1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <scsi/scsi_dh.h> 26 #include <linux/atomic.h> 27 #include <linux/blk-mq.h> 28 29 #define DM_MSG_PREFIX "multipath" 30 #define DM_PG_INIT_DELAY_MSECS 2000 31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 32 33 /* Path properties */ 34 struct pgpath { 35 struct list_head list; 36 37 struct priority_group *pg; /* Owning PG */ 38 unsigned fail_count; /* Cumulative failure count */ 39 40 struct dm_path path; 41 struct delayed_work activate_path; 42 43 bool is_active:1; /* Path status */ 44 }; 45 46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 47 48 /* 49 * Paths are grouped into Priority Groups and numbered from 1 upwards. 50 * Each has a path selector which controls which path gets used. 51 */ 52 struct priority_group { 53 struct list_head list; 54 55 struct multipath *m; /* Owning multipath instance */ 56 struct path_selector ps; 57 58 unsigned pg_num; /* Reference number */ 59 unsigned nr_pgpaths; /* Number of paths in PG */ 60 struct list_head pgpaths; 61 62 bool bypassed:1; /* Temporarily bypass this PG? */ 63 }; 64 65 /* Multipath context */ 66 struct multipath { 67 struct list_head list; 68 struct dm_target *ti; 69 70 const char *hw_handler_name; 71 char *hw_handler_params; 72 73 spinlock_t lock; 74 75 unsigned nr_priority_groups; 76 struct list_head priority_groups; 77 78 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 79 80 struct pgpath *current_pgpath; 81 struct priority_group *current_pg; 82 struct priority_group *next_pg; /* Switch to this PG if set */ 83 84 unsigned long flags; /* Multipath state flags */ 85 86 unsigned pg_init_retries; /* Number of times to retry pg_init */ 87 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 88 89 atomic_t nr_valid_paths; /* Total number of usable paths */ 90 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 91 atomic_t pg_init_count; /* Number of times pg_init called */ 92 93 /* 94 * We must use a mempool of dm_mpath_io structs so that we 95 * can resubmit bios on error. 96 */ 97 mempool_t *mpio_pool; 98 99 struct mutex work_mutex; 100 struct work_struct trigger_event; 101 102 struct work_struct process_queued_bios; 103 struct bio_list queued_bios; 104 }; 105 106 /* 107 * Context information attached to each io we process. 108 */ 109 struct dm_mpath_io { 110 struct pgpath *pgpath; 111 size_t nr_bytes; 112 }; 113 114 typedef int (*action_fn) (struct pgpath *pgpath); 115 116 static struct kmem_cache *_mpio_cache; 117 118 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 119 static void trigger_event(struct work_struct *work); 120 static void activate_path(struct work_struct *work); 121 static void process_queued_bios(struct work_struct *work); 122 123 /*----------------------------------------------- 124 * Multipath state flags. 125 *-----------------------------------------------*/ 126 127 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 128 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 129 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 130 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 131 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 132 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 133 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 134 #define MPATHF_BIO_BASED 7 /* Device is bio-based? */ 135 136 /*----------------------------------------------- 137 * Allocation routines 138 *-----------------------------------------------*/ 139 140 static struct pgpath *alloc_pgpath(void) 141 { 142 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 143 144 if (pgpath) { 145 pgpath->is_active = true; 146 INIT_DELAYED_WORK(&pgpath->activate_path, activate_path); 147 } 148 149 return pgpath; 150 } 151 152 static void free_pgpath(struct pgpath *pgpath) 153 { 154 kfree(pgpath); 155 } 156 157 static struct priority_group *alloc_priority_group(void) 158 { 159 struct priority_group *pg; 160 161 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 162 163 if (pg) 164 INIT_LIST_HEAD(&pg->pgpaths); 165 166 return pg; 167 } 168 169 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 170 { 171 struct pgpath *pgpath, *tmp; 172 173 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 174 list_del(&pgpath->list); 175 dm_put_device(ti, pgpath->path.dev); 176 free_pgpath(pgpath); 177 } 178 } 179 180 static void free_priority_group(struct priority_group *pg, 181 struct dm_target *ti) 182 { 183 struct path_selector *ps = &pg->ps; 184 185 if (ps->type) { 186 ps->type->destroy(ps); 187 dm_put_path_selector(ps->type); 188 } 189 190 free_pgpaths(&pg->pgpaths, ti); 191 kfree(pg); 192 } 193 194 static struct multipath *alloc_multipath(struct dm_target *ti, bool use_blk_mq, 195 bool bio_based) 196 { 197 struct multipath *m; 198 199 m = kzalloc(sizeof(*m), GFP_KERNEL); 200 if (m) { 201 INIT_LIST_HEAD(&m->priority_groups); 202 spin_lock_init(&m->lock); 203 set_bit(MPATHF_QUEUE_IO, &m->flags); 204 atomic_set(&m->nr_valid_paths, 0); 205 atomic_set(&m->pg_init_in_progress, 0); 206 atomic_set(&m->pg_init_count, 0); 207 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 208 INIT_WORK(&m->trigger_event, trigger_event); 209 init_waitqueue_head(&m->pg_init_wait); 210 mutex_init(&m->work_mutex); 211 212 m->mpio_pool = NULL; 213 if (!use_blk_mq && !bio_based) { 214 unsigned min_ios = dm_get_reserved_rq_based_ios(); 215 216 m->mpio_pool = mempool_create_slab_pool(min_ios, _mpio_cache); 217 if (!m->mpio_pool) { 218 kfree(m); 219 return NULL; 220 } 221 } 222 223 if (bio_based) { 224 INIT_WORK(&m->process_queued_bios, process_queued_bios); 225 set_bit(MPATHF_BIO_BASED, &m->flags); 226 /* 227 * bio-based doesn't support any direct scsi_dh management; 228 * it just discovers if a scsi_dh is attached. 229 */ 230 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 231 } 232 233 m->ti = ti; 234 ti->private = m; 235 } 236 237 return m; 238 } 239 240 static void free_multipath(struct multipath *m) 241 { 242 struct priority_group *pg, *tmp; 243 244 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 245 list_del(&pg->list); 246 free_priority_group(pg, m->ti); 247 } 248 249 kfree(m->hw_handler_name); 250 kfree(m->hw_handler_params); 251 mempool_destroy(m->mpio_pool); 252 kfree(m); 253 } 254 255 static struct dm_mpath_io *get_mpio(union map_info *info) 256 { 257 return info->ptr; 258 } 259 260 static struct dm_mpath_io *set_mpio(struct multipath *m, union map_info *info) 261 { 262 struct dm_mpath_io *mpio; 263 264 if (!m->mpio_pool) { 265 /* Use blk-mq pdu memory requested via per_io_data_size */ 266 mpio = get_mpio(info); 267 memset(mpio, 0, sizeof(*mpio)); 268 return mpio; 269 } 270 271 mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC); 272 if (!mpio) 273 return NULL; 274 275 memset(mpio, 0, sizeof(*mpio)); 276 info->ptr = mpio; 277 278 return mpio; 279 } 280 281 static void clear_request_fn_mpio(struct multipath *m, union map_info *info) 282 { 283 /* Only needed for non blk-mq (.request_fn) multipath */ 284 if (m->mpio_pool) { 285 struct dm_mpath_io *mpio = info->ptr; 286 287 info->ptr = NULL; 288 mempool_free(mpio, m->mpio_pool); 289 } 290 } 291 292 static size_t multipath_per_bio_data_size(void) 293 { 294 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 295 } 296 297 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 298 { 299 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 300 } 301 302 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio) 303 { 304 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 305 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 306 void *bio_details = mpio + 1; 307 308 return bio_details; 309 } 310 311 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p, 312 struct dm_bio_details **bio_details_p) 313 { 314 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 315 struct dm_bio_details *bio_details = get_bio_details_from_bio(bio); 316 317 memset(mpio, 0, sizeof(*mpio)); 318 memset(bio_details, 0, sizeof(*bio_details)); 319 dm_bio_record(bio_details, bio); 320 321 if (mpio_p) 322 *mpio_p = mpio; 323 if (bio_details_p) 324 *bio_details_p = bio_details; 325 } 326 327 /*----------------------------------------------- 328 * Path selection 329 *-----------------------------------------------*/ 330 331 static int __pg_init_all_paths(struct multipath *m) 332 { 333 struct pgpath *pgpath; 334 unsigned long pg_init_delay = 0; 335 336 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 337 return 0; 338 339 atomic_inc(&m->pg_init_count); 340 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 341 342 /* Check here to reset pg_init_required */ 343 if (!m->current_pg) 344 return 0; 345 346 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 347 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 348 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 349 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 350 /* Skip failed paths */ 351 if (!pgpath->is_active) 352 continue; 353 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 354 pg_init_delay)) 355 atomic_inc(&m->pg_init_in_progress); 356 } 357 return atomic_read(&m->pg_init_in_progress); 358 } 359 360 static int pg_init_all_paths(struct multipath *m) 361 { 362 int r; 363 unsigned long flags; 364 365 spin_lock_irqsave(&m->lock, flags); 366 r = __pg_init_all_paths(m); 367 spin_unlock_irqrestore(&m->lock, flags); 368 369 return r; 370 } 371 372 static void __switch_pg(struct multipath *m, struct priority_group *pg) 373 { 374 m->current_pg = pg; 375 376 /* Must we initialise the PG first, and queue I/O till it's ready? */ 377 if (m->hw_handler_name) { 378 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 379 set_bit(MPATHF_QUEUE_IO, &m->flags); 380 } else { 381 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 382 clear_bit(MPATHF_QUEUE_IO, &m->flags); 383 } 384 385 atomic_set(&m->pg_init_count, 0); 386 } 387 388 static struct pgpath *choose_path_in_pg(struct multipath *m, 389 struct priority_group *pg, 390 size_t nr_bytes) 391 { 392 unsigned long flags; 393 struct dm_path *path; 394 struct pgpath *pgpath; 395 396 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 397 if (!path) 398 return ERR_PTR(-ENXIO); 399 400 pgpath = path_to_pgpath(path); 401 402 if (unlikely(lockless_dereference(m->current_pg) != pg)) { 403 /* Only update current_pgpath if pg changed */ 404 spin_lock_irqsave(&m->lock, flags); 405 m->current_pgpath = pgpath; 406 __switch_pg(m, pg); 407 spin_unlock_irqrestore(&m->lock, flags); 408 } 409 410 return pgpath; 411 } 412 413 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 414 { 415 unsigned long flags; 416 struct priority_group *pg; 417 struct pgpath *pgpath; 418 bool bypassed = true; 419 420 if (!atomic_read(&m->nr_valid_paths)) { 421 clear_bit(MPATHF_QUEUE_IO, &m->flags); 422 goto failed; 423 } 424 425 /* Were we instructed to switch PG? */ 426 if (lockless_dereference(m->next_pg)) { 427 spin_lock_irqsave(&m->lock, flags); 428 pg = m->next_pg; 429 if (!pg) { 430 spin_unlock_irqrestore(&m->lock, flags); 431 goto check_current_pg; 432 } 433 m->next_pg = NULL; 434 spin_unlock_irqrestore(&m->lock, flags); 435 pgpath = choose_path_in_pg(m, pg, nr_bytes); 436 if (!IS_ERR_OR_NULL(pgpath)) 437 return pgpath; 438 } 439 440 /* Don't change PG until it has no remaining paths */ 441 check_current_pg: 442 pg = lockless_dereference(m->current_pg); 443 if (pg) { 444 pgpath = choose_path_in_pg(m, pg, nr_bytes); 445 if (!IS_ERR_OR_NULL(pgpath)) 446 return pgpath; 447 } 448 449 /* 450 * Loop through priority groups until we find a valid path. 451 * First time we skip PGs marked 'bypassed'. 452 * Second time we only try the ones we skipped, but set 453 * pg_init_delay_retry so we do not hammer controllers. 454 */ 455 do { 456 list_for_each_entry(pg, &m->priority_groups, list) { 457 if (pg->bypassed == bypassed) 458 continue; 459 pgpath = choose_path_in_pg(m, pg, nr_bytes); 460 if (!IS_ERR_OR_NULL(pgpath)) { 461 if (!bypassed) 462 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 463 return pgpath; 464 } 465 } 466 } while (bypassed--); 467 468 failed: 469 spin_lock_irqsave(&m->lock, flags); 470 m->current_pgpath = NULL; 471 m->current_pg = NULL; 472 spin_unlock_irqrestore(&m->lock, flags); 473 474 return NULL; 475 } 476 477 /* 478 * Check whether bios must be queued in the device-mapper core rather 479 * than here in the target. 480 * 481 * If m->queue_if_no_path and m->saved_queue_if_no_path hold the 482 * same value then we are not between multipath_presuspend() 483 * and multipath_resume() calls and we have no need to check 484 * for the DMF_NOFLUSH_SUSPENDING flag. 485 */ 486 static bool __must_push_back(struct multipath *m) 487 { 488 return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) != 489 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)) && 490 dm_noflush_suspending(m->ti)); 491 } 492 493 static bool must_push_back_rq(struct multipath *m) 494 { 495 return (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) || 496 __must_push_back(m)); 497 } 498 499 static bool must_push_back_bio(struct multipath *m) 500 { 501 return __must_push_back(m); 502 } 503 504 /* 505 * Map cloned requests (request-based multipath) 506 */ 507 static int __multipath_map(struct dm_target *ti, struct request *clone, 508 union map_info *map_context, 509 struct request *rq, struct request **__clone) 510 { 511 struct multipath *m = ti->private; 512 int r = DM_MAPIO_REQUEUE; 513 size_t nr_bytes = clone ? blk_rq_bytes(clone) : blk_rq_bytes(rq); 514 struct pgpath *pgpath; 515 struct block_device *bdev; 516 struct dm_mpath_io *mpio; 517 518 /* Do we need to select a new pgpath? */ 519 pgpath = lockless_dereference(m->current_pgpath); 520 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 521 pgpath = choose_pgpath(m, nr_bytes); 522 523 if (!pgpath) { 524 if (!must_push_back_rq(m)) 525 r = -EIO; /* Failed */ 526 return r; 527 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) || 528 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 529 pg_init_all_paths(m); 530 return r; 531 } 532 533 mpio = set_mpio(m, map_context); 534 if (!mpio) 535 /* ENOMEM, requeue */ 536 return r; 537 538 mpio->pgpath = pgpath; 539 mpio->nr_bytes = nr_bytes; 540 541 bdev = pgpath->path.dev->bdev; 542 543 if (clone) { 544 /* 545 * Old request-based interface: allocated clone is passed in. 546 * Used by: .request_fn stacked on .request_fn path(s). 547 */ 548 clone->q = bdev_get_queue(bdev); 549 clone->rq_disk = bdev->bd_disk; 550 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 551 } else { 552 /* 553 * blk-mq request-based interface; used by both: 554 * .request_fn stacked on blk-mq path(s) and 555 * blk-mq stacked on blk-mq path(s). 556 */ 557 *__clone = blk_mq_alloc_request(bdev_get_queue(bdev), 558 rq_data_dir(rq), BLK_MQ_REQ_NOWAIT); 559 if (IS_ERR(*__clone)) { 560 /* ENOMEM, requeue */ 561 clear_request_fn_mpio(m, map_context); 562 return r; 563 } 564 (*__clone)->bio = (*__clone)->biotail = NULL; 565 (*__clone)->rq_disk = bdev->bd_disk; 566 (*__clone)->cmd_flags |= REQ_FAILFAST_TRANSPORT; 567 } 568 569 if (pgpath->pg->ps.type->start_io) 570 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 571 &pgpath->path, 572 nr_bytes); 573 return DM_MAPIO_REMAPPED; 574 } 575 576 static int multipath_map(struct dm_target *ti, struct request *clone, 577 union map_info *map_context) 578 { 579 return __multipath_map(ti, clone, map_context, NULL, NULL); 580 } 581 582 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 583 union map_info *map_context, 584 struct request **clone) 585 { 586 return __multipath_map(ti, NULL, map_context, rq, clone); 587 } 588 589 static void multipath_release_clone(struct request *clone) 590 { 591 blk_mq_free_request(clone); 592 } 593 594 /* 595 * Map cloned bios (bio-based multipath) 596 */ 597 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio) 598 { 599 size_t nr_bytes = bio->bi_iter.bi_size; 600 struct pgpath *pgpath; 601 unsigned long flags; 602 bool queue_io; 603 604 /* Do we need to select a new pgpath? */ 605 pgpath = lockless_dereference(m->current_pgpath); 606 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags); 607 if (!pgpath || !queue_io) 608 pgpath = choose_pgpath(m, nr_bytes); 609 610 if ((pgpath && queue_io) || 611 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) { 612 /* Queue for the daemon to resubmit */ 613 spin_lock_irqsave(&m->lock, flags); 614 bio_list_add(&m->queued_bios, bio); 615 spin_unlock_irqrestore(&m->lock, flags); 616 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */ 617 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 618 pg_init_all_paths(m); 619 else if (!queue_io) 620 queue_work(kmultipathd, &m->process_queued_bios); 621 return DM_MAPIO_SUBMITTED; 622 } 623 624 if (!pgpath) { 625 if (!must_push_back_bio(m)) 626 return -EIO; 627 return DM_MAPIO_REQUEUE; 628 } 629 630 mpio->pgpath = pgpath; 631 mpio->nr_bytes = nr_bytes; 632 633 bio->bi_error = 0; 634 bio->bi_bdev = pgpath->path.dev->bdev; 635 bio->bi_rw |= REQ_FAILFAST_TRANSPORT; 636 637 if (pgpath->pg->ps.type->start_io) 638 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 639 &pgpath->path, 640 nr_bytes); 641 return DM_MAPIO_REMAPPED; 642 } 643 644 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 645 { 646 struct multipath *m = ti->private; 647 struct dm_mpath_io *mpio = NULL; 648 649 multipath_init_per_bio_data(bio, &mpio, NULL); 650 651 return __multipath_map_bio(m, bio, mpio); 652 } 653 654 static void process_queued_bios_list(struct multipath *m) 655 { 656 if (test_bit(MPATHF_BIO_BASED, &m->flags)) 657 queue_work(kmultipathd, &m->process_queued_bios); 658 } 659 660 static void process_queued_bios(struct work_struct *work) 661 { 662 int r; 663 unsigned long flags; 664 struct bio *bio; 665 struct bio_list bios; 666 struct blk_plug plug; 667 struct multipath *m = 668 container_of(work, struct multipath, process_queued_bios); 669 670 bio_list_init(&bios); 671 672 spin_lock_irqsave(&m->lock, flags); 673 674 if (bio_list_empty(&m->queued_bios)) { 675 spin_unlock_irqrestore(&m->lock, flags); 676 return; 677 } 678 679 bio_list_merge(&bios, &m->queued_bios); 680 bio_list_init(&m->queued_bios); 681 682 spin_unlock_irqrestore(&m->lock, flags); 683 684 blk_start_plug(&plug); 685 while ((bio = bio_list_pop(&bios))) { 686 r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio)); 687 if (r < 0 || r == DM_MAPIO_REQUEUE) { 688 bio->bi_error = r; 689 bio_endio(bio); 690 } else if (r == DM_MAPIO_REMAPPED) 691 generic_make_request(bio); 692 } 693 blk_finish_plug(&plug); 694 } 695 696 /* 697 * If we run out of usable paths, should we queue I/O or error it? 698 */ 699 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 700 bool save_old_value) 701 { 702 unsigned long flags; 703 704 spin_lock_irqsave(&m->lock, flags); 705 706 if (save_old_value) { 707 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 708 set_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 709 else 710 clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 711 } else { 712 if (queue_if_no_path) 713 set_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 714 else 715 clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 716 } 717 if (queue_if_no_path) 718 set_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 719 else 720 clear_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 721 722 spin_unlock_irqrestore(&m->lock, flags); 723 724 if (!queue_if_no_path) { 725 dm_table_run_md_queue_async(m->ti->table); 726 process_queued_bios_list(m); 727 } 728 729 return 0; 730 } 731 732 /* 733 * An event is triggered whenever a path is taken out of use. 734 * Includes path failure and PG bypass. 735 */ 736 static void trigger_event(struct work_struct *work) 737 { 738 struct multipath *m = 739 container_of(work, struct multipath, trigger_event); 740 741 dm_table_event(m->ti->table); 742 } 743 744 /*----------------------------------------------------------------- 745 * Constructor/argument parsing: 746 * <#multipath feature args> [<arg>]* 747 * <#hw_handler args> [hw_handler [<arg>]*] 748 * <#priority groups> 749 * <initial priority group> 750 * [<selector> <#selector args> [<arg>]* 751 * <#paths> <#per-path selector args> 752 * [<path> [<arg>]* ]+ ]+ 753 *---------------------------------------------------------------*/ 754 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 755 struct dm_target *ti) 756 { 757 int r; 758 struct path_selector_type *pst; 759 unsigned ps_argc; 760 761 static struct dm_arg _args[] = { 762 {0, 1024, "invalid number of path selector args"}, 763 }; 764 765 pst = dm_get_path_selector(dm_shift_arg(as)); 766 if (!pst) { 767 ti->error = "unknown path selector type"; 768 return -EINVAL; 769 } 770 771 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 772 if (r) { 773 dm_put_path_selector(pst); 774 return -EINVAL; 775 } 776 777 r = pst->create(&pg->ps, ps_argc, as->argv); 778 if (r) { 779 dm_put_path_selector(pst); 780 ti->error = "path selector constructor failed"; 781 return r; 782 } 783 784 pg->ps.type = pst; 785 dm_consume_args(as, ps_argc); 786 787 return 0; 788 } 789 790 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 791 struct dm_target *ti) 792 { 793 int r; 794 struct pgpath *p; 795 struct multipath *m = ti->private; 796 struct request_queue *q = NULL; 797 const char *attached_handler_name; 798 799 /* we need at least a path arg */ 800 if (as->argc < 1) { 801 ti->error = "no device given"; 802 return ERR_PTR(-EINVAL); 803 } 804 805 p = alloc_pgpath(); 806 if (!p) 807 return ERR_PTR(-ENOMEM); 808 809 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 810 &p->path.dev); 811 if (r) { 812 ti->error = "error getting device"; 813 goto bad; 814 } 815 816 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name) 817 q = bdev_get_queue(p->path.dev->bdev); 818 819 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) { 820 retain: 821 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 822 if (attached_handler_name) { 823 /* 824 * Reset hw_handler_name to match the attached handler 825 * and clear any hw_handler_params associated with the 826 * ignored handler. 827 * 828 * NB. This modifies the table line to show the actual 829 * handler instead of the original table passed in. 830 */ 831 kfree(m->hw_handler_name); 832 m->hw_handler_name = attached_handler_name; 833 834 kfree(m->hw_handler_params); 835 m->hw_handler_params = NULL; 836 } 837 } 838 839 if (m->hw_handler_name) { 840 r = scsi_dh_attach(q, m->hw_handler_name); 841 if (r == -EBUSY) { 842 char b[BDEVNAME_SIZE]; 843 844 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 845 bdevname(p->path.dev->bdev, b)); 846 goto retain; 847 } 848 if (r < 0) { 849 ti->error = "error attaching hardware handler"; 850 dm_put_device(ti, p->path.dev); 851 goto bad; 852 } 853 854 if (m->hw_handler_params) { 855 r = scsi_dh_set_params(q, m->hw_handler_params); 856 if (r < 0) { 857 ti->error = "unable to set hardware " 858 "handler parameters"; 859 dm_put_device(ti, p->path.dev); 860 goto bad; 861 } 862 } 863 } 864 865 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 866 if (r) { 867 dm_put_device(ti, p->path.dev); 868 goto bad; 869 } 870 871 return p; 872 873 bad: 874 free_pgpath(p); 875 return ERR_PTR(r); 876 } 877 878 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 879 struct multipath *m) 880 { 881 static struct dm_arg _args[] = { 882 {1, 1024, "invalid number of paths"}, 883 {0, 1024, "invalid number of selector args"} 884 }; 885 886 int r; 887 unsigned i, nr_selector_args, nr_args; 888 struct priority_group *pg; 889 struct dm_target *ti = m->ti; 890 891 if (as->argc < 2) { 892 as->argc = 0; 893 ti->error = "not enough priority group arguments"; 894 return ERR_PTR(-EINVAL); 895 } 896 897 pg = alloc_priority_group(); 898 if (!pg) { 899 ti->error = "couldn't allocate priority group"; 900 return ERR_PTR(-ENOMEM); 901 } 902 pg->m = m; 903 904 r = parse_path_selector(as, pg, ti); 905 if (r) 906 goto bad; 907 908 /* 909 * read the paths 910 */ 911 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 912 if (r) 913 goto bad; 914 915 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 916 if (r) 917 goto bad; 918 919 nr_args = 1 + nr_selector_args; 920 for (i = 0; i < pg->nr_pgpaths; i++) { 921 struct pgpath *pgpath; 922 struct dm_arg_set path_args; 923 924 if (as->argc < nr_args) { 925 ti->error = "not enough path parameters"; 926 r = -EINVAL; 927 goto bad; 928 } 929 930 path_args.argc = nr_args; 931 path_args.argv = as->argv; 932 933 pgpath = parse_path(&path_args, &pg->ps, ti); 934 if (IS_ERR(pgpath)) { 935 r = PTR_ERR(pgpath); 936 goto bad; 937 } 938 939 pgpath->pg = pg; 940 list_add_tail(&pgpath->list, &pg->pgpaths); 941 dm_consume_args(as, nr_args); 942 } 943 944 return pg; 945 946 bad: 947 free_priority_group(pg, ti); 948 return ERR_PTR(r); 949 } 950 951 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 952 { 953 unsigned hw_argc; 954 int ret; 955 struct dm_target *ti = m->ti; 956 957 static struct dm_arg _args[] = { 958 {0, 1024, "invalid number of hardware handler args"}, 959 }; 960 961 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 962 return -EINVAL; 963 964 if (!hw_argc) 965 return 0; 966 967 if (test_bit(MPATHF_BIO_BASED, &m->flags)) { 968 dm_consume_args(as, hw_argc); 969 DMERR("bio-based multipath doesn't allow hardware handler args"); 970 return 0; 971 } 972 973 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 974 975 if (hw_argc > 1) { 976 char *p; 977 int i, j, len = 4; 978 979 for (i = 0; i <= hw_argc - 2; i++) 980 len += strlen(as->argv[i]) + 1; 981 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 982 if (!p) { 983 ti->error = "memory allocation failed"; 984 ret = -ENOMEM; 985 goto fail; 986 } 987 j = sprintf(p, "%d", hw_argc - 1); 988 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 989 j = sprintf(p, "%s", as->argv[i]); 990 } 991 dm_consume_args(as, hw_argc - 1); 992 993 return 0; 994 fail: 995 kfree(m->hw_handler_name); 996 m->hw_handler_name = NULL; 997 return ret; 998 } 999 1000 static int parse_features(struct dm_arg_set *as, struct multipath *m) 1001 { 1002 int r; 1003 unsigned argc; 1004 struct dm_target *ti = m->ti; 1005 const char *arg_name; 1006 1007 static struct dm_arg _args[] = { 1008 {0, 6, "invalid number of feature args"}, 1009 {1, 50, "pg_init_retries must be between 1 and 50"}, 1010 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 1011 }; 1012 1013 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1014 if (r) 1015 return -EINVAL; 1016 1017 if (!argc) 1018 return 0; 1019 1020 do { 1021 arg_name = dm_shift_arg(as); 1022 argc--; 1023 1024 if (!strcasecmp(arg_name, "queue_if_no_path")) { 1025 r = queue_if_no_path(m, true, false); 1026 continue; 1027 } 1028 1029 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 1030 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 1031 continue; 1032 } 1033 1034 if (!strcasecmp(arg_name, "pg_init_retries") && 1035 (argc >= 1)) { 1036 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 1037 argc--; 1038 continue; 1039 } 1040 1041 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 1042 (argc >= 1)) { 1043 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 1044 argc--; 1045 continue; 1046 } 1047 1048 ti->error = "Unrecognised multipath feature request"; 1049 r = -EINVAL; 1050 } while (argc && !r); 1051 1052 return r; 1053 } 1054 1055 static int __multipath_ctr(struct dm_target *ti, unsigned int argc, 1056 char **argv, bool bio_based) 1057 { 1058 /* target arguments */ 1059 static struct dm_arg _args[] = { 1060 {0, 1024, "invalid number of priority groups"}, 1061 {0, 1024, "invalid initial priority group number"}, 1062 }; 1063 1064 int r; 1065 struct multipath *m; 1066 struct dm_arg_set as; 1067 unsigned pg_count = 0; 1068 unsigned next_pg_num; 1069 bool use_blk_mq = dm_use_blk_mq(dm_table_get_md(ti->table)); 1070 1071 as.argc = argc; 1072 as.argv = argv; 1073 1074 m = alloc_multipath(ti, use_blk_mq, bio_based); 1075 if (!m) { 1076 ti->error = "can't allocate multipath"; 1077 return -EINVAL; 1078 } 1079 1080 r = parse_features(&as, m); 1081 if (r) 1082 goto bad; 1083 1084 r = parse_hw_handler(&as, m); 1085 if (r) 1086 goto bad; 1087 1088 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1089 if (r) 1090 goto bad; 1091 1092 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1093 if (r) 1094 goto bad; 1095 1096 if ((!m->nr_priority_groups && next_pg_num) || 1097 (m->nr_priority_groups && !next_pg_num)) { 1098 ti->error = "invalid initial priority group"; 1099 r = -EINVAL; 1100 goto bad; 1101 } 1102 1103 /* parse the priority groups */ 1104 while (as.argc) { 1105 struct priority_group *pg; 1106 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1107 1108 pg = parse_priority_group(&as, m); 1109 if (IS_ERR(pg)) { 1110 r = PTR_ERR(pg); 1111 goto bad; 1112 } 1113 1114 nr_valid_paths += pg->nr_pgpaths; 1115 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1116 1117 list_add_tail(&pg->list, &m->priority_groups); 1118 pg_count++; 1119 pg->pg_num = pg_count; 1120 if (!--next_pg_num) 1121 m->next_pg = pg; 1122 } 1123 1124 if (pg_count != m->nr_priority_groups) { 1125 ti->error = "priority group count mismatch"; 1126 r = -EINVAL; 1127 goto bad; 1128 } 1129 1130 ti->num_flush_bios = 1; 1131 ti->num_discard_bios = 1; 1132 ti->num_write_same_bios = 1; 1133 if (bio_based) 1134 ti->per_io_data_size = multipath_per_bio_data_size(); 1135 else if (use_blk_mq) 1136 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1137 1138 return 0; 1139 1140 bad: 1141 free_multipath(m); 1142 return r; 1143 } 1144 1145 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1146 { 1147 return __multipath_ctr(ti, argc, argv, false); 1148 } 1149 1150 static int multipath_bio_ctr(struct dm_target *ti, unsigned argc, char **argv) 1151 { 1152 return __multipath_ctr(ti, argc, argv, true); 1153 } 1154 1155 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1156 { 1157 DECLARE_WAITQUEUE(wait, current); 1158 1159 add_wait_queue(&m->pg_init_wait, &wait); 1160 1161 while (1) { 1162 set_current_state(TASK_UNINTERRUPTIBLE); 1163 1164 if (!atomic_read(&m->pg_init_in_progress)) 1165 break; 1166 1167 io_schedule(); 1168 } 1169 set_current_state(TASK_RUNNING); 1170 1171 remove_wait_queue(&m->pg_init_wait, &wait); 1172 } 1173 1174 static void flush_multipath_work(struct multipath *m) 1175 { 1176 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1177 smp_mb__after_atomic(); 1178 1179 flush_workqueue(kmpath_handlerd); 1180 multipath_wait_for_pg_init_completion(m); 1181 flush_workqueue(kmultipathd); 1182 flush_work(&m->trigger_event); 1183 1184 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1185 smp_mb__after_atomic(); 1186 } 1187 1188 static void multipath_dtr(struct dm_target *ti) 1189 { 1190 struct multipath *m = ti->private; 1191 1192 flush_multipath_work(m); 1193 free_multipath(m); 1194 } 1195 1196 /* 1197 * Take a path out of use. 1198 */ 1199 static int fail_path(struct pgpath *pgpath) 1200 { 1201 unsigned long flags; 1202 struct multipath *m = pgpath->pg->m; 1203 1204 spin_lock_irqsave(&m->lock, flags); 1205 1206 if (!pgpath->is_active) 1207 goto out; 1208 1209 DMWARN("Failing path %s.", pgpath->path.dev->name); 1210 1211 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1212 pgpath->is_active = false; 1213 pgpath->fail_count++; 1214 1215 atomic_dec(&m->nr_valid_paths); 1216 1217 if (pgpath == m->current_pgpath) 1218 m->current_pgpath = NULL; 1219 1220 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1221 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1222 1223 schedule_work(&m->trigger_event); 1224 1225 out: 1226 spin_unlock_irqrestore(&m->lock, flags); 1227 1228 return 0; 1229 } 1230 1231 /* 1232 * Reinstate a previously-failed path 1233 */ 1234 static int reinstate_path(struct pgpath *pgpath) 1235 { 1236 int r = 0, run_queue = 0; 1237 unsigned long flags; 1238 struct multipath *m = pgpath->pg->m; 1239 unsigned nr_valid_paths; 1240 1241 spin_lock_irqsave(&m->lock, flags); 1242 1243 if (pgpath->is_active) 1244 goto out; 1245 1246 DMWARN("Reinstating path %s.", pgpath->path.dev->name); 1247 1248 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1249 if (r) 1250 goto out; 1251 1252 pgpath->is_active = true; 1253 1254 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1255 if (nr_valid_paths == 1) { 1256 m->current_pgpath = NULL; 1257 run_queue = 1; 1258 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1259 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1260 atomic_inc(&m->pg_init_in_progress); 1261 } 1262 1263 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1264 pgpath->path.dev->name, nr_valid_paths); 1265 1266 schedule_work(&m->trigger_event); 1267 1268 out: 1269 spin_unlock_irqrestore(&m->lock, flags); 1270 if (run_queue) { 1271 dm_table_run_md_queue_async(m->ti->table); 1272 process_queued_bios_list(m); 1273 } 1274 1275 return r; 1276 } 1277 1278 /* 1279 * Fail or reinstate all paths that match the provided struct dm_dev. 1280 */ 1281 static int action_dev(struct multipath *m, struct dm_dev *dev, 1282 action_fn action) 1283 { 1284 int r = -EINVAL; 1285 struct pgpath *pgpath; 1286 struct priority_group *pg; 1287 1288 list_for_each_entry(pg, &m->priority_groups, list) { 1289 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1290 if (pgpath->path.dev == dev) 1291 r = action(pgpath); 1292 } 1293 } 1294 1295 return r; 1296 } 1297 1298 /* 1299 * Temporarily try to avoid having to use the specified PG 1300 */ 1301 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1302 bool bypassed) 1303 { 1304 unsigned long flags; 1305 1306 spin_lock_irqsave(&m->lock, flags); 1307 1308 pg->bypassed = bypassed; 1309 m->current_pgpath = NULL; 1310 m->current_pg = NULL; 1311 1312 spin_unlock_irqrestore(&m->lock, flags); 1313 1314 schedule_work(&m->trigger_event); 1315 } 1316 1317 /* 1318 * Switch to using the specified PG from the next I/O that gets mapped 1319 */ 1320 static int switch_pg_num(struct multipath *m, const char *pgstr) 1321 { 1322 struct priority_group *pg; 1323 unsigned pgnum; 1324 unsigned long flags; 1325 char dummy; 1326 1327 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1328 (pgnum > m->nr_priority_groups)) { 1329 DMWARN("invalid PG number supplied to switch_pg_num"); 1330 return -EINVAL; 1331 } 1332 1333 spin_lock_irqsave(&m->lock, flags); 1334 list_for_each_entry(pg, &m->priority_groups, list) { 1335 pg->bypassed = false; 1336 if (--pgnum) 1337 continue; 1338 1339 m->current_pgpath = NULL; 1340 m->current_pg = NULL; 1341 m->next_pg = pg; 1342 } 1343 spin_unlock_irqrestore(&m->lock, flags); 1344 1345 schedule_work(&m->trigger_event); 1346 return 0; 1347 } 1348 1349 /* 1350 * Set/clear bypassed status of a PG. 1351 * PGs are numbered upwards from 1 in the order they were declared. 1352 */ 1353 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1354 { 1355 struct priority_group *pg; 1356 unsigned pgnum; 1357 char dummy; 1358 1359 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1360 (pgnum > m->nr_priority_groups)) { 1361 DMWARN("invalid PG number supplied to bypass_pg"); 1362 return -EINVAL; 1363 } 1364 1365 list_for_each_entry(pg, &m->priority_groups, list) { 1366 if (!--pgnum) 1367 break; 1368 } 1369 1370 bypass_pg(m, pg, bypassed); 1371 return 0; 1372 } 1373 1374 /* 1375 * Should we retry pg_init immediately? 1376 */ 1377 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1378 { 1379 unsigned long flags; 1380 bool limit_reached = false; 1381 1382 spin_lock_irqsave(&m->lock, flags); 1383 1384 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1385 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1386 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1387 else 1388 limit_reached = true; 1389 1390 spin_unlock_irqrestore(&m->lock, flags); 1391 1392 return limit_reached; 1393 } 1394 1395 static void pg_init_done(void *data, int errors) 1396 { 1397 struct pgpath *pgpath = data; 1398 struct priority_group *pg = pgpath->pg; 1399 struct multipath *m = pg->m; 1400 unsigned long flags; 1401 bool delay_retry = false; 1402 1403 /* device or driver problems */ 1404 switch (errors) { 1405 case SCSI_DH_OK: 1406 break; 1407 case SCSI_DH_NOSYS: 1408 if (!m->hw_handler_name) { 1409 errors = 0; 1410 break; 1411 } 1412 DMERR("Could not failover the device: Handler scsi_dh_%s " 1413 "Error %d.", m->hw_handler_name, errors); 1414 /* 1415 * Fail path for now, so we do not ping pong 1416 */ 1417 fail_path(pgpath); 1418 break; 1419 case SCSI_DH_DEV_TEMP_BUSY: 1420 /* 1421 * Probably doing something like FW upgrade on the 1422 * controller so try the other pg. 1423 */ 1424 bypass_pg(m, pg, true); 1425 break; 1426 case SCSI_DH_RETRY: 1427 /* Wait before retrying. */ 1428 delay_retry = 1; 1429 case SCSI_DH_IMM_RETRY: 1430 case SCSI_DH_RES_TEMP_UNAVAIL: 1431 if (pg_init_limit_reached(m, pgpath)) 1432 fail_path(pgpath); 1433 errors = 0; 1434 break; 1435 case SCSI_DH_DEV_OFFLINED: 1436 default: 1437 /* 1438 * We probably do not want to fail the path for a device 1439 * error, but this is what the old dm did. In future 1440 * patches we can do more advanced handling. 1441 */ 1442 fail_path(pgpath); 1443 } 1444 1445 spin_lock_irqsave(&m->lock, flags); 1446 if (errors) { 1447 if (pgpath == m->current_pgpath) { 1448 DMERR("Could not failover device. Error %d.", errors); 1449 m->current_pgpath = NULL; 1450 m->current_pg = NULL; 1451 } 1452 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1453 pg->bypassed = false; 1454 1455 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1456 /* Activations of other paths are still on going */ 1457 goto out; 1458 1459 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1460 if (delay_retry) 1461 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1462 else 1463 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1464 1465 if (__pg_init_all_paths(m)) 1466 goto out; 1467 } 1468 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1469 1470 process_queued_bios_list(m); 1471 1472 /* 1473 * Wake up any thread waiting to suspend. 1474 */ 1475 wake_up(&m->pg_init_wait); 1476 1477 out: 1478 spin_unlock_irqrestore(&m->lock, flags); 1479 } 1480 1481 static void activate_path(struct work_struct *work) 1482 { 1483 struct pgpath *pgpath = 1484 container_of(work, struct pgpath, activate_path.work); 1485 1486 if (pgpath->is_active) 1487 scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev), 1488 pg_init_done, pgpath); 1489 else 1490 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1491 } 1492 1493 static int noretry_error(int error) 1494 { 1495 switch (error) { 1496 case -EOPNOTSUPP: 1497 case -EREMOTEIO: 1498 case -EILSEQ: 1499 case -ENODATA: 1500 case -ENOSPC: 1501 return 1; 1502 } 1503 1504 /* Anything else could be a path failure, so should be retried */ 1505 return 0; 1506 } 1507 1508 /* 1509 * end_io handling 1510 */ 1511 static int do_end_io(struct multipath *m, struct request *clone, 1512 int error, struct dm_mpath_io *mpio) 1513 { 1514 /* 1515 * We don't queue any clone request inside the multipath target 1516 * during end I/O handling, since those clone requests don't have 1517 * bio clones. If we queue them inside the multipath target, 1518 * we need to make bio clones, that requires memory allocation. 1519 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1520 * don't have bio clones.) 1521 * Instead of queueing the clone request here, we queue the original 1522 * request into dm core, which will remake a clone request and 1523 * clone bios for it and resubmit it later. 1524 */ 1525 int r = DM_ENDIO_REQUEUE; 1526 1527 if (!error && !clone->errors) 1528 return 0; /* I/O complete */ 1529 1530 if (noretry_error(error)) 1531 return error; 1532 1533 if (mpio->pgpath) 1534 fail_path(mpio->pgpath); 1535 1536 if (!atomic_read(&m->nr_valid_paths)) { 1537 if (!test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1538 if (!must_push_back_rq(m)) 1539 r = -EIO; 1540 } else { 1541 if (error == -EBADE) 1542 r = error; 1543 } 1544 } 1545 1546 return r; 1547 } 1548 1549 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1550 int error, union map_info *map_context) 1551 { 1552 struct multipath *m = ti->private; 1553 struct dm_mpath_io *mpio = get_mpio(map_context); 1554 struct pgpath *pgpath; 1555 struct path_selector *ps; 1556 int r; 1557 1558 BUG_ON(!mpio); 1559 1560 r = do_end_io(m, clone, error, mpio); 1561 pgpath = mpio->pgpath; 1562 if (pgpath) { 1563 ps = &pgpath->pg->ps; 1564 if (ps->type->end_io) 1565 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1566 } 1567 clear_request_fn_mpio(m, map_context); 1568 1569 return r; 1570 } 1571 1572 static int do_end_io_bio(struct multipath *m, struct bio *clone, 1573 int error, struct dm_mpath_io *mpio) 1574 { 1575 unsigned long flags; 1576 1577 if (!error) 1578 return 0; /* I/O complete */ 1579 1580 if (noretry_error(error)) 1581 return error; 1582 1583 if (mpio->pgpath) 1584 fail_path(mpio->pgpath); 1585 1586 if (!atomic_read(&m->nr_valid_paths)) { 1587 if (!test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1588 if (!must_push_back_bio(m)) 1589 return -EIO; 1590 return DM_ENDIO_REQUEUE; 1591 } else { 1592 if (error == -EBADE) 1593 return error; 1594 } 1595 } 1596 1597 /* Queue for the daemon to resubmit */ 1598 dm_bio_restore(get_bio_details_from_bio(clone), clone); 1599 1600 spin_lock_irqsave(&m->lock, flags); 1601 bio_list_add(&m->queued_bios, clone); 1602 spin_unlock_irqrestore(&m->lock, flags); 1603 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 1604 queue_work(kmultipathd, &m->process_queued_bios); 1605 1606 return DM_ENDIO_INCOMPLETE; 1607 } 1608 1609 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, int error) 1610 { 1611 struct multipath *m = ti->private; 1612 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1613 struct pgpath *pgpath; 1614 struct path_selector *ps; 1615 int r; 1616 1617 BUG_ON(!mpio); 1618 1619 r = do_end_io_bio(m, clone, error, mpio); 1620 pgpath = mpio->pgpath; 1621 if (pgpath) { 1622 ps = &pgpath->pg->ps; 1623 if (ps->type->end_io) 1624 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1625 } 1626 1627 return r; 1628 } 1629 1630 /* 1631 * Suspend can't complete until all the I/O is processed so if 1632 * the last path fails we must error any remaining I/O. 1633 * Note that if the freeze_bdev fails while suspending, the 1634 * queue_if_no_path state is lost - userspace should reset it. 1635 */ 1636 static void multipath_presuspend(struct dm_target *ti) 1637 { 1638 struct multipath *m = ti->private; 1639 1640 queue_if_no_path(m, false, true); 1641 } 1642 1643 static void multipath_postsuspend(struct dm_target *ti) 1644 { 1645 struct multipath *m = ti->private; 1646 1647 mutex_lock(&m->work_mutex); 1648 flush_multipath_work(m); 1649 mutex_unlock(&m->work_mutex); 1650 } 1651 1652 /* 1653 * Restore the queue_if_no_path setting. 1654 */ 1655 static void multipath_resume(struct dm_target *ti) 1656 { 1657 struct multipath *m = ti->private; 1658 1659 if (test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)) 1660 set_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 1661 else 1662 clear_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 1663 smp_mb__after_atomic(); 1664 } 1665 1666 /* 1667 * Info output has the following format: 1668 * num_multipath_feature_args [multipath_feature_args]* 1669 * num_handler_status_args [handler_status_args]* 1670 * num_groups init_group_number 1671 * [A|D|E num_ps_status_args [ps_status_args]* 1672 * num_paths num_selector_args 1673 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1674 * 1675 * Table output has the following format (identical to the constructor string): 1676 * num_feature_args [features_args]* 1677 * num_handler_args hw_handler [hw_handler_args]* 1678 * num_groups init_group_number 1679 * [priority selector-name num_ps_args [ps_args]* 1680 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1681 */ 1682 static void multipath_status(struct dm_target *ti, status_type_t type, 1683 unsigned status_flags, char *result, unsigned maxlen) 1684 { 1685 int sz = 0; 1686 unsigned long flags; 1687 struct multipath *m = ti->private; 1688 struct priority_group *pg; 1689 struct pgpath *p; 1690 unsigned pg_num; 1691 char state; 1692 1693 spin_lock_irqsave(&m->lock, flags); 1694 1695 /* Features */ 1696 if (type == STATUSTYPE_INFO) 1697 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1698 atomic_read(&m->pg_init_count)); 1699 else { 1700 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1701 (m->pg_init_retries > 0) * 2 + 1702 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1703 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)); 1704 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1705 DMEMIT("queue_if_no_path "); 1706 if (m->pg_init_retries) 1707 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1708 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1709 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1710 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1711 DMEMIT("retain_attached_hw_handler "); 1712 } 1713 1714 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1715 DMEMIT("0 "); 1716 else 1717 DMEMIT("1 %s ", m->hw_handler_name); 1718 1719 DMEMIT("%u ", m->nr_priority_groups); 1720 1721 if (m->next_pg) 1722 pg_num = m->next_pg->pg_num; 1723 else if (m->current_pg) 1724 pg_num = m->current_pg->pg_num; 1725 else 1726 pg_num = (m->nr_priority_groups ? 1 : 0); 1727 1728 DMEMIT("%u ", pg_num); 1729 1730 switch (type) { 1731 case STATUSTYPE_INFO: 1732 list_for_each_entry(pg, &m->priority_groups, list) { 1733 if (pg->bypassed) 1734 state = 'D'; /* Disabled */ 1735 else if (pg == m->current_pg) 1736 state = 'A'; /* Currently Active */ 1737 else 1738 state = 'E'; /* Enabled */ 1739 1740 DMEMIT("%c ", state); 1741 1742 if (pg->ps.type->status) 1743 sz += pg->ps.type->status(&pg->ps, NULL, type, 1744 result + sz, 1745 maxlen - sz); 1746 else 1747 DMEMIT("0 "); 1748 1749 DMEMIT("%u %u ", pg->nr_pgpaths, 1750 pg->ps.type->info_args); 1751 1752 list_for_each_entry(p, &pg->pgpaths, list) { 1753 DMEMIT("%s %s %u ", p->path.dev->name, 1754 p->is_active ? "A" : "F", 1755 p->fail_count); 1756 if (pg->ps.type->status) 1757 sz += pg->ps.type->status(&pg->ps, 1758 &p->path, type, result + sz, 1759 maxlen - sz); 1760 } 1761 } 1762 break; 1763 1764 case STATUSTYPE_TABLE: 1765 list_for_each_entry(pg, &m->priority_groups, list) { 1766 DMEMIT("%s ", pg->ps.type->name); 1767 1768 if (pg->ps.type->status) 1769 sz += pg->ps.type->status(&pg->ps, NULL, type, 1770 result + sz, 1771 maxlen - sz); 1772 else 1773 DMEMIT("0 "); 1774 1775 DMEMIT("%u %u ", pg->nr_pgpaths, 1776 pg->ps.type->table_args); 1777 1778 list_for_each_entry(p, &pg->pgpaths, list) { 1779 DMEMIT("%s ", p->path.dev->name); 1780 if (pg->ps.type->status) 1781 sz += pg->ps.type->status(&pg->ps, 1782 &p->path, type, result + sz, 1783 maxlen - sz); 1784 } 1785 } 1786 break; 1787 } 1788 1789 spin_unlock_irqrestore(&m->lock, flags); 1790 } 1791 1792 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) 1793 { 1794 int r = -EINVAL; 1795 struct dm_dev *dev; 1796 struct multipath *m = ti->private; 1797 action_fn action; 1798 1799 mutex_lock(&m->work_mutex); 1800 1801 if (dm_suspended(ti)) { 1802 r = -EBUSY; 1803 goto out; 1804 } 1805 1806 if (argc == 1) { 1807 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1808 r = queue_if_no_path(m, true, false); 1809 goto out; 1810 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1811 r = queue_if_no_path(m, false, false); 1812 goto out; 1813 } 1814 } 1815 1816 if (argc != 2) { 1817 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1818 goto out; 1819 } 1820 1821 if (!strcasecmp(argv[0], "disable_group")) { 1822 r = bypass_pg_num(m, argv[1], true); 1823 goto out; 1824 } else if (!strcasecmp(argv[0], "enable_group")) { 1825 r = bypass_pg_num(m, argv[1], false); 1826 goto out; 1827 } else if (!strcasecmp(argv[0], "switch_group")) { 1828 r = switch_pg_num(m, argv[1]); 1829 goto out; 1830 } else if (!strcasecmp(argv[0], "reinstate_path")) 1831 action = reinstate_path; 1832 else if (!strcasecmp(argv[0], "fail_path")) 1833 action = fail_path; 1834 else { 1835 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1836 goto out; 1837 } 1838 1839 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1840 if (r) { 1841 DMWARN("message: error getting device %s", 1842 argv[1]); 1843 goto out; 1844 } 1845 1846 r = action_dev(m, dev, action); 1847 1848 dm_put_device(ti, dev); 1849 1850 out: 1851 mutex_unlock(&m->work_mutex); 1852 return r; 1853 } 1854 1855 static int multipath_prepare_ioctl(struct dm_target *ti, 1856 struct block_device **bdev, fmode_t *mode) 1857 { 1858 struct multipath *m = ti->private; 1859 struct pgpath *current_pgpath; 1860 int r; 1861 1862 current_pgpath = lockless_dereference(m->current_pgpath); 1863 if (!current_pgpath) 1864 current_pgpath = choose_pgpath(m, 0); 1865 1866 if (current_pgpath) { 1867 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) { 1868 *bdev = current_pgpath->path.dev->bdev; 1869 *mode = current_pgpath->path.dev->mode; 1870 r = 0; 1871 } else { 1872 /* pg_init has not started or completed */ 1873 r = -ENOTCONN; 1874 } 1875 } else { 1876 /* No path is available */ 1877 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1878 r = -ENOTCONN; 1879 else 1880 r = -EIO; 1881 } 1882 1883 if (r == -ENOTCONN) { 1884 if (!lockless_dereference(m->current_pg)) { 1885 /* Path status changed, redo selection */ 1886 (void) choose_pgpath(m, 0); 1887 } 1888 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1889 pg_init_all_paths(m); 1890 dm_table_run_md_queue_async(m->ti->table); 1891 process_queued_bios_list(m); 1892 } 1893 1894 /* 1895 * Only pass ioctls through if the device sizes match exactly. 1896 */ 1897 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1898 return 1; 1899 return r; 1900 } 1901 1902 static int multipath_iterate_devices(struct dm_target *ti, 1903 iterate_devices_callout_fn fn, void *data) 1904 { 1905 struct multipath *m = ti->private; 1906 struct priority_group *pg; 1907 struct pgpath *p; 1908 int ret = 0; 1909 1910 list_for_each_entry(pg, &m->priority_groups, list) { 1911 list_for_each_entry(p, &pg->pgpaths, list) { 1912 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1913 if (ret) 1914 goto out; 1915 } 1916 } 1917 1918 out: 1919 return ret; 1920 } 1921 1922 static int pgpath_busy(struct pgpath *pgpath) 1923 { 1924 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1925 1926 return blk_lld_busy(q); 1927 } 1928 1929 /* 1930 * We return "busy", only when we can map I/Os but underlying devices 1931 * are busy (so even if we map I/Os now, the I/Os will wait on 1932 * the underlying queue). 1933 * In other words, if we want to kill I/Os or queue them inside us 1934 * due to map unavailability, we don't return "busy". Otherwise, 1935 * dm core won't give us the I/Os and we can't do what we want. 1936 */ 1937 static int multipath_busy(struct dm_target *ti) 1938 { 1939 bool busy = false, has_active = false; 1940 struct multipath *m = ti->private; 1941 struct priority_group *pg, *next_pg; 1942 struct pgpath *pgpath; 1943 1944 /* pg_init in progress or no paths available */ 1945 if (atomic_read(&m->pg_init_in_progress) || 1946 (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) 1947 return true; 1948 1949 /* Guess which priority_group will be used at next mapping time */ 1950 pg = lockless_dereference(m->current_pg); 1951 next_pg = lockless_dereference(m->next_pg); 1952 if (unlikely(!lockless_dereference(m->current_pgpath) && next_pg)) 1953 pg = next_pg; 1954 1955 if (!pg) { 1956 /* 1957 * We don't know which pg will be used at next mapping time. 1958 * We don't call choose_pgpath() here to avoid to trigger 1959 * pg_init just by busy checking. 1960 * So we don't know whether underlying devices we will be using 1961 * at next mapping time are busy or not. Just try mapping. 1962 */ 1963 return busy; 1964 } 1965 1966 /* 1967 * If there is one non-busy active path at least, the path selector 1968 * will be able to select it. So we consider such a pg as not busy. 1969 */ 1970 busy = true; 1971 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1972 if (pgpath->is_active) { 1973 has_active = true; 1974 if (!pgpath_busy(pgpath)) { 1975 busy = false; 1976 break; 1977 } 1978 } 1979 } 1980 1981 if (!has_active) { 1982 /* 1983 * No active path in this pg, so this pg won't be used and 1984 * the current_pg will be changed at next mapping time. 1985 * We need to try mapping to determine it. 1986 */ 1987 busy = false; 1988 } 1989 1990 return busy; 1991 } 1992 1993 /*----------------------------------------------------------------- 1994 * Module setup 1995 *---------------------------------------------------------------*/ 1996 static struct target_type multipath_target = { 1997 .name = "multipath", 1998 .version = {1, 11, 0}, 1999 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE, 2000 .module = THIS_MODULE, 2001 .ctr = multipath_ctr, 2002 .dtr = multipath_dtr, 2003 .map_rq = multipath_map, 2004 .clone_and_map_rq = multipath_clone_and_map, 2005 .release_clone_rq = multipath_release_clone, 2006 .rq_end_io = multipath_end_io, 2007 .presuspend = multipath_presuspend, 2008 .postsuspend = multipath_postsuspend, 2009 .resume = multipath_resume, 2010 .status = multipath_status, 2011 .message = multipath_message, 2012 .prepare_ioctl = multipath_prepare_ioctl, 2013 .iterate_devices = multipath_iterate_devices, 2014 .busy = multipath_busy, 2015 }; 2016 2017 static struct target_type multipath_bio_target = { 2018 .name = "multipath-bio", 2019 .version = {1, 0, 0}, 2020 .module = THIS_MODULE, 2021 .ctr = multipath_bio_ctr, 2022 .dtr = multipath_dtr, 2023 .map = multipath_map_bio, 2024 .end_io = multipath_end_io_bio, 2025 .presuspend = multipath_presuspend, 2026 .postsuspend = multipath_postsuspend, 2027 .resume = multipath_resume, 2028 .status = multipath_status, 2029 .message = multipath_message, 2030 .prepare_ioctl = multipath_prepare_ioctl, 2031 .iterate_devices = multipath_iterate_devices, 2032 .busy = multipath_busy, 2033 }; 2034 2035 static int __init dm_multipath_init(void) 2036 { 2037 int r; 2038 2039 /* allocate a slab for the dm_mpath_ios */ 2040 _mpio_cache = KMEM_CACHE(dm_mpath_io, 0); 2041 if (!_mpio_cache) 2042 return -ENOMEM; 2043 2044 r = dm_register_target(&multipath_target); 2045 if (r < 0) { 2046 DMERR("request-based register failed %d", r); 2047 r = -EINVAL; 2048 goto bad_register_target; 2049 } 2050 2051 r = dm_register_target(&multipath_bio_target); 2052 if (r < 0) { 2053 DMERR("bio-based register failed %d", r); 2054 r = -EINVAL; 2055 goto bad_register_bio_based_target; 2056 } 2057 2058 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 2059 if (!kmultipathd) { 2060 DMERR("failed to create workqueue kmpathd"); 2061 r = -ENOMEM; 2062 goto bad_alloc_kmultipathd; 2063 } 2064 2065 /* 2066 * A separate workqueue is used to handle the device handlers 2067 * to avoid overloading existing workqueue. Overloading the 2068 * old workqueue would also create a bottleneck in the 2069 * path of the storage hardware device activation. 2070 */ 2071 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 2072 WQ_MEM_RECLAIM); 2073 if (!kmpath_handlerd) { 2074 DMERR("failed to create workqueue kmpath_handlerd"); 2075 r = -ENOMEM; 2076 goto bad_alloc_kmpath_handlerd; 2077 } 2078 2079 return 0; 2080 2081 bad_alloc_kmpath_handlerd: 2082 destroy_workqueue(kmultipathd); 2083 bad_alloc_kmultipathd: 2084 dm_unregister_target(&multipath_bio_target); 2085 bad_register_bio_based_target: 2086 dm_unregister_target(&multipath_target); 2087 bad_register_target: 2088 kmem_cache_destroy(_mpio_cache); 2089 2090 return r; 2091 } 2092 2093 static void __exit dm_multipath_exit(void) 2094 { 2095 destroy_workqueue(kmpath_handlerd); 2096 destroy_workqueue(kmultipathd); 2097 2098 dm_unregister_target(&multipath_target); 2099 dm_unregister_target(&multipath_bio_target); 2100 kmem_cache_destroy(_mpio_cache); 2101 } 2102 2103 module_init(dm_multipath_init); 2104 module_exit(dm_multipath_exit); 2105 2106 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2107 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2108 MODULE_LICENSE("GPL"); 2109