1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <scsi/scsi_dh.h> 26 #include <linux/atomic.h> 27 #include <linux/blk-mq.h> 28 29 #define DM_MSG_PREFIX "multipath" 30 #define DM_PG_INIT_DELAY_MSECS 2000 31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 32 33 /* Path properties */ 34 struct pgpath { 35 struct list_head list; 36 37 struct priority_group *pg; /* Owning PG */ 38 unsigned fail_count; /* Cumulative failure count */ 39 40 struct dm_path path; 41 struct delayed_work activate_path; 42 43 bool is_active:1; /* Path status */ 44 }; 45 46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 47 48 /* 49 * Paths are grouped into Priority Groups and numbered from 1 upwards. 50 * Each has a path selector which controls which path gets used. 51 */ 52 struct priority_group { 53 struct list_head list; 54 55 struct multipath *m; /* Owning multipath instance */ 56 struct path_selector ps; 57 58 unsigned pg_num; /* Reference number */ 59 unsigned nr_pgpaths; /* Number of paths in PG */ 60 struct list_head pgpaths; 61 62 bool bypassed:1; /* Temporarily bypass this PG? */ 63 }; 64 65 /* Multipath context */ 66 struct multipath { 67 struct list_head list; 68 struct dm_target *ti; 69 70 const char *hw_handler_name; 71 char *hw_handler_params; 72 73 spinlock_t lock; 74 75 unsigned nr_priority_groups; 76 struct list_head priority_groups; 77 78 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 79 80 struct pgpath *current_pgpath; 81 struct priority_group *current_pg; 82 struct priority_group *next_pg; /* Switch to this PG if set */ 83 84 unsigned long flags; /* Multipath state flags */ 85 86 unsigned pg_init_retries; /* Number of times to retry pg_init */ 87 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 88 89 atomic_t nr_valid_paths; /* Total number of usable paths */ 90 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 91 atomic_t pg_init_count; /* Number of times pg_init called */ 92 93 enum dm_queue_mode queue_mode; 94 95 struct mutex work_mutex; 96 struct work_struct trigger_event; 97 98 struct work_struct process_queued_bios; 99 struct bio_list queued_bios; 100 }; 101 102 /* 103 * Context information attached to each io we process. 104 */ 105 struct dm_mpath_io { 106 struct pgpath *pgpath; 107 size_t nr_bytes; 108 }; 109 110 typedef int (*action_fn) (struct pgpath *pgpath); 111 112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 113 static void trigger_event(struct work_struct *work); 114 static void activate_or_offline_path(struct pgpath *pgpath); 115 static void activate_path_work(struct work_struct *work); 116 static void process_queued_bios(struct work_struct *work); 117 118 /*----------------------------------------------- 119 * Multipath state flags. 120 *-----------------------------------------------*/ 121 122 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 123 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 124 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 125 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 126 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 127 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 128 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 129 130 /*----------------------------------------------- 131 * Allocation routines 132 *-----------------------------------------------*/ 133 134 static struct pgpath *alloc_pgpath(void) 135 { 136 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 137 138 if (pgpath) { 139 pgpath->is_active = true; 140 INIT_DELAYED_WORK(&pgpath->activate_path, activate_path_work); 141 } 142 143 return pgpath; 144 } 145 146 static void free_pgpath(struct pgpath *pgpath) 147 { 148 kfree(pgpath); 149 } 150 151 static struct priority_group *alloc_priority_group(void) 152 { 153 struct priority_group *pg; 154 155 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 156 157 if (pg) 158 INIT_LIST_HEAD(&pg->pgpaths); 159 160 return pg; 161 } 162 163 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 164 { 165 struct pgpath *pgpath, *tmp; 166 167 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 168 list_del(&pgpath->list); 169 dm_put_device(ti, pgpath->path.dev); 170 free_pgpath(pgpath); 171 } 172 } 173 174 static void free_priority_group(struct priority_group *pg, 175 struct dm_target *ti) 176 { 177 struct path_selector *ps = &pg->ps; 178 179 if (ps->type) { 180 ps->type->destroy(ps); 181 dm_put_path_selector(ps->type); 182 } 183 184 free_pgpaths(&pg->pgpaths, ti); 185 kfree(pg); 186 } 187 188 static struct multipath *alloc_multipath(struct dm_target *ti) 189 { 190 struct multipath *m; 191 192 m = kzalloc(sizeof(*m), GFP_KERNEL); 193 if (m) { 194 INIT_LIST_HEAD(&m->priority_groups); 195 spin_lock_init(&m->lock); 196 set_bit(MPATHF_QUEUE_IO, &m->flags); 197 atomic_set(&m->nr_valid_paths, 0); 198 atomic_set(&m->pg_init_in_progress, 0); 199 atomic_set(&m->pg_init_count, 0); 200 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 201 INIT_WORK(&m->trigger_event, trigger_event); 202 init_waitqueue_head(&m->pg_init_wait); 203 mutex_init(&m->work_mutex); 204 205 m->queue_mode = DM_TYPE_NONE; 206 207 m->ti = ti; 208 ti->private = m; 209 } 210 211 return m; 212 } 213 214 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 215 { 216 if (m->queue_mode == DM_TYPE_NONE) { 217 /* 218 * Default to request-based. 219 */ 220 if (dm_use_blk_mq(dm_table_get_md(ti->table))) 221 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 222 else 223 m->queue_mode = DM_TYPE_REQUEST_BASED; 224 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 225 INIT_WORK(&m->process_queued_bios, process_queued_bios); 226 /* 227 * bio-based doesn't support any direct scsi_dh management; 228 * it just discovers if a scsi_dh is attached. 229 */ 230 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 231 } 232 233 dm_table_set_type(ti->table, m->queue_mode); 234 235 return 0; 236 } 237 238 static void free_multipath(struct multipath *m) 239 { 240 struct priority_group *pg, *tmp; 241 242 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 243 list_del(&pg->list); 244 free_priority_group(pg, m->ti); 245 } 246 247 kfree(m->hw_handler_name); 248 kfree(m->hw_handler_params); 249 kfree(m); 250 } 251 252 static struct dm_mpath_io *get_mpio(union map_info *info) 253 { 254 return info->ptr; 255 } 256 257 static size_t multipath_per_bio_data_size(void) 258 { 259 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 260 } 261 262 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 263 { 264 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 265 } 266 267 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio) 268 { 269 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 270 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 271 void *bio_details = mpio + 1; 272 273 return bio_details; 274 } 275 276 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p, 277 struct dm_bio_details **bio_details_p) 278 { 279 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 280 struct dm_bio_details *bio_details = get_bio_details_from_bio(bio); 281 282 memset(mpio, 0, sizeof(*mpio)); 283 memset(bio_details, 0, sizeof(*bio_details)); 284 dm_bio_record(bio_details, bio); 285 286 if (mpio_p) 287 *mpio_p = mpio; 288 if (bio_details_p) 289 *bio_details_p = bio_details; 290 } 291 292 /*----------------------------------------------- 293 * Path selection 294 *-----------------------------------------------*/ 295 296 static int __pg_init_all_paths(struct multipath *m) 297 { 298 struct pgpath *pgpath; 299 unsigned long pg_init_delay = 0; 300 301 lockdep_assert_held(&m->lock); 302 303 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 304 return 0; 305 306 atomic_inc(&m->pg_init_count); 307 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 308 309 /* Check here to reset pg_init_required */ 310 if (!m->current_pg) 311 return 0; 312 313 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 314 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 315 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 316 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 317 /* Skip failed paths */ 318 if (!pgpath->is_active) 319 continue; 320 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 321 pg_init_delay)) 322 atomic_inc(&m->pg_init_in_progress); 323 } 324 return atomic_read(&m->pg_init_in_progress); 325 } 326 327 static int pg_init_all_paths(struct multipath *m) 328 { 329 int ret; 330 unsigned long flags; 331 332 spin_lock_irqsave(&m->lock, flags); 333 ret = __pg_init_all_paths(m); 334 spin_unlock_irqrestore(&m->lock, flags); 335 336 return ret; 337 } 338 339 static void __switch_pg(struct multipath *m, struct priority_group *pg) 340 { 341 m->current_pg = pg; 342 343 /* Must we initialise the PG first, and queue I/O till it's ready? */ 344 if (m->hw_handler_name) { 345 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 346 set_bit(MPATHF_QUEUE_IO, &m->flags); 347 } else { 348 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 349 clear_bit(MPATHF_QUEUE_IO, &m->flags); 350 } 351 352 atomic_set(&m->pg_init_count, 0); 353 } 354 355 static struct pgpath *choose_path_in_pg(struct multipath *m, 356 struct priority_group *pg, 357 size_t nr_bytes) 358 { 359 unsigned long flags; 360 struct dm_path *path; 361 struct pgpath *pgpath; 362 363 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 364 if (!path) 365 return ERR_PTR(-ENXIO); 366 367 pgpath = path_to_pgpath(path); 368 369 if (unlikely(lockless_dereference(m->current_pg) != pg)) { 370 /* Only update current_pgpath if pg changed */ 371 spin_lock_irqsave(&m->lock, flags); 372 m->current_pgpath = pgpath; 373 __switch_pg(m, pg); 374 spin_unlock_irqrestore(&m->lock, flags); 375 } 376 377 return pgpath; 378 } 379 380 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 381 { 382 unsigned long flags; 383 struct priority_group *pg; 384 struct pgpath *pgpath; 385 unsigned bypassed = 1; 386 387 if (!atomic_read(&m->nr_valid_paths)) { 388 clear_bit(MPATHF_QUEUE_IO, &m->flags); 389 goto failed; 390 } 391 392 /* Were we instructed to switch PG? */ 393 if (lockless_dereference(m->next_pg)) { 394 spin_lock_irqsave(&m->lock, flags); 395 pg = m->next_pg; 396 if (!pg) { 397 spin_unlock_irqrestore(&m->lock, flags); 398 goto check_current_pg; 399 } 400 m->next_pg = NULL; 401 spin_unlock_irqrestore(&m->lock, flags); 402 pgpath = choose_path_in_pg(m, pg, nr_bytes); 403 if (!IS_ERR_OR_NULL(pgpath)) 404 return pgpath; 405 } 406 407 /* Don't change PG until it has no remaining paths */ 408 check_current_pg: 409 pg = lockless_dereference(m->current_pg); 410 if (pg) { 411 pgpath = choose_path_in_pg(m, pg, nr_bytes); 412 if (!IS_ERR_OR_NULL(pgpath)) 413 return pgpath; 414 } 415 416 /* 417 * Loop through priority groups until we find a valid path. 418 * First time we skip PGs marked 'bypassed'. 419 * Second time we only try the ones we skipped, but set 420 * pg_init_delay_retry so we do not hammer controllers. 421 */ 422 do { 423 list_for_each_entry(pg, &m->priority_groups, list) { 424 if (pg->bypassed == !!bypassed) 425 continue; 426 pgpath = choose_path_in_pg(m, pg, nr_bytes); 427 if (!IS_ERR_OR_NULL(pgpath)) { 428 if (!bypassed) 429 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 430 return pgpath; 431 } 432 } 433 } while (bypassed--); 434 435 failed: 436 spin_lock_irqsave(&m->lock, flags); 437 m->current_pgpath = NULL; 438 m->current_pg = NULL; 439 spin_unlock_irqrestore(&m->lock, flags); 440 441 return NULL; 442 } 443 444 /* 445 * dm_report_EIO() is a macro instead of a function to make pr_debug() 446 * report the function name and line number of the function from which 447 * it has been invoked. 448 */ 449 #define dm_report_EIO(m) \ 450 ({ \ 451 struct mapped_device *md = dm_table_get_md((m)->ti->table); \ 452 \ 453 pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \ 454 dm_device_name(md), \ 455 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 456 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 457 dm_noflush_suspending((m)->ti)); \ 458 -EIO; \ 459 }) 460 461 /* 462 * Map cloned requests (request-based multipath) 463 */ 464 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 465 union map_info *map_context, 466 struct request **__clone) 467 { 468 struct multipath *m = ti->private; 469 size_t nr_bytes = blk_rq_bytes(rq); 470 struct pgpath *pgpath; 471 struct block_device *bdev; 472 struct dm_mpath_io *mpio = get_mpio(map_context); 473 struct request_queue *q; 474 struct request *clone; 475 476 /* Do we need to select a new pgpath? */ 477 pgpath = lockless_dereference(m->current_pgpath); 478 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 479 pgpath = choose_pgpath(m, nr_bytes); 480 481 if (!pgpath) { 482 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 483 return DM_MAPIO_DELAY_REQUEUE; 484 return dm_report_EIO(m); /* Failed */ 485 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) || 486 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 487 if (pg_init_all_paths(m)) 488 return DM_MAPIO_DELAY_REQUEUE; 489 return DM_MAPIO_REQUEUE; 490 } 491 492 memset(mpio, 0, sizeof(*mpio)); 493 mpio->pgpath = pgpath; 494 mpio->nr_bytes = nr_bytes; 495 496 bdev = pgpath->path.dev->bdev; 497 q = bdev_get_queue(bdev); 498 clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC); 499 if (IS_ERR(clone)) { 500 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 501 bool queue_dying = blk_queue_dying(q); 502 DMERR_LIMIT("blk_get_request() returned %ld%s - requeuing", 503 PTR_ERR(clone), queue_dying ? " (path offline)" : ""); 504 if (queue_dying) { 505 atomic_inc(&m->pg_init_in_progress); 506 activate_or_offline_path(pgpath); 507 return DM_MAPIO_REQUEUE; 508 } 509 return DM_MAPIO_DELAY_REQUEUE; 510 } 511 clone->bio = clone->biotail = NULL; 512 clone->rq_disk = bdev->bd_disk; 513 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 514 *__clone = clone; 515 516 if (pgpath->pg->ps.type->start_io) 517 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 518 &pgpath->path, 519 nr_bytes); 520 return DM_MAPIO_REMAPPED; 521 } 522 523 static void multipath_release_clone(struct request *clone) 524 { 525 blk_put_request(clone); 526 } 527 528 /* 529 * Map cloned bios (bio-based multipath) 530 */ 531 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio) 532 { 533 size_t nr_bytes = bio->bi_iter.bi_size; 534 struct pgpath *pgpath; 535 unsigned long flags; 536 bool queue_io; 537 538 /* Do we need to select a new pgpath? */ 539 pgpath = lockless_dereference(m->current_pgpath); 540 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags); 541 if (!pgpath || !queue_io) 542 pgpath = choose_pgpath(m, nr_bytes); 543 544 if ((pgpath && queue_io) || 545 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) { 546 /* Queue for the daemon to resubmit */ 547 spin_lock_irqsave(&m->lock, flags); 548 bio_list_add(&m->queued_bios, bio); 549 spin_unlock_irqrestore(&m->lock, flags); 550 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */ 551 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 552 pg_init_all_paths(m); 553 else if (!queue_io) 554 queue_work(kmultipathd, &m->process_queued_bios); 555 return DM_MAPIO_SUBMITTED; 556 } 557 558 if (!pgpath) { 559 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 560 return DM_MAPIO_REQUEUE; 561 return dm_report_EIO(m); 562 } 563 564 mpio->pgpath = pgpath; 565 mpio->nr_bytes = nr_bytes; 566 567 bio->bi_error = 0; 568 bio->bi_bdev = pgpath->path.dev->bdev; 569 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 570 571 if (pgpath->pg->ps.type->start_io) 572 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 573 &pgpath->path, 574 nr_bytes); 575 return DM_MAPIO_REMAPPED; 576 } 577 578 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 579 { 580 struct multipath *m = ti->private; 581 struct dm_mpath_io *mpio = NULL; 582 583 multipath_init_per_bio_data(bio, &mpio, NULL); 584 585 return __multipath_map_bio(m, bio, mpio); 586 } 587 588 static void process_queued_io_list(struct multipath *m) 589 { 590 if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED) 591 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 592 else if (m->queue_mode == DM_TYPE_BIO_BASED) 593 queue_work(kmultipathd, &m->process_queued_bios); 594 } 595 596 static void process_queued_bios(struct work_struct *work) 597 { 598 int r; 599 unsigned long flags; 600 struct bio *bio; 601 struct bio_list bios; 602 struct blk_plug plug; 603 struct multipath *m = 604 container_of(work, struct multipath, process_queued_bios); 605 606 bio_list_init(&bios); 607 608 spin_lock_irqsave(&m->lock, flags); 609 610 if (bio_list_empty(&m->queued_bios)) { 611 spin_unlock_irqrestore(&m->lock, flags); 612 return; 613 } 614 615 bio_list_merge(&bios, &m->queued_bios); 616 bio_list_init(&m->queued_bios); 617 618 spin_unlock_irqrestore(&m->lock, flags); 619 620 blk_start_plug(&plug); 621 while ((bio = bio_list_pop(&bios))) { 622 r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio)); 623 if (r < 0 || r == DM_MAPIO_REQUEUE) { 624 bio->bi_error = r; 625 bio_endio(bio); 626 } else if (r == DM_MAPIO_REMAPPED) 627 generic_make_request(bio); 628 } 629 blk_finish_plug(&plug); 630 } 631 632 static void assign_bit(bool value, long nr, unsigned long *addr) 633 { 634 if (value) 635 set_bit(nr, addr); 636 else 637 clear_bit(nr, addr); 638 } 639 640 /* 641 * If we run out of usable paths, should we queue I/O or error it? 642 */ 643 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 644 bool save_old_value) 645 { 646 unsigned long flags; 647 648 spin_lock_irqsave(&m->lock, flags); 649 assign_bit((save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) || 650 (!save_old_value && queue_if_no_path), 651 MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 652 assign_bit(queue_if_no_path || dm_noflush_suspending(m->ti), 653 MPATHF_QUEUE_IF_NO_PATH, &m->flags); 654 spin_unlock_irqrestore(&m->lock, flags); 655 656 if (!queue_if_no_path) { 657 dm_table_run_md_queue_async(m->ti->table); 658 process_queued_io_list(m); 659 } 660 661 return 0; 662 } 663 664 /* 665 * An event is triggered whenever a path is taken out of use. 666 * Includes path failure and PG bypass. 667 */ 668 static void trigger_event(struct work_struct *work) 669 { 670 struct multipath *m = 671 container_of(work, struct multipath, trigger_event); 672 673 dm_table_event(m->ti->table); 674 } 675 676 /*----------------------------------------------------------------- 677 * Constructor/argument parsing: 678 * <#multipath feature args> [<arg>]* 679 * <#hw_handler args> [hw_handler [<arg>]*] 680 * <#priority groups> 681 * <initial priority group> 682 * [<selector> <#selector args> [<arg>]* 683 * <#paths> <#per-path selector args> 684 * [<path> [<arg>]* ]+ ]+ 685 *---------------------------------------------------------------*/ 686 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 687 struct dm_target *ti) 688 { 689 int r; 690 struct path_selector_type *pst; 691 unsigned ps_argc; 692 693 static struct dm_arg _args[] = { 694 {0, 1024, "invalid number of path selector args"}, 695 }; 696 697 pst = dm_get_path_selector(dm_shift_arg(as)); 698 if (!pst) { 699 ti->error = "unknown path selector type"; 700 return -EINVAL; 701 } 702 703 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 704 if (r) { 705 dm_put_path_selector(pst); 706 return -EINVAL; 707 } 708 709 r = pst->create(&pg->ps, ps_argc, as->argv); 710 if (r) { 711 dm_put_path_selector(pst); 712 ti->error = "path selector constructor failed"; 713 return r; 714 } 715 716 pg->ps.type = pst; 717 dm_consume_args(as, ps_argc); 718 719 return 0; 720 } 721 722 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 723 struct dm_target *ti) 724 { 725 int r; 726 struct pgpath *p; 727 struct multipath *m = ti->private; 728 struct request_queue *q = NULL; 729 const char *attached_handler_name; 730 731 /* we need at least a path arg */ 732 if (as->argc < 1) { 733 ti->error = "no device given"; 734 return ERR_PTR(-EINVAL); 735 } 736 737 p = alloc_pgpath(); 738 if (!p) 739 return ERR_PTR(-ENOMEM); 740 741 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 742 &p->path.dev); 743 if (r) { 744 ti->error = "error getting device"; 745 goto bad; 746 } 747 748 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name) 749 q = bdev_get_queue(p->path.dev->bdev); 750 751 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) { 752 retain: 753 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 754 if (attached_handler_name) { 755 /* 756 * Clear any hw_handler_params associated with a 757 * handler that isn't already attached. 758 */ 759 if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) { 760 kfree(m->hw_handler_params); 761 m->hw_handler_params = NULL; 762 } 763 764 /* 765 * Reset hw_handler_name to match the attached handler 766 * 767 * NB. This modifies the table line to show the actual 768 * handler instead of the original table passed in. 769 */ 770 kfree(m->hw_handler_name); 771 m->hw_handler_name = attached_handler_name; 772 } 773 } 774 775 if (m->hw_handler_name) { 776 r = scsi_dh_attach(q, m->hw_handler_name); 777 if (r == -EBUSY) { 778 char b[BDEVNAME_SIZE]; 779 780 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 781 bdevname(p->path.dev->bdev, b)); 782 goto retain; 783 } 784 if (r < 0) { 785 ti->error = "error attaching hardware handler"; 786 dm_put_device(ti, p->path.dev); 787 goto bad; 788 } 789 790 if (m->hw_handler_params) { 791 r = scsi_dh_set_params(q, m->hw_handler_params); 792 if (r < 0) { 793 ti->error = "unable to set hardware " 794 "handler parameters"; 795 dm_put_device(ti, p->path.dev); 796 goto bad; 797 } 798 } 799 } 800 801 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 802 if (r) { 803 dm_put_device(ti, p->path.dev); 804 goto bad; 805 } 806 807 return p; 808 809 bad: 810 free_pgpath(p); 811 return ERR_PTR(r); 812 } 813 814 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 815 struct multipath *m) 816 { 817 static struct dm_arg _args[] = { 818 {1, 1024, "invalid number of paths"}, 819 {0, 1024, "invalid number of selector args"} 820 }; 821 822 int r; 823 unsigned i, nr_selector_args, nr_args; 824 struct priority_group *pg; 825 struct dm_target *ti = m->ti; 826 827 if (as->argc < 2) { 828 as->argc = 0; 829 ti->error = "not enough priority group arguments"; 830 return ERR_PTR(-EINVAL); 831 } 832 833 pg = alloc_priority_group(); 834 if (!pg) { 835 ti->error = "couldn't allocate priority group"; 836 return ERR_PTR(-ENOMEM); 837 } 838 pg->m = m; 839 840 r = parse_path_selector(as, pg, ti); 841 if (r) 842 goto bad; 843 844 /* 845 * read the paths 846 */ 847 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 848 if (r) 849 goto bad; 850 851 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 852 if (r) 853 goto bad; 854 855 nr_args = 1 + nr_selector_args; 856 for (i = 0; i < pg->nr_pgpaths; i++) { 857 struct pgpath *pgpath; 858 struct dm_arg_set path_args; 859 860 if (as->argc < nr_args) { 861 ti->error = "not enough path parameters"; 862 r = -EINVAL; 863 goto bad; 864 } 865 866 path_args.argc = nr_args; 867 path_args.argv = as->argv; 868 869 pgpath = parse_path(&path_args, &pg->ps, ti); 870 if (IS_ERR(pgpath)) { 871 r = PTR_ERR(pgpath); 872 goto bad; 873 } 874 875 pgpath->pg = pg; 876 list_add_tail(&pgpath->list, &pg->pgpaths); 877 dm_consume_args(as, nr_args); 878 } 879 880 return pg; 881 882 bad: 883 free_priority_group(pg, ti); 884 return ERR_PTR(r); 885 } 886 887 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 888 { 889 unsigned hw_argc; 890 int ret; 891 struct dm_target *ti = m->ti; 892 893 static struct dm_arg _args[] = { 894 {0, 1024, "invalid number of hardware handler args"}, 895 }; 896 897 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 898 return -EINVAL; 899 900 if (!hw_argc) 901 return 0; 902 903 if (m->queue_mode == DM_TYPE_BIO_BASED) { 904 dm_consume_args(as, hw_argc); 905 DMERR("bio-based multipath doesn't allow hardware handler args"); 906 return 0; 907 } 908 909 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 910 if (!m->hw_handler_name) 911 return -EINVAL; 912 913 if (hw_argc > 1) { 914 char *p; 915 int i, j, len = 4; 916 917 for (i = 0; i <= hw_argc - 2; i++) 918 len += strlen(as->argv[i]) + 1; 919 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 920 if (!p) { 921 ti->error = "memory allocation failed"; 922 ret = -ENOMEM; 923 goto fail; 924 } 925 j = sprintf(p, "%d", hw_argc - 1); 926 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 927 j = sprintf(p, "%s", as->argv[i]); 928 } 929 dm_consume_args(as, hw_argc - 1); 930 931 return 0; 932 fail: 933 kfree(m->hw_handler_name); 934 m->hw_handler_name = NULL; 935 return ret; 936 } 937 938 static int parse_features(struct dm_arg_set *as, struct multipath *m) 939 { 940 int r; 941 unsigned argc; 942 struct dm_target *ti = m->ti; 943 const char *arg_name; 944 945 static struct dm_arg _args[] = { 946 {0, 8, "invalid number of feature args"}, 947 {1, 50, "pg_init_retries must be between 1 and 50"}, 948 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 949 }; 950 951 r = dm_read_arg_group(_args, as, &argc, &ti->error); 952 if (r) 953 return -EINVAL; 954 955 if (!argc) 956 return 0; 957 958 do { 959 arg_name = dm_shift_arg(as); 960 argc--; 961 962 if (!strcasecmp(arg_name, "queue_if_no_path")) { 963 r = queue_if_no_path(m, true, false); 964 continue; 965 } 966 967 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 968 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 969 continue; 970 } 971 972 if (!strcasecmp(arg_name, "pg_init_retries") && 973 (argc >= 1)) { 974 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 975 argc--; 976 continue; 977 } 978 979 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 980 (argc >= 1)) { 981 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 982 argc--; 983 continue; 984 } 985 986 if (!strcasecmp(arg_name, "queue_mode") && 987 (argc >= 1)) { 988 const char *queue_mode_name = dm_shift_arg(as); 989 990 if (!strcasecmp(queue_mode_name, "bio")) 991 m->queue_mode = DM_TYPE_BIO_BASED; 992 else if (!strcasecmp(queue_mode_name, "rq")) 993 m->queue_mode = DM_TYPE_REQUEST_BASED; 994 else if (!strcasecmp(queue_mode_name, "mq")) 995 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 996 else { 997 ti->error = "Unknown 'queue_mode' requested"; 998 r = -EINVAL; 999 } 1000 argc--; 1001 continue; 1002 } 1003 1004 ti->error = "Unrecognised multipath feature request"; 1005 r = -EINVAL; 1006 } while (argc && !r); 1007 1008 return r; 1009 } 1010 1011 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1012 { 1013 /* target arguments */ 1014 static struct dm_arg _args[] = { 1015 {0, 1024, "invalid number of priority groups"}, 1016 {0, 1024, "invalid initial priority group number"}, 1017 }; 1018 1019 int r; 1020 struct multipath *m; 1021 struct dm_arg_set as; 1022 unsigned pg_count = 0; 1023 unsigned next_pg_num; 1024 1025 as.argc = argc; 1026 as.argv = argv; 1027 1028 m = alloc_multipath(ti); 1029 if (!m) { 1030 ti->error = "can't allocate multipath"; 1031 return -EINVAL; 1032 } 1033 1034 r = parse_features(&as, m); 1035 if (r) 1036 goto bad; 1037 1038 r = alloc_multipath_stage2(ti, m); 1039 if (r) 1040 goto bad; 1041 1042 r = parse_hw_handler(&as, m); 1043 if (r) 1044 goto bad; 1045 1046 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1047 if (r) 1048 goto bad; 1049 1050 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1051 if (r) 1052 goto bad; 1053 1054 if ((!m->nr_priority_groups && next_pg_num) || 1055 (m->nr_priority_groups && !next_pg_num)) { 1056 ti->error = "invalid initial priority group"; 1057 r = -EINVAL; 1058 goto bad; 1059 } 1060 1061 /* parse the priority groups */ 1062 while (as.argc) { 1063 struct priority_group *pg; 1064 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1065 1066 pg = parse_priority_group(&as, m); 1067 if (IS_ERR(pg)) { 1068 r = PTR_ERR(pg); 1069 goto bad; 1070 } 1071 1072 nr_valid_paths += pg->nr_pgpaths; 1073 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1074 1075 list_add_tail(&pg->list, &m->priority_groups); 1076 pg_count++; 1077 pg->pg_num = pg_count; 1078 if (!--next_pg_num) 1079 m->next_pg = pg; 1080 } 1081 1082 if (pg_count != m->nr_priority_groups) { 1083 ti->error = "priority group count mismatch"; 1084 r = -EINVAL; 1085 goto bad; 1086 } 1087 1088 ti->num_flush_bios = 1; 1089 ti->num_discard_bios = 1; 1090 ti->num_write_same_bios = 1; 1091 if (m->queue_mode == DM_TYPE_BIO_BASED) 1092 ti->per_io_data_size = multipath_per_bio_data_size(); 1093 else 1094 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1095 1096 return 0; 1097 1098 bad: 1099 free_multipath(m); 1100 return r; 1101 } 1102 1103 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1104 { 1105 DEFINE_WAIT(wait); 1106 1107 while (1) { 1108 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1109 1110 if (!atomic_read(&m->pg_init_in_progress)) 1111 break; 1112 1113 io_schedule(); 1114 } 1115 finish_wait(&m->pg_init_wait, &wait); 1116 } 1117 1118 static void flush_multipath_work(struct multipath *m) 1119 { 1120 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1121 smp_mb__after_atomic(); 1122 1123 flush_workqueue(kmpath_handlerd); 1124 multipath_wait_for_pg_init_completion(m); 1125 flush_workqueue(kmultipathd); 1126 flush_work(&m->trigger_event); 1127 1128 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1129 smp_mb__after_atomic(); 1130 } 1131 1132 static void multipath_dtr(struct dm_target *ti) 1133 { 1134 struct multipath *m = ti->private; 1135 1136 flush_multipath_work(m); 1137 free_multipath(m); 1138 } 1139 1140 /* 1141 * Take a path out of use. 1142 */ 1143 static int fail_path(struct pgpath *pgpath) 1144 { 1145 unsigned long flags; 1146 struct multipath *m = pgpath->pg->m; 1147 1148 spin_lock_irqsave(&m->lock, flags); 1149 1150 if (!pgpath->is_active) 1151 goto out; 1152 1153 DMWARN("Failing path %s.", pgpath->path.dev->name); 1154 1155 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1156 pgpath->is_active = false; 1157 pgpath->fail_count++; 1158 1159 atomic_dec(&m->nr_valid_paths); 1160 1161 if (pgpath == m->current_pgpath) 1162 m->current_pgpath = NULL; 1163 1164 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1165 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1166 1167 schedule_work(&m->trigger_event); 1168 1169 out: 1170 spin_unlock_irqrestore(&m->lock, flags); 1171 1172 return 0; 1173 } 1174 1175 /* 1176 * Reinstate a previously-failed path 1177 */ 1178 static int reinstate_path(struct pgpath *pgpath) 1179 { 1180 int r = 0, run_queue = 0; 1181 unsigned long flags; 1182 struct multipath *m = pgpath->pg->m; 1183 unsigned nr_valid_paths; 1184 1185 spin_lock_irqsave(&m->lock, flags); 1186 1187 if (pgpath->is_active) 1188 goto out; 1189 1190 DMWARN("Reinstating path %s.", pgpath->path.dev->name); 1191 1192 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1193 if (r) 1194 goto out; 1195 1196 pgpath->is_active = true; 1197 1198 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1199 if (nr_valid_paths == 1) { 1200 m->current_pgpath = NULL; 1201 run_queue = 1; 1202 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1203 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1204 atomic_inc(&m->pg_init_in_progress); 1205 } 1206 1207 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1208 pgpath->path.dev->name, nr_valid_paths); 1209 1210 schedule_work(&m->trigger_event); 1211 1212 out: 1213 spin_unlock_irqrestore(&m->lock, flags); 1214 if (run_queue) { 1215 dm_table_run_md_queue_async(m->ti->table); 1216 process_queued_io_list(m); 1217 } 1218 1219 return r; 1220 } 1221 1222 /* 1223 * Fail or reinstate all paths that match the provided struct dm_dev. 1224 */ 1225 static int action_dev(struct multipath *m, struct dm_dev *dev, 1226 action_fn action) 1227 { 1228 int r = -EINVAL; 1229 struct pgpath *pgpath; 1230 struct priority_group *pg; 1231 1232 list_for_each_entry(pg, &m->priority_groups, list) { 1233 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1234 if (pgpath->path.dev == dev) 1235 r = action(pgpath); 1236 } 1237 } 1238 1239 return r; 1240 } 1241 1242 /* 1243 * Temporarily try to avoid having to use the specified PG 1244 */ 1245 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1246 bool bypassed) 1247 { 1248 unsigned long flags; 1249 1250 spin_lock_irqsave(&m->lock, flags); 1251 1252 pg->bypassed = bypassed; 1253 m->current_pgpath = NULL; 1254 m->current_pg = NULL; 1255 1256 spin_unlock_irqrestore(&m->lock, flags); 1257 1258 schedule_work(&m->trigger_event); 1259 } 1260 1261 /* 1262 * Switch to using the specified PG from the next I/O that gets mapped 1263 */ 1264 static int switch_pg_num(struct multipath *m, const char *pgstr) 1265 { 1266 struct priority_group *pg; 1267 unsigned pgnum; 1268 unsigned long flags; 1269 char dummy; 1270 1271 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1272 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1273 DMWARN("invalid PG number supplied to switch_pg_num"); 1274 return -EINVAL; 1275 } 1276 1277 spin_lock_irqsave(&m->lock, flags); 1278 list_for_each_entry(pg, &m->priority_groups, list) { 1279 pg->bypassed = false; 1280 if (--pgnum) 1281 continue; 1282 1283 m->current_pgpath = NULL; 1284 m->current_pg = NULL; 1285 m->next_pg = pg; 1286 } 1287 spin_unlock_irqrestore(&m->lock, flags); 1288 1289 schedule_work(&m->trigger_event); 1290 return 0; 1291 } 1292 1293 /* 1294 * Set/clear bypassed status of a PG. 1295 * PGs are numbered upwards from 1 in the order they were declared. 1296 */ 1297 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1298 { 1299 struct priority_group *pg; 1300 unsigned pgnum; 1301 char dummy; 1302 1303 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1304 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1305 DMWARN("invalid PG number supplied to bypass_pg"); 1306 return -EINVAL; 1307 } 1308 1309 list_for_each_entry(pg, &m->priority_groups, list) { 1310 if (!--pgnum) 1311 break; 1312 } 1313 1314 bypass_pg(m, pg, bypassed); 1315 return 0; 1316 } 1317 1318 /* 1319 * Should we retry pg_init immediately? 1320 */ 1321 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1322 { 1323 unsigned long flags; 1324 bool limit_reached = false; 1325 1326 spin_lock_irqsave(&m->lock, flags); 1327 1328 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1329 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1330 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1331 else 1332 limit_reached = true; 1333 1334 spin_unlock_irqrestore(&m->lock, flags); 1335 1336 return limit_reached; 1337 } 1338 1339 static void pg_init_done(void *data, int errors) 1340 { 1341 struct pgpath *pgpath = data; 1342 struct priority_group *pg = pgpath->pg; 1343 struct multipath *m = pg->m; 1344 unsigned long flags; 1345 bool delay_retry = false; 1346 1347 /* device or driver problems */ 1348 switch (errors) { 1349 case SCSI_DH_OK: 1350 break; 1351 case SCSI_DH_NOSYS: 1352 if (!m->hw_handler_name) { 1353 errors = 0; 1354 break; 1355 } 1356 DMERR("Could not failover the device: Handler scsi_dh_%s " 1357 "Error %d.", m->hw_handler_name, errors); 1358 /* 1359 * Fail path for now, so we do not ping pong 1360 */ 1361 fail_path(pgpath); 1362 break; 1363 case SCSI_DH_DEV_TEMP_BUSY: 1364 /* 1365 * Probably doing something like FW upgrade on the 1366 * controller so try the other pg. 1367 */ 1368 bypass_pg(m, pg, true); 1369 break; 1370 case SCSI_DH_RETRY: 1371 /* Wait before retrying. */ 1372 delay_retry = 1; 1373 case SCSI_DH_IMM_RETRY: 1374 case SCSI_DH_RES_TEMP_UNAVAIL: 1375 if (pg_init_limit_reached(m, pgpath)) 1376 fail_path(pgpath); 1377 errors = 0; 1378 break; 1379 case SCSI_DH_DEV_OFFLINED: 1380 default: 1381 /* 1382 * We probably do not want to fail the path for a device 1383 * error, but this is what the old dm did. In future 1384 * patches we can do more advanced handling. 1385 */ 1386 fail_path(pgpath); 1387 } 1388 1389 spin_lock_irqsave(&m->lock, flags); 1390 if (errors) { 1391 if (pgpath == m->current_pgpath) { 1392 DMERR("Could not failover device. Error %d.", errors); 1393 m->current_pgpath = NULL; 1394 m->current_pg = NULL; 1395 } 1396 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1397 pg->bypassed = false; 1398 1399 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1400 /* Activations of other paths are still on going */ 1401 goto out; 1402 1403 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1404 if (delay_retry) 1405 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1406 else 1407 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1408 1409 if (__pg_init_all_paths(m)) 1410 goto out; 1411 } 1412 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1413 1414 process_queued_io_list(m); 1415 1416 /* 1417 * Wake up any thread waiting to suspend. 1418 */ 1419 wake_up(&m->pg_init_wait); 1420 1421 out: 1422 spin_unlock_irqrestore(&m->lock, flags); 1423 } 1424 1425 static void activate_or_offline_path(struct pgpath *pgpath) 1426 { 1427 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1428 1429 if (pgpath->is_active && !blk_queue_dying(q)) 1430 scsi_dh_activate(q, pg_init_done, pgpath); 1431 else 1432 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1433 } 1434 1435 static void activate_path_work(struct work_struct *work) 1436 { 1437 struct pgpath *pgpath = 1438 container_of(work, struct pgpath, activate_path.work); 1439 1440 activate_or_offline_path(pgpath); 1441 } 1442 1443 static int noretry_error(int error) 1444 { 1445 switch (error) { 1446 case -EBADE: 1447 /* 1448 * EBADE signals an reservation conflict. 1449 * We shouldn't fail the path here as we can communicate with 1450 * the target. We should failover to the next path, but in 1451 * doing so we might be causing a ping-pong between paths. 1452 * So just return the reservation conflict error. 1453 */ 1454 case -EOPNOTSUPP: 1455 case -EREMOTEIO: 1456 case -EILSEQ: 1457 case -ENODATA: 1458 case -ENOSPC: 1459 return 1; 1460 } 1461 1462 /* Anything else could be a path failure, so should be retried */ 1463 return 0; 1464 } 1465 1466 /* 1467 * end_io handling 1468 */ 1469 static int do_end_io(struct multipath *m, struct request *clone, 1470 int error, struct dm_mpath_io *mpio) 1471 { 1472 /* 1473 * We don't queue any clone request inside the multipath target 1474 * during end I/O handling, since those clone requests don't have 1475 * bio clones. If we queue them inside the multipath target, 1476 * we need to make bio clones, that requires memory allocation. 1477 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1478 * don't have bio clones.) 1479 * Instead of queueing the clone request here, we queue the original 1480 * request into dm core, which will remake a clone request and 1481 * clone bios for it and resubmit it later. 1482 */ 1483 int r = DM_ENDIO_REQUEUE; 1484 1485 if (!error && !clone->errors) 1486 return 0; /* I/O complete */ 1487 1488 if (noretry_error(error)) 1489 return error; 1490 1491 if (mpio->pgpath) 1492 fail_path(mpio->pgpath); 1493 1494 if (atomic_read(&m->nr_valid_paths) == 0 && 1495 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1496 r = dm_report_EIO(m); 1497 1498 return r; 1499 } 1500 1501 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1502 int error, union map_info *map_context) 1503 { 1504 struct multipath *m = ti->private; 1505 struct dm_mpath_io *mpio = get_mpio(map_context); 1506 struct pgpath *pgpath; 1507 struct path_selector *ps; 1508 int r; 1509 1510 BUG_ON(!mpio); 1511 1512 r = do_end_io(m, clone, error, mpio); 1513 pgpath = mpio->pgpath; 1514 if (pgpath) { 1515 ps = &pgpath->pg->ps; 1516 if (ps->type->end_io) 1517 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1518 } 1519 1520 return r; 1521 } 1522 1523 static int do_end_io_bio(struct multipath *m, struct bio *clone, 1524 int error, struct dm_mpath_io *mpio) 1525 { 1526 unsigned long flags; 1527 1528 if (!error) 1529 return 0; /* I/O complete */ 1530 1531 if (noretry_error(error)) 1532 return error; 1533 1534 if (mpio->pgpath) 1535 fail_path(mpio->pgpath); 1536 1537 if (atomic_read(&m->nr_valid_paths) == 0 && 1538 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1539 return dm_report_EIO(m); 1540 1541 /* Queue for the daemon to resubmit */ 1542 dm_bio_restore(get_bio_details_from_bio(clone), clone); 1543 1544 spin_lock_irqsave(&m->lock, flags); 1545 bio_list_add(&m->queued_bios, clone); 1546 spin_unlock_irqrestore(&m->lock, flags); 1547 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 1548 queue_work(kmultipathd, &m->process_queued_bios); 1549 1550 return DM_ENDIO_INCOMPLETE; 1551 } 1552 1553 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, int error) 1554 { 1555 struct multipath *m = ti->private; 1556 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1557 struct pgpath *pgpath; 1558 struct path_selector *ps; 1559 int r; 1560 1561 BUG_ON(!mpio); 1562 1563 r = do_end_io_bio(m, clone, error, mpio); 1564 pgpath = mpio->pgpath; 1565 if (pgpath) { 1566 ps = &pgpath->pg->ps; 1567 if (ps->type->end_io) 1568 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1569 } 1570 1571 return r; 1572 } 1573 1574 /* 1575 * Suspend can't complete until all the I/O is processed so if 1576 * the last path fails we must error any remaining I/O. 1577 * Note that if the freeze_bdev fails while suspending, the 1578 * queue_if_no_path state is lost - userspace should reset it. 1579 */ 1580 static void multipath_presuspend(struct dm_target *ti) 1581 { 1582 struct multipath *m = ti->private; 1583 1584 queue_if_no_path(m, false, true); 1585 } 1586 1587 static void multipath_postsuspend(struct dm_target *ti) 1588 { 1589 struct multipath *m = ti->private; 1590 1591 mutex_lock(&m->work_mutex); 1592 flush_multipath_work(m); 1593 mutex_unlock(&m->work_mutex); 1594 } 1595 1596 /* 1597 * Restore the queue_if_no_path setting. 1598 */ 1599 static void multipath_resume(struct dm_target *ti) 1600 { 1601 struct multipath *m = ti->private; 1602 unsigned long flags; 1603 1604 spin_lock_irqsave(&m->lock, flags); 1605 assign_bit(test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags), 1606 MPATHF_QUEUE_IF_NO_PATH, &m->flags); 1607 spin_unlock_irqrestore(&m->lock, flags); 1608 } 1609 1610 /* 1611 * Info output has the following format: 1612 * num_multipath_feature_args [multipath_feature_args]* 1613 * num_handler_status_args [handler_status_args]* 1614 * num_groups init_group_number 1615 * [A|D|E num_ps_status_args [ps_status_args]* 1616 * num_paths num_selector_args 1617 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1618 * 1619 * Table output has the following format (identical to the constructor string): 1620 * num_feature_args [features_args]* 1621 * num_handler_args hw_handler [hw_handler_args]* 1622 * num_groups init_group_number 1623 * [priority selector-name num_ps_args [ps_args]* 1624 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1625 */ 1626 static void multipath_status(struct dm_target *ti, status_type_t type, 1627 unsigned status_flags, char *result, unsigned maxlen) 1628 { 1629 int sz = 0; 1630 unsigned long flags; 1631 struct multipath *m = ti->private; 1632 struct priority_group *pg; 1633 struct pgpath *p; 1634 unsigned pg_num; 1635 char state; 1636 1637 spin_lock_irqsave(&m->lock, flags); 1638 1639 /* Features */ 1640 if (type == STATUSTYPE_INFO) 1641 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1642 atomic_read(&m->pg_init_count)); 1643 else { 1644 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1645 (m->pg_init_retries > 0) * 2 + 1646 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1647 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1648 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1649 1650 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1651 DMEMIT("queue_if_no_path "); 1652 if (m->pg_init_retries) 1653 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1654 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1655 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1656 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1657 DMEMIT("retain_attached_hw_handler "); 1658 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1659 switch(m->queue_mode) { 1660 case DM_TYPE_BIO_BASED: 1661 DMEMIT("queue_mode bio "); 1662 break; 1663 case DM_TYPE_MQ_REQUEST_BASED: 1664 DMEMIT("queue_mode mq "); 1665 break; 1666 default: 1667 WARN_ON_ONCE(true); 1668 break; 1669 } 1670 } 1671 } 1672 1673 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1674 DMEMIT("0 "); 1675 else 1676 DMEMIT("1 %s ", m->hw_handler_name); 1677 1678 DMEMIT("%u ", m->nr_priority_groups); 1679 1680 if (m->next_pg) 1681 pg_num = m->next_pg->pg_num; 1682 else if (m->current_pg) 1683 pg_num = m->current_pg->pg_num; 1684 else 1685 pg_num = (m->nr_priority_groups ? 1 : 0); 1686 1687 DMEMIT("%u ", pg_num); 1688 1689 switch (type) { 1690 case STATUSTYPE_INFO: 1691 list_for_each_entry(pg, &m->priority_groups, list) { 1692 if (pg->bypassed) 1693 state = 'D'; /* Disabled */ 1694 else if (pg == m->current_pg) 1695 state = 'A'; /* Currently Active */ 1696 else 1697 state = 'E'; /* Enabled */ 1698 1699 DMEMIT("%c ", state); 1700 1701 if (pg->ps.type->status) 1702 sz += pg->ps.type->status(&pg->ps, NULL, type, 1703 result + sz, 1704 maxlen - sz); 1705 else 1706 DMEMIT("0 "); 1707 1708 DMEMIT("%u %u ", pg->nr_pgpaths, 1709 pg->ps.type->info_args); 1710 1711 list_for_each_entry(p, &pg->pgpaths, list) { 1712 DMEMIT("%s %s %u ", p->path.dev->name, 1713 p->is_active ? "A" : "F", 1714 p->fail_count); 1715 if (pg->ps.type->status) 1716 sz += pg->ps.type->status(&pg->ps, 1717 &p->path, type, result + sz, 1718 maxlen - sz); 1719 } 1720 } 1721 break; 1722 1723 case STATUSTYPE_TABLE: 1724 list_for_each_entry(pg, &m->priority_groups, list) { 1725 DMEMIT("%s ", pg->ps.type->name); 1726 1727 if (pg->ps.type->status) 1728 sz += pg->ps.type->status(&pg->ps, NULL, type, 1729 result + sz, 1730 maxlen - sz); 1731 else 1732 DMEMIT("0 "); 1733 1734 DMEMIT("%u %u ", pg->nr_pgpaths, 1735 pg->ps.type->table_args); 1736 1737 list_for_each_entry(p, &pg->pgpaths, list) { 1738 DMEMIT("%s ", p->path.dev->name); 1739 if (pg->ps.type->status) 1740 sz += pg->ps.type->status(&pg->ps, 1741 &p->path, type, result + sz, 1742 maxlen - sz); 1743 } 1744 } 1745 break; 1746 } 1747 1748 spin_unlock_irqrestore(&m->lock, flags); 1749 } 1750 1751 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) 1752 { 1753 int r = -EINVAL; 1754 struct dm_dev *dev; 1755 struct multipath *m = ti->private; 1756 action_fn action; 1757 1758 mutex_lock(&m->work_mutex); 1759 1760 if (dm_suspended(ti)) { 1761 r = -EBUSY; 1762 goto out; 1763 } 1764 1765 if (argc == 1) { 1766 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1767 r = queue_if_no_path(m, true, false); 1768 goto out; 1769 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1770 r = queue_if_no_path(m, false, false); 1771 goto out; 1772 } 1773 } 1774 1775 if (argc != 2) { 1776 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1777 goto out; 1778 } 1779 1780 if (!strcasecmp(argv[0], "disable_group")) { 1781 r = bypass_pg_num(m, argv[1], true); 1782 goto out; 1783 } else if (!strcasecmp(argv[0], "enable_group")) { 1784 r = bypass_pg_num(m, argv[1], false); 1785 goto out; 1786 } else if (!strcasecmp(argv[0], "switch_group")) { 1787 r = switch_pg_num(m, argv[1]); 1788 goto out; 1789 } else if (!strcasecmp(argv[0], "reinstate_path")) 1790 action = reinstate_path; 1791 else if (!strcasecmp(argv[0], "fail_path")) 1792 action = fail_path; 1793 else { 1794 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1795 goto out; 1796 } 1797 1798 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1799 if (r) { 1800 DMWARN("message: error getting device %s", 1801 argv[1]); 1802 goto out; 1803 } 1804 1805 r = action_dev(m, dev, action); 1806 1807 dm_put_device(ti, dev); 1808 1809 out: 1810 mutex_unlock(&m->work_mutex); 1811 return r; 1812 } 1813 1814 static int multipath_prepare_ioctl(struct dm_target *ti, 1815 struct block_device **bdev, fmode_t *mode) 1816 { 1817 struct multipath *m = ti->private; 1818 struct pgpath *current_pgpath; 1819 int r; 1820 1821 current_pgpath = lockless_dereference(m->current_pgpath); 1822 if (!current_pgpath) 1823 current_pgpath = choose_pgpath(m, 0); 1824 1825 if (current_pgpath) { 1826 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) { 1827 *bdev = current_pgpath->path.dev->bdev; 1828 *mode = current_pgpath->path.dev->mode; 1829 r = 0; 1830 } else { 1831 /* pg_init has not started or completed */ 1832 r = -ENOTCONN; 1833 } 1834 } else { 1835 /* No path is available */ 1836 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1837 r = -ENOTCONN; 1838 else 1839 r = -EIO; 1840 } 1841 1842 if (r == -ENOTCONN) { 1843 if (!lockless_dereference(m->current_pg)) { 1844 /* Path status changed, redo selection */ 1845 (void) choose_pgpath(m, 0); 1846 } 1847 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1848 pg_init_all_paths(m); 1849 dm_table_run_md_queue_async(m->ti->table); 1850 process_queued_io_list(m); 1851 } 1852 1853 /* 1854 * Only pass ioctls through if the device sizes match exactly. 1855 */ 1856 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1857 return 1; 1858 return r; 1859 } 1860 1861 static int multipath_iterate_devices(struct dm_target *ti, 1862 iterate_devices_callout_fn fn, void *data) 1863 { 1864 struct multipath *m = ti->private; 1865 struct priority_group *pg; 1866 struct pgpath *p; 1867 int ret = 0; 1868 1869 list_for_each_entry(pg, &m->priority_groups, list) { 1870 list_for_each_entry(p, &pg->pgpaths, list) { 1871 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1872 if (ret) 1873 goto out; 1874 } 1875 } 1876 1877 out: 1878 return ret; 1879 } 1880 1881 static int pgpath_busy(struct pgpath *pgpath) 1882 { 1883 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1884 1885 return blk_lld_busy(q); 1886 } 1887 1888 /* 1889 * We return "busy", only when we can map I/Os but underlying devices 1890 * are busy (so even if we map I/Os now, the I/Os will wait on 1891 * the underlying queue). 1892 * In other words, if we want to kill I/Os or queue them inside us 1893 * due to map unavailability, we don't return "busy". Otherwise, 1894 * dm core won't give us the I/Os and we can't do what we want. 1895 */ 1896 static int multipath_busy(struct dm_target *ti) 1897 { 1898 bool busy = false, has_active = false; 1899 struct multipath *m = ti->private; 1900 struct priority_group *pg, *next_pg; 1901 struct pgpath *pgpath; 1902 1903 /* pg_init in progress */ 1904 if (atomic_read(&m->pg_init_in_progress)) 1905 return true; 1906 1907 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 1908 if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1909 return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED); 1910 1911 /* Guess which priority_group will be used at next mapping time */ 1912 pg = lockless_dereference(m->current_pg); 1913 next_pg = lockless_dereference(m->next_pg); 1914 if (unlikely(!lockless_dereference(m->current_pgpath) && next_pg)) 1915 pg = next_pg; 1916 1917 if (!pg) { 1918 /* 1919 * We don't know which pg will be used at next mapping time. 1920 * We don't call choose_pgpath() here to avoid to trigger 1921 * pg_init just by busy checking. 1922 * So we don't know whether underlying devices we will be using 1923 * at next mapping time are busy or not. Just try mapping. 1924 */ 1925 return busy; 1926 } 1927 1928 /* 1929 * If there is one non-busy active path at least, the path selector 1930 * will be able to select it. So we consider such a pg as not busy. 1931 */ 1932 busy = true; 1933 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1934 if (pgpath->is_active) { 1935 has_active = true; 1936 if (!pgpath_busy(pgpath)) { 1937 busy = false; 1938 break; 1939 } 1940 } 1941 } 1942 1943 if (!has_active) { 1944 /* 1945 * No active path in this pg, so this pg won't be used and 1946 * the current_pg will be changed at next mapping time. 1947 * We need to try mapping to determine it. 1948 */ 1949 busy = false; 1950 } 1951 1952 return busy; 1953 } 1954 1955 /*----------------------------------------------------------------- 1956 * Module setup 1957 *---------------------------------------------------------------*/ 1958 static struct target_type multipath_target = { 1959 .name = "multipath", 1960 .version = {1, 12, 0}, 1961 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE, 1962 .module = THIS_MODULE, 1963 .ctr = multipath_ctr, 1964 .dtr = multipath_dtr, 1965 .clone_and_map_rq = multipath_clone_and_map, 1966 .release_clone_rq = multipath_release_clone, 1967 .rq_end_io = multipath_end_io, 1968 .map = multipath_map_bio, 1969 .end_io = multipath_end_io_bio, 1970 .presuspend = multipath_presuspend, 1971 .postsuspend = multipath_postsuspend, 1972 .resume = multipath_resume, 1973 .status = multipath_status, 1974 .message = multipath_message, 1975 .prepare_ioctl = multipath_prepare_ioctl, 1976 .iterate_devices = multipath_iterate_devices, 1977 .busy = multipath_busy, 1978 }; 1979 1980 static int __init dm_multipath_init(void) 1981 { 1982 int r; 1983 1984 r = dm_register_target(&multipath_target); 1985 if (r < 0) { 1986 DMERR("request-based register failed %d", r); 1987 r = -EINVAL; 1988 goto bad_register_target; 1989 } 1990 1991 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 1992 if (!kmultipathd) { 1993 DMERR("failed to create workqueue kmpathd"); 1994 r = -ENOMEM; 1995 goto bad_alloc_kmultipathd; 1996 } 1997 1998 /* 1999 * A separate workqueue is used to handle the device handlers 2000 * to avoid overloading existing workqueue. Overloading the 2001 * old workqueue would also create a bottleneck in the 2002 * path of the storage hardware device activation. 2003 */ 2004 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 2005 WQ_MEM_RECLAIM); 2006 if (!kmpath_handlerd) { 2007 DMERR("failed to create workqueue kmpath_handlerd"); 2008 r = -ENOMEM; 2009 goto bad_alloc_kmpath_handlerd; 2010 } 2011 2012 return 0; 2013 2014 bad_alloc_kmpath_handlerd: 2015 destroy_workqueue(kmultipathd); 2016 bad_alloc_kmultipathd: 2017 dm_unregister_target(&multipath_target); 2018 bad_register_target: 2019 return r; 2020 } 2021 2022 static void __exit dm_multipath_exit(void) 2023 { 2024 destroy_workqueue(kmpath_handlerd); 2025 destroy_workqueue(kmultipathd); 2026 2027 dm_unregister_target(&multipath_target); 2028 } 2029 2030 module_init(dm_multipath_init); 2031 module_exit(dm_multipath_exit); 2032 2033 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2034 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2035 MODULE_LICENSE("GPL"); 2036