1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-path-selector.h" 11 #include "dm-uevent.h" 12 13 #include <linux/ctype.h> 14 #include <linux/init.h> 15 #include <linux/mempool.h> 16 #include <linux/module.h> 17 #include <linux/pagemap.h> 18 #include <linux/slab.h> 19 #include <linux/time.h> 20 #include <linux/workqueue.h> 21 #include <scsi/scsi_dh.h> 22 #include <asm/atomic.h> 23 24 #define DM_MSG_PREFIX "multipath" 25 #define MESG_STR(x) x, sizeof(x) 26 27 /* Path properties */ 28 struct pgpath { 29 struct list_head list; 30 31 struct priority_group *pg; /* Owning PG */ 32 unsigned is_active; /* Path status */ 33 unsigned fail_count; /* Cumulative failure count */ 34 35 struct dm_path path; 36 struct work_struct deactivate_path; 37 struct work_struct activate_path; 38 }; 39 40 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 41 42 /* 43 * Paths are grouped into Priority Groups and numbered from 1 upwards. 44 * Each has a path selector which controls which path gets used. 45 */ 46 struct priority_group { 47 struct list_head list; 48 49 struct multipath *m; /* Owning multipath instance */ 50 struct path_selector ps; 51 52 unsigned pg_num; /* Reference number */ 53 unsigned bypassed; /* Temporarily bypass this PG? */ 54 55 unsigned nr_pgpaths; /* Number of paths in PG */ 56 struct list_head pgpaths; 57 }; 58 59 /* Multipath context */ 60 struct multipath { 61 struct list_head list; 62 struct dm_target *ti; 63 64 spinlock_t lock; 65 66 const char *hw_handler_name; 67 char *hw_handler_params; 68 unsigned nr_priority_groups; 69 struct list_head priority_groups; 70 unsigned pg_init_required; /* pg_init needs calling? */ 71 unsigned pg_init_in_progress; /* Only one pg_init allowed at once */ 72 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 73 74 unsigned nr_valid_paths; /* Total number of usable paths */ 75 struct pgpath *current_pgpath; 76 struct priority_group *current_pg; 77 struct priority_group *next_pg; /* Switch to this PG if set */ 78 unsigned repeat_count; /* I/Os left before calling PS again */ 79 80 unsigned queue_io; /* Must we queue all I/O? */ 81 unsigned queue_if_no_path; /* Queue I/O if last path fails? */ 82 unsigned saved_queue_if_no_path;/* Saved state during suspension */ 83 unsigned pg_init_retries; /* Number of times to retry pg_init */ 84 unsigned pg_init_count; /* Number of times pg_init called */ 85 86 struct work_struct process_queued_ios; 87 struct list_head queued_ios; 88 unsigned queue_size; 89 90 struct work_struct trigger_event; 91 92 /* 93 * We must use a mempool of dm_mpath_io structs so that we 94 * can resubmit bios on error. 95 */ 96 mempool_t *mpio_pool; 97 98 struct mutex work_mutex; 99 }; 100 101 /* 102 * Context information attached to each bio we process. 103 */ 104 struct dm_mpath_io { 105 struct pgpath *pgpath; 106 size_t nr_bytes; 107 }; 108 109 typedef int (*action_fn) (struct pgpath *pgpath); 110 111 #define MIN_IOS 256 /* Mempool size */ 112 113 static struct kmem_cache *_mpio_cache; 114 115 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 116 static void process_queued_ios(struct work_struct *work); 117 static void trigger_event(struct work_struct *work); 118 static void activate_path(struct work_struct *work); 119 static void deactivate_path(struct work_struct *work); 120 121 122 /*----------------------------------------------- 123 * Allocation routines 124 *-----------------------------------------------*/ 125 126 static struct pgpath *alloc_pgpath(void) 127 { 128 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 129 130 if (pgpath) { 131 pgpath->is_active = 1; 132 INIT_WORK(&pgpath->deactivate_path, deactivate_path); 133 INIT_WORK(&pgpath->activate_path, activate_path); 134 } 135 136 return pgpath; 137 } 138 139 static void free_pgpath(struct pgpath *pgpath) 140 { 141 kfree(pgpath); 142 } 143 144 static void deactivate_path(struct work_struct *work) 145 { 146 struct pgpath *pgpath = 147 container_of(work, struct pgpath, deactivate_path); 148 149 blk_abort_queue(pgpath->path.dev->bdev->bd_disk->queue); 150 } 151 152 static struct priority_group *alloc_priority_group(void) 153 { 154 struct priority_group *pg; 155 156 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 157 158 if (pg) 159 INIT_LIST_HEAD(&pg->pgpaths); 160 161 return pg; 162 } 163 164 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 165 { 166 struct pgpath *pgpath, *tmp; 167 struct multipath *m = ti->private; 168 169 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 170 list_del(&pgpath->list); 171 if (m->hw_handler_name) 172 scsi_dh_detach(bdev_get_queue(pgpath->path.dev->bdev)); 173 dm_put_device(ti, pgpath->path.dev); 174 free_pgpath(pgpath); 175 } 176 } 177 178 static void free_priority_group(struct priority_group *pg, 179 struct dm_target *ti) 180 { 181 struct path_selector *ps = &pg->ps; 182 183 if (ps->type) { 184 ps->type->destroy(ps); 185 dm_put_path_selector(ps->type); 186 } 187 188 free_pgpaths(&pg->pgpaths, ti); 189 kfree(pg); 190 } 191 192 static struct multipath *alloc_multipath(struct dm_target *ti) 193 { 194 struct multipath *m; 195 196 m = kzalloc(sizeof(*m), GFP_KERNEL); 197 if (m) { 198 INIT_LIST_HEAD(&m->priority_groups); 199 INIT_LIST_HEAD(&m->queued_ios); 200 spin_lock_init(&m->lock); 201 m->queue_io = 1; 202 INIT_WORK(&m->process_queued_ios, process_queued_ios); 203 INIT_WORK(&m->trigger_event, trigger_event); 204 init_waitqueue_head(&m->pg_init_wait); 205 mutex_init(&m->work_mutex); 206 m->mpio_pool = mempool_create_slab_pool(MIN_IOS, _mpio_cache); 207 if (!m->mpio_pool) { 208 kfree(m); 209 return NULL; 210 } 211 m->ti = ti; 212 ti->private = m; 213 } 214 215 return m; 216 } 217 218 static void free_multipath(struct multipath *m) 219 { 220 struct priority_group *pg, *tmp; 221 222 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 223 list_del(&pg->list); 224 free_priority_group(pg, m->ti); 225 } 226 227 kfree(m->hw_handler_name); 228 kfree(m->hw_handler_params); 229 mempool_destroy(m->mpio_pool); 230 kfree(m); 231 } 232 233 234 /*----------------------------------------------- 235 * Path selection 236 *-----------------------------------------------*/ 237 238 static void __switch_pg(struct multipath *m, struct pgpath *pgpath) 239 { 240 m->current_pg = pgpath->pg; 241 242 /* Must we initialise the PG first, and queue I/O till it's ready? */ 243 if (m->hw_handler_name) { 244 m->pg_init_required = 1; 245 m->queue_io = 1; 246 } else { 247 m->pg_init_required = 0; 248 m->queue_io = 0; 249 } 250 251 m->pg_init_count = 0; 252 } 253 254 static int __choose_path_in_pg(struct multipath *m, struct priority_group *pg, 255 size_t nr_bytes) 256 { 257 struct dm_path *path; 258 259 path = pg->ps.type->select_path(&pg->ps, &m->repeat_count, nr_bytes); 260 if (!path) 261 return -ENXIO; 262 263 m->current_pgpath = path_to_pgpath(path); 264 265 if (m->current_pg != pg) 266 __switch_pg(m, m->current_pgpath); 267 268 return 0; 269 } 270 271 static void __choose_pgpath(struct multipath *m, size_t nr_bytes) 272 { 273 struct priority_group *pg; 274 unsigned bypassed = 1; 275 276 if (!m->nr_valid_paths) 277 goto failed; 278 279 /* Were we instructed to switch PG? */ 280 if (m->next_pg) { 281 pg = m->next_pg; 282 m->next_pg = NULL; 283 if (!__choose_path_in_pg(m, pg, nr_bytes)) 284 return; 285 } 286 287 /* Don't change PG until it has no remaining paths */ 288 if (m->current_pg && !__choose_path_in_pg(m, m->current_pg, nr_bytes)) 289 return; 290 291 /* 292 * Loop through priority groups until we find a valid path. 293 * First time we skip PGs marked 'bypassed'. 294 * Second time we only try the ones we skipped. 295 */ 296 do { 297 list_for_each_entry(pg, &m->priority_groups, list) { 298 if (pg->bypassed == bypassed) 299 continue; 300 if (!__choose_path_in_pg(m, pg, nr_bytes)) 301 return; 302 } 303 } while (bypassed--); 304 305 failed: 306 m->current_pgpath = NULL; 307 m->current_pg = NULL; 308 } 309 310 /* 311 * Check whether bios must be queued in the device-mapper core rather 312 * than here in the target. 313 * 314 * m->lock must be held on entry. 315 * 316 * If m->queue_if_no_path and m->saved_queue_if_no_path hold the 317 * same value then we are not between multipath_presuspend() 318 * and multipath_resume() calls and we have no need to check 319 * for the DMF_NOFLUSH_SUSPENDING flag. 320 */ 321 static int __must_push_back(struct multipath *m) 322 { 323 return (m->queue_if_no_path != m->saved_queue_if_no_path && 324 dm_noflush_suspending(m->ti)); 325 } 326 327 static int map_io(struct multipath *m, struct request *clone, 328 struct dm_mpath_io *mpio, unsigned was_queued) 329 { 330 int r = DM_MAPIO_REMAPPED; 331 size_t nr_bytes = blk_rq_bytes(clone); 332 unsigned long flags; 333 struct pgpath *pgpath; 334 struct block_device *bdev; 335 336 spin_lock_irqsave(&m->lock, flags); 337 338 /* Do we need to select a new pgpath? */ 339 if (!m->current_pgpath || 340 (!m->queue_io && (m->repeat_count && --m->repeat_count == 0))) 341 __choose_pgpath(m, nr_bytes); 342 343 pgpath = m->current_pgpath; 344 345 if (was_queued) 346 m->queue_size--; 347 348 if ((pgpath && m->queue_io) || 349 (!pgpath && m->queue_if_no_path)) { 350 /* Queue for the daemon to resubmit */ 351 list_add_tail(&clone->queuelist, &m->queued_ios); 352 m->queue_size++; 353 if ((m->pg_init_required && !m->pg_init_in_progress) || 354 !m->queue_io) 355 queue_work(kmultipathd, &m->process_queued_ios); 356 pgpath = NULL; 357 r = DM_MAPIO_SUBMITTED; 358 } else if (pgpath) { 359 bdev = pgpath->path.dev->bdev; 360 clone->q = bdev_get_queue(bdev); 361 clone->rq_disk = bdev->bd_disk; 362 } else if (__must_push_back(m)) 363 r = DM_MAPIO_REQUEUE; 364 else 365 r = -EIO; /* Failed */ 366 367 mpio->pgpath = pgpath; 368 mpio->nr_bytes = nr_bytes; 369 370 if (r == DM_MAPIO_REMAPPED && pgpath->pg->ps.type->start_io) 371 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, &pgpath->path, 372 nr_bytes); 373 374 spin_unlock_irqrestore(&m->lock, flags); 375 376 return r; 377 } 378 379 /* 380 * If we run out of usable paths, should we queue I/O or error it? 381 */ 382 static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path, 383 unsigned save_old_value) 384 { 385 unsigned long flags; 386 387 spin_lock_irqsave(&m->lock, flags); 388 389 if (save_old_value) 390 m->saved_queue_if_no_path = m->queue_if_no_path; 391 else 392 m->saved_queue_if_no_path = queue_if_no_path; 393 m->queue_if_no_path = queue_if_no_path; 394 if (!m->queue_if_no_path && m->queue_size) 395 queue_work(kmultipathd, &m->process_queued_ios); 396 397 spin_unlock_irqrestore(&m->lock, flags); 398 399 return 0; 400 } 401 402 /*----------------------------------------------------------------- 403 * The multipath daemon is responsible for resubmitting queued ios. 404 *---------------------------------------------------------------*/ 405 406 static void dispatch_queued_ios(struct multipath *m) 407 { 408 int r; 409 unsigned long flags; 410 struct dm_mpath_io *mpio; 411 union map_info *info; 412 struct request *clone, *n; 413 LIST_HEAD(cl); 414 415 spin_lock_irqsave(&m->lock, flags); 416 list_splice_init(&m->queued_ios, &cl); 417 spin_unlock_irqrestore(&m->lock, flags); 418 419 list_for_each_entry_safe(clone, n, &cl, queuelist) { 420 list_del_init(&clone->queuelist); 421 422 info = dm_get_rq_mapinfo(clone); 423 mpio = info->ptr; 424 425 r = map_io(m, clone, mpio, 1); 426 if (r < 0) { 427 mempool_free(mpio, m->mpio_pool); 428 dm_kill_unmapped_request(clone, r); 429 } else if (r == DM_MAPIO_REMAPPED) 430 dm_dispatch_request(clone); 431 else if (r == DM_MAPIO_REQUEUE) { 432 mempool_free(mpio, m->mpio_pool); 433 dm_requeue_unmapped_request(clone); 434 } 435 } 436 } 437 438 static void process_queued_ios(struct work_struct *work) 439 { 440 struct multipath *m = 441 container_of(work, struct multipath, process_queued_ios); 442 struct pgpath *pgpath = NULL, *tmp; 443 unsigned must_queue = 1; 444 unsigned long flags; 445 446 spin_lock_irqsave(&m->lock, flags); 447 448 if (!m->queue_size) 449 goto out; 450 451 if (!m->current_pgpath) 452 __choose_pgpath(m, 0); 453 454 pgpath = m->current_pgpath; 455 456 if ((pgpath && !m->queue_io) || 457 (!pgpath && !m->queue_if_no_path)) 458 must_queue = 0; 459 460 if (m->pg_init_required && !m->pg_init_in_progress && pgpath) { 461 m->pg_init_count++; 462 m->pg_init_required = 0; 463 list_for_each_entry(tmp, &pgpath->pg->pgpaths, list) { 464 /* Skip failed paths */ 465 if (!tmp->is_active) 466 continue; 467 if (queue_work(kmpath_handlerd, &tmp->activate_path)) 468 m->pg_init_in_progress++; 469 } 470 } 471 out: 472 spin_unlock_irqrestore(&m->lock, flags); 473 if (!must_queue) 474 dispatch_queued_ios(m); 475 } 476 477 /* 478 * An event is triggered whenever a path is taken out of use. 479 * Includes path failure and PG bypass. 480 */ 481 static void trigger_event(struct work_struct *work) 482 { 483 struct multipath *m = 484 container_of(work, struct multipath, trigger_event); 485 486 dm_table_event(m->ti->table); 487 } 488 489 /*----------------------------------------------------------------- 490 * Constructor/argument parsing: 491 * <#multipath feature args> [<arg>]* 492 * <#hw_handler args> [hw_handler [<arg>]*] 493 * <#priority groups> 494 * <initial priority group> 495 * [<selector> <#selector args> [<arg>]* 496 * <#paths> <#per-path selector args> 497 * [<path> [<arg>]* ]+ ]+ 498 *---------------------------------------------------------------*/ 499 struct param { 500 unsigned min; 501 unsigned max; 502 char *error; 503 }; 504 505 static int read_param(struct param *param, char *str, unsigned *v, char **error) 506 { 507 if (!str || 508 (sscanf(str, "%u", v) != 1) || 509 (*v < param->min) || 510 (*v > param->max)) { 511 *error = param->error; 512 return -EINVAL; 513 } 514 515 return 0; 516 } 517 518 struct arg_set { 519 unsigned argc; 520 char **argv; 521 }; 522 523 static char *shift(struct arg_set *as) 524 { 525 char *r; 526 527 if (as->argc) { 528 as->argc--; 529 r = *as->argv; 530 as->argv++; 531 return r; 532 } 533 534 return NULL; 535 } 536 537 static void consume(struct arg_set *as, unsigned n) 538 { 539 BUG_ON (as->argc < n); 540 as->argc -= n; 541 as->argv += n; 542 } 543 544 static int parse_path_selector(struct arg_set *as, struct priority_group *pg, 545 struct dm_target *ti) 546 { 547 int r; 548 struct path_selector_type *pst; 549 unsigned ps_argc; 550 551 static struct param _params[] = { 552 {0, 1024, "invalid number of path selector args"}, 553 }; 554 555 pst = dm_get_path_selector(shift(as)); 556 if (!pst) { 557 ti->error = "unknown path selector type"; 558 return -EINVAL; 559 } 560 561 r = read_param(_params, shift(as), &ps_argc, &ti->error); 562 if (r) { 563 dm_put_path_selector(pst); 564 return -EINVAL; 565 } 566 567 if (ps_argc > as->argc) { 568 dm_put_path_selector(pst); 569 ti->error = "not enough arguments for path selector"; 570 return -EINVAL; 571 } 572 573 r = pst->create(&pg->ps, ps_argc, as->argv); 574 if (r) { 575 dm_put_path_selector(pst); 576 ti->error = "path selector constructor failed"; 577 return r; 578 } 579 580 pg->ps.type = pst; 581 consume(as, ps_argc); 582 583 return 0; 584 } 585 586 static struct pgpath *parse_path(struct arg_set *as, struct path_selector *ps, 587 struct dm_target *ti) 588 { 589 int r; 590 struct pgpath *p; 591 struct multipath *m = ti->private; 592 593 /* we need at least a path arg */ 594 if (as->argc < 1) { 595 ti->error = "no device given"; 596 return ERR_PTR(-EINVAL); 597 } 598 599 p = alloc_pgpath(); 600 if (!p) 601 return ERR_PTR(-ENOMEM); 602 603 r = dm_get_device(ti, shift(as), ti->begin, ti->len, 604 dm_table_get_mode(ti->table), &p->path.dev); 605 if (r) { 606 ti->error = "error getting device"; 607 goto bad; 608 } 609 610 if (m->hw_handler_name) { 611 struct request_queue *q = bdev_get_queue(p->path.dev->bdev); 612 613 r = scsi_dh_attach(q, m->hw_handler_name); 614 if (r == -EBUSY) { 615 /* 616 * Already attached to different hw_handler, 617 * try to reattach with correct one. 618 */ 619 scsi_dh_detach(q); 620 r = scsi_dh_attach(q, m->hw_handler_name); 621 } 622 623 if (r < 0) { 624 ti->error = "error attaching hardware handler"; 625 dm_put_device(ti, p->path.dev); 626 goto bad; 627 } 628 629 if (m->hw_handler_params) { 630 r = scsi_dh_set_params(q, m->hw_handler_params); 631 if (r < 0) { 632 ti->error = "unable to set hardware " 633 "handler parameters"; 634 scsi_dh_detach(q); 635 dm_put_device(ti, p->path.dev); 636 goto bad; 637 } 638 } 639 } 640 641 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 642 if (r) { 643 dm_put_device(ti, p->path.dev); 644 goto bad; 645 } 646 647 return p; 648 649 bad: 650 free_pgpath(p); 651 return ERR_PTR(r); 652 } 653 654 static struct priority_group *parse_priority_group(struct arg_set *as, 655 struct multipath *m) 656 { 657 static struct param _params[] = { 658 {1, 1024, "invalid number of paths"}, 659 {0, 1024, "invalid number of selector args"} 660 }; 661 662 int r; 663 unsigned i, nr_selector_args, nr_params; 664 struct priority_group *pg; 665 struct dm_target *ti = m->ti; 666 667 if (as->argc < 2) { 668 as->argc = 0; 669 ti->error = "not enough priority group arguments"; 670 return ERR_PTR(-EINVAL); 671 } 672 673 pg = alloc_priority_group(); 674 if (!pg) { 675 ti->error = "couldn't allocate priority group"; 676 return ERR_PTR(-ENOMEM); 677 } 678 pg->m = m; 679 680 r = parse_path_selector(as, pg, ti); 681 if (r) 682 goto bad; 683 684 /* 685 * read the paths 686 */ 687 r = read_param(_params, shift(as), &pg->nr_pgpaths, &ti->error); 688 if (r) 689 goto bad; 690 691 r = read_param(_params + 1, shift(as), &nr_selector_args, &ti->error); 692 if (r) 693 goto bad; 694 695 nr_params = 1 + nr_selector_args; 696 for (i = 0; i < pg->nr_pgpaths; i++) { 697 struct pgpath *pgpath; 698 struct arg_set path_args; 699 700 if (as->argc < nr_params) { 701 ti->error = "not enough path parameters"; 702 goto bad; 703 } 704 705 path_args.argc = nr_params; 706 path_args.argv = as->argv; 707 708 pgpath = parse_path(&path_args, &pg->ps, ti); 709 if (IS_ERR(pgpath)) { 710 r = PTR_ERR(pgpath); 711 goto bad; 712 } 713 714 pgpath->pg = pg; 715 list_add_tail(&pgpath->list, &pg->pgpaths); 716 consume(as, nr_params); 717 } 718 719 return pg; 720 721 bad: 722 free_priority_group(pg, ti); 723 return ERR_PTR(r); 724 } 725 726 static int parse_hw_handler(struct arg_set *as, struct multipath *m) 727 { 728 unsigned hw_argc; 729 int ret; 730 struct dm_target *ti = m->ti; 731 732 static struct param _params[] = { 733 {0, 1024, "invalid number of hardware handler args"}, 734 }; 735 736 if (read_param(_params, shift(as), &hw_argc, &ti->error)) 737 return -EINVAL; 738 739 if (!hw_argc) 740 return 0; 741 742 if (hw_argc > as->argc) { 743 ti->error = "not enough arguments for hardware handler"; 744 return -EINVAL; 745 } 746 747 m->hw_handler_name = kstrdup(shift(as), GFP_KERNEL); 748 request_module("scsi_dh_%s", m->hw_handler_name); 749 if (scsi_dh_handler_exist(m->hw_handler_name) == 0) { 750 ti->error = "unknown hardware handler type"; 751 ret = -EINVAL; 752 goto fail; 753 } 754 755 if (hw_argc > 1) { 756 char *p; 757 int i, j, len = 4; 758 759 for (i = 0; i <= hw_argc - 2; i++) 760 len += strlen(as->argv[i]) + 1; 761 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 762 if (!p) { 763 ti->error = "memory allocation failed"; 764 ret = -ENOMEM; 765 goto fail; 766 } 767 j = sprintf(p, "%d", hw_argc - 1); 768 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 769 j = sprintf(p, "%s", as->argv[i]); 770 } 771 consume(as, hw_argc - 1); 772 773 return 0; 774 fail: 775 kfree(m->hw_handler_name); 776 m->hw_handler_name = NULL; 777 return ret; 778 } 779 780 static int parse_features(struct arg_set *as, struct multipath *m) 781 { 782 int r; 783 unsigned argc; 784 struct dm_target *ti = m->ti; 785 const char *param_name; 786 787 static struct param _params[] = { 788 {0, 3, "invalid number of feature args"}, 789 {1, 50, "pg_init_retries must be between 1 and 50"}, 790 }; 791 792 r = read_param(_params, shift(as), &argc, &ti->error); 793 if (r) 794 return -EINVAL; 795 796 if (!argc) 797 return 0; 798 799 do { 800 param_name = shift(as); 801 argc--; 802 803 if (!strnicmp(param_name, MESG_STR("queue_if_no_path"))) { 804 r = queue_if_no_path(m, 1, 0); 805 continue; 806 } 807 808 if (!strnicmp(param_name, MESG_STR("pg_init_retries")) && 809 (argc >= 1)) { 810 r = read_param(_params + 1, shift(as), 811 &m->pg_init_retries, &ti->error); 812 argc--; 813 continue; 814 } 815 816 ti->error = "Unrecognised multipath feature request"; 817 r = -EINVAL; 818 } while (argc && !r); 819 820 return r; 821 } 822 823 static int multipath_ctr(struct dm_target *ti, unsigned int argc, 824 char **argv) 825 { 826 /* target parameters */ 827 static struct param _params[] = { 828 {1, 1024, "invalid number of priority groups"}, 829 {1, 1024, "invalid initial priority group number"}, 830 }; 831 832 int r; 833 struct multipath *m; 834 struct arg_set as; 835 unsigned pg_count = 0; 836 unsigned next_pg_num; 837 838 as.argc = argc; 839 as.argv = argv; 840 841 m = alloc_multipath(ti); 842 if (!m) { 843 ti->error = "can't allocate multipath"; 844 return -EINVAL; 845 } 846 847 r = parse_features(&as, m); 848 if (r) 849 goto bad; 850 851 r = parse_hw_handler(&as, m); 852 if (r) 853 goto bad; 854 855 r = read_param(_params, shift(&as), &m->nr_priority_groups, &ti->error); 856 if (r) 857 goto bad; 858 859 r = read_param(_params + 1, shift(&as), &next_pg_num, &ti->error); 860 if (r) 861 goto bad; 862 863 /* parse the priority groups */ 864 while (as.argc) { 865 struct priority_group *pg; 866 867 pg = parse_priority_group(&as, m); 868 if (IS_ERR(pg)) { 869 r = PTR_ERR(pg); 870 goto bad; 871 } 872 873 m->nr_valid_paths += pg->nr_pgpaths; 874 list_add_tail(&pg->list, &m->priority_groups); 875 pg_count++; 876 pg->pg_num = pg_count; 877 if (!--next_pg_num) 878 m->next_pg = pg; 879 } 880 881 if (pg_count != m->nr_priority_groups) { 882 ti->error = "priority group count mismatch"; 883 r = -EINVAL; 884 goto bad; 885 } 886 887 ti->num_flush_requests = 1; 888 889 return 0; 890 891 bad: 892 free_multipath(m); 893 return r; 894 } 895 896 static void multipath_wait_for_pg_init_completion(struct multipath *m) 897 { 898 DECLARE_WAITQUEUE(wait, current); 899 unsigned long flags; 900 901 add_wait_queue(&m->pg_init_wait, &wait); 902 903 while (1) { 904 set_current_state(TASK_UNINTERRUPTIBLE); 905 906 spin_lock_irqsave(&m->lock, flags); 907 if (!m->pg_init_in_progress) { 908 spin_unlock_irqrestore(&m->lock, flags); 909 break; 910 } 911 spin_unlock_irqrestore(&m->lock, flags); 912 913 io_schedule(); 914 } 915 set_current_state(TASK_RUNNING); 916 917 remove_wait_queue(&m->pg_init_wait, &wait); 918 } 919 920 static void flush_multipath_work(struct multipath *m) 921 { 922 flush_workqueue(kmpath_handlerd); 923 multipath_wait_for_pg_init_completion(m); 924 flush_workqueue(kmultipathd); 925 flush_scheduled_work(); 926 } 927 928 static void multipath_dtr(struct dm_target *ti) 929 { 930 struct multipath *m = ti->private; 931 932 flush_multipath_work(m); 933 free_multipath(m); 934 } 935 936 /* 937 * Map cloned requests 938 */ 939 static int multipath_map(struct dm_target *ti, struct request *clone, 940 union map_info *map_context) 941 { 942 int r; 943 struct dm_mpath_io *mpio; 944 struct multipath *m = (struct multipath *) ti->private; 945 946 mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC); 947 if (!mpio) 948 /* ENOMEM, requeue */ 949 return DM_MAPIO_REQUEUE; 950 memset(mpio, 0, sizeof(*mpio)); 951 952 map_context->ptr = mpio; 953 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 954 r = map_io(m, clone, mpio, 0); 955 if (r < 0 || r == DM_MAPIO_REQUEUE) 956 mempool_free(mpio, m->mpio_pool); 957 958 return r; 959 } 960 961 /* 962 * Take a path out of use. 963 */ 964 static int fail_path(struct pgpath *pgpath) 965 { 966 unsigned long flags; 967 struct multipath *m = pgpath->pg->m; 968 969 spin_lock_irqsave(&m->lock, flags); 970 971 if (!pgpath->is_active) 972 goto out; 973 974 DMWARN("Failing path %s.", pgpath->path.dev->name); 975 976 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 977 pgpath->is_active = 0; 978 pgpath->fail_count++; 979 980 m->nr_valid_paths--; 981 982 if (pgpath == m->current_pgpath) 983 m->current_pgpath = NULL; 984 985 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 986 pgpath->path.dev->name, m->nr_valid_paths); 987 988 schedule_work(&m->trigger_event); 989 queue_work(kmultipathd, &pgpath->deactivate_path); 990 991 out: 992 spin_unlock_irqrestore(&m->lock, flags); 993 994 return 0; 995 } 996 997 /* 998 * Reinstate a previously-failed path 999 */ 1000 static int reinstate_path(struct pgpath *pgpath) 1001 { 1002 int r = 0; 1003 unsigned long flags; 1004 struct multipath *m = pgpath->pg->m; 1005 1006 spin_lock_irqsave(&m->lock, flags); 1007 1008 if (pgpath->is_active) 1009 goto out; 1010 1011 if (!pgpath->pg->ps.type->reinstate_path) { 1012 DMWARN("Reinstate path not supported by path selector %s", 1013 pgpath->pg->ps.type->name); 1014 r = -EINVAL; 1015 goto out; 1016 } 1017 1018 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1019 if (r) 1020 goto out; 1021 1022 pgpath->is_active = 1; 1023 1024 if (!m->nr_valid_paths++ && m->queue_size) { 1025 m->current_pgpath = NULL; 1026 queue_work(kmultipathd, &m->process_queued_ios); 1027 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1028 if (queue_work(kmpath_handlerd, &pgpath->activate_path)) 1029 m->pg_init_in_progress++; 1030 } 1031 1032 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1033 pgpath->path.dev->name, m->nr_valid_paths); 1034 1035 schedule_work(&m->trigger_event); 1036 1037 out: 1038 spin_unlock_irqrestore(&m->lock, flags); 1039 1040 return r; 1041 } 1042 1043 /* 1044 * Fail or reinstate all paths that match the provided struct dm_dev. 1045 */ 1046 static int action_dev(struct multipath *m, struct dm_dev *dev, 1047 action_fn action) 1048 { 1049 int r = 0; 1050 struct pgpath *pgpath; 1051 struct priority_group *pg; 1052 1053 list_for_each_entry(pg, &m->priority_groups, list) { 1054 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1055 if (pgpath->path.dev == dev) 1056 r = action(pgpath); 1057 } 1058 } 1059 1060 return r; 1061 } 1062 1063 /* 1064 * Temporarily try to avoid having to use the specified PG 1065 */ 1066 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1067 int bypassed) 1068 { 1069 unsigned long flags; 1070 1071 spin_lock_irqsave(&m->lock, flags); 1072 1073 pg->bypassed = bypassed; 1074 m->current_pgpath = NULL; 1075 m->current_pg = NULL; 1076 1077 spin_unlock_irqrestore(&m->lock, flags); 1078 1079 schedule_work(&m->trigger_event); 1080 } 1081 1082 /* 1083 * Switch to using the specified PG from the next I/O that gets mapped 1084 */ 1085 static int switch_pg_num(struct multipath *m, const char *pgstr) 1086 { 1087 struct priority_group *pg; 1088 unsigned pgnum; 1089 unsigned long flags; 1090 1091 if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum || 1092 (pgnum > m->nr_priority_groups)) { 1093 DMWARN("invalid PG number supplied to switch_pg_num"); 1094 return -EINVAL; 1095 } 1096 1097 spin_lock_irqsave(&m->lock, flags); 1098 list_for_each_entry(pg, &m->priority_groups, list) { 1099 pg->bypassed = 0; 1100 if (--pgnum) 1101 continue; 1102 1103 m->current_pgpath = NULL; 1104 m->current_pg = NULL; 1105 m->next_pg = pg; 1106 } 1107 spin_unlock_irqrestore(&m->lock, flags); 1108 1109 schedule_work(&m->trigger_event); 1110 return 0; 1111 } 1112 1113 /* 1114 * Set/clear bypassed status of a PG. 1115 * PGs are numbered upwards from 1 in the order they were declared. 1116 */ 1117 static int bypass_pg_num(struct multipath *m, const char *pgstr, int bypassed) 1118 { 1119 struct priority_group *pg; 1120 unsigned pgnum; 1121 1122 if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum || 1123 (pgnum > m->nr_priority_groups)) { 1124 DMWARN("invalid PG number supplied to bypass_pg"); 1125 return -EINVAL; 1126 } 1127 1128 list_for_each_entry(pg, &m->priority_groups, list) { 1129 if (!--pgnum) 1130 break; 1131 } 1132 1133 bypass_pg(m, pg, bypassed); 1134 return 0; 1135 } 1136 1137 /* 1138 * Should we retry pg_init immediately? 1139 */ 1140 static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1141 { 1142 unsigned long flags; 1143 int limit_reached = 0; 1144 1145 spin_lock_irqsave(&m->lock, flags); 1146 1147 if (m->pg_init_count <= m->pg_init_retries) 1148 m->pg_init_required = 1; 1149 else 1150 limit_reached = 1; 1151 1152 spin_unlock_irqrestore(&m->lock, flags); 1153 1154 return limit_reached; 1155 } 1156 1157 static void pg_init_done(void *data, int errors) 1158 { 1159 struct pgpath *pgpath = data; 1160 struct priority_group *pg = pgpath->pg; 1161 struct multipath *m = pg->m; 1162 unsigned long flags; 1163 1164 /* device or driver problems */ 1165 switch (errors) { 1166 case SCSI_DH_OK: 1167 break; 1168 case SCSI_DH_NOSYS: 1169 if (!m->hw_handler_name) { 1170 errors = 0; 1171 break; 1172 } 1173 DMERR("Could not failover the device: Handler scsi_dh_%s " 1174 "Error %d.", m->hw_handler_name, errors); 1175 /* 1176 * Fail path for now, so we do not ping pong 1177 */ 1178 fail_path(pgpath); 1179 break; 1180 case SCSI_DH_DEV_TEMP_BUSY: 1181 /* 1182 * Probably doing something like FW upgrade on the 1183 * controller so try the other pg. 1184 */ 1185 bypass_pg(m, pg, 1); 1186 break; 1187 /* TODO: For SCSI_DH_RETRY we should wait a couple seconds */ 1188 case SCSI_DH_RETRY: 1189 case SCSI_DH_IMM_RETRY: 1190 case SCSI_DH_RES_TEMP_UNAVAIL: 1191 if (pg_init_limit_reached(m, pgpath)) 1192 fail_path(pgpath); 1193 errors = 0; 1194 break; 1195 default: 1196 /* 1197 * We probably do not want to fail the path for a device 1198 * error, but this is what the old dm did. In future 1199 * patches we can do more advanced handling. 1200 */ 1201 fail_path(pgpath); 1202 } 1203 1204 spin_lock_irqsave(&m->lock, flags); 1205 if (errors) { 1206 if (pgpath == m->current_pgpath) { 1207 DMERR("Could not failover device. Error %d.", errors); 1208 m->current_pgpath = NULL; 1209 m->current_pg = NULL; 1210 } 1211 } else if (!m->pg_init_required) 1212 pg->bypassed = 0; 1213 1214 if (--m->pg_init_in_progress) 1215 /* Activations of other paths are still on going */ 1216 goto out; 1217 1218 if (!m->pg_init_required) 1219 m->queue_io = 0; 1220 1221 queue_work(kmultipathd, &m->process_queued_ios); 1222 1223 /* 1224 * Wake up any thread waiting to suspend. 1225 */ 1226 wake_up(&m->pg_init_wait); 1227 1228 out: 1229 spin_unlock_irqrestore(&m->lock, flags); 1230 } 1231 1232 static void activate_path(struct work_struct *work) 1233 { 1234 struct pgpath *pgpath = 1235 container_of(work, struct pgpath, activate_path); 1236 1237 scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev), 1238 pg_init_done, pgpath); 1239 } 1240 1241 /* 1242 * end_io handling 1243 */ 1244 static int do_end_io(struct multipath *m, struct request *clone, 1245 int error, struct dm_mpath_io *mpio) 1246 { 1247 /* 1248 * We don't queue any clone request inside the multipath target 1249 * during end I/O handling, since those clone requests don't have 1250 * bio clones. If we queue them inside the multipath target, 1251 * we need to make bio clones, that requires memory allocation. 1252 * (See drivers/md/dm.c:end_clone_bio() about why the clone requests 1253 * don't have bio clones.) 1254 * Instead of queueing the clone request here, we queue the original 1255 * request into dm core, which will remake a clone request and 1256 * clone bios for it and resubmit it later. 1257 */ 1258 int r = DM_ENDIO_REQUEUE; 1259 unsigned long flags; 1260 1261 if (!error && !clone->errors) 1262 return 0; /* I/O complete */ 1263 1264 if (error == -EOPNOTSUPP) 1265 return error; 1266 1267 if (mpio->pgpath) 1268 fail_path(mpio->pgpath); 1269 1270 spin_lock_irqsave(&m->lock, flags); 1271 if (!m->nr_valid_paths && !m->queue_if_no_path && !__must_push_back(m)) 1272 r = -EIO; 1273 spin_unlock_irqrestore(&m->lock, flags); 1274 1275 return r; 1276 } 1277 1278 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1279 int error, union map_info *map_context) 1280 { 1281 struct multipath *m = ti->private; 1282 struct dm_mpath_io *mpio = map_context->ptr; 1283 struct pgpath *pgpath = mpio->pgpath; 1284 struct path_selector *ps; 1285 int r; 1286 1287 r = do_end_io(m, clone, error, mpio); 1288 if (pgpath) { 1289 ps = &pgpath->pg->ps; 1290 if (ps->type->end_io) 1291 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1292 } 1293 mempool_free(mpio, m->mpio_pool); 1294 1295 return r; 1296 } 1297 1298 /* 1299 * Suspend can't complete until all the I/O is processed so if 1300 * the last path fails we must error any remaining I/O. 1301 * Note that if the freeze_bdev fails while suspending, the 1302 * queue_if_no_path state is lost - userspace should reset it. 1303 */ 1304 static void multipath_presuspend(struct dm_target *ti) 1305 { 1306 struct multipath *m = (struct multipath *) ti->private; 1307 1308 queue_if_no_path(m, 0, 1); 1309 } 1310 1311 static void multipath_postsuspend(struct dm_target *ti) 1312 { 1313 struct multipath *m = ti->private; 1314 1315 mutex_lock(&m->work_mutex); 1316 flush_multipath_work(m); 1317 mutex_unlock(&m->work_mutex); 1318 } 1319 1320 /* 1321 * Restore the queue_if_no_path setting. 1322 */ 1323 static void multipath_resume(struct dm_target *ti) 1324 { 1325 struct multipath *m = (struct multipath *) ti->private; 1326 unsigned long flags; 1327 1328 spin_lock_irqsave(&m->lock, flags); 1329 m->queue_if_no_path = m->saved_queue_if_no_path; 1330 spin_unlock_irqrestore(&m->lock, flags); 1331 } 1332 1333 /* 1334 * Info output has the following format: 1335 * num_multipath_feature_args [multipath_feature_args]* 1336 * num_handler_status_args [handler_status_args]* 1337 * num_groups init_group_number 1338 * [A|D|E num_ps_status_args [ps_status_args]* 1339 * num_paths num_selector_args 1340 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1341 * 1342 * Table output has the following format (identical to the constructor string): 1343 * num_feature_args [features_args]* 1344 * num_handler_args hw_handler [hw_handler_args]* 1345 * num_groups init_group_number 1346 * [priority selector-name num_ps_args [ps_args]* 1347 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1348 */ 1349 static int multipath_status(struct dm_target *ti, status_type_t type, 1350 char *result, unsigned int maxlen) 1351 { 1352 int sz = 0; 1353 unsigned long flags; 1354 struct multipath *m = (struct multipath *) ti->private; 1355 struct priority_group *pg; 1356 struct pgpath *p; 1357 unsigned pg_num; 1358 char state; 1359 1360 spin_lock_irqsave(&m->lock, flags); 1361 1362 /* Features */ 1363 if (type == STATUSTYPE_INFO) 1364 DMEMIT("2 %u %u ", m->queue_size, m->pg_init_count); 1365 else { 1366 DMEMIT("%u ", m->queue_if_no_path + 1367 (m->pg_init_retries > 0) * 2); 1368 if (m->queue_if_no_path) 1369 DMEMIT("queue_if_no_path "); 1370 if (m->pg_init_retries) 1371 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1372 } 1373 1374 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1375 DMEMIT("0 "); 1376 else 1377 DMEMIT("1 %s ", m->hw_handler_name); 1378 1379 DMEMIT("%u ", m->nr_priority_groups); 1380 1381 if (m->next_pg) 1382 pg_num = m->next_pg->pg_num; 1383 else if (m->current_pg) 1384 pg_num = m->current_pg->pg_num; 1385 else 1386 pg_num = 1; 1387 1388 DMEMIT("%u ", pg_num); 1389 1390 switch (type) { 1391 case STATUSTYPE_INFO: 1392 list_for_each_entry(pg, &m->priority_groups, list) { 1393 if (pg->bypassed) 1394 state = 'D'; /* Disabled */ 1395 else if (pg == m->current_pg) 1396 state = 'A'; /* Currently Active */ 1397 else 1398 state = 'E'; /* Enabled */ 1399 1400 DMEMIT("%c ", state); 1401 1402 if (pg->ps.type->status) 1403 sz += pg->ps.type->status(&pg->ps, NULL, type, 1404 result + sz, 1405 maxlen - sz); 1406 else 1407 DMEMIT("0 "); 1408 1409 DMEMIT("%u %u ", pg->nr_pgpaths, 1410 pg->ps.type->info_args); 1411 1412 list_for_each_entry(p, &pg->pgpaths, list) { 1413 DMEMIT("%s %s %u ", p->path.dev->name, 1414 p->is_active ? "A" : "F", 1415 p->fail_count); 1416 if (pg->ps.type->status) 1417 sz += pg->ps.type->status(&pg->ps, 1418 &p->path, type, result + sz, 1419 maxlen - sz); 1420 } 1421 } 1422 break; 1423 1424 case STATUSTYPE_TABLE: 1425 list_for_each_entry(pg, &m->priority_groups, list) { 1426 DMEMIT("%s ", pg->ps.type->name); 1427 1428 if (pg->ps.type->status) 1429 sz += pg->ps.type->status(&pg->ps, NULL, type, 1430 result + sz, 1431 maxlen - sz); 1432 else 1433 DMEMIT("0 "); 1434 1435 DMEMIT("%u %u ", pg->nr_pgpaths, 1436 pg->ps.type->table_args); 1437 1438 list_for_each_entry(p, &pg->pgpaths, list) { 1439 DMEMIT("%s ", p->path.dev->name); 1440 if (pg->ps.type->status) 1441 sz += pg->ps.type->status(&pg->ps, 1442 &p->path, type, result + sz, 1443 maxlen - sz); 1444 } 1445 } 1446 break; 1447 } 1448 1449 spin_unlock_irqrestore(&m->lock, flags); 1450 1451 return 0; 1452 } 1453 1454 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) 1455 { 1456 int r = -EINVAL; 1457 struct dm_dev *dev; 1458 struct multipath *m = (struct multipath *) ti->private; 1459 action_fn action; 1460 1461 mutex_lock(&m->work_mutex); 1462 1463 if (dm_suspended(ti)) { 1464 r = -EBUSY; 1465 goto out; 1466 } 1467 1468 if (argc == 1) { 1469 if (!strnicmp(argv[0], MESG_STR("queue_if_no_path"))) { 1470 r = queue_if_no_path(m, 1, 0); 1471 goto out; 1472 } else if (!strnicmp(argv[0], MESG_STR("fail_if_no_path"))) { 1473 r = queue_if_no_path(m, 0, 0); 1474 goto out; 1475 } 1476 } 1477 1478 if (argc != 2) { 1479 DMWARN("Unrecognised multipath message received."); 1480 goto out; 1481 } 1482 1483 if (!strnicmp(argv[0], MESG_STR("disable_group"))) { 1484 r = bypass_pg_num(m, argv[1], 1); 1485 goto out; 1486 } else if (!strnicmp(argv[0], MESG_STR("enable_group"))) { 1487 r = bypass_pg_num(m, argv[1], 0); 1488 goto out; 1489 } else if (!strnicmp(argv[0], MESG_STR("switch_group"))) { 1490 r = switch_pg_num(m, argv[1]); 1491 goto out; 1492 } else if (!strnicmp(argv[0], MESG_STR("reinstate_path"))) 1493 action = reinstate_path; 1494 else if (!strnicmp(argv[0], MESG_STR("fail_path"))) 1495 action = fail_path; 1496 else { 1497 DMWARN("Unrecognised multipath message received."); 1498 goto out; 1499 } 1500 1501 r = dm_get_device(ti, argv[1], ti->begin, ti->len, 1502 dm_table_get_mode(ti->table), &dev); 1503 if (r) { 1504 DMWARN("message: error getting device %s", 1505 argv[1]); 1506 goto out; 1507 } 1508 1509 r = action_dev(m, dev, action); 1510 1511 dm_put_device(ti, dev); 1512 1513 out: 1514 mutex_unlock(&m->work_mutex); 1515 return r; 1516 } 1517 1518 static int multipath_ioctl(struct dm_target *ti, unsigned int cmd, 1519 unsigned long arg) 1520 { 1521 struct multipath *m = (struct multipath *) ti->private; 1522 struct block_device *bdev = NULL; 1523 fmode_t mode = 0; 1524 unsigned long flags; 1525 int r = 0; 1526 1527 spin_lock_irqsave(&m->lock, flags); 1528 1529 if (!m->current_pgpath) 1530 __choose_pgpath(m, 0); 1531 1532 if (m->current_pgpath) { 1533 bdev = m->current_pgpath->path.dev->bdev; 1534 mode = m->current_pgpath->path.dev->mode; 1535 } 1536 1537 if (m->queue_io) 1538 r = -EAGAIN; 1539 else if (!bdev) 1540 r = -EIO; 1541 1542 spin_unlock_irqrestore(&m->lock, flags); 1543 1544 return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg); 1545 } 1546 1547 static int multipath_iterate_devices(struct dm_target *ti, 1548 iterate_devices_callout_fn fn, void *data) 1549 { 1550 struct multipath *m = ti->private; 1551 struct priority_group *pg; 1552 struct pgpath *p; 1553 int ret = 0; 1554 1555 list_for_each_entry(pg, &m->priority_groups, list) { 1556 list_for_each_entry(p, &pg->pgpaths, list) { 1557 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1558 if (ret) 1559 goto out; 1560 } 1561 } 1562 1563 out: 1564 return ret; 1565 } 1566 1567 static int __pgpath_busy(struct pgpath *pgpath) 1568 { 1569 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1570 1571 return dm_underlying_device_busy(q); 1572 } 1573 1574 /* 1575 * We return "busy", only when we can map I/Os but underlying devices 1576 * are busy (so even if we map I/Os now, the I/Os will wait on 1577 * the underlying queue). 1578 * In other words, if we want to kill I/Os or queue them inside us 1579 * due to map unavailability, we don't return "busy". Otherwise, 1580 * dm core won't give us the I/Os and we can't do what we want. 1581 */ 1582 static int multipath_busy(struct dm_target *ti) 1583 { 1584 int busy = 0, has_active = 0; 1585 struct multipath *m = ti->private; 1586 struct priority_group *pg; 1587 struct pgpath *pgpath; 1588 unsigned long flags; 1589 1590 spin_lock_irqsave(&m->lock, flags); 1591 1592 /* Guess which priority_group will be used at next mapping time */ 1593 if (unlikely(!m->current_pgpath && m->next_pg)) 1594 pg = m->next_pg; 1595 else if (likely(m->current_pg)) 1596 pg = m->current_pg; 1597 else 1598 /* 1599 * We don't know which pg will be used at next mapping time. 1600 * We don't call __choose_pgpath() here to avoid to trigger 1601 * pg_init just by busy checking. 1602 * So we don't know whether underlying devices we will be using 1603 * at next mapping time are busy or not. Just try mapping. 1604 */ 1605 goto out; 1606 1607 /* 1608 * If there is one non-busy active path at least, the path selector 1609 * will be able to select it. So we consider such a pg as not busy. 1610 */ 1611 busy = 1; 1612 list_for_each_entry(pgpath, &pg->pgpaths, list) 1613 if (pgpath->is_active) { 1614 has_active = 1; 1615 1616 if (!__pgpath_busy(pgpath)) { 1617 busy = 0; 1618 break; 1619 } 1620 } 1621 1622 if (!has_active) 1623 /* 1624 * No active path in this pg, so this pg won't be used and 1625 * the current_pg will be changed at next mapping time. 1626 * We need to try mapping to determine it. 1627 */ 1628 busy = 0; 1629 1630 out: 1631 spin_unlock_irqrestore(&m->lock, flags); 1632 1633 return busy; 1634 } 1635 1636 /*----------------------------------------------------------------- 1637 * Module setup 1638 *---------------------------------------------------------------*/ 1639 static struct target_type multipath_target = { 1640 .name = "multipath", 1641 .version = {1, 1, 1}, 1642 .module = THIS_MODULE, 1643 .ctr = multipath_ctr, 1644 .dtr = multipath_dtr, 1645 .map_rq = multipath_map, 1646 .rq_end_io = multipath_end_io, 1647 .presuspend = multipath_presuspend, 1648 .postsuspend = multipath_postsuspend, 1649 .resume = multipath_resume, 1650 .status = multipath_status, 1651 .message = multipath_message, 1652 .ioctl = multipath_ioctl, 1653 .iterate_devices = multipath_iterate_devices, 1654 .busy = multipath_busy, 1655 }; 1656 1657 static int __init dm_multipath_init(void) 1658 { 1659 int r; 1660 1661 /* allocate a slab for the dm_ios */ 1662 _mpio_cache = KMEM_CACHE(dm_mpath_io, 0); 1663 if (!_mpio_cache) 1664 return -ENOMEM; 1665 1666 r = dm_register_target(&multipath_target); 1667 if (r < 0) { 1668 DMERR("register failed %d", r); 1669 kmem_cache_destroy(_mpio_cache); 1670 return -EINVAL; 1671 } 1672 1673 kmultipathd = create_workqueue("kmpathd"); 1674 if (!kmultipathd) { 1675 DMERR("failed to create workqueue kmpathd"); 1676 dm_unregister_target(&multipath_target); 1677 kmem_cache_destroy(_mpio_cache); 1678 return -ENOMEM; 1679 } 1680 1681 /* 1682 * A separate workqueue is used to handle the device handlers 1683 * to avoid overloading existing workqueue. Overloading the 1684 * old workqueue would also create a bottleneck in the 1685 * path of the storage hardware device activation. 1686 */ 1687 kmpath_handlerd = create_singlethread_workqueue("kmpath_handlerd"); 1688 if (!kmpath_handlerd) { 1689 DMERR("failed to create workqueue kmpath_handlerd"); 1690 destroy_workqueue(kmultipathd); 1691 dm_unregister_target(&multipath_target); 1692 kmem_cache_destroy(_mpio_cache); 1693 return -ENOMEM; 1694 } 1695 1696 DMINFO("version %u.%u.%u loaded", 1697 multipath_target.version[0], multipath_target.version[1], 1698 multipath_target.version[2]); 1699 1700 return r; 1701 } 1702 1703 static void __exit dm_multipath_exit(void) 1704 { 1705 destroy_workqueue(kmpath_handlerd); 1706 destroy_workqueue(kmultipathd); 1707 1708 dm_unregister_target(&multipath_target); 1709 kmem_cache_destroy(_mpio_cache); 1710 } 1711 1712 module_init(dm_multipath_init); 1713 module_exit(dm_multipath_exit); 1714 1715 MODULE_DESCRIPTION(DM_NAME " multipath target"); 1716 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 1717 MODULE_LICENSE("GPL"); 1718