xref: /openbmc/linux/drivers/md/dm-mpath.c (revision 86331f39a5935b092d3ea59446d416563ed05d16)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	struct list_head list;
68 	struct dm_target *ti;
69 
70 	const char *hw_handler_name;
71 	char *hw_handler_params;
72 
73 	spinlock_t lock;
74 
75 	unsigned nr_priority_groups;
76 	struct list_head priority_groups;
77 
78 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
79 
80 	struct pgpath *current_pgpath;
81 	struct priority_group *current_pg;
82 	struct priority_group *next_pg;	/* Switch to this PG if set */
83 
84 	unsigned long flags;		/* Multipath state flags */
85 
86 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
87 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
88 
89 	atomic_t nr_valid_paths;	/* Total number of usable paths */
90 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
91 	atomic_t pg_init_count;		/* Number of times pg_init called */
92 
93 	enum dm_queue_mode queue_mode;
94 
95 	struct mutex work_mutex;
96 	struct work_struct trigger_event;
97 
98 	struct work_struct process_queued_bios;
99 	struct bio_list queued_bios;
100 };
101 
102 /*
103  * Context information attached to each io we process.
104  */
105 struct dm_mpath_io {
106 	struct pgpath *pgpath;
107 	size_t nr_bytes;
108 };
109 
110 typedef int (*action_fn) (struct pgpath *pgpath);
111 
112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
113 static void trigger_event(struct work_struct *work);
114 static void activate_or_offline_path(struct pgpath *pgpath);
115 static void activate_path_work(struct work_struct *work);
116 static void process_queued_bios(struct work_struct *work);
117 
118 /*-----------------------------------------------
119  * Multipath state flags.
120  *-----------------------------------------------*/
121 
122 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
123 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
124 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
125 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
126 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
127 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
128 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
129 
130 /*-----------------------------------------------
131  * Allocation routines
132  *-----------------------------------------------*/
133 
134 static struct pgpath *alloc_pgpath(void)
135 {
136 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
137 
138 	if (pgpath) {
139 		pgpath->is_active = true;
140 		INIT_DELAYED_WORK(&pgpath->activate_path, activate_path_work);
141 	}
142 
143 	return pgpath;
144 }
145 
146 static void free_pgpath(struct pgpath *pgpath)
147 {
148 	kfree(pgpath);
149 }
150 
151 static struct priority_group *alloc_priority_group(void)
152 {
153 	struct priority_group *pg;
154 
155 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
156 
157 	if (pg)
158 		INIT_LIST_HEAD(&pg->pgpaths);
159 
160 	return pg;
161 }
162 
163 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
164 {
165 	struct pgpath *pgpath, *tmp;
166 
167 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
168 		list_del(&pgpath->list);
169 		dm_put_device(ti, pgpath->path.dev);
170 		free_pgpath(pgpath);
171 	}
172 }
173 
174 static void free_priority_group(struct priority_group *pg,
175 				struct dm_target *ti)
176 {
177 	struct path_selector *ps = &pg->ps;
178 
179 	if (ps->type) {
180 		ps->type->destroy(ps);
181 		dm_put_path_selector(ps->type);
182 	}
183 
184 	free_pgpaths(&pg->pgpaths, ti);
185 	kfree(pg);
186 }
187 
188 static struct multipath *alloc_multipath(struct dm_target *ti)
189 {
190 	struct multipath *m;
191 
192 	m = kzalloc(sizeof(*m), GFP_KERNEL);
193 	if (m) {
194 		INIT_LIST_HEAD(&m->priority_groups);
195 		spin_lock_init(&m->lock);
196 		set_bit(MPATHF_QUEUE_IO, &m->flags);
197 		atomic_set(&m->nr_valid_paths, 0);
198 		atomic_set(&m->pg_init_in_progress, 0);
199 		atomic_set(&m->pg_init_count, 0);
200 		m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
201 		INIT_WORK(&m->trigger_event, trigger_event);
202 		init_waitqueue_head(&m->pg_init_wait);
203 		mutex_init(&m->work_mutex);
204 
205 		m->queue_mode = DM_TYPE_NONE;
206 
207 		m->ti = ti;
208 		ti->private = m;
209 	}
210 
211 	return m;
212 }
213 
214 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
215 {
216 	if (m->queue_mode == DM_TYPE_NONE) {
217 		/*
218 		 * Default to request-based.
219 		 */
220 		if (dm_use_blk_mq(dm_table_get_md(ti->table)))
221 			m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
222 		else
223 			m->queue_mode = DM_TYPE_REQUEST_BASED;
224 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
225 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
226 		/*
227 		 * bio-based doesn't support any direct scsi_dh management;
228 		 * it just discovers if a scsi_dh is attached.
229 		 */
230 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
231 	}
232 
233 	dm_table_set_type(ti->table, m->queue_mode);
234 
235 	return 0;
236 }
237 
238 static void free_multipath(struct multipath *m)
239 {
240 	struct priority_group *pg, *tmp;
241 
242 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
243 		list_del(&pg->list);
244 		free_priority_group(pg, m->ti);
245 	}
246 
247 	kfree(m->hw_handler_name);
248 	kfree(m->hw_handler_params);
249 	kfree(m);
250 }
251 
252 static struct dm_mpath_io *get_mpio(union map_info *info)
253 {
254 	return info->ptr;
255 }
256 
257 static size_t multipath_per_bio_data_size(void)
258 {
259 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
260 }
261 
262 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
263 {
264 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
265 }
266 
267 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio)
268 {
269 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
270 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
271 	void *bio_details = mpio + 1;
272 
273 	return bio_details;
274 }
275 
276 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p,
277 					struct dm_bio_details **bio_details_p)
278 {
279 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
280 	struct dm_bio_details *bio_details = get_bio_details_from_bio(bio);
281 
282 	memset(mpio, 0, sizeof(*mpio));
283 	memset(bio_details, 0, sizeof(*bio_details));
284 	dm_bio_record(bio_details, bio);
285 
286 	if (mpio_p)
287 		*mpio_p = mpio;
288 	if (bio_details_p)
289 		*bio_details_p = bio_details;
290 }
291 
292 /*-----------------------------------------------
293  * Path selection
294  *-----------------------------------------------*/
295 
296 static int __pg_init_all_paths(struct multipath *m)
297 {
298 	struct pgpath *pgpath;
299 	unsigned long pg_init_delay = 0;
300 
301 	lockdep_assert_held(&m->lock);
302 
303 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
304 		return 0;
305 
306 	atomic_inc(&m->pg_init_count);
307 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
308 
309 	/* Check here to reset pg_init_required */
310 	if (!m->current_pg)
311 		return 0;
312 
313 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
314 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
315 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
316 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
317 		/* Skip failed paths */
318 		if (!pgpath->is_active)
319 			continue;
320 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
321 				       pg_init_delay))
322 			atomic_inc(&m->pg_init_in_progress);
323 	}
324 	return atomic_read(&m->pg_init_in_progress);
325 }
326 
327 static int pg_init_all_paths(struct multipath *m)
328 {
329 	int ret;
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&m->lock, flags);
333 	ret = __pg_init_all_paths(m);
334 	spin_unlock_irqrestore(&m->lock, flags);
335 
336 	return ret;
337 }
338 
339 static void __switch_pg(struct multipath *m, struct priority_group *pg)
340 {
341 	m->current_pg = pg;
342 
343 	/* Must we initialise the PG first, and queue I/O till it's ready? */
344 	if (m->hw_handler_name) {
345 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
346 		set_bit(MPATHF_QUEUE_IO, &m->flags);
347 	} else {
348 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
349 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
350 	}
351 
352 	atomic_set(&m->pg_init_count, 0);
353 }
354 
355 static struct pgpath *choose_path_in_pg(struct multipath *m,
356 					struct priority_group *pg,
357 					size_t nr_bytes)
358 {
359 	unsigned long flags;
360 	struct dm_path *path;
361 	struct pgpath *pgpath;
362 
363 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
364 	if (!path)
365 		return ERR_PTR(-ENXIO);
366 
367 	pgpath = path_to_pgpath(path);
368 
369 	if (unlikely(lockless_dereference(m->current_pg) != pg)) {
370 		/* Only update current_pgpath if pg changed */
371 		spin_lock_irqsave(&m->lock, flags);
372 		m->current_pgpath = pgpath;
373 		__switch_pg(m, pg);
374 		spin_unlock_irqrestore(&m->lock, flags);
375 	}
376 
377 	return pgpath;
378 }
379 
380 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
381 {
382 	unsigned long flags;
383 	struct priority_group *pg;
384 	struct pgpath *pgpath;
385 	unsigned bypassed = 1;
386 
387 	if (!atomic_read(&m->nr_valid_paths)) {
388 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
389 		goto failed;
390 	}
391 
392 	/* Were we instructed to switch PG? */
393 	if (lockless_dereference(m->next_pg)) {
394 		spin_lock_irqsave(&m->lock, flags);
395 		pg = m->next_pg;
396 		if (!pg) {
397 			spin_unlock_irqrestore(&m->lock, flags);
398 			goto check_current_pg;
399 		}
400 		m->next_pg = NULL;
401 		spin_unlock_irqrestore(&m->lock, flags);
402 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
403 		if (!IS_ERR_OR_NULL(pgpath))
404 			return pgpath;
405 	}
406 
407 	/* Don't change PG until it has no remaining paths */
408 check_current_pg:
409 	pg = lockless_dereference(m->current_pg);
410 	if (pg) {
411 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
412 		if (!IS_ERR_OR_NULL(pgpath))
413 			return pgpath;
414 	}
415 
416 	/*
417 	 * Loop through priority groups until we find a valid path.
418 	 * First time we skip PGs marked 'bypassed'.
419 	 * Second time we only try the ones we skipped, but set
420 	 * pg_init_delay_retry so we do not hammer controllers.
421 	 */
422 	do {
423 		list_for_each_entry(pg, &m->priority_groups, list) {
424 			if (pg->bypassed == !!bypassed)
425 				continue;
426 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
427 			if (!IS_ERR_OR_NULL(pgpath)) {
428 				if (!bypassed)
429 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
430 				return pgpath;
431 			}
432 		}
433 	} while (bypassed--);
434 
435 failed:
436 	spin_lock_irqsave(&m->lock, flags);
437 	m->current_pgpath = NULL;
438 	m->current_pg = NULL;
439 	spin_unlock_irqrestore(&m->lock, flags);
440 
441 	return NULL;
442 }
443 
444 /*
445  * dm_report_EIO() is a macro instead of a function to make pr_debug()
446  * report the function name and line number of the function from which
447  * it has been invoked.
448  */
449 #define dm_report_EIO(m)						\
450 ({									\
451 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
452 									\
453 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
454 		 dm_device_name(md),					\
455 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
456 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
457 		 dm_noflush_suspending((m)->ti));			\
458 	-EIO;								\
459 })
460 
461 /*
462  * Map cloned requests (request-based multipath)
463  */
464 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
465 				   union map_info *map_context,
466 				   struct request **__clone)
467 {
468 	struct multipath *m = ti->private;
469 	size_t nr_bytes = blk_rq_bytes(rq);
470 	struct pgpath *pgpath;
471 	struct block_device *bdev;
472 	struct dm_mpath_io *mpio = get_mpio(map_context);
473 	struct request_queue *q;
474 	struct request *clone;
475 
476 	/* Do we need to select a new pgpath? */
477 	pgpath = lockless_dereference(m->current_pgpath);
478 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
479 		pgpath = choose_pgpath(m, nr_bytes);
480 
481 	if (!pgpath) {
482 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
483 			return DM_MAPIO_DELAY_REQUEUE;
484 		return dm_report_EIO(m);	/* Failed */
485 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
486 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
487 		if (pg_init_all_paths(m))
488 			return DM_MAPIO_DELAY_REQUEUE;
489 		return DM_MAPIO_REQUEUE;
490 	}
491 
492 	memset(mpio, 0, sizeof(*mpio));
493 	mpio->pgpath = pgpath;
494 	mpio->nr_bytes = nr_bytes;
495 
496 	bdev = pgpath->path.dev->bdev;
497 	q = bdev_get_queue(bdev);
498 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC);
499 	if (IS_ERR(clone)) {
500 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
501 		bool queue_dying = blk_queue_dying(q);
502 		DMERR_LIMIT("blk_get_request() returned %ld%s - requeuing",
503 			    PTR_ERR(clone), queue_dying ? " (path offline)" : "");
504 		if (queue_dying) {
505 			atomic_inc(&m->pg_init_in_progress);
506 			activate_or_offline_path(pgpath);
507 			return DM_MAPIO_REQUEUE;
508 		}
509 		return DM_MAPIO_DELAY_REQUEUE;
510 	}
511 	clone->bio = clone->biotail = NULL;
512 	clone->rq_disk = bdev->bd_disk;
513 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
514 	*__clone = clone;
515 
516 	if (pgpath->pg->ps.type->start_io)
517 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
518 					      &pgpath->path,
519 					      nr_bytes);
520 	return DM_MAPIO_REMAPPED;
521 }
522 
523 static void multipath_release_clone(struct request *clone)
524 {
525 	blk_put_request(clone);
526 }
527 
528 /*
529  * Map cloned bios (bio-based multipath)
530  */
531 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio)
532 {
533 	size_t nr_bytes = bio->bi_iter.bi_size;
534 	struct pgpath *pgpath;
535 	unsigned long flags;
536 	bool queue_io;
537 
538 	/* Do we need to select a new pgpath? */
539 	pgpath = lockless_dereference(m->current_pgpath);
540 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
541 	if (!pgpath || !queue_io)
542 		pgpath = choose_pgpath(m, nr_bytes);
543 
544 	if ((pgpath && queue_io) ||
545 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
546 		/* Queue for the daemon to resubmit */
547 		spin_lock_irqsave(&m->lock, flags);
548 		bio_list_add(&m->queued_bios, bio);
549 		spin_unlock_irqrestore(&m->lock, flags);
550 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
551 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
552 			pg_init_all_paths(m);
553 		else if (!queue_io)
554 			queue_work(kmultipathd, &m->process_queued_bios);
555 		return DM_MAPIO_SUBMITTED;
556 	}
557 
558 	if (!pgpath) {
559 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
560 			return DM_MAPIO_REQUEUE;
561 		return dm_report_EIO(m);
562 	}
563 
564 	mpio->pgpath = pgpath;
565 	mpio->nr_bytes = nr_bytes;
566 
567 	bio->bi_error = 0;
568 	bio->bi_bdev = pgpath->path.dev->bdev;
569 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
570 
571 	if (pgpath->pg->ps.type->start_io)
572 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
573 					      &pgpath->path,
574 					      nr_bytes);
575 	return DM_MAPIO_REMAPPED;
576 }
577 
578 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
579 {
580 	struct multipath *m = ti->private;
581 	struct dm_mpath_io *mpio = NULL;
582 
583 	multipath_init_per_bio_data(bio, &mpio, NULL);
584 
585 	return __multipath_map_bio(m, bio, mpio);
586 }
587 
588 static void process_queued_io_list(struct multipath *m)
589 {
590 	if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED)
591 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
592 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
593 		queue_work(kmultipathd, &m->process_queued_bios);
594 }
595 
596 static void process_queued_bios(struct work_struct *work)
597 {
598 	int r;
599 	unsigned long flags;
600 	struct bio *bio;
601 	struct bio_list bios;
602 	struct blk_plug plug;
603 	struct multipath *m =
604 		container_of(work, struct multipath, process_queued_bios);
605 
606 	bio_list_init(&bios);
607 
608 	spin_lock_irqsave(&m->lock, flags);
609 
610 	if (bio_list_empty(&m->queued_bios)) {
611 		spin_unlock_irqrestore(&m->lock, flags);
612 		return;
613 	}
614 
615 	bio_list_merge(&bios, &m->queued_bios);
616 	bio_list_init(&m->queued_bios);
617 
618 	spin_unlock_irqrestore(&m->lock, flags);
619 
620 	blk_start_plug(&plug);
621 	while ((bio = bio_list_pop(&bios))) {
622 		r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio));
623 		if (r < 0 || r == DM_MAPIO_REQUEUE) {
624 			bio->bi_error = r;
625 			bio_endio(bio);
626 		} else if (r == DM_MAPIO_REMAPPED)
627 			generic_make_request(bio);
628 	}
629 	blk_finish_plug(&plug);
630 }
631 
632 static void assign_bit(bool value, long nr, unsigned long *addr)
633 {
634 	if (value)
635 		set_bit(nr, addr);
636 	else
637 		clear_bit(nr, addr);
638 }
639 
640 /*
641  * If we run out of usable paths, should we queue I/O or error it?
642  */
643 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
644 			    bool save_old_value)
645 {
646 	unsigned long flags;
647 
648 	spin_lock_irqsave(&m->lock, flags);
649 	assign_bit((save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
650 		   (!save_old_value && queue_if_no_path),
651 		   MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
652 	assign_bit(queue_if_no_path || dm_noflush_suspending(m->ti),
653 		   MPATHF_QUEUE_IF_NO_PATH, &m->flags);
654 	spin_unlock_irqrestore(&m->lock, flags);
655 
656 	if (!queue_if_no_path) {
657 		dm_table_run_md_queue_async(m->ti->table);
658 		process_queued_io_list(m);
659 	}
660 
661 	return 0;
662 }
663 
664 /*
665  * An event is triggered whenever a path is taken out of use.
666  * Includes path failure and PG bypass.
667  */
668 static void trigger_event(struct work_struct *work)
669 {
670 	struct multipath *m =
671 		container_of(work, struct multipath, trigger_event);
672 
673 	dm_table_event(m->ti->table);
674 }
675 
676 /*-----------------------------------------------------------------
677  * Constructor/argument parsing:
678  * <#multipath feature args> [<arg>]*
679  * <#hw_handler args> [hw_handler [<arg>]*]
680  * <#priority groups>
681  * <initial priority group>
682  *     [<selector> <#selector args> [<arg>]*
683  *      <#paths> <#per-path selector args>
684  *         [<path> [<arg>]* ]+ ]+
685  *---------------------------------------------------------------*/
686 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
687 			       struct dm_target *ti)
688 {
689 	int r;
690 	struct path_selector_type *pst;
691 	unsigned ps_argc;
692 
693 	static struct dm_arg _args[] = {
694 		{0, 1024, "invalid number of path selector args"},
695 	};
696 
697 	pst = dm_get_path_selector(dm_shift_arg(as));
698 	if (!pst) {
699 		ti->error = "unknown path selector type";
700 		return -EINVAL;
701 	}
702 
703 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
704 	if (r) {
705 		dm_put_path_selector(pst);
706 		return -EINVAL;
707 	}
708 
709 	r = pst->create(&pg->ps, ps_argc, as->argv);
710 	if (r) {
711 		dm_put_path_selector(pst);
712 		ti->error = "path selector constructor failed";
713 		return r;
714 	}
715 
716 	pg->ps.type = pst;
717 	dm_consume_args(as, ps_argc);
718 
719 	return 0;
720 }
721 
722 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
723 			       struct dm_target *ti)
724 {
725 	int r;
726 	struct pgpath *p;
727 	struct multipath *m = ti->private;
728 	struct request_queue *q = NULL;
729 	const char *attached_handler_name;
730 
731 	/* we need at least a path arg */
732 	if (as->argc < 1) {
733 		ti->error = "no device given";
734 		return ERR_PTR(-EINVAL);
735 	}
736 
737 	p = alloc_pgpath();
738 	if (!p)
739 		return ERR_PTR(-ENOMEM);
740 
741 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
742 			  &p->path.dev);
743 	if (r) {
744 		ti->error = "error getting device";
745 		goto bad;
746 	}
747 
748 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name)
749 		q = bdev_get_queue(p->path.dev->bdev);
750 
751 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
752 retain:
753 		attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
754 		if (attached_handler_name) {
755 			/*
756 			 * Clear any hw_handler_params associated with a
757 			 * handler that isn't already attached.
758 			 */
759 			if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) {
760 				kfree(m->hw_handler_params);
761 				m->hw_handler_params = NULL;
762 			}
763 
764 			/*
765 			 * Reset hw_handler_name to match the attached handler
766 			 *
767 			 * NB. This modifies the table line to show the actual
768 			 * handler instead of the original table passed in.
769 			 */
770 			kfree(m->hw_handler_name);
771 			m->hw_handler_name = attached_handler_name;
772 		}
773 	}
774 
775 	if (m->hw_handler_name) {
776 		r = scsi_dh_attach(q, m->hw_handler_name);
777 		if (r == -EBUSY) {
778 			char b[BDEVNAME_SIZE];
779 
780 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
781 				bdevname(p->path.dev->bdev, b));
782 			goto retain;
783 		}
784 		if (r < 0) {
785 			ti->error = "error attaching hardware handler";
786 			dm_put_device(ti, p->path.dev);
787 			goto bad;
788 		}
789 
790 		if (m->hw_handler_params) {
791 			r = scsi_dh_set_params(q, m->hw_handler_params);
792 			if (r < 0) {
793 				ti->error = "unable to set hardware "
794 							"handler parameters";
795 				dm_put_device(ti, p->path.dev);
796 				goto bad;
797 			}
798 		}
799 	}
800 
801 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
802 	if (r) {
803 		dm_put_device(ti, p->path.dev);
804 		goto bad;
805 	}
806 
807 	return p;
808 
809  bad:
810 	free_pgpath(p);
811 	return ERR_PTR(r);
812 }
813 
814 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
815 						   struct multipath *m)
816 {
817 	static struct dm_arg _args[] = {
818 		{1, 1024, "invalid number of paths"},
819 		{0, 1024, "invalid number of selector args"}
820 	};
821 
822 	int r;
823 	unsigned i, nr_selector_args, nr_args;
824 	struct priority_group *pg;
825 	struct dm_target *ti = m->ti;
826 
827 	if (as->argc < 2) {
828 		as->argc = 0;
829 		ti->error = "not enough priority group arguments";
830 		return ERR_PTR(-EINVAL);
831 	}
832 
833 	pg = alloc_priority_group();
834 	if (!pg) {
835 		ti->error = "couldn't allocate priority group";
836 		return ERR_PTR(-ENOMEM);
837 	}
838 	pg->m = m;
839 
840 	r = parse_path_selector(as, pg, ti);
841 	if (r)
842 		goto bad;
843 
844 	/*
845 	 * read the paths
846 	 */
847 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
848 	if (r)
849 		goto bad;
850 
851 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
852 	if (r)
853 		goto bad;
854 
855 	nr_args = 1 + nr_selector_args;
856 	for (i = 0; i < pg->nr_pgpaths; i++) {
857 		struct pgpath *pgpath;
858 		struct dm_arg_set path_args;
859 
860 		if (as->argc < nr_args) {
861 			ti->error = "not enough path parameters";
862 			r = -EINVAL;
863 			goto bad;
864 		}
865 
866 		path_args.argc = nr_args;
867 		path_args.argv = as->argv;
868 
869 		pgpath = parse_path(&path_args, &pg->ps, ti);
870 		if (IS_ERR(pgpath)) {
871 			r = PTR_ERR(pgpath);
872 			goto bad;
873 		}
874 
875 		pgpath->pg = pg;
876 		list_add_tail(&pgpath->list, &pg->pgpaths);
877 		dm_consume_args(as, nr_args);
878 	}
879 
880 	return pg;
881 
882  bad:
883 	free_priority_group(pg, ti);
884 	return ERR_PTR(r);
885 }
886 
887 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
888 {
889 	unsigned hw_argc;
890 	int ret;
891 	struct dm_target *ti = m->ti;
892 
893 	static struct dm_arg _args[] = {
894 		{0, 1024, "invalid number of hardware handler args"},
895 	};
896 
897 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
898 		return -EINVAL;
899 
900 	if (!hw_argc)
901 		return 0;
902 
903 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
904 		dm_consume_args(as, hw_argc);
905 		DMERR("bio-based multipath doesn't allow hardware handler args");
906 		return 0;
907 	}
908 
909 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
910 	if (!m->hw_handler_name)
911 		return -EINVAL;
912 
913 	if (hw_argc > 1) {
914 		char *p;
915 		int i, j, len = 4;
916 
917 		for (i = 0; i <= hw_argc - 2; i++)
918 			len += strlen(as->argv[i]) + 1;
919 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
920 		if (!p) {
921 			ti->error = "memory allocation failed";
922 			ret = -ENOMEM;
923 			goto fail;
924 		}
925 		j = sprintf(p, "%d", hw_argc - 1);
926 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
927 			j = sprintf(p, "%s", as->argv[i]);
928 	}
929 	dm_consume_args(as, hw_argc - 1);
930 
931 	return 0;
932 fail:
933 	kfree(m->hw_handler_name);
934 	m->hw_handler_name = NULL;
935 	return ret;
936 }
937 
938 static int parse_features(struct dm_arg_set *as, struct multipath *m)
939 {
940 	int r;
941 	unsigned argc;
942 	struct dm_target *ti = m->ti;
943 	const char *arg_name;
944 
945 	static struct dm_arg _args[] = {
946 		{0, 8, "invalid number of feature args"},
947 		{1, 50, "pg_init_retries must be between 1 and 50"},
948 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
949 	};
950 
951 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
952 	if (r)
953 		return -EINVAL;
954 
955 	if (!argc)
956 		return 0;
957 
958 	do {
959 		arg_name = dm_shift_arg(as);
960 		argc--;
961 
962 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
963 			r = queue_if_no_path(m, true, false);
964 			continue;
965 		}
966 
967 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
968 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
969 			continue;
970 		}
971 
972 		if (!strcasecmp(arg_name, "pg_init_retries") &&
973 		    (argc >= 1)) {
974 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
975 			argc--;
976 			continue;
977 		}
978 
979 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
980 		    (argc >= 1)) {
981 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
982 			argc--;
983 			continue;
984 		}
985 
986 		if (!strcasecmp(arg_name, "queue_mode") &&
987 		    (argc >= 1)) {
988 			const char *queue_mode_name = dm_shift_arg(as);
989 
990 			if (!strcasecmp(queue_mode_name, "bio"))
991 				m->queue_mode = DM_TYPE_BIO_BASED;
992 			else if (!strcasecmp(queue_mode_name, "rq"))
993 				m->queue_mode = DM_TYPE_REQUEST_BASED;
994 			else if (!strcasecmp(queue_mode_name, "mq"))
995 				m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
996 			else {
997 				ti->error = "Unknown 'queue_mode' requested";
998 				r = -EINVAL;
999 			}
1000 			argc--;
1001 			continue;
1002 		}
1003 
1004 		ti->error = "Unrecognised multipath feature request";
1005 		r = -EINVAL;
1006 	} while (argc && !r);
1007 
1008 	return r;
1009 }
1010 
1011 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1012 {
1013 	/* target arguments */
1014 	static struct dm_arg _args[] = {
1015 		{0, 1024, "invalid number of priority groups"},
1016 		{0, 1024, "invalid initial priority group number"},
1017 	};
1018 
1019 	int r;
1020 	struct multipath *m;
1021 	struct dm_arg_set as;
1022 	unsigned pg_count = 0;
1023 	unsigned next_pg_num;
1024 
1025 	as.argc = argc;
1026 	as.argv = argv;
1027 
1028 	m = alloc_multipath(ti);
1029 	if (!m) {
1030 		ti->error = "can't allocate multipath";
1031 		return -EINVAL;
1032 	}
1033 
1034 	r = parse_features(&as, m);
1035 	if (r)
1036 		goto bad;
1037 
1038 	r = alloc_multipath_stage2(ti, m);
1039 	if (r)
1040 		goto bad;
1041 
1042 	r = parse_hw_handler(&as, m);
1043 	if (r)
1044 		goto bad;
1045 
1046 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1047 	if (r)
1048 		goto bad;
1049 
1050 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1051 	if (r)
1052 		goto bad;
1053 
1054 	if ((!m->nr_priority_groups && next_pg_num) ||
1055 	    (m->nr_priority_groups && !next_pg_num)) {
1056 		ti->error = "invalid initial priority group";
1057 		r = -EINVAL;
1058 		goto bad;
1059 	}
1060 
1061 	/* parse the priority groups */
1062 	while (as.argc) {
1063 		struct priority_group *pg;
1064 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1065 
1066 		pg = parse_priority_group(&as, m);
1067 		if (IS_ERR(pg)) {
1068 			r = PTR_ERR(pg);
1069 			goto bad;
1070 		}
1071 
1072 		nr_valid_paths += pg->nr_pgpaths;
1073 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1074 
1075 		list_add_tail(&pg->list, &m->priority_groups);
1076 		pg_count++;
1077 		pg->pg_num = pg_count;
1078 		if (!--next_pg_num)
1079 			m->next_pg = pg;
1080 	}
1081 
1082 	if (pg_count != m->nr_priority_groups) {
1083 		ti->error = "priority group count mismatch";
1084 		r = -EINVAL;
1085 		goto bad;
1086 	}
1087 
1088 	ti->num_flush_bios = 1;
1089 	ti->num_discard_bios = 1;
1090 	ti->num_write_same_bios = 1;
1091 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1092 		ti->per_io_data_size = multipath_per_bio_data_size();
1093 	else
1094 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1095 
1096 	return 0;
1097 
1098  bad:
1099 	free_multipath(m);
1100 	return r;
1101 }
1102 
1103 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1104 {
1105 	DEFINE_WAIT(wait);
1106 
1107 	while (1) {
1108 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1109 
1110 		if (!atomic_read(&m->pg_init_in_progress))
1111 			break;
1112 
1113 		io_schedule();
1114 	}
1115 	finish_wait(&m->pg_init_wait, &wait);
1116 }
1117 
1118 static void flush_multipath_work(struct multipath *m)
1119 {
1120 	set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1121 	smp_mb__after_atomic();
1122 
1123 	flush_workqueue(kmpath_handlerd);
1124 	multipath_wait_for_pg_init_completion(m);
1125 	flush_workqueue(kmultipathd);
1126 	flush_work(&m->trigger_event);
1127 
1128 	clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1129 	smp_mb__after_atomic();
1130 }
1131 
1132 static void multipath_dtr(struct dm_target *ti)
1133 {
1134 	struct multipath *m = ti->private;
1135 
1136 	flush_multipath_work(m);
1137 	free_multipath(m);
1138 }
1139 
1140 /*
1141  * Take a path out of use.
1142  */
1143 static int fail_path(struct pgpath *pgpath)
1144 {
1145 	unsigned long flags;
1146 	struct multipath *m = pgpath->pg->m;
1147 
1148 	spin_lock_irqsave(&m->lock, flags);
1149 
1150 	if (!pgpath->is_active)
1151 		goto out;
1152 
1153 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1154 
1155 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1156 	pgpath->is_active = false;
1157 	pgpath->fail_count++;
1158 
1159 	atomic_dec(&m->nr_valid_paths);
1160 
1161 	if (pgpath == m->current_pgpath)
1162 		m->current_pgpath = NULL;
1163 
1164 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1165 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1166 
1167 	schedule_work(&m->trigger_event);
1168 
1169 out:
1170 	spin_unlock_irqrestore(&m->lock, flags);
1171 
1172 	return 0;
1173 }
1174 
1175 /*
1176  * Reinstate a previously-failed path
1177  */
1178 static int reinstate_path(struct pgpath *pgpath)
1179 {
1180 	int r = 0, run_queue = 0;
1181 	unsigned long flags;
1182 	struct multipath *m = pgpath->pg->m;
1183 	unsigned nr_valid_paths;
1184 
1185 	spin_lock_irqsave(&m->lock, flags);
1186 
1187 	if (pgpath->is_active)
1188 		goto out;
1189 
1190 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1191 
1192 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1193 	if (r)
1194 		goto out;
1195 
1196 	pgpath->is_active = true;
1197 
1198 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1199 	if (nr_valid_paths == 1) {
1200 		m->current_pgpath = NULL;
1201 		run_queue = 1;
1202 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1203 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1204 			atomic_inc(&m->pg_init_in_progress);
1205 	}
1206 
1207 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1208 		       pgpath->path.dev->name, nr_valid_paths);
1209 
1210 	schedule_work(&m->trigger_event);
1211 
1212 out:
1213 	spin_unlock_irqrestore(&m->lock, flags);
1214 	if (run_queue) {
1215 		dm_table_run_md_queue_async(m->ti->table);
1216 		process_queued_io_list(m);
1217 	}
1218 
1219 	return r;
1220 }
1221 
1222 /*
1223  * Fail or reinstate all paths that match the provided struct dm_dev.
1224  */
1225 static int action_dev(struct multipath *m, struct dm_dev *dev,
1226 		      action_fn action)
1227 {
1228 	int r = -EINVAL;
1229 	struct pgpath *pgpath;
1230 	struct priority_group *pg;
1231 
1232 	list_for_each_entry(pg, &m->priority_groups, list) {
1233 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1234 			if (pgpath->path.dev == dev)
1235 				r = action(pgpath);
1236 		}
1237 	}
1238 
1239 	return r;
1240 }
1241 
1242 /*
1243  * Temporarily try to avoid having to use the specified PG
1244  */
1245 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1246 		      bool bypassed)
1247 {
1248 	unsigned long flags;
1249 
1250 	spin_lock_irqsave(&m->lock, flags);
1251 
1252 	pg->bypassed = bypassed;
1253 	m->current_pgpath = NULL;
1254 	m->current_pg = NULL;
1255 
1256 	spin_unlock_irqrestore(&m->lock, flags);
1257 
1258 	schedule_work(&m->trigger_event);
1259 }
1260 
1261 /*
1262  * Switch to using the specified PG from the next I/O that gets mapped
1263  */
1264 static int switch_pg_num(struct multipath *m, const char *pgstr)
1265 {
1266 	struct priority_group *pg;
1267 	unsigned pgnum;
1268 	unsigned long flags;
1269 	char dummy;
1270 
1271 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1272 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1273 		DMWARN("invalid PG number supplied to switch_pg_num");
1274 		return -EINVAL;
1275 	}
1276 
1277 	spin_lock_irqsave(&m->lock, flags);
1278 	list_for_each_entry(pg, &m->priority_groups, list) {
1279 		pg->bypassed = false;
1280 		if (--pgnum)
1281 			continue;
1282 
1283 		m->current_pgpath = NULL;
1284 		m->current_pg = NULL;
1285 		m->next_pg = pg;
1286 	}
1287 	spin_unlock_irqrestore(&m->lock, flags);
1288 
1289 	schedule_work(&m->trigger_event);
1290 	return 0;
1291 }
1292 
1293 /*
1294  * Set/clear bypassed status of a PG.
1295  * PGs are numbered upwards from 1 in the order they were declared.
1296  */
1297 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1298 {
1299 	struct priority_group *pg;
1300 	unsigned pgnum;
1301 	char dummy;
1302 
1303 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1304 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1305 		DMWARN("invalid PG number supplied to bypass_pg");
1306 		return -EINVAL;
1307 	}
1308 
1309 	list_for_each_entry(pg, &m->priority_groups, list) {
1310 		if (!--pgnum)
1311 			break;
1312 	}
1313 
1314 	bypass_pg(m, pg, bypassed);
1315 	return 0;
1316 }
1317 
1318 /*
1319  * Should we retry pg_init immediately?
1320  */
1321 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1322 {
1323 	unsigned long flags;
1324 	bool limit_reached = false;
1325 
1326 	spin_lock_irqsave(&m->lock, flags);
1327 
1328 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1329 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1330 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1331 	else
1332 		limit_reached = true;
1333 
1334 	spin_unlock_irqrestore(&m->lock, flags);
1335 
1336 	return limit_reached;
1337 }
1338 
1339 static void pg_init_done(void *data, int errors)
1340 {
1341 	struct pgpath *pgpath = data;
1342 	struct priority_group *pg = pgpath->pg;
1343 	struct multipath *m = pg->m;
1344 	unsigned long flags;
1345 	bool delay_retry = false;
1346 
1347 	/* device or driver problems */
1348 	switch (errors) {
1349 	case SCSI_DH_OK:
1350 		break;
1351 	case SCSI_DH_NOSYS:
1352 		if (!m->hw_handler_name) {
1353 			errors = 0;
1354 			break;
1355 		}
1356 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1357 		      "Error %d.", m->hw_handler_name, errors);
1358 		/*
1359 		 * Fail path for now, so we do not ping pong
1360 		 */
1361 		fail_path(pgpath);
1362 		break;
1363 	case SCSI_DH_DEV_TEMP_BUSY:
1364 		/*
1365 		 * Probably doing something like FW upgrade on the
1366 		 * controller so try the other pg.
1367 		 */
1368 		bypass_pg(m, pg, true);
1369 		break;
1370 	case SCSI_DH_RETRY:
1371 		/* Wait before retrying. */
1372 		delay_retry = 1;
1373 	case SCSI_DH_IMM_RETRY:
1374 	case SCSI_DH_RES_TEMP_UNAVAIL:
1375 		if (pg_init_limit_reached(m, pgpath))
1376 			fail_path(pgpath);
1377 		errors = 0;
1378 		break;
1379 	case SCSI_DH_DEV_OFFLINED:
1380 	default:
1381 		/*
1382 		 * We probably do not want to fail the path for a device
1383 		 * error, but this is what the old dm did. In future
1384 		 * patches we can do more advanced handling.
1385 		 */
1386 		fail_path(pgpath);
1387 	}
1388 
1389 	spin_lock_irqsave(&m->lock, flags);
1390 	if (errors) {
1391 		if (pgpath == m->current_pgpath) {
1392 			DMERR("Could not failover device. Error %d.", errors);
1393 			m->current_pgpath = NULL;
1394 			m->current_pg = NULL;
1395 		}
1396 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1397 		pg->bypassed = false;
1398 
1399 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1400 		/* Activations of other paths are still on going */
1401 		goto out;
1402 
1403 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1404 		if (delay_retry)
1405 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1406 		else
1407 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1408 
1409 		if (__pg_init_all_paths(m))
1410 			goto out;
1411 	}
1412 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1413 
1414 	process_queued_io_list(m);
1415 
1416 	/*
1417 	 * Wake up any thread waiting to suspend.
1418 	 */
1419 	wake_up(&m->pg_init_wait);
1420 
1421 out:
1422 	spin_unlock_irqrestore(&m->lock, flags);
1423 }
1424 
1425 static void activate_or_offline_path(struct pgpath *pgpath)
1426 {
1427 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1428 
1429 	if (pgpath->is_active && !blk_queue_dying(q))
1430 		scsi_dh_activate(q, pg_init_done, pgpath);
1431 	else
1432 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1433 }
1434 
1435 static void activate_path_work(struct work_struct *work)
1436 {
1437 	struct pgpath *pgpath =
1438 		container_of(work, struct pgpath, activate_path.work);
1439 
1440 	activate_or_offline_path(pgpath);
1441 }
1442 
1443 static int noretry_error(int error)
1444 {
1445 	switch (error) {
1446 	case -EBADE:
1447 		/*
1448 		 * EBADE signals an reservation conflict.
1449 		 * We shouldn't fail the path here as we can communicate with
1450 		 * the target.  We should failover to the next path, but in
1451 		 * doing so we might be causing a ping-pong between paths.
1452 		 * So just return the reservation conflict error.
1453 		 */
1454 	case -EOPNOTSUPP:
1455 	case -EREMOTEIO:
1456 	case -EILSEQ:
1457 	case -ENODATA:
1458 	case -ENOSPC:
1459 		return 1;
1460 	}
1461 
1462 	/* Anything else could be a path failure, so should be retried */
1463 	return 0;
1464 }
1465 
1466 /*
1467  * end_io handling
1468  */
1469 static int do_end_io(struct multipath *m, struct request *clone,
1470 		     int error, struct dm_mpath_io *mpio)
1471 {
1472 	/*
1473 	 * We don't queue any clone request inside the multipath target
1474 	 * during end I/O handling, since those clone requests don't have
1475 	 * bio clones.  If we queue them inside the multipath target,
1476 	 * we need to make bio clones, that requires memory allocation.
1477 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1478 	 *  don't have bio clones.)
1479 	 * Instead of queueing the clone request here, we queue the original
1480 	 * request into dm core, which will remake a clone request and
1481 	 * clone bios for it and resubmit it later.
1482 	 */
1483 	int r = DM_ENDIO_REQUEUE;
1484 
1485 	if (!error && !clone->errors)
1486 		return 0;	/* I/O complete */
1487 
1488 	if (noretry_error(error))
1489 		return error;
1490 
1491 	if (mpio->pgpath)
1492 		fail_path(mpio->pgpath);
1493 
1494 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1495 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1496 		r = dm_report_EIO(m);
1497 
1498 	return r;
1499 }
1500 
1501 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1502 			    int error, union map_info *map_context)
1503 {
1504 	struct multipath *m = ti->private;
1505 	struct dm_mpath_io *mpio = get_mpio(map_context);
1506 	struct pgpath *pgpath;
1507 	struct path_selector *ps;
1508 	int r;
1509 
1510 	BUG_ON(!mpio);
1511 
1512 	r = do_end_io(m, clone, error, mpio);
1513 	pgpath = mpio->pgpath;
1514 	if (pgpath) {
1515 		ps = &pgpath->pg->ps;
1516 		if (ps->type->end_io)
1517 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1518 	}
1519 
1520 	return r;
1521 }
1522 
1523 static int do_end_io_bio(struct multipath *m, struct bio *clone,
1524 			 int error, struct dm_mpath_io *mpio)
1525 {
1526 	unsigned long flags;
1527 
1528 	if (!error)
1529 		return 0;	/* I/O complete */
1530 
1531 	if (noretry_error(error))
1532 		return error;
1533 
1534 	if (mpio->pgpath)
1535 		fail_path(mpio->pgpath);
1536 
1537 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1538 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1539 		return dm_report_EIO(m);
1540 
1541 	/* Queue for the daemon to resubmit */
1542 	dm_bio_restore(get_bio_details_from_bio(clone), clone);
1543 
1544 	spin_lock_irqsave(&m->lock, flags);
1545 	bio_list_add(&m->queued_bios, clone);
1546 	spin_unlock_irqrestore(&m->lock, flags);
1547 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1548 		queue_work(kmultipathd, &m->process_queued_bios);
1549 
1550 	return DM_ENDIO_INCOMPLETE;
1551 }
1552 
1553 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, int error)
1554 {
1555 	struct multipath *m = ti->private;
1556 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1557 	struct pgpath *pgpath;
1558 	struct path_selector *ps;
1559 	int r;
1560 
1561 	BUG_ON(!mpio);
1562 
1563 	r = do_end_io_bio(m, clone, error, mpio);
1564 	pgpath = mpio->pgpath;
1565 	if (pgpath) {
1566 		ps = &pgpath->pg->ps;
1567 		if (ps->type->end_io)
1568 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1569 	}
1570 
1571 	return r;
1572 }
1573 
1574 /*
1575  * Suspend can't complete until all the I/O is processed so if
1576  * the last path fails we must error any remaining I/O.
1577  * Note that if the freeze_bdev fails while suspending, the
1578  * queue_if_no_path state is lost - userspace should reset it.
1579  */
1580 static void multipath_presuspend(struct dm_target *ti)
1581 {
1582 	struct multipath *m = ti->private;
1583 
1584 	queue_if_no_path(m, false, true);
1585 }
1586 
1587 static void multipath_postsuspend(struct dm_target *ti)
1588 {
1589 	struct multipath *m = ti->private;
1590 
1591 	mutex_lock(&m->work_mutex);
1592 	flush_multipath_work(m);
1593 	mutex_unlock(&m->work_mutex);
1594 }
1595 
1596 /*
1597  * Restore the queue_if_no_path setting.
1598  */
1599 static void multipath_resume(struct dm_target *ti)
1600 {
1601 	struct multipath *m = ti->private;
1602 	unsigned long flags;
1603 
1604 	spin_lock_irqsave(&m->lock, flags);
1605 	assign_bit(test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags),
1606 		   MPATHF_QUEUE_IF_NO_PATH, &m->flags);
1607 	spin_unlock_irqrestore(&m->lock, flags);
1608 }
1609 
1610 /*
1611  * Info output has the following format:
1612  * num_multipath_feature_args [multipath_feature_args]*
1613  * num_handler_status_args [handler_status_args]*
1614  * num_groups init_group_number
1615  *            [A|D|E num_ps_status_args [ps_status_args]*
1616  *             num_paths num_selector_args
1617  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1618  *
1619  * Table output has the following format (identical to the constructor string):
1620  * num_feature_args [features_args]*
1621  * num_handler_args hw_handler [hw_handler_args]*
1622  * num_groups init_group_number
1623  *     [priority selector-name num_ps_args [ps_args]*
1624  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1625  */
1626 static void multipath_status(struct dm_target *ti, status_type_t type,
1627 			     unsigned status_flags, char *result, unsigned maxlen)
1628 {
1629 	int sz = 0;
1630 	unsigned long flags;
1631 	struct multipath *m = ti->private;
1632 	struct priority_group *pg;
1633 	struct pgpath *p;
1634 	unsigned pg_num;
1635 	char state;
1636 
1637 	spin_lock_irqsave(&m->lock, flags);
1638 
1639 	/* Features */
1640 	if (type == STATUSTYPE_INFO)
1641 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1642 		       atomic_read(&m->pg_init_count));
1643 	else {
1644 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1645 			      (m->pg_init_retries > 0) * 2 +
1646 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1647 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1648 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1649 
1650 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1651 			DMEMIT("queue_if_no_path ");
1652 		if (m->pg_init_retries)
1653 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1654 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1655 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1656 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1657 			DMEMIT("retain_attached_hw_handler ");
1658 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1659 			switch(m->queue_mode) {
1660 			case DM_TYPE_BIO_BASED:
1661 				DMEMIT("queue_mode bio ");
1662 				break;
1663 			case DM_TYPE_MQ_REQUEST_BASED:
1664 				DMEMIT("queue_mode mq ");
1665 				break;
1666 			default:
1667 				WARN_ON_ONCE(true);
1668 				break;
1669 			}
1670 		}
1671 	}
1672 
1673 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1674 		DMEMIT("0 ");
1675 	else
1676 		DMEMIT("1 %s ", m->hw_handler_name);
1677 
1678 	DMEMIT("%u ", m->nr_priority_groups);
1679 
1680 	if (m->next_pg)
1681 		pg_num = m->next_pg->pg_num;
1682 	else if (m->current_pg)
1683 		pg_num = m->current_pg->pg_num;
1684 	else
1685 		pg_num = (m->nr_priority_groups ? 1 : 0);
1686 
1687 	DMEMIT("%u ", pg_num);
1688 
1689 	switch (type) {
1690 	case STATUSTYPE_INFO:
1691 		list_for_each_entry(pg, &m->priority_groups, list) {
1692 			if (pg->bypassed)
1693 				state = 'D';	/* Disabled */
1694 			else if (pg == m->current_pg)
1695 				state = 'A';	/* Currently Active */
1696 			else
1697 				state = 'E';	/* Enabled */
1698 
1699 			DMEMIT("%c ", state);
1700 
1701 			if (pg->ps.type->status)
1702 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1703 							  result + sz,
1704 							  maxlen - sz);
1705 			else
1706 				DMEMIT("0 ");
1707 
1708 			DMEMIT("%u %u ", pg->nr_pgpaths,
1709 			       pg->ps.type->info_args);
1710 
1711 			list_for_each_entry(p, &pg->pgpaths, list) {
1712 				DMEMIT("%s %s %u ", p->path.dev->name,
1713 				       p->is_active ? "A" : "F",
1714 				       p->fail_count);
1715 				if (pg->ps.type->status)
1716 					sz += pg->ps.type->status(&pg->ps,
1717 					      &p->path, type, result + sz,
1718 					      maxlen - sz);
1719 			}
1720 		}
1721 		break;
1722 
1723 	case STATUSTYPE_TABLE:
1724 		list_for_each_entry(pg, &m->priority_groups, list) {
1725 			DMEMIT("%s ", pg->ps.type->name);
1726 
1727 			if (pg->ps.type->status)
1728 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1729 							  result + sz,
1730 							  maxlen - sz);
1731 			else
1732 				DMEMIT("0 ");
1733 
1734 			DMEMIT("%u %u ", pg->nr_pgpaths,
1735 			       pg->ps.type->table_args);
1736 
1737 			list_for_each_entry(p, &pg->pgpaths, list) {
1738 				DMEMIT("%s ", p->path.dev->name);
1739 				if (pg->ps.type->status)
1740 					sz += pg->ps.type->status(&pg->ps,
1741 					      &p->path, type, result + sz,
1742 					      maxlen - sz);
1743 			}
1744 		}
1745 		break;
1746 	}
1747 
1748 	spin_unlock_irqrestore(&m->lock, flags);
1749 }
1750 
1751 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1752 {
1753 	int r = -EINVAL;
1754 	struct dm_dev *dev;
1755 	struct multipath *m = ti->private;
1756 	action_fn action;
1757 
1758 	mutex_lock(&m->work_mutex);
1759 
1760 	if (dm_suspended(ti)) {
1761 		r = -EBUSY;
1762 		goto out;
1763 	}
1764 
1765 	if (argc == 1) {
1766 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1767 			r = queue_if_no_path(m, true, false);
1768 			goto out;
1769 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1770 			r = queue_if_no_path(m, false, false);
1771 			goto out;
1772 		}
1773 	}
1774 
1775 	if (argc != 2) {
1776 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1777 		goto out;
1778 	}
1779 
1780 	if (!strcasecmp(argv[0], "disable_group")) {
1781 		r = bypass_pg_num(m, argv[1], true);
1782 		goto out;
1783 	} else if (!strcasecmp(argv[0], "enable_group")) {
1784 		r = bypass_pg_num(m, argv[1], false);
1785 		goto out;
1786 	} else if (!strcasecmp(argv[0], "switch_group")) {
1787 		r = switch_pg_num(m, argv[1]);
1788 		goto out;
1789 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1790 		action = reinstate_path;
1791 	else if (!strcasecmp(argv[0], "fail_path"))
1792 		action = fail_path;
1793 	else {
1794 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1795 		goto out;
1796 	}
1797 
1798 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1799 	if (r) {
1800 		DMWARN("message: error getting device %s",
1801 		       argv[1]);
1802 		goto out;
1803 	}
1804 
1805 	r = action_dev(m, dev, action);
1806 
1807 	dm_put_device(ti, dev);
1808 
1809 out:
1810 	mutex_unlock(&m->work_mutex);
1811 	return r;
1812 }
1813 
1814 static int multipath_prepare_ioctl(struct dm_target *ti,
1815 		struct block_device **bdev, fmode_t *mode)
1816 {
1817 	struct multipath *m = ti->private;
1818 	struct pgpath *current_pgpath;
1819 	int r;
1820 
1821 	current_pgpath = lockless_dereference(m->current_pgpath);
1822 	if (!current_pgpath)
1823 		current_pgpath = choose_pgpath(m, 0);
1824 
1825 	if (current_pgpath) {
1826 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1827 			*bdev = current_pgpath->path.dev->bdev;
1828 			*mode = current_pgpath->path.dev->mode;
1829 			r = 0;
1830 		} else {
1831 			/* pg_init has not started or completed */
1832 			r = -ENOTCONN;
1833 		}
1834 	} else {
1835 		/* No path is available */
1836 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1837 			r = -ENOTCONN;
1838 		else
1839 			r = -EIO;
1840 	}
1841 
1842 	if (r == -ENOTCONN) {
1843 		if (!lockless_dereference(m->current_pg)) {
1844 			/* Path status changed, redo selection */
1845 			(void) choose_pgpath(m, 0);
1846 		}
1847 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1848 			pg_init_all_paths(m);
1849 		dm_table_run_md_queue_async(m->ti->table);
1850 		process_queued_io_list(m);
1851 	}
1852 
1853 	/*
1854 	 * Only pass ioctls through if the device sizes match exactly.
1855 	 */
1856 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1857 		return 1;
1858 	return r;
1859 }
1860 
1861 static int multipath_iterate_devices(struct dm_target *ti,
1862 				     iterate_devices_callout_fn fn, void *data)
1863 {
1864 	struct multipath *m = ti->private;
1865 	struct priority_group *pg;
1866 	struct pgpath *p;
1867 	int ret = 0;
1868 
1869 	list_for_each_entry(pg, &m->priority_groups, list) {
1870 		list_for_each_entry(p, &pg->pgpaths, list) {
1871 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1872 			if (ret)
1873 				goto out;
1874 		}
1875 	}
1876 
1877 out:
1878 	return ret;
1879 }
1880 
1881 static int pgpath_busy(struct pgpath *pgpath)
1882 {
1883 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1884 
1885 	return blk_lld_busy(q);
1886 }
1887 
1888 /*
1889  * We return "busy", only when we can map I/Os but underlying devices
1890  * are busy (so even if we map I/Os now, the I/Os will wait on
1891  * the underlying queue).
1892  * In other words, if we want to kill I/Os or queue them inside us
1893  * due to map unavailability, we don't return "busy".  Otherwise,
1894  * dm core won't give us the I/Os and we can't do what we want.
1895  */
1896 static int multipath_busy(struct dm_target *ti)
1897 {
1898 	bool busy = false, has_active = false;
1899 	struct multipath *m = ti->private;
1900 	struct priority_group *pg, *next_pg;
1901 	struct pgpath *pgpath;
1902 
1903 	/* pg_init in progress */
1904 	if (atomic_read(&m->pg_init_in_progress))
1905 		return true;
1906 
1907 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1908 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1909 		return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED);
1910 
1911 	/* Guess which priority_group will be used at next mapping time */
1912 	pg = lockless_dereference(m->current_pg);
1913 	next_pg = lockless_dereference(m->next_pg);
1914 	if (unlikely(!lockless_dereference(m->current_pgpath) && next_pg))
1915 		pg = next_pg;
1916 
1917 	if (!pg) {
1918 		/*
1919 		 * We don't know which pg will be used at next mapping time.
1920 		 * We don't call choose_pgpath() here to avoid to trigger
1921 		 * pg_init just by busy checking.
1922 		 * So we don't know whether underlying devices we will be using
1923 		 * at next mapping time are busy or not. Just try mapping.
1924 		 */
1925 		return busy;
1926 	}
1927 
1928 	/*
1929 	 * If there is one non-busy active path at least, the path selector
1930 	 * will be able to select it. So we consider such a pg as not busy.
1931 	 */
1932 	busy = true;
1933 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
1934 		if (pgpath->is_active) {
1935 			has_active = true;
1936 			if (!pgpath_busy(pgpath)) {
1937 				busy = false;
1938 				break;
1939 			}
1940 		}
1941 	}
1942 
1943 	if (!has_active) {
1944 		/*
1945 		 * No active path in this pg, so this pg won't be used and
1946 		 * the current_pg will be changed at next mapping time.
1947 		 * We need to try mapping to determine it.
1948 		 */
1949 		busy = false;
1950 	}
1951 
1952 	return busy;
1953 }
1954 
1955 /*-----------------------------------------------------------------
1956  * Module setup
1957  *---------------------------------------------------------------*/
1958 static struct target_type multipath_target = {
1959 	.name = "multipath",
1960 	.version = {1, 12, 0},
1961 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1962 	.module = THIS_MODULE,
1963 	.ctr = multipath_ctr,
1964 	.dtr = multipath_dtr,
1965 	.clone_and_map_rq = multipath_clone_and_map,
1966 	.release_clone_rq = multipath_release_clone,
1967 	.rq_end_io = multipath_end_io,
1968 	.map = multipath_map_bio,
1969 	.end_io = multipath_end_io_bio,
1970 	.presuspend = multipath_presuspend,
1971 	.postsuspend = multipath_postsuspend,
1972 	.resume = multipath_resume,
1973 	.status = multipath_status,
1974 	.message = multipath_message,
1975 	.prepare_ioctl = multipath_prepare_ioctl,
1976 	.iterate_devices = multipath_iterate_devices,
1977 	.busy = multipath_busy,
1978 };
1979 
1980 static int __init dm_multipath_init(void)
1981 {
1982 	int r;
1983 
1984 	r = dm_register_target(&multipath_target);
1985 	if (r < 0) {
1986 		DMERR("request-based register failed %d", r);
1987 		r = -EINVAL;
1988 		goto bad_register_target;
1989 	}
1990 
1991 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
1992 	if (!kmultipathd) {
1993 		DMERR("failed to create workqueue kmpathd");
1994 		r = -ENOMEM;
1995 		goto bad_alloc_kmultipathd;
1996 	}
1997 
1998 	/*
1999 	 * A separate workqueue is used to handle the device handlers
2000 	 * to avoid overloading existing workqueue. Overloading the
2001 	 * old workqueue would also create a bottleneck in the
2002 	 * path of the storage hardware device activation.
2003 	 */
2004 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2005 						  WQ_MEM_RECLAIM);
2006 	if (!kmpath_handlerd) {
2007 		DMERR("failed to create workqueue kmpath_handlerd");
2008 		r = -ENOMEM;
2009 		goto bad_alloc_kmpath_handlerd;
2010 	}
2011 
2012 	return 0;
2013 
2014 bad_alloc_kmpath_handlerd:
2015 	destroy_workqueue(kmultipathd);
2016 bad_alloc_kmultipathd:
2017 	dm_unregister_target(&multipath_target);
2018 bad_register_target:
2019 	return r;
2020 }
2021 
2022 static void __exit dm_multipath_exit(void)
2023 {
2024 	destroy_workqueue(kmpath_handlerd);
2025 	destroy_workqueue(kmultipathd);
2026 
2027 	dm_unregister_target(&multipath_target);
2028 }
2029 
2030 module_init(dm_multipath_init);
2031 module_exit(dm_multipath_exit);
2032 
2033 MODULE_DESCRIPTION(DM_NAME " multipath target");
2034 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2035 MODULE_LICENSE("GPL");
2036