xref: /openbmc/linux/drivers/md/dm-mpath.c (revision d0442f8039ee54716dd3f3100cfd8e11d9a2486c)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	struct list_head list;
68 	struct dm_target *ti;
69 
70 	const char *hw_handler_name;
71 	char *hw_handler_params;
72 
73 	spinlock_t lock;
74 
75 	unsigned nr_priority_groups;
76 	struct list_head priority_groups;
77 
78 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
79 
80 	struct pgpath *current_pgpath;
81 	struct priority_group *current_pg;
82 	struct priority_group *next_pg;	/* Switch to this PG if set */
83 
84 	unsigned long flags;		/* Multipath state flags */
85 
86 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
87 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
88 
89 	atomic_t nr_valid_paths;	/* Total number of usable paths */
90 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
91 	atomic_t pg_init_count;		/* Number of times pg_init called */
92 
93 	enum dm_queue_mode queue_mode;
94 
95 	struct mutex work_mutex;
96 	struct work_struct trigger_event;
97 
98 	struct work_struct process_queued_bios;
99 	struct bio_list queued_bios;
100 };
101 
102 /*
103  * Context information attached to each io we process.
104  */
105 struct dm_mpath_io {
106 	struct pgpath *pgpath;
107 	size_t nr_bytes;
108 };
109 
110 typedef int (*action_fn) (struct pgpath *pgpath);
111 
112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
113 static void trigger_event(struct work_struct *work);
114 static void activate_or_offline_path(struct pgpath *pgpath);
115 static void activate_path_work(struct work_struct *work);
116 static void process_queued_bios(struct work_struct *work);
117 
118 /*-----------------------------------------------
119  * Multipath state flags.
120  *-----------------------------------------------*/
121 
122 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
123 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
124 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
125 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
126 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
127 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
128 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
129 
130 /*-----------------------------------------------
131  * Allocation routines
132  *-----------------------------------------------*/
133 
134 static struct pgpath *alloc_pgpath(void)
135 {
136 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
137 
138 	if (pgpath) {
139 		pgpath->is_active = true;
140 		INIT_DELAYED_WORK(&pgpath->activate_path, activate_path_work);
141 	}
142 
143 	return pgpath;
144 }
145 
146 static void free_pgpath(struct pgpath *pgpath)
147 {
148 	kfree(pgpath);
149 }
150 
151 static struct priority_group *alloc_priority_group(void)
152 {
153 	struct priority_group *pg;
154 
155 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
156 
157 	if (pg)
158 		INIT_LIST_HEAD(&pg->pgpaths);
159 
160 	return pg;
161 }
162 
163 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
164 {
165 	struct pgpath *pgpath, *tmp;
166 
167 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
168 		list_del(&pgpath->list);
169 		dm_put_device(ti, pgpath->path.dev);
170 		free_pgpath(pgpath);
171 	}
172 }
173 
174 static void free_priority_group(struct priority_group *pg,
175 				struct dm_target *ti)
176 {
177 	struct path_selector *ps = &pg->ps;
178 
179 	if (ps->type) {
180 		ps->type->destroy(ps);
181 		dm_put_path_selector(ps->type);
182 	}
183 
184 	free_pgpaths(&pg->pgpaths, ti);
185 	kfree(pg);
186 }
187 
188 static struct multipath *alloc_multipath(struct dm_target *ti)
189 {
190 	struct multipath *m;
191 
192 	m = kzalloc(sizeof(*m), GFP_KERNEL);
193 	if (m) {
194 		INIT_LIST_HEAD(&m->priority_groups);
195 		spin_lock_init(&m->lock);
196 		set_bit(MPATHF_QUEUE_IO, &m->flags);
197 		atomic_set(&m->nr_valid_paths, 0);
198 		atomic_set(&m->pg_init_in_progress, 0);
199 		atomic_set(&m->pg_init_count, 0);
200 		m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
201 		INIT_WORK(&m->trigger_event, trigger_event);
202 		init_waitqueue_head(&m->pg_init_wait);
203 		mutex_init(&m->work_mutex);
204 
205 		m->queue_mode = DM_TYPE_NONE;
206 
207 		m->ti = ti;
208 		ti->private = m;
209 	}
210 
211 	return m;
212 }
213 
214 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
215 {
216 	if (m->queue_mode == DM_TYPE_NONE) {
217 		/*
218 		 * Default to request-based.
219 		 */
220 		if (dm_use_blk_mq(dm_table_get_md(ti->table)))
221 			m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
222 		else
223 			m->queue_mode = DM_TYPE_REQUEST_BASED;
224 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
225 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
226 		/*
227 		 * bio-based doesn't support any direct scsi_dh management;
228 		 * it just discovers if a scsi_dh is attached.
229 		 */
230 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
231 	}
232 
233 	dm_table_set_type(ti->table, m->queue_mode);
234 
235 	return 0;
236 }
237 
238 static void free_multipath(struct multipath *m)
239 {
240 	struct priority_group *pg, *tmp;
241 
242 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
243 		list_del(&pg->list);
244 		free_priority_group(pg, m->ti);
245 	}
246 
247 	kfree(m->hw_handler_name);
248 	kfree(m->hw_handler_params);
249 	kfree(m);
250 }
251 
252 static struct dm_mpath_io *get_mpio(union map_info *info)
253 {
254 	return info->ptr;
255 }
256 
257 static size_t multipath_per_bio_data_size(void)
258 {
259 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
260 }
261 
262 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
263 {
264 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
265 }
266 
267 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio)
268 {
269 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
270 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
271 	void *bio_details = mpio + 1;
272 
273 	return bio_details;
274 }
275 
276 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
277 {
278 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
279 	struct dm_bio_details *bio_details = get_bio_details_from_bio(bio);
280 
281 	mpio->nr_bytes = bio->bi_iter.bi_size;
282 	mpio->pgpath = NULL;
283 	*mpio_p = mpio;
284 
285 	dm_bio_record(bio_details, bio);
286 }
287 
288 /*-----------------------------------------------
289  * Path selection
290  *-----------------------------------------------*/
291 
292 static int __pg_init_all_paths(struct multipath *m)
293 {
294 	struct pgpath *pgpath;
295 	unsigned long pg_init_delay = 0;
296 
297 	lockdep_assert_held(&m->lock);
298 
299 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
300 		return 0;
301 
302 	atomic_inc(&m->pg_init_count);
303 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
304 
305 	/* Check here to reset pg_init_required */
306 	if (!m->current_pg)
307 		return 0;
308 
309 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
310 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
311 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
312 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
313 		/* Skip failed paths */
314 		if (!pgpath->is_active)
315 			continue;
316 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
317 				       pg_init_delay))
318 			atomic_inc(&m->pg_init_in_progress);
319 	}
320 	return atomic_read(&m->pg_init_in_progress);
321 }
322 
323 static int pg_init_all_paths(struct multipath *m)
324 {
325 	int ret;
326 	unsigned long flags;
327 
328 	spin_lock_irqsave(&m->lock, flags);
329 	ret = __pg_init_all_paths(m);
330 	spin_unlock_irqrestore(&m->lock, flags);
331 
332 	return ret;
333 }
334 
335 static void __switch_pg(struct multipath *m, struct priority_group *pg)
336 {
337 	m->current_pg = pg;
338 
339 	/* Must we initialise the PG first, and queue I/O till it's ready? */
340 	if (m->hw_handler_name) {
341 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
342 		set_bit(MPATHF_QUEUE_IO, &m->flags);
343 	} else {
344 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
345 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
346 	}
347 
348 	atomic_set(&m->pg_init_count, 0);
349 }
350 
351 static struct pgpath *choose_path_in_pg(struct multipath *m,
352 					struct priority_group *pg,
353 					size_t nr_bytes)
354 {
355 	unsigned long flags;
356 	struct dm_path *path;
357 	struct pgpath *pgpath;
358 
359 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
360 	if (!path)
361 		return ERR_PTR(-ENXIO);
362 
363 	pgpath = path_to_pgpath(path);
364 
365 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
366 		/* Only update current_pgpath if pg changed */
367 		spin_lock_irqsave(&m->lock, flags);
368 		m->current_pgpath = pgpath;
369 		__switch_pg(m, pg);
370 		spin_unlock_irqrestore(&m->lock, flags);
371 	}
372 
373 	return pgpath;
374 }
375 
376 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
377 {
378 	unsigned long flags;
379 	struct priority_group *pg;
380 	struct pgpath *pgpath;
381 	unsigned bypassed = 1;
382 
383 	if (!atomic_read(&m->nr_valid_paths)) {
384 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
385 		goto failed;
386 	}
387 
388 	/* Were we instructed to switch PG? */
389 	if (READ_ONCE(m->next_pg)) {
390 		spin_lock_irqsave(&m->lock, flags);
391 		pg = m->next_pg;
392 		if (!pg) {
393 			spin_unlock_irqrestore(&m->lock, flags);
394 			goto check_current_pg;
395 		}
396 		m->next_pg = NULL;
397 		spin_unlock_irqrestore(&m->lock, flags);
398 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
399 		if (!IS_ERR_OR_NULL(pgpath))
400 			return pgpath;
401 	}
402 
403 	/* Don't change PG until it has no remaining paths */
404 check_current_pg:
405 	pg = READ_ONCE(m->current_pg);
406 	if (pg) {
407 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
408 		if (!IS_ERR_OR_NULL(pgpath))
409 			return pgpath;
410 	}
411 
412 	/*
413 	 * Loop through priority groups until we find a valid path.
414 	 * First time we skip PGs marked 'bypassed'.
415 	 * Second time we only try the ones we skipped, but set
416 	 * pg_init_delay_retry so we do not hammer controllers.
417 	 */
418 	do {
419 		list_for_each_entry(pg, &m->priority_groups, list) {
420 			if (pg->bypassed == !!bypassed)
421 				continue;
422 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
423 			if (!IS_ERR_OR_NULL(pgpath)) {
424 				if (!bypassed)
425 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
426 				return pgpath;
427 			}
428 		}
429 	} while (bypassed--);
430 
431 failed:
432 	spin_lock_irqsave(&m->lock, flags);
433 	m->current_pgpath = NULL;
434 	m->current_pg = NULL;
435 	spin_unlock_irqrestore(&m->lock, flags);
436 
437 	return NULL;
438 }
439 
440 /*
441  * dm_report_EIO() is a macro instead of a function to make pr_debug()
442  * report the function name and line number of the function from which
443  * it has been invoked.
444  */
445 #define dm_report_EIO(m)						\
446 do {									\
447 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
448 									\
449 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
450 		 dm_device_name(md),					\
451 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
452 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
453 		 dm_noflush_suspending((m)->ti));			\
454 } while (0)
455 
456 /*
457  * Check whether bios must be queued in the device-mapper core rather
458  * than here in the target.
459  *
460  * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold
461  * the same value then we are not between multipath_presuspend()
462  * and multipath_resume() calls and we have no need to check
463  * for the DMF_NOFLUSH_SUSPENDING flag.
464  */
465 static bool __must_push_back(struct multipath *m, unsigned long flags)
466 {
467 	return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) !=
468 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) &&
469 		dm_noflush_suspending(m->ti));
470 }
471 
472 /*
473  * Following functions use READ_ONCE to get atomic access to
474  * all m->flags to avoid taking spinlock
475  */
476 static bool must_push_back_rq(struct multipath *m)
477 {
478 	unsigned long flags = READ_ONCE(m->flags);
479 	return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags);
480 }
481 
482 static bool must_push_back_bio(struct multipath *m)
483 {
484 	unsigned long flags = READ_ONCE(m->flags);
485 	return __must_push_back(m, flags);
486 }
487 
488 /*
489  * Map cloned requests (request-based multipath)
490  */
491 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
492 				   union map_info *map_context,
493 				   struct request **__clone)
494 {
495 	struct multipath *m = ti->private;
496 	size_t nr_bytes = blk_rq_bytes(rq);
497 	struct pgpath *pgpath;
498 	struct block_device *bdev;
499 	struct dm_mpath_io *mpio = get_mpio(map_context);
500 	struct request_queue *q;
501 	struct request *clone;
502 
503 	/* Do we need to select a new pgpath? */
504 	pgpath = READ_ONCE(m->current_pgpath);
505 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
506 		pgpath = choose_pgpath(m, nr_bytes);
507 
508 	if (!pgpath) {
509 		if (must_push_back_rq(m))
510 			return DM_MAPIO_DELAY_REQUEUE;
511 		dm_report_EIO(m);	/* Failed */
512 		return DM_MAPIO_KILL;
513 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
514 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
515 		if (pg_init_all_paths(m))
516 			return DM_MAPIO_DELAY_REQUEUE;
517 		return DM_MAPIO_REQUEUE;
518 	}
519 
520 	mpio->pgpath = pgpath;
521 	mpio->nr_bytes = nr_bytes;
522 
523 	bdev = pgpath->path.dev->bdev;
524 	q = bdev_get_queue(bdev);
525 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC);
526 	if (IS_ERR(clone)) {
527 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
528 		bool queue_dying = blk_queue_dying(q);
529 		if (queue_dying) {
530 			atomic_inc(&m->pg_init_in_progress);
531 			activate_or_offline_path(pgpath);
532 		}
533 		return DM_MAPIO_DELAY_REQUEUE;
534 	}
535 	clone->bio = clone->biotail = NULL;
536 	clone->rq_disk = bdev->bd_disk;
537 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
538 	*__clone = clone;
539 
540 	if (pgpath->pg->ps.type->start_io)
541 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
542 					      &pgpath->path,
543 					      nr_bytes);
544 	return DM_MAPIO_REMAPPED;
545 }
546 
547 static void multipath_release_clone(struct request *clone)
548 {
549 	blk_put_request(clone);
550 }
551 
552 /*
553  * Map cloned bios (bio-based multipath)
554  */
555 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio)
556 {
557 	struct pgpath *pgpath;
558 	unsigned long flags;
559 	bool queue_io;
560 
561 	/* Do we need to select a new pgpath? */
562 	pgpath = READ_ONCE(m->current_pgpath);
563 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
564 	if (!pgpath || !queue_io)
565 		pgpath = choose_pgpath(m, mpio->nr_bytes);
566 
567 	if ((pgpath && queue_io) ||
568 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
569 		/* Queue for the daemon to resubmit */
570 		spin_lock_irqsave(&m->lock, flags);
571 		bio_list_add(&m->queued_bios, bio);
572 		spin_unlock_irqrestore(&m->lock, flags);
573 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
574 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
575 			pg_init_all_paths(m);
576 		else if (!queue_io)
577 			queue_work(kmultipathd, &m->process_queued_bios);
578 		return DM_MAPIO_SUBMITTED;
579 	}
580 
581 	if (!pgpath) {
582 		if (must_push_back_bio(m))
583 			return DM_MAPIO_REQUEUE;
584 		dm_report_EIO(m);
585 		return DM_MAPIO_KILL;
586 	}
587 
588 	mpio->pgpath = pgpath;
589 
590 	bio->bi_status = 0;
591 	bio_set_dev(bio, pgpath->path.dev->bdev);
592 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
593 
594 	if (pgpath->pg->ps.type->start_io)
595 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
596 					      &pgpath->path,
597 					      mpio->nr_bytes);
598 	return DM_MAPIO_REMAPPED;
599 }
600 
601 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
602 {
603 	struct multipath *m = ti->private;
604 	struct dm_mpath_io *mpio = NULL;
605 
606 	multipath_init_per_bio_data(bio, &mpio);
607 	return __multipath_map_bio(m, bio, mpio);
608 }
609 
610 static void process_queued_io_list(struct multipath *m)
611 {
612 	if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED)
613 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
614 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
615 		queue_work(kmultipathd, &m->process_queued_bios);
616 }
617 
618 static void process_queued_bios(struct work_struct *work)
619 {
620 	int r;
621 	unsigned long flags;
622 	struct bio *bio;
623 	struct bio_list bios;
624 	struct blk_plug plug;
625 	struct multipath *m =
626 		container_of(work, struct multipath, process_queued_bios);
627 
628 	bio_list_init(&bios);
629 
630 	spin_lock_irqsave(&m->lock, flags);
631 
632 	if (bio_list_empty(&m->queued_bios)) {
633 		spin_unlock_irqrestore(&m->lock, flags);
634 		return;
635 	}
636 
637 	bio_list_merge(&bios, &m->queued_bios);
638 	bio_list_init(&m->queued_bios);
639 
640 	spin_unlock_irqrestore(&m->lock, flags);
641 
642 	blk_start_plug(&plug);
643 	while ((bio = bio_list_pop(&bios))) {
644 		r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio));
645 		switch (r) {
646 		case DM_MAPIO_KILL:
647 			bio->bi_status = BLK_STS_IOERR;
648 			bio_endio(bio);
649 			break;
650 		case DM_MAPIO_REQUEUE:
651 			bio->bi_status = BLK_STS_DM_REQUEUE;
652 			bio_endio(bio);
653 			break;
654 		case DM_MAPIO_REMAPPED:
655 			generic_make_request(bio);
656 			break;
657 		case 0:
658 			break;
659 		default:
660 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
661 		}
662 	}
663 	blk_finish_plug(&plug);
664 }
665 
666 /*
667  * If we run out of usable paths, should we queue I/O or error it?
668  */
669 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
670 			    bool save_old_value)
671 {
672 	unsigned long flags;
673 
674 	spin_lock_irqsave(&m->lock, flags);
675 	assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags,
676 		   (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
677 		   (!save_old_value && queue_if_no_path));
678 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path);
679 	spin_unlock_irqrestore(&m->lock, flags);
680 
681 	if (!queue_if_no_path) {
682 		dm_table_run_md_queue_async(m->ti->table);
683 		process_queued_io_list(m);
684 	}
685 
686 	return 0;
687 }
688 
689 /*
690  * An event is triggered whenever a path is taken out of use.
691  * Includes path failure and PG bypass.
692  */
693 static void trigger_event(struct work_struct *work)
694 {
695 	struct multipath *m =
696 		container_of(work, struct multipath, trigger_event);
697 
698 	dm_table_event(m->ti->table);
699 }
700 
701 /*-----------------------------------------------------------------
702  * Constructor/argument parsing:
703  * <#multipath feature args> [<arg>]*
704  * <#hw_handler args> [hw_handler [<arg>]*]
705  * <#priority groups>
706  * <initial priority group>
707  *     [<selector> <#selector args> [<arg>]*
708  *      <#paths> <#per-path selector args>
709  *         [<path> [<arg>]* ]+ ]+
710  *---------------------------------------------------------------*/
711 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
712 			       struct dm_target *ti)
713 {
714 	int r;
715 	struct path_selector_type *pst;
716 	unsigned ps_argc;
717 
718 	static const struct dm_arg _args[] = {
719 		{0, 1024, "invalid number of path selector args"},
720 	};
721 
722 	pst = dm_get_path_selector(dm_shift_arg(as));
723 	if (!pst) {
724 		ti->error = "unknown path selector type";
725 		return -EINVAL;
726 	}
727 
728 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
729 	if (r) {
730 		dm_put_path_selector(pst);
731 		return -EINVAL;
732 	}
733 
734 	r = pst->create(&pg->ps, ps_argc, as->argv);
735 	if (r) {
736 		dm_put_path_selector(pst);
737 		ti->error = "path selector constructor failed";
738 		return r;
739 	}
740 
741 	pg->ps.type = pst;
742 	dm_consume_args(as, ps_argc);
743 
744 	return 0;
745 }
746 
747 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
748 			       struct dm_target *ti)
749 {
750 	int r;
751 	struct pgpath *p;
752 	struct multipath *m = ti->private;
753 	struct request_queue *q = NULL;
754 	const char *attached_handler_name;
755 
756 	/* we need at least a path arg */
757 	if (as->argc < 1) {
758 		ti->error = "no device given";
759 		return ERR_PTR(-EINVAL);
760 	}
761 
762 	p = alloc_pgpath();
763 	if (!p)
764 		return ERR_PTR(-ENOMEM);
765 
766 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
767 			  &p->path.dev);
768 	if (r) {
769 		ti->error = "error getting device";
770 		goto bad;
771 	}
772 
773 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name)
774 		q = bdev_get_queue(p->path.dev->bdev);
775 
776 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
777 retain:
778 		attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
779 		if (attached_handler_name) {
780 			/*
781 			 * Clear any hw_handler_params associated with a
782 			 * handler that isn't already attached.
783 			 */
784 			if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) {
785 				kfree(m->hw_handler_params);
786 				m->hw_handler_params = NULL;
787 			}
788 
789 			/*
790 			 * Reset hw_handler_name to match the attached handler
791 			 *
792 			 * NB. This modifies the table line to show the actual
793 			 * handler instead of the original table passed in.
794 			 */
795 			kfree(m->hw_handler_name);
796 			m->hw_handler_name = attached_handler_name;
797 		}
798 	}
799 
800 	if (m->hw_handler_name) {
801 		r = scsi_dh_attach(q, m->hw_handler_name);
802 		if (r == -EBUSY) {
803 			char b[BDEVNAME_SIZE];
804 
805 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
806 				bdevname(p->path.dev->bdev, b));
807 			goto retain;
808 		}
809 		if (r < 0) {
810 			ti->error = "error attaching hardware handler";
811 			dm_put_device(ti, p->path.dev);
812 			goto bad;
813 		}
814 
815 		if (m->hw_handler_params) {
816 			r = scsi_dh_set_params(q, m->hw_handler_params);
817 			if (r < 0) {
818 				ti->error = "unable to set hardware "
819 							"handler parameters";
820 				dm_put_device(ti, p->path.dev);
821 				goto bad;
822 			}
823 		}
824 	}
825 
826 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
827 	if (r) {
828 		dm_put_device(ti, p->path.dev);
829 		goto bad;
830 	}
831 
832 	return p;
833 
834  bad:
835 	free_pgpath(p);
836 	return ERR_PTR(r);
837 }
838 
839 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
840 						   struct multipath *m)
841 {
842 	static const struct dm_arg _args[] = {
843 		{1, 1024, "invalid number of paths"},
844 		{0, 1024, "invalid number of selector args"}
845 	};
846 
847 	int r;
848 	unsigned i, nr_selector_args, nr_args;
849 	struct priority_group *pg;
850 	struct dm_target *ti = m->ti;
851 
852 	if (as->argc < 2) {
853 		as->argc = 0;
854 		ti->error = "not enough priority group arguments";
855 		return ERR_PTR(-EINVAL);
856 	}
857 
858 	pg = alloc_priority_group();
859 	if (!pg) {
860 		ti->error = "couldn't allocate priority group";
861 		return ERR_PTR(-ENOMEM);
862 	}
863 	pg->m = m;
864 
865 	r = parse_path_selector(as, pg, ti);
866 	if (r)
867 		goto bad;
868 
869 	/*
870 	 * read the paths
871 	 */
872 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
873 	if (r)
874 		goto bad;
875 
876 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
877 	if (r)
878 		goto bad;
879 
880 	nr_args = 1 + nr_selector_args;
881 	for (i = 0; i < pg->nr_pgpaths; i++) {
882 		struct pgpath *pgpath;
883 		struct dm_arg_set path_args;
884 
885 		if (as->argc < nr_args) {
886 			ti->error = "not enough path parameters";
887 			r = -EINVAL;
888 			goto bad;
889 		}
890 
891 		path_args.argc = nr_args;
892 		path_args.argv = as->argv;
893 
894 		pgpath = parse_path(&path_args, &pg->ps, ti);
895 		if (IS_ERR(pgpath)) {
896 			r = PTR_ERR(pgpath);
897 			goto bad;
898 		}
899 
900 		pgpath->pg = pg;
901 		list_add_tail(&pgpath->list, &pg->pgpaths);
902 		dm_consume_args(as, nr_args);
903 	}
904 
905 	return pg;
906 
907  bad:
908 	free_priority_group(pg, ti);
909 	return ERR_PTR(r);
910 }
911 
912 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
913 {
914 	unsigned hw_argc;
915 	int ret;
916 	struct dm_target *ti = m->ti;
917 
918 	static const struct dm_arg _args[] = {
919 		{0, 1024, "invalid number of hardware handler args"},
920 	};
921 
922 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
923 		return -EINVAL;
924 
925 	if (!hw_argc)
926 		return 0;
927 
928 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
929 		dm_consume_args(as, hw_argc);
930 		DMERR("bio-based multipath doesn't allow hardware handler args");
931 		return 0;
932 	}
933 
934 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
935 	if (!m->hw_handler_name)
936 		return -EINVAL;
937 
938 	if (hw_argc > 1) {
939 		char *p;
940 		int i, j, len = 4;
941 
942 		for (i = 0; i <= hw_argc - 2; i++)
943 			len += strlen(as->argv[i]) + 1;
944 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
945 		if (!p) {
946 			ti->error = "memory allocation failed";
947 			ret = -ENOMEM;
948 			goto fail;
949 		}
950 		j = sprintf(p, "%d", hw_argc - 1);
951 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
952 			j = sprintf(p, "%s", as->argv[i]);
953 	}
954 	dm_consume_args(as, hw_argc - 1);
955 
956 	return 0;
957 fail:
958 	kfree(m->hw_handler_name);
959 	m->hw_handler_name = NULL;
960 	return ret;
961 }
962 
963 static int parse_features(struct dm_arg_set *as, struct multipath *m)
964 {
965 	int r;
966 	unsigned argc;
967 	struct dm_target *ti = m->ti;
968 	const char *arg_name;
969 
970 	static const struct dm_arg _args[] = {
971 		{0, 8, "invalid number of feature args"},
972 		{1, 50, "pg_init_retries must be between 1 and 50"},
973 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
974 	};
975 
976 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
977 	if (r)
978 		return -EINVAL;
979 
980 	if (!argc)
981 		return 0;
982 
983 	do {
984 		arg_name = dm_shift_arg(as);
985 		argc--;
986 
987 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
988 			r = queue_if_no_path(m, true, false);
989 			continue;
990 		}
991 
992 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
993 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
994 			continue;
995 		}
996 
997 		if (!strcasecmp(arg_name, "pg_init_retries") &&
998 		    (argc >= 1)) {
999 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1000 			argc--;
1001 			continue;
1002 		}
1003 
1004 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1005 		    (argc >= 1)) {
1006 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1007 			argc--;
1008 			continue;
1009 		}
1010 
1011 		if (!strcasecmp(arg_name, "queue_mode") &&
1012 		    (argc >= 1)) {
1013 			const char *queue_mode_name = dm_shift_arg(as);
1014 
1015 			if (!strcasecmp(queue_mode_name, "bio"))
1016 				m->queue_mode = DM_TYPE_BIO_BASED;
1017 			else if (!strcasecmp(queue_mode_name, "rq"))
1018 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1019 			else if (!strcasecmp(queue_mode_name, "mq"))
1020 				m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
1021 			else {
1022 				ti->error = "Unknown 'queue_mode' requested";
1023 				r = -EINVAL;
1024 			}
1025 			argc--;
1026 			continue;
1027 		}
1028 
1029 		ti->error = "Unrecognised multipath feature request";
1030 		r = -EINVAL;
1031 	} while (argc && !r);
1032 
1033 	return r;
1034 }
1035 
1036 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1037 {
1038 	/* target arguments */
1039 	static const struct dm_arg _args[] = {
1040 		{0, 1024, "invalid number of priority groups"},
1041 		{0, 1024, "invalid initial priority group number"},
1042 	};
1043 
1044 	int r;
1045 	struct multipath *m;
1046 	struct dm_arg_set as;
1047 	unsigned pg_count = 0;
1048 	unsigned next_pg_num;
1049 
1050 	as.argc = argc;
1051 	as.argv = argv;
1052 
1053 	m = alloc_multipath(ti);
1054 	if (!m) {
1055 		ti->error = "can't allocate multipath";
1056 		return -EINVAL;
1057 	}
1058 
1059 	r = parse_features(&as, m);
1060 	if (r)
1061 		goto bad;
1062 
1063 	r = alloc_multipath_stage2(ti, m);
1064 	if (r)
1065 		goto bad;
1066 
1067 	r = parse_hw_handler(&as, m);
1068 	if (r)
1069 		goto bad;
1070 
1071 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1072 	if (r)
1073 		goto bad;
1074 
1075 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1076 	if (r)
1077 		goto bad;
1078 
1079 	if ((!m->nr_priority_groups && next_pg_num) ||
1080 	    (m->nr_priority_groups && !next_pg_num)) {
1081 		ti->error = "invalid initial priority group";
1082 		r = -EINVAL;
1083 		goto bad;
1084 	}
1085 
1086 	/* parse the priority groups */
1087 	while (as.argc) {
1088 		struct priority_group *pg;
1089 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1090 
1091 		pg = parse_priority_group(&as, m);
1092 		if (IS_ERR(pg)) {
1093 			r = PTR_ERR(pg);
1094 			goto bad;
1095 		}
1096 
1097 		nr_valid_paths += pg->nr_pgpaths;
1098 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1099 
1100 		list_add_tail(&pg->list, &m->priority_groups);
1101 		pg_count++;
1102 		pg->pg_num = pg_count;
1103 		if (!--next_pg_num)
1104 			m->next_pg = pg;
1105 	}
1106 
1107 	if (pg_count != m->nr_priority_groups) {
1108 		ti->error = "priority group count mismatch";
1109 		r = -EINVAL;
1110 		goto bad;
1111 	}
1112 
1113 	ti->num_flush_bios = 1;
1114 	ti->num_discard_bios = 1;
1115 	ti->num_write_same_bios = 1;
1116 	ti->num_write_zeroes_bios = 1;
1117 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1118 		ti->per_io_data_size = multipath_per_bio_data_size();
1119 	else
1120 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1121 
1122 	return 0;
1123 
1124  bad:
1125 	free_multipath(m);
1126 	return r;
1127 }
1128 
1129 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1130 {
1131 	DEFINE_WAIT(wait);
1132 
1133 	while (1) {
1134 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1135 
1136 		if (!atomic_read(&m->pg_init_in_progress))
1137 			break;
1138 
1139 		io_schedule();
1140 	}
1141 	finish_wait(&m->pg_init_wait, &wait);
1142 }
1143 
1144 static void flush_multipath_work(struct multipath *m)
1145 {
1146 	set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1147 	smp_mb__after_atomic();
1148 
1149 	flush_workqueue(kmpath_handlerd);
1150 	multipath_wait_for_pg_init_completion(m);
1151 	flush_workqueue(kmultipathd);
1152 	flush_work(&m->trigger_event);
1153 
1154 	clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1155 	smp_mb__after_atomic();
1156 }
1157 
1158 static void multipath_dtr(struct dm_target *ti)
1159 {
1160 	struct multipath *m = ti->private;
1161 
1162 	flush_multipath_work(m);
1163 	free_multipath(m);
1164 }
1165 
1166 /*
1167  * Take a path out of use.
1168  */
1169 static int fail_path(struct pgpath *pgpath)
1170 {
1171 	unsigned long flags;
1172 	struct multipath *m = pgpath->pg->m;
1173 
1174 	spin_lock_irqsave(&m->lock, flags);
1175 
1176 	if (!pgpath->is_active)
1177 		goto out;
1178 
1179 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1180 
1181 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1182 	pgpath->is_active = false;
1183 	pgpath->fail_count++;
1184 
1185 	atomic_dec(&m->nr_valid_paths);
1186 
1187 	if (pgpath == m->current_pgpath)
1188 		m->current_pgpath = NULL;
1189 
1190 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1191 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1192 
1193 	schedule_work(&m->trigger_event);
1194 
1195 out:
1196 	spin_unlock_irqrestore(&m->lock, flags);
1197 
1198 	return 0;
1199 }
1200 
1201 /*
1202  * Reinstate a previously-failed path
1203  */
1204 static int reinstate_path(struct pgpath *pgpath)
1205 {
1206 	int r = 0, run_queue = 0;
1207 	unsigned long flags;
1208 	struct multipath *m = pgpath->pg->m;
1209 	unsigned nr_valid_paths;
1210 
1211 	spin_lock_irqsave(&m->lock, flags);
1212 
1213 	if (pgpath->is_active)
1214 		goto out;
1215 
1216 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1217 
1218 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1219 	if (r)
1220 		goto out;
1221 
1222 	pgpath->is_active = true;
1223 
1224 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1225 	if (nr_valid_paths == 1) {
1226 		m->current_pgpath = NULL;
1227 		run_queue = 1;
1228 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1229 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1230 			atomic_inc(&m->pg_init_in_progress);
1231 	}
1232 
1233 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1234 		       pgpath->path.dev->name, nr_valid_paths);
1235 
1236 	schedule_work(&m->trigger_event);
1237 
1238 out:
1239 	spin_unlock_irqrestore(&m->lock, flags);
1240 	if (run_queue) {
1241 		dm_table_run_md_queue_async(m->ti->table);
1242 		process_queued_io_list(m);
1243 	}
1244 
1245 	return r;
1246 }
1247 
1248 /*
1249  * Fail or reinstate all paths that match the provided struct dm_dev.
1250  */
1251 static int action_dev(struct multipath *m, struct dm_dev *dev,
1252 		      action_fn action)
1253 {
1254 	int r = -EINVAL;
1255 	struct pgpath *pgpath;
1256 	struct priority_group *pg;
1257 
1258 	list_for_each_entry(pg, &m->priority_groups, list) {
1259 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1260 			if (pgpath->path.dev == dev)
1261 				r = action(pgpath);
1262 		}
1263 	}
1264 
1265 	return r;
1266 }
1267 
1268 /*
1269  * Temporarily try to avoid having to use the specified PG
1270  */
1271 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1272 		      bool bypassed)
1273 {
1274 	unsigned long flags;
1275 
1276 	spin_lock_irqsave(&m->lock, flags);
1277 
1278 	pg->bypassed = bypassed;
1279 	m->current_pgpath = NULL;
1280 	m->current_pg = NULL;
1281 
1282 	spin_unlock_irqrestore(&m->lock, flags);
1283 
1284 	schedule_work(&m->trigger_event);
1285 }
1286 
1287 /*
1288  * Switch to using the specified PG from the next I/O that gets mapped
1289  */
1290 static int switch_pg_num(struct multipath *m, const char *pgstr)
1291 {
1292 	struct priority_group *pg;
1293 	unsigned pgnum;
1294 	unsigned long flags;
1295 	char dummy;
1296 
1297 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1298 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1299 		DMWARN("invalid PG number supplied to switch_pg_num");
1300 		return -EINVAL;
1301 	}
1302 
1303 	spin_lock_irqsave(&m->lock, flags);
1304 	list_for_each_entry(pg, &m->priority_groups, list) {
1305 		pg->bypassed = false;
1306 		if (--pgnum)
1307 			continue;
1308 
1309 		m->current_pgpath = NULL;
1310 		m->current_pg = NULL;
1311 		m->next_pg = pg;
1312 	}
1313 	spin_unlock_irqrestore(&m->lock, flags);
1314 
1315 	schedule_work(&m->trigger_event);
1316 	return 0;
1317 }
1318 
1319 /*
1320  * Set/clear bypassed status of a PG.
1321  * PGs are numbered upwards from 1 in the order they were declared.
1322  */
1323 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1324 {
1325 	struct priority_group *pg;
1326 	unsigned pgnum;
1327 	char dummy;
1328 
1329 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1330 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1331 		DMWARN("invalid PG number supplied to bypass_pg");
1332 		return -EINVAL;
1333 	}
1334 
1335 	list_for_each_entry(pg, &m->priority_groups, list) {
1336 		if (!--pgnum)
1337 			break;
1338 	}
1339 
1340 	bypass_pg(m, pg, bypassed);
1341 	return 0;
1342 }
1343 
1344 /*
1345  * Should we retry pg_init immediately?
1346  */
1347 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1348 {
1349 	unsigned long flags;
1350 	bool limit_reached = false;
1351 
1352 	spin_lock_irqsave(&m->lock, flags);
1353 
1354 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1355 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1356 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1357 	else
1358 		limit_reached = true;
1359 
1360 	spin_unlock_irqrestore(&m->lock, flags);
1361 
1362 	return limit_reached;
1363 }
1364 
1365 static void pg_init_done(void *data, int errors)
1366 {
1367 	struct pgpath *pgpath = data;
1368 	struct priority_group *pg = pgpath->pg;
1369 	struct multipath *m = pg->m;
1370 	unsigned long flags;
1371 	bool delay_retry = false;
1372 
1373 	/* device or driver problems */
1374 	switch (errors) {
1375 	case SCSI_DH_OK:
1376 		break;
1377 	case SCSI_DH_NOSYS:
1378 		if (!m->hw_handler_name) {
1379 			errors = 0;
1380 			break;
1381 		}
1382 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1383 		      "Error %d.", m->hw_handler_name, errors);
1384 		/*
1385 		 * Fail path for now, so we do not ping pong
1386 		 */
1387 		fail_path(pgpath);
1388 		break;
1389 	case SCSI_DH_DEV_TEMP_BUSY:
1390 		/*
1391 		 * Probably doing something like FW upgrade on the
1392 		 * controller so try the other pg.
1393 		 */
1394 		bypass_pg(m, pg, true);
1395 		break;
1396 	case SCSI_DH_RETRY:
1397 		/* Wait before retrying. */
1398 		delay_retry = 1;
1399 		/* fall through */
1400 	case SCSI_DH_IMM_RETRY:
1401 	case SCSI_DH_RES_TEMP_UNAVAIL:
1402 		if (pg_init_limit_reached(m, pgpath))
1403 			fail_path(pgpath);
1404 		errors = 0;
1405 		break;
1406 	case SCSI_DH_DEV_OFFLINED:
1407 	default:
1408 		/*
1409 		 * We probably do not want to fail the path for a device
1410 		 * error, but this is what the old dm did. In future
1411 		 * patches we can do more advanced handling.
1412 		 */
1413 		fail_path(pgpath);
1414 	}
1415 
1416 	spin_lock_irqsave(&m->lock, flags);
1417 	if (errors) {
1418 		if (pgpath == m->current_pgpath) {
1419 			DMERR("Could not failover device. Error %d.", errors);
1420 			m->current_pgpath = NULL;
1421 			m->current_pg = NULL;
1422 		}
1423 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1424 		pg->bypassed = false;
1425 
1426 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1427 		/* Activations of other paths are still on going */
1428 		goto out;
1429 
1430 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1431 		if (delay_retry)
1432 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1433 		else
1434 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1435 
1436 		if (__pg_init_all_paths(m))
1437 			goto out;
1438 	}
1439 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1440 
1441 	process_queued_io_list(m);
1442 
1443 	/*
1444 	 * Wake up any thread waiting to suspend.
1445 	 */
1446 	wake_up(&m->pg_init_wait);
1447 
1448 out:
1449 	spin_unlock_irqrestore(&m->lock, flags);
1450 }
1451 
1452 static void activate_or_offline_path(struct pgpath *pgpath)
1453 {
1454 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1455 
1456 	if (pgpath->is_active && !blk_queue_dying(q))
1457 		scsi_dh_activate(q, pg_init_done, pgpath);
1458 	else
1459 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1460 }
1461 
1462 static void activate_path_work(struct work_struct *work)
1463 {
1464 	struct pgpath *pgpath =
1465 		container_of(work, struct pgpath, activate_path.work);
1466 
1467 	activate_or_offline_path(pgpath);
1468 }
1469 
1470 static int noretry_error(blk_status_t error)
1471 {
1472 	switch (error) {
1473 	case BLK_STS_NOTSUPP:
1474 	case BLK_STS_NOSPC:
1475 	case BLK_STS_TARGET:
1476 	case BLK_STS_NEXUS:
1477 	case BLK_STS_MEDIUM:
1478 		return 1;
1479 	}
1480 
1481 	/* Anything else could be a path failure, so should be retried */
1482 	return 0;
1483 }
1484 
1485 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1486 			    blk_status_t error, union map_info *map_context)
1487 {
1488 	struct dm_mpath_io *mpio = get_mpio(map_context);
1489 	struct pgpath *pgpath = mpio->pgpath;
1490 	int r = DM_ENDIO_DONE;
1491 
1492 	/*
1493 	 * We don't queue any clone request inside the multipath target
1494 	 * during end I/O handling, since those clone requests don't have
1495 	 * bio clones.  If we queue them inside the multipath target,
1496 	 * we need to make bio clones, that requires memory allocation.
1497 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1498 	 *  don't have bio clones.)
1499 	 * Instead of queueing the clone request here, we queue the original
1500 	 * request into dm core, which will remake a clone request and
1501 	 * clone bios for it and resubmit it later.
1502 	 */
1503 	if (error && !noretry_error(error)) {
1504 		struct multipath *m = ti->private;
1505 
1506 		r = DM_ENDIO_REQUEUE;
1507 
1508 		if (pgpath)
1509 			fail_path(pgpath);
1510 
1511 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1512 		    !must_push_back_rq(m)) {
1513 			if (error == BLK_STS_IOERR)
1514 				dm_report_EIO(m);
1515 			/* complete with the original error */
1516 			r = DM_ENDIO_DONE;
1517 		}
1518 	}
1519 
1520 	if (pgpath) {
1521 		struct path_selector *ps = &pgpath->pg->ps;
1522 
1523 		if (ps->type->end_io)
1524 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1525 	}
1526 
1527 	return r;
1528 }
1529 
1530 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1531 		blk_status_t *error)
1532 {
1533 	struct multipath *m = ti->private;
1534 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1535 	struct pgpath *pgpath = mpio->pgpath;
1536 	unsigned long flags;
1537 	int r = DM_ENDIO_DONE;
1538 
1539 	if (!*error || noretry_error(*error))
1540 		goto done;
1541 
1542 	if (pgpath)
1543 		fail_path(pgpath);
1544 
1545 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1546 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1547 		if (must_push_back_bio(m)) {
1548 			r = DM_ENDIO_REQUEUE;
1549 		} else {
1550 			dm_report_EIO(m);
1551 			*error = BLK_STS_IOERR;
1552 		}
1553 		goto done;
1554 	}
1555 
1556 	/* Queue for the daemon to resubmit */
1557 	dm_bio_restore(get_bio_details_from_bio(clone), clone);
1558 
1559 	spin_lock_irqsave(&m->lock, flags);
1560 	bio_list_add(&m->queued_bios, clone);
1561 	spin_unlock_irqrestore(&m->lock, flags);
1562 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1563 		queue_work(kmultipathd, &m->process_queued_bios);
1564 
1565 	r = DM_ENDIO_INCOMPLETE;
1566 done:
1567 	if (pgpath) {
1568 		struct path_selector *ps = &pgpath->pg->ps;
1569 
1570 		if (ps->type->end_io)
1571 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1572 	}
1573 
1574 	return r;
1575 }
1576 
1577 /*
1578  * Suspend can't complete until all the I/O is processed so if
1579  * the last path fails we must error any remaining I/O.
1580  * Note that if the freeze_bdev fails while suspending, the
1581  * queue_if_no_path state is lost - userspace should reset it.
1582  */
1583 static void multipath_presuspend(struct dm_target *ti)
1584 {
1585 	struct multipath *m = ti->private;
1586 
1587 	queue_if_no_path(m, false, true);
1588 }
1589 
1590 static void multipath_postsuspend(struct dm_target *ti)
1591 {
1592 	struct multipath *m = ti->private;
1593 
1594 	mutex_lock(&m->work_mutex);
1595 	flush_multipath_work(m);
1596 	mutex_unlock(&m->work_mutex);
1597 }
1598 
1599 /*
1600  * Restore the queue_if_no_path setting.
1601  */
1602 static void multipath_resume(struct dm_target *ti)
1603 {
1604 	struct multipath *m = ti->private;
1605 	unsigned long flags;
1606 
1607 	spin_lock_irqsave(&m->lock, flags);
1608 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
1609 		   test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1610 	spin_unlock_irqrestore(&m->lock, flags);
1611 }
1612 
1613 /*
1614  * Info output has the following format:
1615  * num_multipath_feature_args [multipath_feature_args]*
1616  * num_handler_status_args [handler_status_args]*
1617  * num_groups init_group_number
1618  *            [A|D|E num_ps_status_args [ps_status_args]*
1619  *             num_paths num_selector_args
1620  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1621  *
1622  * Table output has the following format (identical to the constructor string):
1623  * num_feature_args [features_args]*
1624  * num_handler_args hw_handler [hw_handler_args]*
1625  * num_groups init_group_number
1626  *     [priority selector-name num_ps_args [ps_args]*
1627  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1628  */
1629 static void multipath_status(struct dm_target *ti, status_type_t type,
1630 			     unsigned status_flags, char *result, unsigned maxlen)
1631 {
1632 	int sz = 0;
1633 	unsigned long flags;
1634 	struct multipath *m = ti->private;
1635 	struct priority_group *pg;
1636 	struct pgpath *p;
1637 	unsigned pg_num;
1638 	char state;
1639 
1640 	spin_lock_irqsave(&m->lock, flags);
1641 
1642 	/* Features */
1643 	if (type == STATUSTYPE_INFO)
1644 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1645 		       atomic_read(&m->pg_init_count));
1646 	else {
1647 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1648 			      (m->pg_init_retries > 0) * 2 +
1649 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1650 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1651 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1652 
1653 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1654 			DMEMIT("queue_if_no_path ");
1655 		if (m->pg_init_retries)
1656 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1657 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1658 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1659 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1660 			DMEMIT("retain_attached_hw_handler ");
1661 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1662 			switch(m->queue_mode) {
1663 			case DM_TYPE_BIO_BASED:
1664 				DMEMIT("queue_mode bio ");
1665 				break;
1666 			case DM_TYPE_MQ_REQUEST_BASED:
1667 				DMEMIT("queue_mode mq ");
1668 				break;
1669 			default:
1670 				WARN_ON_ONCE(true);
1671 				break;
1672 			}
1673 		}
1674 	}
1675 
1676 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1677 		DMEMIT("0 ");
1678 	else
1679 		DMEMIT("1 %s ", m->hw_handler_name);
1680 
1681 	DMEMIT("%u ", m->nr_priority_groups);
1682 
1683 	if (m->next_pg)
1684 		pg_num = m->next_pg->pg_num;
1685 	else if (m->current_pg)
1686 		pg_num = m->current_pg->pg_num;
1687 	else
1688 		pg_num = (m->nr_priority_groups ? 1 : 0);
1689 
1690 	DMEMIT("%u ", pg_num);
1691 
1692 	switch (type) {
1693 	case STATUSTYPE_INFO:
1694 		list_for_each_entry(pg, &m->priority_groups, list) {
1695 			if (pg->bypassed)
1696 				state = 'D';	/* Disabled */
1697 			else if (pg == m->current_pg)
1698 				state = 'A';	/* Currently Active */
1699 			else
1700 				state = 'E';	/* Enabled */
1701 
1702 			DMEMIT("%c ", state);
1703 
1704 			if (pg->ps.type->status)
1705 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1706 							  result + sz,
1707 							  maxlen - sz);
1708 			else
1709 				DMEMIT("0 ");
1710 
1711 			DMEMIT("%u %u ", pg->nr_pgpaths,
1712 			       pg->ps.type->info_args);
1713 
1714 			list_for_each_entry(p, &pg->pgpaths, list) {
1715 				DMEMIT("%s %s %u ", p->path.dev->name,
1716 				       p->is_active ? "A" : "F",
1717 				       p->fail_count);
1718 				if (pg->ps.type->status)
1719 					sz += pg->ps.type->status(&pg->ps,
1720 					      &p->path, type, result + sz,
1721 					      maxlen - sz);
1722 			}
1723 		}
1724 		break;
1725 
1726 	case STATUSTYPE_TABLE:
1727 		list_for_each_entry(pg, &m->priority_groups, list) {
1728 			DMEMIT("%s ", pg->ps.type->name);
1729 
1730 			if (pg->ps.type->status)
1731 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1732 							  result + sz,
1733 							  maxlen - sz);
1734 			else
1735 				DMEMIT("0 ");
1736 
1737 			DMEMIT("%u %u ", pg->nr_pgpaths,
1738 			       pg->ps.type->table_args);
1739 
1740 			list_for_each_entry(p, &pg->pgpaths, list) {
1741 				DMEMIT("%s ", p->path.dev->name);
1742 				if (pg->ps.type->status)
1743 					sz += pg->ps.type->status(&pg->ps,
1744 					      &p->path, type, result + sz,
1745 					      maxlen - sz);
1746 			}
1747 		}
1748 		break;
1749 	}
1750 
1751 	spin_unlock_irqrestore(&m->lock, flags);
1752 }
1753 
1754 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1755 {
1756 	int r = -EINVAL;
1757 	struct dm_dev *dev;
1758 	struct multipath *m = ti->private;
1759 	action_fn action;
1760 
1761 	mutex_lock(&m->work_mutex);
1762 
1763 	if (dm_suspended(ti)) {
1764 		r = -EBUSY;
1765 		goto out;
1766 	}
1767 
1768 	if (argc == 1) {
1769 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1770 			r = queue_if_no_path(m, true, false);
1771 			goto out;
1772 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1773 			r = queue_if_no_path(m, false, false);
1774 			goto out;
1775 		}
1776 	}
1777 
1778 	if (argc != 2) {
1779 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1780 		goto out;
1781 	}
1782 
1783 	if (!strcasecmp(argv[0], "disable_group")) {
1784 		r = bypass_pg_num(m, argv[1], true);
1785 		goto out;
1786 	} else if (!strcasecmp(argv[0], "enable_group")) {
1787 		r = bypass_pg_num(m, argv[1], false);
1788 		goto out;
1789 	} else if (!strcasecmp(argv[0], "switch_group")) {
1790 		r = switch_pg_num(m, argv[1]);
1791 		goto out;
1792 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1793 		action = reinstate_path;
1794 	else if (!strcasecmp(argv[0], "fail_path"))
1795 		action = fail_path;
1796 	else {
1797 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1798 		goto out;
1799 	}
1800 
1801 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1802 	if (r) {
1803 		DMWARN("message: error getting device %s",
1804 		       argv[1]);
1805 		goto out;
1806 	}
1807 
1808 	r = action_dev(m, dev, action);
1809 
1810 	dm_put_device(ti, dev);
1811 
1812 out:
1813 	mutex_unlock(&m->work_mutex);
1814 	return r;
1815 }
1816 
1817 static int multipath_prepare_ioctl(struct dm_target *ti,
1818 		struct block_device **bdev, fmode_t *mode)
1819 {
1820 	struct multipath *m = ti->private;
1821 	struct pgpath *current_pgpath;
1822 	int r;
1823 
1824 	current_pgpath = READ_ONCE(m->current_pgpath);
1825 	if (!current_pgpath)
1826 		current_pgpath = choose_pgpath(m, 0);
1827 
1828 	if (current_pgpath) {
1829 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1830 			*bdev = current_pgpath->path.dev->bdev;
1831 			*mode = current_pgpath->path.dev->mode;
1832 			r = 0;
1833 		} else {
1834 			/* pg_init has not started or completed */
1835 			r = -ENOTCONN;
1836 		}
1837 	} else {
1838 		/* No path is available */
1839 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1840 			r = -ENOTCONN;
1841 		else
1842 			r = -EIO;
1843 	}
1844 
1845 	if (r == -ENOTCONN) {
1846 		if (!READ_ONCE(m->current_pg)) {
1847 			/* Path status changed, redo selection */
1848 			(void) choose_pgpath(m, 0);
1849 		}
1850 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1851 			pg_init_all_paths(m);
1852 		dm_table_run_md_queue_async(m->ti->table);
1853 		process_queued_io_list(m);
1854 	}
1855 
1856 	/*
1857 	 * Only pass ioctls through if the device sizes match exactly.
1858 	 */
1859 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1860 		return 1;
1861 	return r;
1862 }
1863 
1864 static int multipath_iterate_devices(struct dm_target *ti,
1865 				     iterate_devices_callout_fn fn, void *data)
1866 {
1867 	struct multipath *m = ti->private;
1868 	struct priority_group *pg;
1869 	struct pgpath *p;
1870 	int ret = 0;
1871 
1872 	list_for_each_entry(pg, &m->priority_groups, list) {
1873 		list_for_each_entry(p, &pg->pgpaths, list) {
1874 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1875 			if (ret)
1876 				goto out;
1877 		}
1878 	}
1879 
1880 out:
1881 	return ret;
1882 }
1883 
1884 static int pgpath_busy(struct pgpath *pgpath)
1885 {
1886 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1887 
1888 	return blk_lld_busy(q);
1889 }
1890 
1891 /*
1892  * We return "busy", only when we can map I/Os but underlying devices
1893  * are busy (so even if we map I/Os now, the I/Os will wait on
1894  * the underlying queue).
1895  * In other words, if we want to kill I/Os or queue them inside us
1896  * due to map unavailability, we don't return "busy".  Otherwise,
1897  * dm core won't give us the I/Os and we can't do what we want.
1898  */
1899 static int multipath_busy(struct dm_target *ti)
1900 {
1901 	bool busy = false, has_active = false;
1902 	struct multipath *m = ti->private;
1903 	struct priority_group *pg, *next_pg;
1904 	struct pgpath *pgpath;
1905 
1906 	/* pg_init in progress */
1907 	if (atomic_read(&m->pg_init_in_progress))
1908 		return true;
1909 
1910 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1911 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1912 		return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED);
1913 
1914 	/* Guess which priority_group will be used at next mapping time */
1915 	pg = READ_ONCE(m->current_pg);
1916 	next_pg = READ_ONCE(m->next_pg);
1917 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
1918 		pg = next_pg;
1919 
1920 	if (!pg) {
1921 		/*
1922 		 * We don't know which pg will be used at next mapping time.
1923 		 * We don't call choose_pgpath() here to avoid to trigger
1924 		 * pg_init just by busy checking.
1925 		 * So we don't know whether underlying devices we will be using
1926 		 * at next mapping time are busy or not. Just try mapping.
1927 		 */
1928 		return busy;
1929 	}
1930 
1931 	/*
1932 	 * If there is one non-busy active path at least, the path selector
1933 	 * will be able to select it. So we consider such a pg as not busy.
1934 	 */
1935 	busy = true;
1936 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
1937 		if (pgpath->is_active) {
1938 			has_active = true;
1939 			if (!pgpath_busy(pgpath)) {
1940 				busy = false;
1941 				break;
1942 			}
1943 		}
1944 	}
1945 
1946 	if (!has_active) {
1947 		/*
1948 		 * No active path in this pg, so this pg won't be used and
1949 		 * the current_pg will be changed at next mapping time.
1950 		 * We need to try mapping to determine it.
1951 		 */
1952 		busy = false;
1953 	}
1954 
1955 	return busy;
1956 }
1957 
1958 /*-----------------------------------------------------------------
1959  * Module setup
1960  *---------------------------------------------------------------*/
1961 static struct target_type multipath_target = {
1962 	.name = "multipath",
1963 	.version = {1, 12, 0},
1964 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1965 	.module = THIS_MODULE,
1966 	.ctr = multipath_ctr,
1967 	.dtr = multipath_dtr,
1968 	.clone_and_map_rq = multipath_clone_and_map,
1969 	.release_clone_rq = multipath_release_clone,
1970 	.rq_end_io = multipath_end_io,
1971 	.map = multipath_map_bio,
1972 	.end_io = multipath_end_io_bio,
1973 	.presuspend = multipath_presuspend,
1974 	.postsuspend = multipath_postsuspend,
1975 	.resume = multipath_resume,
1976 	.status = multipath_status,
1977 	.message = multipath_message,
1978 	.prepare_ioctl = multipath_prepare_ioctl,
1979 	.iterate_devices = multipath_iterate_devices,
1980 	.busy = multipath_busy,
1981 };
1982 
1983 static int __init dm_multipath_init(void)
1984 {
1985 	int r;
1986 
1987 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
1988 	if (!kmultipathd) {
1989 		DMERR("failed to create workqueue kmpathd");
1990 		r = -ENOMEM;
1991 		goto bad_alloc_kmultipathd;
1992 	}
1993 
1994 	/*
1995 	 * A separate workqueue is used to handle the device handlers
1996 	 * to avoid overloading existing workqueue. Overloading the
1997 	 * old workqueue would also create a bottleneck in the
1998 	 * path of the storage hardware device activation.
1999 	 */
2000 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2001 						  WQ_MEM_RECLAIM);
2002 	if (!kmpath_handlerd) {
2003 		DMERR("failed to create workqueue kmpath_handlerd");
2004 		r = -ENOMEM;
2005 		goto bad_alloc_kmpath_handlerd;
2006 	}
2007 
2008 	r = dm_register_target(&multipath_target);
2009 	if (r < 0) {
2010 		DMERR("request-based register failed %d", r);
2011 		r = -EINVAL;
2012 		goto bad_register_target;
2013 	}
2014 
2015 	return 0;
2016 
2017 bad_register_target:
2018 	destroy_workqueue(kmpath_handlerd);
2019 bad_alloc_kmpath_handlerd:
2020 	destroy_workqueue(kmultipathd);
2021 bad_alloc_kmultipathd:
2022 	return r;
2023 }
2024 
2025 static void __exit dm_multipath_exit(void)
2026 {
2027 	destroy_workqueue(kmpath_handlerd);
2028 	destroy_workqueue(kmultipathd);
2029 
2030 	dm_unregister_target(&multipath_target);
2031 }
2032 
2033 module_init(dm_multipath_init);
2034 module_exit(dm_multipath_exit);
2035 
2036 MODULE_DESCRIPTION(DM_NAME " multipath target");
2037 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2038 MODULE_LICENSE("GPL");
2039