xref: /openbmc/linux/drivers/md/dm-mpath.c (revision d0259bf0eefc503d3c9c9ccda35033c3dd3aac30)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-path-selector.h"
11 #include "dm-uevent.h"
12 
13 #include <linux/ctype.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/pagemap.h>
18 #include <linux/slab.h>
19 #include <linux/time.h>
20 #include <linux/workqueue.h>
21 #include <scsi/scsi_dh.h>
22 #include <asm/atomic.h>
23 
24 #define DM_MSG_PREFIX "multipath"
25 #define MESG_STR(x) x, sizeof(x)
26 
27 /* Path properties */
28 struct pgpath {
29 	struct list_head list;
30 
31 	struct priority_group *pg;	/* Owning PG */
32 	unsigned is_active;		/* Path status */
33 	unsigned fail_count;		/* Cumulative failure count */
34 
35 	struct dm_path path;
36 	struct work_struct deactivate_path;
37 	struct work_struct activate_path;
38 };
39 
40 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
41 
42 /*
43  * Paths are grouped into Priority Groups and numbered from 1 upwards.
44  * Each has a path selector which controls which path gets used.
45  */
46 struct priority_group {
47 	struct list_head list;
48 
49 	struct multipath *m;		/* Owning multipath instance */
50 	struct path_selector ps;
51 
52 	unsigned pg_num;		/* Reference number */
53 	unsigned bypassed;		/* Temporarily bypass this PG? */
54 
55 	unsigned nr_pgpaths;		/* Number of paths in PG */
56 	struct list_head pgpaths;
57 };
58 
59 /* Multipath context */
60 struct multipath {
61 	struct list_head list;
62 	struct dm_target *ti;
63 
64 	spinlock_t lock;
65 
66 	const char *hw_handler_name;
67 	char *hw_handler_params;
68 	unsigned nr_priority_groups;
69 	struct list_head priority_groups;
70 	unsigned pg_init_required;	/* pg_init needs calling? */
71 	unsigned pg_init_in_progress;	/* Only one pg_init allowed at once */
72 
73 	unsigned nr_valid_paths;	/* Total number of usable paths */
74 	struct pgpath *current_pgpath;
75 	struct priority_group *current_pg;
76 	struct priority_group *next_pg;	/* Switch to this PG if set */
77 	unsigned repeat_count;		/* I/Os left before calling PS again */
78 
79 	unsigned queue_io;		/* Must we queue all I/O? */
80 	unsigned queue_if_no_path;	/* Queue I/O if last path fails? */
81 	unsigned saved_queue_if_no_path;/* Saved state during suspension */
82 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
83 	unsigned pg_init_count;		/* Number of times pg_init called */
84 
85 	struct work_struct process_queued_ios;
86 	struct list_head queued_ios;
87 	unsigned queue_size;
88 
89 	struct work_struct trigger_event;
90 
91 	/*
92 	 * We must use a mempool of dm_mpath_io structs so that we
93 	 * can resubmit bios on error.
94 	 */
95 	mempool_t *mpio_pool;
96 
97 	struct mutex work_mutex;
98 };
99 
100 /*
101  * Context information attached to each bio we process.
102  */
103 struct dm_mpath_io {
104 	struct pgpath *pgpath;
105 	size_t nr_bytes;
106 };
107 
108 typedef int (*action_fn) (struct pgpath *pgpath);
109 
110 #define MIN_IOS 256	/* Mempool size */
111 
112 static struct kmem_cache *_mpio_cache;
113 
114 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
115 static void process_queued_ios(struct work_struct *work);
116 static void trigger_event(struct work_struct *work);
117 static void activate_path(struct work_struct *work);
118 static void deactivate_path(struct work_struct *work);
119 
120 
121 /*-----------------------------------------------
122  * Allocation routines
123  *-----------------------------------------------*/
124 
125 static struct pgpath *alloc_pgpath(void)
126 {
127 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
128 
129 	if (pgpath) {
130 		pgpath->is_active = 1;
131 		INIT_WORK(&pgpath->deactivate_path, deactivate_path);
132 		INIT_WORK(&pgpath->activate_path, activate_path);
133 	}
134 
135 	return pgpath;
136 }
137 
138 static void free_pgpath(struct pgpath *pgpath)
139 {
140 	kfree(pgpath);
141 }
142 
143 static void deactivate_path(struct work_struct *work)
144 {
145 	struct pgpath *pgpath =
146 		container_of(work, struct pgpath, deactivate_path);
147 
148 	blk_abort_queue(pgpath->path.dev->bdev->bd_disk->queue);
149 }
150 
151 static struct priority_group *alloc_priority_group(void)
152 {
153 	struct priority_group *pg;
154 
155 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
156 
157 	if (pg)
158 		INIT_LIST_HEAD(&pg->pgpaths);
159 
160 	return pg;
161 }
162 
163 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
164 {
165 	struct pgpath *pgpath, *tmp;
166 	struct multipath *m = ti->private;
167 
168 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
169 		list_del(&pgpath->list);
170 		if (m->hw_handler_name)
171 			scsi_dh_detach(bdev_get_queue(pgpath->path.dev->bdev));
172 		dm_put_device(ti, pgpath->path.dev);
173 		free_pgpath(pgpath);
174 	}
175 }
176 
177 static void free_priority_group(struct priority_group *pg,
178 				struct dm_target *ti)
179 {
180 	struct path_selector *ps = &pg->ps;
181 
182 	if (ps->type) {
183 		ps->type->destroy(ps);
184 		dm_put_path_selector(ps->type);
185 	}
186 
187 	free_pgpaths(&pg->pgpaths, ti);
188 	kfree(pg);
189 }
190 
191 static struct multipath *alloc_multipath(struct dm_target *ti)
192 {
193 	struct multipath *m;
194 
195 	m = kzalloc(sizeof(*m), GFP_KERNEL);
196 	if (m) {
197 		INIT_LIST_HEAD(&m->priority_groups);
198 		INIT_LIST_HEAD(&m->queued_ios);
199 		spin_lock_init(&m->lock);
200 		m->queue_io = 1;
201 		INIT_WORK(&m->process_queued_ios, process_queued_ios);
202 		INIT_WORK(&m->trigger_event, trigger_event);
203 		mutex_init(&m->work_mutex);
204 		m->mpio_pool = mempool_create_slab_pool(MIN_IOS, _mpio_cache);
205 		if (!m->mpio_pool) {
206 			kfree(m);
207 			return NULL;
208 		}
209 		m->ti = ti;
210 		ti->private = m;
211 	}
212 
213 	return m;
214 }
215 
216 static void free_multipath(struct multipath *m)
217 {
218 	struct priority_group *pg, *tmp;
219 
220 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
221 		list_del(&pg->list);
222 		free_priority_group(pg, m->ti);
223 	}
224 
225 	kfree(m->hw_handler_name);
226 	kfree(m->hw_handler_params);
227 	mempool_destroy(m->mpio_pool);
228 	kfree(m);
229 }
230 
231 
232 /*-----------------------------------------------
233  * Path selection
234  *-----------------------------------------------*/
235 
236 static void __switch_pg(struct multipath *m, struct pgpath *pgpath)
237 {
238 	m->current_pg = pgpath->pg;
239 
240 	/* Must we initialise the PG first, and queue I/O till it's ready? */
241 	if (m->hw_handler_name) {
242 		m->pg_init_required = 1;
243 		m->queue_io = 1;
244 	} else {
245 		m->pg_init_required = 0;
246 		m->queue_io = 0;
247 	}
248 
249 	m->pg_init_count = 0;
250 }
251 
252 static int __choose_path_in_pg(struct multipath *m, struct priority_group *pg,
253 			       size_t nr_bytes)
254 {
255 	struct dm_path *path;
256 
257 	path = pg->ps.type->select_path(&pg->ps, &m->repeat_count, nr_bytes);
258 	if (!path)
259 		return -ENXIO;
260 
261 	m->current_pgpath = path_to_pgpath(path);
262 
263 	if (m->current_pg != pg)
264 		__switch_pg(m, m->current_pgpath);
265 
266 	return 0;
267 }
268 
269 static void __choose_pgpath(struct multipath *m, size_t nr_bytes)
270 {
271 	struct priority_group *pg;
272 	unsigned bypassed = 1;
273 
274 	if (!m->nr_valid_paths)
275 		goto failed;
276 
277 	/* Were we instructed to switch PG? */
278 	if (m->next_pg) {
279 		pg = m->next_pg;
280 		m->next_pg = NULL;
281 		if (!__choose_path_in_pg(m, pg, nr_bytes))
282 			return;
283 	}
284 
285 	/* Don't change PG until it has no remaining paths */
286 	if (m->current_pg && !__choose_path_in_pg(m, m->current_pg, nr_bytes))
287 		return;
288 
289 	/*
290 	 * Loop through priority groups until we find a valid path.
291 	 * First time we skip PGs marked 'bypassed'.
292 	 * Second time we only try the ones we skipped.
293 	 */
294 	do {
295 		list_for_each_entry(pg, &m->priority_groups, list) {
296 			if (pg->bypassed == bypassed)
297 				continue;
298 			if (!__choose_path_in_pg(m, pg, nr_bytes))
299 				return;
300 		}
301 	} while (bypassed--);
302 
303 failed:
304 	m->current_pgpath = NULL;
305 	m->current_pg = NULL;
306 }
307 
308 /*
309  * Check whether bios must be queued in the device-mapper core rather
310  * than here in the target.
311  *
312  * m->lock must be held on entry.
313  *
314  * If m->queue_if_no_path and m->saved_queue_if_no_path hold the
315  * same value then we are not between multipath_presuspend()
316  * and multipath_resume() calls and we have no need to check
317  * for the DMF_NOFLUSH_SUSPENDING flag.
318  */
319 static int __must_push_back(struct multipath *m)
320 {
321 	return (m->queue_if_no_path != m->saved_queue_if_no_path &&
322 		dm_noflush_suspending(m->ti));
323 }
324 
325 static int map_io(struct multipath *m, struct request *clone,
326 		  struct dm_mpath_io *mpio, unsigned was_queued)
327 {
328 	int r = DM_MAPIO_REMAPPED;
329 	size_t nr_bytes = blk_rq_bytes(clone);
330 	unsigned long flags;
331 	struct pgpath *pgpath;
332 	struct block_device *bdev;
333 
334 	spin_lock_irqsave(&m->lock, flags);
335 
336 	/* Do we need to select a new pgpath? */
337 	if (!m->current_pgpath ||
338 	    (!m->queue_io && (m->repeat_count && --m->repeat_count == 0)))
339 		__choose_pgpath(m, nr_bytes);
340 
341 	pgpath = m->current_pgpath;
342 
343 	if (was_queued)
344 		m->queue_size--;
345 
346 	if ((pgpath && m->queue_io) ||
347 	    (!pgpath && m->queue_if_no_path)) {
348 		/* Queue for the daemon to resubmit */
349 		list_add_tail(&clone->queuelist, &m->queued_ios);
350 		m->queue_size++;
351 		if ((m->pg_init_required && !m->pg_init_in_progress) ||
352 		    !m->queue_io)
353 			queue_work(kmultipathd, &m->process_queued_ios);
354 		pgpath = NULL;
355 		r = DM_MAPIO_SUBMITTED;
356 	} else if (pgpath) {
357 		bdev = pgpath->path.dev->bdev;
358 		clone->q = bdev_get_queue(bdev);
359 		clone->rq_disk = bdev->bd_disk;
360 	} else if (__must_push_back(m))
361 		r = DM_MAPIO_REQUEUE;
362 	else
363 		r = -EIO;	/* Failed */
364 
365 	mpio->pgpath = pgpath;
366 	mpio->nr_bytes = nr_bytes;
367 
368 	if (r == DM_MAPIO_REMAPPED && pgpath->pg->ps.type->start_io)
369 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps, &pgpath->path,
370 					      nr_bytes);
371 
372 	spin_unlock_irqrestore(&m->lock, flags);
373 
374 	return r;
375 }
376 
377 /*
378  * If we run out of usable paths, should we queue I/O or error it?
379  */
380 static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path,
381 			    unsigned save_old_value)
382 {
383 	unsigned long flags;
384 
385 	spin_lock_irqsave(&m->lock, flags);
386 
387 	if (save_old_value)
388 		m->saved_queue_if_no_path = m->queue_if_no_path;
389 	else
390 		m->saved_queue_if_no_path = queue_if_no_path;
391 	m->queue_if_no_path = queue_if_no_path;
392 	if (!m->queue_if_no_path && m->queue_size)
393 		queue_work(kmultipathd, &m->process_queued_ios);
394 
395 	spin_unlock_irqrestore(&m->lock, flags);
396 
397 	return 0;
398 }
399 
400 /*-----------------------------------------------------------------
401  * The multipath daemon is responsible for resubmitting queued ios.
402  *---------------------------------------------------------------*/
403 
404 static void dispatch_queued_ios(struct multipath *m)
405 {
406 	int r;
407 	unsigned long flags;
408 	struct dm_mpath_io *mpio;
409 	union map_info *info;
410 	struct request *clone, *n;
411 	LIST_HEAD(cl);
412 
413 	spin_lock_irqsave(&m->lock, flags);
414 	list_splice_init(&m->queued_ios, &cl);
415 	spin_unlock_irqrestore(&m->lock, flags);
416 
417 	list_for_each_entry_safe(clone, n, &cl, queuelist) {
418 		list_del_init(&clone->queuelist);
419 
420 		info = dm_get_rq_mapinfo(clone);
421 		mpio = info->ptr;
422 
423 		r = map_io(m, clone, mpio, 1);
424 		if (r < 0) {
425 			mempool_free(mpio, m->mpio_pool);
426 			dm_kill_unmapped_request(clone, r);
427 		} else if (r == DM_MAPIO_REMAPPED)
428 			dm_dispatch_request(clone);
429 		else if (r == DM_MAPIO_REQUEUE) {
430 			mempool_free(mpio, m->mpio_pool);
431 			dm_requeue_unmapped_request(clone);
432 		}
433 	}
434 }
435 
436 static void process_queued_ios(struct work_struct *work)
437 {
438 	struct multipath *m =
439 		container_of(work, struct multipath, process_queued_ios);
440 	struct pgpath *pgpath = NULL, *tmp;
441 	unsigned must_queue = 1;
442 	unsigned long flags;
443 
444 	spin_lock_irqsave(&m->lock, flags);
445 
446 	if (!m->queue_size)
447 		goto out;
448 
449 	if (!m->current_pgpath)
450 		__choose_pgpath(m, 0);
451 
452 	pgpath = m->current_pgpath;
453 
454 	if ((pgpath && !m->queue_io) ||
455 	    (!pgpath && !m->queue_if_no_path))
456 		must_queue = 0;
457 
458 	if (m->pg_init_required && !m->pg_init_in_progress && pgpath) {
459 		m->pg_init_count++;
460 		m->pg_init_required = 0;
461 		list_for_each_entry(tmp, &pgpath->pg->pgpaths, list) {
462 			/* Skip failed paths */
463 			if (!tmp->is_active)
464 				continue;
465 			if (queue_work(kmpath_handlerd, &tmp->activate_path))
466 				m->pg_init_in_progress++;
467 		}
468 	}
469 out:
470 	spin_unlock_irqrestore(&m->lock, flags);
471 	if (!must_queue)
472 		dispatch_queued_ios(m);
473 }
474 
475 /*
476  * An event is triggered whenever a path is taken out of use.
477  * Includes path failure and PG bypass.
478  */
479 static void trigger_event(struct work_struct *work)
480 {
481 	struct multipath *m =
482 		container_of(work, struct multipath, trigger_event);
483 
484 	dm_table_event(m->ti->table);
485 }
486 
487 /*-----------------------------------------------------------------
488  * Constructor/argument parsing:
489  * <#multipath feature args> [<arg>]*
490  * <#hw_handler args> [hw_handler [<arg>]*]
491  * <#priority groups>
492  * <initial priority group>
493  *     [<selector> <#selector args> [<arg>]*
494  *      <#paths> <#per-path selector args>
495  *         [<path> [<arg>]* ]+ ]+
496  *---------------------------------------------------------------*/
497 struct param {
498 	unsigned min;
499 	unsigned max;
500 	char *error;
501 };
502 
503 static int read_param(struct param *param, char *str, unsigned *v, char **error)
504 {
505 	if (!str ||
506 	    (sscanf(str, "%u", v) != 1) ||
507 	    (*v < param->min) ||
508 	    (*v > param->max)) {
509 		*error = param->error;
510 		return -EINVAL;
511 	}
512 
513 	return 0;
514 }
515 
516 struct arg_set {
517 	unsigned argc;
518 	char **argv;
519 };
520 
521 static char *shift(struct arg_set *as)
522 {
523 	char *r;
524 
525 	if (as->argc) {
526 		as->argc--;
527 		r = *as->argv;
528 		as->argv++;
529 		return r;
530 	}
531 
532 	return NULL;
533 }
534 
535 static void consume(struct arg_set *as, unsigned n)
536 {
537 	BUG_ON (as->argc < n);
538 	as->argc -= n;
539 	as->argv += n;
540 }
541 
542 static int parse_path_selector(struct arg_set *as, struct priority_group *pg,
543 			       struct dm_target *ti)
544 {
545 	int r;
546 	struct path_selector_type *pst;
547 	unsigned ps_argc;
548 
549 	static struct param _params[] = {
550 		{0, 1024, "invalid number of path selector args"},
551 	};
552 
553 	pst = dm_get_path_selector(shift(as));
554 	if (!pst) {
555 		ti->error = "unknown path selector type";
556 		return -EINVAL;
557 	}
558 
559 	r = read_param(_params, shift(as), &ps_argc, &ti->error);
560 	if (r) {
561 		dm_put_path_selector(pst);
562 		return -EINVAL;
563 	}
564 
565 	if (ps_argc > as->argc) {
566 		dm_put_path_selector(pst);
567 		ti->error = "not enough arguments for path selector";
568 		return -EINVAL;
569 	}
570 
571 	r = pst->create(&pg->ps, ps_argc, as->argv);
572 	if (r) {
573 		dm_put_path_selector(pst);
574 		ti->error = "path selector constructor failed";
575 		return r;
576 	}
577 
578 	pg->ps.type = pst;
579 	consume(as, ps_argc);
580 
581 	return 0;
582 }
583 
584 static struct pgpath *parse_path(struct arg_set *as, struct path_selector *ps,
585 			       struct dm_target *ti)
586 {
587 	int r;
588 	struct pgpath *p;
589 	struct multipath *m = ti->private;
590 
591 	/* we need at least a path arg */
592 	if (as->argc < 1) {
593 		ti->error = "no device given";
594 		return ERR_PTR(-EINVAL);
595 	}
596 
597 	p = alloc_pgpath();
598 	if (!p)
599 		return ERR_PTR(-ENOMEM);
600 
601 	r = dm_get_device(ti, shift(as), ti->begin, ti->len,
602 			  dm_table_get_mode(ti->table), &p->path.dev);
603 	if (r) {
604 		ti->error = "error getting device";
605 		goto bad;
606 	}
607 
608 	if (m->hw_handler_name) {
609 		struct request_queue *q = bdev_get_queue(p->path.dev->bdev);
610 
611 		r = scsi_dh_attach(q, m->hw_handler_name);
612 		if (r == -EBUSY) {
613 			/*
614 			 * Already attached to different hw_handler,
615 			 * try to reattach with correct one.
616 			 */
617 			scsi_dh_detach(q);
618 			r = scsi_dh_attach(q, m->hw_handler_name);
619 		}
620 
621 		if (r < 0) {
622 			ti->error = "error attaching hardware handler";
623 			dm_put_device(ti, p->path.dev);
624 			goto bad;
625 		}
626 
627 		if (m->hw_handler_params) {
628 			r = scsi_dh_set_params(q, m->hw_handler_params);
629 			if (r < 0) {
630 				ti->error = "unable to set hardware "
631 							"handler parameters";
632 				scsi_dh_detach(q);
633 				dm_put_device(ti, p->path.dev);
634 				goto bad;
635 			}
636 		}
637 	}
638 
639 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
640 	if (r) {
641 		dm_put_device(ti, p->path.dev);
642 		goto bad;
643 	}
644 
645 	return p;
646 
647  bad:
648 	free_pgpath(p);
649 	return ERR_PTR(r);
650 }
651 
652 static struct priority_group *parse_priority_group(struct arg_set *as,
653 						   struct multipath *m)
654 {
655 	static struct param _params[] = {
656 		{1, 1024, "invalid number of paths"},
657 		{0, 1024, "invalid number of selector args"}
658 	};
659 
660 	int r;
661 	unsigned i, nr_selector_args, nr_params;
662 	struct priority_group *pg;
663 	struct dm_target *ti = m->ti;
664 
665 	if (as->argc < 2) {
666 		as->argc = 0;
667 		ti->error = "not enough priority group arguments";
668 		return ERR_PTR(-EINVAL);
669 	}
670 
671 	pg = alloc_priority_group();
672 	if (!pg) {
673 		ti->error = "couldn't allocate priority group";
674 		return ERR_PTR(-ENOMEM);
675 	}
676 	pg->m = m;
677 
678 	r = parse_path_selector(as, pg, ti);
679 	if (r)
680 		goto bad;
681 
682 	/*
683 	 * read the paths
684 	 */
685 	r = read_param(_params, shift(as), &pg->nr_pgpaths, &ti->error);
686 	if (r)
687 		goto bad;
688 
689 	r = read_param(_params + 1, shift(as), &nr_selector_args, &ti->error);
690 	if (r)
691 		goto bad;
692 
693 	nr_params = 1 + nr_selector_args;
694 	for (i = 0; i < pg->nr_pgpaths; i++) {
695 		struct pgpath *pgpath;
696 		struct arg_set path_args;
697 
698 		if (as->argc < nr_params) {
699 			ti->error = "not enough path parameters";
700 			goto bad;
701 		}
702 
703 		path_args.argc = nr_params;
704 		path_args.argv = as->argv;
705 
706 		pgpath = parse_path(&path_args, &pg->ps, ti);
707 		if (IS_ERR(pgpath)) {
708 			r = PTR_ERR(pgpath);
709 			goto bad;
710 		}
711 
712 		pgpath->pg = pg;
713 		list_add_tail(&pgpath->list, &pg->pgpaths);
714 		consume(as, nr_params);
715 	}
716 
717 	return pg;
718 
719  bad:
720 	free_priority_group(pg, ti);
721 	return ERR_PTR(r);
722 }
723 
724 static int parse_hw_handler(struct arg_set *as, struct multipath *m)
725 {
726 	unsigned hw_argc;
727 	int ret;
728 	struct dm_target *ti = m->ti;
729 
730 	static struct param _params[] = {
731 		{0, 1024, "invalid number of hardware handler args"},
732 	};
733 
734 	if (read_param(_params, shift(as), &hw_argc, &ti->error))
735 		return -EINVAL;
736 
737 	if (!hw_argc)
738 		return 0;
739 
740 	if (hw_argc > as->argc) {
741 		ti->error = "not enough arguments for hardware handler";
742 		return -EINVAL;
743 	}
744 
745 	m->hw_handler_name = kstrdup(shift(as), GFP_KERNEL);
746 	request_module("scsi_dh_%s", m->hw_handler_name);
747 	if (scsi_dh_handler_exist(m->hw_handler_name) == 0) {
748 		ti->error = "unknown hardware handler type";
749 		ret = -EINVAL;
750 		goto fail;
751 	}
752 
753 	if (hw_argc > 1) {
754 		char *p;
755 		int i, j, len = 4;
756 
757 		for (i = 0; i <= hw_argc - 2; i++)
758 			len += strlen(as->argv[i]) + 1;
759 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
760 		if (!p) {
761 			ti->error = "memory allocation failed";
762 			ret = -ENOMEM;
763 			goto fail;
764 		}
765 		j = sprintf(p, "%d", hw_argc - 1);
766 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
767 			j = sprintf(p, "%s", as->argv[i]);
768 	}
769 	consume(as, hw_argc - 1);
770 
771 	return 0;
772 fail:
773 	kfree(m->hw_handler_name);
774 	m->hw_handler_name = NULL;
775 	return ret;
776 }
777 
778 static int parse_features(struct arg_set *as, struct multipath *m)
779 {
780 	int r;
781 	unsigned argc;
782 	struct dm_target *ti = m->ti;
783 	const char *param_name;
784 
785 	static struct param _params[] = {
786 		{0, 3, "invalid number of feature args"},
787 		{1, 50, "pg_init_retries must be between 1 and 50"},
788 	};
789 
790 	r = read_param(_params, shift(as), &argc, &ti->error);
791 	if (r)
792 		return -EINVAL;
793 
794 	if (!argc)
795 		return 0;
796 
797 	do {
798 		param_name = shift(as);
799 		argc--;
800 
801 		if (!strnicmp(param_name, MESG_STR("queue_if_no_path"))) {
802 			r = queue_if_no_path(m, 1, 0);
803 			continue;
804 		}
805 
806 		if (!strnicmp(param_name, MESG_STR("pg_init_retries")) &&
807 		    (argc >= 1)) {
808 			r = read_param(_params + 1, shift(as),
809 				       &m->pg_init_retries, &ti->error);
810 			argc--;
811 			continue;
812 		}
813 
814 		ti->error = "Unrecognised multipath feature request";
815 		r = -EINVAL;
816 	} while (argc && !r);
817 
818 	return r;
819 }
820 
821 static int multipath_ctr(struct dm_target *ti, unsigned int argc,
822 			 char **argv)
823 {
824 	/* target parameters */
825 	static struct param _params[] = {
826 		{1, 1024, "invalid number of priority groups"},
827 		{1, 1024, "invalid initial priority group number"},
828 	};
829 
830 	int r;
831 	struct multipath *m;
832 	struct arg_set as;
833 	unsigned pg_count = 0;
834 	unsigned next_pg_num;
835 
836 	as.argc = argc;
837 	as.argv = argv;
838 
839 	m = alloc_multipath(ti);
840 	if (!m) {
841 		ti->error = "can't allocate multipath";
842 		return -EINVAL;
843 	}
844 
845 	r = parse_features(&as, m);
846 	if (r)
847 		goto bad;
848 
849 	r = parse_hw_handler(&as, m);
850 	if (r)
851 		goto bad;
852 
853 	r = read_param(_params, shift(&as), &m->nr_priority_groups, &ti->error);
854 	if (r)
855 		goto bad;
856 
857 	r = read_param(_params + 1, shift(&as), &next_pg_num, &ti->error);
858 	if (r)
859 		goto bad;
860 
861 	/* parse the priority groups */
862 	while (as.argc) {
863 		struct priority_group *pg;
864 
865 		pg = parse_priority_group(&as, m);
866 		if (IS_ERR(pg)) {
867 			r = PTR_ERR(pg);
868 			goto bad;
869 		}
870 
871 		m->nr_valid_paths += pg->nr_pgpaths;
872 		list_add_tail(&pg->list, &m->priority_groups);
873 		pg_count++;
874 		pg->pg_num = pg_count;
875 		if (!--next_pg_num)
876 			m->next_pg = pg;
877 	}
878 
879 	if (pg_count != m->nr_priority_groups) {
880 		ti->error = "priority group count mismatch";
881 		r = -EINVAL;
882 		goto bad;
883 	}
884 
885 	ti->num_flush_requests = 1;
886 
887 	return 0;
888 
889  bad:
890 	free_multipath(m);
891 	return r;
892 }
893 
894 static void flush_multipath_work(void)
895 {
896 	flush_workqueue(kmpath_handlerd);
897 	flush_workqueue(kmultipathd);
898 	flush_scheduled_work();
899 }
900 
901 static void multipath_dtr(struct dm_target *ti)
902 {
903 	struct multipath *m = ti->private;
904 
905 	flush_multipath_work();
906 	free_multipath(m);
907 }
908 
909 /*
910  * Map cloned requests
911  */
912 static int multipath_map(struct dm_target *ti, struct request *clone,
913 			 union map_info *map_context)
914 {
915 	int r;
916 	struct dm_mpath_io *mpio;
917 	struct multipath *m = (struct multipath *) ti->private;
918 
919 	mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC);
920 	if (!mpio)
921 		/* ENOMEM, requeue */
922 		return DM_MAPIO_REQUEUE;
923 	memset(mpio, 0, sizeof(*mpio));
924 
925 	map_context->ptr = mpio;
926 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
927 	r = map_io(m, clone, mpio, 0);
928 	if (r < 0 || r == DM_MAPIO_REQUEUE)
929 		mempool_free(mpio, m->mpio_pool);
930 
931 	return r;
932 }
933 
934 /*
935  * Take a path out of use.
936  */
937 static int fail_path(struct pgpath *pgpath)
938 {
939 	unsigned long flags;
940 	struct multipath *m = pgpath->pg->m;
941 
942 	spin_lock_irqsave(&m->lock, flags);
943 
944 	if (!pgpath->is_active)
945 		goto out;
946 
947 	DMWARN("Failing path %s.", pgpath->path.dev->name);
948 
949 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
950 	pgpath->is_active = 0;
951 	pgpath->fail_count++;
952 
953 	m->nr_valid_paths--;
954 
955 	if (pgpath == m->current_pgpath)
956 		m->current_pgpath = NULL;
957 
958 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
959 		      pgpath->path.dev->name, m->nr_valid_paths);
960 
961 	schedule_work(&m->trigger_event);
962 	queue_work(kmultipathd, &pgpath->deactivate_path);
963 
964 out:
965 	spin_unlock_irqrestore(&m->lock, flags);
966 
967 	return 0;
968 }
969 
970 /*
971  * Reinstate a previously-failed path
972  */
973 static int reinstate_path(struct pgpath *pgpath)
974 {
975 	int r = 0;
976 	unsigned long flags;
977 	struct multipath *m = pgpath->pg->m;
978 
979 	spin_lock_irqsave(&m->lock, flags);
980 
981 	if (pgpath->is_active)
982 		goto out;
983 
984 	if (!pgpath->pg->ps.type->reinstate_path) {
985 		DMWARN("Reinstate path not supported by path selector %s",
986 		       pgpath->pg->ps.type->name);
987 		r = -EINVAL;
988 		goto out;
989 	}
990 
991 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
992 	if (r)
993 		goto out;
994 
995 	pgpath->is_active = 1;
996 
997 	if (!m->nr_valid_paths++ && m->queue_size) {
998 		m->current_pgpath = NULL;
999 		queue_work(kmultipathd, &m->process_queued_ios);
1000 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1001 		if (queue_work(kmpath_handlerd, &pgpath->activate_path))
1002 			m->pg_init_in_progress++;
1003 	}
1004 
1005 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1006 		      pgpath->path.dev->name, m->nr_valid_paths);
1007 
1008 	schedule_work(&m->trigger_event);
1009 
1010 out:
1011 	spin_unlock_irqrestore(&m->lock, flags);
1012 
1013 	return r;
1014 }
1015 
1016 /*
1017  * Fail or reinstate all paths that match the provided struct dm_dev.
1018  */
1019 static int action_dev(struct multipath *m, struct dm_dev *dev,
1020 		      action_fn action)
1021 {
1022 	int r = 0;
1023 	struct pgpath *pgpath;
1024 	struct priority_group *pg;
1025 
1026 	list_for_each_entry(pg, &m->priority_groups, list) {
1027 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1028 			if (pgpath->path.dev == dev)
1029 				r = action(pgpath);
1030 		}
1031 	}
1032 
1033 	return r;
1034 }
1035 
1036 /*
1037  * Temporarily try to avoid having to use the specified PG
1038  */
1039 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1040 		      int bypassed)
1041 {
1042 	unsigned long flags;
1043 
1044 	spin_lock_irqsave(&m->lock, flags);
1045 
1046 	pg->bypassed = bypassed;
1047 	m->current_pgpath = NULL;
1048 	m->current_pg = NULL;
1049 
1050 	spin_unlock_irqrestore(&m->lock, flags);
1051 
1052 	schedule_work(&m->trigger_event);
1053 }
1054 
1055 /*
1056  * Switch to using the specified PG from the next I/O that gets mapped
1057  */
1058 static int switch_pg_num(struct multipath *m, const char *pgstr)
1059 {
1060 	struct priority_group *pg;
1061 	unsigned pgnum;
1062 	unsigned long flags;
1063 
1064 	if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum ||
1065 	    (pgnum > m->nr_priority_groups)) {
1066 		DMWARN("invalid PG number supplied to switch_pg_num");
1067 		return -EINVAL;
1068 	}
1069 
1070 	spin_lock_irqsave(&m->lock, flags);
1071 	list_for_each_entry(pg, &m->priority_groups, list) {
1072 		pg->bypassed = 0;
1073 		if (--pgnum)
1074 			continue;
1075 
1076 		m->current_pgpath = NULL;
1077 		m->current_pg = NULL;
1078 		m->next_pg = pg;
1079 	}
1080 	spin_unlock_irqrestore(&m->lock, flags);
1081 
1082 	schedule_work(&m->trigger_event);
1083 	return 0;
1084 }
1085 
1086 /*
1087  * Set/clear bypassed status of a PG.
1088  * PGs are numbered upwards from 1 in the order they were declared.
1089  */
1090 static int bypass_pg_num(struct multipath *m, const char *pgstr, int bypassed)
1091 {
1092 	struct priority_group *pg;
1093 	unsigned pgnum;
1094 
1095 	if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum ||
1096 	    (pgnum > m->nr_priority_groups)) {
1097 		DMWARN("invalid PG number supplied to bypass_pg");
1098 		return -EINVAL;
1099 	}
1100 
1101 	list_for_each_entry(pg, &m->priority_groups, list) {
1102 		if (!--pgnum)
1103 			break;
1104 	}
1105 
1106 	bypass_pg(m, pg, bypassed);
1107 	return 0;
1108 }
1109 
1110 /*
1111  * Should we retry pg_init immediately?
1112  */
1113 static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1114 {
1115 	unsigned long flags;
1116 	int limit_reached = 0;
1117 
1118 	spin_lock_irqsave(&m->lock, flags);
1119 
1120 	if (m->pg_init_count <= m->pg_init_retries)
1121 		m->pg_init_required = 1;
1122 	else
1123 		limit_reached = 1;
1124 
1125 	spin_unlock_irqrestore(&m->lock, flags);
1126 
1127 	return limit_reached;
1128 }
1129 
1130 static void pg_init_done(void *data, int errors)
1131 {
1132 	struct pgpath *pgpath = data;
1133 	struct priority_group *pg = pgpath->pg;
1134 	struct multipath *m = pg->m;
1135 	unsigned long flags;
1136 
1137 	/* device or driver problems */
1138 	switch (errors) {
1139 	case SCSI_DH_OK:
1140 		break;
1141 	case SCSI_DH_NOSYS:
1142 		if (!m->hw_handler_name) {
1143 			errors = 0;
1144 			break;
1145 		}
1146 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1147 		      "Error %d.", m->hw_handler_name, errors);
1148 		/*
1149 		 * Fail path for now, so we do not ping pong
1150 		 */
1151 		fail_path(pgpath);
1152 		break;
1153 	case SCSI_DH_DEV_TEMP_BUSY:
1154 		/*
1155 		 * Probably doing something like FW upgrade on the
1156 		 * controller so try the other pg.
1157 		 */
1158 		bypass_pg(m, pg, 1);
1159 		break;
1160 	/* TODO: For SCSI_DH_RETRY we should wait a couple seconds */
1161 	case SCSI_DH_RETRY:
1162 	case SCSI_DH_IMM_RETRY:
1163 	case SCSI_DH_RES_TEMP_UNAVAIL:
1164 		if (pg_init_limit_reached(m, pgpath))
1165 			fail_path(pgpath);
1166 		errors = 0;
1167 		break;
1168 	default:
1169 		/*
1170 		 * We probably do not want to fail the path for a device
1171 		 * error, but this is what the old dm did. In future
1172 		 * patches we can do more advanced handling.
1173 		 */
1174 		fail_path(pgpath);
1175 	}
1176 
1177 	spin_lock_irqsave(&m->lock, flags);
1178 	if (errors) {
1179 		if (pgpath == m->current_pgpath) {
1180 			DMERR("Could not failover device. Error %d.", errors);
1181 			m->current_pgpath = NULL;
1182 			m->current_pg = NULL;
1183 		}
1184 	} else if (!m->pg_init_required)
1185 		pg->bypassed = 0;
1186 
1187 	if (--m->pg_init_in_progress)
1188 		/* Activations of other paths are still on going */
1189 		goto out;
1190 
1191 	if (!m->pg_init_required)
1192 		m->queue_io = 0;
1193 
1194 	queue_work(kmultipathd, &m->process_queued_ios);
1195 
1196 out:
1197 	spin_unlock_irqrestore(&m->lock, flags);
1198 }
1199 
1200 static void activate_path(struct work_struct *work)
1201 {
1202 	struct pgpath *pgpath =
1203 		container_of(work, struct pgpath, activate_path);
1204 
1205 	scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev),
1206 				pg_init_done, pgpath);
1207 }
1208 
1209 /*
1210  * end_io handling
1211  */
1212 static int do_end_io(struct multipath *m, struct request *clone,
1213 		     int error, struct dm_mpath_io *mpio)
1214 {
1215 	/*
1216 	 * We don't queue any clone request inside the multipath target
1217 	 * during end I/O handling, since those clone requests don't have
1218 	 * bio clones.  If we queue them inside the multipath target,
1219 	 * we need to make bio clones, that requires memory allocation.
1220 	 * (See drivers/md/dm.c:end_clone_bio() about why the clone requests
1221 	 *  don't have bio clones.)
1222 	 * Instead of queueing the clone request here, we queue the original
1223 	 * request into dm core, which will remake a clone request and
1224 	 * clone bios for it and resubmit it later.
1225 	 */
1226 	int r = DM_ENDIO_REQUEUE;
1227 	unsigned long flags;
1228 
1229 	if (!error && !clone->errors)
1230 		return 0;	/* I/O complete */
1231 
1232 	if (error == -EOPNOTSUPP)
1233 		return error;
1234 
1235 	if (mpio->pgpath)
1236 		fail_path(mpio->pgpath);
1237 
1238 	spin_lock_irqsave(&m->lock, flags);
1239 	if (!m->nr_valid_paths && !m->queue_if_no_path && !__must_push_back(m))
1240 		r = -EIO;
1241 	spin_unlock_irqrestore(&m->lock, flags);
1242 
1243 	return r;
1244 }
1245 
1246 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1247 			    int error, union map_info *map_context)
1248 {
1249 	struct multipath *m = ti->private;
1250 	struct dm_mpath_io *mpio = map_context->ptr;
1251 	struct pgpath *pgpath = mpio->pgpath;
1252 	struct path_selector *ps;
1253 	int r;
1254 
1255 	r  = do_end_io(m, clone, error, mpio);
1256 	if (pgpath) {
1257 		ps = &pgpath->pg->ps;
1258 		if (ps->type->end_io)
1259 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1260 	}
1261 	mempool_free(mpio, m->mpio_pool);
1262 
1263 	return r;
1264 }
1265 
1266 /*
1267  * Suspend can't complete until all the I/O is processed so if
1268  * the last path fails we must error any remaining I/O.
1269  * Note that if the freeze_bdev fails while suspending, the
1270  * queue_if_no_path state is lost - userspace should reset it.
1271  */
1272 static void multipath_presuspend(struct dm_target *ti)
1273 {
1274 	struct multipath *m = (struct multipath *) ti->private;
1275 
1276 	queue_if_no_path(m, 0, 1);
1277 }
1278 
1279 static void multipath_postsuspend(struct dm_target *ti)
1280 {
1281 	struct multipath *m = ti->private;
1282 
1283 	mutex_lock(&m->work_mutex);
1284 	flush_multipath_work();
1285 	mutex_unlock(&m->work_mutex);
1286 }
1287 
1288 /*
1289  * Restore the queue_if_no_path setting.
1290  */
1291 static void multipath_resume(struct dm_target *ti)
1292 {
1293 	struct multipath *m = (struct multipath *) ti->private;
1294 	unsigned long flags;
1295 
1296 	spin_lock_irqsave(&m->lock, flags);
1297 	m->queue_if_no_path = m->saved_queue_if_no_path;
1298 	spin_unlock_irqrestore(&m->lock, flags);
1299 }
1300 
1301 /*
1302  * Info output has the following format:
1303  * num_multipath_feature_args [multipath_feature_args]*
1304  * num_handler_status_args [handler_status_args]*
1305  * num_groups init_group_number
1306  *            [A|D|E num_ps_status_args [ps_status_args]*
1307  *             num_paths num_selector_args
1308  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1309  *
1310  * Table output has the following format (identical to the constructor string):
1311  * num_feature_args [features_args]*
1312  * num_handler_args hw_handler [hw_handler_args]*
1313  * num_groups init_group_number
1314  *     [priority selector-name num_ps_args [ps_args]*
1315  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1316  */
1317 static int multipath_status(struct dm_target *ti, status_type_t type,
1318 			    char *result, unsigned int maxlen)
1319 {
1320 	int sz = 0;
1321 	unsigned long flags;
1322 	struct multipath *m = (struct multipath *) ti->private;
1323 	struct priority_group *pg;
1324 	struct pgpath *p;
1325 	unsigned pg_num;
1326 	char state;
1327 
1328 	spin_lock_irqsave(&m->lock, flags);
1329 
1330 	/* Features */
1331 	if (type == STATUSTYPE_INFO)
1332 		DMEMIT("2 %u %u ", m->queue_size, m->pg_init_count);
1333 	else {
1334 		DMEMIT("%u ", m->queue_if_no_path +
1335 			      (m->pg_init_retries > 0) * 2);
1336 		if (m->queue_if_no_path)
1337 			DMEMIT("queue_if_no_path ");
1338 		if (m->pg_init_retries)
1339 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1340 	}
1341 
1342 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1343 		DMEMIT("0 ");
1344 	else
1345 		DMEMIT("1 %s ", m->hw_handler_name);
1346 
1347 	DMEMIT("%u ", m->nr_priority_groups);
1348 
1349 	if (m->next_pg)
1350 		pg_num = m->next_pg->pg_num;
1351 	else if (m->current_pg)
1352 		pg_num = m->current_pg->pg_num;
1353 	else
1354 			pg_num = 1;
1355 
1356 	DMEMIT("%u ", pg_num);
1357 
1358 	switch (type) {
1359 	case STATUSTYPE_INFO:
1360 		list_for_each_entry(pg, &m->priority_groups, list) {
1361 			if (pg->bypassed)
1362 				state = 'D';	/* Disabled */
1363 			else if (pg == m->current_pg)
1364 				state = 'A';	/* Currently Active */
1365 			else
1366 				state = 'E';	/* Enabled */
1367 
1368 			DMEMIT("%c ", state);
1369 
1370 			if (pg->ps.type->status)
1371 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1372 							  result + sz,
1373 							  maxlen - sz);
1374 			else
1375 				DMEMIT("0 ");
1376 
1377 			DMEMIT("%u %u ", pg->nr_pgpaths,
1378 			       pg->ps.type->info_args);
1379 
1380 			list_for_each_entry(p, &pg->pgpaths, list) {
1381 				DMEMIT("%s %s %u ", p->path.dev->name,
1382 				       p->is_active ? "A" : "F",
1383 				       p->fail_count);
1384 				if (pg->ps.type->status)
1385 					sz += pg->ps.type->status(&pg->ps,
1386 					      &p->path, type, result + sz,
1387 					      maxlen - sz);
1388 			}
1389 		}
1390 		break;
1391 
1392 	case STATUSTYPE_TABLE:
1393 		list_for_each_entry(pg, &m->priority_groups, list) {
1394 			DMEMIT("%s ", pg->ps.type->name);
1395 
1396 			if (pg->ps.type->status)
1397 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1398 							  result + sz,
1399 							  maxlen - sz);
1400 			else
1401 				DMEMIT("0 ");
1402 
1403 			DMEMIT("%u %u ", pg->nr_pgpaths,
1404 			       pg->ps.type->table_args);
1405 
1406 			list_for_each_entry(p, &pg->pgpaths, list) {
1407 				DMEMIT("%s ", p->path.dev->name);
1408 				if (pg->ps.type->status)
1409 					sz += pg->ps.type->status(&pg->ps,
1410 					      &p->path, type, result + sz,
1411 					      maxlen - sz);
1412 			}
1413 		}
1414 		break;
1415 	}
1416 
1417 	spin_unlock_irqrestore(&m->lock, flags);
1418 
1419 	return 0;
1420 }
1421 
1422 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1423 {
1424 	int r = -EINVAL;
1425 	struct dm_dev *dev;
1426 	struct multipath *m = (struct multipath *) ti->private;
1427 	action_fn action;
1428 
1429 	mutex_lock(&m->work_mutex);
1430 
1431 	if (dm_suspended(ti)) {
1432 		r = -EBUSY;
1433 		goto out;
1434 	}
1435 
1436 	if (argc == 1) {
1437 		if (!strnicmp(argv[0], MESG_STR("queue_if_no_path"))) {
1438 			r = queue_if_no_path(m, 1, 0);
1439 			goto out;
1440 		} else if (!strnicmp(argv[0], MESG_STR("fail_if_no_path"))) {
1441 			r = queue_if_no_path(m, 0, 0);
1442 			goto out;
1443 		}
1444 	}
1445 
1446 	if (argc != 2) {
1447 		DMWARN("Unrecognised multipath message received.");
1448 		goto out;
1449 	}
1450 
1451 	if (!strnicmp(argv[0], MESG_STR("disable_group"))) {
1452 		r = bypass_pg_num(m, argv[1], 1);
1453 		goto out;
1454 	} else if (!strnicmp(argv[0], MESG_STR("enable_group"))) {
1455 		r = bypass_pg_num(m, argv[1], 0);
1456 		goto out;
1457 	} else if (!strnicmp(argv[0], MESG_STR("switch_group"))) {
1458 		r = switch_pg_num(m, argv[1]);
1459 		goto out;
1460 	} else if (!strnicmp(argv[0], MESG_STR("reinstate_path")))
1461 		action = reinstate_path;
1462 	else if (!strnicmp(argv[0], MESG_STR("fail_path")))
1463 		action = fail_path;
1464 	else {
1465 		DMWARN("Unrecognised multipath message received.");
1466 		goto out;
1467 	}
1468 
1469 	r = dm_get_device(ti, argv[1], ti->begin, ti->len,
1470 			  dm_table_get_mode(ti->table), &dev);
1471 	if (r) {
1472 		DMWARN("message: error getting device %s",
1473 		       argv[1]);
1474 		goto out;
1475 	}
1476 
1477 	r = action_dev(m, dev, action);
1478 
1479 	dm_put_device(ti, dev);
1480 
1481 out:
1482 	mutex_unlock(&m->work_mutex);
1483 	return r;
1484 }
1485 
1486 static int multipath_ioctl(struct dm_target *ti, unsigned int cmd,
1487 			   unsigned long arg)
1488 {
1489 	struct multipath *m = (struct multipath *) ti->private;
1490 	struct block_device *bdev = NULL;
1491 	fmode_t mode = 0;
1492 	unsigned long flags;
1493 	int r = 0;
1494 
1495 	spin_lock_irqsave(&m->lock, flags);
1496 
1497 	if (!m->current_pgpath)
1498 		__choose_pgpath(m, 0);
1499 
1500 	if (m->current_pgpath) {
1501 		bdev = m->current_pgpath->path.dev->bdev;
1502 		mode = m->current_pgpath->path.dev->mode;
1503 	}
1504 
1505 	if (m->queue_io)
1506 		r = -EAGAIN;
1507 	else if (!bdev)
1508 		r = -EIO;
1509 
1510 	spin_unlock_irqrestore(&m->lock, flags);
1511 
1512 	return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg);
1513 }
1514 
1515 static int multipath_iterate_devices(struct dm_target *ti,
1516 				     iterate_devices_callout_fn fn, void *data)
1517 {
1518 	struct multipath *m = ti->private;
1519 	struct priority_group *pg;
1520 	struct pgpath *p;
1521 	int ret = 0;
1522 
1523 	list_for_each_entry(pg, &m->priority_groups, list) {
1524 		list_for_each_entry(p, &pg->pgpaths, list) {
1525 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1526 			if (ret)
1527 				goto out;
1528 		}
1529 	}
1530 
1531 out:
1532 	return ret;
1533 }
1534 
1535 static int __pgpath_busy(struct pgpath *pgpath)
1536 {
1537 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1538 
1539 	return dm_underlying_device_busy(q);
1540 }
1541 
1542 /*
1543  * We return "busy", only when we can map I/Os but underlying devices
1544  * are busy (so even if we map I/Os now, the I/Os will wait on
1545  * the underlying queue).
1546  * In other words, if we want to kill I/Os or queue them inside us
1547  * due to map unavailability, we don't return "busy".  Otherwise,
1548  * dm core won't give us the I/Os and we can't do what we want.
1549  */
1550 static int multipath_busy(struct dm_target *ti)
1551 {
1552 	int busy = 0, has_active = 0;
1553 	struct multipath *m = ti->private;
1554 	struct priority_group *pg;
1555 	struct pgpath *pgpath;
1556 	unsigned long flags;
1557 
1558 	spin_lock_irqsave(&m->lock, flags);
1559 
1560 	/* Guess which priority_group will be used at next mapping time */
1561 	if (unlikely(!m->current_pgpath && m->next_pg))
1562 		pg = m->next_pg;
1563 	else if (likely(m->current_pg))
1564 		pg = m->current_pg;
1565 	else
1566 		/*
1567 		 * We don't know which pg will be used at next mapping time.
1568 		 * We don't call __choose_pgpath() here to avoid to trigger
1569 		 * pg_init just by busy checking.
1570 		 * So we don't know whether underlying devices we will be using
1571 		 * at next mapping time are busy or not. Just try mapping.
1572 		 */
1573 		goto out;
1574 
1575 	/*
1576 	 * If there is one non-busy active path at least, the path selector
1577 	 * will be able to select it. So we consider such a pg as not busy.
1578 	 */
1579 	busy = 1;
1580 	list_for_each_entry(pgpath, &pg->pgpaths, list)
1581 		if (pgpath->is_active) {
1582 			has_active = 1;
1583 
1584 			if (!__pgpath_busy(pgpath)) {
1585 				busy = 0;
1586 				break;
1587 			}
1588 		}
1589 
1590 	if (!has_active)
1591 		/*
1592 		 * No active path in this pg, so this pg won't be used and
1593 		 * the current_pg will be changed at next mapping time.
1594 		 * We need to try mapping to determine it.
1595 		 */
1596 		busy = 0;
1597 
1598 out:
1599 	spin_unlock_irqrestore(&m->lock, flags);
1600 
1601 	return busy;
1602 }
1603 
1604 /*-----------------------------------------------------------------
1605  * Module setup
1606  *---------------------------------------------------------------*/
1607 static struct target_type multipath_target = {
1608 	.name = "multipath",
1609 	.version = {1, 1, 1},
1610 	.module = THIS_MODULE,
1611 	.ctr = multipath_ctr,
1612 	.dtr = multipath_dtr,
1613 	.map_rq = multipath_map,
1614 	.rq_end_io = multipath_end_io,
1615 	.presuspend = multipath_presuspend,
1616 	.postsuspend = multipath_postsuspend,
1617 	.resume = multipath_resume,
1618 	.status = multipath_status,
1619 	.message = multipath_message,
1620 	.ioctl  = multipath_ioctl,
1621 	.iterate_devices = multipath_iterate_devices,
1622 	.busy = multipath_busy,
1623 };
1624 
1625 static int __init dm_multipath_init(void)
1626 {
1627 	int r;
1628 
1629 	/* allocate a slab for the dm_ios */
1630 	_mpio_cache = KMEM_CACHE(dm_mpath_io, 0);
1631 	if (!_mpio_cache)
1632 		return -ENOMEM;
1633 
1634 	r = dm_register_target(&multipath_target);
1635 	if (r < 0) {
1636 		DMERR("register failed %d", r);
1637 		kmem_cache_destroy(_mpio_cache);
1638 		return -EINVAL;
1639 	}
1640 
1641 	kmultipathd = create_workqueue("kmpathd");
1642 	if (!kmultipathd) {
1643 		DMERR("failed to create workqueue kmpathd");
1644 		dm_unregister_target(&multipath_target);
1645 		kmem_cache_destroy(_mpio_cache);
1646 		return -ENOMEM;
1647 	}
1648 
1649 	/*
1650 	 * A separate workqueue is used to handle the device handlers
1651 	 * to avoid overloading existing workqueue. Overloading the
1652 	 * old workqueue would also create a bottleneck in the
1653 	 * path of the storage hardware device activation.
1654 	 */
1655 	kmpath_handlerd = create_singlethread_workqueue("kmpath_handlerd");
1656 	if (!kmpath_handlerd) {
1657 		DMERR("failed to create workqueue kmpath_handlerd");
1658 		destroy_workqueue(kmultipathd);
1659 		dm_unregister_target(&multipath_target);
1660 		kmem_cache_destroy(_mpio_cache);
1661 		return -ENOMEM;
1662 	}
1663 
1664 	DMINFO("version %u.%u.%u loaded",
1665 	       multipath_target.version[0], multipath_target.version[1],
1666 	       multipath_target.version[2]);
1667 
1668 	return r;
1669 }
1670 
1671 static void __exit dm_multipath_exit(void)
1672 {
1673 	destroy_workqueue(kmpath_handlerd);
1674 	destroy_workqueue(kmultipathd);
1675 
1676 	dm_unregister_target(&multipath_target);
1677 	kmem_cache_destroy(_mpio_cache);
1678 }
1679 
1680 module_init(dm_multipath_init);
1681 module_exit(dm_multipath_exit);
1682 
1683 MODULE_DESCRIPTION(DM_NAME " multipath target");
1684 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
1685 MODULE_LICENSE("GPL");
1686