1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <scsi/scsi_dh.h> 26 #include <linux/atomic.h> 27 #include <linux/blk-mq.h> 28 29 #define DM_MSG_PREFIX "multipath" 30 #define DM_PG_INIT_DELAY_MSECS 2000 31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 32 33 /* Path properties */ 34 struct pgpath { 35 struct list_head list; 36 37 struct priority_group *pg; /* Owning PG */ 38 unsigned fail_count; /* Cumulative failure count */ 39 40 struct dm_path path; 41 struct delayed_work activate_path; 42 43 bool is_active:1; /* Path status */ 44 }; 45 46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 47 48 /* 49 * Paths are grouped into Priority Groups and numbered from 1 upwards. 50 * Each has a path selector which controls which path gets used. 51 */ 52 struct priority_group { 53 struct list_head list; 54 55 struct multipath *m; /* Owning multipath instance */ 56 struct path_selector ps; 57 58 unsigned pg_num; /* Reference number */ 59 unsigned nr_pgpaths; /* Number of paths in PG */ 60 struct list_head pgpaths; 61 62 bool bypassed:1; /* Temporarily bypass this PG? */ 63 }; 64 65 /* Multipath context */ 66 struct multipath { 67 struct list_head list; 68 struct dm_target *ti; 69 70 const char *hw_handler_name; 71 char *hw_handler_params; 72 73 spinlock_t lock; 74 75 unsigned nr_priority_groups; 76 struct list_head priority_groups; 77 78 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 79 80 struct pgpath *current_pgpath; 81 struct priority_group *current_pg; 82 struct priority_group *next_pg; /* Switch to this PG if set */ 83 84 unsigned long flags; /* Multipath state flags */ 85 86 unsigned pg_init_retries; /* Number of times to retry pg_init */ 87 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 88 89 atomic_t nr_valid_paths; /* Total number of usable paths */ 90 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 91 atomic_t pg_init_count; /* Number of times pg_init called */ 92 93 enum dm_queue_mode queue_mode; 94 95 struct mutex work_mutex; 96 struct work_struct trigger_event; 97 98 struct work_struct process_queued_bios; 99 struct bio_list queued_bios; 100 }; 101 102 /* 103 * Context information attached to each io we process. 104 */ 105 struct dm_mpath_io { 106 struct pgpath *pgpath; 107 size_t nr_bytes; 108 }; 109 110 typedef int (*action_fn) (struct pgpath *pgpath); 111 112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 113 static void trigger_event(struct work_struct *work); 114 static void activate_or_offline_path(struct pgpath *pgpath); 115 static void activate_path_work(struct work_struct *work); 116 static void process_queued_bios(struct work_struct *work); 117 118 /*----------------------------------------------- 119 * Multipath state flags. 120 *-----------------------------------------------*/ 121 122 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 123 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 124 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 125 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 126 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 127 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 128 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 129 130 /*----------------------------------------------- 131 * Allocation routines 132 *-----------------------------------------------*/ 133 134 static struct pgpath *alloc_pgpath(void) 135 { 136 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 137 138 if (pgpath) { 139 pgpath->is_active = true; 140 INIT_DELAYED_WORK(&pgpath->activate_path, activate_path_work); 141 } 142 143 return pgpath; 144 } 145 146 static void free_pgpath(struct pgpath *pgpath) 147 { 148 kfree(pgpath); 149 } 150 151 static struct priority_group *alloc_priority_group(void) 152 { 153 struct priority_group *pg; 154 155 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 156 157 if (pg) 158 INIT_LIST_HEAD(&pg->pgpaths); 159 160 return pg; 161 } 162 163 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 164 { 165 struct pgpath *pgpath, *tmp; 166 167 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 168 list_del(&pgpath->list); 169 dm_put_device(ti, pgpath->path.dev); 170 free_pgpath(pgpath); 171 } 172 } 173 174 static void free_priority_group(struct priority_group *pg, 175 struct dm_target *ti) 176 { 177 struct path_selector *ps = &pg->ps; 178 179 if (ps->type) { 180 ps->type->destroy(ps); 181 dm_put_path_selector(ps->type); 182 } 183 184 free_pgpaths(&pg->pgpaths, ti); 185 kfree(pg); 186 } 187 188 static struct multipath *alloc_multipath(struct dm_target *ti) 189 { 190 struct multipath *m; 191 192 m = kzalloc(sizeof(*m), GFP_KERNEL); 193 if (m) { 194 INIT_LIST_HEAD(&m->priority_groups); 195 spin_lock_init(&m->lock); 196 set_bit(MPATHF_QUEUE_IO, &m->flags); 197 atomic_set(&m->nr_valid_paths, 0); 198 atomic_set(&m->pg_init_in_progress, 0); 199 atomic_set(&m->pg_init_count, 0); 200 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 201 INIT_WORK(&m->trigger_event, trigger_event); 202 init_waitqueue_head(&m->pg_init_wait); 203 mutex_init(&m->work_mutex); 204 205 m->queue_mode = DM_TYPE_NONE; 206 207 m->ti = ti; 208 ti->private = m; 209 } 210 211 return m; 212 } 213 214 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 215 { 216 if (m->queue_mode == DM_TYPE_NONE) { 217 /* 218 * Default to request-based. 219 */ 220 if (dm_use_blk_mq(dm_table_get_md(ti->table))) 221 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 222 else 223 m->queue_mode = DM_TYPE_REQUEST_BASED; 224 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 225 INIT_WORK(&m->process_queued_bios, process_queued_bios); 226 /* 227 * bio-based doesn't support any direct scsi_dh management; 228 * it just discovers if a scsi_dh is attached. 229 */ 230 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 231 } 232 233 dm_table_set_type(ti->table, m->queue_mode); 234 235 return 0; 236 } 237 238 static void free_multipath(struct multipath *m) 239 { 240 struct priority_group *pg, *tmp; 241 242 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 243 list_del(&pg->list); 244 free_priority_group(pg, m->ti); 245 } 246 247 kfree(m->hw_handler_name); 248 kfree(m->hw_handler_params); 249 kfree(m); 250 } 251 252 static struct dm_mpath_io *get_mpio(union map_info *info) 253 { 254 return info->ptr; 255 } 256 257 static size_t multipath_per_bio_data_size(void) 258 { 259 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 260 } 261 262 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 263 { 264 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 265 } 266 267 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio) 268 { 269 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 270 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 271 void *bio_details = mpio + 1; 272 273 return bio_details; 274 } 275 276 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p, 277 struct dm_bio_details **bio_details_p) 278 { 279 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 280 struct dm_bio_details *bio_details = get_bio_details_from_bio(bio); 281 282 memset(mpio, 0, sizeof(*mpio)); 283 memset(bio_details, 0, sizeof(*bio_details)); 284 dm_bio_record(bio_details, bio); 285 286 if (mpio_p) 287 *mpio_p = mpio; 288 if (bio_details_p) 289 *bio_details_p = bio_details; 290 } 291 292 /*----------------------------------------------- 293 * Path selection 294 *-----------------------------------------------*/ 295 296 static int __pg_init_all_paths(struct multipath *m) 297 { 298 struct pgpath *pgpath; 299 unsigned long pg_init_delay = 0; 300 301 lockdep_assert_held(&m->lock); 302 303 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 304 return 0; 305 306 atomic_inc(&m->pg_init_count); 307 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 308 309 /* Check here to reset pg_init_required */ 310 if (!m->current_pg) 311 return 0; 312 313 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 314 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 315 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 316 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 317 /* Skip failed paths */ 318 if (!pgpath->is_active) 319 continue; 320 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 321 pg_init_delay)) 322 atomic_inc(&m->pg_init_in_progress); 323 } 324 return atomic_read(&m->pg_init_in_progress); 325 } 326 327 static int pg_init_all_paths(struct multipath *m) 328 { 329 int ret; 330 unsigned long flags; 331 332 spin_lock_irqsave(&m->lock, flags); 333 ret = __pg_init_all_paths(m); 334 spin_unlock_irqrestore(&m->lock, flags); 335 336 return ret; 337 } 338 339 static void __switch_pg(struct multipath *m, struct priority_group *pg) 340 { 341 m->current_pg = pg; 342 343 /* Must we initialise the PG first, and queue I/O till it's ready? */ 344 if (m->hw_handler_name) { 345 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 346 set_bit(MPATHF_QUEUE_IO, &m->flags); 347 } else { 348 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 349 clear_bit(MPATHF_QUEUE_IO, &m->flags); 350 } 351 352 atomic_set(&m->pg_init_count, 0); 353 } 354 355 static struct pgpath *choose_path_in_pg(struct multipath *m, 356 struct priority_group *pg, 357 size_t nr_bytes) 358 { 359 unsigned long flags; 360 struct dm_path *path; 361 struct pgpath *pgpath; 362 363 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 364 if (!path) 365 return ERR_PTR(-ENXIO); 366 367 pgpath = path_to_pgpath(path); 368 369 if (unlikely(lockless_dereference(m->current_pg) != pg)) { 370 /* Only update current_pgpath if pg changed */ 371 spin_lock_irqsave(&m->lock, flags); 372 m->current_pgpath = pgpath; 373 __switch_pg(m, pg); 374 spin_unlock_irqrestore(&m->lock, flags); 375 } 376 377 return pgpath; 378 } 379 380 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 381 { 382 unsigned long flags; 383 struct priority_group *pg; 384 struct pgpath *pgpath; 385 unsigned bypassed = 1; 386 387 if (!atomic_read(&m->nr_valid_paths)) { 388 clear_bit(MPATHF_QUEUE_IO, &m->flags); 389 goto failed; 390 } 391 392 /* Were we instructed to switch PG? */ 393 if (lockless_dereference(m->next_pg)) { 394 spin_lock_irqsave(&m->lock, flags); 395 pg = m->next_pg; 396 if (!pg) { 397 spin_unlock_irqrestore(&m->lock, flags); 398 goto check_current_pg; 399 } 400 m->next_pg = NULL; 401 spin_unlock_irqrestore(&m->lock, flags); 402 pgpath = choose_path_in_pg(m, pg, nr_bytes); 403 if (!IS_ERR_OR_NULL(pgpath)) 404 return pgpath; 405 } 406 407 /* Don't change PG until it has no remaining paths */ 408 check_current_pg: 409 pg = lockless_dereference(m->current_pg); 410 if (pg) { 411 pgpath = choose_path_in_pg(m, pg, nr_bytes); 412 if (!IS_ERR_OR_NULL(pgpath)) 413 return pgpath; 414 } 415 416 /* 417 * Loop through priority groups until we find a valid path. 418 * First time we skip PGs marked 'bypassed'. 419 * Second time we only try the ones we skipped, but set 420 * pg_init_delay_retry so we do not hammer controllers. 421 */ 422 do { 423 list_for_each_entry(pg, &m->priority_groups, list) { 424 if (pg->bypassed == !!bypassed) 425 continue; 426 pgpath = choose_path_in_pg(m, pg, nr_bytes); 427 if (!IS_ERR_OR_NULL(pgpath)) { 428 if (!bypassed) 429 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 430 return pgpath; 431 } 432 } 433 } while (bypassed--); 434 435 failed: 436 spin_lock_irqsave(&m->lock, flags); 437 m->current_pgpath = NULL; 438 m->current_pg = NULL; 439 spin_unlock_irqrestore(&m->lock, flags); 440 441 return NULL; 442 } 443 444 /* 445 * Map cloned requests (request-based multipath) 446 */ 447 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 448 union map_info *map_context, 449 struct request **__clone) 450 { 451 struct multipath *m = ti->private; 452 size_t nr_bytes = blk_rq_bytes(rq); 453 struct pgpath *pgpath; 454 struct block_device *bdev; 455 struct dm_mpath_io *mpio = get_mpio(map_context); 456 struct request_queue *q; 457 struct request *clone; 458 459 /* Do we need to select a new pgpath? */ 460 pgpath = lockless_dereference(m->current_pgpath); 461 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 462 pgpath = choose_pgpath(m, nr_bytes); 463 464 if (!pgpath) { 465 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 466 return DM_MAPIO_DELAY_REQUEUE; 467 return -EIO; /* Failed */ 468 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) || 469 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 470 if (pg_init_all_paths(m)) 471 return DM_MAPIO_DELAY_REQUEUE; 472 return DM_MAPIO_REQUEUE; 473 } 474 475 memset(mpio, 0, sizeof(*mpio)); 476 mpio->pgpath = pgpath; 477 mpio->nr_bytes = nr_bytes; 478 479 bdev = pgpath->path.dev->bdev; 480 q = bdev_get_queue(bdev); 481 clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC); 482 if (IS_ERR(clone)) { 483 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 484 bool queue_dying = blk_queue_dying(q); 485 DMERR_LIMIT("blk_get_request() returned %ld%s - requeuing", 486 PTR_ERR(clone), queue_dying ? " (path offline)" : ""); 487 if (queue_dying) { 488 atomic_inc(&m->pg_init_in_progress); 489 activate_or_offline_path(pgpath); 490 return DM_MAPIO_REQUEUE; 491 } 492 return DM_MAPIO_DELAY_REQUEUE; 493 } 494 clone->bio = clone->biotail = NULL; 495 clone->rq_disk = bdev->bd_disk; 496 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 497 *__clone = clone; 498 499 if (pgpath->pg->ps.type->start_io) 500 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 501 &pgpath->path, 502 nr_bytes); 503 return DM_MAPIO_REMAPPED; 504 } 505 506 static void multipath_release_clone(struct request *clone) 507 { 508 blk_put_request(clone); 509 } 510 511 /* 512 * Map cloned bios (bio-based multipath) 513 */ 514 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio) 515 { 516 size_t nr_bytes = bio->bi_iter.bi_size; 517 struct pgpath *pgpath; 518 unsigned long flags; 519 bool queue_io; 520 521 /* Do we need to select a new pgpath? */ 522 pgpath = lockless_dereference(m->current_pgpath); 523 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags); 524 if (!pgpath || !queue_io) 525 pgpath = choose_pgpath(m, nr_bytes); 526 527 if ((pgpath && queue_io) || 528 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) { 529 /* Queue for the daemon to resubmit */ 530 spin_lock_irqsave(&m->lock, flags); 531 bio_list_add(&m->queued_bios, bio); 532 spin_unlock_irqrestore(&m->lock, flags); 533 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */ 534 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 535 pg_init_all_paths(m); 536 else if (!queue_io) 537 queue_work(kmultipathd, &m->process_queued_bios); 538 return DM_MAPIO_SUBMITTED; 539 } 540 541 if (!pgpath) { 542 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 543 return DM_MAPIO_REQUEUE; 544 return -EIO; 545 } 546 547 mpio->pgpath = pgpath; 548 mpio->nr_bytes = nr_bytes; 549 550 bio->bi_error = 0; 551 bio->bi_bdev = pgpath->path.dev->bdev; 552 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 553 554 if (pgpath->pg->ps.type->start_io) 555 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 556 &pgpath->path, 557 nr_bytes); 558 return DM_MAPIO_REMAPPED; 559 } 560 561 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 562 { 563 struct multipath *m = ti->private; 564 struct dm_mpath_io *mpio = NULL; 565 566 multipath_init_per_bio_data(bio, &mpio, NULL); 567 568 return __multipath_map_bio(m, bio, mpio); 569 } 570 571 static void process_queued_io_list(struct multipath *m) 572 { 573 if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED) 574 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 575 else if (m->queue_mode == DM_TYPE_BIO_BASED) 576 queue_work(kmultipathd, &m->process_queued_bios); 577 } 578 579 static void process_queued_bios(struct work_struct *work) 580 { 581 int r; 582 unsigned long flags; 583 struct bio *bio; 584 struct bio_list bios; 585 struct blk_plug plug; 586 struct multipath *m = 587 container_of(work, struct multipath, process_queued_bios); 588 589 bio_list_init(&bios); 590 591 spin_lock_irqsave(&m->lock, flags); 592 593 if (bio_list_empty(&m->queued_bios)) { 594 spin_unlock_irqrestore(&m->lock, flags); 595 return; 596 } 597 598 bio_list_merge(&bios, &m->queued_bios); 599 bio_list_init(&m->queued_bios); 600 601 spin_unlock_irqrestore(&m->lock, flags); 602 603 blk_start_plug(&plug); 604 while ((bio = bio_list_pop(&bios))) { 605 r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio)); 606 if (r < 0 || r == DM_MAPIO_REQUEUE) { 607 bio->bi_error = r; 608 bio_endio(bio); 609 } else if (r == DM_MAPIO_REMAPPED) 610 generic_make_request(bio); 611 } 612 blk_finish_plug(&plug); 613 } 614 615 static void assign_bit(bool value, long nr, unsigned long *addr) 616 { 617 if (value) 618 set_bit(nr, addr); 619 else 620 clear_bit(nr, addr); 621 } 622 623 /* 624 * If we run out of usable paths, should we queue I/O or error it? 625 */ 626 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 627 bool save_old_value) 628 { 629 unsigned long flags; 630 631 spin_lock_irqsave(&m->lock, flags); 632 assign_bit((save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) || 633 (!save_old_value && queue_if_no_path), 634 MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 635 assign_bit(queue_if_no_path || dm_noflush_suspending(m->ti), 636 MPATHF_QUEUE_IF_NO_PATH, &m->flags); 637 spin_unlock_irqrestore(&m->lock, flags); 638 639 if (!queue_if_no_path) { 640 dm_table_run_md_queue_async(m->ti->table); 641 process_queued_io_list(m); 642 } 643 644 return 0; 645 } 646 647 /* 648 * An event is triggered whenever a path is taken out of use. 649 * Includes path failure and PG bypass. 650 */ 651 static void trigger_event(struct work_struct *work) 652 { 653 struct multipath *m = 654 container_of(work, struct multipath, trigger_event); 655 656 dm_table_event(m->ti->table); 657 } 658 659 /*----------------------------------------------------------------- 660 * Constructor/argument parsing: 661 * <#multipath feature args> [<arg>]* 662 * <#hw_handler args> [hw_handler [<arg>]*] 663 * <#priority groups> 664 * <initial priority group> 665 * [<selector> <#selector args> [<arg>]* 666 * <#paths> <#per-path selector args> 667 * [<path> [<arg>]* ]+ ]+ 668 *---------------------------------------------------------------*/ 669 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 670 struct dm_target *ti) 671 { 672 int r; 673 struct path_selector_type *pst; 674 unsigned ps_argc; 675 676 static struct dm_arg _args[] = { 677 {0, 1024, "invalid number of path selector args"}, 678 }; 679 680 pst = dm_get_path_selector(dm_shift_arg(as)); 681 if (!pst) { 682 ti->error = "unknown path selector type"; 683 return -EINVAL; 684 } 685 686 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 687 if (r) { 688 dm_put_path_selector(pst); 689 return -EINVAL; 690 } 691 692 r = pst->create(&pg->ps, ps_argc, as->argv); 693 if (r) { 694 dm_put_path_selector(pst); 695 ti->error = "path selector constructor failed"; 696 return r; 697 } 698 699 pg->ps.type = pst; 700 dm_consume_args(as, ps_argc); 701 702 return 0; 703 } 704 705 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 706 struct dm_target *ti) 707 { 708 int r; 709 struct pgpath *p; 710 struct multipath *m = ti->private; 711 struct request_queue *q = NULL; 712 const char *attached_handler_name; 713 714 /* we need at least a path arg */ 715 if (as->argc < 1) { 716 ti->error = "no device given"; 717 return ERR_PTR(-EINVAL); 718 } 719 720 p = alloc_pgpath(); 721 if (!p) 722 return ERR_PTR(-ENOMEM); 723 724 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 725 &p->path.dev); 726 if (r) { 727 ti->error = "error getting device"; 728 goto bad; 729 } 730 731 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name) 732 q = bdev_get_queue(p->path.dev->bdev); 733 734 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) { 735 retain: 736 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 737 if (attached_handler_name) { 738 /* 739 * Clear any hw_handler_params associated with a 740 * handler that isn't already attached. 741 */ 742 if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) { 743 kfree(m->hw_handler_params); 744 m->hw_handler_params = NULL; 745 } 746 747 /* 748 * Reset hw_handler_name to match the attached handler 749 * 750 * NB. This modifies the table line to show the actual 751 * handler instead of the original table passed in. 752 */ 753 kfree(m->hw_handler_name); 754 m->hw_handler_name = attached_handler_name; 755 } 756 } 757 758 if (m->hw_handler_name) { 759 r = scsi_dh_attach(q, m->hw_handler_name); 760 if (r == -EBUSY) { 761 char b[BDEVNAME_SIZE]; 762 763 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 764 bdevname(p->path.dev->bdev, b)); 765 goto retain; 766 } 767 if (r < 0) { 768 ti->error = "error attaching hardware handler"; 769 dm_put_device(ti, p->path.dev); 770 goto bad; 771 } 772 773 if (m->hw_handler_params) { 774 r = scsi_dh_set_params(q, m->hw_handler_params); 775 if (r < 0) { 776 ti->error = "unable to set hardware " 777 "handler parameters"; 778 dm_put_device(ti, p->path.dev); 779 goto bad; 780 } 781 } 782 } 783 784 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 785 if (r) { 786 dm_put_device(ti, p->path.dev); 787 goto bad; 788 } 789 790 return p; 791 792 bad: 793 free_pgpath(p); 794 return ERR_PTR(r); 795 } 796 797 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 798 struct multipath *m) 799 { 800 static struct dm_arg _args[] = { 801 {1, 1024, "invalid number of paths"}, 802 {0, 1024, "invalid number of selector args"} 803 }; 804 805 int r; 806 unsigned i, nr_selector_args, nr_args; 807 struct priority_group *pg; 808 struct dm_target *ti = m->ti; 809 810 if (as->argc < 2) { 811 as->argc = 0; 812 ti->error = "not enough priority group arguments"; 813 return ERR_PTR(-EINVAL); 814 } 815 816 pg = alloc_priority_group(); 817 if (!pg) { 818 ti->error = "couldn't allocate priority group"; 819 return ERR_PTR(-ENOMEM); 820 } 821 pg->m = m; 822 823 r = parse_path_selector(as, pg, ti); 824 if (r) 825 goto bad; 826 827 /* 828 * read the paths 829 */ 830 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 831 if (r) 832 goto bad; 833 834 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 835 if (r) 836 goto bad; 837 838 nr_args = 1 + nr_selector_args; 839 for (i = 0; i < pg->nr_pgpaths; i++) { 840 struct pgpath *pgpath; 841 struct dm_arg_set path_args; 842 843 if (as->argc < nr_args) { 844 ti->error = "not enough path parameters"; 845 r = -EINVAL; 846 goto bad; 847 } 848 849 path_args.argc = nr_args; 850 path_args.argv = as->argv; 851 852 pgpath = parse_path(&path_args, &pg->ps, ti); 853 if (IS_ERR(pgpath)) { 854 r = PTR_ERR(pgpath); 855 goto bad; 856 } 857 858 pgpath->pg = pg; 859 list_add_tail(&pgpath->list, &pg->pgpaths); 860 dm_consume_args(as, nr_args); 861 } 862 863 return pg; 864 865 bad: 866 free_priority_group(pg, ti); 867 return ERR_PTR(r); 868 } 869 870 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 871 { 872 unsigned hw_argc; 873 int ret; 874 struct dm_target *ti = m->ti; 875 876 static struct dm_arg _args[] = { 877 {0, 1024, "invalid number of hardware handler args"}, 878 }; 879 880 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 881 return -EINVAL; 882 883 if (!hw_argc) 884 return 0; 885 886 if (m->queue_mode == DM_TYPE_BIO_BASED) { 887 dm_consume_args(as, hw_argc); 888 DMERR("bio-based multipath doesn't allow hardware handler args"); 889 return 0; 890 } 891 892 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 893 if (!m->hw_handler_name) 894 return -EINVAL; 895 896 if (hw_argc > 1) { 897 char *p; 898 int i, j, len = 4; 899 900 for (i = 0; i <= hw_argc - 2; i++) 901 len += strlen(as->argv[i]) + 1; 902 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 903 if (!p) { 904 ti->error = "memory allocation failed"; 905 ret = -ENOMEM; 906 goto fail; 907 } 908 j = sprintf(p, "%d", hw_argc - 1); 909 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 910 j = sprintf(p, "%s", as->argv[i]); 911 } 912 dm_consume_args(as, hw_argc - 1); 913 914 return 0; 915 fail: 916 kfree(m->hw_handler_name); 917 m->hw_handler_name = NULL; 918 return ret; 919 } 920 921 static int parse_features(struct dm_arg_set *as, struct multipath *m) 922 { 923 int r; 924 unsigned argc; 925 struct dm_target *ti = m->ti; 926 const char *arg_name; 927 928 static struct dm_arg _args[] = { 929 {0, 8, "invalid number of feature args"}, 930 {1, 50, "pg_init_retries must be between 1 and 50"}, 931 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 932 }; 933 934 r = dm_read_arg_group(_args, as, &argc, &ti->error); 935 if (r) 936 return -EINVAL; 937 938 if (!argc) 939 return 0; 940 941 do { 942 arg_name = dm_shift_arg(as); 943 argc--; 944 945 if (!strcasecmp(arg_name, "queue_if_no_path")) { 946 r = queue_if_no_path(m, true, false); 947 continue; 948 } 949 950 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 951 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 952 continue; 953 } 954 955 if (!strcasecmp(arg_name, "pg_init_retries") && 956 (argc >= 1)) { 957 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 958 argc--; 959 continue; 960 } 961 962 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 963 (argc >= 1)) { 964 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 965 argc--; 966 continue; 967 } 968 969 if (!strcasecmp(arg_name, "queue_mode") && 970 (argc >= 1)) { 971 const char *queue_mode_name = dm_shift_arg(as); 972 973 if (!strcasecmp(queue_mode_name, "bio")) 974 m->queue_mode = DM_TYPE_BIO_BASED; 975 else if (!strcasecmp(queue_mode_name, "rq")) 976 m->queue_mode = DM_TYPE_REQUEST_BASED; 977 else if (!strcasecmp(queue_mode_name, "mq")) 978 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 979 else { 980 ti->error = "Unknown 'queue_mode' requested"; 981 r = -EINVAL; 982 } 983 argc--; 984 continue; 985 } 986 987 ti->error = "Unrecognised multipath feature request"; 988 r = -EINVAL; 989 } while (argc && !r); 990 991 return r; 992 } 993 994 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 995 { 996 /* target arguments */ 997 static struct dm_arg _args[] = { 998 {0, 1024, "invalid number of priority groups"}, 999 {0, 1024, "invalid initial priority group number"}, 1000 }; 1001 1002 int r; 1003 struct multipath *m; 1004 struct dm_arg_set as; 1005 unsigned pg_count = 0; 1006 unsigned next_pg_num; 1007 1008 as.argc = argc; 1009 as.argv = argv; 1010 1011 m = alloc_multipath(ti); 1012 if (!m) { 1013 ti->error = "can't allocate multipath"; 1014 return -EINVAL; 1015 } 1016 1017 r = parse_features(&as, m); 1018 if (r) 1019 goto bad; 1020 1021 r = alloc_multipath_stage2(ti, m); 1022 if (r) 1023 goto bad; 1024 1025 r = parse_hw_handler(&as, m); 1026 if (r) 1027 goto bad; 1028 1029 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1030 if (r) 1031 goto bad; 1032 1033 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1034 if (r) 1035 goto bad; 1036 1037 if ((!m->nr_priority_groups && next_pg_num) || 1038 (m->nr_priority_groups && !next_pg_num)) { 1039 ti->error = "invalid initial priority group"; 1040 r = -EINVAL; 1041 goto bad; 1042 } 1043 1044 /* parse the priority groups */ 1045 while (as.argc) { 1046 struct priority_group *pg; 1047 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1048 1049 pg = parse_priority_group(&as, m); 1050 if (IS_ERR(pg)) { 1051 r = PTR_ERR(pg); 1052 goto bad; 1053 } 1054 1055 nr_valid_paths += pg->nr_pgpaths; 1056 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1057 1058 list_add_tail(&pg->list, &m->priority_groups); 1059 pg_count++; 1060 pg->pg_num = pg_count; 1061 if (!--next_pg_num) 1062 m->next_pg = pg; 1063 } 1064 1065 if (pg_count != m->nr_priority_groups) { 1066 ti->error = "priority group count mismatch"; 1067 r = -EINVAL; 1068 goto bad; 1069 } 1070 1071 ti->num_flush_bios = 1; 1072 ti->num_discard_bios = 1; 1073 ti->num_write_same_bios = 1; 1074 if (m->queue_mode == DM_TYPE_BIO_BASED) 1075 ti->per_io_data_size = multipath_per_bio_data_size(); 1076 else 1077 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1078 1079 return 0; 1080 1081 bad: 1082 free_multipath(m); 1083 return r; 1084 } 1085 1086 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1087 { 1088 DEFINE_WAIT(wait); 1089 1090 while (1) { 1091 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1092 1093 if (!atomic_read(&m->pg_init_in_progress)) 1094 break; 1095 1096 io_schedule(); 1097 } 1098 finish_wait(&m->pg_init_wait, &wait); 1099 } 1100 1101 static void flush_multipath_work(struct multipath *m) 1102 { 1103 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1104 smp_mb__after_atomic(); 1105 1106 flush_workqueue(kmpath_handlerd); 1107 multipath_wait_for_pg_init_completion(m); 1108 flush_workqueue(kmultipathd); 1109 flush_work(&m->trigger_event); 1110 1111 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1112 smp_mb__after_atomic(); 1113 } 1114 1115 static void multipath_dtr(struct dm_target *ti) 1116 { 1117 struct multipath *m = ti->private; 1118 1119 flush_multipath_work(m); 1120 free_multipath(m); 1121 } 1122 1123 /* 1124 * Take a path out of use. 1125 */ 1126 static int fail_path(struct pgpath *pgpath) 1127 { 1128 unsigned long flags; 1129 struct multipath *m = pgpath->pg->m; 1130 1131 spin_lock_irqsave(&m->lock, flags); 1132 1133 if (!pgpath->is_active) 1134 goto out; 1135 1136 DMWARN("Failing path %s.", pgpath->path.dev->name); 1137 1138 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1139 pgpath->is_active = false; 1140 pgpath->fail_count++; 1141 1142 atomic_dec(&m->nr_valid_paths); 1143 1144 if (pgpath == m->current_pgpath) 1145 m->current_pgpath = NULL; 1146 1147 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1148 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1149 1150 schedule_work(&m->trigger_event); 1151 1152 out: 1153 spin_unlock_irqrestore(&m->lock, flags); 1154 1155 return 0; 1156 } 1157 1158 /* 1159 * Reinstate a previously-failed path 1160 */ 1161 static int reinstate_path(struct pgpath *pgpath) 1162 { 1163 int r = 0, run_queue = 0; 1164 unsigned long flags; 1165 struct multipath *m = pgpath->pg->m; 1166 unsigned nr_valid_paths; 1167 1168 spin_lock_irqsave(&m->lock, flags); 1169 1170 if (pgpath->is_active) 1171 goto out; 1172 1173 DMWARN("Reinstating path %s.", pgpath->path.dev->name); 1174 1175 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1176 if (r) 1177 goto out; 1178 1179 pgpath->is_active = true; 1180 1181 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1182 if (nr_valid_paths == 1) { 1183 m->current_pgpath = NULL; 1184 run_queue = 1; 1185 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1186 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1187 atomic_inc(&m->pg_init_in_progress); 1188 } 1189 1190 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1191 pgpath->path.dev->name, nr_valid_paths); 1192 1193 schedule_work(&m->trigger_event); 1194 1195 out: 1196 spin_unlock_irqrestore(&m->lock, flags); 1197 if (run_queue) { 1198 dm_table_run_md_queue_async(m->ti->table); 1199 process_queued_io_list(m); 1200 } 1201 1202 return r; 1203 } 1204 1205 /* 1206 * Fail or reinstate all paths that match the provided struct dm_dev. 1207 */ 1208 static int action_dev(struct multipath *m, struct dm_dev *dev, 1209 action_fn action) 1210 { 1211 int r = -EINVAL; 1212 struct pgpath *pgpath; 1213 struct priority_group *pg; 1214 1215 list_for_each_entry(pg, &m->priority_groups, list) { 1216 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1217 if (pgpath->path.dev == dev) 1218 r = action(pgpath); 1219 } 1220 } 1221 1222 return r; 1223 } 1224 1225 /* 1226 * Temporarily try to avoid having to use the specified PG 1227 */ 1228 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1229 bool bypassed) 1230 { 1231 unsigned long flags; 1232 1233 spin_lock_irqsave(&m->lock, flags); 1234 1235 pg->bypassed = bypassed; 1236 m->current_pgpath = NULL; 1237 m->current_pg = NULL; 1238 1239 spin_unlock_irqrestore(&m->lock, flags); 1240 1241 schedule_work(&m->trigger_event); 1242 } 1243 1244 /* 1245 * Switch to using the specified PG from the next I/O that gets mapped 1246 */ 1247 static int switch_pg_num(struct multipath *m, const char *pgstr) 1248 { 1249 struct priority_group *pg; 1250 unsigned pgnum; 1251 unsigned long flags; 1252 char dummy; 1253 1254 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1255 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1256 DMWARN("invalid PG number supplied to switch_pg_num"); 1257 return -EINVAL; 1258 } 1259 1260 spin_lock_irqsave(&m->lock, flags); 1261 list_for_each_entry(pg, &m->priority_groups, list) { 1262 pg->bypassed = false; 1263 if (--pgnum) 1264 continue; 1265 1266 m->current_pgpath = NULL; 1267 m->current_pg = NULL; 1268 m->next_pg = pg; 1269 } 1270 spin_unlock_irqrestore(&m->lock, flags); 1271 1272 schedule_work(&m->trigger_event); 1273 return 0; 1274 } 1275 1276 /* 1277 * Set/clear bypassed status of a PG. 1278 * PGs are numbered upwards from 1 in the order they were declared. 1279 */ 1280 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1281 { 1282 struct priority_group *pg; 1283 unsigned pgnum; 1284 char dummy; 1285 1286 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1287 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1288 DMWARN("invalid PG number supplied to bypass_pg"); 1289 return -EINVAL; 1290 } 1291 1292 list_for_each_entry(pg, &m->priority_groups, list) { 1293 if (!--pgnum) 1294 break; 1295 } 1296 1297 bypass_pg(m, pg, bypassed); 1298 return 0; 1299 } 1300 1301 /* 1302 * Should we retry pg_init immediately? 1303 */ 1304 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1305 { 1306 unsigned long flags; 1307 bool limit_reached = false; 1308 1309 spin_lock_irqsave(&m->lock, flags); 1310 1311 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1312 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1313 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1314 else 1315 limit_reached = true; 1316 1317 spin_unlock_irqrestore(&m->lock, flags); 1318 1319 return limit_reached; 1320 } 1321 1322 static void pg_init_done(void *data, int errors) 1323 { 1324 struct pgpath *pgpath = data; 1325 struct priority_group *pg = pgpath->pg; 1326 struct multipath *m = pg->m; 1327 unsigned long flags; 1328 bool delay_retry = false; 1329 1330 /* device or driver problems */ 1331 switch (errors) { 1332 case SCSI_DH_OK: 1333 break; 1334 case SCSI_DH_NOSYS: 1335 if (!m->hw_handler_name) { 1336 errors = 0; 1337 break; 1338 } 1339 DMERR("Could not failover the device: Handler scsi_dh_%s " 1340 "Error %d.", m->hw_handler_name, errors); 1341 /* 1342 * Fail path for now, so we do not ping pong 1343 */ 1344 fail_path(pgpath); 1345 break; 1346 case SCSI_DH_DEV_TEMP_BUSY: 1347 /* 1348 * Probably doing something like FW upgrade on the 1349 * controller so try the other pg. 1350 */ 1351 bypass_pg(m, pg, true); 1352 break; 1353 case SCSI_DH_RETRY: 1354 /* Wait before retrying. */ 1355 delay_retry = 1; 1356 case SCSI_DH_IMM_RETRY: 1357 case SCSI_DH_RES_TEMP_UNAVAIL: 1358 if (pg_init_limit_reached(m, pgpath)) 1359 fail_path(pgpath); 1360 errors = 0; 1361 break; 1362 case SCSI_DH_DEV_OFFLINED: 1363 default: 1364 /* 1365 * We probably do not want to fail the path for a device 1366 * error, but this is what the old dm did. In future 1367 * patches we can do more advanced handling. 1368 */ 1369 fail_path(pgpath); 1370 } 1371 1372 spin_lock_irqsave(&m->lock, flags); 1373 if (errors) { 1374 if (pgpath == m->current_pgpath) { 1375 DMERR("Could not failover device. Error %d.", errors); 1376 m->current_pgpath = NULL; 1377 m->current_pg = NULL; 1378 } 1379 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1380 pg->bypassed = false; 1381 1382 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1383 /* Activations of other paths are still on going */ 1384 goto out; 1385 1386 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1387 if (delay_retry) 1388 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1389 else 1390 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1391 1392 if (__pg_init_all_paths(m)) 1393 goto out; 1394 } 1395 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1396 1397 process_queued_io_list(m); 1398 1399 /* 1400 * Wake up any thread waiting to suspend. 1401 */ 1402 wake_up(&m->pg_init_wait); 1403 1404 out: 1405 spin_unlock_irqrestore(&m->lock, flags); 1406 } 1407 1408 static void activate_or_offline_path(struct pgpath *pgpath) 1409 { 1410 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1411 1412 if (pgpath->is_active && !blk_queue_dying(q)) 1413 scsi_dh_activate(q, pg_init_done, pgpath); 1414 else 1415 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1416 } 1417 1418 static void activate_path_work(struct work_struct *work) 1419 { 1420 struct pgpath *pgpath = 1421 container_of(work, struct pgpath, activate_path.work); 1422 1423 activate_or_offline_path(pgpath); 1424 } 1425 1426 static int noretry_error(int error) 1427 { 1428 switch (error) { 1429 case -EBADE: 1430 /* 1431 * EBADE signals an reservation conflict. 1432 * We shouldn't fail the path here as we can communicate with 1433 * the target. We should failover to the next path, but in 1434 * doing so we might be causing a ping-pong between paths. 1435 * So just return the reservation conflict error. 1436 */ 1437 case -EOPNOTSUPP: 1438 case -EREMOTEIO: 1439 case -EILSEQ: 1440 case -ENODATA: 1441 case -ENOSPC: 1442 return 1; 1443 } 1444 1445 /* Anything else could be a path failure, so should be retried */ 1446 return 0; 1447 } 1448 1449 /* 1450 * end_io handling 1451 */ 1452 static int do_end_io(struct multipath *m, struct request *clone, 1453 int error, struct dm_mpath_io *mpio) 1454 { 1455 /* 1456 * We don't queue any clone request inside the multipath target 1457 * during end I/O handling, since those clone requests don't have 1458 * bio clones. If we queue them inside the multipath target, 1459 * we need to make bio clones, that requires memory allocation. 1460 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1461 * don't have bio clones.) 1462 * Instead of queueing the clone request here, we queue the original 1463 * request into dm core, which will remake a clone request and 1464 * clone bios for it and resubmit it later. 1465 */ 1466 int r = DM_ENDIO_REQUEUE; 1467 1468 if (!error && !clone->errors) 1469 return 0; /* I/O complete */ 1470 1471 if (noretry_error(error)) 1472 return error; 1473 1474 if (mpio->pgpath) 1475 fail_path(mpio->pgpath); 1476 1477 if (atomic_read(&m->nr_valid_paths) == 0 && 1478 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1479 r = -EIO; 1480 1481 return r; 1482 } 1483 1484 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1485 int error, union map_info *map_context) 1486 { 1487 struct multipath *m = ti->private; 1488 struct dm_mpath_io *mpio = get_mpio(map_context); 1489 struct pgpath *pgpath; 1490 struct path_selector *ps; 1491 int r; 1492 1493 BUG_ON(!mpio); 1494 1495 r = do_end_io(m, clone, error, mpio); 1496 pgpath = mpio->pgpath; 1497 if (pgpath) { 1498 ps = &pgpath->pg->ps; 1499 if (ps->type->end_io) 1500 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1501 } 1502 1503 return r; 1504 } 1505 1506 static int do_end_io_bio(struct multipath *m, struct bio *clone, 1507 int error, struct dm_mpath_io *mpio) 1508 { 1509 unsigned long flags; 1510 1511 if (!error) 1512 return 0; /* I/O complete */ 1513 1514 if (noretry_error(error)) 1515 return error; 1516 1517 if (mpio->pgpath) 1518 fail_path(mpio->pgpath); 1519 1520 if (atomic_read(&m->nr_valid_paths) == 0 && 1521 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1522 return -EIO; 1523 1524 /* Queue for the daemon to resubmit */ 1525 dm_bio_restore(get_bio_details_from_bio(clone), clone); 1526 1527 spin_lock_irqsave(&m->lock, flags); 1528 bio_list_add(&m->queued_bios, clone); 1529 spin_unlock_irqrestore(&m->lock, flags); 1530 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 1531 queue_work(kmultipathd, &m->process_queued_bios); 1532 1533 return DM_ENDIO_INCOMPLETE; 1534 } 1535 1536 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, int error) 1537 { 1538 struct multipath *m = ti->private; 1539 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1540 struct pgpath *pgpath; 1541 struct path_selector *ps; 1542 int r; 1543 1544 BUG_ON(!mpio); 1545 1546 r = do_end_io_bio(m, clone, error, mpio); 1547 pgpath = mpio->pgpath; 1548 if (pgpath) { 1549 ps = &pgpath->pg->ps; 1550 if (ps->type->end_io) 1551 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1552 } 1553 1554 return r; 1555 } 1556 1557 /* 1558 * Suspend can't complete until all the I/O is processed so if 1559 * the last path fails we must error any remaining I/O. 1560 * Note that if the freeze_bdev fails while suspending, the 1561 * queue_if_no_path state is lost - userspace should reset it. 1562 */ 1563 static void multipath_presuspend(struct dm_target *ti) 1564 { 1565 struct multipath *m = ti->private; 1566 1567 queue_if_no_path(m, false, true); 1568 } 1569 1570 static void multipath_postsuspend(struct dm_target *ti) 1571 { 1572 struct multipath *m = ti->private; 1573 1574 mutex_lock(&m->work_mutex); 1575 flush_multipath_work(m); 1576 mutex_unlock(&m->work_mutex); 1577 } 1578 1579 /* 1580 * Restore the queue_if_no_path setting. 1581 */ 1582 static void multipath_resume(struct dm_target *ti) 1583 { 1584 struct multipath *m = ti->private; 1585 unsigned long flags; 1586 1587 spin_lock_irqsave(&m->lock, flags); 1588 assign_bit(test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags), 1589 MPATHF_QUEUE_IF_NO_PATH, &m->flags); 1590 spin_unlock_irqrestore(&m->lock, flags); 1591 } 1592 1593 /* 1594 * Info output has the following format: 1595 * num_multipath_feature_args [multipath_feature_args]* 1596 * num_handler_status_args [handler_status_args]* 1597 * num_groups init_group_number 1598 * [A|D|E num_ps_status_args [ps_status_args]* 1599 * num_paths num_selector_args 1600 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1601 * 1602 * Table output has the following format (identical to the constructor string): 1603 * num_feature_args [features_args]* 1604 * num_handler_args hw_handler [hw_handler_args]* 1605 * num_groups init_group_number 1606 * [priority selector-name num_ps_args [ps_args]* 1607 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1608 */ 1609 static void multipath_status(struct dm_target *ti, status_type_t type, 1610 unsigned status_flags, char *result, unsigned maxlen) 1611 { 1612 int sz = 0; 1613 unsigned long flags; 1614 struct multipath *m = ti->private; 1615 struct priority_group *pg; 1616 struct pgpath *p; 1617 unsigned pg_num; 1618 char state; 1619 1620 spin_lock_irqsave(&m->lock, flags); 1621 1622 /* Features */ 1623 if (type == STATUSTYPE_INFO) 1624 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1625 atomic_read(&m->pg_init_count)); 1626 else { 1627 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1628 (m->pg_init_retries > 0) * 2 + 1629 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1630 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1631 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1632 1633 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1634 DMEMIT("queue_if_no_path "); 1635 if (m->pg_init_retries) 1636 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1637 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1638 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1639 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1640 DMEMIT("retain_attached_hw_handler "); 1641 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1642 switch(m->queue_mode) { 1643 case DM_TYPE_BIO_BASED: 1644 DMEMIT("queue_mode bio "); 1645 break; 1646 case DM_TYPE_MQ_REQUEST_BASED: 1647 DMEMIT("queue_mode mq "); 1648 break; 1649 default: 1650 WARN_ON_ONCE(true); 1651 break; 1652 } 1653 } 1654 } 1655 1656 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1657 DMEMIT("0 "); 1658 else 1659 DMEMIT("1 %s ", m->hw_handler_name); 1660 1661 DMEMIT("%u ", m->nr_priority_groups); 1662 1663 if (m->next_pg) 1664 pg_num = m->next_pg->pg_num; 1665 else if (m->current_pg) 1666 pg_num = m->current_pg->pg_num; 1667 else 1668 pg_num = (m->nr_priority_groups ? 1 : 0); 1669 1670 DMEMIT("%u ", pg_num); 1671 1672 switch (type) { 1673 case STATUSTYPE_INFO: 1674 list_for_each_entry(pg, &m->priority_groups, list) { 1675 if (pg->bypassed) 1676 state = 'D'; /* Disabled */ 1677 else if (pg == m->current_pg) 1678 state = 'A'; /* Currently Active */ 1679 else 1680 state = 'E'; /* Enabled */ 1681 1682 DMEMIT("%c ", state); 1683 1684 if (pg->ps.type->status) 1685 sz += pg->ps.type->status(&pg->ps, NULL, type, 1686 result + sz, 1687 maxlen - sz); 1688 else 1689 DMEMIT("0 "); 1690 1691 DMEMIT("%u %u ", pg->nr_pgpaths, 1692 pg->ps.type->info_args); 1693 1694 list_for_each_entry(p, &pg->pgpaths, list) { 1695 DMEMIT("%s %s %u ", p->path.dev->name, 1696 p->is_active ? "A" : "F", 1697 p->fail_count); 1698 if (pg->ps.type->status) 1699 sz += pg->ps.type->status(&pg->ps, 1700 &p->path, type, result + sz, 1701 maxlen - sz); 1702 } 1703 } 1704 break; 1705 1706 case STATUSTYPE_TABLE: 1707 list_for_each_entry(pg, &m->priority_groups, list) { 1708 DMEMIT("%s ", pg->ps.type->name); 1709 1710 if (pg->ps.type->status) 1711 sz += pg->ps.type->status(&pg->ps, NULL, type, 1712 result + sz, 1713 maxlen - sz); 1714 else 1715 DMEMIT("0 "); 1716 1717 DMEMIT("%u %u ", pg->nr_pgpaths, 1718 pg->ps.type->table_args); 1719 1720 list_for_each_entry(p, &pg->pgpaths, list) { 1721 DMEMIT("%s ", p->path.dev->name); 1722 if (pg->ps.type->status) 1723 sz += pg->ps.type->status(&pg->ps, 1724 &p->path, type, result + sz, 1725 maxlen - sz); 1726 } 1727 } 1728 break; 1729 } 1730 1731 spin_unlock_irqrestore(&m->lock, flags); 1732 } 1733 1734 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) 1735 { 1736 int r = -EINVAL; 1737 struct dm_dev *dev; 1738 struct multipath *m = ti->private; 1739 action_fn action; 1740 1741 mutex_lock(&m->work_mutex); 1742 1743 if (dm_suspended(ti)) { 1744 r = -EBUSY; 1745 goto out; 1746 } 1747 1748 if (argc == 1) { 1749 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1750 r = queue_if_no_path(m, true, false); 1751 goto out; 1752 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1753 r = queue_if_no_path(m, false, false); 1754 goto out; 1755 } 1756 } 1757 1758 if (argc != 2) { 1759 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1760 goto out; 1761 } 1762 1763 if (!strcasecmp(argv[0], "disable_group")) { 1764 r = bypass_pg_num(m, argv[1], true); 1765 goto out; 1766 } else if (!strcasecmp(argv[0], "enable_group")) { 1767 r = bypass_pg_num(m, argv[1], false); 1768 goto out; 1769 } else if (!strcasecmp(argv[0], "switch_group")) { 1770 r = switch_pg_num(m, argv[1]); 1771 goto out; 1772 } else if (!strcasecmp(argv[0], "reinstate_path")) 1773 action = reinstate_path; 1774 else if (!strcasecmp(argv[0], "fail_path")) 1775 action = fail_path; 1776 else { 1777 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1778 goto out; 1779 } 1780 1781 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1782 if (r) { 1783 DMWARN("message: error getting device %s", 1784 argv[1]); 1785 goto out; 1786 } 1787 1788 r = action_dev(m, dev, action); 1789 1790 dm_put_device(ti, dev); 1791 1792 out: 1793 mutex_unlock(&m->work_mutex); 1794 return r; 1795 } 1796 1797 static int multipath_prepare_ioctl(struct dm_target *ti, 1798 struct block_device **bdev, fmode_t *mode) 1799 { 1800 struct multipath *m = ti->private; 1801 struct pgpath *current_pgpath; 1802 int r; 1803 1804 current_pgpath = lockless_dereference(m->current_pgpath); 1805 if (!current_pgpath) 1806 current_pgpath = choose_pgpath(m, 0); 1807 1808 if (current_pgpath) { 1809 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) { 1810 *bdev = current_pgpath->path.dev->bdev; 1811 *mode = current_pgpath->path.dev->mode; 1812 r = 0; 1813 } else { 1814 /* pg_init has not started or completed */ 1815 r = -ENOTCONN; 1816 } 1817 } else { 1818 /* No path is available */ 1819 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1820 r = -ENOTCONN; 1821 else 1822 r = -EIO; 1823 } 1824 1825 if (r == -ENOTCONN) { 1826 if (!lockless_dereference(m->current_pg)) { 1827 /* Path status changed, redo selection */ 1828 (void) choose_pgpath(m, 0); 1829 } 1830 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1831 pg_init_all_paths(m); 1832 dm_table_run_md_queue_async(m->ti->table); 1833 process_queued_io_list(m); 1834 } 1835 1836 /* 1837 * Only pass ioctls through if the device sizes match exactly. 1838 */ 1839 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1840 return 1; 1841 return r; 1842 } 1843 1844 static int multipath_iterate_devices(struct dm_target *ti, 1845 iterate_devices_callout_fn fn, void *data) 1846 { 1847 struct multipath *m = ti->private; 1848 struct priority_group *pg; 1849 struct pgpath *p; 1850 int ret = 0; 1851 1852 list_for_each_entry(pg, &m->priority_groups, list) { 1853 list_for_each_entry(p, &pg->pgpaths, list) { 1854 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1855 if (ret) 1856 goto out; 1857 } 1858 } 1859 1860 out: 1861 return ret; 1862 } 1863 1864 static int pgpath_busy(struct pgpath *pgpath) 1865 { 1866 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1867 1868 return blk_lld_busy(q); 1869 } 1870 1871 /* 1872 * We return "busy", only when we can map I/Os but underlying devices 1873 * are busy (so even if we map I/Os now, the I/Os will wait on 1874 * the underlying queue). 1875 * In other words, if we want to kill I/Os or queue them inside us 1876 * due to map unavailability, we don't return "busy". Otherwise, 1877 * dm core won't give us the I/Os and we can't do what we want. 1878 */ 1879 static int multipath_busy(struct dm_target *ti) 1880 { 1881 bool busy = false, has_active = false; 1882 struct multipath *m = ti->private; 1883 struct priority_group *pg, *next_pg; 1884 struct pgpath *pgpath; 1885 1886 /* pg_init in progress */ 1887 if (atomic_read(&m->pg_init_in_progress)) 1888 return true; 1889 1890 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 1891 if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1892 return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED); 1893 1894 /* Guess which priority_group will be used at next mapping time */ 1895 pg = lockless_dereference(m->current_pg); 1896 next_pg = lockless_dereference(m->next_pg); 1897 if (unlikely(!lockless_dereference(m->current_pgpath) && next_pg)) 1898 pg = next_pg; 1899 1900 if (!pg) { 1901 /* 1902 * We don't know which pg will be used at next mapping time. 1903 * We don't call choose_pgpath() here to avoid to trigger 1904 * pg_init just by busy checking. 1905 * So we don't know whether underlying devices we will be using 1906 * at next mapping time are busy or not. Just try mapping. 1907 */ 1908 return busy; 1909 } 1910 1911 /* 1912 * If there is one non-busy active path at least, the path selector 1913 * will be able to select it. So we consider such a pg as not busy. 1914 */ 1915 busy = true; 1916 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1917 if (pgpath->is_active) { 1918 has_active = true; 1919 if (!pgpath_busy(pgpath)) { 1920 busy = false; 1921 break; 1922 } 1923 } 1924 } 1925 1926 if (!has_active) { 1927 /* 1928 * No active path in this pg, so this pg won't be used and 1929 * the current_pg will be changed at next mapping time. 1930 * We need to try mapping to determine it. 1931 */ 1932 busy = false; 1933 } 1934 1935 return busy; 1936 } 1937 1938 /*----------------------------------------------------------------- 1939 * Module setup 1940 *---------------------------------------------------------------*/ 1941 static struct target_type multipath_target = { 1942 .name = "multipath", 1943 .version = {1, 12, 0}, 1944 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE, 1945 .module = THIS_MODULE, 1946 .ctr = multipath_ctr, 1947 .dtr = multipath_dtr, 1948 .clone_and_map_rq = multipath_clone_and_map, 1949 .release_clone_rq = multipath_release_clone, 1950 .rq_end_io = multipath_end_io, 1951 .map = multipath_map_bio, 1952 .end_io = multipath_end_io_bio, 1953 .presuspend = multipath_presuspend, 1954 .postsuspend = multipath_postsuspend, 1955 .resume = multipath_resume, 1956 .status = multipath_status, 1957 .message = multipath_message, 1958 .prepare_ioctl = multipath_prepare_ioctl, 1959 .iterate_devices = multipath_iterate_devices, 1960 .busy = multipath_busy, 1961 }; 1962 1963 static int __init dm_multipath_init(void) 1964 { 1965 int r; 1966 1967 r = dm_register_target(&multipath_target); 1968 if (r < 0) { 1969 DMERR("request-based register failed %d", r); 1970 r = -EINVAL; 1971 goto bad_register_target; 1972 } 1973 1974 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 1975 if (!kmultipathd) { 1976 DMERR("failed to create workqueue kmpathd"); 1977 r = -ENOMEM; 1978 goto bad_alloc_kmultipathd; 1979 } 1980 1981 /* 1982 * A separate workqueue is used to handle the device handlers 1983 * to avoid overloading existing workqueue. Overloading the 1984 * old workqueue would also create a bottleneck in the 1985 * path of the storage hardware device activation. 1986 */ 1987 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 1988 WQ_MEM_RECLAIM); 1989 if (!kmpath_handlerd) { 1990 DMERR("failed to create workqueue kmpath_handlerd"); 1991 r = -ENOMEM; 1992 goto bad_alloc_kmpath_handlerd; 1993 } 1994 1995 return 0; 1996 1997 bad_alloc_kmpath_handlerd: 1998 destroy_workqueue(kmultipathd); 1999 bad_alloc_kmultipathd: 2000 dm_unregister_target(&multipath_target); 2001 bad_register_target: 2002 return r; 2003 } 2004 2005 static void __exit dm_multipath_exit(void) 2006 { 2007 destroy_workqueue(kmpath_handlerd); 2008 destroy_workqueue(kmultipathd); 2009 2010 dm_unregister_target(&multipath_target); 2011 } 2012 2013 module_init(dm_multipath_init); 2014 module_exit(dm_multipath_exit); 2015 2016 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2017 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2018 MODULE_LICENSE("GPL"); 2019