xref: /openbmc/linux/drivers/md/dm-mpath.c (revision ac514ffc968bf14649dd0e048447dc966ee49555)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	unsigned long flags;		/* Multipath state flags */
68 
69 	spinlock_t lock;
70 	enum dm_queue_mode queue_mode;
71 
72 	struct pgpath *current_pgpath;
73 	struct priority_group *current_pg;
74 	struct priority_group *next_pg;	/* Switch to this PG if set */
75 
76 	atomic_t nr_valid_paths;	/* Total number of usable paths */
77 	unsigned nr_priority_groups;
78 	struct list_head priority_groups;
79 
80 	const char *hw_handler_name;
81 	char *hw_handler_params;
82 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
83 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
84 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
85 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
86 	atomic_t pg_init_count;		/* Number of times pg_init called */
87 
88 	struct mutex work_mutex;
89 	struct work_struct trigger_event;
90 	struct dm_target *ti;
91 
92 	struct work_struct process_queued_bios;
93 	struct bio_list queued_bios;
94 };
95 
96 /*
97  * Context information attached to each io we process.
98  */
99 struct dm_mpath_io {
100 	struct pgpath *pgpath;
101 	size_t nr_bytes;
102 };
103 
104 typedef int (*action_fn) (struct pgpath *pgpath);
105 
106 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
107 static void trigger_event(struct work_struct *work);
108 static void activate_or_offline_path(struct pgpath *pgpath);
109 static void activate_path_work(struct work_struct *work);
110 static void process_queued_bios(struct work_struct *work);
111 
112 /*-----------------------------------------------
113  * Multipath state flags.
114  *-----------------------------------------------*/
115 
116 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
117 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
118 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
119 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
120 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
121 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
122 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
123 
124 /*-----------------------------------------------
125  * Allocation routines
126  *-----------------------------------------------*/
127 
128 static struct pgpath *alloc_pgpath(void)
129 {
130 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
131 
132 	if (!pgpath)
133 		return NULL;
134 
135 	pgpath->is_active = true;
136 
137 	return pgpath;
138 }
139 
140 static void free_pgpath(struct pgpath *pgpath)
141 {
142 	kfree(pgpath);
143 }
144 
145 static struct priority_group *alloc_priority_group(void)
146 {
147 	struct priority_group *pg;
148 
149 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
150 
151 	if (pg)
152 		INIT_LIST_HEAD(&pg->pgpaths);
153 
154 	return pg;
155 }
156 
157 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
158 {
159 	struct pgpath *pgpath, *tmp;
160 
161 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
162 		list_del(&pgpath->list);
163 		dm_put_device(ti, pgpath->path.dev);
164 		free_pgpath(pgpath);
165 	}
166 }
167 
168 static void free_priority_group(struct priority_group *pg,
169 				struct dm_target *ti)
170 {
171 	struct path_selector *ps = &pg->ps;
172 
173 	if (ps->type) {
174 		ps->type->destroy(ps);
175 		dm_put_path_selector(ps->type);
176 	}
177 
178 	free_pgpaths(&pg->pgpaths, ti);
179 	kfree(pg);
180 }
181 
182 static struct multipath *alloc_multipath(struct dm_target *ti)
183 {
184 	struct multipath *m;
185 
186 	m = kzalloc(sizeof(*m), GFP_KERNEL);
187 	if (m) {
188 		INIT_LIST_HEAD(&m->priority_groups);
189 		spin_lock_init(&m->lock);
190 		atomic_set(&m->nr_valid_paths, 0);
191 		INIT_WORK(&m->trigger_event, trigger_event);
192 		mutex_init(&m->work_mutex);
193 
194 		m->queue_mode = DM_TYPE_NONE;
195 
196 		m->ti = ti;
197 		ti->private = m;
198 	}
199 
200 	return m;
201 }
202 
203 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
204 {
205 	if (m->queue_mode == DM_TYPE_NONE) {
206 		/*
207 		 * Default to request-based.
208 		 */
209 		if (dm_use_blk_mq(dm_table_get_md(ti->table)))
210 			m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
211 		else
212 			m->queue_mode = DM_TYPE_REQUEST_BASED;
213 
214 	} else if (m->queue_mode == DM_TYPE_BIO_BASED ||
215 		   m->queue_mode == DM_TYPE_NVME_BIO_BASED) {
216 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
217 
218 		if (m->queue_mode == DM_TYPE_BIO_BASED) {
219 			/*
220 			 * bio-based doesn't support any direct scsi_dh management;
221 			 * it just discovers if a scsi_dh is attached.
222 			 */
223 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
224 		}
225 	}
226 
227 	if (m->queue_mode != DM_TYPE_NVME_BIO_BASED) {
228 		set_bit(MPATHF_QUEUE_IO, &m->flags);
229 		atomic_set(&m->pg_init_in_progress, 0);
230 		atomic_set(&m->pg_init_count, 0);
231 		m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
232 		init_waitqueue_head(&m->pg_init_wait);
233 	}
234 
235 	dm_table_set_type(ti->table, m->queue_mode);
236 
237 	return 0;
238 }
239 
240 static void free_multipath(struct multipath *m)
241 {
242 	struct priority_group *pg, *tmp;
243 
244 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
245 		list_del(&pg->list);
246 		free_priority_group(pg, m->ti);
247 	}
248 
249 	kfree(m->hw_handler_name);
250 	kfree(m->hw_handler_params);
251 	mutex_destroy(&m->work_mutex);
252 	kfree(m);
253 }
254 
255 static struct dm_mpath_io *get_mpio(union map_info *info)
256 {
257 	return info->ptr;
258 }
259 
260 static size_t multipath_per_bio_data_size(void)
261 {
262 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
263 }
264 
265 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
266 {
267 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
268 }
269 
270 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
271 {
272 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
273 	void *bio_details = mpio + 1;
274 	return bio_details;
275 }
276 
277 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
278 {
279 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
280 	struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
281 
282 	mpio->nr_bytes = bio->bi_iter.bi_size;
283 	mpio->pgpath = NULL;
284 	*mpio_p = mpio;
285 
286 	dm_bio_record(bio_details, bio);
287 }
288 
289 /*-----------------------------------------------
290  * Path selection
291  *-----------------------------------------------*/
292 
293 static int __pg_init_all_paths(struct multipath *m)
294 {
295 	struct pgpath *pgpath;
296 	unsigned long pg_init_delay = 0;
297 
298 	lockdep_assert_held(&m->lock);
299 
300 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
301 		return 0;
302 
303 	atomic_inc(&m->pg_init_count);
304 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
305 
306 	/* Check here to reset pg_init_required */
307 	if (!m->current_pg)
308 		return 0;
309 
310 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
311 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
312 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
313 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
314 		/* Skip failed paths */
315 		if (!pgpath->is_active)
316 			continue;
317 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
318 				       pg_init_delay))
319 			atomic_inc(&m->pg_init_in_progress);
320 	}
321 	return atomic_read(&m->pg_init_in_progress);
322 }
323 
324 static int pg_init_all_paths(struct multipath *m)
325 {
326 	int ret;
327 	unsigned long flags;
328 
329 	spin_lock_irqsave(&m->lock, flags);
330 	ret = __pg_init_all_paths(m);
331 	spin_unlock_irqrestore(&m->lock, flags);
332 
333 	return ret;
334 }
335 
336 static void __switch_pg(struct multipath *m, struct priority_group *pg)
337 {
338 	m->current_pg = pg;
339 
340 	if (m->queue_mode == DM_TYPE_NVME_BIO_BASED)
341 		return;
342 
343 	/* Must we initialise the PG first, and queue I/O till it's ready? */
344 	if (m->hw_handler_name) {
345 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
346 		set_bit(MPATHF_QUEUE_IO, &m->flags);
347 	} else {
348 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
349 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
350 	}
351 
352 	atomic_set(&m->pg_init_count, 0);
353 }
354 
355 static struct pgpath *choose_path_in_pg(struct multipath *m,
356 					struct priority_group *pg,
357 					size_t nr_bytes)
358 {
359 	unsigned long flags;
360 	struct dm_path *path;
361 	struct pgpath *pgpath;
362 
363 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
364 	if (!path)
365 		return ERR_PTR(-ENXIO);
366 
367 	pgpath = path_to_pgpath(path);
368 
369 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
370 		/* Only update current_pgpath if pg changed */
371 		spin_lock_irqsave(&m->lock, flags);
372 		m->current_pgpath = pgpath;
373 		__switch_pg(m, pg);
374 		spin_unlock_irqrestore(&m->lock, flags);
375 	}
376 
377 	return pgpath;
378 }
379 
380 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
381 {
382 	unsigned long flags;
383 	struct priority_group *pg;
384 	struct pgpath *pgpath;
385 	unsigned bypassed = 1;
386 
387 	if (!atomic_read(&m->nr_valid_paths)) {
388 		if (m->queue_mode != DM_TYPE_NVME_BIO_BASED)
389 			clear_bit(MPATHF_QUEUE_IO, &m->flags);
390 		goto failed;
391 	}
392 
393 	/* Were we instructed to switch PG? */
394 	if (READ_ONCE(m->next_pg)) {
395 		spin_lock_irqsave(&m->lock, flags);
396 		pg = m->next_pg;
397 		if (!pg) {
398 			spin_unlock_irqrestore(&m->lock, flags);
399 			goto check_current_pg;
400 		}
401 		m->next_pg = NULL;
402 		spin_unlock_irqrestore(&m->lock, flags);
403 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
404 		if (!IS_ERR_OR_NULL(pgpath))
405 			return pgpath;
406 	}
407 
408 	/* Don't change PG until it has no remaining paths */
409 check_current_pg:
410 	pg = READ_ONCE(m->current_pg);
411 	if (pg) {
412 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
413 		if (!IS_ERR_OR_NULL(pgpath))
414 			return pgpath;
415 	}
416 
417 	/*
418 	 * Loop through priority groups until we find a valid path.
419 	 * First time we skip PGs marked 'bypassed'.
420 	 * Second time we only try the ones we skipped, but set
421 	 * pg_init_delay_retry so we do not hammer controllers.
422 	 */
423 	do {
424 		list_for_each_entry(pg, &m->priority_groups, list) {
425 			if (pg->bypassed == !!bypassed)
426 				continue;
427 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
428 			if (!IS_ERR_OR_NULL(pgpath)) {
429 				if (!bypassed)
430 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
431 				return pgpath;
432 			}
433 		}
434 	} while (bypassed--);
435 
436 failed:
437 	spin_lock_irqsave(&m->lock, flags);
438 	m->current_pgpath = NULL;
439 	m->current_pg = NULL;
440 	spin_unlock_irqrestore(&m->lock, flags);
441 
442 	return NULL;
443 }
444 
445 /*
446  * dm_report_EIO() is a macro instead of a function to make pr_debug()
447  * report the function name and line number of the function from which
448  * it has been invoked.
449  */
450 #define dm_report_EIO(m)						\
451 do {									\
452 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
453 									\
454 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
455 		 dm_device_name(md),					\
456 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
457 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
458 		 dm_noflush_suspending((m)->ti));			\
459 } while (0)
460 
461 /*
462  * Check whether bios must be queued in the device-mapper core rather
463  * than here in the target.
464  *
465  * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold
466  * the same value then we are not between multipath_presuspend()
467  * and multipath_resume() calls and we have no need to check
468  * for the DMF_NOFLUSH_SUSPENDING flag.
469  */
470 static bool __must_push_back(struct multipath *m, unsigned long flags)
471 {
472 	return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) !=
473 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) &&
474 		dm_noflush_suspending(m->ti));
475 }
476 
477 /*
478  * Following functions use READ_ONCE to get atomic access to
479  * all m->flags to avoid taking spinlock
480  */
481 static bool must_push_back_rq(struct multipath *m)
482 {
483 	unsigned long flags = READ_ONCE(m->flags);
484 	return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags);
485 }
486 
487 static bool must_push_back_bio(struct multipath *m)
488 {
489 	unsigned long flags = READ_ONCE(m->flags);
490 	return __must_push_back(m, flags);
491 }
492 
493 /*
494  * Map cloned requests (request-based multipath)
495  */
496 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
497 				   union map_info *map_context,
498 				   struct request **__clone)
499 {
500 	struct multipath *m = ti->private;
501 	size_t nr_bytes = blk_rq_bytes(rq);
502 	struct pgpath *pgpath;
503 	struct block_device *bdev;
504 	struct dm_mpath_io *mpio = get_mpio(map_context);
505 	struct request_queue *q;
506 	struct request *clone;
507 
508 	/* Do we need to select a new pgpath? */
509 	pgpath = READ_ONCE(m->current_pgpath);
510 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
511 		pgpath = choose_pgpath(m, nr_bytes);
512 
513 	if (!pgpath) {
514 		if (must_push_back_rq(m))
515 			return DM_MAPIO_DELAY_REQUEUE;
516 		dm_report_EIO(m);	/* Failed */
517 		return DM_MAPIO_KILL;
518 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
519 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
520 		pg_init_all_paths(m);
521 		return DM_MAPIO_DELAY_REQUEUE;
522 	}
523 
524 	mpio->pgpath = pgpath;
525 	mpio->nr_bytes = nr_bytes;
526 
527 	bdev = pgpath->path.dev->bdev;
528 	q = bdev_get_queue(bdev);
529 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC);
530 	if (IS_ERR(clone)) {
531 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
532 		if (blk_queue_dying(q)) {
533 			atomic_inc(&m->pg_init_in_progress);
534 			activate_or_offline_path(pgpath);
535 			return DM_MAPIO_DELAY_REQUEUE;
536 		}
537 
538 		/*
539 		 * blk-mq's SCHED_RESTART can cover this requeue, so we
540 		 * needn't deal with it by DELAY_REQUEUE. More importantly,
541 		 * we have to return DM_MAPIO_REQUEUE so that blk-mq can
542 		 * get the queue busy feedback (via BLK_STS_RESOURCE),
543 		 * otherwise I/O merging can suffer.
544 		 */
545 		if (q->mq_ops)
546 			return DM_MAPIO_REQUEUE;
547 		else
548 			return DM_MAPIO_DELAY_REQUEUE;
549 	}
550 	clone->bio = clone->biotail = NULL;
551 	clone->rq_disk = bdev->bd_disk;
552 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
553 	*__clone = clone;
554 
555 	if (pgpath->pg->ps.type->start_io)
556 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
557 					      &pgpath->path,
558 					      nr_bytes);
559 	return DM_MAPIO_REMAPPED;
560 }
561 
562 static void multipath_release_clone(struct request *clone)
563 {
564 	blk_put_request(clone);
565 }
566 
567 /*
568  * Map cloned bios (bio-based multipath)
569  */
570 
571 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
572 {
573 	struct pgpath *pgpath;
574 	unsigned long flags;
575 	bool queue_io;
576 
577 	/* Do we need to select a new pgpath? */
578 	pgpath = READ_ONCE(m->current_pgpath);
579 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
580 	if (!pgpath || !queue_io)
581 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
582 
583 	if ((pgpath && queue_io) ||
584 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
585 		/* Queue for the daemon to resubmit */
586 		spin_lock_irqsave(&m->lock, flags);
587 		bio_list_add(&m->queued_bios, bio);
588 		spin_unlock_irqrestore(&m->lock, flags);
589 
590 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
591 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
592 			pg_init_all_paths(m);
593 		else if (!queue_io)
594 			queue_work(kmultipathd, &m->process_queued_bios);
595 
596 		return ERR_PTR(-EAGAIN);
597 	}
598 
599 	return pgpath;
600 }
601 
602 static struct pgpath *__map_bio_nvme(struct multipath *m, struct bio *bio)
603 {
604 	struct pgpath *pgpath;
605 	unsigned long flags;
606 
607 	/* Do we need to select a new pgpath? */
608 	/*
609 	 * FIXME: currently only switching path if no path (due to failure, etc)
610 	 * - which negates the point of using a path selector
611 	 */
612 	pgpath = READ_ONCE(m->current_pgpath);
613 	if (!pgpath)
614 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
615 
616 	if (!pgpath) {
617 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
618 			/* Queue for the daemon to resubmit */
619 			spin_lock_irqsave(&m->lock, flags);
620 			bio_list_add(&m->queued_bios, bio);
621 			spin_unlock_irqrestore(&m->lock, flags);
622 			queue_work(kmultipathd, &m->process_queued_bios);
623 
624 			return ERR_PTR(-EAGAIN);
625 		}
626 		return NULL;
627 	}
628 
629 	return pgpath;
630 }
631 
632 static int __multipath_map_bio(struct multipath *m, struct bio *bio,
633 			       struct dm_mpath_io *mpio)
634 {
635 	struct pgpath *pgpath;
636 
637 	if (m->queue_mode == DM_TYPE_NVME_BIO_BASED)
638 		pgpath = __map_bio_nvme(m, bio);
639 	else
640 		pgpath = __map_bio(m, bio);
641 
642 	if (IS_ERR(pgpath))
643 		return DM_MAPIO_SUBMITTED;
644 
645 	if (!pgpath) {
646 		if (must_push_back_bio(m))
647 			return DM_MAPIO_REQUEUE;
648 		dm_report_EIO(m);
649 		return DM_MAPIO_KILL;
650 	}
651 
652 	mpio->pgpath = pgpath;
653 
654 	bio->bi_status = 0;
655 	bio_set_dev(bio, pgpath->path.dev->bdev);
656 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
657 
658 	if (pgpath->pg->ps.type->start_io)
659 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
660 					      &pgpath->path,
661 					      mpio->nr_bytes);
662 	return DM_MAPIO_REMAPPED;
663 }
664 
665 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
666 {
667 	struct multipath *m = ti->private;
668 	struct dm_mpath_io *mpio = NULL;
669 
670 	multipath_init_per_bio_data(bio, &mpio);
671 	return __multipath_map_bio(m, bio, mpio);
672 }
673 
674 static void process_queued_io_list(struct multipath *m)
675 {
676 	if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED)
677 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
678 	else if (m->queue_mode == DM_TYPE_BIO_BASED ||
679 		 m->queue_mode == DM_TYPE_NVME_BIO_BASED)
680 		queue_work(kmultipathd, &m->process_queued_bios);
681 }
682 
683 static void process_queued_bios(struct work_struct *work)
684 {
685 	int r;
686 	unsigned long flags;
687 	struct bio *bio;
688 	struct bio_list bios;
689 	struct blk_plug plug;
690 	struct multipath *m =
691 		container_of(work, struct multipath, process_queued_bios);
692 
693 	bio_list_init(&bios);
694 
695 	spin_lock_irqsave(&m->lock, flags);
696 
697 	if (bio_list_empty(&m->queued_bios)) {
698 		spin_unlock_irqrestore(&m->lock, flags);
699 		return;
700 	}
701 
702 	bio_list_merge(&bios, &m->queued_bios);
703 	bio_list_init(&m->queued_bios);
704 
705 	spin_unlock_irqrestore(&m->lock, flags);
706 
707 	blk_start_plug(&plug);
708 	while ((bio = bio_list_pop(&bios))) {
709 		struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
710 		dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
711 		r = __multipath_map_bio(m, bio, mpio);
712 		switch (r) {
713 		case DM_MAPIO_KILL:
714 			bio->bi_status = BLK_STS_IOERR;
715 			bio_endio(bio);
716 			break;
717 		case DM_MAPIO_REQUEUE:
718 			bio->bi_status = BLK_STS_DM_REQUEUE;
719 			bio_endio(bio);
720 			break;
721 		case DM_MAPIO_REMAPPED:
722 			generic_make_request(bio);
723 			break;
724 		case 0:
725 			break;
726 		default:
727 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
728 		}
729 	}
730 	blk_finish_plug(&plug);
731 }
732 
733 /*
734  * If we run out of usable paths, should we queue I/O or error it?
735  */
736 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
737 			    bool save_old_value)
738 {
739 	unsigned long flags;
740 
741 	spin_lock_irqsave(&m->lock, flags);
742 	assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags,
743 		   (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
744 		   (!save_old_value && queue_if_no_path));
745 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path);
746 	spin_unlock_irqrestore(&m->lock, flags);
747 
748 	if (!queue_if_no_path) {
749 		dm_table_run_md_queue_async(m->ti->table);
750 		process_queued_io_list(m);
751 	}
752 
753 	return 0;
754 }
755 
756 /*
757  * An event is triggered whenever a path is taken out of use.
758  * Includes path failure and PG bypass.
759  */
760 static void trigger_event(struct work_struct *work)
761 {
762 	struct multipath *m =
763 		container_of(work, struct multipath, trigger_event);
764 
765 	dm_table_event(m->ti->table);
766 }
767 
768 /*-----------------------------------------------------------------
769  * Constructor/argument parsing:
770  * <#multipath feature args> [<arg>]*
771  * <#hw_handler args> [hw_handler [<arg>]*]
772  * <#priority groups>
773  * <initial priority group>
774  *     [<selector> <#selector args> [<arg>]*
775  *      <#paths> <#per-path selector args>
776  *         [<path> [<arg>]* ]+ ]+
777  *---------------------------------------------------------------*/
778 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
779 			       struct dm_target *ti)
780 {
781 	int r;
782 	struct path_selector_type *pst;
783 	unsigned ps_argc;
784 
785 	static const struct dm_arg _args[] = {
786 		{0, 1024, "invalid number of path selector args"},
787 	};
788 
789 	pst = dm_get_path_selector(dm_shift_arg(as));
790 	if (!pst) {
791 		ti->error = "unknown path selector type";
792 		return -EINVAL;
793 	}
794 
795 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
796 	if (r) {
797 		dm_put_path_selector(pst);
798 		return -EINVAL;
799 	}
800 
801 	r = pst->create(&pg->ps, ps_argc, as->argv);
802 	if (r) {
803 		dm_put_path_selector(pst);
804 		ti->error = "path selector constructor failed";
805 		return r;
806 	}
807 
808 	pg->ps.type = pst;
809 	dm_consume_args(as, ps_argc);
810 
811 	return 0;
812 }
813 
814 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m, char **error)
815 {
816 	struct request_queue *q = bdev_get_queue(bdev);
817 	const char *attached_handler_name;
818 	int r;
819 
820 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
821 retain:
822 		attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
823 		if (attached_handler_name) {
824 			/*
825 			 * Clear any hw_handler_params associated with a
826 			 * handler that isn't already attached.
827 			 */
828 			if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) {
829 				kfree(m->hw_handler_params);
830 				m->hw_handler_params = NULL;
831 			}
832 
833 			/*
834 			 * Reset hw_handler_name to match the attached handler
835 			 *
836 			 * NB. This modifies the table line to show the actual
837 			 * handler instead of the original table passed in.
838 			 */
839 			kfree(m->hw_handler_name);
840 			m->hw_handler_name = attached_handler_name;
841 		}
842 	}
843 
844 	if (m->hw_handler_name) {
845 		r = scsi_dh_attach(q, m->hw_handler_name);
846 		if (r == -EBUSY) {
847 			char b[BDEVNAME_SIZE];
848 
849 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
850 			       bdevname(bdev, b));
851 			goto retain;
852 		}
853 		if (r < 0) {
854 			*error = "error attaching hardware handler";
855 			return r;
856 		}
857 
858 		if (m->hw_handler_params) {
859 			r = scsi_dh_set_params(q, m->hw_handler_params);
860 			if (r < 0) {
861 				*error = "unable to set hardware handler parameters";
862 				return r;
863 			}
864 		}
865 	}
866 
867 	return 0;
868 }
869 
870 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
871 				 struct dm_target *ti)
872 {
873 	int r;
874 	struct pgpath *p;
875 	struct multipath *m = ti->private;
876 
877 	/* we need at least a path arg */
878 	if (as->argc < 1) {
879 		ti->error = "no device given";
880 		return ERR_PTR(-EINVAL);
881 	}
882 
883 	p = alloc_pgpath();
884 	if (!p)
885 		return ERR_PTR(-ENOMEM);
886 
887 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
888 			  &p->path.dev);
889 	if (r) {
890 		ti->error = "error getting device";
891 		goto bad;
892 	}
893 
894 	if (m->queue_mode != DM_TYPE_NVME_BIO_BASED) {
895 		INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
896 		r = setup_scsi_dh(p->path.dev->bdev, m, &ti->error);
897 		if (r) {
898 			dm_put_device(ti, p->path.dev);
899 			goto bad;
900 		}
901 	}
902 
903 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
904 	if (r) {
905 		dm_put_device(ti, p->path.dev);
906 		goto bad;
907 	}
908 
909 	return p;
910  bad:
911 	free_pgpath(p);
912 	return ERR_PTR(r);
913 }
914 
915 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
916 						   struct multipath *m)
917 {
918 	static const struct dm_arg _args[] = {
919 		{1, 1024, "invalid number of paths"},
920 		{0, 1024, "invalid number of selector args"}
921 	};
922 
923 	int r;
924 	unsigned i, nr_selector_args, nr_args;
925 	struct priority_group *pg;
926 	struct dm_target *ti = m->ti;
927 
928 	if (as->argc < 2) {
929 		as->argc = 0;
930 		ti->error = "not enough priority group arguments";
931 		return ERR_PTR(-EINVAL);
932 	}
933 
934 	pg = alloc_priority_group();
935 	if (!pg) {
936 		ti->error = "couldn't allocate priority group";
937 		return ERR_PTR(-ENOMEM);
938 	}
939 	pg->m = m;
940 
941 	r = parse_path_selector(as, pg, ti);
942 	if (r)
943 		goto bad;
944 
945 	/*
946 	 * read the paths
947 	 */
948 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
949 	if (r)
950 		goto bad;
951 
952 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
953 	if (r)
954 		goto bad;
955 
956 	nr_args = 1 + nr_selector_args;
957 	for (i = 0; i < pg->nr_pgpaths; i++) {
958 		struct pgpath *pgpath;
959 		struct dm_arg_set path_args;
960 
961 		if (as->argc < nr_args) {
962 			ti->error = "not enough path parameters";
963 			r = -EINVAL;
964 			goto bad;
965 		}
966 
967 		path_args.argc = nr_args;
968 		path_args.argv = as->argv;
969 
970 		pgpath = parse_path(&path_args, &pg->ps, ti);
971 		if (IS_ERR(pgpath)) {
972 			r = PTR_ERR(pgpath);
973 			goto bad;
974 		}
975 
976 		pgpath->pg = pg;
977 		list_add_tail(&pgpath->list, &pg->pgpaths);
978 		dm_consume_args(as, nr_args);
979 	}
980 
981 	return pg;
982 
983  bad:
984 	free_priority_group(pg, ti);
985 	return ERR_PTR(r);
986 }
987 
988 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
989 {
990 	unsigned hw_argc;
991 	int ret;
992 	struct dm_target *ti = m->ti;
993 
994 	static const struct dm_arg _args[] = {
995 		{0, 1024, "invalid number of hardware handler args"},
996 	};
997 
998 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
999 		return -EINVAL;
1000 
1001 	if (!hw_argc)
1002 		return 0;
1003 
1004 	if (m->queue_mode == DM_TYPE_BIO_BASED ||
1005 	    m->queue_mode == DM_TYPE_NVME_BIO_BASED) {
1006 		dm_consume_args(as, hw_argc);
1007 		DMERR("bio-based multipath doesn't allow hardware handler args");
1008 		return 0;
1009 	}
1010 
1011 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
1012 	if (!m->hw_handler_name)
1013 		return -EINVAL;
1014 
1015 	if (hw_argc > 1) {
1016 		char *p;
1017 		int i, j, len = 4;
1018 
1019 		for (i = 0; i <= hw_argc - 2; i++)
1020 			len += strlen(as->argv[i]) + 1;
1021 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
1022 		if (!p) {
1023 			ti->error = "memory allocation failed";
1024 			ret = -ENOMEM;
1025 			goto fail;
1026 		}
1027 		j = sprintf(p, "%d", hw_argc - 1);
1028 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
1029 			j = sprintf(p, "%s", as->argv[i]);
1030 	}
1031 	dm_consume_args(as, hw_argc - 1);
1032 
1033 	return 0;
1034 fail:
1035 	kfree(m->hw_handler_name);
1036 	m->hw_handler_name = NULL;
1037 	return ret;
1038 }
1039 
1040 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1041 {
1042 	int r;
1043 	unsigned argc;
1044 	struct dm_target *ti = m->ti;
1045 	const char *arg_name;
1046 
1047 	static const struct dm_arg _args[] = {
1048 		{0, 8, "invalid number of feature args"},
1049 		{1, 50, "pg_init_retries must be between 1 and 50"},
1050 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1051 	};
1052 
1053 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1054 	if (r)
1055 		return -EINVAL;
1056 
1057 	if (!argc)
1058 		return 0;
1059 
1060 	do {
1061 		arg_name = dm_shift_arg(as);
1062 		argc--;
1063 
1064 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
1065 			r = queue_if_no_path(m, true, false);
1066 			continue;
1067 		}
1068 
1069 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1070 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
1071 			continue;
1072 		}
1073 
1074 		if (!strcasecmp(arg_name, "pg_init_retries") &&
1075 		    (argc >= 1)) {
1076 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1077 			argc--;
1078 			continue;
1079 		}
1080 
1081 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1082 		    (argc >= 1)) {
1083 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1084 			argc--;
1085 			continue;
1086 		}
1087 
1088 		if (!strcasecmp(arg_name, "queue_mode") &&
1089 		    (argc >= 1)) {
1090 			const char *queue_mode_name = dm_shift_arg(as);
1091 
1092 			if (!strcasecmp(queue_mode_name, "bio"))
1093 				m->queue_mode = DM_TYPE_BIO_BASED;
1094 			else if (!strcasecmp(queue_mode_name, "nvme"))
1095 				m->queue_mode = DM_TYPE_NVME_BIO_BASED;
1096 			else if (!strcasecmp(queue_mode_name, "rq"))
1097 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1098 			else if (!strcasecmp(queue_mode_name, "mq"))
1099 				m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
1100 			else {
1101 				ti->error = "Unknown 'queue_mode' requested";
1102 				r = -EINVAL;
1103 			}
1104 			argc--;
1105 			continue;
1106 		}
1107 
1108 		ti->error = "Unrecognised multipath feature request";
1109 		r = -EINVAL;
1110 	} while (argc && !r);
1111 
1112 	return r;
1113 }
1114 
1115 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1116 {
1117 	/* target arguments */
1118 	static const struct dm_arg _args[] = {
1119 		{0, 1024, "invalid number of priority groups"},
1120 		{0, 1024, "invalid initial priority group number"},
1121 	};
1122 
1123 	int r;
1124 	struct multipath *m;
1125 	struct dm_arg_set as;
1126 	unsigned pg_count = 0;
1127 	unsigned next_pg_num;
1128 
1129 	as.argc = argc;
1130 	as.argv = argv;
1131 
1132 	m = alloc_multipath(ti);
1133 	if (!m) {
1134 		ti->error = "can't allocate multipath";
1135 		return -EINVAL;
1136 	}
1137 
1138 	r = parse_features(&as, m);
1139 	if (r)
1140 		goto bad;
1141 
1142 	r = alloc_multipath_stage2(ti, m);
1143 	if (r)
1144 		goto bad;
1145 
1146 	r = parse_hw_handler(&as, m);
1147 	if (r)
1148 		goto bad;
1149 
1150 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1151 	if (r)
1152 		goto bad;
1153 
1154 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1155 	if (r)
1156 		goto bad;
1157 
1158 	if ((!m->nr_priority_groups && next_pg_num) ||
1159 	    (m->nr_priority_groups && !next_pg_num)) {
1160 		ti->error = "invalid initial priority group";
1161 		r = -EINVAL;
1162 		goto bad;
1163 	}
1164 
1165 	/* parse the priority groups */
1166 	while (as.argc) {
1167 		struct priority_group *pg;
1168 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1169 
1170 		pg = parse_priority_group(&as, m);
1171 		if (IS_ERR(pg)) {
1172 			r = PTR_ERR(pg);
1173 			goto bad;
1174 		}
1175 
1176 		nr_valid_paths += pg->nr_pgpaths;
1177 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1178 
1179 		list_add_tail(&pg->list, &m->priority_groups);
1180 		pg_count++;
1181 		pg->pg_num = pg_count;
1182 		if (!--next_pg_num)
1183 			m->next_pg = pg;
1184 	}
1185 
1186 	if (pg_count != m->nr_priority_groups) {
1187 		ti->error = "priority group count mismatch";
1188 		r = -EINVAL;
1189 		goto bad;
1190 	}
1191 
1192 	ti->num_flush_bios = 1;
1193 	ti->num_discard_bios = 1;
1194 	ti->num_write_same_bios = 1;
1195 	ti->num_write_zeroes_bios = 1;
1196 	if (m->queue_mode == DM_TYPE_BIO_BASED || m->queue_mode == DM_TYPE_NVME_BIO_BASED)
1197 		ti->per_io_data_size = multipath_per_bio_data_size();
1198 	else
1199 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1200 
1201 	return 0;
1202 
1203  bad:
1204 	free_multipath(m);
1205 	return r;
1206 }
1207 
1208 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1209 {
1210 	DEFINE_WAIT(wait);
1211 
1212 	while (1) {
1213 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1214 
1215 		if (!atomic_read(&m->pg_init_in_progress))
1216 			break;
1217 
1218 		io_schedule();
1219 	}
1220 	finish_wait(&m->pg_init_wait, &wait);
1221 }
1222 
1223 static void flush_multipath_work(struct multipath *m)
1224 {
1225 	if (m->hw_handler_name) {
1226 		set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1227 		smp_mb__after_atomic();
1228 
1229 		flush_workqueue(kmpath_handlerd);
1230 		multipath_wait_for_pg_init_completion(m);
1231 
1232 		clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1233 		smp_mb__after_atomic();
1234 	}
1235 
1236 	flush_workqueue(kmultipathd);
1237 	flush_work(&m->trigger_event);
1238 }
1239 
1240 static void multipath_dtr(struct dm_target *ti)
1241 {
1242 	struct multipath *m = ti->private;
1243 
1244 	flush_multipath_work(m);
1245 	free_multipath(m);
1246 }
1247 
1248 /*
1249  * Take a path out of use.
1250  */
1251 static int fail_path(struct pgpath *pgpath)
1252 {
1253 	unsigned long flags;
1254 	struct multipath *m = pgpath->pg->m;
1255 
1256 	spin_lock_irqsave(&m->lock, flags);
1257 
1258 	if (!pgpath->is_active)
1259 		goto out;
1260 
1261 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1262 
1263 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1264 	pgpath->is_active = false;
1265 	pgpath->fail_count++;
1266 
1267 	atomic_dec(&m->nr_valid_paths);
1268 
1269 	if (pgpath == m->current_pgpath)
1270 		m->current_pgpath = NULL;
1271 
1272 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1273 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1274 
1275 	schedule_work(&m->trigger_event);
1276 
1277 out:
1278 	spin_unlock_irqrestore(&m->lock, flags);
1279 
1280 	return 0;
1281 }
1282 
1283 /*
1284  * Reinstate a previously-failed path
1285  */
1286 static int reinstate_path(struct pgpath *pgpath)
1287 {
1288 	int r = 0, run_queue = 0;
1289 	unsigned long flags;
1290 	struct multipath *m = pgpath->pg->m;
1291 	unsigned nr_valid_paths;
1292 
1293 	spin_lock_irqsave(&m->lock, flags);
1294 
1295 	if (pgpath->is_active)
1296 		goto out;
1297 
1298 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1299 
1300 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1301 	if (r)
1302 		goto out;
1303 
1304 	pgpath->is_active = true;
1305 
1306 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1307 	if (nr_valid_paths == 1) {
1308 		m->current_pgpath = NULL;
1309 		run_queue = 1;
1310 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1311 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1312 			atomic_inc(&m->pg_init_in_progress);
1313 	}
1314 
1315 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1316 		       pgpath->path.dev->name, nr_valid_paths);
1317 
1318 	schedule_work(&m->trigger_event);
1319 
1320 out:
1321 	spin_unlock_irqrestore(&m->lock, flags);
1322 	if (run_queue) {
1323 		dm_table_run_md_queue_async(m->ti->table);
1324 		process_queued_io_list(m);
1325 	}
1326 
1327 	return r;
1328 }
1329 
1330 /*
1331  * Fail or reinstate all paths that match the provided struct dm_dev.
1332  */
1333 static int action_dev(struct multipath *m, struct dm_dev *dev,
1334 		      action_fn action)
1335 {
1336 	int r = -EINVAL;
1337 	struct pgpath *pgpath;
1338 	struct priority_group *pg;
1339 
1340 	list_for_each_entry(pg, &m->priority_groups, list) {
1341 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1342 			if (pgpath->path.dev == dev)
1343 				r = action(pgpath);
1344 		}
1345 	}
1346 
1347 	return r;
1348 }
1349 
1350 /*
1351  * Temporarily try to avoid having to use the specified PG
1352  */
1353 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1354 		      bool bypassed)
1355 {
1356 	unsigned long flags;
1357 
1358 	spin_lock_irqsave(&m->lock, flags);
1359 
1360 	pg->bypassed = bypassed;
1361 	m->current_pgpath = NULL;
1362 	m->current_pg = NULL;
1363 
1364 	spin_unlock_irqrestore(&m->lock, flags);
1365 
1366 	schedule_work(&m->trigger_event);
1367 }
1368 
1369 /*
1370  * Switch to using the specified PG from the next I/O that gets mapped
1371  */
1372 static int switch_pg_num(struct multipath *m, const char *pgstr)
1373 {
1374 	struct priority_group *pg;
1375 	unsigned pgnum;
1376 	unsigned long flags;
1377 	char dummy;
1378 
1379 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1380 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1381 		DMWARN("invalid PG number supplied to switch_pg_num");
1382 		return -EINVAL;
1383 	}
1384 
1385 	spin_lock_irqsave(&m->lock, flags);
1386 	list_for_each_entry(pg, &m->priority_groups, list) {
1387 		pg->bypassed = false;
1388 		if (--pgnum)
1389 			continue;
1390 
1391 		m->current_pgpath = NULL;
1392 		m->current_pg = NULL;
1393 		m->next_pg = pg;
1394 	}
1395 	spin_unlock_irqrestore(&m->lock, flags);
1396 
1397 	schedule_work(&m->trigger_event);
1398 	return 0;
1399 }
1400 
1401 /*
1402  * Set/clear bypassed status of a PG.
1403  * PGs are numbered upwards from 1 in the order they were declared.
1404  */
1405 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1406 {
1407 	struct priority_group *pg;
1408 	unsigned pgnum;
1409 	char dummy;
1410 
1411 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1412 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1413 		DMWARN("invalid PG number supplied to bypass_pg");
1414 		return -EINVAL;
1415 	}
1416 
1417 	list_for_each_entry(pg, &m->priority_groups, list) {
1418 		if (!--pgnum)
1419 			break;
1420 	}
1421 
1422 	bypass_pg(m, pg, bypassed);
1423 	return 0;
1424 }
1425 
1426 /*
1427  * Should we retry pg_init immediately?
1428  */
1429 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1430 {
1431 	unsigned long flags;
1432 	bool limit_reached = false;
1433 
1434 	spin_lock_irqsave(&m->lock, flags);
1435 
1436 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1437 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1438 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1439 	else
1440 		limit_reached = true;
1441 
1442 	spin_unlock_irqrestore(&m->lock, flags);
1443 
1444 	return limit_reached;
1445 }
1446 
1447 static void pg_init_done(void *data, int errors)
1448 {
1449 	struct pgpath *pgpath = data;
1450 	struct priority_group *pg = pgpath->pg;
1451 	struct multipath *m = pg->m;
1452 	unsigned long flags;
1453 	bool delay_retry = false;
1454 
1455 	/* device or driver problems */
1456 	switch (errors) {
1457 	case SCSI_DH_OK:
1458 		break;
1459 	case SCSI_DH_NOSYS:
1460 		if (!m->hw_handler_name) {
1461 			errors = 0;
1462 			break;
1463 		}
1464 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1465 		      "Error %d.", m->hw_handler_name, errors);
1466 		/*
1467 		 * Fail path for now, so we do not ping pong
1468 		 */
1469 		fail_path(pgpath);
1470 		break;
1471 	case SCSI_DH_DEV_TEMP_BUSY:
1472 		/*
1473 		 * Probably doing something like FW upgrade on the
1474 		 * controller so try the other pg.
1475 		 */
1476 		bypass_pg(m, pg, true);
1477 		break;
1478 	case SCSI_DH_RETRY:
1479 		/* Wait before retrying. */
1480 		delay_retry = 1;
1481 		/* fall through */
1482 	case SCSI_DH_IMM_RETRY:
1483 	case SCSI_DH_RES_TEMP_UNAVAIL:
1484 		if (pg_init_limit_reached(m, pgpath))
1485 			fail_path(pgpath);
1486 		errors = 0;
1487 		break;
1488 	case SCSI_DH_DEV_OFFLINED:
1489 	default:
1490 		/*
1491 		 * We probably do not want to fail the path for a device
1492 		 * error, but this is what the old dm did. In future
1493 		 * patches we can do more advanced handling.
1494 		 */
1495 		fail_path(pgpath);
1496 	}
1497 
1498 	spin_lock_irqsave(&m->lock, flags);
1499 	if (errors) {
1500 		if (pgpath == m->current_pgpath) {
1501 			DMERR("Could not failover device. Error %d.", errors);
1502 			m->current_pgpath = NULL;
1503 			m->current_pg = NULL;
1504 		}
1505 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1506 		pg->bypassed = false;
1507 
1508 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1509 		/* Activations of other paths are still on going */
1510 		goto out;
1511 
1512 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1513 		if (delay_retry)
1514 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1515 		else
1516 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1517 
1518 		if (__pg_init_all_paths(m))
1519 			goto out;
1520 	}
1521 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1522 
1523 	process_queued_io_list(m);
1524 
1525 	/*
1526 	 * Wake up any thread waiting to suspend.
1527 	 */
1528 	wake_up(&m->pg_init_wait);
1529 
1530 out:
1531 	spin_unlock_irqrestore(&m->lock, flags);
1532 }
1533 
1534 static void activate_or_offline_path(struct pgpath *pgpath)
1535 {
1536 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1537 
1538 	if (pgpath->is_active && !blk_queue_dying(q))
1539 		scsi_dh_activate(q, pg_init_done, pgpath);
1540 	else
1541 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1542 }
1543 
1544 static void activate_path_work(struct work_struct *work)
1545 {
1546 	struct pgpath *pgpath =
1547 		container_of(work, struct pgpath, activate_path.work);
1548 
1549 	activate_or_offline_path(pgpath);
1550 }
1551 
1552 static int noretry_error(blk_status_t error)
1553 {
1554 	switch (error) {
1555 	case BLK_STS_NOTSUPP:
1556 	case BLK_STS_NOSPC:
1557 	case BLK_STS_TARGET:
1558 	case BLK_STS_NEXUS:
1559 	case BLK_STS_MEDIUM:
1560 		return 1;
1561 	}
1562 
1563 	/* Anything else could be a path failure, so should be retried */
1564 	return 0;
1565 }
1566 
1567 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1568 			    blk_status_t error, union map_info *map_context)
1569 {
1570 	struct dm_mpath_io *mpio = get_mpio(map_context);
1571 	struct pgpath *pgpath = mpio->pgpath;
1572 	int r = DM_ENDIO_DONE;
1573 
1574 	/*
1575 	 * We don't queue any clone request inside the multipath target
1576 	 * during end I/O handling, since those clone requests don't have
1577 	 * bio clones.  If we queue them inside the multipath target,
1578 	 * we need to make bio clones, that requires memory allocation.
1579 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1580 	 *  don't have bio clones.)
1581 	 * Instead of queueing the clone request here, we queue the original
1582 	 * request into dm core, which will remake a clone request and
1583 	 * clone bios for it and resubmit it later.
1584 	 */
1585 	if (error && !noretry_error(error)) {
1586 		struct multipath *m = ti->private;
1587 
1588 		if (error == BLK_STS_RESOURCE)
1589 			r = DM_ENDIO_DELAY_REQUEUE;
1590 		else
1591 			r = DM_ENDIO_REQUEUE;
1592 
1593 		if (pgpath)
1594 			fail_path(pgpath);
1595 
1596 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1597 		    !must_push_back_rq(m)) {
1598 			if (error == BLK_STS_IOERR)
1599 				dm_report_EIO(m);
1600 			/* complete with the original error */
1601 			r = DM_ENDIO_DONE;
1602 		}
1603 	}
1604 
1605 	if (pgpath) {
1606 		struct path_selector *ps = &pgpath->pg->ps;
1607 
1608 		if (ps->type->end_io)
1609 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1610 	}
1611 
1612 	return r;
1613 }
1614 
1615 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1616 				blk_status_t *error)
1617 {
1618 	struct multipath *m = ti->private;
1619 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1620 	struct pgpath *pgpath = mpio->pgpath;
1621 	unsigned long flags;
1622 	int r = DM_ENDIO_DONE;
1623 
1624 	if (!*error || noretry_error(*error))
1625 		goto done;
1626 
1627 	if (pgpath)
1628 		fail_path(pgpath);
1629 
1630 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1631 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1632 		if (must_push_back_bio(m)) {
1633 			r = DM_ENDIO_REQUEUE;
1634 		} else {
1635 			dm_report_EIO(m);
1636 			*error = BLK_STS_IOERR;
1637 		}
1638 		goto done;
1639 	}
1640 
1641 	spin_lock_irqsave(&m->lock, flags);
1642 	bio_list_add(&m->queued_bios, clone);
1643 	spin_unlock_irqrestore(&m->lock, flags);
1644 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1645 		queue_work(kmultipathd, &m->process_queued_bios);
1646 
1647 	r = DM_ENDIO_INCOMPLETE;
1648 done:
1649 	if (pgpath) {
1650 		struct path_selector *ps = &pgpath->pg->ps;
1651 
1652 		if (ps->type->end_io)
1653 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1654 	}
1655 
1656 	return r;
1657 }
1658 
1659 /*
1660  * Suspend can't complete until all the I/O is processed so if
1661  * the last path fails we must error any remaining I/O.
1662  * Note that if the freeze_bdev fails while suspending, the
1663  * queue_if_no_path state is lost - userspace should reset it.
1664  */
1665 static void multipath_presuspend(struct dm_target *ti)
1666 {
1667 	struct multipath *m = ti->private;
1668 
1669 	queue_if_no_path(m, false, true);
1670 }
1671 
1672 static void multipath_postsuspend(struct dm_target *ti)
1673 {
1674 	struct multipath *m = ti->private;
1675 
1676 	mutex_lock(&m->work_mutex);
1677 	flush_multipath_work(m);
1678 	mutex_unlock(&m->work_mutex);
1679 }
1680 
1681 /*
1682  * Restore the queue_if_no_path setting.
1683  */
1684 static void multipath_resume(struct dm_target *ti)
1685 {
1686 	struct multipath *m = ti->private;
1687 	unsigned long flags;
1688 
1689 	spin_lock_irqsave(&m->lock, flags);
1690 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
1691 		   test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1692 	spin_unlock_irqrestore(&m->lock, flags);
1693 }
1694 
1695 /*
1696  * Info output has the following format:
1697  * num_multipath_feature_args [multipath_feature_args]*
1698  * num_handler_status_args [handler_status_args]*
1699  * num_groups init_group_number
1700  *            [A|D|E num_ps_status_args [ps_status_args]*
1701  *             num_paths num_selector_args
1702  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1703  *
1704  * Table output has the following format (identical to the constructor string):
1705  * num_feature_args [features_args]*
1706  * num_handler_args hw_handler [hw_handler_args]*
1707  * num_groups init_group_number
1708  *     [priority selector-name num_ps_args [ps_args]*
1709  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1710  */
1711 static void multipath_status(struct dm_target *ti, status_type_t type,
1712 			     unsigned status_flags, char *result, unsigned maxlen)
1713 {
1714 	int sz = 0;
1715 	unsigned long flags;
1716 	struct multipath *m = ti->private;
1717 	struct priority_group *pg;
1718 	struct pgpath *p;
1719 	unsigned pg_num;
1720 	char state;
1721 
1722 	spin_lock_irqsave(&m->lock, flags);
1723 
1724 	/* Features */
1725 	if (type == STATUSTYPE_INFO)
1726 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1727 		       atomic_read(&m->pg_init_count));
1728 	else {
1729 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1730 			      (m->pg_init_retries > 0) * 2 +
1731 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1732 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1733 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1734 
1735 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1736 			DMEMIT("queue_if_no_path ");
1737 		if (m->pg_init_retries)
1738 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1739 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1740 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1741 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1742 			DMEMIT("retain_attached_hw_handler ");
1743 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1744 			switch(m->queue_mode) {
1745 			case DM_TYPE_BIO_BASED:
1746 				DMEMIT("queue_mode bio ");
1747 				break;
1748 			case DM_TYPE_NVME_BIO_BASED:
1749 				DMEMIT("queue_mode nvme ");
1750 				break;
1751 			case DM_TYPE_MQ_REQUEST_BASED:
1752 				DMEMIT("queue_mode mq ");
1753 				break;
1754 			default:
1755 				WARN_ON_ONCE(true);
1756 				break;
1757 			}
1758 		}
1759 	}
1760 
1761 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1762 		DMEMIT("0 ");
1763 	else
1764 		DMEMIT("1 %s ", m->hw_handler_name);
1765 
1766 	DMEMIT("%u ", m->nr_priority_groups);
1767 
1768 	if (m->next_pg)
1769 		pg_num = m->next_pg->pg_num;
1770 	else if (m->current_pg)
1771 		pg_num = m->current_pg->pg_num;
1772 	else
1773 		pg_num = (m->nr_priority_groups ? 1 : 0);
1774 
1775 	DMEMIT("%u ", pg_num);
1776 
1777 	switch (type) {
1778 	case STATUSTYPE_INFO:
1779 		list_for_each_entry(pg, &m->priority_groups, list) {
1780 			if (pg->bypassed)
1781 				state = 'D';	/* Disabled */
1782 			else if (pg == m->current_pg)
1783 				state = 'A';	/* Currently Active */
1784 			else
1785 				state = 'E';	/* Enabled */
1786 
1787 			DMEMIT("%c ", state);
1788 
1789 			if (pg->ps.type->status)
1790 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1791 							  result + sz,
1792 							  maxlen - sz);
1793 			else
1794 				DMEMIT("0 ");
1795 
1796 			DMEMIT("%u %u ", pg->nr_pgpaths,
1797 			       pg->ps.type->info_args);
1798 
1799 			list_for_each_entry(p, &pg->pgpaths, list) {
1800 				DMEMIT("%s %s %u ", p->path.dev->name,
1801 				       p->is_active ? "A" : "F",
1802 				       p->fail_count);
1803 				if (pg->ps.type->status)
1804 					sz += pg->ps.type->status(&pg->ps,
1805 					      &p->path, type, result + sz,
1806 					      maxlen - sz);
1807 			}
1808 		}
1809 		break;
1810 
1811 	case STATUSTYPE_TABLE:
1812 		list_for_each_entry(pg, &m->priority_groups, list) {
1813 			DMEMIT("%s ", pg->ps.type->name);
1814 
1815 			if (pg->ps.type->status)
1816 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1817 							  result + sz,
1818 							  maxlen - sz);
1819 			else
1820 				DMEMIT("0 ");
1821 
1822 			DMEMIT("%u %u ", pg->nr_pgpaths,
1823 			       pg->ps.type->table_args);
1824 
1825 			list_for_each_entry(p, &pg->pgpaths, list) {
1826 				DMEMIT("%s ", p->path.dev->name);
1827 				if (pg->ps.type->status)
1828 					sz += pg->ps.type->status(&pg->ps,
1829 					      &p->path, type, result + sz,
1830 					      maxlen - sz);
1831 			}
1832 		}
1833 		break;
1834 	}
1835 
1836 	spin_unlock_irqrestore(&m->lock, flags);
1837 }
1838 
1839 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1840 {
1841 	int r = -EINVAL;
1842 	struct dm_dev *dev;
1843 	struct multipath *m = ti->private;
1844 	action_fn action;
1845 
1846 	mutex_lock(&m->work_mutex);
1847 
1848 	if (dm_suspended(ti)) {
1849 		r = -EBUSY;
1850 		goto out;
1851 	}
1852 
1853 	if (argc == 1) {
1854 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1855 			r = queue_if_no_path(m, true, false);
1856 			goto out;
1857 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1858 			r = queue_if_no_path(m, false, false);
1859 			goto out;
1860 		}
1861 	}
1862 
1863 	if (argc != 2) {
1864 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1865 		goto out;
1866 	}
1867 
1868 	if (!strcasecmp(argv[0], "disable_group")) {
1869 		r = bypass_pg_num(m, argv[1], true);
1870 		goto out;
1871 	} else if (!strcasecmp(argv[0], "enable_group")) {
1872 		r = bypass_pg_num(m, argv[1], false);
1873 		goto out;
1874 	} else if (!strcasecmp(argv[0], "switch_group")) {
1875 		r = switch_pg_num(m, argv[1]);
1876 		goto out;
1877 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1878 		action = reinstate_path;
1879 	else if (!strcasecmp(argv[0], "fail_path"))
1880 		action = fail_path;
1881 	else {
1882 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1883 		goto out;
1884 	}
1885 
1886 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1887 	if (r) {
1888 		DMWARN("message: error getting device %s",
1889 		       argv[1]);
1890 		goto out;
1891 	}
1892 
1893 	r = action_dev(m, dev, action);
1894 
1895 	dm_put_device(ti, dev);
1896 
1897 out:
1898 	mutex_unlock(&m->work_mutex);
1899 	return r;
1900 }
1901 
1902 static int multipath_prepare_ioctl(struct dm_target *ti,
1903 		struct block_device **bdev, fmode_t *mode)
1904 {
1905 	struct multipath *m = ti->private;
1906 	struct pgpath *current_pgpath;
1907 	int r;
1908 
1909 	current_pgpath = READ_ONCE(m->current_pgpath);
1910 	if (!current_pgpath)
1911 		current_pgpath = choose_pgpath(m, 0);
1912 
1913 	if (current_pgpath) {
1914 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1915 			*bdev = current_pgpath->path.dev->bdev;
1916 			*mode = current_pgpath->path.dev->mode;
1917 			r = 0;
1918 		} else {
1919 			/* pg_init has not started or completed */
1920 			r = -ENOTCONN;
1921 		}
1922 	} else {
1923 		/* No path is available */
1924 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1925 			r = -ENOTCONN;
1926 		else
1927 			r = -EIO;
1928 	}
1929 
1930 	if (r == -ENOTCONN) {
1931 		if (!READ_ONCE(m->current_pg)) {
1932 			/* Path status changed, redo selection */
1933 			(void) choose_pgpath(m, 0);
1934 		}
1935 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1936 			pg_init_all_paths(m);
1937 		dm_table_run_md_queue_async(m->ti->table);
1938 		process_queued_io_list(m);
1939 	}
1940 
1941 	/*
1942 	 * Only pass ioctls through if the device sizes match exactly.
1943 	 */
1944 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1945 		return 1;
1946 	return r;
1947 }
1948 
1949 static int multipath_iterate_devices(struct dm_target *ti,
1950 				     iterate_devices_callout_fn fn, void *data)
1951 {
1952 	struct multipath *m = ti->private;
1953 	struct priority_group *pg;
1954 	struct pgpath *p;
1955 	int ret = 0;
1956 
1957 	list_for_each_entry(pg, &m->priority_groups, list) {
1958 		list_for_each_entry(p, &pg->pgpaths, list) {
1959 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1960 			if (ret)
1961 				goto out;
1962 		}
1963 	}
1964 
1965 out:
1966 	return ret;
1967 }
1968 
1969 static int pgpath_busy(struct pgpath *pgpath)
1970 {
1971 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1972 
1973 	return blk_lld_busy(q);
1974 }
1975 
1976 /*
1977  * We return "busy", only when we can map I/Os but underlying devices
1978  * are busy (so even if we map I/Os now, the I/Os will wait on
1979  * the underlying queue).
1980  * In other words, if we want to kill I/Os or queue them inside us
1981  * due to map unavailability, we don't return "busy".  Otherwise,
1982  * dm core won't give us the I/Os and we can't do what we want.
1983  */
1984 static int multipath_busy(struct dm_target *ti)
1985 {
1986 	bool busy = false, has_active = false;
1987 	struct multipath *m = ti->private;
1988 	struct priority_group *pg, *next_pg;
1989 	struct pgpath *pgpath;
1990 
1991 	/* pg_init in progress */
1992 	if (atomic_read(&m->pg_init_in_progress))
1993 		return true;
1994 
1995 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1996 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1997 		return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED);
1998 
1999 	/* Guess which priority_group will be used at next mapping time */
2000 	pg = READ_ONCE(m->current_pg);
2001 	next_pg = READ_ONCE(m->next_pg);
2002 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
2003 		pg = next_pg;
2004 
2005 	if (!pg) {
2006 		/*
2007 		 * We don't know which pg will be used at next mapping time.
2008 		 * We don't call choose_pgpath() here to avoid to trigger
2009 		 * pg_init just by busy checking.
2010 		 * So we don't know whether underlying devices we will be using
2011 		 * at next mapping time are busy or not. Just try mapping.
2012 		 */
2013 		return busy;
2014 	}
2015 
2016 	/*
2017 	 * If there is one non-busy active path at least, the path selector
2018 	 * will be able to select it. So we consider such a pg as not busy.
2019 	 */
2020 	busy = true;
2021 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
2022 		if (pgpath->is_active) {
2023 			has_active = true;
2024 			if (!pgpath_busy(pgpath)) {
2025 				busy = false;
2026 				break;
2027 			}
2028 		}
2029 	}
2030 
2031 	if (!has_active) {
2032 		/*
2033 		 * No active path in this pg, so this pg won't be used and
2034 		 * the current_pg will be changed at next mapping time.
2035 		 * We need to try mapping to determine it.
2036 		 */
2037 		busy = false;
2038 	}
2039 
2040 	return busy;
2041 }
2042 
2043 /*-----------------------------------------------------------------
2044  * Module setup
2045  *---------------------------------------------------------------*/
2046 static struct target_type multipath_target = {
2047 	.name = "multipath",
2048 	.version = {1, 12, 0},
2049 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
2050 	.module = THIS_MODULE,
2051 	.ctr = multipath_ctr,
2052 	.dtr = multipath_dtr,
2053 	.clone_and_map_rq = multipath_clone_and_map,
2054 	.release_clone_rq = multipath_release_clone,
2055 	.rq_end_io = multipath_end_io,
2056 	.map = multipath_map_bio,
2057 	.end_io = multipath_end_io_bio,
2058 	.presuspend = multipath_presuspend,
2059 	.postsuspend = multipath_postsuspend,
2060 	.resume = multipath_resume,
2061 	.status = multipath_status,
2062 	.message = multipath_message,
2063 	.prepare_ioctl = multipath_prepare_ioctl,
2064 	.iterate_devices = multipath_iterate_devices,
2065 	.busy = multipath_busy,
2066 };
2067 
2068 static int __init dm_multipath_init(void)
2069 {
2070 	int r;
2071 
2072 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2073 	if (!kmultipathd) {
2074 		DMERR("failed to create workqueue kmpathd");
2075 		r = -ENOMEM;
2076 		goto bad_alloc_kmultipathd;
2077 	}
2078 
2079 	/*
2080 	 * A separate workqueue is used to handle the device handlers
2081 	 * to avoid overloading existing workqueue. Overloading the
2082 	 * old workqueue would also create a bottleneck in the
2083 	 * path of the storage hardware device activation.
2084 	 */
2085 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2086 						  WQ_MEM_RECLAIM);
2087 	if (!kmpath_handlerd) {
2088 		DMERR("failed to create workqueue kmpath_handlerd");
2089 		r = -ENOMEM;
2090 		goto bad_alloc_kmpath_handlerd;
2091 	}
2092 
2093 	r = dm_register_target(&multipath_target);
2094 	if (r < 0) {
2095 		DMERR("request-based register failed %d", r);
2096 		r = -EINVAL;
2097 		goto bad_register_target;
2098 	}
2099 
2100 	return 0;
2101 
2102 bad_register_target:
2103 	destroy_workqueue(kmpath_handlerd);
2104 bad_alloc_kmpath_handlerd:
2105 	destroy_workqueue(kmultipathd);
2106 bad_alloc_kmultipathd:
2107 	return r;
2108 }
2109 
2110 static void __exit dm_multipath_exit(void)
2111 {
2112 	destroy_workqueue(kmpath_handlerd);
2113 	destroy_workqueue(kmultipathd);
2114 
2115 	dm_unregister_target(&multipath_target);
2116 }
2117 
2118 module_init(dm_multipath_init);
2119 module_exit(dm_multipath_exit);
2120 
2121 MODULE_DESCRIPTION(DM_NAME " multipath target");
2122 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2123 MODULE_LICENSE("GPL");
2124