xref: /openbmc/linux/drivers/md/dm-mpath.c (revision 6a23e05c2fe3c64ec012fd81e51e3ab51e4f2f9f)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	unsigned long flags;		/* Multipath state flags */
68 
69 	spinlock_t lock;
70 	enum dm_queue_mode queue_mode;
71 
72 	struct pgpath *current_pgpath;
73 	struct priority_group *current_pg;
74 	struct priority_group *next_pg;	/* Switch to this PG if set */
75 
76 	atomic_t nr_valid_paths;	/* Total number of usable paths */
77 	unsigned nr_priority_groups;
78 	struct list_head priority_groups;
79 
80 	const char *hw_handler_name;
81 	char *hw_handler_params;
82 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
83 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
84 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
85 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
86 	atomic_t pg_init_count;		/* Number of times pg_init called */
87 
88 	struct mutex work_mutex;
89 	struct work_struct trigger_event;
90 	struct dm_target *ti;
91 
92 	struct work_struct process_queued_bios;
93 	struct bio_list queued_bios;
94 };
95 
96 /*
97  * Context information attached to each io we process.
98  */
99 struct dm_mpath_io {
100 	struct pgpath *pgpath;
101 	size_t nr_bytes;
102 };
103 
104 typedef int (*action_fn) (struct pgpath *pgpath);
105 
106 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
107 static void trigger_event(struct work_struct *work);
108 static void activate_or_offline_path(struct pgpath *pgpath);
109 static void activate_path_work(struct work_struct *work);
110 static void process_queued_bios(struct work_struct *work);
111 
112 /*-----------------------------------------------
113  * Multipath state flags.
114  *-----------------------------------------------*/
115 
116 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
117 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
118 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
119 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
120 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
121 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
122 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
123 
124 /*-----------------------------------------------
125  * Allocation routines
126  *-----------------------------------------------*/
127 
128 static struct pgpath *alloc_pgpath(void)
129 {
130 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
131 
132 	if (!pgpath)
133 		return NULL;
134 
135 	pgpath->is_active = true;
136 
137 	return pgpath;
138 }
139 
140 static void free_pgpath(struct pgpath *pgpath)
141 {
142 	kfree(pgpath);
143 }
144 
145 static struct priority_group *alloc_priority_group(void)
146 {
147 	struct priority_group *pg;
148 
149 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
150 
151 	if (pg)
152 		INIT_LIST_HEAD(&pg->pgpaths);
153 
154 	return pg;
155 }
156 
157 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
158 {
159 	struct pgpath *pgpath, *tmp;
160 
161 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
162 		list_del(&pgpath->list);
163 		dm_put_device(ti, pgpath->path.dev);
164 		free_pgpath(pgpath);
165 	}
166 }
167 
168 static void free_priority_group(struct priority_group *pg,
169 				struct dm_target *ti)
170 {
171 	struct path_selector *ps = &pg->ps;
172 
173 	if (ps->type) {
174 		ps->type->destroy(ps);
175 		dm_put_path_selector(ps->type);
176 	}
177 
178 	free_pgpaths(&pg->pgpaths, ti);
179 	kfree(pg);
180 }
181 
182 static struct multipath *alloc_multipath(struct dm_target *ti)
183 {
184 	struct multipath *m;
185 
186 	m = kzalloc(sizeof(*m), GFP_KERNEL);
187 	if (m) {
188 		INIT_LIST_HEAD(&m->priority_groups);
189 		spin_lock_init(&m->lock);
190 		atomic_set(&m->nr_valid_paths, 0);
191 		INIT_WORK(&m->trigger_event, trigger_event);
192 		mutex_init(&m->work_mutex);
193 
194 		m->queue_mode = DM_TYPE_NONE;
195 
196 		m->ti = ti;
197 		ti->private = m;
198 	}
199 
200 	return m;
201 }
202 
203 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
204 {
205 	if (m->queue_mode == DM_TYPE_NONE) {
206 		m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
207 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
208 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
209 		/*
210 		 * bio-based doesn't support any direct scsi_dh management;
211 		 * it just discovers if a scsi_dh is attached.
212 		 */
213 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
214 	}
215 
216 	dm_table_set_type(ti->table, m->queue_mode);
217 
218 	/*
219 	 * Init fields that are only used when a scsi_dh is attached
220 	 * - must do this unconditionally (really doesn't hurt non-SCSI uses)
221 	 */
222 	set_bit(MPATHF_QUEUE_IO, &m->flags);
223 	atomic_set(&m->pg_init_in_progress, 0);
224 	atomic_set(&m->pg_init_count, 0);
225 	m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
226 	init_waitqueue_head(&m->pg_init_wait);
227 
228 	return 0;
229 }
230 
231 static void free_multipath(struct multipath *m)
232 {
233 	struct priority_group *pg, *tmp;
234 
235 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
236 		list_del(&pg->list);
237 		free_priority_group(pg, m->ti);
238 	}
239 
240 	kfree(m->hw_handler_name);
241 	kfree(m->hw_handler_params);
242 	mutex_destroy(&m->work_mutex);
243 	kfree(m);
244 }
245 
246 static struct dm_mpath_io *get_mpio(union map_info *info)
247 {
248 	return info->ptr;
249 }
250 
251 static size_t multipath_per_bio_data_size(void)
252 {
253 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
254 }
255 
256 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
257 {
258 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
259 }
260 
261 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
262 {
263 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
264 	void *bio_details = mpio + 1;
265 	return bio_details;
266 }
267 
268 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
269 {
270 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
271 	struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
272 
273 	mpio->nr_bytes = bio->bi_iter.bi_size;
274 	mpio->pgpath = NULL;
275 	*mpio_p = mpio;
276 
277 	dm_bio_record(bio_details, bio);
278 }
279 
280 /*-----------------------------------------------
281  * Path selection
282  *-----------------------------------------------*/
283 
284 static int __pg_init_all_paths(struct multipath *m)
285 {
286 	struct pgpath *pgpath;
287 	unsigned long pg_init_delay = 0;
288 
289 	lockdep_assert_held(&m->lock);
290 
291 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
292 		return 0;
293 
294 	atomic_inc(&m->pg_init_count);
295 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
296 
297 	/* Check here to reset pg_init_required */
298 	if (!m->current_pg)
299 		return 0;
300 
301 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
302 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
303 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
304 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
305 		/* Skip failed paths */
306 		if (!pgpath->is_active)
307 			continue;
308 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
309 				       pg_init_delay))
310 			atomic_inc(&m->pg_init_in_progress);
311 	}
312 	return atomic_read(&m->pg_init_in_progress);
313 }
314 
315 static int pg_init_all_paths(struct multipath *m)
316 {
317 	int ret;
318 	unsigned long flags;
319 
320 	spin_lock_irqsave(&m->lock, flags);
321 	ret = __pg_init_all_paths(m);
322 	spin_unlock_irqrestore(&m->lock, flags);
323 
324 	return ret;
325 }
326 
327 static void __switch_pg(struct multipath *m, struct priority_group *pg)
328 {
329 	m->current_pg = pg;
330 
331 	/* Must we initialise the PG first, and queue I/O till it's ready? */
332 	if (m->hw_handler_name) {
333 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
334 		set_bit(MPATHF_QUEUE_IO, &m->flags);
335 	} else {
336 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
337 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
338 	}
339 
340 	atomic_set(&m->pg_init_count, 0);
341 }
342 
343 static struct pgpath *choose_path_in_pg(struct multipath *m,
344 					struct priority_group *pg,
345 					size_t nr_bytes)
346 {
347 	unsigned long flags;
348 	struct dm_path *path;
349 	struct pgpath *pgpath;
350 
351 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
352 	if (!path)
353 		return ERR_PTR(-ENXIO);
354 
355 	pgpath = path_to_pgpath(path);
356 
357 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
358 		/* Only update current_pgpath if pg changed */
359 		spin_lock_irqsave(&m->lock, flags);
360 		m->current_pgpath = pgpath;
361 		__switch_pg(m, pg);
362 		spin_unlock_irqrestore(&m->lock, flags);
363 	}
364 
365 	return pgpath;
366 }
367 
368 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
369 {
370 	unsigned long flags;
371 	struct priority_group *pg;
372 	struct pgpath *pgpath;
373 	unsigned bypassed = 1;
374 
375 	if (!atomic_read(&m->nr_valid_paths)) {
376 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
377 		goto failed;
378 	}
379 
380 	/* Were we instructed to switch PG? */
381 	if (READ_ONCE(m->next_pg)) {
382 		spin_lock_irqsave(&m->lock, flags);
383 		pg = m->next_pg;
384 		if (!pg) {
385 			spin_unlock_irqrestore(&m->lock, flags);
386 			goto check_current_pg;
387 		}
388 		m->next_pg = NULL;
389 		spin_unlock_irqrestore(&m->lock, flags);
390 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
391 		if (!IS_ERR_OR_NULL(pgpath))
392 			return pgpath;
393 	}
394 
395 	/* Don't change PG until it has no remaining paths */
396 check_current_pg:
397 	pg = READ_ONCE(m->current_pg);
398 	if (pg) {
399 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
400 		if (!IS_ERR_OR_NULL(pgpath))
401 			return pgpath;
402 	}
403 
404 	/*
405 	 * Loop through priority groups until we find a valid path.
406 	 * First time we skip PGs marked 'bypassed'.
407 	 * Second time we only try the ones we skipped, but set
408 	 * pg_init_delay_retry so we do not hammer controllers.
409 	 */
410 	do {
411 		list_for_each_entry(pg, &m->priority_groups, list) {
412 			if (pg->bypassed == !!bypassed)
413 				continue;
414 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
415 			if (!IS_ERR_OR_NULL(pgpath)) {
416 				if (!bypassed)
417 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
418 				return pgpath;
419 			}
420 		}
421 	} while (bypassed--);
422 
423 failed:
424 	spin_lock_irqsave(&m->lock, flags);
425 	m->current_pgpath = NULL;
426 	m->current_pg = NULL;
427 	spin_unlock_irqrestore(&m->lock, flags);
428 
429 	return NULL;
430 }
431 
432 /*
433  * dm_report_EIO() is a macro instead of a function to make pr_debug()
434  * report the function name and line number of the function from which
435  * it has been invoked.
436  */
437 #define dm_report_EIO(m)						\
438 do {									\
439 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
440 									\
441 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
442 		 dm_device_name(md),					\
443 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
444 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
445 		 dm_noflush_suspending((m)->ti));			\
446 } while (0)
447 
448 /*
449  * Check whether bios must be queued in the device-mapper core rather
450  * than here in the target.
451  *
452  * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold
453  * the same value then we are not between multipath_presuspend()
454  * and multipath_resume() calls and we have no need to check
455  * for the DMF_NOFLUSH_SUSPENDING flag.
456  */
457 static bool __must_push_back(struct multipath *m, unsigned long flags)
458 {
459 	return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) !=
460 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) &&
461 		dm_noflush_suspending(m->ti));
462 }
463 
464 /*
465  * Following functions use READ_ONCE to get atomic access to
466  * all m->flags to avoid taking spinlock
467  */
468 static bool must_push_back_rq(struct multipath *m)
469 {
470 	unsigned long flags = READ_ONCE(m->flags);
471 	return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags);
472 }
473 
474 static bool must_push_back_bio(struct multipath *m)
475 {
476 	unsigned long flags = READ_ONCE(m->flags);
477 	return __must_push_back(m, flags);
478 }
479 
480 /*
481  * Map cloned requests (request-based multipath)
482  */
483 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
484 				   union map_info *map_context,
485 				   struct request **__clone)
486 {
487 	struct multipath *m = ti->private;
488 	size_t nr_bytes = blk_rq_bytes(rq);
489 	struct pgpath *pgpath;
490 	struct block_device *bdev;
491 	struct dm_mpath_io *mpio = get_mpio(map_context);
492 	struct request_queue *q;
493 	struct request *clone;
494 
495 	/* Do we need to select a new pgpath? */
496 	pgpath = READ_ONCE(m->current_pgpath);
497 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
498 		pgpath = choose_pgpath(m, nr_bytes);
499 
500 	if (!pgpath) {
501 		if (must_push_back_rq(m))
502 			return DM_MAPIO_DELAY_REQUEUE;
503 		dm_report_EIO(m);	/* Failed */
504 		return DM_MAPIO_KILL;
505 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
506 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
507 		pg_init_all_paths(m);
508 		return DM_MAPIO_DELAY_REQUEUE;
509 	}
510 
511 	mpio->pgpath = pgpath;
512 	mpio->nr_bytes = nr_bytes;
513 
514 	bdev = pgpath->path.dev->bdev;
515 	q = bdev_get_queue(bdev);
516 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE,
517 			BLK_MQ_REQ_NOWAIT);
518 	if (IS_ERR(clone)) {
519 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
520 		if (blk_queue_dying(q)) {
521 			atomic_inc(&m->pg_init_in_progress);
522 			activate_or_offline_path(pgpath);
523 			return DM_MAPIO_DELAY_REQUEUE;
524 		}
525 
526 		/*
527 		 * blk-mq's SCHED_RESTART can cover this requeue, so we
528 		 * needn't deal with it by DELAY_REQUEUE. More importantly,
529 		 * we have to return DM_MAPIO_REQUEUE so that blk-mq can
530 		 * get the queue busy feedback (via BLK_STS_RESOURCE),
531 		 * otherwise I/O merging can suffer.
532 		 */
533 		return DM_MAPIO_REQUEUE;
534 	}
535 	clone->bio = clone->biotail = NULL;
536 	clone->rq_disk = bdev->bd_disk;
537 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
538 	*__clone = clone;
539 
540 	if (pgpath->pg->ps.type->start_io)
541 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
542 					      &pgpath->path,
543 					      nr_bytes);
544 	return DM_MAPIO_REMAPPED;
545 }
546 
547 static void multipath_release_clone(struct request *clone)
548 {
549 	blk_put_request(clone);
550 }
551 
552 /*
553  * Map cloned bios (bio-based multipath)
554  */
555 
556 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
557 {
558 	struct pgpath *pgpath;
559 	unsigned long flags;
560 	bool queue_io;
561 
562 	/* Do we need to select a new pgpath? */
563 	pgpath = READ_ONCE(m->current_pgpath);
564 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
565 	if (!pgpath || !queue_io)
566 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
567 
568 	if ((pgpath && queue_io) ||
569 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
570 		/* Queue for the daemon to resubmit */
571 		spin_lock_irqsave(&m->lock, flags);
572 		bio_list_add(&m->queued_bios, bio);
573 		spin_unlock_irqrestore(&m->lock, flags);
574 
575 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
576 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
577 			pg_init_all_paths(m);
578 		else if (!queue_io)
579 			queue_work(kmultipathd, &m->process_queued_bios);
580 
581 		return ERR_PTR(-EAGAIN);
582 	}
583 
584 	return pgpath;
585 }
586 
587 static struct pgpath *__map_bio_fast(struct multipath *m, struct bio *bio)
588 {
589 	struct pgpath *pgpath;
590 	unsigned long flags;
591 
592 	/* Do we need to select a new pgpath? */
593 	/*
594 	 * FIXME: currently only switching path if no path (due to failure, etc)
595 	 * - which negates the point of using a path selector
596 	 */
597 	pgpath = READ_ONCE(m->current_pgpath);
598 	if (!pgpath)
599 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
600 
601 	if (!pgpath) {
602 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
603 			/* Queue for the daemon to resubmit */
604 			spin_lock_irqsave(&m->lock, flags);
605 			bio_list_add(&m->queued_bios, bio);
606 			spin_unlock_irqrestore(&m->lock, flags);
607 			queue_work(kmultipathd, &m->process_queued_bios);
608 
609 			return ERR_PTR(-EAGAIN);
610 		}
611 		return NULL;
612 	}
613 
614 	return pgpath;
615 }
616 
617 static int __multipath_map_bio(struct multipath *m, struct bio *bio,
618 			       struct dm_mpath_io *mpio)
619 {
620 	struct pgpath *pgpath;
621 
622 	if (!m->hw_handler_name)
623 		pgpath = __map_bio_fast(m, bio);
624 	else
625 		pgpath = __map_bio(m, bio);
626 
627 	if (IS_ERR(pgpath))
628 		return DM_MAPIO_SUBMITTED;
629 
630 	if (!pgpath) {
631 		if (must_push_back_bio(m))
632 			return DM_MAPIO_REQUEUE;
633 		dm_report_EIO(m);
634 		return DM_MAPIO_KILL;
635 	}
636 
637 	mpio->pgpath = pgpath;
638 
639 	bio->bi_status = 0;
640 	bio_set_dev(bio, pgpath->path.dev->bdev);
641 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
642 
643 	if (pgpath->pg->ps.type->start_io)
644 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
645 					      &pgpath->path,
646 					      mpio->nr_bytes);
647 	return DM_MAPIO_REMAPPED;
648 }
649 
650 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
651 {
652 	struct multipath *m = ti->private;
653 	struct dm_mpath_io *mpio = NULL;
654 
655 	multipath_init_per_bio_data(bio, &mpio);
656 	return __multipath_map_bio(m, bio, mpio);
657 }
658 
659 static void process_queued_io_list(struct multipath *m)
660 {
661 	if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED)
662 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
663 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
664 		queue_work(kmultipathd, &m->process_queued_bios);
665 }
666 
667 static void process_queued_bios(struct work_struct *work)
668 {
669 	int r;
670 	unsigned long flags;
671 	struct bio *bio;
672 	struct bio_list bios;
673 	struct blk_plug plug;
674 	struct multipath *m =
675 		container_of(work, struct multipath, process_queued_bios);
676 
677 	bio_list_init(&bios);
678 
679 	spin_lock_irqsave(&m->lock, flags);
680 
681 	if (bio_list_empty(&m->queued_bios)) {
682 		spin_unlock_irqrestore(&m->lock, flags);
683 		return;
684 	}
685 
686 	bio_list_merge(&bios, &m->queued_bios);
687 	bio_list_init(&m->queued_bios);
688 
689 	spin_unlock_irqrestore(&m->lock, flags);
690 
691 	blk_start_plug(&plug);
692 	while ((bio = bio_list_pop(&bios))) {
693 		struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
694 		dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
695 		r = __multipath_map_bio(m, bio, mpio);
696 		switch (r) {
697 		case DM_MAPIO_KILL:
698 			bio->bi_status = BLK_STS_IOERR;
699 			bio_endio(bio);
700 			break;
701 		case DM_MAPIO_REQUEUE:
702 			bio->bi_status = BLK_STS_DM_REQUEUE;
703 			bio_endio(bio);
704 			break;
705 		case DM_MAPIO_REMAPPED:
706 			generic_make_request(bio);
707 			break;
708 		case DM_MAPIO_SUBMITTED:
709 			break;
710 		default:
711 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
712 		}
713 	}
714 	blk_finish_plug(&plug);
715 }
716 
717 /*
718  * If we run out of usable paths, should we queue I/O or error it?
719  */
720 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
721 			    bool save_old_value)
722 {
723 	unsigned long flags;
724 
725 	spin_lock_irqsave(&m->lock, flags);
726 	assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags,
727 		   (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
728 		   (!save_old_value && queue_if_no_path));
729 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path);
730 	spin_unlock_irqrestore(&m->lock, flags);
731 
732 	if (!queue_if_no_path) {
733 		dm_table_run_md_queue_async(m->ti->table);
734 		process_queued_io_list(m);
735 	}
736 
737 	return 0;
738 }
739 
740 /*
741  * An event is triggered whenever a path is taken out of use.
742  * Includes path failure and PG bypass.
743  */
744 static void trigger_event(struct work_struct *work)
745 {
746 	struct multipath *m =
747 		container_of(work, struct multipath, trigger_event);
748 
749 	dm_table_event(m->ti->table);
750 }
751 
752 /*-----------------------------------------------------------------
753  * Constructor/argument parsing:
754  * <#multipath feature args> [<arg>]*
755  * <#hw_handler args> [hw_handler [<arg>]*]
756  * <#priority groups>
757  * <initial priority group>
758  *     [<selector> <#selector args> [<arg>]*
759  *      <#paths> <#per-path selector args>
760  *         [<path> [<arg>]* ]+ ]+
761  *---------------------------------------------------------------*/
762 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
763 			       struct dm_target *ti)
764 {
765 	int r;
766 	struct path_selector_type *pst;
767 	unsigned ps_argc;
768 
769 	static const struct dm_arg _args[] = {
770 		{0, 1024, "invalid number of path selector args"},
771 	};
772 
773 	pst = dm_get_path_selector(dm_shift_arg(as));
774 	if (!pst) {
775 		ti->error = "unknown path selector type";
776 		return -EINVAL;
777 	}
778 
779 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
780 	if (r) {
781 		dm_put_path_selector(pst);
782 		return -EINVAL;
783 	}
784 
785 	r = pst->create(&pg->ps, ps_argc, as->argv);
786 	if (r) {
787 		dm_put_path_selector(pst);
788 		ti->error = "path selector constructor failed";
789 		return r;
790 	}
791 
792 	pg->ps.type = pst;
793 	dm_consume_args(as, ps_argc);
794 
795 	return 0;
796 }
797 
798 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m,
799 			 const char **attached_handler_name, char **error)
800 {
801 	struct request_queue *q = bdev_get_queue(bdev);
802 	int r;
803 
804 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
805 retain:
806 		if (*attached_handler_name) {
807 			/*
808 			 * Clear any hw_handler_params associated with a
809 			 * handler that isn't already attached.
810 			 */
811 			if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) {
812 				kfree(m->hw_handler_params);
813 				m->hw_handler_params = NULL;
814 			}
815 
816 			/*
817 			 * Reset hw_handler_name to match the attached handler
818 			 *
819 			 * NB. This modifies the table line to show the actual
820 			 * handler instead of the original table passed in.
821 			 */
822 			kfree(m->hw_handler_name);
823 			m->hw_handler_name = *attached_handler_name;
824 			*attached_handler_name = NULL;
825 		}
826 	}
827 
828 	if (m->hw_handler_name) {
829 		r = scsi_dh_attach(q, m->hw_handler_name);
830 		if (r == -EBUSY) {
831 			char b[BDEVNAME_SIZE];
832 
833 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
834 			       bdevname(bdev, b));
835 			goto retain;
836 		}
837 		if (r < 0) {
838 			*error = "error attaching hardware handler";
839 			return r;
840 		}
841 
842 		if (m->hw_handler_params) {
843 			r = scsi_dh_set_params(q, m->hw_handler_params);
844 			if (r < 0) {
845 				*error = "unable to set hardware handler parameters";
846 				return r;
847 			}
848 		}
849 	}
850 
851 	return 0;
852 }
853 
854 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
855 				 struct dm_target *ti)
856 {
857 	int r;
858 	struct pgpath *p;
859 	struct multipath *m = ti->private;
860 	struct request_queue *q;
861 	const char *attached_handler_name = NULL;
862 
863 	/* we need at least a path arg */
864 	if (as->argc < 1) {
865 		ti->error = "no device given";
866 		return ERR_PTR(-EINVAL);
867 	}
868 
869 	p = alloc_pgpath();
870 	if (!p)
871 		return ERR_PTR(-ENOMEM);
872 
873 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
874 			  &p->path.dev);
875 	if (r) {
876 		ti->error = "error getting device";
877 		goto bad;
878 	}
879 
880 	q = bdev_get_queue(p->path.dev->bdev);
881 	attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
882 	if (attached_handler_name || m->hw_handler_name) {
883 		INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
884 		r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error);
885 		if (r) {
886 			dm_put_device(ti, p->path.dev);
887 			goto bad;
888 		}
889 	}
890 
891 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
892 	if (r) {
893 		dm_put_device(ti, p->path.dev);
894 		goto bad;
895 	}
896 
897 	return p;
898  bad:
899 	kfree(attached_handler_name);
900 	free_pgpath(p);
901 	return ERR_PTR(r);
902 }
903 
904 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
905 						   struct multipath *m)
906 {
907 	static const struct dm_arg _args[] = {
908 		{1, 1024, "invalid number of paths"},
909 		{0, 1024, "invalid number of selector args"}
910 	};
911 
912 	int r;
913 	unsigned i, nr_selector_args, nr_args;
914 	struct priority_group *pg;
915 	struct dm_target *ti = m->ti;
916 
917 	if (as->argc < 2) {
918 		as->argc = 0;
919 		ti->error = "not enough priority group arguments";
920 		return ERR_PTR(-EINVAL);
921 	}
922 
923 	pg = alloc_priority_group();
924 	if (!pg) {
925 		ti->error = "couldn't allocate priority group";
926 		return ERR_PTR(-ENOMEM);
927 	}
928 	pg->m = m;
929 
930 	r = parse_path_selector(as, pg, ti);
931 	if (r)
932 		goto bad;
933 
934 	/*
935 	 * read the paths
936 	 */
937 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
938 	if (r)
939 		goto bad;
940 
941 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
942 	if (r)
943 		goto bad;
944 
945 	nr_args = 1 + nr_selector_args;
946 	for (i = 0; i < pg->nr_pgpaths; i++) {
947 		struct pgpath *pgpath;
948 		struct dm_arg_set path_args;
949 
950 		if (as->argc < nr_args) {
951 			ti->error = "not enough path parameters";
952 			r = -EINVAL;
953 			goto bad;
954 		}
955 
956 		path_args.argc = nr_args;
957 		path_args.argv = as->argv;
958 
959 		pgpath = parse_path(&path_args, &pg->ps, ti);
960 		if (IS_ERR(pgpath)) {
961 			r = PTR_ERR(pgpath);
962 			goto bad;
963 		}
964 
965 		pgpath->pg = pg;
966 		list_add_tail(&pgpath->list, &pg->pgpaths);
967 		dm_consume_args(as, nr_args);
968 	}
969 
970 	return pg;
971 
972  bad:
973 	free_priority_group(pg, ti);
974 	return ERR_PTR(r);
975 }
976 
977 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
978 {
979 	unsigned hw_argc;
980 	int ret;
981 	struct dm_target *ti = m->ti;
982 
983 	static const struct dm_arg _args[] = {
984 		{0, 1024, "invalid number of hardware handler args"},
985 	};
986 
987 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
988 		return -EINVAL;
989 
990 	if (!hw_argc)
991 		return 0;
992 
993 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
994 		dm_consume_args(as, hw_argc);
995 		DMERR("bio-based multipath doesn't allow hardware handler args");
996 		return 0;
997 	}
998 
999 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
1000 	if (!m->hw_handler_name)
1001 		return -EINVAL;
1002 
1003 	if (hw_argc > 1) {
1004 		char *p;
1005 		int i, j, len = 4;
1006 
1007 		for (i = 0; i <= hw_argc - 2; i++)
1008 			len += strlen(as->argv[i]) + 1;
1009 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
1010 		if (!p) {
1011 			ti->error = "memory allocation failed";
1012 			ret = -ENOMEM;
1013 			goto fail;
1014 		}
1015 		j = sprintf(p, "%d", hw_argc - 1);
1016 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
1017 			j = sprintf(p, "%s", as->argv[i]);
1018 	}
1019 	dm_consume_args(as, hw_argc - 1);
1020 
1021 	return 0;
1022 fail:
1023 	kfree(m->hw_handler_name);
1024 	m->hw_handler_name = NULL;
1025 	return ret;
1026 }
1027 
1028 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1029 {
1030 	int r;
1031 	unsigned argc;
1032 	struct dm_target *ti = m->ti;
1033 	const char *arg_name;
1034 
1035 	static const struct dm_arg _args[] = {
1036 		{0, 8, "invalid number of feature args"},
1037 		{1, 50, "pg_init_retries must be between 1 and 50"},
1038 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1039 	};
1040 
1041 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1042 	if (r)
1043 		return -EINVAL;
1044 
1045 	if (!argc)
1046 		return 0;
1047 
1048 	do {
1049 		arg_name = dm_shift_arg(as);
1050 		argc--;
1051 
1052 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
1053 			r = queue_if_no_path(m, true, false);
1054 			continue;
1055 		}
1056 
1057 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1058 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
1059 			continue;
1060 		}
1061 
1062 		if (!strcasecmp(arg_name, "pg_init_retries") &&
1063 		    (argc >= 1)) {
1064 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1065 			argc--;
1066 			continue;
1067 		}
1068 
1069 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1070 		    (argc >= 1)) {
1071 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1072 			argc--;
1073 			continue;
1074 		}
1075 
1076 		if (!strcasecmp(arg_name, "queue_mode") &&
1077 		    (argc >= 1)) {
1078 			const char *queue_mode_name = dm_shift_arg(as);
1079 
1080 			if (!strcasecmp(queue_mode_name, "bio"))
1081 				m->queue_mode = DM_TYPE_BIO_BASED;
1082 			else if (!strcasecmp(queue_mode_name, "rq"))
1083 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1084 			else if (!strcasecmp(queue_mode_name, "mq"))
1085 				m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
1086 			else {
1087 				ti->error = "Unknown 'queue_mode' requested";
1088 				r = -EINVAL;
1089 			}
1090 			argc--;
1091 			continue;
1092 		}
1093 
1094 		ti->error = "Unrecognised multipath feature request";
1095 		r = -EINVAL;
1096 	} while (argc && !r);
1097 
1098 	return r;
1099 }
1100 
1101 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1102 {
1103 	/* target arguments */
1104 	static const struct dm_arg _args[] = {
1105 		{0, 1024, "invalid number of priority groups"},
1106 		{0, 1024, "invalid initial priority group number"},
1107 	};
1108 
1109 	int r;
1110 	struct multipath *m;
1111 	struct dm_arg_set as;
1112 	unsigned pg_count = 0;
1113 	unsigned next_pg_num;
1114 
1115 	as.argc = argc;
1116 	as.argv = argv;
1117 
1118 	m = alloc_multipath(ti);
1119 	if (!m) {
1120 		ti->error = "can't allocate multipath";
1121 		return -EINVAL;
1122 	}
1123 
1124 	r = parse_features(&as, m);
1125 	if (r)
1126 		goto bad;
1127 
1128 	r = alloc_multipath_stage2(ti, m);
1129 	if (r)
1130 		goto bad;
1131 
1132 	r = parse_hw_handler(&as, m);
1133 	if (r)
1134 		goto bad;
1135 
1136 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1137 	if (r)
1138 		goto bad;
1139 
1140 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1141 	if (r)
1142 		goto bad;
1143 
1144 	if ((!m->nr_priority_groups && next_pg_num) ||
1145 	    (m->nr_priority_groups && !next_pg_num)) {
1146 		ti->error = "invalid initial priority group";
1147 		r = -EINVAL;
1148 		goto bad;
1149 	}
1150 
1151 	/* parse the priority groups */
1152 	while (as.argc) {
1153 		struct priority_group *pg;
1154 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1155 
1156 		pg = parse_priority_group(&as, m);
1157 		if (IS_ERR(pg)) {
1158 			r = PTR_ERR(pg);
1159 			goto bad;
1160 		}
1161 
1162 		nr_valid_paths += pg->nr_pgpaths;
1163 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1164 
1165 		list_add_tail(&pg->list, &m->priority_groups);
1166 		pg_count++;
1167 		pg->pg_num = pg_count;
1168 		if (!--next_pg_num)
1169 			m->next_pg = pg;
1170 	}
1171 
1172 	if (pg_count != m->nr_priority_groups) {
1173 		ti->error = "priority group count mismatch";
1174 		r = -EINVAL;
1175 		goto bad;
1176 	}
1177 
1178 	ti->num_flush_bios = 1;
1179 	ti->num_discard_bios = 1;
1180 	ti->num_write_same_bios = 1;
1181 	ti->num_write_zeroes_bios = 1;
1182 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1183 		ti->per_io_data_size = multipath_per_bio_data_size();
1184 	else
1185 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1186 
1187 	return 0;
1188 
1189  bad:
1190 	free_multipath(m);
1191 	return r;
1192 }
1193 
1194 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1195 {
1196 	DEFINE_WAIT(wait);
1197 
1198 	while (1) {
1199 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1200 
1201 		if (!atomic_read(&m->pg_init_in_progress))
1202 			break;
1203 
1204 		io_schedule();
1205 	}
1206 	finish_wait(&m->pg_init_wait, &wait);
1207 }
1208 
1209 static void flush_multipath_work(struct multipath *m)
1210 {
1211 	if (m->hw_handler_name) {
1212 		set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1213 		smp_mb__after_atomic();
1214 
1215 		flush_workqueue(kmpath_handlerd);
1216 		multipath_wait_for_pg_init_completion(m);
1217 
1218 		clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1219 		smp_mb__after_atomic();
1220 	}
1221 
1222 	flush_workqueue(kmultipathd);
1223 	flush_work(&m->trigger_event);
1224 }
1225 
1226 static void multipath_dtr(struct dm_target *ti)
1227 {
1228 	struct multipath *m = ti->private;
1229 
1230 	flush_multipath_work(m);
1231 	free_multipath(m);
1232 }
1233 
1234 /*
1235  * Take a path out of use.
1236  */
1237 static int fail_path(struct pgpath *pgpath)
1238 {
1239 	unsigned long flags;
1240 	struct multipath *m = pgpath->pg->m;
1241 
1242 	spin_lock_irqsave(&m->lock, flags);
1243 
1244 	if (!pgpath->is_active)
1245 		goto out;
1246 
1247 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1248 
1249 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1250 	pgpath->is_active = false;
1251 	pgpath->fail_count++;
1252 
1253 	atomic_dec(&m->nr_valid_paths);
1254 
1255 	if (pgpath == m->current_pgpath)
1256 		m->current_pgpath = NULL;
1257 
1258 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1259 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1260 
1261 	schedule_work(&m->trigger_event);
1262 
1263 out:
1264 	spin_unlock_irqrestore(&m->lock, flags);
1265 
1266 	return 0;
1267 }
1268 
1269 /*
1270  * Reinstate a previously-failed path
1271  */
1272 static int reinstate_path(struct pgpath *pgpath)
1273 {
1274 	int r = 0, run_queue = 0;
1275 	unsigned long flags;
1276 	struct multipath *m = pgpath->pg->m;
1277 	unsigned nr_valid_paths;
1278 
1279 	spin_lock_irqsave(&m->lock, flags);
1280 
1281 	if (pgpath->is_active)
1282 		goto out;
1283 
1284 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1285 
1286 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1287 	if (r)
1288 		goto out;
1289 
1290 	pgpath->is_active = true;
1291 
1292 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1293 	if (nr_valid_paths == 1) {
1294 		m->current_pgpath = NULL;
1295 		run_queue = 1;
1296 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1297 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1298 			atomic_inc(&m->pg_init_in_progress);
1299 	}
1300 
1301 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1302 		       pgpath->path.dev->name, nr_valid_paths);
1303 
1304 	schedule_work(&m->trigger_event);
1305 
1306 out:
1307 	spin_unlock_irqrestore(&m->lock, flags);
1308 	if (run_queue) {
1309 		dm_table_run_md_queue_async(m->ti->table);
1310 		process_queued_io_list(m);
1311 	}
1312 
1313 	return r;
1314 }
1315 
1316 /*
1317  * Fail or reinstate all paths that match the provided struct dm_dev.
1318  */
1319 static int action_dev(struct multipath *m, struct dm_dev *dev,
1320 		      action_fn action)
1321 {
1322 	int r = -EINVAL;
1323 	struct pgpath *pgpath;
1324 	struct priority_group *pg;
1325 
1326 	list_for_each_entry(pg, &m->priority_groups, list) {
1327 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1328 			if (pgpath->path.dev == dev)
1329 				r = action(pgpath);
1330 		}
1331 	}
1332 
1333 	return r;
1334 }
1335 
1336 /*
1337  * Temporarily try to avoid having to use the specified PG
1338  */
1339 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1340 		      bool bypassed)
1341 {
1342 	unsigned long flags;
1343 
1344 	spin_lock_irqsave(&m->lock, flags);
1345 
1346 	pg->bypassed = bypassed;
1347 	m->current_pgpath = NULL;
1348 	m->current_pg = NULL;
1349 
1350 	spin_unlock_irqrestore(&m->lock, flags);
1351 
1352 	schedule_work(&m->trigger_event);
1353 }
1354 
1355 /*
1356  * Switch to using the specified PG from the next I/O that gets mapped
1357  */
1358 static int switch_pg_num(struct multipath *m, const char *pgstr)
1359 {
1360 	struct priority_group *pg;
1361 	unsigned pgnum;
1362 	unsigned long flags;
1363 	char dummy;
1364 
1365 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1366 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1367 		DMWARN("invalid PG number supplied to switch_pg_num");
1368 		return -EINVAL;
1369 	}
1370 
1371 	spin_lock_irqsave(&m->lock, flags);
1372 	list_for_each_entry(pg, &m->priority_groups, list) {
1373 		pg->bypassed = false;
1374 		if (--pgnum)
1375 			continue;
1376 
1377 		m->current_pgpath = NULL;
1378 		m->current_pg = NULL;
1379 		m->next_pg = pg;
1380 	}
1381 	spin_unlock_irqrestore(&m->lock, flags);
1382 
1383 	schedule_work(&m->trigger_event);
1384 	return 0;
1385 }
1386 
1387 /*
1388  * Set/clear bypassed status of a PG.
1389  * PGs are numbered upwards from 1 in the order they were declared.
1390  */
1391 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1392 {
1393 	struct priority_group *pg;
1394 	unsigned pgnum;
1395 	char dummy;
1396 
1397 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1398 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1399 		DMWARN("invalid PG number supplied to bypass_pg");
1400 		return -EINVAL;
1401 	}
1402 
1403 	list_for_each_entry(pg, &m->priority_groups, list) {
1404 		if (!--pgnum)
1405 			break;
1406 	}
1407 
1408 	bypass_pg(m, pg, bypassed);
1409 	return 0;
1410 }
1411 
1412 /*
1413  * Should we retry pg_init immediately?
1414  */
1415 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1416 {
1417 	unsigned long flags;
1418 	bool limit_reached = false;
1419 
1420 	spin_lock_irqsave(&m->lock, flags);
1421 
1422 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1423 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1424 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1425 	else
1426 		limit_reached = true;
1427 
1428 	spin_unlock_irqrestore(&m->lock, flags);
1429 
1430 	return limit_reached;
1431 }
1432 
1433 static void pg_init_done(void *data, int errors)
1434 {
1435 	struct pgpath *pgpath = data;
1436 	struct priority_group *pg = pgpath->pg;
1437 	struct multipath *m = pg->m;
1438 	unsigned long flags;
1439 	bool delay_retry = false;
1440 
1441 	/* device or driver problems */
1442 	switch (errors) {
1443 	case SCSI_DH_OK:
1444 		break;
1445 	case SCSI_DH_NOSYS:
1446 		if (!m->hw_handler_name) {
1447 			errors = 0;
1448 			break;
1449 		}
1450 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1451 		      "Error %d.", m->hw_handler_name, errors);
1452 		/*
1453 		 * Fail path for now, so we do not ping pong
1454 		 */
1455 		fail_path(pgpath);
1456 		break;
1457 	case SCSI_DH_DEV_TEMP_BUSY:
1458 		/*
1459 		 * Probably doing something like FW upgrade on the
1460 		 * controller so try the other pg.
1461 		 */
1462 		bypass_pg(m, pg, true);
1463 		break;
1464 	case SCSI_DH_RETRY:
1465 		/* Wait before retrying. */
1466 		delay_retry = 1;
1467 		/* fall through */
1468 	case SCSI_DH_IMM_RETRY:
1469 	case SCSI_DH_RES_TEMP_UNAVAIL:
1470 		if (pg_init_limit_reached(m, pgpath))
1471 			fail_path(pgpath);
1472 		errors = 0;
1473 		break;
1474 	case SCSI_DH_DEV_OFFLINED:
1475 	default:
1476 		/*
1477 		 * We probably do not want to fail the path for a device
1478 		 * error, but this is what the old dm did. In future
1479 		 * patches we can do more advanced handling.
1480 		 */
1481 		fail_path(pgpath);
1482 	}
1483 
1484 	spin_lock_irqsave(&m->lock, flags);
1485 	if (errors) {
1486 		if (pgpath == m->current_pgpath) {
1487 			DMERR("Could not failover device. Error %d.", errors);
1488 			m->current_pgpath = NULL;
1489 			m->current_pg = NULL;
1490 		}
1491 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1492 		pg->bypassed = false;
1493 
1494 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1495 		/* Activations of other paths are still on going */
1496 		goto out;
1497 
1498 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1499 		if (delay_retry)
1500 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1501 		else
1502 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1503 
1504 		if (__pg_init_all_paths(m))
1505 			goto out;
1506 	}
1507 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1508 
1509 	process_queued_io_list(m);
1510 
1511 	/*
1512 	 * Wake up any thread waiting to suspend.
1513 	 */
1514 	wake_up(&m->pg_init_wait);
1515 
1516 out:
1517 	spin_unlock_irqrestore(&m->lock, flags);
1518 }
1519 
1520 static void activate_or_offline_path(struct pgpath *pgpath)
1521 {
1522 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1523 
1524 	if (pgpath->is_active && !blk_queue_dying(q))
1525 		scsi_dh_activate(q, pg_init_done, pgpath);
1526 	else
1527 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1528 }
1529 
1530 static void activate_path_work(struct work_struct *work)
1531 {
1532 	struct pgpath *pgpath =
1533 		container_of(work, struct pgpath, activate_path.work);
1534 
1535 	activate_or_offline_path(pgpath);
1536 }
1537 
1538 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1539 			    blk_status_t error, union map_info *map_context)
1540 {
1541 	struct dm_mpath_io *mpio = get_mpio(map_context);
1542 	struct pgpath *pgpath = mpio->pgpath;
1543 	int r = DM_ENDIO_DONE;
1544 
1545 	/*
1546 	 * We don't queue any clone request inside the multipath target
1547 	 * during end I/O handling, since those clone requests don't have
1548 	 * bio clones.  If we queue them inside the multipath target,
1549 	 * we need to make bio clones, that requires memory allocation.
1550 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1551 	 *  don't have bio clones.)
1552 	 * Instead of queueing the clone request here, we queue the original
1553 	 * request into dm core, which will remake a clone request and
1554 	 * clone bios for it and resubmit it later.
1555 	 */
1556 	if (error && blk_path_error(error)) {
1557 		struct multipath *m = ti->private;
1558 
1559 		if (error == BLK_STS_RESOURCE)
1560 			r = DM_ENDIO_DELAY_REQUEUE;
1561 		else
1562 			r = DM_ENDIO_REQUEUE;
1563 
1564 		if (pgpath)
1565 			fail_path(pgpath);
1566 
1567 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1568 		    !must_push_back_rq(m)) {
1569 			if (error == BLK_STS_IOERR)
1570 				dm_report_EIO(m);
1571 			/* complete with the original error */
1572 			r = DM_ENDIO_DONE;
1573 		}
1574 	}
1575 
1576 	if (pgpath) {
1577 		struct path_selector *ps = &pgpath->pg->ps;
1578 
1579 		if (ps->type->end_io)
1580 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1581 	}
1582 
1583 	return r;
1584 }
1585 
1586 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1587 				blk_status_t *error)
1588 {
1589 	struct multipath *m = ti->private;
1590 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1591 	struct pgpath *pgpath = mpio->pgpath;
1592 	unsigned long flags;
1593 	int r = DM_ENDIO_DONE;
1594 
1595 	if (!*error || !blk_path_error(*error))
1596 		goto done;
1597 
1598 	if (pgpath)
1599 		fail_path(pgpath);
1600 
1601 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1602 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1603 		if (must_push_back_bio(m)) {
1604 			r = DM_ENDIO_REQUEUE;
1605 		} else {
1606 			dm_report_EIO(m);
1607 			*error = BLK_STS_IOERR;
1608 		}
1609 		goto done;
1610 	}
1611 
1612 	spin_lock_irqsave(&m->lock, flags);
1613 	bio_list_add(&m->queued_bios, clone);
1614 	spin_unlock_irqrestore(&m->lock, flags);
1615 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1616 		queue_work(kmultipathd, &m->process_queued_bios);
1617 
1618 	r = DM_ENDIO_INCOMPLETE;
1619 done:
1620 	if (pgpath) {
1621 		struct path_selector *ps = &pgpath->pg->ps;
1622 
1623 		if (ps->type->end_io)
1624 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1625 	}
1626 
1627 	return r;
1628 }
1629 
1630 /*
1631  * Suspend can't complete until all the I/O is processed so if
1632  * the last path fails we must error any remaining I/O.
1633  * Note that if the freeze_bdev fails while suspending, the
1634  * queue_if_no_path state is lost - userspace should reset it.
1635  */
1636 static void multipath_presuspend(struct dm_target *ti)
1637 {
1638 	struct multipath *m = ti->private;
1639 
1640 	queue_if_no_path(m, false, true);
1641 }
1642 
1643 static void multipath_postsuspend(struct dm_target *ti)
1644 {
1645 	struct multipath *m = ti->private;
1646 
1647 	mutex_lock(&m->work_mutex);
1648 	flush_multipath_work(m);
1649 	mutex_unlock(&m->work_mutex);
1650 }
1651 
1652 /*
1653  * Restore the queue_if_no_path setting.
1654  */
1655 static void multipath_resume(struct dm_target *ti)
1656 {
1657 	struct multipath *m = ti->private;
1658 	unsigned long flags;
1659 
1660 	spin_lock_irqsave(&m->lock, flags);
1661 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
1662 		   test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1663 	spin_unlock_irqrestore(&m->lock, flags);
1664 }
1665 
1666 /*
1667  * Info output has the following format:
1668  * num_multipath_feature_args [multipath_feature_args]*
1669  * num_handler_status_args [handler_status_args]*
1670  * num_groups init_group_number
1671  *            [A|D|E num_ps_status_args [ps_status_args]*
1672  *             num_paths num_selector_args
1673  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1674  *
1675  * Table output has the following format (identical to the constructor string):
1676  * num_feature_args [features_args]*
1677  * num_handler_args hw_handler [hw_handler_args]*
1678  * num_groups init_group_number
1679  *     [priority selector-name num_ps_args [ps_args]*
1680  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1681  */
1682 static void multipath_status(struct dm_target *ti, status_type_t type,
1683 			     unsigned status_flags, char *result, unsigned maxlen)
1684 {
1685 	int sz = 0;
1686 	unsigned long flags;
1687 	struct multipath *m = ti->private;
1688 	struct priority_group *pg;
1689 	struct pgpath *p;
1690 	unsigned pg_num;
1691 	char state;
1692 
1693 	spin_lock_irqsave(&m->lock, flags);
1694 
1695 	/* Features */
1696 	if (type == STATUSTYPE_INFO)
1697 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1698 		       atomic_read(&m->pg_init_count));
1699 	else {
1700 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1701 			      (m->pg_init_retries > 0) * 2 +
1702 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1703 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1704 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1705 
1706 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1707 			DMEMIT("queue_if_no_path ");
1708 		if (m->pg_init_retries)
1709 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1710 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1711 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1712 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1713 			DMEMIT("retain_attached_hw_handler ");
1714 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1715 			switch(m->queue_mode) {
1716 			case DM_TYPE_BIO_BASED:
1717 				DMEMIT("queue_mode bio ");
1718 				break;
1719 			case DM_TYPE_MQ_REQUEST_BASED:
1720 				DMEMIT("queue_mode mq ");
1721 				break;
1722 			default:
1723 				WARN_ON_ONCE(true);
1724 				break;
1725 			}
1726 		}
1727 	}
1728 
1729 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1730 		DMEMIT("0 ");
1731 	else
1732 		DMEMIT("1 %s ", m->hw_handler_name);
1733 
1734 	DMEMIT("%u ", m->nr_priority_groups);
1735 
1736 	if (m->next_pg)
1737 		pg_num = m->next_pg->pg_num;
1738 	else if (m->current_pg)
1739 		pg_num = m->current_pg->pg_num;
1740 	else
1741 		pg_num = (m->nr_priority_groups ? 1 : 0);
1742 
1743 	DMEMIT("%u ", pg_num);
1744 
1745 	switch (type) {
1746 	case STATUSTYPE_INFO:
1747 		list_for_each_entry(pg, &m->priority_groups, list) {
1748 			if (pg->bypassed)
1749 				state = 'D';	/* Disabled */
1750 			else if (pg == m->current_pg)
1751 				state = 'A';	/* Currently Active */
1752 			else
1753 				state = 'E';	/* Enabled */
1754 
1755 			DMEMIT("%c ", state);
1756 
1757 			if (pg->ps.type->status)
1758 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1759 							  result + sz,
1760 							  maxlen - sz);
1761 			else
1762 				DMEMIT("0 ");
1763 
1764 			DMEMIT("%u %u ", pg->nr_pgpaths,
1765 			       pg->ps.type->info_args);
1766 
1767 			list_for_each_entry(p, &pg->pgpaths, list) {
1768 				DMEMIT("%s %s %u ", p->path.dev->name,
1769 				       p->is_active ? "A" : "F",
1770 				       p->fail_count);
1771 				if (pg->ps.type->status)
1772 					sz += pg->ps.type->status(&pg->ps,
1773 					      &p->path, type, result + sz,
1774 					      maxlen - sz);
1775 			}
1776 		}
1777 		break;
1778 
1779 	case STATUSTYPE_TABLE:
1780 		list_for_each_entry(pg, &m->priority_groups, list) {
1781 			DMEMIT("%s ", pg->ps.type->name);
1782 
1783 			if (pg->ps.type->status)
1784 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1785 							  result + sz,
1786 							  maxlen - sz);
1787 			else
1788 				DMEMIT("0 ");
1789 
1790 			DMEMIT("%u %u ", pg->nr_pgpaths,
1791 			       pg->ps.type->table_args);
1792 
1793 			list_for_each_entry(p, &pg->pgpaths, list) {
1794 				DMEMIT("%s ", p->path.dev->name);
1795 				if (pg->ps.type->status)
1796 					sz += pg->ps.type->status(&pg->ps,
1797 					      &p->path, type, result + sz,
1798 					      maxlen - sz);
1799 			}
1800 		}
1801 		break;
1802 	}
1803 
1804 	spin_unlock_irqrestore(&m->lock, flags);
1805 }
1806 
1807 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv,
1808 			     char *result, unsigned maxlen)
1809 {
1810 	int r = -EINVAL;
1811 	struct dm_dev *dev;
1812 	struct multipath *m = ti->private;
1813 	action_fn action;
1814 
1815 	mutex_lock(&m->work_mutex);
1816 
1817 	if (dm_suspended(ti)) {
1818 		r = -EBUSY;
1819 		goto out;
1820 	}
1821 
1822 	if (argc == 1) {
1823 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1824 			r = queue_if_no_path(m, true, false);
1825 			goto out;
1826 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1827 			r = queue_if_no_path(m, false, false);
1828 			goto out;
1829 		}
1830 	}
1831 
1832 	if (argc != 2) {
1833 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1834 		goto out;
1835 	}
1836 
1837 	if (!strcasecmp(argv[0], "disable_group")) {
1838 		r = bypass_pg_num(m, argv[1], true);
1839 		goto out;
1840 	} else if (!strcasecmp(argv[0], "enable_group")) {
1841 		r = bypass_pg_num(m, argv[1], false);
1842 		goto out;
1843 	} else if (!strcasecmp(argv[0], "switch_group")) {
1844 		r = switch_pg_num(m, argv[1]);
1845 		goto out;
1846 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1847 		action = reinstate_path;
1848 	else if (!strcasecmp(argv[0], "fail_path"))
1849 		action = fail_path;
1850 	else {
1851 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1852 		goto out;
1853 	}
1854 
1855 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1856 	if (r) {
1857 		DMWARN("message: error getting device %s",
1858 		       argv[1]);
1859 		goto out;
1860 	}
1861 
1862 	r = action_dev(m, dev, action);
1863 
1864 	dm_put_device(ti, dev);
1865 
1866 out:
1867 	mutex_unlock(&m->work_mutex);
1868 	return r;
1869 }
1870 
1871 static int multipath_prepare_ioctl(struct dm_target *ti,
1872 				   struct block_device **bdev)
1873 {
1874 	struct multipath *m = ti->private;
1875 	struct pgpath *current_pgpath;
1876 	int r;
1877 
1878 	current_pgpath = READ_ONCE(m->current_pgpath);
1879 	if (!current_pgpath)
1880 		current_pgpath = choose_pgpath(m, 0);
1881 
1882 	if (current_pgpath) {
1883 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1884 			*bdev = current_pgpath->path.dev->bdev;
1885 			r = 0;
1886 		} else {
1887 			/* pg_init has not started or completed */
1888 			r = -ENOTCONN;
1889 		}
1890 	} else {
1891 		/* No path is available */
1892 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1893 			r = -ENOTCONN;
1894 		else
1895 			r = -EIO;
1896 	}
1897 
1898 	if (r == -ENOTCONN) {
1899 		if (!READ_ONCE(m->current_pg)) {
1900 			/* Path status changed, redo selection */
1901 			(void) choose_pgpath(m, 0);
1902 		}
1903 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1904 			pg_init_all_paths(m);
1905 		dm_table_run_md_queue_async(m->ti->table);
1906 		process_queued_io_list(m);
1907 	}
1908 
1909 	/*
1910 	 * Only pass ioctls through if the device sizes match exactly.
1911 	 */
1912 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1913 		return 1;
1914 	return r;
1915 }
1916 
1917 static int multipath_iterate_devices(struct dm_target *ti,
1918 				     iterate_devices_callout_fn fn, void *data)
1919 {
1920 	struct multipath *m = ti->private;
1921 	struct priority_group *pg;
1922 	struct pgpath *p;
1923 	int ret = 0;
1924 
1925 	list_for_each_entry(pg, &m->priority_groups, list) {
1926 		list_for_each_entry(p, &pg->pgpaths, list) {
1927 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1928 			if (ret)
1929 				goto out;
1930 		}
1931 	}
1932 
1933 out:
1934 	return ret;
1935 }
1936 
1937 static int pgpath_busy(struct pgpath *pgpath)
1938 {
1939 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1940 
1941 	return blk_lld_busy(q);
1942 }
1943 
1944 /*
1945  * We return "busy", only when we can map I/Os but underlying devices
1946  * are busy (so even if we map I/Os now, the I/Os will wait on
1947  * the underlying queue).
1948  * In other words, if we want to kill I/Os or queue them inside us
1949  * due to map unavailability, we don't return "busy".  Otherwise,
1950  * dm core won't give us the I/Os and we can't do what we want.
1951  */
1952 static int multipath_busy(struct dm_target *ti)
1953 {
1954 	bool busy = false, has_active = false;
1955 	struct multipath *m = ti->private;
1956 	struct priority_group *pg, *next_pg;
1957 	struct pgpath *pgpath;
1958 
1959 	/* pg_init in progress */
1960 	if (atomic_read(&m->pg_init_in_progress))
1961 		return true;
1962 
1963 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1964 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1965 		return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED);
1966 
1967 	/* Guess which priority_group will be used at next mapping time */
1968 	pg = READ_ONCE(m->current_pg);
1969 	next_pg = READ_ONCE(m->next_pg);
1970 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
1971 		pg = next_pg;
1972 
1973 	if (!pg) {
1974 		/*
1975 		 * We don't know which pg will be used at next mapping time.
1976 		 * We don't call choose_pgpath() here to avoid to trigger
1977 		 * pg_init just by busy checking.
1978 		 * So we don't know whether underlying devices we will be using
1979 		 * at next mapping time are busy or not. Just try mapping.
1980 		 */
1981 		return busy;
1982 	}
1983 
1984 	/*
1985 	 * If there is one non-busy active path at least, the path selector
1986 	 * will be able to select it. So we consider such a pg as not busy.
1987 	 */
1988 	busy = true;
1989 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
1990 		if (pgpath->is_active) {
1991 			has_active = true;
1992 			if (!pgpath_busy(pgpath)) {
1993 				busy = false;
1994 				break;
1995 			}
1996 		}
1997 	}
1998 
1999 	if (!has_active) {
2000 		/*
2001 		 * No active path in this pg, so this pg won't be used and
2002 		 * the current_pg will be changed at next mapping time.
2003 		 * We need to try mapping to determine it.
2004 		 */
2005 		busy = false;
2006 	}
2007 
2008 	return busy;
2009 }
2010 
2011 /*-----------------------------------------------------------------
2012  * Module setup
2013  *---------------------------------------------------------------*/
2014 static struct target_type multipath_target = {
2015 	.name = "multipath",
2016 	.version = {1, 13, 0},
2017 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE |
2018 		    DM_TARGET_PASSES_INTEGRITY,
2019 	.module = THIS_MODULE,
2020 	.ctr = multipath_ctr,
2021 	.dtr = multipath_dtr,
2022 	.clone_and_map_rq = multipath_clone_and_map,
2023 	.release_clone_rq = multipath_release_clone,
2024 	.rq_end_io = multipath_end_io,
2025 	.map = multipath_map_bio,
2026 	.end_io = multipath_end_io_bio,
2027 	.presuspend = multipath_presuspend,
2028 	.postsuspend = multipath_postsuspend,
2029 	.resume = multipath_resume,
2030 	.status = multipath_status,
2031 	.message = multipath_message,
2032 	.prepare_ioctl = multipath_prepare_ioctl,
2033 	.iterate_devices = multipath_iterate_devices,
2034 	.busy = multipath_busy,
2035 };
2036 
2037 static int __init dm_multipath_init(void)
2038 {
2039 	int r;
2040 
2041 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2042 	if (!kmultipathd) {
2043 		DMERR("failed to create workqueue kmpathd");
2044 		r = -ENOMEM;
2045 		goto bad_alloc_kmultipathd;
2046 	}
2047 
2048 	/*
2049 	 * A separate workqueue is used to handle the device handlers
2050 	 * to avoid overloading existing workqueue. Overloading the
2051 	 * old workqueue would also create a bottleneck in the
2052 	 * path of the storage hardware device activation.
2053 	 */
2054 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2055 						  WQ_MEM_RECLAIM);
2056 	if (!kmpath_handlerd) {
2057 		DMERR("failed to create workqueue kmpath_handlerd");
2058 		r = -ENOMEM;
2059 		goto bad_alloc_kmpath_handlerd;
2060 	}
2061 
2062 	r = dm_register_target(&multipath_target);
2063 	if (r < 0) {
2064 		DMERR("request-based register failed %d", r);
2065 		r = -EINVAL;
2066 		goto bad_register_target;
2067 	}
2068 
2069 	return 0;
2070 
2071 bad_register_target:
2072 	destroy_workqueue(kmpath_handlerd);
2073 bad_alloc_kmpath_handlerd:
2074 	destroy_workqueue(kmultipathd);
2075 bad_alloc_kmultipathd:
2076 	return r;
2077 }
2078 
2079 static void __exit dm_multipath_exit(void)
2080 {
2081 	destroy_workqueue(kmpath_handlerd);
2082 	destroy_workqueue(kmultipathd);
2083 
2084 	dm_unregister_target(&multipath_target);
2085 }
2086 
2087 module_init(dm_multipath_init);
2088 module_exit(dm_multipath_exit);
2089 
2090 MODULE_DESCRIPTION(DM_NAME " multipath target");
2091 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2092 MODULE_LICENSE("GPL");
2093