 1022 * 1023 * SYNC: increment pending, use kcopyd to write to *all* mirrors 1024 * RECOVERING: delay the io until recovery completes 1025 * NOSYNC: increment pending, just write to the default mirror 1026 *---------------------------------------------------------------*/ 1027 1028 /* __bio_mark_nosync 1029 * @ms 1030 * @bio 1031 * @done 1032 * @error 1033 * 1034 * The bio was written on some mirror(s) but failed on other mirror(s). 1035 * We can successfully endio the bio but should avoid the region being 1036 * marked clean by setting the state RH_NOSYNC. 1037 * 1038 * This function is _not_ safe in interrupt context! 1039 */ 1040 static void __bio_mark_nosync(struct mirror_set *ms, 1041 struct bio *bio, unsigned done, int error) 1042 { 1043 unsigned long flags; 1044 struct region_hash *rh = &ms->rh; 1045 struct dm_dirty_log *log = ms->rh.log; 1046 struct region *reg; 1047 region_t region = bio_to_region(rh, bio); 1048 int recovering = 0; 1049 1050 /* We must inform the log that the sync count has changed. */ 1051 log->type->set_region_sync(log, region, 0); 1052 ms->in_sync = 0; 1053 1054 read_lock(&rh->hash_lock); 1055 reg = __rh_find(rh, region); 1056 read_unlock(&rh->hash_lock); 1057 1058 /* region hash entry should exist because write was in-flight */ 1059 BUG_ON(!reg); 1060 BUG_ON(!list_empty(®->list)); 1061 1062 spin_lock_irqsave(&rh->region_lock, flags); 1063 /* 1064 * Possible cases: 1065 * 1) RH_DIRTY 1066 * 2) RH_NOSYNC: was dirty, other preceeding writes failed 1067 * 3) RH_RECOVERING: flushing pending writes 1068 * Either case, the region should have not been connected to list. 1069 */ 1070 recovering = (reg->state == RH_RECOVERING); 1071 reg->state = RH_NOSYNC; 1072 BUG_ON(!list_empty(®->list)); 1073 spin_unlock_irqrestore(&rh->region_lock, flags); 1074 1075 bio_endio(bio, error); 1076 if (recovering) 1077 complete_resync_work(reg, 0); 1078 } 1079 1080 static void write_callback(unsigned long error, void *context) 1081 { 1082 unsigned i, ret = 0; 1083 struct bio *bio = (struct bio *) context; 1084 struct mirror_set *ms; 1085 int uptodate = 0; 1086 int should_wake = 0; 1087 unsigned long flags; 1088 1089 ms = bio_get_m(bio)->ms; 1090 bio_set_m(bio, NULL); 1091 1092 /* 1093 * NOTE: We don't decrement the pending count here, 1094 * instead it is done by the targets endio function. 1095 * This way we handle both writes to SYNC and NOSYNC 1096 * regions with the same code. 1097 */ 1098 if (likely(!error)) 1099 goto out; 1100 1101 for (i = 0; i < ms->nr_mirrors; i++) 1102 if (test_bit(i, &error)) 1103 fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR); 1104 else 1105 uptodate = 1; 1106 1107 if (unlikely(!uptodate)) { 1108 DMERR("All replicated volumes dead, failing I/O"); 1109 /* None of the writes succeeded, fail the I/O. */ 1110 ret = -EIO; 1111 } else if (errors_handled(ms)) { 1112 /* 1113 * Need to raise event. Since raising 1114 * events can block, we need to do it in 1115 * the main thread. 1116 */ 1117 spin_lock_irqsave(&ms->lock, flags); 1118 if (!ms->failures.head) 1119 should_wake = 1; 1120 bio_list_add(&ms->failures, bio); 1121 spin_unlock_irqrestore(&ms->lock, flags); 1122 if (should_wake) 1123 wake(ms); 1124 return; 1125 } 1126 out: 1127 bio_endio(bio, ret); 1128 } 1129 1130 static void do_write(struct mirror_set *ms, struct bio *bio) 1131 { 1132 unsigned int i; 1133 struct dm_io_region io[ms->nr_mirrors], *dest = io; 1134 struct mirror *m; 1135 struct dm_io_request io_req = { 1136 .bi_rw = WRITE, 1137 .mem.type = DM_IO_BVEC, 1138 .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx, 1139 .notify.fn = write_callback, 1140 .notify.context = bio, 1141 .client = ms->io_client, 1142 }; 1143 1144 for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++) 1145 map_region(dest++, m, bio); 1146 1147 /* 1148 * Use default mirror because we only need it to retrieve the reference 1149 * to the mirror set in write_callback(). 1150 */ 1151 bio_set_m(bio, get_default_mirror(ms)); 1152 1153 (void) dm_io(&io_req, ms->nr_mirrors, io, NULL); 1154 } 1155 1156 static void do_writes(struct mirror_set *ms, struct bio_list *writes) 1157 { 1158 int state; 1159 struct bio *bio; 1160 struct bio_list sync, nosync, recover, *this_list = NULL; 1161 1162 if (!writes->head) 1163 return; 1164 1165 /* 1166 * Classify each write. 1167 */ 1168 bio_list_init(&sync); 1169 bio_list_init(&nosync); 1170 bio_list_init(&recover); 1171 1172 while ((bio = bio_list_pop(writes))) { 1173 state = rh_state(&ms->rh, bio_to_region(&ms->rh, bio), 1); 1174 switch (state) { 1175 case RH_CLEAN: 1176 case RH_DIRTY: 1177 this_list = &sync; 1178 break; 1179 1180 case RH_NOSYNC: 1181 this_list = &nosync; 1182 break; 1183 1184 case RH_RECOVERING: 1185 this_list = &recover; 1186 break; 1187 } 1188 1189 bio_list_add(this_list, bio); 1190 } 1191 1192 /* 1193 * Increment the pending counts for any regions that will 1194 * be written to (writes to recover regions are going to 1195 * be delayed). 1196 */ 1197 rh_inc_pending(&ms->rh, &sync); 1198 rh_inc_pending(&ms->rh, &nosync); 1199 ms->log_failure = rh_flush(&ms->rh) ? 1 : 0; 1200 1201 /* 1202 * Dispatch io. 1203 */ 1204 if (unlikely(ms->log_failure)) { 1205 spin_lock_irq(&ms->lock); 1206 bio_list_merge(&ms->failures, &sync); 1207 spin_unlock_irq(&ms->lock); 1208 wake(ms); 1209 } else 1210 while ((bio = bio_list_pop(&sync))) 1211 do_write(ms, bio); 1212 1213 while ((bio = bio_list_pop(&recover))) 1214 rh_delay(&ms->rh, bio); 1215 1216 while ((bio = bio_list_pop(&nosync))) { 1217 map_bio(get_default_mirror(ms), bio); 1218 generic_make_request(bio); 1219 } 1220 } 1221 1222 static void do_failures(struct mirror_set *ms, struct bio_list *failures) 1223 { 1224 struct bio *bio; 1225 1226 if (!failures->head) 1227 return; 1228 1229 if (!ms->log_failure) { 1230 while ((bio = bio_list_pop(failures))) 1231 __bio_mark_nosync(ms, bio, bio->bi_size, 0); 1232 return; 1233 } 1234 1235 /* 1236 * If the log has failed, unattempted writes are being 1237 * put on the failures list. We can't issue those writes 1238 * until a log has been marked, so we must store them. 1239 * 1240 * If a 'noflush' suspend is in progress, we can requeue 1241 * the I/O's to the core. This give userspace a chance 1242 * to reconfigure the mirror, at which point the core 1243 * will reissue the writes. If the 'noflush' flag is 1244 * not set, we have no choice but to return errors. 1245 * 1246 * Some writes on the failures list may have been 1247 * submitted before the log failure and represent a 1248 * failure to write to one of the devices. It is ok 1249 * for us to treat them the same and requeue them 1250 * as well. 1251 */ 1252 if (dm_noflush_suspending(ms->ti)) { 1253 while ((bio = bio_list_pop(failures))) 1254 bio_endio(bio, DM_ENDIO_REQUEUE); 1255 return; 1256 } 1257 1258 if (atomic_read(&ms->suspend)) { 1259 while ((bio = bio_list_pop(failures))) 1260 bio_endio(bio, -EIO); 1261 return; 1262 } 1263 1264 spin_lock_irq(&ms->lock); 1265 bio_list_merge(&ms->failures, failures); 1266 spin_unlock_irq(&ms->lock); 1267 1268 delayed_wake(ms); 1269 } 1270 1271 static void trigger_event(struct work_struct *work) 1272 { 1273 struct mirror_set *ms = 1274 container_of(work, struct mirror_set, trigger_event); 1275 1276 dm_table_event(ms->ti->table); 1277 } 1278 1279 /*----------------------------------------------------------------- 1280 * kmirrord 1281 *---------------------------------------------------------------*/ 1282 static void do_mirror(struct work_struct *work) 1283 { 1284 struct mirror_set *ms =container_of(work, struct mirror_set, 1285 kmirrord_work); 1286 struct bio_list reads, writes, failures; 1287 unsigned long flags; 1288 1289 spin_lock_irqsave(&ms->lock, flags); 1290 reads = ms->reads; 1291 writes = ms->writes; 1292 failures = ms->failures; 1293 bio_list_init(&ms->reads); 1294 bio_list_init(&ms->writes); 1295 bio_list_init(&ms->failures); 1296 spin_unlock_irqrestore(&ms->lock, flags); 1297 1298 rh_update_states(&ms->rh); 1299 do_recovery(ms); 1300 do_reads(ms, &reads); 1301 do_writes(ms, &writes); 1302 do_failures(ms, &failures); 1303 1304 dm_table_unplug_all(ms->ti->table); 1305 } 1306 1307 1308 /*----------------------------------------------------------------- 1309 * Target functions 1310 *---------------------------------------------------------------*/ 1311 static struct mirror_set *alloc_context(unsigned int nr_mirrors, 1312 uint32_t region_size, 1313 struct dm_target *ti, 1314 struct dm_dirty_log *dl) 1315 { 1316 size_t len; 1317 struct mirror_set *ms = NULL; 1318 1319 len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors); 1320 1321 ms = kzalloc(len, GFP_KERNEL); 1322 if (!ms) { 1323 ti->error = "Cannot allocate mirror context"; 1324 return NULL; 1325 } 1326 1327 spin_lock_init(&ms->lock); 1328 1329 ms->ti = ti; 1330 ms->nr_mirrors = nr_mirrors; 1331 ms->nr_regions = dm_sector_div_up(ti->len, region_size); 1332 ms->in_sync = 0; 1333 ms->log_failure = 0; 1334 atomic_set(&ms->suspend, 0); 1335 atomic_set(&ms->default_mirror, DEFAULT_MIRROR); 1336 1337 len = sizeof(struct dm_raid1_read_record); 1338 ms->read_record_pool = mempool_create_kmalloc_pool(MIN_READ_RECORDS, 1339 len); 1340 if (!ms->read_record_pool) { 1341 ti->error = "Error creating mirror read_record_pool"; 1342 kfree(ms); 1343 return NULL; 1344 } 1345 1346 ms->io_client = dm_io_client_create(DM_IO_PAGES); 1347 if (IS_ERR(ms->io_client)) { 1348 ti->error = "Error creating dm_io client"; 1349 mempool_destroy(ms->read_record_pool); 1350 kfree(ms); 1351 return NULL; 1352 } 1353 1354 if (rh_init(&ms->rh, ms, dl, region_size, ms->nr_regions)) { 1355 ti->error = "Error creating dirty region hash"; 1356 dm_io_client_destroy(ms->io_client); 1357 mempool_destroy(ms->read_record_pool); 1358 kfree(ms); 1359 return NULL; 1360 } 1361 1362 return ms; 1363 } 1364 1365 static void free_context(struct mirror_set *ms, struct dm_target *ti, 1366 unsigned int m) 1367 { 1368 while (m--) 1369 dm_put_device(ti, ms->mirror[m].dev); 1370 1371 dm_io_client_destroy(ms->io_client); 1372 rh_exit(&ms->rh); 1373 mempool_destroy(ms->read_record_pool); 1374 kfree(ms); 1375 } 1376 1377 static inline int _check_region_size(struct dm_target *ti, uint32_t size) 1378 { 1379 return !(size % (PAGE_SIZE >> 9) || !is_power_of_2(size) || 1380 size > ti->len); 1381 } 1382 1383 static int get_mirror(struct mirror_set *ms, struct dm_target *ti, 1384 unsigned int mirror, char **argv) 1385 { 1386 unsigned long long offset; 1387 1388 if (sscanf(argv[1], "%llu", &offset) != 1) { 1389 ti->error = "Invalid offset"; 1390 return -EINVAL; 1391 } 1392 1393 if (dm_get_device(ti, argv[0], offset, ti->len, 1394 dm_table_get_mode(ti->table), 1395 &ms->mirror[mirror].dev)) { 1396 ti->error = "Device lookup failure"; 1397 return -ENXIO; 1398 } 1399 1400 ms->mirror[mirror].ms = ms; 1401 atomic_set(&(ms->mirror[mirror].error_count), 0); 1402 ms->mirror[mirror].error_type = 0; 1403 ms->mirror[mirror].offset = offset; 1404 1405 return 0; 1406 } 1407 1408 /* 1409 * Create dirty log: log_type #log_params <log_params> 1410 */ 1411 static struct dm_dirty_log *create_dirty_log(struct dm_target *ti, 1412 unsigned int argc, char **argv, 1413 unsigned int *args_used) 1414 { 1415 unsigned int param_count; 1416 struct dm_dirty_log *dl; 1417 1418 if (argc < 2) { 1419 ti->error = "Insufficient mirror log arguments"; 1420 return NULL; 1421 } 1422 1423 if (sscanf(argv[1], "%u", ¶m_count) != 1) { 1424 ti->error = "Invalid mirror log argument count"; 1425 return NULL; 1426 } 1427 1428 *args_used = 2 + param_count; 1429 1430 if (argc < *args_used) { 1431 ti->error = "Insufficient mirror log arguments"; 1432 return NULL; 1433 } 1434 1435 dl = dm_dirty_log_create(argv[0], ti, param_count, argv + 2); 1436 if (!dl) { 1437 ti->error = "Error creating mirror dirty log"; 1438 return NULL; 1439 } 1440 1441 if (!_check_region_size(ti, dl->type->get_region_size(dl))) { 1442 ti->error = "Invalid region size"; 1443 dm_dirty_log_destroy(dl); 1444 return NULL; 1445 } 1446 1447 return dl; 1448 } 1449 1450 static int parse_features(struct mirror_set *ms, unsigned argc, char **argv, 1451 unsigned *args_used) 1452 { 1453 unsigned num_features; 1454 struct dm_target *ti = ms->ti; 1455 1456 *args_used = 0; 1457 1458 if (!argc) 1459 return 0; 1460 1461 if (sscanf(argv[0], "%u", &num_features) != 1) { 1462 ti->error = "Invalid number of features"; 1463 return -EINVAL; 1464 } 1465 1466 argc--; 1467 argv++; 1468 (*args_used)++; 1469 1470 if (num_features > argc) { 1471 ti->error = "Not enough arguments to support feature count"; 1472 return -EINVAL; 1473 } 1474 1475 if (!strcmp("handle_errors", argv[0])) 1476 ms->features |= DM_RAID1_HANDLE_ERRORS; 1477 else { 1478 ti->error = "Unrecognised feature requested"; 1479 return -EINVAL; 1480 } 1481 1482 (*args_used)++; 1483 1484 return 0; 1485 } 1486 1487 /* 1488 * Construct a mirror mapping: 1489 * 1490 * log_type #log_params <log_params> 1491 * #mirrors [mirror_path offset]{2,} 1492 * [#features <features>] 1493 * 1494 * log_type is "core" or "disk" 1495 * #log_params is between 1 and 3 1496 * 1497 * If present, features must be "handle_errors". 1498 */ 1499 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1500 { 1501 int r; 1502 unsigned int nr_mirrors, m, args_used; 1503 struct mirror_set *ms; 1504 struct dm_dirty_log *dl; 1505 1506 dl = create_dirty_log(ti, argc, argv, &args_used); 1507 if (!dl) 1508 return -EINVAL; 1509 1510 argv += args_used; 1511 argc -= args_used; 1512 1513 if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 || 1514 nr_mirrors < 2 || nr_mirrors > DM_KCOPYD_MAX_REGIONS + 1) { 1515 ti->error = "Invalid number of mirrors"; 1516 dm_dirty_log_destroy(dl); 1517 return -EINVAL; 1518 } 1519 1520 argv++, argc--; 1521 1522 if (argc < nr_mirrors * 2) { 1523 ti->error = "Too few mirror arguments"; 1524 dm_dirty_log_destroy(dl); 1525 return -EINVAL; 1526 } 1527 1528 ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl); 1529 if (!ms) { 1530 dm_dirty_log_destroy(dl); 1531 return -ENOMEM; 1532 } 1533 1534 /* Get the mirror parameter sets */ 1535 for (m = 0; m < nr_mirrors; m++) { 1536 r = get_mirror(ms, ti, m, argv); 1537 if (r) { 1538 free_context(ms, ti, m); 1539 return r; 1540 } 1541 argv += 2; 1542 argc -= 2; 1543 } 1544 1545 ti->private = ms; 1546 ti->split_io = ms->rh.region_size; 1547 1548 ms->kmirrord_wq = create_singlethread_workqueue("kmirrord"); 1549 if (!ms->kmirrord_wq) { 1550 DMERR("couldn't start kmirrord"); 1551 r = -ENOMEM; 1552 goto err_free_context; 1553 } 1554 INIT_WORK(&ms->kmirrord_work, do_mirror); 1555 init_timer(&ms->timer); 1556 ms->timer_pending = 0; 1557 INIT_WORK(&ms->trigger_event, trigger_event); 1558 1559 r = parse_features(ms, argc, argv, &args_used); 1560 if (r) 1561 goto err_destroy_wq; 1562 1563 argv += args_used; 1564 argc -= args_used; 1565 1566 /* 1567 * Any read-balancing addition depends on the 1568 * DM_RAID1_HANDLE_ERRORS flag being present. 1569 * This is because the decision to balance depends 1570 * on the sync state of a region. If the above 1571 * flag is not present, we ignore errors; and 1572 * the sync state may be inaccurate. 1573 */ 1574 1575 if (argc) { 1576 ti->error = "Too many mirror arguments"; 1577 r = -EINVAL; 1578 goto err_destroy_wq; 1579 } 1580 1581 r = dm_kcopyd_client_create(DM_IO_PAGES, &ms->kcopyd_client); 1582 if (r) 1583 goto err_destroy_wq; 1584 1585 wake(ms); 1586 return 0; 1587 1588 err_destroy_wq: 1589 destroy_workqueue(ms->kmirrord_wq); 1590 err_free_context: 1591 free_context(ms, ti, ms->nr_mirrors); 1592 return r; 1593 } 1594 1595 static void mirror_dtr(struct dm_target *ti) 1596 { 1597 struct mirror_set *ms = (struct mirror_set *) ti->private; 1598 1599 del_timer_sync(&ms->timer); 1600 flush_workqueue(ms->kmirrord_wq); 1601 dm_kcopyd_client_destroy(ms->kcopyd_client); 1602 destroy_workqueue(ms->kmirrord_wq); 1603 free_context(ms, ti, ms->nr_mirrors); 1604 } 1605 1606 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw) 1607 { 1608 unsigned long flags; 1609 int should_wake = 0; 1610 struct bio_list *bl; 1611 1612 bl = (rw == WRITE) ? &ms->writes : &ms->reads; 1613 spin_lock_irqsave(&ms->lock, flags); 1614 should_wake = !(bl->head); 1615 bio_list_add(bl, bio); 1616 spin_unlock_irqrestore(&ms->lock, flags); 1617 1618 if (should_wake) 1619 wake(ms); 1620 } 1621 1622 /* 1623 * Mirror mapping function 1624 */ 1625 static int mirror_map(struct dm_target *ti, struct bio *bio, 1626 union map_info *map_context) 1627 { 1628 int r, rw = bio_rw(bio); 1629 struct mirror *m; 1630 struct mirror_set *ms = ti->private; 1631 struct dm_raid1_read_record *read_record = NULL; 1632 1633 if (rw == WRITE) { 1634 /* Save region for mirror_end_io() handler */ 1635 map_context->ll = bio_to_region(&ms->rh, bio); 1636 queue_bio(ms, bio, rw); 1637 return DM_MAPIO_SUBMITTED; 1638 } 1639 1640 r = ms->rh.log->type->in_sync(ms->rh.log, 1641 bio_to_region(&ms->rh, bio), 0); 1642 if (r < 0 && r != -EWOULDBLOCK) 1643 return r; 1644 1645 /* 1646 * If region is not in-sync queue the bio. 1647 */ 1648 if (!r || (r == -EWOULDBLOCK)) { 1649 if (rw == READA) 1650 return -EWOULDBLOCK; 1651 1652 queue_bio(ms, bio, rw); 1653 return DM_MAPIO_SUBMITTED; 1654 } 1655 1656 /* 1657 * The region is in-sync and we can perform reads directly. 1658 * Store enough information so we can retry if it fails. 1659 */ 1660 m = choose_mirror(ms, bio->bi_sector); 1661 if (unlikely(!m)) 1662 return -EIO; 1663 1664 read_record = mempool_alloc(ms->read_record_pool, GFP_NOIO); 1665 if (likely(read_record)) { 1666 dm_bio_record(&read_record->details, bio); 1667 map_context->ptr = read_record; 1668 read_record->m = m; 1669 } 1670 1671 map_bio(m, bio); 1672 1673 return DM_MAPIO_REMAPPED; 1674 } 1675 1676 static int mirror_end_io(struct dm_target *ti, struct bio *bio, 1677 int error, union map_info *map_context) 1678 { 1679 int rw = bio_rw(bio); 1680 struct mirror_set *ms = (struct mirror_set *) ti->private; 1681 struct mirror *m = NULL; 1682 struct dm_bio_details *bd = NULL; 1683 struct dm_raid1_read_record *read_record = map_context->ptr; 1684 1685 /* 1686 * We need to dec pending if this was a write. 1687 */ 1688 if (rw == WRITE) { 1689 rh_dec(&ms->rh, map_context->ll); 1690 return error; 1691 } 1692 1693 if (error == -EOPNOTSUPP) 1694 goto out; 1695 1696 if ((error == -EWOULDBLOCK) && bio_rw_ahead(bio)) 1697 goto out; 1698 1699 if (unlikely(error)) { 1700 if (!read_record) { 1701 /* 1702 * There wasn't enough memory to record necessary 1703 * information for a retry or there was no other 1704 * mirror in-sync. 1705 */ 1706 DMERR_LIMIT("Mirror read failed."); 1707 return -EIO; 1708 } 1709 1710 m = read_record->m; 1711 1712 DMERR("Mirror read failed from %s. Trying alternative device.", 1713 m->dev->name); 1714 1715 fail_mirror(m, DM_RAID1_READ_ERROR); 1716 1717 /* 1718 * A failed read is requeued for another attempt using an intact 1719 * mirror. 1720 */ 1721 if (default_ok(m) || mirror_available(ms, bio)) { 1722 bd = &read_record->details; 1723 1724 dm_bio_restore(bd, bio); 1725 mempool_free(read_record, ms->read_record_pool); 1726 map_context->ptr = NULL; 1727 queue_bio(ms, bio, rw); 1728 return 1; 1729 } 1730 DMERR("All replicated volumes dead, failing I/O"); 1731 } 1732 1733 out: 1734 if (read_record) { 1735 mempool_free(read_record, ms->read_record_pool); 1736 map_context->ptr = NULL; 1737 } 1738 1739 return error; 1740 } 1741 1742 static void mirror_presuspend(struct dm_target *ti) 1743 { 1744 struct mirror_set *ms = (struct mirror_set *) ti->private; 1745 struct dm_dirty_log *log = ms->rh.log; 1746 1747 atomic_set(&ms->suspend, 1); 1748 1749 /* 1750 * We must finish up all the work that we've 1751 * generated (i.e. recovery work). 1752 */ 1753 rh_stop_recovery(&ms->rh); 1754 1755 wait_event(_kmirrord_recovery_stopped, 1756 !atomic_read(&ms->rh.recovery_in_flight)); 1757 1758 if (log->type->presuspend && log->type->presuspend(log)) 1759 /* FIXME: need better error handling */ 1760 DMWARN("log presuspend failed"); 1761 1762 /* 1763 * Now that recovery is complete/stopped and the 1764 * delayed bios are queued, we need to wait for 1765 * the worker thread to complete. This way, 1766 * we know that all of our I/O has been pushed. 1767 */ 1768 flush_workqueue(ms->kmirrord_wq); 1769 } 1770 1771 static void mirror_postsuspend(struct dm_target *ti) 1772 { 1773 struct mirror_set *ms = ti->private; 1774 struct dm_dirty_log *log = ms->rh.log; 1775 1776 if (log->type->postsuspend && log->type->postsuspend(log)) 1777 /* FIXME: need better error handling */ 1778 DMWARN("log postsuspend failed"); 1779 } 1780 1781 static void mirror_resume(struct dm_target *ti) 1782 { 1783 struct mirror_set *ms = ti->private; 1784 struct dm_dirty_log *log = ms->rh.log; 1785 1786 atomic_set(&ms->suspend, 0); 1787 if (log->type->resume && log->type->resume(log)) 1788 /* FIXME: need better error handling */ 1789 DMWARN("log resume failed"); 1790 rh_start_recovery(&ms->rh); 1791 } 1792 1793 /* 1794 * device_status_char 1795 * @m: mirror device/leg we want the status of 1796 * 1797 * We return one character representing the most severe error 1798 * we have encountered. 1799 * A => Alive - No failures 1800 * D => Dead - A write failure occurred leaving mirror out-of-sync 1801 * S => Sync - A sychronization failure occurred, mirror out-of-sync 1802 * R => Read - A read failure occurred, mirror data unaffected 1803 * 1804 * Returns: <char> 1805 */ 1806 static char device_status_char(struct mirror *m) 1807 { 1808 if (!atomic_read(&(m->error_count))) 1809 return 'A'; 1810 1811 return (test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' : 1812 (test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' : 1813 (test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U'; 1814 } 1815 1816 1817 static int mirror_status(struct dm_target *ti, status_type_t type, 1818 char *result, unsigned int maxlen) 1819 { 1820 unsigned int m, sz = 0; 1821 struct mirror_set *ms = (struct mirror_set *) ti->private; 1822 struct dm_dirty_log *log = ms->rh.log; 1823 char buffer[ms->nr_mirrors + 1]; 1824 1825 switch (type) { 1826 case STATUSTYPE_INFO: 1827 DMEMIT("%d ", ms->nr_mirrors); 1828 for (m = 0; m < ms->nr_mirrors; m++) { 1829 DMEMIT("%s ", ms->mirror[m].dev->name); 1830 buffer[m] = device_status_char(&(ms->mirror[m])); 1831 } 1832 buffer[m] = '\0'; 1833 1834 DMEMIT("%llu/%llu 1 %s ", 1835 (unsigned long long)log->type->get_sync_count(ms->rh.log), 1836 (unsigned long long)ms->nr_regions, buffer); 1837 1838 sz += log->type->status(ms->rh.log, type, result+sz, maxlen-sz); 1839 1840 break; 1841 1842 case STATUSTYPE_TABLE: 1843 sz = log->type->status(ms->rh.log, type, result, maxlen); 1844 1845 DMEMIT("%d", ms->nr_mirrors); 1846 for (m = 0; m < ms->nr_mirrors; m++) 1847 DMEMIT(" %s %llu", ms->mirror[m].dev->name, 1848 (unsigned long long)ms->mirror[m].offset); 1849 1850 if (ms->features & DM_RAID1_HANDLE_ERRORS) 1851 DMEMIT(" 1 handle_errors"); 1852 } 1853 1854 return 0; 1855 } 1856 1857 static struct target_type mirror_target = { 1858 .name = "mirror", 1859 .version = {1, 0, 20}, 1860 .module = THIS_MODULE, 1861 .ctr = mirror_ctr, 1862 .dtr = mirror_dtr, 1863 .map = mirror_map, 1864 .end_io = mirror_end_io, 1865 .presuspend = mirror_presuspend, 1866 .postsuspend = mirror_postsuspend, 1867 .resume = mirror_resume, 1868 .status = mirror_status, 1869 }; 1870 1871 static int __init dm_mirror_init(void) 1872 { 1873 int r; 1874 1875 r = dm_register_target(&mirror_target); 1876 if (r < 0) 1877 DMERR("Failed to register mirror target"); 1878 1879 return r; 1880 } 1881 1882 static void __exit dm_mirror_exit(void) 1883 { 1884 int r; 1885 1886 r = dm_unregister_target(&mirror_target); 1887 if (r < 0) 1888 DMERR("unregister failed %d", r); 1889 } 1890 1891 /* Module hooks */ 1892 module_init(dm_mirror_init); 1893 module_exit(dm_mirror_exit); 1894 1895 MODULE_DESCRIPTION(DM_NAME " mirror target"); 1896 MODULE_AUTHOR("Joe Thornber"); 1897 MODULE_LICENSE("GPL"); 1898