1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <scsi/scsi_dh.h> 26 #include <linux/atomic.h> 27 #include <linux/blk-mq.h> 28 29 #define DM_MSG_PREFIX "multipath" 30 #define DM_PG_INIT_DELAY_MSECS 2000 31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 32 33 /* Path properties */ 34 struct pgpath { 35 struct list_head list; 36 37 struct priority_group *pg; /* Owning PG */ 38 unsigned fail_count; /* Cumulative failure count */ 39 40 struct dm_path path; 41 struct delayed_work activate_path; 42 43 bool is_active:1; /* Path status */ 44 }; 45 46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 47 48 /* 49 * Paths are grouped into Priority Groups and numbered from 1 upwards. 50 * Each has a path selector which controls which path gets used. 51 */ 52 struct priority_group { 53 struct list_head list; 54 55 struct multipath *m; /* Owning multipath instance */ 56 struct path_selector ps; 57 58 unsigned pg_num; /* Reference number */ 59 unsigned nr_pgpaths; /* Number of paths in PG */ 60 struct list_head pgpaths; 61 62 bool bypassed:1; /* Temporarily bypass this PG? */ 63 }; 64 65 /* Multipath context */ 66 struct multipath { 67 unsigned long flags; /* Multipath state flags */ 68 69 spinlock_t lock; 70 enum dm_queue_mode queue_mode; 71 72 struct pgpath *current_pgpath; 73 struct priority_group *current_pg; 74 struct priority_group *next_pg; /* Switch to this PG if set */ 75 76 atomic_t nr_valid_paths; /* Total number of usable paths */ 77 unsigned nr_priority_groups; 78 struct list_head priority_groups; 79 80 const char *hw_handler_name; 81 char *hw_handler_params; 82 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 83 unsigned pg_init_retries; /* Number of times to retry pg_init */ 84 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 85 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 86 atomic_t pg_init_count; /* Number of times pg_init called */ 87 88 struct mutex work_mutex; 89 struct work_struct trigger_event; 90 struct dm_target *ti; 91 92 struct work_struct process_queued_bios; 93 struct bio_list queued_bios; 94 }; 95 96 /* 97 * Context information attached to each io we process. 98 */ 99 struct dm_mpath_io { 100 struct pgpath *pgpath; 101 size_t nr_bytes; 102 }; 103 104 typedef int (*action_fn) (struct pgpath *pgpath); 105 106 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 107 static void trigger_event(struct work_struct *work); 108 static void activate_or_offline_path(struct pgpath *pgpath); 109 static void activate_path_work(struct work_struct *work); 110 static void process_queued_bios(struct work_struct *work); 111 112 /*----------------------------------------------- 113 * Multipath state flags. 114 *-----------------------------------------------*/ 115 116 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 117 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 118 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 119 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 120 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 121 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 122 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 123 124 /*----------------------------------------------- 125 * Allocation routines 126 *-----------------------------------------------*/ 127 128 static struct pgpath *alloc_pgpath(void) 129 { 130 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 131 132 if (!pgpath) 133 return NULL; 134 135 pgpath->is_active = true; 136 137 return pgpath; 138 } 139 140 static void free_pgpath(struct pgpath *pgpath) 141 { 142 kfree(pgpath); 143 } 144 145 static struct priority_group *alloc_priority_group(void) 146 { 147 struct priority_group *pg; 148 149 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 150 151 if (pg) 152 INIT_LIST_HEAD(&pg->pgpaths); 153 154 return pg; 155 } 156 157 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 158 { 159 struct pgpath *pgpath, *tmp; 160 161 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 162 list_del(&pgpath->list); 163 dm_put_device(ti, pgpath->path.dev); 164 free_pgpath(pgpath); 165 } 166 } 167 168 static void free_priority_group(struct priority_group *pg, 169 struct dm_target *ti) 170 { 171 struct path_selector *ps = &pg->ps; 172 173 if (ps->type) { 174 ps->type->destroy(ps); 175 dm_put_path_selector(ps->type); 176 } 177 178 free_pgpaths(&pg->pgpaths, ti); 179 kfree(pg); 180 } 181 182 static struct multipath *alloc_multipath(struct dm_target *ti) 183 { 184 struct multipath *m; 185 186 m = kzalloc(sizeof(*m), GFP_KERNEL); 187 if (m) { 188 INIT_LIST_HEAD(&m->priority_groups); 189 spin_lock_init(&m->lock); 190 atomic_set(&m->nr_valid_paths, 0); 191 INIT_WORK(&m->trigger_event, trigger_event); 192 mutex_init(&m->work_mutex); 193 194 m->queue_mode = DM_TYPE_NONE; 195 196 m->ti = ti; 197 ti->private = m; 198 } 199 200 return m; 201 } 202 203 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 204 { 205 if (m->queue_mode == DM_TYPE_NONE) { 206 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 207 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 208 INIT_WORK(&m->process_queued_bios, process_queued_bios); 209 /* 210 * bio-based doesn't support any direct scsi_dh management; 211 * it just discovers if a scsi_dh is attached. 212 */ 213 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 214 } 215 216 dm_table_set_type(ti->table, m->queue_mode); 217 218 /* 219 * Init fields that are only used when a scsi_dh is attached 220 * - must do this unconditionally (really doesn't hurt non-SCSI uses) 221 */ 222 set_bit(MPATHF_QUEUE_IO, &m->flags); 223 atomic_set(&m->pg_init_in_progress, 0); 224 atomic_set(&m->pg_init_count, 0); 225 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 226 init_waitqueue_head(&m->pg_init_wait); 227 228 return 0; 229 } 230 231 static void free_multipath(struct multipath *m) 232 { 233 struct priority_group *pg, *tmp; 234 235 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 236 list_del(&pg->list); 237 free_priority_group(pg, m->ti); 238 } 239 240 kfree(m->hw_handler_name); 241 kfree(m->hw_handler_params); 242 mutex_destroy(&m->work_mutex); 243 kfree(m); 244 } 245 246 static struct dm_mpath_io *get_mpio(union map_info *info) 247 { 248 return info->ptr; 249 } 250 251 static size_t multipath_per_bio_data_size(void) 252 { 253 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 254 } 255 256 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 257 { 258 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 259 } 260 261 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio) 262 { 263 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 264 void *bio_details = mpio + 1; 265 return bio_details; 266 } 267 268 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p) 269 { 270 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 271 struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio); 272 273 mpio->nr_bytes = bio->bi_iter.bi_size; 274 mpio->pgpath = NULL; 275 *mpio_p = mpio; 276 277 dm_bio_record(bio_details, bio); 278 } 279 280 /*----------------------------------------------- 281 * Path selection 282 *-----------------------------------------------*/ 283 284 static int __pg_init_all_paths(struct multipath *m) 285 { 286 struct pgpath *pgpath; 287 unsigned long pg_init_delay = 0; 288 289 lockdep_assert_held(&m->lock); 290 291 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 292 return 0; 293 294 atomic_inc(&m->pg_init_count); 295 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 296 297 /* Check here to reset pg_init_required */ 298 if (!m->current_pg) 299 return 0; 300 301 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 302 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 303 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 304 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 305 /* Skip failed paths */ 306 if (!pgpath->is_active) 307 continue; 308 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 309 pg_init_delay)) 310 atomic_inc(&m->pg_init_in_progress); 311 } 312 return atomic_read(&m->pg_init_in_progress); 313 } 314 315 static int pg_init_all_paths(struct multipath *m) 316 { 317 int ret; 318 unsigned long flags; 319 320 spin_lock_irqsave(&m->lock, flags); 321 ret = __pg_init_all_paths(m); 322 spin_unlock_irqrestore(&m->lock, flags); 323 324 return ret; 325 } 326 327 static void __switch_pg(struct multipath *m, struct priority_group *pg) 328 { 329 m->current_pg = pg; 330 331 /* Must we initialise the PG first, and queue I/O till it's ready? */ 332 if (m->hw_handler_name) { 333 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 334 set_bit(MPATHF_QUEUE_IO, &m->flags); 335 } else { 336 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 337 clear_bit(MPATHF_QUEUE_IO, &m->flags); 338 } 339 340 atomic_set(&m->pg_init_count, 0); 341 } 342 343 static struct pgpath *choose_path_in_pg(struct multipath *m, 344 struct priority_group *pg, 345 size_t nr_bytes) 346 { 347 unsigned long flags; 348 struct dm_path *path; 349 struct pgpath *pgpath; 350 351 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 352 if (!path) 353 return ERR_PTR(-ENXIO); 354 355 pgpath = path_to_pgpath(path); 356 357 if (unlikely(READ_ONCE(m->current_pg) != pg)) { 358 /* Only update current_pgpath if pg changed */ 359 spin_lock_irqsave(&m->lock, flags); 360 m->current_pgpath = pgpath; 361 __switch_pg(m, pg); 362 spin_unlock_irqrestore(&m->lock, flags); 363 } 364 365 return pgpath; 366 } 367 368 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 369 { 370 unsigned long flags; 371 struct priority_group *pg; 372 struct pgpath *pgpath; 373 unsigned bypassed = 1; 374 375 if (!atomic_read(&m->nr_valid_paths)) { 376 clear_bit(MPATHF_QUEUE_IO, &m->flags); 377 goto failed; 378 } 379 380 /* Were we instructed to switch PG? */ 381 if (READ_ONCE(m->next_pg)) { 382 spin_lock_irqsave(&m->lock, flags); 383 pg = m->next_pg; 384 if (!pg) { 385 spin_unlock_irqrestore(&m->lock, flags); 386 goto check_current_pg; 387 } 388 m->next_pg = NULL; 389 spin_unlock_irqrestore(&m->lock, flags); 390 pgpath = choose_path_in_pg(m, pg, nr_bytes); 391 if (!IS_ERR_OR_NULL(pgpath)) 392 return pgpath; 393 } 394 395 /* Don't change PG until it has no remaining paths */ 396 check_current_pg: 397 pg = READ_ONCE(m->current_pg); 398 if (pg) { 399 pgpath = choose_path_in_pg(m, pg, nr_bytes); 400 if (!IS_ERR_OR_NULL(pgpath)) 401 return pgpath; 402 } 403 404 /* 405 * Loop through priority groups until we find a valid path. 406 * First time we skip PGs marked 'bypassed'. 407 * Second time we only try the ones we skipped, but set 408 * pg_init_delay_retry so we do not hammer controllers. 409 */ 410 do { 411 list_for_each_entry(pg, &m->priority_groups, list) { 412 if (pg->bypassed == !!bypassed) 413 continue; 414 pgpath = choose_path_in_pg(m, pg, nr_bytes); 415 if (!IS_ERR_OR_NULL(pgpath)) { 416 if (!bypassed) 417 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 418 return pgpath; 419 } 420 } 421 } while (bypassed--); 422 423 failed: 424 spin_lock_irqsave(&m->lock, flags); 425 m->current_pgpath = NULL; 426 m->current_pg = NULL; 427 spin_unlock_irqrestore(&m->lock, flags); 428 429 return NULL; 430 } 431 432 /* 433 * dm_report_EIO() is a macro instead of a function to make pr_debug() 434 * report the function name and line number of the function from which 435 * it has been invoked. 436 */ 437 #define dm_report_EIO(m) \ 438 do { \ 439 struct mapped_device *md = dm_table_get_md((m)->ti->table); \ 440 \ 441 pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \ 442 dm_device_name(md), \ 443 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 444 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 445 dm_noflush_suspending((m)->ti)); \ 446 } while (0) 447 448 /* 449 * Check whether bios must be queued in the device-mapper core rather 450 * than here in the target. 451 * 452 * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold 453 * the same value then we are not between multipath_presuspend() 454 * and multipath_resume() calls and we have no need to check 455 * for the DMF_NOFLUSH_SUSPENDING flag. 456 */ 457 static bool __must_push_back(struct multipath *m, unsigned long flags) 458 { 459 return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) != 460 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) && 461 dm_noflush_suspending(m->ti)); 462 } 463 464 /* 465 * Following functions use READ_ONCE to get atomic access to 466 * all m->flags to avoid taking spinlock 467 */ 468 static bool must_push_back_rq(struct multipath *m) 469 { 470 unsigned long flags = READ_ONCE(m->flags); 471 return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags); 472 } 473 474 static bool must_push_back_bio(struct multipath *m) 475 { 476 unsigned long flags = READ_ONCE(m->flags); 477 return __must_push_back(m, flags); 478 } 479 480 /* 481 * Map cloned requests (request-based multipath) 482 */ 483 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 484 union map_info *map_context, 485 struct request **__clone) 486 { 487 struct multipath *m = ti->private; 488 size_t nr_bytes = blk_rq_bytes(rq); 489 struct pgpath *pgpath; 490 struct block_device *bdev; 491 struct dm_mpath_io *mpio = get_mpio(map_context); 492 struct request_queue *q; 493 struct request *clone; 494 495 /* Do we need to select a new pgpath? */ 496 pgpath = READ_ONCE(m->current_pgpath); 497 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 498 pgpath = choose_pgpath(m, nr_bytes); 499 500 if (!pgpath) { 501 if (must_push_back_rq(m)) 502 return DM_MAPIO_DELAY_REQUEUE; 503 dm_report_EIO(m); /* Failed */ 504 return DM_MAPIO_KILL; 505 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) || 506 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 507 pg_init_all_paths(m); 508 return DM_MAPIO_DELAY_REQUEUE; 509 } 510 511 mpio->pgpath = pgpath; 512 mpio->nr_bytes = nr_bytes; 513 514 bdev = pgpath->path.dev->bdev; 515 q = bdev_get_queue(bdev); 516 clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, 517 BLK_MQ_REQ_NOWAIT); 518 if (IS_ERR(clone)) { 519 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 520 if (blk_queue_dying(q)) { 521 atomic_inc(&m->pg_init_in_progress); 522 activate_or_offline_path(pgpath); 523 return DM_MAPIO_DELAY_REQUEUE; 524 } 525 526 /* 527 * blk-mq's SCHED_RESTART can cover this requeue, so we 528 * needn't deal with it by DELAY_REQUEUE. More importantly, 529 * we have to return DM_MAPIO_REQUEUE so that blk-mq can 530 * get the queue busy feedback (via BLK_STS_RESOURCE), 531 * otherwise I/O merging can suffer. 532 */ 533 return DM_MAPIO_REQUEUE; 534 } 535 clone->bio = clone->biotail = NULL; 536 clone->rq_disk = bdev->bd_disk; 537 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 538 *__clone = clone; 539 540 if (pgpath->pg->ps.type->start_io) 541 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 542 &pgpath->path, 543 nr_bytes); 544 return DM_MAPIO_REMAPPED; 545 } 546 547 static void multipath_release_clone(struct request *clone) 548 { 549 blk_put_request(clone); 550 } 551 552 /* 553 * Map cloned bios (bio-based multipath) 554 */ 555 556 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio) 557 { 558 struct pgpath *pgpath; 559 unsigned long flags; 560 bool queue_io; 561 562 /* Do we need to select a new pgpath? */ 563 pgpath = READ_ONCE(m->current_pgpath); 564 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags); 565 if (!pgpath || !queue_io) 566 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 567 568 if ((pgpath && queue_io) || 569 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) { 570 /* Queue for the daemon to resubmit */ 571 spin_lock_irqsave(&m->lock, flags); 572 bio_list_add(&m->queued_bios, bio); 573 spin_unlock_irqrestore(&m->lock, flags); 574 575 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */ 576 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 577 pg_init_all_paths(m); 578 else if (!queue_io) 579 queue_work(kmultipathd, &m->process_queued_bios); 580 581 return ERR_PTR(-EAGAIN); 582 } 583 584 return pgpath; 585 } 586 587 static struct pgpath *__map_bio_fast(struct multipath *m, struct bio *bio) 588 { 589 struct pgpath *pgpath; 590 unsigned long flags; 591 592 /* Do we need to select a new pgpath? */ 593 /* 594 * FIXME: currently only switching path if no path (due to failure, etc) 595 * - which negates the point of using a path selector 596 */ 597 pgpath = READ_ONCE(m->current_pgpath); 598 if (!pgpath) 599 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 600 601 if (!pgpath) { 602 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 603 /* Queue for the daemon to resubmit */ 604 spin_lock_irqsave(&m->lock, flags); 605 bio_list_add(&m->queued_bios, bio); 606 spin_unlock_irqrestore(&m->lock, flags); 607 queue_work(kmultipathd, &m->process_queued_bios); 608 609 return ERR_PTR(-EAGAIN); 610 } 611 return NULL; 612 } 613 614 return pgpath; 615 } 616 617 static int __multipath_map_bio(struct multipath *m, struct bio *bio, 618 struct dm_mpath_io *mpio) 619 { 620 struct pgpath *pgpath; 621 622 if (!m->hw_handler_name) 623 pgpath = __map_bio_fast(m, bio); 624 else 625 pgpath = __map_bio(m, bio); 626 627 if (IS_ERR(pgpath)) 628 return DM_MAPIO_SUBMITTED; 629 630 if (!pgpath) { 631 if (must_push_back_bio(m)) 632 return DM_MAPIO_REQUEUE; 633 dm_report_EIO(m); 634 return DM_MAPIO_KILL; 635 } 636 637 mpio->pgpath = pgpath; 638 639 bio->bi_status = 0; 640 bio_set_dev(bio, pgpath->path.dev->bdev); 641 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 642 643 if (pgpath->pg->ps.type->start_io) 644 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 645 &pgpath->path, 646 mpio->nr_bytes); 647 return DM_MAPIO_REMAPPED; 648 } 649 650 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 651 { 652 struct multipath *m = ti->private; 653 struct dm_mpath_io *mpio = NULL; 654 655 multipath_init_per_bio_data(bio, &mpio); 656 return __multipath_map_bio(m, bio, mpio); 657 } 658 659 static void process_queued_io_list(struct multipath *m) 660 { 661 if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED) 662 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 663 else if (m->queue_mode == DM_TYPE_BIO_BASED) 664 queue_work(kmultipathd, &m->process_queued_bios); 665 } 666 667 static void process_queued_bios(struct work_struct *work) 668 { 669 int r; 670 unsigned long flags; 671 struct bio *bio; 672 struct bio_list bios; 673 struct blk_plug plug; 674 struct multipath *m = 675 container_of(work, struct multipath, process_queued_bios); 676 677 bio_list_init(&bios); 678 679 spin_lock_irqsave(&m->lock, flags); 680 681 if (bio_list_empty(&m->queued_bios)) { 682 spin_unlock_irqrestore(&m->lock, flags); 683 return; 684 } 685 686 bio_list_merge(&bios, &m->queued_bios); 687 bio_list_init(&m->queued_bios); 688 689 spin_unlock_irqrestore(&m->lock, flags); 690 691 blk_start_plug(&plug); 692 while ((bio = bio_list_pop(&bios))) { 693 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 694 dm_bio_restore(get_bio_details_from_mpio(mpio), bio); 695 r = __multipath_map_bio(m, bio, mpio); 696 switch (r) { 697 case DM_MAPIO_KILL: 698 bio->bi_status = BLK_STS_IOERR; 699 bio_endio(bio); 700 break; 701 case DM_MAPIO_REQUEUE: 702 bio->bi_status = BLK_STS_DM_REQUEUE; 703 bio_endio(bio); 704 break; 705 case DM_MAPIO_REMAPPED: 706 generic_make_request(bio); 707 break; 708 case DM_MAPIO_SUBMITTED: 709 break; 710 default: 711 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r); 712 } 713 } 714 blk_finish_plug(&plug); 715 } 716 717 /* 718 * If we run out of usable paths, should we queue I/O or error it? 719 */ 720 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 721 bool save_old_value) 722 { 723 unsigned long flags; 724 725 spin_lock_irqsave(&m->lock, flags); 726 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, 727 (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) || 728 (!save_old_value && queue_if_no_path)); 729 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path); 730 spin_unlock_irqrestore(&m->lock, flags); 731 732 if (!queue_if_no_path) { 733 dm_table_run_md_queue_async(m->ti->table); 734 process_queued_io_list(m); 735 } 736 737 return 0; 738 } 739 740 /* 741 * An event is triggered whenever a path is taken out of use. 742 * Includes path failure and PG bypass. 743 */ 744 static void trigger_event(struct work_struct *work) 745 { 746 struct multipath *m = 747 container_of(work, struct multipath, trigger_event); 748 749 dm_table_event(m->ti->table); 750 } 751 752 /*----------------------------------------------------------------- 753 * Constructor/argument parsing: 754 * <#multipath feature args> [<arg>]* 755 * <#hw_handler args> [hw_handler [<arg>]*] 756 * <#priority groups> 757 * <initial priority group> 758 * [<selector> <#selector args> [<arg>]* 759 * <#paths> <#per-path selector args> 760 * [<path> [<arg>]* ]+ ]+ 761 *---------------------------------------------------------------*/ 762 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 763 struct dm_target *ti) 764 { 765 int r; 766 struct path_selector_type *pst; 767 unsigned ps_argc; 768 769 static const struct dm_arg _args[] = { 770 {0, 1024, "invalid number of path selector args"}, 771 }; 772 773 pst = dm_get_path_selector(dm_shift_arg(as)); 774 if (!pst) { 775 ti->error = "unknown path selector type"; 776 return -EINVAL; 777 } 778 779 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 780 if (r) { 781 dm_put_path_selector(pst); 782 return -EINVAL; 783 } 784 785 r = pst->create(&pg->ps, ps_argc, as->argv); 786 if (r) { 787 dm_put_path_selector(pst); 788 ti->error = "path selector constructor failed"; 789 return r; 790 } 791 792 pg->ps.type = pst; 793 dm_consume_args(as, ps_argc); 794 795 return 0; 796 } 797 798 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m, 799 const char **attached_handler_name, char **error) 800 { 801 struct request_queue *q = bdev_get_queue(bdev); 802 int r; 803 804 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) { 805 retain: 806 if (*attached_handler_name) { 807 /* 808 * Clear any hw_handler_params associated with a 809 * handler that isn't already attached. 810 */ 811 if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) { 812 kfree(m->hw_handler_params); 813 m->hw_handler_params = NULL; 814 } 815 816 /* 817 * Reset hw_handler_name to match the attached handler 818 * 819 * NB. This modifies the table line to show the actual 820 * handler instead of the original table passed in. 821 */ 822 kfree(m->hw_handler_name); 823 m->hw_handler_name = *attached_handler_name; 824 *attached_handler_name = NULL; 825 } 826 } 827 828 if (m->hw_handler_name) { 829 r = scsi_dh_attach(q, m->hw_handler_name); 830 if (r == -EBUSY) { 831 char b[BDEVNAME_SIZE]; 832 833 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 834 bdevname(bdev, b)); 835 goto retain; 836 } 837 if (r < 0) { 838 *error = "error attaching hardware handler"; 839 return r; 840 } 841 842 if (m->hw_handler_params) { 843 r = scsi_dh_set_params(q, m->hw_handler_params); 844 if (r < 0) { 845 *error = "unable to set hardware handler parameters"; 846 return r; 847 } 848 } 849 } 850 851 return 0; 852 } 853 854 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 855 struct dm_target *ti) 856 { 857 int r; 858 struct pgpath *p; 859 struct multipath *m = ti->private; 860 struct request_queue *q; 861 const char *attached_handler_name = NULL; 862 863 /* we need at least a path arg */ 864 if (as->argc < 1) { 865 ti->error = "no device given"; 866 return ERR_PTR(-EINVAL); 867 } 868 869 p = alloc_pgpath(); 870 if (!p) 871 return ERR_PTR(-ENOMEM); 872 873 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 874 &p->path.dev); 875 if (r) { 876 ti->error = "error getting device"; 877 goto bad; 878 } 879 880 q = bdev_get_queue(p->path.dev->bdev); 881 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 882 if (attached_handler_name || m->hw_handler_name) { 883 INIT_DELAYED_WORK(&p->activate_path, activate_path_work); 884 r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error); 885 if (r) { 886 dm_put_device(ti, p->path.dev); 887 goto bad; 888 } 889 } 890 891 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 892 if (r) { 893 dm_put_device(ti, p->path.dev); 894 goto bad; 895 } 896 897 return p; 898 bad: 899 kfree(attached_handler_name); 900 free_pgpath(p); 901 return ERR_PTR(r); 902 } 903 904 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 905 struct multipath *m) 906 { 907 static const struct dm_arg _args[] = { 908 {1, 1024, "invalid number of paths"}, 909 {0, 1024, "invalid number of selector args"} 910 }; 911 912 int r; 913 unsigned i, nr_selector_args, nr_args; 914 struct priority_group *pg; 915 struct dm_target *ti = m->ti; 916 917 if (as->argc < 2) { 918 as->argc = 0; 919 ti->error = "not enough priority group arguments"; 920 return ERR_PTR(-EINVAL); 921 } 922 923 pg = alloc_priority_group(); 924 if (!pg) { 925 ti->error = "couldn't allocate priority group"; 926 return ERR_PTR(-ENOMEM); 927 } 928 pg->m = m; 929 930 r = parse_path_selector(as, pg, ti); 931 if (r) 932 goto bad; 933 934 /* 935 * read the paths 936 */ 937 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 938 if (r) 939 goto bad; 940 941 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 942 if (r) 943 goto bad; 944 945 nr_args = 1 + nr_selector_args; 946 for (i = 0; i < pg->nr_pgpaths; i++) { 947 struct pgpath *pgpath; 948 struct dm_arg_set path_args; 949 950 if (as->argc < nr_args) { 951 ti->error = "not enough path parameters"; 952 r = -EINVAL; 953 goto bad; 954 } 955 956 path_args.argc = nr_args; 957 path_args.argv = as->argv; 958 959 pgpath = parse_path(&path_args, &pg->ps, ti); 960 if (IS_ERR(pgpath)) { 961 r = PTR_ERR(pgpath); 962 goto bad; 963 } 964 965 pgpath->pg = pg; 966 list_add_tail(&pgpath->list, &pg->pgpaths); 967 dm_consume_args(as, nr_args); 968 } 969 970 return pg; 971 972 bad: 973 free_priority_group(pg, ti); 974 return ERR_PTR(r); 975 } 976 977 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 978 { 979 unsigned hw_argc; 980 int ret; 981 struct dm_target *ti = m->ti; 982 983 static const struct dm_arg _args[] = { 984 {0, 1024, "invalid number of hardware handler args"}, 985 }; 986 987 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 988 return -EINVAL; 989 990 if (!hw_argc) 991 return 0; 992 993 if (m->queue_mode == DM_TYPE_BIO_BASED) { 994 dm_consume_args(as, hw_argc); 995 DMERR("bio-based multipath doesn't allow hardware handler args"); 996 return 0; 997 } 998 999 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 1000 if (!m->hw_handler_name) 1001 return -EINVAL; 1002 1003 if (hw_argc > 1) { 1004 char *p; 1005 int i, j, len = 4; 1006 1007 for (i = 0; i <= hw_argc - 2; i++) 1008 len += strlen(as->argv[i]) + 1; 1009 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 1010 if (!p) { 1011 ti->error = "memory allocation failed"; 1012 ret = -ENOMEM; 1013 goto fail; 1014 } 1015 j = sprintf(p, "%d", hw_argc - 1); 1016 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 1017 j = sprintf(p, "%s", as->argv[i]); 1018 } 1019 dm_consume_args(as, hw_argc - 1); 1020 1021 return 0; 1022 fail: 1023 kfree(m->hw_handler_name); 1024 m->hw_handler_name = NULL; 1025 return ret; 1026 } 1027 1028 static int parse_features(struct dm_arg_set *as, struct multipath *m) 1029 { 1030 int r; 1031 unsigned argc; 1032 struct dm_target *ti = m->ti; 1033 const char *arg_name; 1034 1035 static const struct dm_arg _args[] = { 1036 {0, 8, "invalid number of feature args"}, 1037 {1, 50, "pg_init_retries must be between 1 and 50"}, 1038 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 1039 }; 1040 1041 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1042 if (r) 1043 return -EINVAL; 1044 1045 if (!argc) 1046 return 0; 1047 1048 do { 1049 arg_name = dm_shift_arg(as); 1050 argc--; 1051 1052 if (!strcasecmp(arg_name, "queue_if_no_path")) { 1053 r = queue_if_no_path(m, true, false); 1054 continue; 1055 } 1056 1057 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 1058 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 1059 continue; 1060 } 1061 1062 if (!strcasecmp(arg_name, "pg_init_retries") && 1063 (argc >= 1)) { 1064 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 1065 argc--; 1066 continue; 1067 } 1068 1069 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 1070 (argc >= 1)) { 1071 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 1072 argc--; 1073 continue; 1074 } 1075 1076 if (!strcasecmp(arg_name, "queue_mode") && 1077 (argc >= 1)) { 1078 const char *queue_mode_name = dm_shift_arg(as); 1079 1080 if (!strcasecmp(queue_mode_name, "bio")) 1081 m->queue_mode = DM_TYPE_BIO_BASED; 1082 else if (!strcasecmp(queue_mode_name, "rq")) 1083 m->queue_mode = DM_TYPE_REQUEST_BASED; 1084 else if (!strcasecmp(queue_mode_name, "mq")) 1085 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 1086 else { 1087 ti->error = "Unknown 'queue_mode' requested"; 1088 r = -EINVAL; 1089 } 1090 argc--; 1091 continue; 1092 } 1093 1094 ti->error = "Unrecognised multipath feature request"; 1095 r = -EINVAL; 1096 } while (argc && !r); 1097 1098 return r; 1099 } 1100 1101 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1102 { 1103 /* target arguments */ 1104 static const struct dm_arg _args[] = { 1105 {0, 1024, "invalid number of priority groups"}, 1106 {0, 1024, "invalid initial priority group number"}, 1107 }; 1108 1109 int r; 1110 struct multipath *m; 1111 struct dm_arg_set as; 1112 unsigned pg_count = 0; 1113 unsigned next_pg_num; 1114 1115 as.argc = argc; 1116 as.argv = argv; 1117 1118 m = alloc_multipath(ti); 1119 if (!m) { 1120 ti->error = "can't allocate multipath"; 1121 return -EINVAL; 1122 } 1123 1124 r = parse_features(&as, m); 1125 if (r) 1126 goto bad; 1127 1128 r = alloc_multipath_stage2(ti, m); 1129 if (r) 1130 goto bad; 1131 1132 r = parse_hw_handler(&as, m); 1133 if (r) 1134 goto bad; 1135 1136 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1137 if (r) 1138 goto bad; 1139 1140 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1141 if (r) 1142 goto bad; 1143 1144 if ((!m->nr_priority_groups && next_pg_num) || 1145 (m->nr_priority_groups && !next_pg_num)) { 1146 ti->error = "invalid initial priority group"; 1147 r = -EINVAL; 1148 goto bad; 1149 } 1150 1151 /* parse the priority groups */ 1152 while (as.argc) { 1153 struct priority_group *pg; 1154 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1155 1156 pg = parse_priority_group(&as, m); 1157 if (IS_ERR(pg)) { 1158 r = PTR_ERR(pg); 1159 goto bad; 1160 } 1161 1162 nr_valid_paths += pg->nr_pgpaths; 1163 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1164 1165 list_add_tail(&pg->list, &m->priority_groups); 1166 pg_count++; 1167 pg->pg_num = pg_count; 1168 if (!--next_pg_num) 1169 m->next_pg = pg; 1170 } 1171 1172 if (pg_count != m->nr_priority_groups) { 1173 ti->error = "priority group count mismatch"; 1174 r = -EINVAL; 1175 goto bad; 1176 } 1177 1178 ti->num_flush_bios = 1; 1179 ti->num_discard_bios = 1; 1180 ti->num_write_same_bios = 1; 1181 ti->num_write_zeroes_bios = 1; 1182 if (m->queue_mode == DM_TYPE_BIO_BASED) 1183 ti->per_io_data_size = multipath_per_bio_data_size(); 1184 else 1185 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1186 1187 return 0; 1188 1189 bad: 1190 free_multipath(m); 1191 return r; 1192 } 1193 1194 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1195 { 1196 DEFINE_WAIT(wait); 1197 1198 while (1) { 1199 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1200 1201 if (!atomic_read(&m->pg_init_in_progress)) 1202 break; 1203 1204 io_schedule(); 1205 } 1206 finish_wait(&m->pg_init_wait, &wait); 1207 } 1208 1209 static void flush_multipath_work(struct multipath *m) 1210 { 1211 if (m->hw_handler_name) { 1212 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1213 smp_mb__after_atomic(); 1214 1215 flush_workqueue(kmpath_handlerd); 1216 multipath_wait_for_pg_init_completion(m); 1217 1218 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1219 smp_mb__after_atomic(); 1220 } 1221 1222 flush_workqueue(kmultipathd); 1223 flush_work(&m->trigger_event); 1224 } 1225 1226 static void multipath_dtr(struct dm_target *ti) 1227 { 1228 struct multipath *m = ti->private; 1229 1230 flush_multipath_work(m); 1231 free_multipath(m); 1232 } 1233 1234 /* 1235 * Take a path out of use. 1236 */ 1237 static int fail_path(struct pgpath *pgpath) 1238 { 1239 unsigned long flags; 1240 struct multipath *m = pgpath->pg->m; 1241 1242 spin_lock_irqsave(&m->lock, flags); 1243 1244 if (!pgpath->is_active) 1245 goto out; 1246 1247 DMWARN("Failing path %s.", pgpath->path.dev->name); 1248 1249 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1250 pgpath->is_active = false; 1251 pgpath->fail_count++; 1252 1253 atomic_dec(&m->nr_valid_paths); 1254 1255 if (pgpath == m->current_pgpath) 1256 m->current_pgpath = NULL; 1257 1258 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1259 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1260 1261 schedule_work(&m->trigger_event); 1262 1263 out: 1264 spin_unlock_irqrestore(&m->lock, flags); 1265 1266 return 0; 1267 } 1268 1269 /* 1270 * Reinstate a previously-failed path 1271 */ 1272 static int reinstate_path(struct pgpath *pgpath) 1273 { 1274 int r = 0, run_queue = 0; 1275 unsigned long flags; 1276 struct multipath *m = pgpath->pg->m; 1277 unsigned nr_valid_paths; 1278 1279 spin_lock_irqsave(&m->lock, flags); 1280 1281 if (pgpath->is_active) 1282 goto out; 1283 1284 DMWARN("Reinstating path %s.", pgpath->path.dev->name); 1285 1286 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1287 if (r) 1288 goto out; 1289 1290 pgpath->is_active = true; 1291 1292 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1293 if (nr_valid_paths == 1) { 1294 m->current_pgpath = NULL; 1295 run_queue = 1; 1296 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1297 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1298 atomic_inc(&m->pg_init_in_progress); 1299 } 1300 1301 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1302 pgpath->path.dev->name, nr_valid_paths); 1303 1304 schedule_work(&m->trigger_event); 1305 1306 out: 1307 spin_unlock_irqrestore(&m->lock, flags); 1308 if (run_queue) { 1309 dm_table_run_md_queue_async(m->ti->table); 1310 process_queued_io_list(m); 1311 } 1312 1313 return r; 1314 } 1315 1316 /* 1317 * Fail or reinstate all paths that match the provided struct dm_dev. 1318 */ 1319 static int action_dev(struct multipath *m, struct dm_dev *dev, 1320 action_fn action) 1321 { 1322 int r = -EINVAL; 1323 struct pgpath *pgpath; 1324 struct priority_group *pg; 1325 1326 list_for_each_entry(pg, &m->priority_groups, list) { 1327 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1328 if (pgpath->path.dev == dev) 1329 r = action(pgpath); 1330 } 1331 } 1332 1333 return r; 1334 } 1335 1336 /* 1337 * Temporarily try to avoid having to use the specified PG 1338 */ 1339 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1340 bool bypassed) 1341 { 1342 unsigned long flags; 1343 1344 spin_lock_irqsave(&m->lock, flags); 1345 1346 pg->bypassed = bypassed; 1347 m->current_pgpath = NULL; 1348 m->current_pg = NULL; 1349 1350 spin_unlock_irqrestore(&m->lock, flags); 1351 1352 schedule_work(&m->trigger_event); 1353 } 1354 1355 /* 1356 * Switch to using the specified PG from the next I/O that gets mapped 1357 */ 1358 static int switch_pg_num(struct multipath *m, const char *pgstr) 1359 { 1360 struct priority_group *pg; 1361 unsigned pgnum; 1362 unsigned long flags; 1363 char dummy; 1364 1365 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1366 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1367 DMWARN("invalid PG number supplied to switch_pg_num"); 1368 return -EINVAL; 1369 } 1370 1371 spin_lock_irqsave(&m->lock, flags); 1372 list_for_each_entry(pg, &m->priority_groups, list) { 1373 pg->bypassed = false; 1374 if (--pgnum) 1375 continue; 1376 1377 m->current_pgpath = NULL; 1378 m->current_pg = NULL; 1379 m->next_pg = pg; 1380 } 1381 spin_unlock_irqrestore(&m->lock, flags); 1382 1383 schedule_work(&m->trigger_event); 1384 return 0; 1385 } 1386 1387 /* 1388 * Set/clear bypassed status of a PG. 1389 * PGs are numbered upwards from 1 in the order they were declared. 1390 */ 1391 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1392 { 1393 struct priority_group *pg; 1394 unsigned pgnum; 1395 char dummy; 1396 1397 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1398 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1399 DMWARN("invalid PG number supplied to bypass_pg"); 1400 return -EINVAL; 1401 } 1402 1403 list_for_each_entry(pg, &m->priority_groups, list) { 1404 if (!--pgnum) 1405 break; 1406 } 1407 1408 bypass_pg(m, pg, bypassed); 1409 return 0; 1410 } 1411 1412 /* 1413 * Should we retry pg_init immediately? 1414 */ 1415 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1416 { 1417 unsigned long flags; 1418 bool limit_reached = false; 1419 1420 spin_lock_irqsave(&m->lock, flags); 1421 1422 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1423 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1424 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1425 else 1426 limit_reached = true; 1427 1428 spin_unlock_irqrestore(&m->lock, flags); 1429 1430 return limit_reached; 1431 } 1432 1433 static void pg_init_done(void *data, int errors) 1434 { 1435 struct pgpath *pgpath = data; 1436 struct priority_group *pg = pgpath->pg; 1437 struct multipath *m = pg->m; 1438 unsigned long flags; 1439 bool delay_retry = false; 1440 1441 /* device or driver problems */ 1442 switch (errors) { 1443 case SCSI_DH_OK: 1444 break; 1445 case SCSI_DH_NOSYS: 1446 if (!m->hw_handler_name) { 1447 errors = 0; 1448 break; 1449 } 1450 DMERR("Could not failover the device: Handler scsi_dh_%s " 1451 "Error %d.", m->hw_handler_name, errors); 1452 /* 1453 * Fail path for now, so we do not ping pong 1454 */ 1455 fail_path(pgpath); 1456 break; 1457 case SCSI_DH_DEV_TEMP_BUSY: 1458 /* 1459 * Probably doing something like FW upgrade on the 1460 * controller so try the other pg. 1461 */ 1462 bypass_pg(m, pg, true); 1463 break; 1464 case SCSI_DH_RETRY: 1465 /* Wait before retrying. */ 1466 delay_retry = 1; 1467 /* fall through */ 1468 case SCSI_DH_IMM_RETRY: 1469 case SCSI_DH_RES_TEMP_UNAVAIL: 1470 if (pg_init_limit_reached(m, pgpath)) 1471 fail_path(pgpath); 1472 errors = 0; 1473 break; 1474 case SCSI_DH_DEV_OFFLINED: 1475 default: 1476 /* 1477 * We probably do not want to fail the path for a device 1478 * error, but this is what the old dm did. In future 1479 * patches we can do more advanced handling. 1480 */ 1481 fail_path(pgpath); 1482 } 1483 1484 spin_lock_irqsave(&m->lock, flags); 1485 if (errors) { 1486 if (pgpath == m->current_pgpath) { 1487 DMERR("Could not failover device. Error %d.", errors); 1488 m->current_pgpath = NULL; 1489 m->current_pg = NULL; 1490 } 1491 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1492 pg->bypassed = false; 1493 1494 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1495 /* Activations of other paths are still on going */ 1496 goto out; 1497 1498 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1499 if (delay_retry) 1500 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1501 else 1502 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1503 1504 if (__pg_init_all_paths(m)) 1505 goto out; 1506 } 1507 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1508 1509 process_queued_io_list(m); 1510 1511 /* 1512 * Wake up any thread waiting to suspend. 1513 */ 1514 wake_up(&m->pg_init_wait); 1515 1516 out: 1517 spin_unlock_irqrestore(&m->lock, flags); 1518 } 1519 1520 static void activate_or_offline_path(struct pgpath *pgpath) 1521 { 1522 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1523 1524 if (pgpath->is_active && !blk_queue_dying(q)) 1525 scsi_dh_activate(q, pg_init_done, pgpath); 1526 else 1527 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1528 } 1529 1530 static void activate_path_work(struct work_struct *work) 1531 { 1532 struct pgpath *pgpath = 1533 container_of(work, struct pgpath, activate_path.work); 1534 1535 activate_or_offline_path(pgpath); 1536 } 1537 1538 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1539 blk_status_t error, union map_info *map_context) 1540 { 1541 struct dm_mpath_io *mpio = get_mpio(map_context); 1542 struct pgpath *pgpath = mpio->pgpath; 1543 int r = DM_ENDIO_DONE; 1544 1545 /* 1546 * We don't queue any clone request inside the multipath target 1547 * during end I/O handling, since those clone requests don't have 1548 * bio clones. If we queue them inside the multipath target, 1549 * we need to make bio clones, that requires memory allocation. 1550 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1551 * don't have bio clones.) 1552 * Instead of queueing the clone request here, we queue the original 1553 * request into dm core, which will remake a clone request and 1554 * clone bios for it and resubmit it later. 1555 */ 1556 if (error && blk_path_error(error)) { 1557 struct multipath *m = ti->private; 1558 1559 if (error == BLK_STS_RESOURCE) 1560 r = DM_ENDIO_DELAY_REQUEUE; 1561 else 1562 r = DM_ENDIO_REQUEUE; 1563 1564 if (pgpath) 1565 fail_path(pgpath); 1566 1567 if (atomic_read(&m->nr_valid_paths) == 0 && 1568 !must_push_back_rq(m)) { 1569 if (error == BLK_STS_IOERR) 1570 dm_report_EIO(m); 1571 /* complete with the original error */ 1572 r = DM_ENDIO_DONE; 1573 } 1574 } 1575 1576 if (pgpath) { 1577 struct path_selector *ps = &pgpath->pg->ps; 1578 1579 if (ps->type->end_io) 1580 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1581 } 1582 1583 return r; 1584 } 1585 1586 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, 1587 blk_status_t *error) 1588 { 1589 struct multipath *m = ti->private; 1590 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1591 struct pgpath *pgpath = mpio->pgpath; 1592 unsigned long flags; 1593 int r = DM_ENDIO_DONE; 1594 1595 if (!*error || !blk_path_error(*error)) 1596 goto done; 1597 1598 if (pgpath) 1599 fail_path(pgpath); 1600 1601 if (atomic_read(&m->nr_valid_paths) == 0 && 1602 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1603 if (must_push_back_bio(m)) { 1604 r = DM_ENDIO_REQUEUE; 1605 } else { 1606 dm_report_EIO(m); 1607 *error = BLK_STS_IOERR; 1608 } 1609 goto done; 1610 } 1611 1612 spin_lock_irqsave(&m->lock, flags); 1613 bio_list_add(&m->queued_bios, clone); 1614 spin_unlock_irqrestore(&m->lock, flags); 1615 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 1616 queue_work(kmultipathd, &m->process_queued_bios); 1617 1618 r = DM_ENDIO_INCOMPLETE; 1619 done: 1620 if (pgpath) { 1621 struct path_selector *ps = &pgpath->pg->ps; 1622 1623 if (ps->type->end_io) 1624 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1625 } 1626 1627 return r; 1628 } 1629 1630 /* 1631 * Suspend can't complete until all the I/O is processed so if 1632 * the last path fails we must error any remaining I/O. 1633 * Note that if the freeze_bdev fails while suspending, the 1634 * queue_if_no_path state is lost - userspace should reset it. 1635 */ 1636 static void multipath_presuspend(struct dm_target *ti) 1637 { 1638 struct multipath *m = ti->private; 1639 1640 queue_if_no_path(m, false, true); 1641 } 1642 1643 static void multipath_postsuspend(struct dm_target *ti) 1644 { 1645 struct multipath *m = ti->private; 1646 1647 mutex_lock(&m->work_mutex); 1648 flush_multipath_work(m); 1649 mutex_unlock(&m->work_mutex); 1650 } 1651 1652 /* 1653 * Restore the queue_if_no_path setting. 1654 */ 1655 static void multipath_resume(struct dm_target *ti) 1656 { 1657 struct multipath *m = ti->private; 1658 unsigned long flags; 1659 1660 spin_lock_irqsave(&m->lock, flags); 1661 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, 1662 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)); 1663 spin_unlock_irqrestore(&m->lock, flags); 1664 } 1665 1666 /* 1667 * Info output has the following format: 1668 * num_multipath_feature_args [multipath_feature_args]* 1669 * num_handler_status_args [handler_status_args]* 1670 * num_groups init_group_number 1671 * [A|D|E num_ps_status_args [ps_status_args]* 1672 * num_paths num_selector_args 1673 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1674 * 1675 * Table output has the following format (identical to the constructor string): 1676 * num_feature_args [features_args]* 1677 * num_handler_args hw_handler [hw_handler_args]* 1678 * num_groups init_group_number 1679 * [priority selector-name num_ps_args [ps_args]* 1680 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1681 */ 1682 static void multipath_status(struct dm_target *ti, status_type_t type, 1683 unsigned status_flags, char *result, unsigned maxlen) 1684 { 1685 int sz = 0; 1686 unsigned long flags; 1687 struct multipath *m = ti->private; 1688 struct priority_group *pg; 1689 struct pgpath *p; 1690 unsigned pg_num; 1691 char state; 1692 1693 spin_lock_irqsave(&m->lock, flags); 1694 1695 /* Features */ 1696 if (type == STATUSTYPE_INFO) 1697 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1698 atomic_read(&m->pg_init_count)); 1699 else { 1700 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1701 (m->pg_init_retries > 0) * 2 + 1702 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1703 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1704 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1705 1706 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1707 DMEMIT("queue_if_no_path "); 1708 if (m->pg_init_retries) 1709 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1710 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1711 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1712 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1713 DMEMIT("retain_attached_hw_handler "); 1714 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1715 switch(m->queue_mode) { 1716 case DM_TYPE_BIO_BASED: 1717 DMEMIT("queue_mode bio "); 1718 break; 1719 case DM_TYPE_MQ_REQUEST_BASED: 1720 DMEMIT("queue_mode mq "); 1721 break; 1722 default: 1723 WARN_ON_ONCE(true); 1724 break; 1725 } 1726 } 1727 } 1728 1729 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1730 DMEMIT("0 "); 1731 else 1732 DMEMIT("1 %s ", m->hw_handler_name); 1733 1734 DMEMIT("%u ", m->nr_priority_groups); 1735 1736 if (m->next_pg) 1737 pg_num = m->next_pg->pg_num; 1738 else if (m->current_pg) 1739 pg_num = m->current_pg->pg_num; 1740 else 1741 pg_num = (m->nr_priority_groups ? 1 : 0); 1742 1743 DMEMIT("%u ", pg_num); 1744 1745 switch (type) { 1746 case STATUSTYPE_INFO: 1747 list_for_each_entry(pg, &m->priority_groups, list) { 1748 if (pg->bypassed) 1749 state = 'D'; /* Disabled */ 1750 else if (pg == m->current_pg) 1751 state = 'A'; /* Currently Active */ 1752 else 1753 state = 'E'; /* Enabled */ 1754 1755 DMEMIT("%c ", state); 1756 1757 if (pg->ps.type->status) 1758 sz += pg->ps.type->status(&pg->ps, NULL, type, 1759 result + sz, 1760 maxlen - sz); 1761 else 1762 DMEMIT("0 "); 1763 1764 DMEMIT("%u %u ", pg->nr_pgpaths, 1765 pg->ps.type->info_args); 1766 1767 list_for_each_entry(p, &pg->pgpaths, list) { 1768 DMEMIT("%s %s %u ", p->path.dev->name, 1769 p->is_active ? "A" : "F", 1770 p->fail_count); 1771 if (pg->ps.type->status) 1772 sz += pg->ps.type->status(&pg->ps, 1773 &p->path, type, result + sz, 1774 maxlen - sz); 1775 } 1776 } 1777 break; 1778 1779 case STATUSTYPE_TABLE: 1780 list_for_each_entry(pg, &m->priority_groups, list) { 1781 DMEMIT("%s ", pg->ps.type->name); 1782 1783 if (pg->ps.type->status) 1784 sz += pg->ps.type->status(&pg->ps, NULL, type, 1785 result + sz, 1786 maxlen - sz); 1787 else 1788 DMEMIT("0 "); 1789 1790 DMEMIT("%u %u ", pg->nr_pgpaths, 1791 pg->ps.type->table_args); 1792 1793 list_for_each_entry(p, &pg->pgpaths, list) { 1794 DMEMIT("%s ", p->path.dev->name); 1795 if (pg->ps.type->status) 1796 sz += pg->ps.type->status(&pg->ps, 1797 &p->path, type, result + sz, 1798 maxlen - sz); 1799 } 1800 } 1801 break; 1802 } 1803 1804 spin_unlock_irqrestore(&m->lock, flags); 1805 } 1806 1807 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv, 1808 char *result, unsigned maxlen) 1809 { 1810 int r = -EINVAL; 1811 struct dm_dev *dev; 1812 struct multipath *m = ti->private; 1813 action_fn action; 1814 1815 mutex_lock(&m->work_mutex); 1816 1817 if (dm_suspended(ti)) { 1818 r = -EBUSY; 1819 goto out; 1820 } 1821 1822 if (argc == 1) { 1823 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1824 r = queue_if_no_path(m, true, false); 1825 goto out; 1826 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1827 r = queue_if_no_path(m, false, false); 1828 goto out; 1829 } 1830 } 1831 1832 if (argc != 2) { 1833 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1834 goto out; 1835 } 1836 1837 if (!strcasecmp(argv[0], "disable_group")) { 1838 r = bypass_pg_num(m, argv[1], true); 1839 goto out; 1840 } else if (!strcasecmp(argv[0], "enable_group")) { 1841 r = bypass_pg_num(m, argv[1], false); 1842 goto out; 1843 } else if (!strcasecmp(argv[0], "switch_group")) { 1844 r = switch_pg_num(m, argv[1]); 1845 goto out; 1846 } else if (!strcasecmp(argv[0], "reinstate_path")) 1847 action = reinstate_path; 1848 else if (!strcasecmp(argv[0], "fail_path")) 1849 action = fail_path; 1850 else { 1851 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1852 goto out; 1853 } 1854 1855 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1856 if (r) { 1857 DMWARN("message: error getting device %s", 1858 argv[1]); 1859 goto out; 1860 } 1861 1862 r = action_dev(m, dev, action); 1863 1864 dm_put_device(ti, dev); 1865 1866 out: 1867 mutex_unlock(&m->work_mutex); 1868 return r; 1869 } 1870 1871 static int multipath_prepare_ioctl(struct dm_target *ti, 1872 struct block_device **bdev) 1873 { 1874 struct multipath *m = ti->private; 1875 struct pgpath *current_pgpath; 1876 int r; 1877 1878 current_pgpath = READ_ONCE(m->current_pgpath); 1879 if (!current_pgpath) 1880 current_pgpath = choose_pgpath(m, 0); 1881 1882 if (current_pgpath) { 1883 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) { 1884 *bdev = current_pgpath->path.dev->bdev; 1885 r = 0; 1886 } else { 1887 /* pg_init has not started or completed */ 1888 r = -ENOTCONN; 1889 } 1890 } else { 1891 /* No path is available */ 1892 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1893 r = -ENOTCONN; 1894 else 1895 r = -EIO; 1896 } 1897 1898 if (r == -ENOTCONN) { 1899 if (!READ_ONCE(m->current_pg)) { 1900 /* Path status changed, redo selection */ 1901 (void) choose_pgpath(m, 0); 1902 } 1903 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1904 pg_init_all_paths(m); 1905 dm_table_run_md_queue_async(m->ti->table); 1906 process_queued_io_list(m); 1907 } 1908 1909 /* 1910 * Only pass ioctls through if the device sizes match exactly. 1911 */ 1912 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1913 return 1; 1914 return r; 1915 } 1916 1917 static int multipath_iterate_devices(struct dm_target *ti, 1918 iterate_devices_callout_fn fn, void *data) 1919 { 1920 struct multipath *m = ti->private; 1921 struct priority_group *pg; 1922 struct pgpath *p; 1923 int ret = 0; 1924 1925 list_for_each_entry(pg, &m->priority_groups, list) { 1926 list_for_each_entry(p, &pg->pgpaths, list) { 1927 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1928 if (ret) 1929 goto out; 1930 } 1931 } 1932 1933 out: 1934 return ret; 1935 } 1936 1937 static int pgpath_busy(struct pgpath *pgpath) 1938 { 1939 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1940 1941 return blk_lld_busy(q); 1942 } 1943 1944 /* 1945 * We return "busy", only when we can map I/Os but underlying devices 1946 * are busy (so even if we map I/Os now, the I/Os will wait on 1947 * the underlying queue). 1948 * In other words, if we want to kill I/Os or queue them inside us 1949 * due to map unavailability, we don't return "busy". Otherwise, 1950 * dm core won't give us the I/Os and we can't do what we want. 1951 */ 1952 static int multipath_busy(struct dm_target *ti) 1953 { 1954 bool busy = false, has_active = false; 1955 struct multipath *m = ti->private; 1956 struct priority_group *pg, *next_pg; 1957 struct pgpath *pgpath; 1958 1959 /* pg_init in progress */ 1960 if (atomic_read(&m->pg_init_in_progress)) 1961 return true; 1962 1963 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 1964 if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1965 return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED); 1966 1967 /* Guess which priority_group will be used at next mapping time */ 1968 pg = READ_ONCE(m->current_pg); 1969 next_pg = READ_ONCE(m->next_pg); 1970 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg)) 1971 pg = next_pg; 1972 1973 if (!pg) { 1974 /* 1975 * We don't know which pg will be used at next mapping time. 1976 * We don't call choose_pgpath() here to avoid to trigger 1977 * pg_init just by busy checking. 1978 * So we don't know whether underlying devices we will be using 1979 * at next mapping time are busy or not. Just try mapping. 1980 */ 1981 return busy; 1982 } 1983 1984 /* 1985 * If there is one non-busy active path at least, the path selector 1986 * will be able to select it. So we consider such a pg as not busy. 1987 */ 1988 busy = true; 1989 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1990 if (pgpath->is_active) { 1991 has_active = true; 1992 if (!pgpath_busy(pgpath)) { 1993 busy = false; 1994 break; 1995 } 1996 } 1997 } 1998 1999 if (!has_active) { 2000 /* 2001 * No active path in this pg, so this pg won't be used and 2002 * the current_pg will be changed at next mapping time. 2003 * We need to try mapping to determine it. 2004 */ 2005 busy = false; 2006 } 2007 2008 return busy; 2009 } 2010 2011 /*----------------------------------------------------------------- 2012 * Module setup 2013 *---------------------------------------------------------------*/ 2014 static struct target_type multipath_target = { 2015 .name = "multipath", 2016 .version = {1, 13, 0}, 2017 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE | 2018 DM_TARGET_PASSES_INTEGRITY, 2019 .module = THIS_MODULE, 2020 .ctr = multipath_ctr, 2021 .dtr = multipath_dtr, 2022 .clone_and_map_rq = multipath_clone_and_map, 2023 .release_clone_rq = multipath_release_clone, 2024 .rq_end_io = multipath_end_io, 2025 .map = multipath_map_bio, 2026 .end_io = multipath_end_io_bio, 2027 .presuspend = multipath_presuspend, 2028 .postsuspend = multipath_postsuspend, 2029 .resume = multipath_resume, 2030 .status = multipath_status, 2031 .message = multipath_message, 2032 .prepare_ioctl = multipath_prepare_ioctl, 2033 .iterate_devices = multipath_iterate_devices, 2034 .busy = multipath_busy, 2035 }; 2036 2037 static int __init dm_multipath_init(void) 2038 { 2039 int r; 2040 2041 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 2042 if (!kmultipathd) { 2043 DMERR("failed to create workqueue kmpathd"); 2044 r = -ENOMEM; 2045 goto bad_alloc_kmultipathd; 2046 } 2047 2048 /* 2049 * A separate workqueue is used to handle the device handlers 2050 * to avoid overloading existing workqueue. Overloading the 2051 * old workqueue would also create a bottleneck in the 2052 * path of the storage hardware device activation. 2053 */ 2054 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 2055 WQ_MEM_RECLAIM); 2056 if (!kmpath_handlerd) { 2057 DMERR("failed to create workqueue kmpath_handlerd"); 2058 r = -ENOMEM; 2059 goto bad_alloc_kmpath_handlerd; 2060 } 2061 2062 r = dm_register_target(&multipath_target); 2063 if (r < 0) { 2064 DMERR("request-based register failed %d", r); 2065 r = -EINVAL; 2066 goto bad_register_target; 2067 } 2068 2069 return 0; 2070 2071 bad_register_target: 2072 destroy_workqueue(kmpath_handlerd); 2073 bad_alloc_kmpath_handlerd: 2074 destroy_workqueue(kmultipathd); 2075 bad_alloc_kmultipathd: 2076 return r; 2077 } 2078 2079 static void __exit dm_multipath_exit(void) 2080 { 2081 destroy_workqueue(kmpath_handlerd); 2082 destroy_workqueue(kmultipathd); 2083 2084 dm_unregister_target(&multipath_target); 2085 } 2086 2087 module_init(dm_multipath_init); 2088 module_exit(dm_multipath_exit); 2089 2090 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2091 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2092 MODULE_LICENSE("GPL"); 2093