xref: /openbmc/linux/drivers/md/dm-mpath.c (revision 6df400ab64c68fc4072a13019fc20fd7e3d51303)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-path-selector.h"
11 #include "dm-uevent.h"
12 
13 #include <linux/ctype.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/pagemap.h>
18 #include <linux/slab.h>
19 #include <linux/time.h>
20 #include <linux/workqueue.h>
21 #include <scsi/scsi_dh.h>
22 #include <asm/atomic.h>
23 
24 #define DM_MSG_PREFIX "multipath"
25 #define MESG_STR(x) x, sizeof(x)
26 
27 /* Path properties */
28 struct pgpath {
29 	struct list_head list;
30 
31 	struct priority_group *pg;	/* Owning PG */
32 	unsigned is_active;		/* Path status */
33 	unsigned fail_count;		/* Cumulative failure count */
34 
35 	struct dm_path path;
36 	struct work_struct deactivate_path;
37 	struct work_struct activate_path;
38 };
39 
40 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
41 
42 /*
43  * Paths are grouped into Priority Groups and numbered from 1 upwards.
44  * Each has a path selector which controls which path gets used.
45  */
46 struct priority_group {
47 	struct list_head list;
48 
49 	struct multipath *m;		/* Owning multipath instance */
50 	struct path_selector ps;
51 
52 	unsigned pg_num;		/* Reference number */
53 	unsigned bypassed;		/* Temporarily bypass this PG? */
54 
55 	unsigned nr_pgpaths;		/* Number of paths in PG */
56 	struct list_head pgpaths;
57 };
58 
59 /* Multipath context */
60 struct multipath {
61 	struct list_head list;
62 	struct dm_target *ti;
63 
64 	spinlock_t lock;
65 
66 	const char *hw_handler_name;
67 	char *hw_handler_params;
68 	unsigned nr_priority_groups;
69 	struct list_head priority_groups;
70 	unsigned pg_init_required;	/* pg_init needs calling? */
71 	unsigned pg_init_in_progress;	/* Only one pg_init allowed at once */
72 
73 	unsigned nr_valid_paths;	/* Total number of usable paths */
74 	struct pgpath *current_pgpath;
75 	struct priority_group *current_pg;
76 	struct priority_group *next_pg;	/* Switch to this PG if set */
77 	unsigned repeat_count;		/* I/Os left before calling PS again */
78 
79 	unsigned queue_io;		/* Must we queue all I/O? */
80 	unsigned queue_if_no_path;	/* Queue I/O if last path fails? */
81 	unsigned saved_queue_if_no_path;/* Saved state during suspension */
82 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
83 	unsigned pg_init_count;		/* Number of times pg_init called */
84 
85 	struct work_struct process_queued_ios;
86 	struct list_head queued_ios;
87 	unsigned queue_size;
88 
89 	struct work_struct trigger_event;
90 
91 	/*
92 	 * We must use a mempool of dm_mpath_io structs so that we
93 	 * can resubmit bios on error.
94 	 */
95 	mempool_t *mpio_pool;
96 };
97 
98 /*
99  * Context information attached to each bio we process.
100  */
101 struct dm_mpath_io {
102 	struct pgpath *pgpath;
103 	size_t nr_bytes;
104 };
105 
106 typedef int (*action_fn) (struct pgpath *pgpath);
107 
108 #define MIN_IOS 256	/* Mempool size */
109 
110 static struct kmem_cache *_mpio_cache;
111 
112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
113 static void process_queued_ios(struct work_struct *work);
114 static void trigger_event(struct work_struct *work);
115 static void activate_path(struct work_struct *work);
116 static void deactivate_path(struct work_struct *work);
117 
118 
119 /*-----------------------------------------------
120  * Allocation routines
121  *-----------------------------------------------*/
122 
123 static struct pgpath *alloc_pgpath(void)
124 {
125 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
126 
127 	if (pgpath) {
128 		pgpath->is_active = 1;
129 		INIT_WORK(&pgpath->deactivate_path, deactivate_path);
130 		INIT_WORK(&pgpath->activate_path, activate_path);
131 	}
132 
133 	return pgpath;
134 }
135 
136 static void free_pgpath(struct pgpath *pgpath)
137 {
138 	kfree(pgpath);
139 }
140 
141 static void deactivate_path(struct work_struct *work)
142 {
143 	struct pgpath *pgpath =
144 		container_of(work, struct pgpath, deactivate_path);
145 
146 	blk_abort_queue(pgpath->path.dev->bdev->bd_disk->queue);
147 }
148 
149 static struct priority_group *alloc_priority_group(void)
150 {
151 	struct priority_group *pg;
152 
153 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
154 
155 	if (pg)
156 		INIT_LIST_HEAD(&pg->pgpaths);
157 
158 	return pg;
159 }
160 
161 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
162 {
163 	struct pgpath *pgpath, *tmp;
164 	struct multipath *m = ti->private;
165 
166 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
167 		list_del(&pgpath->list);
168 		if (m->hw_handler_name)
169 			scsi_dh_detach(bdev_get_queue(pgpath->path.dev->bdev));
170 		dm_put_device(ti, pgpath->path.dev);
171 		free_pgpath(pgpath);
172 	}
173 }
174 
175 static void free_priority_group(struct priority_group *pg,
176 				struct dm_target *ti)
177 {
178 	struct path_selector *ps = &pg->ps;
179 
180 	if (ps->type) {
181 		ps->type->destroy(ps);
182 		dm_put_path_selector(ps->type);
183 	}
184 
185 	free_pgpaths(&pg->pgpaths, ti);
186 	kfree(pg);
187 }
188 
189 static struct multipath *alloc_multipath(struct dm_target *ti)
190 {
191 	struct multipath *m;
192 
193 	m = kzalloc(sizeof(*m), GFP_KERNEL);
194 	if (m) {
195 		INIT_LIST_HEAD(&m->priority_groups);
196 		INIT_LIST_HEAD(&m->queued_ios);
197 		spin_lock_init(&m->lock);
198 		m->queue_io = 1;
199 		INIT_WORK(&m->process_queued_ios, process_queued_ios);
200 		INIT_WORK(&m->trigger_event, trigger_event);
201 		m->mpio_pool = mempool_create_slab_pool(MIN_IOS, _mpio_cache);
202 		if (!m->mpio_pool) {
203 			kfree(m);
204 			return NULL;
205 		}
206 		m->ti = ti;
207 		ti->private = m;
208 	}
209 
210 	return m;
211 }
212 
213 static void free_multipath(struct multipath *m)
214 {
215 	struct priority_group *pg, *tmp;
216 
217 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
218 		list_del(&pg->list);
219 		free_priority_group(pg, m->ti);
220 	}
221 
222 	kfree(m->hw_handler_name);
223 	kfree(m->hw_handler_params);
224 	mempool_destroy(m->mpio_pool);
225 	kfree(m);
226 }
227 
228 
229 /*-----------------------------------------------
230  * Path selection
231  *-----------------------------------------------*/
232 
233 static void __switch_pg(struct multipath *m, struct pgpath *pgpath)
234 {
235 	m->current_pg = pgpath->pg;
236 
237 	/* Must we initialise the PG first, and queue I/O till it's ready? */
238 	if (m->hw_handler_name) {
239 		m->pg_init_required = 1;
240 		m->queue_io = 1;
241 	} else {
242 		m->pg_init_required = 0;
243 		m->queue_io = 0;
244 	}
245 
246 	m->pg_init_count = 0;
247 }
248 
249 static int __choose_path_in_pg(struct multipath *m, struct priority_group *pg,
250 			       size_t nr_bytes)
251 {
252 	struct dm_path *path;
253 
254 	path = pg->ps.type->select_path(&pg->ps, &m->repeat_count, nr_bytes);
255 	if (!path)
256 		return -ENXIO;
257 
258 	m->current_pgpath = path_to_pgpath(path);
259 
260 	if (m->current_pg != pg)
261 		__switch_pg(m, m->current_pgpath);
262 
263 	return 0;
264 }
265 
266 static void __choose_pgpath(struct multipath *m, size_t nr_bytes)
267 {
268 	struct priority_group *pg;
269 	unsigned bypassed = 1;
270 
271 	if (!m->nr_valid_paths)
272 		goto failed;
273 
274 	/* Were we instructed to switch PG? */
275 	if (m->next_pg) {
276 		pg = m->next_pg;
277 		m->next_pg = NULL;
278 		if (!__choose_path_in_pg(m, pg, nr_bytes))
279 			return;
280 	}
281 
282 	/* Don't change PG until it has no remaining paths */
283 	if (m->current_pg && !__choose_path_in_pg(m, m->current_pg, nr_bytes))
284 		return;
285 
286 	/*
287 	 * Loop through priority groups until we find a valid path.
288 	 * First time we skip PGs marked 'bypassed'.
289 	 * Second time we only try the ones we skipped.
290 	 */
291 	do {
292 		list_for_each_entry(pg, &m->priority_groups, list) {
293 			if (pg->bypassed == bypassed)
294 				continue;
295 			if (!__choose_path_in_pg(m, pg, nr_bytes))
296 				return;
297 		}
298 	} while (bypassed--);
299 
300 failed:
301 	m->current_pgpath = NULL;
302 	m->current_pg = NULL;
303 }
304 
305 /*
306  * Check whether bios must be queued in the device-mapper core rather
307  * than here in the target.
308  *
309  * m->lock must be held on entry.
310  *
311  * If m->queue_if_no_path and m->saved_queue_if_no_path hold the
312  * same value then we are not between multipath_presuspend()
313  * and multipath_resume() calls and we have no need to check
314  * for the DMF_NOFLUSH_SUSPENDING flag.
315  */
316 static int __must_push_back(struct multipath *m)
317 {
318 	return (m->queue_if_no_path != m->saved_queue_if_no_path &&
319 		dm_noflush_suspending(m->ti));
320 }
321 
322 static int map_io(struct multipath *m, struct request *clone,
323 		  struct dm_mpath_io *mpio, unsigned was_queued)
324 {
325 	int r = DM_MAPIO_REMAPPED;
326 	size_t nr_bytes = blk_rq_bytes(clone);
327 	unsigned long flags;
328 	struct pgpath *pgpath;
329 	struct block_device *bdev;
330 
331 	spin_lock_irqsave(&m->lock, flags);
332 
333 	/* Do we need to select a new pgpath? */
334 	if (!m->current_pgpath ||
335 	    (!m->queue_io && (m->repeat_count && --m->repeat_count == 0)))
336 		__choose_pgpath(m, nr_bytes);
337 
338 	pgpath = m->current_pgpath;
339 
340 	if (was_queued)
341 		m->queue_size--;
342 
343 	if ((pgpath && m->queue_io) ||
344 	    (!pgpath && m->queue_if_no_path)) {
345 		/* Queue for the daemon to resubmit */
346 		list_add_tail(&clone->queuelist, &m->queued_ios);
347 		m->queue_size++;
348 		if ((m->pg_init_required && !m->pg_init_in_progress) ||
349 		    !m->queue_io)
350 			queue_work(kmultipathd, &m->process_queued_ios);
351 		pgpath = NULL;
352 		r = DM_MAPIO_SUBMITTED;
353 	} else if (pgpath) {
354 		bdev = pgpath->path.dev->bdev;
355 		clone->q = bdev_get_queue(bdev);
356 		clone->rq_disk = bdev->bd_disk;
357 	} else if (__must_push_back(m))
358 		r = DM_MAPIO_REQUEUE;
359 	else
360 		r = -EIO;	/* Failed */
361 
362 	mpio->pgpath = pgpath;
363 	mpio->nr_bytes = nr_bytes;
364 
365 	if (r == DM_MAPIO_REMAPPED && pgpath->pg->ps.type->start_io)
366 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps, &pgpath->path,
367 					      nr_bytes);
368 
369 	spin_unlock_irqrestore(&m->lock, flags);
370 
371 	return r;
372 }
373 
374 /*
375  * If we run out of usable paths, should we queue I/O or error it?
376  */
377 static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path,
378 			    unsigned save_old_value)
379 {
380 	unsigned long flags;
381 
382 	spin_lock_irqsave(&m->lock, flags);
383 
384 	if (save_old_value)
385 		m->saved_queue_if_no_path = m->queue_if_no_path;
386 	else
387 		m->saved_queue_if_no_path = queue_if_no_path;
388 	m->queue_if_no_path = queue_if_no_path;
389 	if (!m->queue_if_no_path && m->queue_size)
390 		queue_work(kmultipathd, &m->process_queued_ios);
391 
392 	spin_unlock_irqrestore(&m->lock, flags);
393 
394 	return 0;
395 }
396 
397 /*-----------------------------------------------------------------
398  * The multipath daemon is responsible for resubmitting queued ios.
399  *---------------------------------------------------------------*/
400 
401 static void dispatch_queued_ios(struct multipath *m)
402 {
403 	int r;
404 	unsigned long flags;
405 	struct dm_mpath_io *mpio;
406 	union map_info *info;
407 	struct request *clone, *n;
408 	LIST_HEAD(cl);
409 
410 	spin_lock_irqsave(&m->lock, flags);
411 	list_splice_init(&m->queued_ios, &cl);
412 	spin_unlock_irqrestore(&m->lock, flags);
413 
414 	list_for_each_entry_safe(clone, n, &cl, queuelist) {
415 		list_del_init(&clone->queuelist);
416 
417 		info = dm_get_rq_mapinfo(clone);
418 		mpio = info->ptr;
419 
420 		r = map_io(m, clone, mpio, 1);
421 		if (r < 0) {
422 			mempool_free(mpio, m->mpio_pool);
423 			dm_kill_unmapped_request(clone, r);
424 		} else if (r == DM_MAPIO_REMAPPED)
425 			dm_dispatch_request(clone);
426 		else if (r == DM_MAPIO_REQUEUE) {
427 			mempool_free(mpio, m->mpio_pool);
428 			dm_requeue_unmapped_request(clone);
429 		}
430 	}
431 }
432 
433 static void process_queued_ios(struct work_struct *work)
434 {
435 	struct multipath *m =
436 		container_of(work, struct multipath, process_queued_ios);
437 	struct pgpath *pgpath = NULL, *tmp;
438 	unsigned must_queue = 1;
439 	unsigned long flags;
440 
441 	spin_lock_irqsave(&m->lock, flags);
442 
443 	if (!m->queue_size)
444 		goto out;
445 
446 	if (!m->current_pgpath)
447 		__choose_pgpath(m, 0);
448 
449 	pgpath = m->current_pgpath;
450 
451 	if ((pgpath && !m->queue_io) ||
452 	    (!pgpath && !m->queue_if_no_path))
453 		must_queue = 0;
454 
455 	if (m->pg_init_required && !m->pg_init_in_progress && pgpath) {
456 		m->pg_init_count++;
457 		m->pg_init_required = 0;
458 		list_for_each_entry(tmp, &pgpath->pg->pgpaths, list) {
459 			if (queue_work(kmpath_handlerd, &tmp->activate_path))
460 				m->pg_init_in_progress++;
461 		}
462 	}
463 out:
464 	spin_unlock_irqrestore(&m->lock, flags);
465 	if (!must_queue)
466 		dispatch_queued_ios(m);
467 }
468 
469 /*
470  * An event is triggered whenever a path is taken out of use.
471  * Includes path failure and PG bypass.
472  */
473 static void trigger_event(struct work_struct *work)
474 {
475 	struct multipath *m =
476 		container_of(work, struct multipath, trigger_event);
477 
478 	dm_table_event(m->ti->table);
479 }
480 
481 /*-----------------------------------------------------------------
482  * Constructor/argument parsing:
483  * <#multipath feature args> [<arg>]*
484  * <#hw_handler args> [hw_handler [<arg>]*]
485  * <#priority groups>
486  * <initial priority group>
487  *     [<selector> <#selector args> [<arg>]*
488  *      <#paths> <#per-path selector args>
489  *         [<path> [<arg>]* ]+ ]+
490  *---------------------------------------------------------------*/
491 struct param {
492 	unsigned min;
493 	unsigned max;
494 	char *error;
495 };
496 
497 static int read_param(struct param *param, char *str, unsigned *v, char **error)
498 {
499 	if (!str ||
500 	    (sscanf(str, "%u", v) != 1) ||
501 	    (*v < param->min) ||
502 	    (*v > param->max)) {
503 		*error = param->error;
504 		return -EINVAL;
505 	}
506 
507 	return 0;
508 }
509 
510 struct arg_set {
511 	unsigned argc;
512 	char **argv;
513 };
514 
515 static char *shift(struct arg_set *as)
516 {
517 	char *r;
518 
519 	if (as->argc) {
520 		as->argc--;
521 		r = *as->argv;
522 		as->argv++;
523 		return r;
524 	}
525 
526 	return NULL;
527 }
528 
529 static void consume(struct arg_set *as, unsigned n)
530 {
531 	BUG_ON (as->argc < n);
532 	as->argc -= n;
533 	as->argv += n;
534 }
535 
536 static int parse_path_selector(struct arg_set *as, struct priority_group *pg,
537 			       struct dm_target *ti)
538 {
539 	int r;
540 	struct path_selector_type *pst;
541 	unsigned ps_argc;
542 
543 	static struct param _params[] = {
544 		{0, 1024, "invalid number of path selector args"},
545 	};
546 
547 	pst = dm_get_path_selector(shift(as));
548 	if (!pst) {
549 		ti->error = "unknown path selector type";
550 		return -EINVAL;
551 	}
552 
553 	r = read_param(_params, shift(as), &ps_argc, &ti->error);
554 	if (r) {
555 		dm_put_path_selector(pst);
556 		return -EINVAL;
557 	}
558 
559 	if (ps_argc > as->argc) {
560 		dm_put_path_selector(pst);
561 		ti->error = "not enough arguments for path selector";
562 		return -EINVAL;
563 	}
564 
565 	r = pst->create(&pg->ps, ps_argc, as->argv);
566 	if (r) {
567 		dm_put_path_selector(pst);
568 		ti->error = "path selector constructor failed";
569 		return r;
570 	}
571 
572 	pg->ps.type = pst;
573 	consume(as, ps_argc);
574 
575 	return 0;
576 }
577 
578 static struct pgpath *parse_path(struct arg_set *as, struct path_selector *ps,
579 			       struct dm_target *ti)
580 {
581 	int r;
582 	struct pgpath *p;
583 	struct multipath *m = ti->private;
584 
585 	/* we need at least a path arg */
586 	if (as->argc < 1) {
587 		ti->error = "no device given";
588 		return ERR_PTR(-EINVAL);
589 	}
590 
591 	p = alloc_pgpath();
592 	if (!p)
593 		return ERR_PTR(-ENOMEM);
594 
595 	r = dm_get_device(ti, shift(as), ti->begin, ti->len,
596 			  dm_table_get_mode(ti->table), &p->path.dev);
597 	if (r) {
598 		ti->error = "error getting device";
599 		goto bad;
600 	}
601 
602 	if (m->hw_handler_name) {
603 		struct request_queue *q = bdev_get_queue(p->path.dev->bdev);
604 
605 		r = scsi_dh_attach(q, m->hw_handler_name);
606 		if (r == -EBUSY) {
607 			/*
608 			 * Already attached to different hw_handler,
609 			 * try to reattach with correct one.
610 			 */
611 			scsi_dh_detach(q);
612 			r = scsi_dh_attach(q, m->hw_handler_name);
613 		}
614 
615 		if (r < 0) {
616 			ti->error = "error attaching hardware handler";
617 			dm_put_device(ti, p->path.dev);
618 			goto bad;
619 		}
620 
621 		if (m->hw_handler_params) {
622 			r = scsi_dh_set_params(q, m->hw_handler_params);
623 			if (r < 0) {
624 				ti->error = "unable to set hardware "
625 							"handler parameters";
626 				scsi_dh_detach(q);
627 				dm_put_device(ti, p->path.dev);
628 				goto bad;
629 			}
630 		}
631 	}
632 
633 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
634 	if (r) {
635 		dm_put_device(ti, p->path.dev);
636 		goto bad;
637 	}
638 
639 	return p;
640 
641  bad:
642 	free_pgpath(p);
643 	return ERR_PTR(r);
644 }
645 
646 static struct priority_group *parse_priority_group(struct arg_set *as,
647 						   struct multipath *m)
648 {
649 	static struct param _params[] = {
650 		{1, 1024, "invalid number of paths"},
651 		{0, 1024, "invalid number of selector args"}
652 	};
653 
654 	int r;
655 	unsigned i, nr_selector_args, nr_params;
656 	struct priority_group *pg;
657 	struct dm_target *ti = m->ti;
658 
659 	if (as->argc < 2) {
660 		as->argc = 0;
661 		ti->error = "not enough priority group arguments";
662 		return ERR_PTR(-EINVAL);
663 	}
664 
665 	pg = alloc_priority_group();
666 	if (!pg) {
667 		ti->error = "couldn't allocate priority group";
668 		return ERR_PTR(-ENOMEM);
669 	}
670 	pg->m = m;
671 
672 	r = parse_path_selector(as, pg, ti);
673 	if (r)
674 		goto bad;
675 
676 	/*
677 	 * read the paths
678 	 */
679 	r = read_param(_params, shift(as), &pg->nr_pgpaths, &ti->error);
680 	if (r)
681 		goto bad;
682 
683 	r = read_param(_params + 1, shift(as), &nr_selector_args, &ti->error);
684 	if (r)
685 		goto bad;
686 
687 	nr_params = 1 + nr_selector_args;
688 	for (i = 0; i < pg->nr_pgpaths; i++) {
689 		struct pgpath *pgpath;
690 		struct arg_set path_args;
691 
692 		if (as->argc < nr_params) {
693 			ti->error = "not enough path parameters";
694 			goto bad;
695 		}
696 
697 		path_args.argc = nr_params;
698 		path_args.argv = as->argv;
699 
700 		pgpath = parse_path(&path_args, &pg->ps, ti);
701 		if (IS_ERR(pgpath)) {
702 			r = PTR_ERR(pgpath);
703 			goto bad;
704 		}
705 
706 		pgpath->pg = pg;
707 		list_add_tail(&pgpath->list, &pg->pgpaths);
708 		consume(as, nr_params);
709 	}
710 
711 	return pg;
712 
713  bad:
714 	free_priority_group(pg, ti);
715 	return ERR_PTR(r);
716 }
717 
718 static int parse_hw_handler(struct arg_set *as, struct multipath *m)
719 {
720 	unsigned hw_argc;
721 	int ret;
722 	struct dm_target *ti = m->ti;
723 
724 	static struct param _params[] = {
725 		{0, 1024, "invalid number of hardware handler args"},
726 	};
727 
728 	if (read_param(_params, shift(as), &hw_argc, &ti->error))
729 		return -EINVAL;
730 
731 	if (!hw_argc)
732 		return 0;
733 
734 	if (hw_argc > as->argc) {
735 		ti->error = "not enough arguments for hardware handler";
736 		return -EINVAL;
737 	}
738 
739 	m->hw_handler_name = kstrdup(shift(as), GFP_KERNEL);
740 	request_module("scsi_dh_%s", m->hw_handler_name);
741 	if (scsi_dh_handler_exist(m->hw_handler_name) == 0) {
742 		ti->error = "unknown hardware handler type";
743 		ret = -EINVAL;
744 		goto fail;
745 	}
746 
747 	if (hw_argc > 1) {
748 		char *p;
749 		int i, j, len = 4;
750 
751 		for (i = 0; i <= hw_argc - 2; i++)
752 			len += strlen(as->argv[i]) + 1;
753 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
754 		if (!p) {
755 			ti->error = "memory allocation failed";
756 			ret = -ENOMEM;
757 			goto fail;
758 		}
759 		j = sprintf(p, "%d", hw_argc - 1);
760 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
761 			j = sprintf(p, "%s", as->argv[i]);
762 	}
763 	consume(as, hw_argc - 1);
764 
765 	return 0;
766 fail:
767 	kfree(m->hw_handler_name);
768 	m->hw_handler_name = NULL;
769 	return ret;
770 }
771 
772 static int parse_features(struct arg_set *as, struct multipath *m)
773 {
774 	int r;
775 	unsigned argc;
776 	struct dm_target *ti = m->ti;
777 	const char *param_name;
778 
779 	static struct param _params[] = {
780 		{0, 3, "invalid number of feature args"},
781 		{1, 50, "pg_init_retries must be between 1 and 50"},
782 	};
783 
784 	r = read_param(_params, shift(as), &argc, &ti->error);
785 	if (r)
786 		return -EINVAL;
787 
788 	if (!argc)
789 		return 0;
790 
791 	do {
792 		param_name = shift(as);
793 		argc--;
794 
795 		if (!strnicmp(param_name, MESG_STR("queue_if_no_path"))) {
796 			r = queue_if_no_path(m, 1, 0);
797 			continue;
798 		}
799 
800 		if (!strnicmp(param_name, MESG_STR("pg_init_retries")) &&
801 		    (argc >= 1)) {
802 			r = read_param(_params + 1, shift(as),
803 				       &m->pg_init_retries, &ti->error);
804 			argc--;
805 			continue;
806 		}
807 
808 		ti->error = "Unrecognised multipath feature request";
809 		r = -EINVAL;
810 	} while (argc && !r);
811 
812 	return r;
813 }
814 
815 static int multipath_ctr(struct dm_target *ti, unsigned int argc,
816 			 char **argv)
817 {
818 	/* target parameters */
819 	static struct param _params[] = {
820 		{1, 1024, "invalid number of priority groups"},
821 		{1, 1024, "invalid initial priority group number"},
822 	};
823 
824 	int r;
825 	struct multipath *m;
826 	struct arg_set as;
827 	unsigned pg_count = 0;
828 	unsigned next_pg_num;
829 
830 	as.argc = argc;
831 	as.argv = argv;
832 
833 	m = alloc_multipath(ti);
834 	if (!m) {
835 		ti->error = "can't allocate multipath";
836 		return -EINVAL;
837 	}
838 
839 	r = parse_features(&as, m);
840 	if (r)
841 		goto bad;
842 
843 	r = parse_hw_handler(&as, m);
844 	if (r)
845 		goto bad;
846 
847 	r = read_param(_params, shift(&as), &m->nr_priority_groups, &ti->error);
848 	if (r)
849 		goto bad;
850 
851 	r = read_param(_params + 1, shift(&as), &next_pg_num, &ti->error);
852 	if (r)
853 		goto bad;
854 
855 	/* parse the priority groups */
856 	while (as.argc) {
857 		struct priority_group *pg;
858 
859 		pg = parse_priority_group(&as, m);
860 		if (IS_ERR(pg)) {
861 			r = PTR_ERR(pg);
862 			goto bad;
863 		}
864 
865 		m->nr_valid_paths += pg->nr_pgpaths;
866 		list_add_tail(&pg->list, &m->priority_groups);
867 		pg_count++;
868 		pg->pg_num = pg_count;
869 		if (!--next_pg_num)
870 			m->next_pg = pg;
871 	}
872 
873 	if (pg_count != m->nr_priority_groups) {
874 		ti->error = "priority group count mismatch";
875 		r = -EINVAL;
876 		goto bad;
877 	}
878 
879 	ti->num_flush_requests = 1;
880 
881 	return 0;
882 
883  bad:
884 	free_multipath(m);
885 	return r;
886 }
887 
888 static void flush_multipath_work(void)
889 {
890 	flush_workqueue(kmpath_handlerd);
891 	flush_workqueue(kmultipathd);
892 	flush_scheduled_work();
893 }
894 
895 static void multipath_dtr(struct dm_target *ti)
896 {
897 	struct multipath *m = ti->private;
898 
899 	flush_multipath_work();
900 	free_multipath(m);
901 }
902 
903 /*
904  * Map cloned requests
905  */
906 static int multipath_map(struct dm_target *ti, struct request *clone,
907 			 union map_info *map_context)
908 {
909 	int r;
910 	struct dm_mpath_io *mpio;
911 	struct multipath *m = (struct multipath *) ti->private;
912 
913 	mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC);
914 	if (!mpio)
915 		/* ENOMEM, requeue */
916 		return DM_MAPIO_REQUEUE;
917 	memset(mpio, 0, sizeof(*mpio));
918 
919 	map_context->ptr = mpio;
920 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
921 	r = map_io(m, clone, mpio, 0);
922 	if (r < 0 || r == DM_MAPIO_REQUEUE)
923 		mempool_free(mpio, m->mpio_pool);
924 
925 	return r;
926 }
927 
928 /*
929  * Take a path out of use.
930  */
931 static int fail_path(struct pgpath *pgpath)
932 {
933 	unsigned long flags;
934 	struct multipath *m = pgpath->pg->m;
935 
936 	spin_lock_irqsave(&m->lock, flags);
937 
938 	if (!pgpath->is_active)
939 		goto out;
940 
941 	DMWARN("Failing path %s.", pgpath->path.dev->name);
942 
943 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
944 	pgpath->is_active = 0;
945 	pgpath->fail_count++;
946 
947 	m->nr_valid_paths--;
948 
949 	if (pgpath == m->current_pgpath)
950 		m->current_pgpath = NULL;
951 
952 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
953 		      pgpath->path.dev->name, m->nr_valid_paths);
954 
955 	schedule_work(&m->trigger_event);
956 	queue_work(kmultipathd, &pgpath->deactivate_path);
957 
958 out:
959 	spin_unlock_irqrestore(&m->lock, flags);
960 
961 	return 0;
962 }
963 
964 /*
965  * Reinstate a previously-failed path
966  */
967 static int reinstate_path(struct pgpath *pgpath)
968 {
969 	int r = 0;
970 	unsigned long flags;
971 	struct multipath *m = pgpath->pg->m;
972 
973 	spin_lock_irqsave(&m->lock, flags);
974 
975 	if (pgpath->is_active)
976 		goto out;
977 
978 	if (!pgpath->pg->ps.type->reinstate_path) {
979 		DMWARN("Reinstate path not supported by path selector %s",
980 		       pgpath->pg->ps.type->name);
981 		r = -EINVAL;
982 		goto out;
983 	}
984 
985 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
986 	if (r)
987 		goto out;
988 
989 	pgpath->is_active = 1;
990 
991 	if (!m->nr_valid_paths++ && m->queue_size) {
992 		m->current_pgpath = NULL;
993 		queue_work(kmultipathd, &m->process_queued_ios);
994 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
995 		if (queue_work(kmpath_handlerd, &pgpath->activate_path))
996 			m->pg_init_in_progress++;
997 	}
998 
999 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1000 		      pgpath->path.dev->name, m->nr_valid_paths);
1001 
1002 	schedule_work(&m->trigger_event);
1003 
1004 out:
1005 	spin_unlock_irqrestore(&m->lock, flags);
1006 
1007 	return r;
1008 }
1009 
1010 /*
1011  * Fail or reinstate all paths that match the provided struct dm_dev.
1012  */
1013 static int action_dev(struct multipath *m, struct dm_dev *dev,
1014 		      action_fn action)
1015 {
1016 	int r = 0;
1017 	struct pgpath *pgpath;
1018 	struct priority_group *pg;
1019 
1020 	list_for_each_entry(pg, &m->priority_groups, list) {
1021 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1022 			if (pgpath->path.dev == dev)
1023 				r = action(pgpath);
1024 		}
1025 	}
1026 
1027 	return r;
1028 }
1029 
1030 /*
1031  * Temporarily try to avoid having to use the specified PG
1032  */
1033 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1034 		      int bypassed)
1035 {
1036 	unsigned long flags;
1037 
1038 	spin_lock_irqsave(&m->lock, flags);
1039 
1040 	pg->bypassed = bypassed;
1041 	m->current_pgpath = NULL;
1042 	m->current_pg = NULL;
1043 
1044 	spin_unlock_irqrestore(&m->lock, flags);
1045 
1046 	schedule_work(&m->trigger_event);
1047 }
1048 
1049 /*
1050  * Switch to using the specified PG from the next I/O that gets mapped
1051  */
1052 static int switch_pg_num(struct multipath *m, const char *pgstr)
1053 {
1054 	struct priority_group *pg;
1055 	unsigned pgnum;
1056 	unsigned long flags;
1057 
1058 	if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum ||
1059 	    (pgnum > m->nr_priority_groups)) {
1060 		DMWARN("invalid PG number supplied to switch_pg_num");
1061 		return -EINVAL;
1062 	}
1063 
1064 	spin_lock_irqsave(&m->lock, flags);
1065 	list_for_each_entry(pg, &m->priority_groups, list) {
1066 		pg->bypassed = 0;
1067 		if (--pgnum)
1068 			continue;
1069 
1070 		m->current_pgpath = NULL;
1071 		m->current_pg = NULL;
1072 		m->next_pg = pg;
1073 	}
1074 	spin_unlock_irqrestore(&m->lock, flags);
1075 
1076 	schedule_work(&m->trigger_event);
1077 	return 0;
1078 }
1079 
1080 /*
1081  * Set/clear bypassed status of a PG.
1082  * PGs are numbered upwards from 1 in the order they were declared.
1083  */
1084 static int bypass_pg_num(struct multipath *m, const char *pgstr, int bypassed)
1085 {
1086 	struct priority_group *pg;
1087 	unsigned pgnum;
1088 
1089 	if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum ||
1090 	    (pgnum > m->nr_priority_groups)) {
1091 		DMWARN("invalid PG number supplied to bypass_pg");
1092 		return -EINVAL;
1093 	}
1094 
1095 	list_for_each_entry(pg, &m->priority_groups, list) {
1096 		if (!--pgnum)
1097 			break;
1098 	}
1099 
1100 	bypass_pg(m, pg, bypassed);
1101 	return 0;
1102 }
1103 
1104 /*
1105  * Should we retry pg_init immediately?
1106  */
1107 static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1108 {
1109 	unsigned long flags;
1110 	int limit_reached = 0;
1111 
1112 	spin_lock_irqsave(&m->lock, flags);
1113 
1114 	if (m->pg_init_count <= m->pg_init_retries)
1115 		m->pg_init_required = 1;
1116 	else
1117 		limit_reached = 1;
1118 
1119 	spin_unlock_irqrestore(&m->lock, flags);
1120 
1121 	return limit_reached;
1122 }
1123 
1124 static void pg_init_done(void *data, int errors)
1125 {
1126 	struct dm_path *path = data;
1127 	struct pgpath *pgpath = path_to_pgpath(path);
1128 	struct priority_group *pg = pgpath->pg;
1129 	struct multipath *m = pg->m;
1130 	unsigned long flags;
1131 
1132 	/* device or driver problems */
1133 	switch (errors) {
1134 	case SCSI_DH_OK:
1135 		break;
1136 	case SCSI_DH_NOSYS:
1137 		if (!m->hw_handler_name) {
1138 			errors = 0;
1139 			break;
1140 		}
1141 		DMERR("Cannot failover device because scsi_dh_%s was not "
1142 		      "loaded.", m->hw_handler_name);
1143 		/*
1144 		 * Fail path for now, so we do not ping pong
1145 		 */
1146 		fail_path(pgpath);
1147 		break;
1148 	case SCSI_DH_DEV_TEMP_BUSY:
1149 		/*
1150 		 * Probably doing something like FW upgrade on the
1151 		 * controller so try the other pg.
1152 		 */
1153 		bypass_pg(m, pg, 1);
1154 		break;
1155 	/* TODO: For SCSI_DH_RETRY we should wait a couple seconds */
1156 	case SCSI_DH_RETRY:
1157 	case SCSI_DH_IMM_RETRY:
1158 	case SCSI_DH_RES_TEMP_UNAVAIL:
1159 		if (pg_init_limit_reached(m, pgpath))
1160 			fail_path(pgpath);
1161 		errors = 0;
1162 		break;
1163 	default:
1164 		/*
1165 		 * We probably do not want to fail the path for a device
1166 		 * error, but this is what the old dm did. In future
1167 		 * patches we can do more advanced handling.
1168 		 */
1169 		fail_path(pgpath);
1170 	}
1171 
1172 	spin_lock_irqsave(&m->lock, flags);
1173 	if (errors) {
1174 		if (pgpath == m->current_pgpath) {
1175 			DMERR("Could not failover device. Error %d.", errors);
1176 			m->current_pgpath = NULL;
1177 			m->current_pg = NULL;
1178 		}
1179 	} else if (!m->pg_init_required) {
1180 		m->queue_io = 0;
1181 		pg->bypassed = 0;
1182 	}
1183 
1184 	m->pg_init_in_progress--;
1185 	if (!m->pg_init_in_progress)
1186 		queue_work(kmultipathd, &m->process_queued_ios);
1187 	spin_unlock_irqrestore(&m->lock, flags);
1188 }
1189 
1190 static void activate_path(struct work_struct *work)
1191 {
1192 	struct pgpath *pgpath =
1193 		container_of(work, struct pgpath, activate_path);
1194 
1195 	scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev),
1196 				pg_init_done, &pgpath->path);
1197 }
1198 
1199 /*
1200  * end_io handling
1201  */
1202 static int do_end_io(struct multipath *m, struct request *clone,
1203 		     int error, struct dm_mpath_io *mpio)
1204 {
1205 	/*
1206 	 * We don't queue any clone request inside the multipath target
1207 	 * during end I/O handling, since those clone requests don't have
1208 	 * bio clones.  If we queue them inside the multipath target,
1209 	 * we need to make bio clones, that requires memory allocation.
1210 	 * (See drivers/md/dm.c:end_clone_bio() about why the clone requests
1211 	 *  don't have bio clones.)
1212 	 * Instead of queueing the clone request here, we queue the original
1213 	 * request into dm core, which will remake a clone request and
1214 	 * clone bios for it and resubmit it later.
1215 	 */
1216 	int r = DM_ENDIO_REQUEUE;
1217 	unsigned long flags;
1218 
1219 	if (!error && !clone->errors)
1220 		return 0;	/* I/O complete */
1221 
1222 	if (error == -EOPNOTSUPP)
1223 		return error;
1224 
1225 	if (mpio->pgpath)
1226 		fail_path(mpio->pgpath);
1227 
1228 	spin_lock_irqsave(&m->lock, flags);
1229 	if (!m->nr_valid_paths && !m->queue_if_no_path && !__must_push_back(m))
1230 		r = -EIO;
1231 	spin_unlock_irqrestore(&m->lock, flags);
1232 
1233 	return r;
1234 }
1235 
1236 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1237 			    int error, union map_info *map_context)
1238 {
1239 	struct multipath *m = ti->private;
1240 	struct dm_mpath_io *mpio = map_context->ptr;
1241 	struct pgpath *pgpath = mpio->pgpath;
1242 	struct path_selector *ps;
1243 	int r;
1244 
1245 	r  = do_end_io(m, clone, error, mpio);
1246 	if (pgpath) {
1247 		ps = &pgpath->pg->ps;
1248 		if (ps->type->end_io)
1249 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1250 	}
1251 	mempool_free(mpio, m->mpio_pool);
1252 
1253 	return r;
1254 }
1255 
1256 /*
1257  * Suspend can't complete until all the I/O is processed so if
1258  * the last path fails we must error any remaining I/O.
1259  * Note that if the freeze_bdev fails while suspending, the
1260  * queue_if_no_path state is lost - userspace should reset it.
1261  */
1262 static void multipath_presuspend(struct dm_target *ti)
1263 {
1264 	struct multipath *m = (struct multipath *) ti->private;
1265 
1266 	queue_if_no_path(m, 0, 1);
1267 }
1268 
1269 static void multipath_postsuspend(struct dm_target *ti)
1270 {
1271 	flush_multipath_work();
1272 }
1273 
1274 /*
1275  * Restore the queue_if_no_path setting.
1276  */
1277 static void multipath_resume(struct dm_target *ti)
1278 {
1279 	struct multipath *m = (struct multipath *) ti->private;
1280 	unsigned long flags;
1281 
1282 	spin_lock_irqsave(&m->lock, flags);
1283 	m->queue_if_no_path = m->saved_queue_if_no_path;
1284 	spin_unlock_irqrestore(&m->lock, flags);
1285 }
1286 
1287 /*
1288  * Info output has the following format:
1289  * num_multipath_feature_args [multipath_feature_args]*
1290  * num_handler_status_args [handler_status_args]*
1291  * num_groups init_group_number
1292  *            [A|D|E num_ps_status_args [ps_status_args]*
1293  *             num_paths num_selector_args
1294  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1295  *
1296  * Table output has the following format (identical to the constructor string):
1297  * num_feature_args [features_args]*
1298  * num_handler_args hw_handler [hw_handler_args]*
1299  * num_groups init_group_number
1300  *     [priority selector-name num_ps_args [ps_args]*
1301  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1302  */
1303 static int multipath_status(struct dm_target *ti, status_type_t type,
1304 			    char *result, unsigned int maxlen)
1305 {
1306 	int sz = 0;
1307 	unsigned long flags;
1308 	struct multipath *m = (struct multipath *) ti->private;
1309 	struct priority_group *pg;
1310 	struct pgpath *p;
1311 	unsigned pg_num;
1312 	char state;
1313 
1314 	spin_lock_irqsave(&m->lock, flags);
1315 
1316 	/* Features */
1317 	if (type == STATUSTYPE_INFO)
1318 		DMEMIT("2 %u %u ", m->queue_size, m->pg_init_count);
1319 	else {
1320 		DMEMIT("%u ", m->queue_if_no_path +
1321 			      (m->pg_init_retries > 0) * 2);
1322 		if (m->queue_if_no_path)
1323 			DMEMIT("queue_if_no_path ");
1324 		if (m->pg_init_retries)
1325 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1326 	}
1327 
1328 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1329 		DMEMIT("0 ");
1330 	else
1331 		DMEMIT("1 %s ", m->hw_handler_name);
1332 
1333 	DMEMIT("%u ", m->nr_priority_groups);
1334 
1335 	if (m->next_pg)
1336 		pg_num = m->next_pg->pg_num;
1337 	else if (m->current_pg)
1338 		pg_num = m->current_pg->pg_num;
1339 	else
1340 			pg_num = 1;
1341 
1342 	DMEMIT("%u ", pg_num);
1343 
1344 	switch (type) {
1345 	case STATUSTYPE_INFO:
1346 		list_for_each_entry(pg, &m->priority_groups, list) {
1347 			if (pg->bypassed)
1348 				state = 'D';	/* Disabled */
1349 			else if (pg == m->current_pg)
1350 				state = 'A';	/* Currently Active */
1351 			else
1352 				state = 'E';	/* Enabled */
1353 
1354 			DMEMIT("%c ", state);
1355 
1356 			if (pg->ps.type->status)
1357 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1358 							  result + sz,
1359 							  maxlen - sz);
1360 			else
1361 				DMEMIT("0 ");
1362 
1363 			DMEMIT("%u %u ", pg->nr_pgpaths,
1364 			       pg->ps.type->info_args);
1365 
1366 			list_for_each_entry(p, &pg->pgpaths, list) {
1367 				DMEMIT("%s %s %u ", p->path.dev->name,
1368 				       p->is_active ? "A" : "F",
1369 				       p->fail_count);
1370 				if (pg->ps.type->status)
1371 					sz += pg->ps.type->status(&pg->ps,
1372 					      &p->path, type, result + sz,
1373 					      maxlen - sz);
1374 			}
1375 		}
1376 		break;
1377 
1378 	case STATUSTYPE_TABLE:
1379 		list_for_each_entry(pg, &m->priority_groups, list) {
1380 			DMEMIT("%s ", pg->ps.type->name);
1381 
1382 			if (pg->ps.type->status)
1383 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1384 							  result + sz,
1385 							  maxlen - sz);
1386 			else
1387 				DMEMIT("0 ");
1388 
1389 			DMEMIT("%u %u ", pg->nr_pgpaths,
1390 			       pg->ps.type->table_args);
1391 
1392 			list_for_each_entry(p, &pg->pgpaths, list) {
1393 				DMEMIT("%s ", p->path.dev->name);
1394 				if (pg->ps.type->status)
1395 					sz += pg->ps.type->status(&pg->ps,
1396 					      &p->path, type, result + sz,
1397 					      maxlen - sz);
1398 			}
1399 		}
1400 		break;
1401 	}
1402 
1403 	spin_unlock_irqrestore(&m->lock, flags);
1404 
1405 	return 0;
1406 }
1407 
1408 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1409 {
1410 	int r;
1411 	struct dm_dev *dev;
1412 	struct multipath *m = (struct multipath *) ti->private;
1413 	action_fn action;
1414 
1415 	if (argc == 1) {
1416 		if (!strnicmp(argv[0], MESG_STR("queue_if_no_path")))
1417 			return queue_if_no_path(m, 1, 0);
1418 		else if (!strnicmp(argv[0], MESG_STR("fail_if_no_path")))
1419 			return queue_if_no_path(m, 0, 0);
1420 	}
1421 
1422 	if (argc != 2)
1423 		goto error;
1424 
1425 	if (!strnicmp(argv[0], MESG_STR("disable_group")))
1426 		return bypass_pg_num(m, argv[1], 1);
1427 	else if (!strnicmp(argv[0], MESG_STR("enable_group")))
1428 		return bypass_pg_num(m, argv[1], 0);
1429 	else if (!strnicmp(argv[0], MESG_STR("switch_group")))
1430 		return switch_pg_num(m, argv[1]);
1431 	else if (!strnicmp(argv[0], MESG_STR("reinstate_path")))
1432 		action = reinstate_path;
1433 	else if (!strnicmp(argv[0], MESG_STR("fail_path")))
1434 		action = fail_path;
1435 	else
1436 		goto error;
1437 
1438 	r = dm_get_device(ti, argv[1], ti->begin, ti->len,
1439 			  dm_table_get_mode(ti->table), &dev);
1440 	if (r) {
1441 		DMWARN("message: error getting device %s",
1442 		       argv[1]);
1443 		return -EINVAL;
1444 	}
1445 
1446 	r = action_dev(m, dev, action);
1447 
1448 	dm_put_device(ti, dev);
1449 
1450 	return r;
1451 
1452 error:
1453 	DMWARN("Unrecognised multipath message received.");
1454 	return -EINVAL;
1455 }
1456 
1457 static int multipath_ioctl(struct dm_target *ti, unsigned int cmd,
1458 			   unsigned long arg)
1459 {
1460 	struct multipath *m = (struct multipath *) ti->private;
1461 	struct block_device *bdev = NULL;
1462 	fmode_t mode = 0;
1463 	unsigned long flags;
1464 	int r = 0;
1465 
1466 	spin_lock_irqsave(&m->lock, flags);
1467 
1468 	if (!m->current_pgpath)
1469 		__choose_pgpath(m, 0);
1470 
1471 	if (m->current_pgpath) {
1472 		bdev = m->current_pgpath->path.dev->bdev;
1473 		mode = m->current_pgpath->path.dev->mode;
1474 	}
1475 
1476 	if (m->queue_io)
1477 		r = -EAGAIN;
1478 	else if (!bdev)
1479 		r = -EIO;
1480 
1481 	spin_unlock_irqrestore(&m->lock, flags);
1482 
1483 	return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg);
1484 }
1485 
1486 static int multipath_iterate_devices(struct dm_target *ti,
1487 				     iterate_devices_callout_fn fn, void *data)
1488 {
1489 	struct multipath *m = ti->private;
1490 	struct priority_group *pg;
1491 	struct pgpath *p;
1492 	int ret = 0;
1493 
1494 	list_for_each_entry(pg, &m->priority_groups, list) {
1495 		list_for_each_entry(p, &pg->pgpaths, list) {
1496 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1497 			if (ret)
1498 				goto out;
1499 		}
1500 	}
1501 
1502 out:
1503 	return ret;
1504 }
1505 
1506 static int __pgpath_busy(struct pgpath *pgpath)
1507 {
1508 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1509 
1510 	return dm_underlying_device_busy(q);
1511 }
1512 
1513 /*
1514  * We return "busy", only when we can map I/Os but underlying devices
1515  * are busy (so even if we map I/Os now, the I/Os will wait on
1516  * the underlying queue).
1517  * In other words, if we want to kill I/Os or queue them inside us
1518  * due to map unavailability, we don't return "busy".  Otherwise,
1519  * dm core won't give us the I/Os and we can't do what we want.
1520  */
1521 static int multipath_busy(struct dm_target *ti)
1522 {
1523 	int busy = 0, has_active = 0;
1524 	struct multipath *m = ti->private;
1525 	struct priority_group *pg;
1526 	struct pgpath *pgpath;
1527 	unsigned long flags;
1528 
1529 	spin_lock_irqsave(&m->lock, flags);
1530 
1531 	/* Guess which priority_group will be used at next mapping time */
1532 	if (unlikely(!m->current_pgpath && m->next_pg))
1533 		pg = m->next_pg;
1534 	else if (likely(m->current_pg))
1535 		pg = m->current_pg;
1536 	else
1537 		/*
1538 		 * We don't know which pg will be used at next mapping time.
1539 		 * We don't call __choose_pgpath() here to avoid to trigger
1540 		 * pg_init just by busy checking.
1541 		 * So we don't know whether underlying devices we will be using
1542 		 * at next mapping time are busy or not. Just try mapping.
1543 		 */
1544 		goto out;
1545 
1546 	/*
1547 	 * If there is one non-busy active path at least, the path selector
1548 	 * will be able to select it. So we consider such a pg as not busy.
1549 	 */
1550 	busy = 1;
1551 	list_for_each_entry(pgpath, &pg->pgpaths, list)
1552 		if (pgpath->is_active) {
1553 			has_active = 1;
1554 
1555 			if (!__pgpath_busy(pgpath)) {
1556 				busy = 0;
1557 				break;
1558 			}
1559 		}
1560 
1561 	if (!has_active)
1562 		/*
1563 		 * No active path in this pg, so this pg won't be used and
1564 		 * the current_pg will be changed at next mapping time.
1565 		 * We need to try mapping to determine it.
1566 		 */
1567 		busy = 0;
1568 
1569 out:
1570 	spin_unlock_irqrestore(&m->lock, flags);
1571 
1572 	return busy;
1573 }
1574 
1575 /*-----------------------------------------------------------------
1576  * Module setup
1577  *---------------------------------------------------------------*/
1578 static struct target_type multipath_target = {
1579 	.name = "multipath",
1580 	.version = {1, 1, 1},
1581 	.module = THIS_MODULE,
1582 	.ctr = multipath_ctr,
1583 	.dtr = multipath_dtr,
1584 	.map_rq = multipath_map,
1585 	.rq_end_io = multipath_end_io,
1586 	.presuspend = multipath_presuspend,
1587 	.postsuspend = multipath_postsuspend,
1588 	.resume = multipath_resume,
1589 	.status = multipath_status,
1590 	.message = multipath_message,
1591 	.ioctl  = multipath_ioctl,
1592 	.iterate_devices = multipath_iterate_devices,
1593 	.busy = multipath_busy,
1594 };
1595 
1596 static int __init dm_multipath_init(void)
1597 {
1598 	int r;
1599 
1600 	/* allocate a slab for the dm_ios */
1601 	_mpio_cache = KMEM_CACHE(dm_mpath_io, 0);
1602 	if (!_mpio_cache)
1603 		return -ENOMEM;
1604 
1605 	r = dm_register_target(&multipath_target);
1606 	if (r < 0) {
1607 		DMERR("register failed %d", r);
1608 		kmem_cache_destroy(_mpio_cache);
1609 		return -EINVAL;
1610 	}
1611 
1612 	kmultipathd = create_workqueue("kmpathd");
1613 	if (!kmultipathd) {
1614 		DMERR("failed to create workqueue kmpathd");
1615 		dm_unregister_target(&multipath_target);
1616 		kmem_cache_destroy(_mpio_cache);
1617 		return -ENOMEM;
1618 	}
1619 
1620 	/*
1621 	 * A separate workqueue is used to handle the device handlers
1622 	 * to avoid overloading existing workqueue. Overloading the
1623 	 * old workqueue would also create a bottleneck in the
1624 	 * path of the storage hardware device activation.
1625 	 */
1626 	kmpath_handlerd = create_singlethread_workqueue("kmpath_handlerd");
1627 	if (!kmpath_handlerd) {
1628 		DMERR("failed to create workqueue kmpath_handlerd");
1629 		destroy_workqueue(kmultipathd);
1630 		dm_unregister_target(&multipath_target);
1631 		kmem_cache_destroy(_mpio_cache);
1632 		return -ENOMEM;
1633 	}
1634 
1635 	DMINFO("version %u.%u.%u loaded",
1636 	       multipath_target.version[0], multipath_target.version[1],
1637 	       multipath_target.version[2]);
1638 
1639 	return r;
1640 }
1641 
1642 static void __exit dm_multipath_exit(void)
1643 {
1644 	destroy_workqueue(kmpath_handlerd);
1645 	destroy_workqueue(kmultipathd);
1646 
1647 	dm_unregister_target(&multipath_target);
1648 	kmem_cache_destroy(_mpio_cache);
1649 }
1650 
1651 module_init(dm_multipath_init);
1652 module_exit(dm_multipath_exit);
1653 
1654 MODULE_DESCRIPTION(DM_NAME " multipath target");
1655 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
1656 MODULE_LICENSE("GPL");
1657