1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm.h" 11 #include "dm-path-selector.h" 12 #include "dm-uevent.h" 13 14 #include <linux/blkdev.h> 15 #include <linux/ctype.h> 16 #include <linux/init.h> 17 #include <linux/mempool.h> 18 #include <linux/module.h> 19 #include <linux/pagemap.h> 20 #include <linux/slab.h> 21 #include <linux/time.h> 22 #include <linux/workqueue.h> 23 #include <linux/delay.h> 24 #include <scsi/scsi_dh.h> 25 #include <linux/atomic.h> 26 27 #define DM_MSG_PREFIX "multipath" 28 #define DM_PG_INIT_DELAY_MSECS 2000 29 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 30 31 /* Path properties */ 32 struct pgpath { 33 struct list_head list; 34 35 struct priority_group *pg; /* Owning PG */ 36 unsigned is_active; /* Path status */ 37 unsigned fail_count; /* Cumulative failure count */ 38 39 struct dm_path path; 40 struct delayed_work activate_path; 41 }; 42 43 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 44 45 /* 46 * Paths are grouped into Priority Groups and numbered from 1 upwards. 47 * Each has a path selector which controls which path gets used. 48 */ 49 struct priority_group { 50 struct list_head list; 51 52 struct multipath *m; /* Owning multipath instance */ 53 struct path_selector ps; 54 55 unsigned pg_num; /* Reference number */ 56 unsigned bypassed; /* Temporarily bypass this PG? */ 57 58 unsigned nr_pgpaths; /* Number of paths in PG */ 59 struct list_head pgpaths; 60 }; 61 62 /* Multipath context */ 63 struct multipath { 64 struct list_head list; 65 struct dm_target *ti; 66 67 const char *hw_handler_name; 68 char *hw_handler_params; 69 70 spinlock_t lock; 71 72 unsigned nr_priority_groups; 73 struct list_head priority_groups; 74 75 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 76 77 unsigned pg_init_required; /* pg_init needs calling? */ 78 unsigned pg_init_in_progress; /* Only one pg_init allowed at once */ 79 unsigned pg_init_delay_retry; /* Delay pg_init retry? */ 80 81 unsigned nr_valid_paths; /* Total number of usable paths */ 82 struct pgpath *current_pgpath; 83 struct priority_group *current_pg; 84 struct priority_group *next_pg; /* Switch to this PG if set */ 85 unsigned repeat_count; /* I/Os left before calling PS again */ 86 87 unsigned queue_io:1; /* Must we queue all I/O? */ 88 unsigned queue_if_no_path:1; /* Queue I/O if last path fails? */ 89 unsigned saved_queue_if_no_path:1; /* Saved state during suspension */ 90 unsigned retain_attached_hw_handler:1; /* If there's already a hw_handler present, don't change it. */ 91 unsigned pg_init_disabled:1; /* pg_init is not currently allowed */ 92 93 unsigned pg_init_retries; /* Number of times to retry pg_init */ 94 unsigned pg_init_count; /* Number of times pg_init called */ 95 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 96 97 struct work_struct trigger_event; 98 99 /* 100 * We must use a mempool of dm_mpath_io structs so that we 101 * can resubmit bios on error. 102 */ 103 mempool_t *mpio_pool; 104 105 struct mutex work_mutex; 106 }; 107 108 /* 109 * Context information attached to each bio we process. 110 */ 111 struct dm_mpath_io { 112 struct pgpath *pgpath; 113 size_t nr_bytes; 114 }; 115 116 typedef int (*action_fn) (struct pgpath *pgpath); 117 118 static struct kmem_cache *_mpio_cache; 119 120 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 121 static void trigger_event(struct work_struct *work); 122 static void activate_path(struct work_struct *work); 123 static int __pgpath_busy(struct pgpath *pgpath); 124 125 126 /*----------------------------------------------- 127 * Allocation routines 128 *-----------------------------------------------*/ 129 130 static struct pgpath *alloc_pgpath(void) 131 { 132 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 133 134 if (pgpath) { 135 pgpath->is_active = 1; 136 INIT_DELAYED_WORK(&pgpath->activate_path, activate_path); 137 } 138 139 return pgpath; 140 } 141 142 static void free_pgpath(struct pgpath *pgpath) 143 { 144 kfree(pgpath); 145 } 146 147 static struct priority_group *alloc_priority_group(void) 148 { 149 struct priority_group *pg; 150 151 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 152 153 if (pg) 154 INIT_LIST_HEAD(&pg->pgpaths); 155 156 return pg; 157 } 158 159 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 160 { 161 struct pgpath *pgpath, *tmp; 162 163 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 164 list_del(&pgpath->list); 165 dm_put_device(ti, pgpath->path.dev); 166 free_pgpath(pgpath); 167 } 168 } 169 170 static void free_priority_group(struct priority_group *pg, 171 struct dm_target *ti) 172 { 173 struct path_selector *ps = &pg->ps; 174 175 if (ps->type) { 176 ps->type->destroy(ps); 177 dm_put_path_selector(ps->type); 178 } 179 180 free_pgpaths(&pg->pgpaths, ti); 181 kfree(pg); 182 } 183 184 static struct multipath *alloc_multipath(struct dm_target *ti) 185 { 186 struct multipath *m; 187 unsigned min_ios = dm_get_reserved_rq_based_ios(); 188 189 m = kzalloc(sizeof(*m), GFP_KERNEL); 190 if (m) { 191 INIT_LIST_HEAD(&m->priority_groups); 192 spin_lock_init(&m->lock); 193 m->queue_io = 1; 194 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 195 INIT_WORK(&m->trigger_event, trigger_event); 196 init_waitqueue_head(&m->pg_init_wait); 197 mutex_init(&m->work_mutex); 198 m->mpio_pool = mempool_create_slab_pool(min_ios, _mpio_cache); 199 if (!m->mpio_pool) { 200 kfree(m); 201 return NULL; 202 } 203 m->ti = ti; 204 ti->private = m; 205 } 206 207 return m; 208 } 209 210 static void free_multipath(struct multipath *m) 211 { 212 struct priority_group *pg, *tmp; 213 214 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 215 list_del(&pg->list); 216 free_priority_group(pg, m->ti); 217 } 218 219 kfree(m->hw_handler_name); 220 kfree(m->hw_handler_params); 221 mempool_destroy(m->mpio_pool); 222 kfree(m); 223 } 224 225 static int set_mapinfo(struct multipath *m, union map_info *info) 226 { 227 struct dm_mpath_io *mpio; 228 229 mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC); 230 if (!mpio) 231 return -ENOMEM; 232 233 memset(mpio, 0, sizeof(*mpio)); 234 info->ptr = mpio; 235 236 return 0; 237 } 238 239 static void clear_mapinfo(struct multipath *m, union map_info *info) 240 { 241 struct dm_mpath_io *mpio = info->ptr; 242 243 info->ptr = NULL; 244 mempool_free(mpio, m->mpio_pool); 245 } 246 247 /*----------------------------------------------- 248 * Path selection 249 *-----------------------------------------------*/ 250 251 static int __pg_init_all_paths(struct multipath *m) 252 { 253 struct pgpath *pgpath; 254 unsigned long pg_init_delay = 0; 255 256 if (m->pg_init_in_progress || m->pg_init_disabled) 257 return 0; 258 259 m->pg_init_count++; 260 m->pg_init_required = 0; 261 262 /* Check here to reset pg_init_required */ 263 if (!m->current_pg) 264 return 0; 265 266 if (m->pg_init_delay_retry) 267 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 268 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 269 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 270 /* Skip failed paths */ 271 if (!pgpath->is_active) 272 continue; 273 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 274 pg_init_delay)) 275 m->pg_init_in_progress++; 276 } 277 return m->pg_init_in_progress; 278 } 279 280 static void __switch_pg(struct multipath *m, struct pgpath *pgpath) 281 { 282 m->current_pg = pgpath->pg; 283 284 /* Must we initialise the PG first, and queue I/O till it's ready? */ 285 if (m->hw_handler_name) { 286 m->pg_init_required = 1; 287 m->queue_io = 1; 288 } else { 289 m->pg_init_required = 0; 290 m->queue_io = 0; 291 } 292 293 m->pg_init_count = 0; 294 } 295 296 static int __choose_path_in_pg(struct multipath *m, struct priority_group *pg, 297 size_t nr_bytes) 298 { 299 struct dm_path *path; 300 301 path = pg->ps.type->select_path(&pg->ps, &m->repeat_count, nr_bytes); 302 if (!path) 303 return -ENXIO; 304 305 m->current_pgpath = path_to_pgpath(path); 306 307 if (m->current_pg != pg) 308 __switch_pg(m, m->current_pgpath); 309 310 return 0; 311 } 312 313 static void __choose_pgpath(struct multipath *m, size_t nr_bytes) 314 { 315 struct priority_group *pg; 316 unsigned bypassed = 1; 317 318 if (!m->nr_valid_paths) { 319 m->queue_io = 0; 320 goto failed; 321 } 322 323 /* Were we instructed to switch PG? */ 324 if (m->next_pg) { 325 pg = m->next_pg; 326 m->next_pg = NULL; 327 if (!__choose_path_in_pg(m, pg, nr_bytes)) 328 return; 329 } 330 331 /* Don't change PG until it has no remaining paths */ 332 if (m->current_pg && !__choose_path_in_pg(m, m->current_pg, nr_bytes)) 333 return; 334 335 /* 336 * Loop through priority groups until we find a valid path. 337 * First time we skip PGs marked 'bypassed'. 338 * Second time we only try the ones we skipped, but set 339 * pg_init_delay_retry so we do not hammer controllers. 340 */ 341 do { 342 list_for_each_entry(pg, &m->priority_groups, list) { 343 if (pg->bypassed == bypassed) 344 continue; 345 if (!__choose_path_in_pg(m, pg, nr_bytes)) { 346 if (!bypassed) 347 m->pg_init_delay_retry = 1; 348 return; 349 } 350 } 351 } while (bypassed--); 352 353 failed: 354 m->current_pgpath = NULL; 355 m->current_pg = NULL; 356 } 357 358 /* 359 * Check whether bios must be queued in the device-mapper core rather 360 * than here in the target. 361 * 362 * m->lock must be held on entry. 363 * 364 * If m->queue_if_no_path and m->saved_queue_if_no_path hold the 365 * same value then we are not between multipath_presuspend() 366 * and multipath_resume() calls and we have no need to check 367 * for the DMF_NOFLUSH_SUSPENDING flag. 368 */ 369 static int __must_push_back(struct multipath *m) 370 { 371 return (m->queue_if_no_path || 372 (m->queue_if_no_path != m->saved_queue_if_no_path && 373 dm_noflush_suspending(m->ti))); 374 } 375 376 /* 377 * Map cloned requests 378 */ 379 static int __multipath_map(struct dm_target *ti, struct request *clone, 380 union map_info *map_context, 381 struct request *rq, struct request **__clone) 382 { 383 struct multipath *m = (struct multipath *) ti->private; 384 int r = DM_MAPIO_REQUEUE; 385 size_t nr_bytes = clone ? blk_rq_bytes(clone) : blk_rq_bytes(rq); 386 struct pgpath *pgpath; 387 struct block_device *bdev; 388 struct dm_mpath_io *mpio; 389 390 spin_lock_irq(&m->lock); 391 392 /* Do we need to select a new pgpath? */ 393 if (!m->current_pgpath || 394 (!m->queue_io && (m->repeat_count && --m->repeat_count == 0))) 395 __choose_pgpath(m, nr_bytes); 396 397 pgpath = m->current_pgpath; 398 399 if (!pgpath) { 400 if (!__must_push_back(m)) 401 r = -EIO; /* Failed */ 402 goto out_unlock; 403 } else if (m->queue_io || m->pg_init_required) { 404 __pg_init_all_paths(m); 405 goto out_unlock; 406 } 407 408 if (set_mapinfo(m, map_context) < 0) 409 /* ENOMEM, requeue */ 410 goto out_unlock; 411 412 mpio = map_context->ptr; 413 mpio->pgpath = pgpath; 414 mpio->nr_bytes = nr_bytes; 415 416 bdev = pgpath->path.dev->bdev; 417 418 spin_unlock_irq(&m->lock); 419 420 if (clone) { 421 /* 422 * Old request-based interface: allocated clone is passed in. 423 * Used by: .request_fn stacked on .request_fn path(s). 424 */ 425 clone->q = bdev_get_queue(bdev); 426 clone->rq_disk = bdev->bd_disk; 427 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 428 } else { 429 /* blk-mq request-based interface */ 430 *__clone = blk_get_request(bdev_get_queue(bdev), 431 rq_data_dir(rq), GFP_ATOMIC); 432 if (IS_ERR(*__clone)) { 433 /* ENOMEM, requeue */ 434 clear_mapinfo(m, map_context); 435 return r; 436 } 437 (*__clone)->bio = (*__clone)->biotail = NULL; 438 (*__clone)->rq_disk = bdev->bd_disk; 439 (*__clone)->cmd_flags |= REQ_FAILFAST_TRANSPORT; 440 } 441 442 if (pgpath->pg->ps.type->start_io) 443 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 444 &pgpath->path, 445 nr_bytes); 446 return DM_MAPIO_REMAPPED; 447 448 out_unlock: 449 spin_unlock_irq(&m->lock); 450 451 return r; 452 } 453 454 static int multipath_map(struct dm_target *ti, struct request *clone, 455 union map_info *map_context) 456 { 457 return __multipath_map(ti, clone, map_context, NULL, NULL); 458 } 459 460 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 461 union map_info *map_context, 462 struct request **clone) 463 { 464 return __multipath_map(ti, NULL, map_context, rq, clone); 465 } 466 467 static void multipath_release_clone(struct request *clone) 468 { 469 blk_put_request(clone); 470 } 471 472 /* 473 * If we run out of usable paths, should we queue I/O or error it? 474 */ 475 static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path, 476 unsigned save_old_value) 477 { 478 unsigned long flags; 479 480 spin_lock_irqsave(&m->lock, flags); 481 482 if (save_old_value) 483 m->saved_queue_if_no_path = m->queue_if_no_path; 484 else 485 m->saved_queue_if_no_path = queue_if_no_path; 486 m->queue_if_no_path = queue_if_no_path; 487 spin_unlock_irqrestore(&m->lock, flags); 488 489 if (!queue_if_no_path) 490 dm_table_run_md_queue_async(m->ti->table); 491 492 return 0; 493 } 494 495 /* 496 * An event is triggered whenever a path is taken out of use. 497 * Includes path failure and PG bypass. 498 */ 499 static void trigger_event(struct work_struct *work) 500 { 501 struct multipath *m = 502 container_of(work, struct multipath, trigger_event); 503 504 dm_table_event(m->ti->table); 505 } 506 507 /*----------------------------------------------------------------- 508 * Constructor/argument parsing: 509 * <#multipath feature args> [<arg>]* 510 * <#hw_handler args> [hw_handler [<arg>]*] 511 * <#priority groups> 512 * <initial priority group> 513 * [<selector> <#selector args> [<arg>]* 514 * <#paths> <#per-path selector args> 515 * [<path> [<arg>]* ]+ ]+ 516 *---------------------------------------------------------------*/ 517 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 518 struct dm_target *ti) 519 { 520 int r; 521 struct path_selector_type *pst; 522 unsigned ps_argc; 523 524 static struct dm_arg _args[] = { 525 {0, 1024, "invalid number of path selector args"}, 526 }; 527 528 pst = dm_get_path_selector(dm_shift_arg(as)); 529 if (!pst) { 530 ti->error = "unknown path selector type"; 531 return -EINVAL; 532 } 533 534 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 535 if (r) { 536 dm_put_path_selector(pst); 537 return -EINVAL; 538 } 539 540 r = pst->create(&pg->ps, ps_argc, as->argv); 541 if (r) { 542 dm_put_path_selector(pst); 543 ti->error = "path selector constructor failed"; 544 return r; 545 } 546 547 pg->ps.type = pst; 548 dm_consume_args(as, ps_argc); 549 550 return 0; 551 } 552 553 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 554 struct dm_target *ti) 555 { 556 int r; 557 struct pgpath *p; 558 struct multipath *m = ti->private; 559 struct request_queue *q = NULL; 560 const char *attached_handler_name; 561 562 /* we need at least a path arg */ 563 if (as->argc < 1) { 564 ti->error = "no device given"; 565 return ERR_PTR(-EINVAL); 566 } 567 568 p = alloc_pgpath(); 569 if (!p) 570 return ERR_PTR(-ENOMEM); 571 572 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 573 &p->path.dev); 574 if (r) { 575 ti->error = "error getting device"; 576 goto bad; 577 } 578 579 if (m->retain_attached_hw_handler || m->hw_handler_name) 580 q = bdev_get_queue(p->path.dev->bdev); 581 582 if (m->retain_attached_hw_handler) { 583 retain: 584 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 585 if (attached_handler_name) { 586 /* 587 * Reset hw_handler_name to match the attached handler 588 * and clear any hw_handler_params associated with the 589 * ignored handler. 590 * 591 * NB. This modifies the table line to show the actual 592 * handler instead of the original table passed in. 593 */ 594 kfree(m->hw_handler_name); 595 m->hw_handler_name = attached_handler_name; 596 597 kfree(m->hw_handler_params); 598 m->hw_handler_params = NULL; 599 } 600 } 601 602 if (m->hw_handler_name) { 603 r = scsi_dh_attach(q, m->hw_handler_name); 604 if (r == -EBUSY) { 605 char b[BDEVNAME_SIZE]; 606 607 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 608 bdevname(p->path.dev->bdev, b)); 609 goto retain; 610 } 611 if (r < 0) { 612 ti->error = "error attaching hardware handler"; 613 dm_put_device(ti, p->path.dev); 614 goto bad; 615 } 616 617 if (m->hw_handler_params) { 618 r = scsi_dh_set_params(q, m->hw_handler_params); 619 if (r < 0) { 620 ti->error = "unable to set hardware " 621 "handler parameters"; 622 dm_put_device(ti, p->path.dev); 623 goto bad; 624 } 625 } 626 } 627 628 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 629 if (r) { 630 dm_put_device(ti, p->path.dev); 631 goto bad; 632 } 633 634 return p; 635 636 bad: 637 free_pgpath(p); 638 return ERR_PTR(r); 639 } 640 641 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 642 struct multipath *m) 643 { 644 static struct dm_arg _args[] = { 645 {1, 1024, "invalid number of paths"}, 646 {0, 1024, "invalid number of selector args"} 647 }; 648 649 int r; 650 unsigned i, nr_selector_args, nr_args; 651 struct priority_group *pg; 652 struct dm_target *ti = m->ti; 653 654 if (as->argc < 2) { 655 as->argc = 0; 656 ti->error = "not enough priority group arguments"; 657 return ERR_PTR(-EINVAL); 658 } 659 660 pg = alloc_priority_group(); 661 if (!pg) { 662 ti->error = "couldn't allocate priority group"; 663 return ERR_PTR(-ENOMEM); 664 } 665 pg->m = m; 666 667 r = parse_path_selector(as, pg, ti); 668 if (r) 669 goto bad; 670 671 /* 672 * read the paths 673 */ 674 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 675 if (r) 676 goto bad; 677 678 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 679 if (r) 680 goto bad; 681 682 nr_args = 1 + nr_selector_args; 683 for (i = 0; i < pg->nr_pgpaths; i++) { 684 struct pgpath *pgpath; 685 struct dm_arg_set path_args; 686 687 if (as->argc < nr_args) { 688 ti->error = "not enough path parameters"; 689 r = -EINVAL; 690 goto bad; 691 } 692 693 path_args.argc = nr_args; 694 path_args.argv = as->argv; 695 696 pgpath = parse_path(&path_args, &pg->ps, ti); 697 if (IS_ERR(pgpath)) { 698 r = PTR_ERR(pgpath); 699 goto bad; 700 } 701 702 pgpath->pg = pg; 703 list_add_tail(&pgpath->list, &pg->pgpaths); 704 dm_consume_args(as, nr_args); 705 } 706 707 return pg; 708 709 bad: 710 free_priority_group(pg, ti); 711 return ERR_PTR(r); 712 } 713 714 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 715 { 716 unsigned hw_argc; 717 int ret; 718 struct dm_target *ti = m->ti; 719 720 static struct dm_arg _args[] = { 721 {0, 1024, "invalid number of hardware handler args"}, 722 }; 723 724 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 725 return -EINVAL; 726 727 if (!hw_argc) 728 return 0; 729 730 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 731 732 if (hw_argc > 1) { 733 char *p; 734 int i, j, len = 4; 735 736 for (i = 0; i <= hw_argc - 2; i++) 737 len += strlen(as->argv[i]) + 1; 738 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 739 if (!p) { 740 ti->error = "memory allocation failed"; 741 ret = -ENOMEM; 742 goto fail; 743 } 744 j = sprintf(p, "%d", hw_argc - 1); 745 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 746 j = sprintf(p, "%s", as->argv[i]); 747 } 748 dm_consume_args(as, hw_argc - 1); 749 750 return 0; 751 fail: 752 kfree(m->hw_handler_name); 753 m->hw_handler_name = NULL; 754 return ret; 755 } 756 757 static int parse_features(struct dm_arg_set *as, struct multipath *m) 758 { 759 int r; 760 unsigned argc; 761 struct dm_target *ti = m->ti; 762 const char *arg_name; 763 764 static struct dm_arg _args[] = { 765 {0, 6, "invalid number of feature args"}, 766 {1, 50, "pg_init_retries must be between 1 and 50"}, 767 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 768 }; 769 770 r = dm_read_arg_group(_args, as, &argc, &ti->error); 771 if (r) 772 return -EINVAL; 773 774 if (!argc) 775 return 0; 776 777 do { 778 arg_name = dm_shift_arg(as); 779 argc--; 780 781 if (!strcasecmp(arg_name, "queue_if_no_path")) { 782 r = queue_if_no_path(m, 1, 0); 783 continue; 784 } 785 786 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 787 m->retain_attached_hw_handler = 1; 788 continue; 789 } 790 791 if (!strcasecmp(arg_name, "pg_init_retries") && 792 (argc >= 1)) { 793 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 794 argc--; 795 continue; 796 } 797 798 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 799 (argc >= 1)) { 800 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 801 argc--; 802 continue; 803 } 804 805 ti->error = "Unrecognised multipath feature request"; 806 r = -EINVAL; 807 } while (argc && !r); 808 809 return r; 810 } 811 812 static int multipath_ctr(struct dm_target *ti, unsigned int argc, 813 char **argv) 814 { 815 /* target arguments */ 816 static struct dm_arg _args[] = { 817 {0, 1024, "invalid number of priority groups"}, 818 {0, 1024, "invalid initial priority group number"}, 819 }; 820 821 int r; 822 struct multipath *m; 823 struct dm_arg_set as; 824 unsigned pg_count = 0; 825 unsigned next_pg_num; 826 827 as.argc = argc; 828 as.argv = argv; 829 830 m = alloc_multipath(ti); 831 if (!m) { 832 ti->error = "can't allocate multipath"; 833 return -EINVAL; 834 } 835 836 r = parse_features(&as, m); 837 if (r) 838 goto bad; 839 840 r = parse_hw_handler(&as, m); 841 if (r) 842 goto bad; 843 844 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 845 if (r) 846 goto bad; 847 848 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 849 if (r) 850 goto bad; 851 852 if ((!m->nr_priority_groups && next_pg_num) || 853 (m->nr_priority_groups && !next_pg_num)) { 854 ti->error = "invalid initial priority group"; 855 r = -EINVAL; 856 goto bad; 857 } 858 859 /* parse the priority groups */ 860 while (as.argc) { 861 struct priority_group *pg; 862 863 pg = parse_priority_group(&as, m); 864 if (IS_ERR(pg)) { 865 r = PTR_ERR(pg); 866 goto bad; 867 } 868 869 m->nr_valid_paths += pg->nr_pgpaths; 870 list_add_tail(&pg->list, &m->priority_groups); 871 pg_count++; 872 pg->pg_num = pg_count; 873 if (!--next_pg_num) 874 m->next_pg = pg; 875 } 876 877 if (pg_count != m->nr_priority_groups) { 878 ti->error = "priority group count mismatch"; 879 r = -EINVAL; 880 goto bad; 881 } 882 883 ti->num_flush_bios = 1; 884 ti->num_discard_bios = 1; 885 ti->num_write_same_bios = 1; 886 887 return 0; 888 889 bad: 890 free_multipath(m); 891 return r; 892 } 893 894 static void multipath_wait_for_pg_init_completion(struct multipath *m) 895 { 896 DECLARE_WAITQUEUE(wait, current); 897 unsigned long flags; 898 899 add_wait_queue(&m->pg_init_wait, &wait); 900 901 while (1) { 902 set_current_state(TASK_UNINTERRUPTIBLE); 903 904 spin_lock_irqsave(&m->lock, flags); 905 if (!m->pg_init_in_progress) { 906 spin_unlock_irqrestore(&m->lock, flags); 907 break; 908 } 909 spin_unlock_irqrestore(&m->lock, flags); 910 911 io_schedule(); 912 } 913 set_current_state(TASK_RUNNING); 914 915 remove_wait_queue(&m->pg_init_wait, &wait); 916 } 917 918 static void flush_multipath_work(struct multipath *m) 919 { 920 unsigned long flags; 921 922 spin_lock_irqsave(&m->lock, flags); 923 m->pg_init_disabled = 1; 924 spin_unlock_irqrestore(&m->lock, flags); 925 926 flush_workqueue(kmpath_handlerd); 927 multipath_wait_for_pg_init_completion(m); 928 flush_workqueue(kmultipathd); 929 flush_work(&m->trigger_event); 930 931 spin_lock_irqsave(&m->lock, flags); 932 m->pg_init_disabled = 0; 933 spin_unlock_irqrestore(&m->lock, flags); 934 } 935 936 static void multipath_dtr(struct dm_target *ti) 937 { 938 struct multipath *m = ti->private; 939 940 flush_multipath_work(m); 941 free_multipath(m); 942 } 943 944 /* 945 * Take a path out of use. 946 */ 947 static int fail_path(struct pgpath *pgpath) 948 { 949 unsigned long flags; 950 struct multipath *m = pgpath->pg->m; 951 952 spin_lock_irqsave(&m->lock, flags); 953 954 if (!pgpath->is_active) 955 goto out; 956 957 DMWARN("Failing path %s.", pgpath->path.dev->name); 958 959 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 960 pgpath->is_active = 0; 961 pgpath->fail_count++; 962 963 m->nr_valid_paths--; 964 965 if (pgpath == m->current_pgpath) 966 m->current_pgpath = NULL; 967 968 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 969 pgpath->path.dev->name, m->nr_valid_paths); 970 971 schedule_work(&m->trigger_event); 972 973 out: 974 spin_unlock_irqrestore(&m->lock, flags); 975 976 return 0; 977 } 978 979 /* 980 * Reinstate a previously-failed path 981 */ 982 static int reinstate_path(struct pgpath *pgpath) 983 { 984 int r = 0, run_queue = 0; 985 unsigned long flags; 986 struct multipath *m = pgpath->pg->m; 987 988 spin_lock_irqsave(&m->lock, flags); 989 990 if (pgpath->is_active) 991 goto out; 992 993 if (!pgpath->pg->ps.type->reinstate_path) { 994 DMWARN("Reinstate path not supported by path selector %s", 995 pgpath->pg->ps.type->name); 996 r = -EINVAL; 997 goto out; 998 } 999 1000 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1001 if (r) 1002 goto out; 1003 1004 pgpath->is_active = 1; 1005 1006 if (!m->nr_valid_paths++) { 1007 m->current_pgpath = NULL; 1008 run_queue = 1; 1009 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1010 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1011 m->pg_init_in_progress++; 1012 } 1013 1014 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1015 pgpath->path.dev->name, m->nr_valid_paths); 1016 1017 schedule_work(&m->trigger_event); 1018 1019 out: 1020 spin_unlock_irqrestore(&m->lock, flags); 1021 if (run_queue) 1022 dm_table_run_md_queue_async(m->ti->table); 1023 1024 return r; 1025 } 1026 1027 /* 1028 * Fail or reinstate all paths that match the provided struct dm_dev. 1029 */ 1030 static int action_dev(struct multipath *m, struct dm_dev *dev, 1031 action_fn action) 1032 { 1033 int r = -EINVAL; 1034 struct pgpath *pgpath; 1035 struct priority_group *pg; 1036 1037 list_for_each_entry(pg, &m->priority_groups, list) { 1038 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1039 if (pgpath->path.dev == dev) 1040 r = action(pgpath); 1041 } 1042 } 1043 1044 return r; 1045 } 1046 1047 /* 1048 * Temporarily try to avoid having to use the specified PG 1049 */ 1050 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1051 int bypassed) 1052 { 1053 unsigned long flags; 1054 1055 spin_lock_irqsave(&m->lock, flags); 1056 1057 pg->bypassed = bypassed; 1058 m->current_pgpath = NULL; 1059 m->current_pg = NULL; 1060 1061 spin_unlock_irqrestore(&m->lock, flags); 1062 1063 schedule_work(&m->trigger_event); 1064 } 1065 1066 /* 1067 * Switch to using the specified PG from the next I/O that gets mapped 1068 */ 1069 static int switch_pg_num(struct multipath *m, const char *pgstr) 1070 { 1071 struct priority_group *pg; 1072 unsigned pgnum; 1073 unsigned long flags; 1074 char dummy; 1075 1076 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1077 (pgnum > m->nr_priority_groups)) { 1078 DMWARN("invalid PG number supplied to switch_pg_num"); 1079 return -EINVAL; 1080 } 1081 1082 spin_lock_irqsave(&m->lock, flags); 1083 list_for_each_entry(pg, &m->priority_groups, list) { 1084 pg->bypassed = 0; 1085 if (--pgnum) 1086 continue; 1087 1088 m->current_pgpath = NULL; 1089 m->current_pg = NULL; 1090 m->next_pg = pg; 1091 } 1092 spin_unlock_irqrestore(&m->lock, flags); 1093 1094 schedule_work(&m->trigger_event); 1095 return 0; 1096 } 1097 1098 /* 1099 * Set/clear bypassed status of a PG. 1100 * PGs are numbered upwards from 1 in the order they were declared. 1101 */ 1102 static int bypass_pg_num(struct multipath *m, const char *pgstr, int bypassed) 1103 { 1104 struct priority_group *pg; 1105 unsigned pgnum; 1106 char dummy; 1107 1108 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1109 (pgnum > m->nr_priority_groups)) { 1110 DMWARN("invalid PG number supplied to bypass_pg"); 1111 return -EINVAL; 1112 } 1113 1114 list_for_each_entry(pg, &m->priority_groups, list) { 1115 if (!--pgnum) 1116 break; 1117 } 1118 1119 bypass_pg(m, pg, bypassed); 1120 return 0; 1121 } 1122 1123 /* 1124 * Should we retry pg_init immediately? 1125 */ 1126 static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1127 { 1128 unsigned long flags; 1129 int limit_reached = 0; 1130 1131 spin_lock_irqsave(&m->lock, flags); 1132 1133 if (m->pg_init_count <= m->pg_init_retries && !m->pg_init_disabled) 1134 m->pg_init_required = 1; 1135 else 1136 limit_reached = 1; 1137 1138 spin_unlock_irqrestore(&m->lock, flags); 1139 1140 return limit_reached; 1141 } 1142 1143 static void pg_init_done(void *data, int errors) 1144 { 1145 struct pgpath *pgpath = data; 1146 struct priority_group *pg = pgpath->pg; 1147 struct multipath *m = pg->m; 1148 unsigned long flags; 1149 unsigned delay_retry = 0; 1150 1151 /* device or driver problems */ 1152 switch (errors) { 1153 case SCSI_DH_OK: 1154 break; 1155 case SCSI_DH_NOSYS: 1156 if (!m->hw_handler_name) { 1157 errors = 0; 1158 break; 1159 } 1160 DMERR("Could not failover the device: Handler scsi_dh_%s " 1161 "Error %d.", m->hw_handler_name, errors); 1162 /* 1163 * Fail path for now, so we do not ping pong 1164 */ 1165 fail_path(pgpath); 1166 break; 1167 case SCSI_DH_DEV_TEMP_BUSY: 1168 /* 1169 * Probably doing something like FW upgrade on the 1170 * controller so try the other pg. 1171 */ 1172 bypass_pg(m, pg, 1); 1173 break; 1174 case SCSI_DH_RETRY: 1175 /* Wait before retrying. */ 1176 delay_retry = 1; 1177 case SCSI_DH_IMM_RETRY: 1178 case SCSI_DH_RES_TEMP_UNAVAIL: 1179 if (pg_init_limit_reached(m, pgpath)) 1180 fail_path(pgpath); 1181 errors = 0; 1182 break; 1183 default: 1184 /* 1185 * We probably do not want to fail the path for a device 1186 * error, but this is what the old dm did. In future 1187 * patches we can do more advanced handling. 1188 */ 1189 fail_path(pgpath); 1190 } 1191 1192 spin_lock_irqsave(&m->lock, flags); 1193 if (errors) { 1194 if (pgpath == m->current_pgpath) { 1195 DMERR("Could not failover device. Error %d.", errors); 1196 m->current_pgpath = NULL; 1197 m->current_pg = NULL; 1198 } 1199 } else if (!m->pg_init_required) 1200 pg->bypassed = 0; 1201 1202 if (--m->pg_init_in_progress) 1203 /* Activations of other paths are still on going */ 1204 goto out; 1205 1206 if (m->pg_init_required) { 1207 m->pg_init_delay_retry = delay_retry; 1208 if (__pg_init_all_paths(m)) 1209 goto out; 1210 } 1211 m->queue_io = 0; 1212 1213 /* 1214 * Wake up any thread waiting to suspend. 1215 */ 1216 wake_up(&m->pg_init_wait); 1217 1218 out: 1219 spin_unlock_irqrestore(&m->lock, flags); 1220 } 1221 1222 static void activate_path(struct work_struct *work) 1223 { 1224 struct pgpath *pgpath = 1225 container_of(work, struct pgpath, activate_path.work); 1226 1227 if (pgpath->is_active) 1228 scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev), 1229 pg_init_done, pgpath); 1230 else 1231 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1232 } 1233 1234 static int noretry_error(int error) 1235 { 1236 switch (error) { 1237 case -EOPNOTSUPP: 1238 case -EREMOTEIO: 1239 case -EILSEQ: 1240 case -ENODATA: 1241 case -ENOSPC: 1242 return 1; 1243 } 1244 1245 /* Anything else could be a path failure, so should be retried */ 1246 return 0; 1247 } 1248 1249 /* 1250 * end_io handling 1251 */ 1252 static int do_end_io(struct multipath *m, struct request *clone, 1253 int error, struct dm_mpath_io *mpio) 1254 { 1255 /* 1256 * We don't queue any clone request inside the multipath target 1257 * during end I/O handling, since those clone requests don't have 1258 * bio clones. If we queue them inside the multipath target, 1259 * we need to make bio clones, that requires memory allocation. 1260 * (See drivers/md/dm.c:end_clone_bio() about why the clone requests 1261 * don't have bio clones.) 1262 * Instead of queueing the clone request here, we queue the original 1263 * request into dm core, which will remake a clone request and 1264 * clone bios for it and resubmit it later. 1265 */ 1266 int r = DM_ENDIO_REQUEUE; 1267 unsigned long flags; 1268 1269 if (!error && !clone->errors) 1270 return 0; /* I/O complete */ 1271 1272 if (noretry_error(error)) 1273 return error; 1274 1275 if (mpio->pgpath) 1276 fail_path(mpio->pgpath); 1277 1278 spin_lock_irqsave(&m->lock, flags); 1279 if (!m->nr_valid_paths) { 1280 if (!m->queue_if_no_path) { 1281 if (!__must_push_back(m)) 1282 r = -EIO; 1283 } else { 1284 if (error == -EBADE) 1285 r = error; 1286 } 1287 } 1288 spin_unlock_irqrestore(&m->lock, flags); 1289 1290 return r; 1291 } 1292 1293 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1294 int error, union map_info *map_context) 1295 { 1296 struct multipath *m = ti->private; 1297 struct dm_mpath_io *mpio = map_context->ptr; 1298 struct pgpath *pgpath; 1299 struct path_selector *ps; 1300 int r; 1301 1302 BUG_ON(!mpio); 1303 1304 r = do_end_io(m, clone, error, mpio); 1305 pgpath = mpio->pgpath; 1306 if (pgpath) { 1307 ps = &pgpath->pg->ps; 1308 if (ps->type->end_io) 1309 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1310 } 1311 clear_mapinfo(m, map_context); 1312 1313 return r; 1314 } 1315 1316 /* 1317 * Suspend can't complete until all the I/O is processed so if 1318 * the last path fails we must error any remaining I/O. 1319 * Note that if the freeze_bdev fails while suspending, the 1320 * queue_if_no_path state is lost - userspace should reset it. 1321 */ 1322 static void multipath_presuspend(struct dm_target *ti) 1323 { 1324 struct multipath *m = (struct multipath *) ti->private; 1325 1326 queue_if_no_path(m, 0, 1); 1327 } 1328 1329 static void multipath_postsuspend(struct dm_target *ti) 1330 { 1331 struct multipath *m = ti->private; 1332 1333 mutex_lock(&m->work_mutex); 1334 flush_multipath_work(m); 1335 mutex_unlock(&m->work_mutex); 1336 } 1337 1338 /* 1339 * Restore the queue_if_no_path setting. 1340 */ 1341 static void multipath_resume(struct dm_target *ti) 1342 { 1343 struct multipath *m = (struct multipath *) ti->private; 1344 unsigned long flags; 1345 1346 spin_lock_irqsave(&m->lock, flags); 1347 m->queue_if_no_path = m->saved_queue_if_no_path; 1348 spin_unlock_irqrestore(&m->lock, flags); 1349 } 1350 1351 /* 1352 * Info output has the following format: 1353 * num_multipath_feature_args [multipath_feature_args]* 1354 * num_handler_status_args [handler_status_args]* 1355 * num_groups init_group_number 1356 * [A|D|E num_ps_status_args [ps_status_args]* 1357 * num_paths num_selector_args 1358 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1359 * 1360 * Table output has the following format (identical to the constructor string): 1361 * num_feature_args [features_args]* 1362 * num_handler_args hw_handler [hw_handler_args]* 1363 * num_groups init_group_number 1364 * [priority selector-name num_ps_args [ps_args]* 1365 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1366 */ 1367 static void multipath_status(struct dm_target *ti, status_type_t type, 1368 unsigned status_flags, char *result, unsigned maxlen) 1369 { 1370 int sz = 0; 1371 unsigned long flags; 1372 struct multipath *m = (struct multipath *) ti->private; 1373 struct priority_group *pg; 1374 struct pgpath *p; 1375 unsigned pg_num; 1376 char state; 1377 1378 spin_lock_irqsave(&m->lock, flags); 1379 1380 /* Features */ 1381 if (type == STATUSTYPE_INFO) 1382 DMEMIT("2 %u %u ", m->queue_io, m->pg_init_count); 1383 else { 1384 DMEMIT("%u ", m->queue_if_no_path + 1385 (m->pg_init_retries > 0) * 2 + 1386 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1387 m->retain_attached_hw_handler); 1388 if (m->queue_if_no_path) 1389 DMEMIT("queue_if_no_path "); 1390 if (m->pg_init_retries) 1391 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1392 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1393 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1394 if (m->retain_attached_hw_handler) 1395 DMEMIT("retain_attached_hw_handler "); 1396 } 1397 1398 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1399 DMEMIT("0 "); 1400 else 1401 DMEMIT("1 %s ", m->hw_handler_name); 1402 1403 DMEMIT("%u ", m->nr_priority_groups); 1404 1405 if (m->next_pg) 1406 pg_num = m->next_pg->pg_num; 1407 else if (m->current_pg) 1408 pg_num = m->current_pg->pg_num; 1409 else 1410 pg_num = (m->nr_priority_groups ? 1 : 0); 1411 1412 DMEMIT("%u ", pg_num); 1413 1414 switch (type) { 1415 case STATUSTYPE_INFO: 1416 list_for_each_entry(pg, &m->priority_groups, list) { 1417 if (pg->bypassed) 1418 state = 'D'; /* Disabled */ 1419 else if (pg == m->current_pg) 1420 state = 'A'; /* Currently Active */ 1421 else 1422 state = 'E'; /* Enabled */ 1423 1424 DMEMIT("%c ", state); 1425 1426 if (pg->ps.type->status) 1427 sz += pg->ps.type->status(&pg->ps, NULL, type, 1428 result + sz, 1429 maxlen - sz); 1430 else 1431 DMEMIT("0 "); 1432 1433 DMEMIT("%u %u ", pg->nr_pgpaths, 1434 pg->ps.type->info_args); 1435 1436 list_for_each_entry(p, &pg->pgpaths, list) { 1437 DMEMIT("%s %s %u ", p->path.dev->name, 1438 p->is_active ? "A" : "F", 1439 p->fail_count); 1440 if (pg->ps.type->status) 1441 sz += pg->ps.type->status(&pg->ps, 1442 &p->path, type, result + sz, 1443 maxlen - sz); 1444 } 1445 } 1446 break; 1447 1448 case STATUSTYPE_TABLE: 1449 list_for_each_entry(pg, &m->priority_groups, list) { 1450 DMEMIT("%s ", pg->ps.type->name); 1451 1452 if (pg->ps.type->status) 1453 sz += pg->ps.type->status(&pg->ps, NULL, type, 1454 result + sz, 1455 maxlen - sz); 1456 else 1457 DMEMIT("0 "); 1458 1459 DMEMIT("%u %u ", pg->nr_pgpaths, 1460 pg->ps.type->table_args); 1461 1462 list_for_each_entry(p, &pg->pgpaths, list) { 1463 DMEMIT("%s ", p->path.dev->name); 1464 if (pg->ps.type->status) 1465 sz += pg->ps.type->status(&pg->ps, 1466 &p->path, type, result + sz, 1467 maxlen - sz); 1468 } 1469 } 1470 break; 1471 } 1472 1473 spin_unlock_irqrestore(&m->lock, flags); 1474 } 1475 1476 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) 1477 { 1478 int r = -EINVAL; 1479 struct dm_dev *dev; 1480 struct multipath *m = (struct multipath *) ti->private; 1481 action_fn action; 1482 1483 mutex_lock(&m->work_mutex); 1484 1485 if (dm_suspended(ti)) { 1486 r = -EBUSY; 1487 goto out; 1488 } 1489 1490 if (argc == 1) { 1491 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1492 r = queue_if_no_path(m, 1, 0); 1493 goto out; 1494 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1495 r = queue_if_no_path(m, 0, 0); 1496 goto out; 1497 } 1498 } 1499 1500 if (argc != 2) { 1501 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1502 goto out; 1503 } 1504 1505 if (!strcasecmp(argv[0], "disable_group")) { 1506 r = bypass_pg_num(m, argv[1], 1); 1507 goto out; 1508 } else if (!strcasecmp(argv[0], "enable_group")) { 1509 r = bypass_pg_num(m, argv[1], 0); 1510 goto out; 1511 } else if (!strcasecmp(argv[0], "switch_group")) { 1512 r = switch_pg_num(m, argv[1]); 1513 goto out; 1514 } else if (!strcasecmp(argv[0], "reinstate_path")) 1515 action = reinstate_path; 1516 else if (!strcasecmp(argv[0], "fail_path")) 1517 action = fail_path; 1518 else { 1519 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1520 goto out; 1521 } 1522 1523 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1524 if (r) { 1525 DMWARN("message: error getting device %s", 1526 argv[1]); 1527 goto out; 1528 } 1529 1530 r = action_dev(m, dev, action); 1531 1532 dm_put_device(ti, dev); 1533 1534 out: 1535 mutex_unlock(&m->work_mutex); 1536 return r; 1537 } 1538 1539 static int multipath_prepare_ioctl(struct dm_target *ti, 1540 struct block_device **bdev, fmode_t *mode) 1541 { 1542 struct multipath *m = ti->private; 1543 unsigned long flags; 1544 int r; 1545 1546 spin_lock_irqsave(&m->lock, flags); 1547 1548 if (!m->current_pgpath) 1549 __choose_pgpath(m, 0); 1550 1551 if (m->current_pgpath) { 1552 if (!m->queue_io) { 1553 *bdev = m->current_pgpath->path.dev->bdev; 1554 *mode = m->current_pgpath->path.dev->mode; 1555 r = 0; 1556 } else { 1557 /* pg_init has not started or completed */ 1558 r = -ENOTCONN; 1559 } 1560 } else { 1561 /* No path is available */ 1562 if (m->queue_if_no_path) 1563 r = -ENOTCONN; 1564 else 1565 r = -EIO; 1566 } 1567 1568 spin_unlock_irqrestore(&m->lock, flags); 1569 1570 if (r == -ENOTCONN) { 1571 spin_lock_irqsave(&m->lock, flags); 1572 if (!m->current_pg) { 1573 /* Path status changed, redo selection */ 1574 __choose_pgpath(m, 0); 1575 } 1576 if (m->pg_init_required) 1577 __pg_init_all_paths(m); 1578 spin_unlock_irqrestore(&m->lock, flags); 1579 dm_table_run_md_queue_async(m->ti->table); 1580 } 1581 1582 /* 1583 * Only pass ioctls through if the device sizes match exactly. 1584 */ 1585 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1586 return 1; 1587 return r; 1588 } 1589 1590 static int multipath_iterate_devices(struct dm_target *ti, 1591 iterate_devices_callout_fn fn, void *data) 1592 { 1593 struct multipath *m = ti->private; 1594 struct priority_group *pg; 1595 struct pgpath *p; 1596 int ret = 0; 1597 1598 list_for_each_entry(pg, &m->priority_groups, list) { 1599 list_for_each_entry(p, &pg->pgpaths, list) { 1600 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1601 if (ret) 1602 goto out; 1603 } 1604 } 1605 1606 out: 1607 return ret; 1608 } 1609 1610 static int __pgpath_busy(struct pgpath *pgpath) 1611 { 1612 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1613 1614 return blk_lld_busy(q); 1615 } 1616 1617 /* 1618 * We return "busy", only when we can map I/Os but underlying devices 1619 * are busy (so even if we map I/Os now, the I/Os will wait on 1620 * the underlying queue). 1621 * In other words, if we want to kill I/Os or queue them inside us 1622 * due to map unavailability, we don't return "busy". Otherwise, 1623 * dm core won't give us the I/Os and we can't do what we want. 1624 */ 1625 static int multipath_busy(struct dm_target *ti) 1626 { 1627 int busy = 0, has_active = 0; 1628 struct multipath *m = ti->private; 1629 struct priority_group *pg; 1630 struct pgpath *pgpath; 1631 unsigned long flags; 1632 1633 spin_lock_irqsave(&m->lock, flags); 1634 1635 /* pg_init in progress or no paths available */ 1636 if (m->pg_init_in_progress || 1637 (!m->nr_valid_paths && m->queue_if_no_path)) { 1638 busy = 1; 1639 goto out; 1640 } 1641 /* Guess which priority_group will be used at next mapping time */ 1642 if (unlikely(!m->current_pgpath && m->next_pg)) 1643 pg = m->next_pg; 1644 else if (likely(m->current_pg)) 1645 pg = m->current_pg; 1646 else 1647 /* 1648 * We don't know which pg will be used at next mapping time. 1649 * We don't call __choose_pgpath() here to avoid to trigger 1650 * pg_init just by busy checking. 1651 * So we don't know whether underlying devices we will be using 1652 * at next mapping time are busy or not. Just try mapping. 1653 */ 1654 goto out; 1655 1656 /* 1657 * If there is one non-busy active path at least, the path selector 1658 * will be able to select it. So we consider such a pg as not busy. 1659 */ 1660 busy = 1; 1661 list_for_each_entry(pgpath, &pg->pgpaths, list) 1662 if (pgpath->is_active) { 1663 has_active = 1; 1664 1665 if (!__pgpath_busy(pgpath)) { 1666 busy = 0; 1667 break; 1668 } 1669 } 1670 1671 if (!has_active) 1672 /* 1673 * No active path in this pg, so this pg won't be used and 1674 * the current_pg will be changed at next mapping time. 1675 * We need to try mapping to determine it. 1676 */ 1677 busy = 0; 1678 1679 out: 1680 spin_unlock_irqrestore(&m->lock, flags); 1681 1682 return busy; 1683 } 1684 1685 /*----------------------------------------------------------------- 1686 * Module setup 1687 *---------------------------------------------------------------*/ 1688 static struct target_type multipath_target = { 1689 .name = "multipath", 1690 .version = {1, 11, 0}, 1691 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE, 1692 .module = THIS_MODULE, 1693 .ctr = multipath_ctr, 1694 .dtr = multipath_dtr, 1695 .map_rq = multipath_map, 1696 .clone_and_map_rq = multipath_clone_and_map, 1697 .release_clone_rq = multipath_release_clone, 1698 .rq_end_io = multipath_end_io, 1699 .presuspend = multipath_presuspend, 1700 .postsuspend = multipath_postsuspend, 1701 .resume = multipath_resume, 1702 .status = multipath_status, 1703 .message = multipath_message, 1704 .prepare_ioctl = multipath_prepare_ioctl, 1705 .iterate_devices = multipath_iterate_devices, 1706 .busy = multipath_busy, 1707 }; 1708 1709 static int __init dm_multipath_init(void) 1710 { 1711 int r; 1712 1713 /* allocate a slab for the dm_ios */ 1714 _mpio_cache = KMEM_CACHE(dm_mpath_io, 0); 1715 if (!_mpio_cache) 1716 return -ENOMEM; 1717 1718 r = dm_register_target(&multipath_target); 1719 if (r < 0) { 1720 DMERR("register failed %d", r); 1721 r = -EINVAL; 1722 goto bad_register_target; 1723 } 1724 1725 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 1726 if (!kmultipathd) { 1727 DMERR("failed to create workqueue kmpathd"); 1728 r = -ENOMEM; 1729 goto bad_alloc_kmultipathd; 1730 } 1731 1732 /* 1733 * A separate workqueue is used to handle the device handlers 1734 * to avoid overloading existing workqueue. Overloading the 1735 * old workqueue would also create a bottleneck in the 1736 * path of the storage hardware device activation. 1737 */ 1738 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 1739 WQ_MEM_RECLAIM); 1740 if (!kmpath_handlerd) { 1741 DMERR("failed to create workqueue kmpath_handlerd"); 1742 r = -ENOMEM; 1743 goto bad_alloc_kmpath_handlerd; 1744 } 1745 1746 DMINFO("version %u.%u.%u loaded", 1747 multipath_target.version[0], multipath_target.version[1], 1748 multipath_target.version[2]); 1749 1750 return 0; 1751 1752 bad_alloc_kmpath_handlerd: 1753 destroy_workqueue(kmultipathd); 1754 bad_alloc_kmultipathd: 1755 dm_unregister_target(&multipath_target); 1756 bad_register_target: 1757 kmem_cache_destroy(_mpio_cache); 1758 1759 return r; 1760 } 1761 1762 static void __exit dm_multipath_exit(void) 1763 { 1764 destroy_workqueue(kmpath_handlerd); 1765 destroy_workqueue(kmultipathd); 1766 1767 dm_unregister_target(&multipath_target); 1768 kmem_cache_destroy(_mpio_cache); 1769 } 1770 1771 module_init(dm_multipath_init); 1772 module_exit(dm_multipath_exit); 1773 1774 MODULE_DESCRIPTION(DM_NAME " multipath target"); 1775 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 1776 MODULE_LICENSE("GPL"); 1777