xref: /openbmc/linux/drivers/md/dm-mpath.c (revision 9a8ac3ae682e8760afebab71556a9a8d1b18f906)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	struct list_head list;
68 	struct dm_target *ti;
69 
70 	const char *hw_handler_name;
71 	char *hw_handler_params;
72 
73 	spinlock_t lock;
74 
75 	unsigned nr_priority_groups;
76 	struct list_head priority_groups;
77 
78 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
79 
80 	struct pgpath *current_pgpath;
81 	struct priority_group *current_pg;
82 	struct priority_group *next_pg;	/* Switch to this PG if set */
83 
84 	unsigned long flags;		/* Multipath state flags */
85 
86 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
87 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
88 
89 	atomic_t nr_valid_paths;	/* Total number of usable paths */
90 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
91 	atomic_t pg_init_count;		/* Number of times pg_init called */
92 
93 	enum dm_queue_mode queue_mode;
94 
95 	struct mutex work_mutex;
96 	struct work_struct trigger_event;
97 
98 	struct work_struct process_queued_bios;
99 	struct bio_list queued_bios;
100 };
101 
102 /*
103  * Context information attached to each io we process.
104  */
105 struct dm_mpath_io {
106 	struct pgpath *pgpath;
107 	size_t nr_bytes;
108 };
109 
110 typedef int (*action_fn) (struct pgpath *pgpath);
111 
112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
113 static void trigger_event(struct work_struct *work);
114 static void activate_or_offline_path(struct pgpath *pgpath);
115 static void activate_path_work(struct work_struct *work);
116 static void process_queued_bios(struct work_struct *work);
117 
118 /*-----------------------------------------------
119  * Multipath state flags.
120  *-----------------------------------------------*/
121 
122 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
123 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
124 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
125 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
126 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
127 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
128 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
129 
130 /*-----------------------------------------------
131  * Allocation routines
132  *-----------------------------------------------*/
133 
134 static struct pgpath *alloc_pgpath(void)
135 {
136 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
137 
138 	if (pgpath) {
139 		pgpath->is_active = true;
140 		INIT_DELAYED_WORK(&pgpath->activate_path, activate_path_work);
141 	}
142 
143 	return pgpath;
144 }
145 
146 static void free_pgpath(struct pgpath *pgpath)
147 {
148 	kfree(pgpath);
149 }
150 
151 static struct priority_group *alloc_priority_group(void)
152 {
153 	struct priority_group *pg;
154 
155 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
156 
157 	if (pg)
158 		INIT_LIST_HEAD(&pg->pgpaths);
159 
160 	return pg;
161 }
162 
163 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
164 {
165 	struct pgpath *pgpath, *tmp;
166 
167 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
168 		list_del(&pgpath->list);
169 		dm_put_device(ti, pgpath->path.dev);
170 		free_pgpath(pgpath);
171 	}
172 }
173 
174 static void free_priority_group(struct priority_group *pg,
175 				struct dm_target *ti)
176 {
177 	struct path_selector *ps = &pg->ps;
178 
179 	if (ps->type) {
180 		ps->type->destroy(ps);
181 		dm_put_path_selector(ps->type);
182 	}
183 
184 	free_pgpaths(&pg->pgpaths, ti);
185 	kfree(pg);
186 }
187 
188 static struct multipath *alloc_multipath(struct dm_target *ti)
189 {
190 	struct multipath *m;
191 
192 	m = kzalloc(sizeof(*m), GFP_KERNEL);
193 	if (m) {
194 		INIT_LIST_HEAD(&m->priority_groups);
195 		spin_lock_init(&m->lock);
196 		set_bit(MPATHF_QUEUE_IO, &m->flags);
197 		atomic_set(&m->nr_valid_paths, 0);
198 		atomic_set(&m->pg_init_in_progress, 0);
199 		atomic_set(&m->pg_init_count, 0);
200 		m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
201 		INIT_WORK(&m->trigger_event, trigger_event);
202 		init_waitqueue_head(&m->pg_init_wait);
203 		mutex_init(&m->work_mutex);
204 
205 		m->queue_mode = DM_TYPE_NONE;
206 
207 		m->ti = ti;
208 		ti->private = m;
209 	}
210 
211 	return m;
212 }
213 
214 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
215 {
216 	if (m->queue_mode == DM_TYPE_NONE) {
217 		/*
218 		 * Default to request-based.
219 		 */
220 		if (dm_use_blk_mq(dm_table_get_md(ti->table)))
221 			m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
222 		else
223 			m->queue_mode = DM_TYPE_REQUEST_BASED;
224 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
225 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
226 		/*
227 		 * bio-based doesn't support any direct scsi_dh management;
228 		 * it just discovers if a scsi_dh is attached.
229 		 */
230 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
231 	}
232 
233 	dm_table_set_type(ti->table, m->queue_mode);
234 
235 	return 0;
236 }
237 
238 static void free_multipath(struct multipath *m)
239 {
240 	struct priority_group *pg, *tmp;
241 
242 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
243 		list_del(&pg->list);
244 		free_priority_group(pg, m->ti);
245 	}
246 
247 	kfree(m->hw_handler_name);
248 	kfree(m->hw_handler_params);
249 	kfree(m);
250 }
251 
252 static struct dm_mpath_io *get_mpio(union map_info *info)
253 {
254 	return info->ptr;
255 }
256 
257 static size_t multipath_per_bio_data_size(void)
258 {
259 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
260 }
261 
262 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
263 {
264 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
265 }
266 
267 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio)
268 {
269 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
270 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
271 	void *bio_details = mpio + 1;
272 
273 	return bio_details;
274 }
275 
276 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p,
277 					struct dm_bio_details **bio_details_p)
278 {
279 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
280 	struct dm_bio_details *bio_details = get_bio_details_from_bio(bio);
281 
282 	memset(mpio, 0, sizeof(*mpio));
283 	memset(bio_details, 0, sizeof(*bio_details));
284 	dm_bio_record(bio_details, bio);
285 
286 	if (mpio_p)
287 		*mpio_p = mpio;
288 	if (bio_details_p)
289 		*bio_details_p = bio_details;
290 }
291 
292 /*-----------------------------------------------
293  * Path selection
294  *-----------------------------------------------*/
295 
296 static int __pg_init_all_paths(struct multipath *m)
297 {
298 	struct pgpath *pgpath;
299 	unsigned long pg_init_delay = 0;
300 
301 	lockdep_assert_held(&m->lock);
302 
303 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
304 		return 0;
305 
306 	atomic_inc(&m->pg_init_count);
307 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
308 
309 	/* Check here to reset pg_init_required */
310 	if (!m->current_pg)
311 		return 0;
312 
313 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
314 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
315 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
316 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
317 		/* Skip failed paths */
318 		if (!pgpath->is_active)
319 			continue;
320 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
321 				       pg_init_delay))
322 			atomic_inc(&m->pg_init_in_progress);
323 	}
324 	return atomic_read(&m->pg_init_in_progress);
325 }
326 
327 static int pg_init_all_paths(struct multipath *m)
328 {
329 	int ret;
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&m->lock, flags);
333 	ret = __pg_init_all_paths(m);
334 	spin_unlock_irqrestore(&m->lock, flags);
335 
336 	return ret;
337 }
338 
339 static void __switch_pg(struct multipath *m, struct priority_group *pg)
340 {
341 	m->current_pg = pg;
342 
343 	/* Must we initialise the PG first, and queue I/O till it's ready? */
344 	if (m->hw_handler_name) {
345 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
346 		set_bit(MPATHF_QUEUE_IO, &m->flags);
347 	} else {
348 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
349 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
350 	}
351 
352 	atomic_set(&m->pg_init_count, 0);
353 }
354 
355 static struct pgpath *choose_path_in_pg(struct multipath *m,
356 					struct priority_group *pg,
357 					size_t nr_bytes)
358 {
359 	unsigned long flags;
360 	struct dm_path *path;
361 	struct pgpath *pgpath;
362 
363 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
364 	if (!path)
365 		return ERR_PTR(-ENXIO);
366 
367 	pgpath = path_to_pgpath(path);
368 
369 	if (unlikely(lockless_dereference(m->current_pg) != pg)) {
370 		/* Only update current_pgpath if pg changed */
371 		spin_lock_irqsave(&m->lock, flags);
372 		m->current_pgpath = pgpath;
373 		__switch_pg(m, pg);
374 		spin_unlock_irqrestore(&m->lock, flags);
375 	}
376 
377 	return pgpath;
378 }
379 
380 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
381 {
382 	unsigned long flags;
383 	struct priority_group *pg;
384 	struct pgpath *pgpath;
385 	unsigned bypassed = 1;
386 
387 	if (!atomic_read(&m->nr_valid_paths)) {
388 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
389 		goto failed;
390 	}
391 
392 	/* Were we instructed to switch PG? */
393 	if (lockless_dereference(m->next_pg)) {
394 		spin_lock_irqsave(&m->lock, flags);
395 		pg = m->next_pg;
396 		if (!pg) {
397 			spin_unlock_irqrestore(&m->lock, flags);
398 			goto check_current_pg;
399 		}
400 		m->next_pg = NULL;
401 		spin_unlock_irqrestore(&m->lock, flags);
402 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
403 		if (!IS_ERR_OR_NULL(pgpath))
404 			return pgpath;
405 	}
406 
407 	/* Don't change PG until it has no remaining paths */
408 check_current_pg:
409 	pg = lockless_dereference(m->current_pg);
410 	if (pg) {
411 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
412 		if (!IS_ERR_OR_NULL(pgpath))
413 			return pgpath;
414 	}
415 
416 	/*
417 	 * Loop through priority groups until we find a valid path.
418 	 * First time we skip PGs marked 'bypassed'.
419 	 * Second time we only try the ones we skipped, but set
420 	 * pg_init_delay_retry so we do not hammer controllers.
421 	 */
422 	do {
423 		list_for_each_entry(pg, &m->priority_groups, list) {
424 			if (pg->bypassed == !!bypassed)
425 				continue;
426 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
427 			if (!IS_ERR_OR_NULL(pgpath)) {
428 				if (!bypassed)
429 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
430 				return pgpath;
431 			}
432 		}
433 	} while (bypassed--);
434 
435 failed:
436 	spin_lock_irqsave(&m->lock, flags);
437 	m->current_pgpath = NULL;
438 	m->current_pg = NULL;
439 	spin_unlock_irqrestore(&m->lock, flags);
440 
441 	return NULL;
442 }
443 
444 /*
445  * Map cloned requests (request-based multipath)
446  */
447 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
448 				   union map_info *map_context,
449 				   struct request **__clone)
450 {
451 	struct multipath *m = ti->private;
452 	size_t nr_bytes = blk_rq_bytes(rq);
453 	struct pgpath *pgpath;
454 	struct block_device *bdev;
455 	struct dm_mpath_io *mpio = get_mpio(map_context);
456 	struct request_queue *q;
457 	struct request *clone;
458 
459 	/* Do we need to select a new pgpath? */
460 	pgpath = lockless_dereference(m->current_pgpath);
461 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
462 		pgpath = choose_pgpath(m, nr_bytes);
463 
464 	if (!pgpath) {
465 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
466 			return DM_MAPIO_DELAY_REQUEUE;
467 		return -EIO;	/* Failed */
468 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
469 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
470 		if (pg_init_all_paths(m))
471 			return DM_MAPIO_DELAY_REQUEUE;
472 		return DM_MAPIO_REQUEUE;
473 	}
474 
475 	memset(mpio, 0, sizeof(*mpio));
476 	mpio->pgpath = pgpath;
477 	mpio->nr_bytes = nr_bytes;
478 
479 	bdev = pgpath->path.dev->bdev;
480 	q = bdev_get_queue(bdev);
481 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC);
482 	if (IS_ERR(clone)) {
483 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
484 		bool queue_dying = blk_queue_dying(q);
485 		DMERR_LIMIT("blk_get_request() returned %ld%s - requeuing",
486 			    PTR_ERR(clone), queue_dying ? " (path offline)" : "");
487 		if (queue_dying) {
488 			atomic_inc(&m->pg_init_in_progress);
489 			activate_or_offline_path(pgpath);
490 			return DM_MAPIO_REQUEUE;
491 		}
492 		return DM_MAPIO_DELAY_REQUEUE;
493 	}
494 	clone->bio = clone->biotail = NULL;
495 	clone->rq_disk = bdev->bd_disk;
496 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
497 	*__clone = clone;
498 
499 	if (pgpath->pg->ps.type->start_io)
500 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
501 					      &pgpath->path,
502 					      nr_bytes);
503 	return DM_MAPIO_REMAPPED;
504 }
505 
506 static void multipath_release_clone(struct request *clone)
507 {
508 	blk_put_request(clone);
509 }
510 
511 /*
512  * Map cloned bios (bio-based multipath)
513  */
514 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio)
515 {
516 	size_t nr_bytes = bio->bi_iter.bi_size;
517 	struct pgpath *pgpath;
518 	unsigned long flags;
519 	bool queue_io;
520 
521 	/* Do we need to select a new pgpath? */
522 	pgpath = lockless_dereference(m->current_pgpath);
523 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
524 	if (!pgpath || !queue_io)
525 		pgpath = choose_pgpath(m, nr_bytes);
526 
527 	if ((pgpath && queue_io) ||
528 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
529 		/* Queue for the daemon to resubmit */
530 		spin_lock_irqsave(&m->lock, flags);
531 		bio_list_add(&m->queued_bios, bio);
532 		spin_unlock_irqrestore(&m->lock, flags);
533 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
534 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
535 			pg_init_all_paths(m);
536 		else if (!queue_io)
537 			queue_work(kmultipathd, &m->process_queued_bios);
538 		return DM_MAPIO_SUBMITTED;
539 	}
540 
541 	if (!pgpath) {
542 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
543 			return DM_MAPIO_REQUEUE;
544 		return -EIO;
545 	}
546 
547 	mpio->pgpath = pgpath;
548 	mpio->nr_bytes = nr_bytes;
549 
550 	bio->bi_error = 0;
551 	bio->bi_bdev = pgpath->path.dev->bdev;
552 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
553 
554 	if (pgpath->pg->ps.type->start_io)
555 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
556 					      &pgpath->path,
557 					      nr_bytes);
558 	return DM_MAPIO_REMAPPED;
559 }
560 
561 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
562 {
563 	struct multipath *m = ti->private;
564 	struct dm_mpath_io *mpio = NULL;
565 
566 	multipath_init_per_bio_data(bio, &mpio, NULL);
567 
568 	return __multipath_map_bio(m, bio, mpio);
569 }
570 
571 static void process_queued_io_list(struct multipath *m)
572 {
573 	if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED)
574 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
575 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
576 		queue_work(kmultipathd, &m->process_queued_bios);
577 }
578 
579 static void process_queued_bios(struct work_struct *work)
580 {
581 	int r;
582 	unsigned long flags;
583 	struct bio *bio;
584 	struct bio_list bios;
585 	struct blk_plug plug;
586 	struct multipath *m =
587 		container_of(work, struct multipath, process_queued_bios);
588 
589 	bio_list_init(&bios);
590 
591 	spin_lock_irqsave(&m->lock, flags);
592 
593 	if (bio_list_empty(&m->queued_bios)) {
594 		spin_unlock_irqrestore(&m->lock, flags);
595 		return;
596 	}
597 
598 	bio_list_merge(&bios, &m->queued_bios);
599 	bio_list_init(&m->queued_bios);
600 
601 	spin_unlock_irqrestore(&m->lock, flags);
602 
603 	blk_start_plug(&plug);
604 	while ((bio = bio_list_pop(&bios))) {
605 		r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio));
606 		if (r < 0 || r == DM_MAPIO_REQUEUE) {
607 			bio->bi_error = r;
608 			bio_endio(bio);
609 		} else if (r == DM_MAPIO_REMAPPED)
610 			generic_make_request(bio);
611 	}
612 	blk_finish_plug(&plug);
613 }
614 
615 static void assign_bit(bool value, long nr, unsigned long *addr)
616 {
617 	if (value)
618 		set_bit(nr, addr);
619 	else
620 		clear_bit(nr, addr);
621 }
622 
623 /*
624  * If we run out of usable paths, should we queue I/O or error it?
625  */
626 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
627 			    bool save_old_value)
628 {
629 	unsigned long flags;
630 
631 	spin_lock_irqsave(&m->lock, flags);
632 	assign_bit((save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
633 		   (!save_old_value && queue_if_no_path),
634 		   MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
635 	assign_bit(queue_if_no_path || dm_noflush_suspending(m->ti),
636 		   MPATHF_QUEUE_IF_NO_PATH, &m->flags);
637 	spin_unlock_irqrestore(&m->lock, flags);
638 
639 	if (!queue_if_no_path) {
640 		dm_table_run_md_queue_async(m->ti->table);
641 		process_queued_io_list(m);
642 	}
643 
644 	return 0;
645 }
646 
647 /*
648  * An event is triggered whenever a path is taken out of use.
649  * Includes path failure and PG bypass.
650  */
651 static void trigger_event(struct work_struct *work)
652 {
653 	struct multipath *m =
654 		container_of(work, struct multipath, trigger_event);
655 
656 	dm_table_event(m->ti->table);
657 }
658 
659 /*-----------------------------------------------------------------
660  * Constructor/argument parsing:
661  * <#multipath feature args> [<arg>]*
662  * <#hw_handler args> [hw_handler [<arg>]*]
663  * <#priority groups>
664  * <initial priority group>
665  *     [<selector> <#selector args> [<arg>]*
666  *      <#paths> <#per-path selector args>
667  *         [<path> [<arg>]* ]+ ]+
668  *---------------------------------------------------------------*/
669 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
670 			       struct dm_target *ti)
671 {
672 	int r;
673 	struct path_selector_type *pst;
674 	unsigned ps_argc;
675 
676 	static struct dm_arg _args[] = {
677 		{0, 1024, "invalid number of path selector args"},
678 	};
679 
680 	pst = dm_get_path_selector(dm_shift_arg(as));
681 	if (!pst) {
682 		ti->error = "unknown path selector type";
683 		return -EINVAL;
684 	}
685 
686 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
687 	if (r) {
688 		dm_put_path_selector(pst);
689 		return -EINVAL;
690 	}
691 
692 	r = pst->create(&pg->ps, ps_argc, as->argv);
693 	if (r) {
694 		dm_put_path_selector(pst);
695 		ti->error = "path selector constructor failed";
696 		return r;
697 	}
698 
699 	pg->ps.type = pst;
700 	dm_consume_args(as, ps_argc);
701 
702 	return 0;
703 }
704 
705 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
706 			       struct dm_target *ti)
707 {
708 	int r;
709 	struct pgpath *p;
710 	struct multipath *m = ti->private;
711 	struct request_queue *q = NULL;
712 	const char *attached_handler_name;
713 
714 	/* we need at least a path arg */
715 	if (as->argc < 1) {
716 		ti->error = "no device given";
717 		return ERR_PTR(-EINVAL);
718 	}
719 
720 	p = alloc_pgpath();
721 	if (!p)
722 		return ERR_PTR(-ENOMEM);
723 
724 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
725 			  &p->path.dev);
726 	if (r) {
727 		ti->error = "error getting device";
728 		goto bad;
729 	}
730 
731 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name)
732 		q = bdev_get_queue(p->path.dev->bdev);
733 
734 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
735 retain:
736 		attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
737 		if (attached_handler_name) {
738 			/*
739 			 * Clear any hw_handler_params associated with a
740 			 * handler that isn't already attached.
741 			 */
742 			if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) {
743 				kfree(m->hw_handler_params);
744 				m->hw_handler_params = NULL;
745 			}
746 
747 			/*
748 			 * Reset hw_handler_name to match the attached handler
749 			 *
750 			 * NB. This modifies the table line to show the actual
751 			 * handler instead of the original table passed in.
752 			 */
753 			kfree(m->hw_handler_name);
754 			m->hw_handler_name = attached_handler_name;
755 		}
756 	}
757 
758 	if (m->hw_handler_name) {
759 		r = scsi_dh_attach(q, m->hw_handler_name);
760 		if (r == -EBUSY) {
761 			char b[BDEVNAME_SIZE];
762 
763 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
764 				bdevname(p->path.dev->bdev, b));
765 			goto retain;
766 		}
767 		if (r < 0) {
768 			ti->error = "error attaching hardware handler";
769 			dm_put_device(ti, p->path.dev);
770 			goto bad;
771 		}
772 
773 		if (m->hw_handler_params) {
774 			r = scsi_dh_set_params(q, m->hw_handler_params);
775 			if (r < 0) {
776 				ti->error = "unable to set hardware "
777 							"handler parameters";
778 				dm_put_device(ti, p->path.dev);
779 				goto bad;
780 			}
781 		}
782 	}
783 
784 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
785 	if (r) {
786 		dm_put_device(ti, p->path.dev);
787 		goto bad;
788 	}
789 
790 	return p;
791 
792  bad:
793 	free_pgpath(p);
794 	return ERR_PTR(r);
795 }
796 
797 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
798 						   struct multipath *m)
799 {
800 	static struct dm_arg _args[] = {
801 		{1, 1024, "invalid number of paths"},
802 		{0, 1024, "invalid number of selector args"}
803 	};
804 
805 	int r;
806 	unsigned i, nr_selector_args, nr_args;
807 	struct priority_group *pg;
808 	struct dm_target *ti = m->ti;
809 
810 	if (as->argc < 2) {
811 		as->argc = 0;
812 		ti->error = "not enough priority group arguments";
813 		return ERR_PTR(-EINVAL);
814 	}
815 
816 	pg = alloc_priority_group();
817 	if (!pg) {
818 		ti->error = "couldn't allocate priority group";
819 		return ERR_PTR(-ENOMEM);
820 	}
821 	pg->m = m;
822 
823 	r = parse_path_selector(as, pg, ti);
824 	if (r)
825 		goto bad;
826 
827 	/*
828 	 * read the paths
829 	 */
830 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
831 	if (r)
832 		goto bad;
833 
834 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
835 	if (r)
836 		goto bad;
837 
838 	nr_args = 1 + nr_selector_args;
839 	for (i = 0; i < pg->nr_pgpaths; i++) {
840 		struct pgpath *pgpath;
841 		struct dm_arg_set path_args;
842 
843 		if (as->argc < nr_args) {
844 			ti->error = "not enough path parameters";
845 			r = -EINVAL;
846 			goto bad;
847 		}
848 
849 		path_args.argc = nr_args;
850 		path_args.argv = as->argv;
851 
852 		pgpath = parse_path(&path_args, &pg->ps, ti);
853 		if (IS_ERR(pgpath)) {
854 			r = PTR_ERR(pgpath);
855 			goto bad;
856 		}
857 
858 		pgpath->pg = pg;
859 		list_add_tail(&pgpath->list, &pg->pgpaths);
860 		dm_consume_args(as, nr_args);
861 	}
862 
863 	return pg;
864 
865  bad:
866 	free_priority_group(pg, ti);
867 	return ERR_PTR(r);
868 }
869 
870 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
871 {
872 	unsigned hw_argc;
873 	int ret;
874 	struct dm_target *ti = m->ti;
875 
876 	static struct dm_arg _args[] = {
877 		{0, 1024, "invalid number of hardware handler args"},
878 	};
879 
880 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
881 		return -EINVAL;
882 
883 	if (!hw_argc)
884 		return 0;
885 
886 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
887 		dm_consume_args(as, hw_argc);
888 		DMERR("bio-based multipath doesn't allow hardware handler args");
889 		return 0;
890 	}
891 
892 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
893 	if (!m->hw_handler_name)
894 		return -EINVAL;
895 
896 	if (hw_argc > 1) {
897 		char *p;
898 		int i, j, len = 4;
899 
900 		for (i = 0; i <= hw_argc - 2; i++)
901 			len += strlen(as->argv[i]) + 1;
902 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
903 		if (!p) {
904 			ti->error = "memory allocation failed";
905 			ret = -ENOMEM;
906 			goto fail;
907 		}
908 		j = sprintf(p, "%d", hw_argc - 1);
909 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
910 			j = sprintf(p, "%s", as->argv[i]);
911 	}
912 	dm_consume_args(as, hw_argc - 1);
913 
914 	return 0;
915 fail:
916 	kfree(m->hw_handler_name);
917 	m->hw_handler_name = NULL;
918 	return ret;
919 }
920 
921 static int parse_features(struct dm_arg_set *as, struct multipath *m)
922 {
923 	int r;
924 	unsigned argc;
925 	struct dm_target *ti = m->ti;
926 	const char *arg_name;
927 
928 	static struct dm_arg _args[] = {
929 		{0, 8, "invalid number of feature args"},
930 		{1, 50, "pg_init_retries must be between 1 and 50"},
931 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
932 	};
933 
934 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
935 	if (r)
936 		return -EINVAL;
937 
938 	if (!argc)
939 		return 0;
940 
941 	do {
942 		arg_name = dm_shift_arg(as);
943 		argc--;
944 
945 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
946 			r = queue_if_no_path(m, true, false);
947 			continue;
948 		}
949 
950 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
951 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
952 			continue;
953 		}
954 
955 		if (!strcasecmp(arg_name, "pg_init_retries") &&
956 		    (argc >= 1)) {
957 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
958 			argc--;
959 			continue;
960 		}
961 
962 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
963 		    (argc >= 1)) {
964 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
965 			argc--;
966 			continue;
967 		}
968 
969 		if (!strcasecmp(arg_name, "queue_mode") &&
970 		    (argc >= 1)) {
971 			const char *queue_mode_name = dm_shift_arg(as);
972 
973 			if (!strcasecmp(queue_mode_name, "bio"))
974 				m->queue_mode = DM_TYPE_BIO_BASED;
975 			else if (!strcasecmp(queue_mode_name, "rq"))
976 				m->queue_mode = DM_TYPE_REQUEST_BASED;
977 			else if (!strcasecmp(queue_mode_name, "mq"))
978 				m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
979 			else {
980 				ti->error = "Unknown 'queue_mode' requested";
981 				r = -EINVAL;
982 			}
983 			argc--;
984 			continue;
985 		}
986 
987 		ti->error = "Unrecognised multipath feature request";
988 		r = -EINVAL;
989 	} while (argc && !r);
990 
991 	return r;
992 }
993 
994 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
995 {
996 	/* target arguments */
997 	static struct dm_arg _args[] = {
998 		{0, 1024, "invalid number of priority groups"},
999 		{0, 1024, "invalid initial priority group number"},
1000 	};
1001 
1002 	int r;
1003 	struct multipath *m;
1004 	struct dm_arg_set as;
1005 	unsigned pg_count = 0;
1006 	unsigned next_pg_num;
1007 
1008 	as.argc = argc;
1009 	as.argv = argv;
1010 
1011 	m = alloc_multipath(ti);
1012 	if (!m) {
1013 		ti->error = "can't allocate multipath";
1014 		return -EINVAL;
1015 	}
1016 
1017 	r = parse_features(&as, m);
1018 	if (r)
1019 		goto bad;
1020 
1021 	r = alloc_multipath_stage2(ti, m);
1022 	if (r)
1023 		goto bad;
1024 
1025 	r = parse_hw_handler(&as, m);
1026 	if (r)
1027 		goto bad;
1028 
1029 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1030 	if (r)
1031 		goto bad;
1032 
1033 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1034 	if (r)
1035 		goto bad;
1036 
1037 	if ((!m->nr_priority_groups && next_pg_num) ||
1038 	    (m->nr_priority_groups && !next_pg_num)) {
1039 		ti->error = "invalid initial priority group";
1040 		r = -EINVAL;
1041 		goto bad;
1042 	}
1043 
1044 	/* parse the priority groups */
1045 	while (as.argc) {
1046 		struct priority_group *pg;
1047 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1048 
1049 		pg = parse_priority_group(&as, m);
1050 		if (IS_ERR(pg)) {
1051 			r = PTR_ERR(pg);
1052 			goto bad;
1053 		}
1054 
1055 		nr_valid_paths += pg->nr_pgpaths;
1056 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1057 
1058 		list_add_tail(&pg->list, &m->priority_groups);
1059 		pg_count++;
1060 		pg->pg_num = pg_count;
1061 		if (!--next_pg_num)
1062 			m->next_pg = pg;
1063 	}
1064 
1065 	if (pg_count != m->nr_priority_groups) {
1066 		ti->error = "priority group count mismatch";
1067 		r = -EINVAL;
1068 		goto bad;
1069 	}
1070 
1071 	ti->num_flush_bios = 1;
1072 	ti->num_discard_bios = 1;
1073 	ti->num_write_same_bios = 1;
1074 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1075 		ti->per_io_data_size = multipath_per_bio_data_size();
1076 	else
1077 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1078 
1079 	return 0;
1080 
1081  bad:
1082 	free_multipath(m);
1083 	return r;
1084 }
1085 
1086 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1087 {
1088 	DEFINE_WAIT(wait);
1089 
1090 	while (1) {
1091 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1092 
1093 		if (!atomic_read(&m->pg_init_in_progress))
1094 			break;
1095 
1096 		io_schedule();
1097 	}
1098 	finish_wait(&m->pg_init_wait, &wait);
1099 }
1100 
1101 static void flush_multipath_work(struct multipath *m)
1102 {
1103 	set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1104 	smp_mb__after_atomic();
1105 
1106 	flush_workqueue(kmpath_handlerd);
1107 	multipath_wait_for_pg_init_completion(m);
1108 	flush_workqueue(kmultipathd);
1109 	flush_work(&m->trigger_event);
1110 
1111 	clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1112 	smp_mb__after_atomic();
1113 }
1114 
1115 static void multipath_dtr(struct dm_target *ti)
1116 {
1117 	struct multipath *m = ti->private;
1118 
1119 	flush_multipath_work(m);
1120 	free_multipath(m);
1121 }
1122 
1123 /*
1124  * Take a path out of use.
1125  */
1126 static int fail_path(struct pgpath *pgpath)
1127 {
1128 	unsigned long flags;
1129 	struct multipath *m = pgpath->pg->m;
1130 
1131 	spin_lock_irqsave(&m->lock, flags);
1132 
1133 	if (!pgpath->is_active)
1134 		goto out;
1135 
1136 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1137 
1138 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1139 	pgpath->is_active = false;
1140 	pgpath->fail_count++;
1141 
1142 	atomic_dec(&m->nr_valid_paths);
1143 
1144 	if (pgpath == m->current_pgpath)
1145 		m->current_pgpath = NULL;
1146 
1147 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1148 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1149 
1150 	schedule_work(&m->trigger_event);
1151 
1152 out:
1153 	spin_unlock_irqrestore(&m->lock, flags);
1154 
1155 	return 0;
1156 }
1157 
1158 /*
1159  * Reinstate a previously-failed path
1160  */
1161 static int reinstate_path(struct pgpath *pgpath)
1162 {
1163 	int r = 0, run_queue = 0;
1164 	unsigned long flags;
1165 	struct multipath *m = pgpath->pg->m;
1166 	unsigned nr_valid_paths;
1167 
1168 	spin_lock_irqsave(&m->lock, flags);
1169 
1170 	if (pgpath->is_active)
1171 		goto out;
1172 
1173 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1174 
1175 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1176 	if (r)
1177 		goto out;
1178 
1179 	pgpath->is_active = true;
1180 
1181 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1182 	if (nr_valid_paths == 1) {
1183 		m->current_pgpath = NULL;
1184 		run_queue = 1;
1185 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1186 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1187 			atomic_inc(&m->pg_init_in_progress);
1188 	}
1189 
1190 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1191 		       pgpath->path.dev->name, nr_valid_paths);
1192 
1193 	schedule_work(&m->trigger_event);
1194 
1195 out:
1196 	spin_unlock_irqrestore(&m->lock, flags);
1197 	if (run_queue) {
1198 		dm_table_run_md_queue_async(m->ti->table);
1199 		process_queued_io_list(m);
1200 	}
1201 
1202 	return r;
1203 }
1204 
1205 /*
1206  * Fail or reinstate all paths that match the provided struct dm_dev.
1207  */
1208 static int action_dev(struct multipath *m, struct dm_dev *dev,
1209 		      action_fn action)
1210 {
1211 	int r = -EINVAL;
1212 	struct pgpath *pgpath;
1213 	struct priority_group *pg;
1214 
1215 	list_for_each_entry(pg, &m->priority_groups, list) {
1216 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1217 			if (pgpath->path.dev == dev)
1218 				r = action(pgpath);
1219 		}
1220 	}
1221 
1222 	return r;
1223 }
1224 
1225 /*
1226  * Temporarily try to avoid having to use the specified PG
1227  */
1228 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1229 		      bool bypassed)
1230 {
1231 	unsigned long flags;
1232 
1233 	spin_lock_irqsave(&m->lock, flags);
1234 
1235 	pg->bypassed = bypassed;
1236 	m->current_pgpath = NULL;
1237 	m->current_pg = NULL;
1238 
1239 	spin_unlock_irqrestore(&m->lock, flags);
1240 
1241 	schedule_work(&m->trigger_event);
1242 }
1243 
1244 /*
1245  * Switch to using the specified PG from the next I/O that gets mapped
1246  */
1247 static int switch_pg_num(struct multipath *m, const char *pgstr)
1248 {
1249 	struct priority_group *pg;
1250 	unsigned pgnum;
1251 	unsigned long flags;
1252 	char dummy;
1253 
1254 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1255 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1256 		DMWARN("invalid PG number supplied to switch_pg_num");
1257 		return -EINVAL;
1258 	}
1259 
1260 	spin_lock_irqsave(&m->lock, flags);
1261 	list_for_each_entry(pg, &m->priority_groups, list) {
1262 		pg->bypassed = false;
1263 		if (--pgnum)
1264 			continue;
1265 
1266 		m->current_pgpath = NULL;
1267 		m->current_pg = NULL;
1268 		m->next_pg = pg;
1269 	}
1270 	spin_unlock_irqrestore(&m->lock, flags);
1271 
1272 	schedule_work(&m->trigger_event);
1273 	return 0;
1274 }
1275 
1276 /*
1277  * Set/clear bypassed status of a PG.
1278  * PGs are numbered upwards from 1 in the order they were declared.
1279  */
1280 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1281 {
1282 	struct priority_group *pg;
1283 	unsigned pgnum;
1284 	char dummy;
1285 
1286 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1287 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1288 		DMWARN("invalid PG number supplied to bypass_pg");
1289 		return -EINVAL;
1290 	}
1291 
1292 	list_for_each_entry(pg, &m->priority_groups, list) {
1293 		if (!--pgnum)
1294 			break;
1295 	}
1296 
1297 	bypass_pg(m, pg, bypassed);
1298 	return 0;
1299 }
1300 
1301 /*
1302  * Should we retry pg_init immediately?
1303  */
1304 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1305 {
1306 	unsigned long flags;
1307 	bool limit_reached = false;
1308 
1309 	spin_lock_irqsave(&m->lock, flags);
1310 
1311 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1312 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1313 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1314 	else
1315 		limit_reached = true;
1316 
1317 	spin_unlock_irqrestore(&m->lock, flags);
1318 
1319 	return limit_reached;
1320 }
1321 
1322 static void pg_init_done(void *data, int errors)
1323 {
1324 	struct pgpath *pgpath = data;
1325 	struct priority_group *pg = pgpath->pg;
1326 	struct multipath *m = pg->m;
1327 	unsigned long flags;
1328 	bool delay_retry = false;
1329 
1330 	/* device or driver problems */
1331 	switch (errors) {
1332 	case SCSI_DH_OK:
1333 		break;
1334 	case SCSI_DH_NOSYS:
1335 		if (!m->hw_handler_name) {
1336 			errors = 0;
1337 			break;
1338 		}
1339 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1340 		      "Error %d.", m->hw_handler_name, errors);
1341 		/*
1342 		 * Fail path for now, so we do not ping pong
1343 		 */
1344 		fail_path(pgpath);
1345 		break;
1346 	case SCSI_DH_DEV_TEMP_BUSY:
1347 		/*
1348 		 * Probably doing something like FW upgrade on the
1349 		 * controller so try the other pg.
1350 		 */
1351 		bypass_pg(m, pg, true);
1352 		break;
1353 	case SCSI_DH_RETRY:
1354 		/* Wait before retrying. */
1355 		delay_retry = 1;
1356 	case SCSI_DH_IMM_RETRY:
1357 	case SCSI_DH_RES_TEMP_UNAVAIL:
1358 		if (pg_init_limit_reached(m, pgpath))
1359 			fail_path(pgpath);
1360 		errors = 0;
1361 		break;
1362 	case SCSI_DH_DEV_OFFLINED:
1363 	default:
1364 		/*
1365 		 * We probably do not want to fail the path for a device
1366 		 * error, but this is what the old dm did. In future
1367 		 * patches we can do more advanced handling.
1368 		 */
1369 		fail_path(pgpath);
1370 	}
1371 
1372 	spin_lock_irqsave(&m->lock, flags);
1373 	if (errors) {
1374 		if (pgpath == m->current_pgpath) {
1375 			DMERR("Could not failover device. Error %d.", errors);
1376 			m->current_pgpath = NULL;
1377 			m->current_pg = NULL;
1378 		}
1379 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1380 		pg->bypassed = false;
1381 
1382 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1383 		/* Activations of other paths are still on going */
1384 		goto out;
1385 
1386 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1387 		if (delay_retry)
1388 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1389 		else
1390 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1391 
1392 		if (__pg_init_all_paths(m))
1393 			goto out;
1394 	}
1395 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1396 
1397 	process_queued_io_list(m);
1398 
1399 	/*
1400 	 * Wake up any thread waiting to suspend.
1401 	 */
1402 	wake_up(&m->pg_init_wait);
1403 
1404 out:
1405 	spin_unlock_irqrestore(&m->lock, flags);
1406 }
1407 
1408 static void activate_or_offline_path(struct pgpath *pgpath)
1409 {
1410 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1411 
1412 	if (pgpath->is_active && !blk_queue_dying(q))
1413 		scsi_dh_activate(q, pg_init_done, pgpath);
1414 	else
1415 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1416 }
1417 
1418 static void activate_path_work(struct work_struct *work)
1419 {
1420 	struct pgpath *pgpath =
1421 		container_of(work, struct pgpath, activate_path.work);
1422 
1423 	activate_or_offline_path(pgpath);
1424 }
1425 
1426 static int noretry_error(int error)
1427 {
1428 	switch (error) {
1429 	case -EBADE:
1430 		/*
1431 		 * EBADE signals an reservation conflict.
1432 		 * We shouldn't fail the path here as we can communicate with
1433 		 * the target.  We should failover to the next path, but in
1434 		 * doing so we might be causing a ping-pong between paths.
1435 		 * So just return the reservation conflict error.
1436 		 */
1437 	case -EOPNOTSUPP:
1438 	case -EREMOTEIO:
1439 	case -EILSEQ:
1440 	case -ENODATA:
1441 	case -ENOSPC:
1442 		return 1;
1443 	}
1444 
1445 	/* Anything else could be a path failure, so should be retried */
1446 	return 0;
1447 }
1448 
1449 /*
1450  * end_io handling
1451  */
1452 static int do_end_io(struct multipath *m, struct request *clone,
1453 		     int error, struct dm_mpath_io *mpio)
1454 {
1455 	/*
1456 	 * We don't queue any clone request inside the multipath target
1457 	 * during end I/O handling, since those clone requests don't have
1458 	 * bio clones.  If we queue them inside the multipath target,
1459 	 * we need to make bio clones, that requires memory allocation.
1460 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1461 	 *  don't have bio clones.)
1462 	 * Instead of queueing the clone request here, we queue the original
1463 	 * request into dm core, which will remake a clone request and
1464 	 * clone bios for it and resubmit it later.
1465 	 */
1466 	int r = DM_ENDIO_REQUEUE;
1467 
1468 	if (!error && !clone->errors)
1469 		return 0;	/* I/O complete */
1470 
1471 	if (noretry_error(error))
1472 		return error;
1473 
1474 	if (mpio->pgpath)
1475 		fail_path(mpio->pgpath);
1476 
1477 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1478 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1479 		r = -EIO;
1480 
1481 	return r;
1482 }
1483 
1484 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1485 			    int error, union map_info *map_context)
1486 {
1487 	struct multipath *m = ti->private;
1488 	struct dm_mpath_io *mpio = get_mpio(map_context);
1489 	struct pgpath *pgpath;
1490 	struct path_selector *ps;
1491 	int r;
1492 
1493 	BUG_ON(!mpio);
1494 
1495 	r = do_end_io(m, clone, error, mpio);
1496 	pgpath = mpio->pgpath;
1497 	if (pgpath) {
1498 		ps = &pgpath->pg->ps;
1499 		if (ps->type->end_io)
1500 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1501 	}
1502 
1503 	return r;
1504 }
1505 
1506 static int do_end_io_bio(struct multipath *m, struct bio *clone,
1507 			 int error, struct dm_mpath_io *mpio)
1508 {
1509 	unsigned long flags;
1510 
1511 	if (!error)
1512 		return 0;	/* I/O complete */
1513 
1514 	if (noretry_error(error))
1515 		return error;
1516 
1517 	if (mpio->pgpath)
1518 		fail_path(mpio->pgpath);
1519 
1520 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1521 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1522 		return -EIO;
1523 
1524 	/* Queue for the daemon to resubmit */
1525 	dm_bio_restore(get_bio_details_from_bio(clone), clone);
1526 
1527 	spin_lock_irqsave(&m->lock, flags);
1528 	bio_list_add(&m->queued_bios, clone);
1529 	spin_unlock_irqrestore(&m->lock, flags);
1530 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1531 		queue_work(kmultipathd, &m->process_queued_bios);
1532 
1533 	return DM_ENDIO_INCOMPLETE;
1534 }
1535 
1536 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, int error)
1537 {
1538 	struct multipath *m = ti->private;
1539 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1540 	struct pgpath *pgpath;
1541 	struct path_selector *ps;
1542 	int r;
1543 
1544 	BUG_ON(!mpio);
1545 
1546 	r = do_end_io_bio(m, clone, error, mpio);
1547 	pgpath = mpio->pgpath;
1548 	if (pgpath) {
1549 		ps = &pgpath->pg->ps;
1550 		if (ps->type->end_io)
1551 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1552 	}
1553 
1554 	return r;
1555 }
1556 
1557 /*
1558  * Suspend can't complete until all the I/O is processed so if
1559  * the last path fails we must error any remaining I/O.
1560  * Note that if the freeze_bdev fails while suspending, the
1561  * queue_if_no_path state is lost - userspace should reset it.
1562  */
1563 static void multipath_presuspend(struct dm_target *ti)
1564 {
1565 	struct multipath *m = ti->private;
1566 
1567 	queue_if_no_path(m, false, true);
1568 }
1569 
1570 static void multipath_postsuspend(struct dm_target *ti)
1571 {
1572 	struct multipath *m = ti->private;
1573 
1574 	mutex_lock(&m->work_mutex);
1575 	flush_multipath_work(m);
1576 	mutex_unlock(&m->work_mutex);
1577 }
1578 
1579 /*
1580  * Restore the queue_if_no_path setting.
1581  */
1582 static void multipath_resume(struct dm_target *ti)
1583 {
1584 	struct multipath *m = ti->private;
1585 	unsigned long flags;
1586 
1587 	spin_lock_irqsave(&m->lock, flags);
1588 	assign_bit(test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags),
1589 		   MPATHF_QUEUE_IF_NO_PATH, &m->flags);
1590 	spin_unlock_irqrestore(&m->lock, flags);
1591 }
1592 
1593 /*
1594  * Info output has the following format:
1595  * num_multipath_feature_args [multipath_feature_args]*
1596  * num_handler_status_args [handler_status_args]*
1597  * num_groups init_group_number
1598  *            [A|D|E num_ps_status_args [ps_status_args]*
1599  *             num_paths num_selector_args
1600  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1601  *
1602  * Table output has the following format (identical to the constructor string):
1603  * num_feature_args [features_args]*
1604  * num_handler_args hw_handler [hw_handler_args]*
1605  * num_groups init_group_number
1606  *     [priority selector-name num_ps_args [ps_args]*
1607  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1608  */
1609 static void multipath_status(struct dm_target *ti, status_type_t type,
1610 			     unsigned status_flags, char *result, unsigned maxlen)
1611 {
1612 	int sz = 0;
1613 	unsigned long flags;
1614 	struct multipath *m = ti->private;
1615 	struct priority_group *pg;
1616 	struct pgpath *p;
1617 	unsigned pg_num;
1618 	char state;
1619 
1620 	spin_lock_irqsave(&m->lock, flags);
1621 
1622 	/* Features */
1623 	if (type == STATUSTYPE_INFO)
1624 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1625 		       atomic_read(&m->pg_init_count));
1626 	else {
1627 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1628 			      (m->pg_init_retries > 0) * 2 +
1629 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1630 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1631 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1632 
1633 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1634 			DMEMIT("queue_if_no_path ");
1635 		if (m->pg_init_retries)
1636 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1637 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1638 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1639 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1640 			DMEMIT("retain_attached_hw_handler ");
1641 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1642 			switch(m->queue_mode) {
1643 			case DM_TYPE_BIO_BASED:
1644 				DMEMIT("queue_mode bio ");
1645 				break;
1646 			case DM_TYPE_MQ_REQUEST_BASED:
1647 				DMEMIT("queue_mode mq ");
1648 				break;
1649 			default:
1650 				WARN_ON_ONCE(true);
1651 				break;
1652 			}
1653 		}
1654 	}
1655 
1656 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1657 		DMEMIT("0 ");
1658 	else
1659 		DMEMIT("1 %s ", m->hw_handler_name);
1660 
1661 	DMEMIT("%u ", m->nr_priority_groups);
1662 
1663 	if (m->next_pg)
1664 		pg_num = m->next_pg->pg_num;
1665 	else if (m->current_pg)
1666 		pg_num = m->current_pg->pg_num;
1667 	else
1668 		pg_num = (m->nr_priority_groups ? 1 : 0);
1669 
1670 	DMEMIT("%u ", pg_num);
1671 
1672 	switch (type) {
1673 	case STATUSTYPE_INFO:
1674 		list_for_each_entry(pg, &m->priority_groups, list) {
1675 			if (pg->bypassed)
1676 				state = 'D';	/* Disabled */
1677 			else if (pg == m->current_pg)
1678 				state = 'A';	/* Currently Active */
1679 			else
1680 				state = 'E';	/* Enabled */
1681 
1682 			DMEMIT("%c ", state);
1683 
1684 			if (pg->ps.type->status)
1685 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1686 							  result + sz,
1687 							  maxlen - sz);
1688 			else
1689 				DMEMIT("0 ");
1690 
1691 			DMEMIT("%u %u ", pg->nr_pgpaths,
1692 			       pg->ps.type->info_args);
1693 
1694 			list_for_each_entry(p, &pg->pgpaths, list) {
1695 				DMEMIT("%s %s %u ", p->path.dev->name,
1696 				       p->is_active ? "A" : "F",
1697 				       p->fail_count);
1698 				if (pg->ps.type->status)
1699 					sz += pg->ps.type->status(&pg->ps,
1700 					      &p->path, type, result + sz,
1701 					      maxlen - sz);
1702 			}
1703 		}
1704 		break;
1705 
1706 	case STATUSTYPE_TABLE:
1707 		list_for_each_entry(pg, &m->priority_groups, list) {
1708 			DMEMIT("%s ", pg->ps.type->name);
1709 
1710 			if (pg->ps.type->status)
1711 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1712 							  result + sz,
1713 							  maxlen - sz);
1714 			else
1715 				DMEMIT("0 ");
1716 
1717 			DMEMIT("%u %u ", pg->nr_pgpaths,
1718 			       pg->ps.type->table_args);
1719 
1720 			list_for_each_entry(p, &pg->pgpaths, list) {
1721 				DMEMIT("%s ", p->path.dev->name);
1722 				if (pg->ps.type->status)
1723 					sz += pg->ps.type->status(&pg->ps,
1724 					      &p->path, type, result + sz,
1725 					      maxlen - sz);
1726 			}
1727 		}
1728 		break;
1729 	}
1730 
1731 	spin_unlock_irqrestore(&m->lock, flags);
1732 }
1733 
1734 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1735 {
1736 	int r = -EINVAL;
1737 	struct dm_dev *dev;
1738 	struct multipath *m = ti->private;
1739 	action_fn action;
1740 
1741 	mutex_lock(&m->work_mutex);
1742 
1743 	if (dm_suspended(ti)) {
1744 		r = -EBUSY;
1745 		goto out;
1746 	}
1747 
1748 	if (argc == 1) {
1749 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1750 			r = queue_if_no_path(m, true, false);
1751 			goto out;
1752 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1753 			r = queue_if_no_path(m, false, false);
1754 			goto out;
1755 		}
1756 	}
1757 
1758 	if (argc != 2) {
1759 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1760 		goto out;
1761 	}
1762 
1763 	if (!strcasecmp(argv[0], "disable_group")) {
1764 		r = bypass_pg_num(m, argv[1], true);
1765 		goto out;
1766 	} else if (!strcasecmp(argv[0], "enable_group")) {
1767 		r = bypass_pg_num(m, argv[1], false);
1768 		goto out;
1769 	} else if (!strcasecmp(argv[0], "switch_group")) {
1770 		r = switch_pg_num(m, argv[1]);
1771 		goto out;
1772 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1773 		action = reinstate_path;
1774 	else if (!strcasecmp(argv[0], "fail_path"))
1775 		action = fail_path;
1776 	else {
1777 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1778 		goto out;
1779 	}
1780 
1781 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1782 	if (r) {
1783 		DMWARN("message: error getting device %s",
1784 		       argv[1]);
1785 		goto out;
1786 	}
1787 
1788 	r = action_dev(m, dev, action);
1789 
1790 	dm_put_device(ti, dev);
1791 
1792 out:
1793 	mutex_unlock(&m->work_mutex);
1794 	return r;
1795 }
1796 
1797 static int multipath_prepare_ioctl(struct dm_target *ti,
1798 		struct block_device **bdev, fmode_t *mode)
1799 {
1800 	struct multipath *m = ti->private;
1801 	struct pgpath *current_pgpath;
1802 	int r;
1803 
1804 	current_pgpath = lockless_dereference(m->current_pgpath);
1805 	if (!current_pgpath)
1806 		current_pgpath = choose_pgpath(m, 0);
1807 
1808 	if (current_pgpath) {
1809 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1810 			*bdev = current_pgpath->path.dev->bdev;
1811 			*mode = current_pgpath->path.dev->mode;
1812 			r = 0;
1813 		} else {
1814 			/* pg_init has not started or completed */
1815 			r = -ENOTCONN;
1816 		}
1817 	} else {
1818 		/* No path is available */
1819 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1820 			r = -ENOTCONN;
1821 		else
1822 			r = -EIO;
1823 	}
1824 
1825 	if (r == -ENOTCONN) {
1826 		if (!lockless_dereference(m->current_pg)) {
1827 			/* Path status changed, redo selection */
1828 			(void) choose_pgpath(m, 0);
1829 		}
1830 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1831 			pg_init_all_paths(m);
1832 		dm_table_run_md_queue_async(m->ti->table);
1833 		process_queued_io_list(m);
1834 	}
1835 
1836 	/*
1837 	 * Only pass ioctls through if the device sizes match exactly.
1838 	 */
1839 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1840 		return 1;
1841 	return r;
1842 }
1843 
1844 static int multipath_iterate_devices(struct dm_target *ti,
1845 				     iterate_devices_callout_fn fn, void *data)
1846 {
1847 	struct multipath *m = ti->private;
1848 	struct priority_group *pg;
1849 	struct pgpath *p;
1850 	int ret = 0;
1851 
1852 	list_for_each_entry(pg, &m->priority_groups, list) {
1853 		list_for_each_entry(p, &pg->pgpaths, list) {
1854 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1855 			if (ret)
1856 				goto out;
1857 		}
1858 	}
1859 
1860 out:
1861 	return ret;
1862 }
1863 
1864 static int pgpath_busy(struct pgpath *pgpath)
1865 {
1866 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1867 
1868 	return blk_lld_busy(q);
1869 }
1870 
1871 /*
1872  * We return "busy", only when we can map I/Os but underlying devices
1873  * are busy (so even if we map I/Os now, the I/Os will wait on
1874  * the underlying queue).
1875  * In other words, if we want to kill I/Os or queue them inside us
1876  * due to map unavailability, we don't return "busy".  Otherwise,
1877  * dm core won't give us the I/Os and we can't do what we want.
1878  */
1879 static int multipath_busy(struct dm_target *ti)
1880 {
1881 	bool busy = false, has_active = false;
1882 	struct multipath *m = ti->private;
1883 	struct priority_group *pg, *next_pg;
1884 	struct pgpath *pgpath;
1885 
1886 	/* pg_init in progress */
1887 	if (atomic_read(&m->pg_init_in_progress))
1888 		return true;
1889 
1890 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1891 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1892 		return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED);
1893 
1894 	/* Guess which priority_group will be used at next mapping time */
1895 	pg = lockless_dereference(m->current_pg);
1896 	next_pg = lockless_dereference(m->next_pg);
1897 	if (unlikely(!lockless_dereference(m->current_pgpath) && next_pg))
1898 		pg = next_pg;
1899 
1900 	if (!pg) {
1901 		/*
1902 		 * We don't know which pg will be used at next mapping time.
1903 		 * We don't call choose_pgpath() here to avoid to trigger
1904 		 * pg_init just by busy checking.
1905 		 * So we don't know whether underlying devices we will be using
1906 		 * at next mapping time are busy or not. Just try mapping.
1907 		 */
1908 		return busy;
1909 	}
1910 
1911 	/*
1912 	 * If there is one non-busy active path at least, the path selector
1913 	 * will be able to select it. So we consider such a pg as not busy.
1914 	 */
1915 	busy = true;
1916 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
1917 		if (pgpath->is_active) {
1918 			has_active = true;
1919 			if (!pgpath_busy(pgpath)) {
1920 				busy = false;
1921 				break;
1922 			}
1923 		}
1924 	}
1925 
1926 	if (!has_active) {
1927 		/*
1928 		 * No active path in this pg, so this pg won't be used and
1929 		 * the current_pg will be changed at next mapping time.
1930 		 * We need to try mapping to determine it.
1931 		 */
1932 		busy = false;
1933 	}
1934 
1935 	return busy;
1936 }
1937 
1938 /*-----------------------------------------------------------------
1939  * Module setup
1940  *---------------------------------------------------------------*/
1941 static struct target_type multipath_target = {
1942 	.name = "multipath",
1943 	.version = {1, 12, 0},
1944 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1945 	.module = THIS_MODULE,
1946 	.ctr = multipath_ctr,
1947 	.dtr = multipath_dtr,
1948 	.clone_and_map_rq = multipath_clone_and_map,
1949 	.release_clone_rq = multipath_release_clone,
1950 	.rq_end_io = multipath_end_io,
1951 	.map = multipath_map_bio,
1952 	.end_io = multipath_end_io_bio,
1953 	.presuspend = multipath_presuspend,
1954 	.postsuspend = multipath_postsuspend,
1955 	.resume = multipath_resume,
1956 	.status = multipath_status,
1957 	.message = multipath_message,
1958 	.prepare_ioctl = multipath_prepare_ioctl,
1959 	.iterate_devices = multipath_iterate_devices,
1960 	.busy = multipath_busy,
1961 };
1962 
1963 static int __init dm_multipath_init(void)
1964 {
1965 	int r;
1966 
1967 	r = dm_register_target(&multipath_target);
1968 	if (r < 0) {
1969 		DMERR("request-based register failed %d", r);
1970 		r = -EINVAL;
1971 		goto bad_register_target;
1972 	}
1973 
1974 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
1975 	if (!kmultipathd) {
1976 		DMERR("failed to create workqueue kmpathd");
1977 		r = -ENOMEM;
1978 		goto bad_alloc_kmultipathd;
1979 	}
1980 
1981 	/*
1982 	 * A separate workqueue is used to handle the device handlers
1983 	 * to avoid overloading existing workqueue. Overloading the
1984 	 * old workqueue would also create a bottleneck in the
1985 	 * path of the storage hardware device activation.
1986 	 */
1987 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
1988 						  WQ_MEM_RECLAIM);
1989 	if (!kmpath_handlerd) {
1990 		DMERR("failed to create workqueue kmpath_handlerd");
1991 		r = -ENOMEM;
1992 		goto bad_alloc_kmpath_handlerd;
1993 	}
1994 
1995 	return 0;
1996 
1997 bad_alloc_kmpath_handlerd:
1998 	destroy_workqueue(kmultipathd);
1999 bad_alloc_kmultipathd:
2000 	dm_unregister_target(&multipath_target);
2001 bad_register_target:
2002 	return r;
2003 }
2004 
2005 static void __exit dm_multipath_exit(void)
2006 {
2007 	destroy_workqueue(kmpath_handlerd);
2008 	destroy_workqueue(kmultipathd);
2009 
2010 	dm_unregister_target(&multipath_target);
2011 }
2012 
2013 module_init(dm_multipath_init);
2014 module_exit(dm_multipath_exit);
2015 
2016 MODULE_DESCRIPTION(DM_NAME " multipath target");
2017 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2018 MODULE_LICENSE("GPL");
2019