xref: /openbmc/linux/drivers/md/dm-integrity.c (revision d6824a28b244e8a750952848e4bd2167e1e9a17e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include "dm-bio-record.h"
11 
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26 
27 #include "dm-audit.h"
28 
29 #define DM_MSG_PREFIX "integrity"
30 
31 #define DEFAULT_INTERLEAVE_SECTORS	32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
34 #define DEFAULT_BUFFER_SECTORS		128
35 #define DEFAULT_JOURNAL_WATERMARK	50
36 #define DEFAULT_SYNC_MSEC		10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS	3
39 #define MAX_LOG2_INTERLEAVE_SECTORS	31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
41 #define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER		16
43 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
44 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
45 #define DISCARD_FILLER			0xf6
46 #define SALT_SIZE			16
47 
48 /*
49  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50  * so it should not be enabled in the official kernel
51  */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54 
55 /*
56  * On disk structures
57  */
58 
59 #define SB_MAGIC			"integrt"
60 #define SB_VERSION_1			1
61 #define SB_VERSION_2			2
62 #define SB_VERSION_3			3
63 #define SB_VERSION_4			4
64 #define SB_VERSION_5			5
65 #define SB_SECTORS			8
66 #define MAX_SECTORS_PER_BLOCK		8
67 
68 struct superblock {
69 	__u8 magic[8];
70 	__u8 version;
71 	__u8 log2_interleave_sectors;
72 	__le16 integrity_tag_size;
73 	__le32 journal_sections;
74 	__le64 provided_data_sectors;	/* userspace uses this value */
75 	__le32 flags;
76 	__u8 log2_sectors_per_block;
77 	__u8 log2_blocks_per_bitmap_bit;
78 	__u8 pad[2];
79 	__le64 recalc_sector;
80 	__u8 pad2[8];
81 	__u8 salt[SALT_SIZE];
82 };
83 
84 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
85 #define SB_FLAG_RECALCULATING		0x2
86 #define SB_FLAG_DIRTY_BITMAP		0x4
87 #define SB_FLAG_FIXED_PADDING		0x8
88 #define SB_FLAG_FIXED_HMAC		0x10
89 
90 #define	JOURNAL_ENTRY_ROUNDUP		8
91 
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR		8
94 
95 struct journal_entry {
96 	union {
97 		struct {
98 			__le32 sector_lo;
99 			__le32 sector_hi;
100 		} s;
101 		__le64 sector;
102 	} u;
103 	commit_id_t last_bytes[];
104 	/* __u8 tag[0]; */
105 };
106 
107 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108 
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
119 
120 #define JOURNAL_BLOCK_SECTORS		8
121 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123 
124 struct journal_sector {
125 	struct_group(sectors,
126 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
128 	);
129 	commit_id_t commit_id;
130 };
131 
132 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133 
134 #define METADATA_PADDING_SECTORS	8
135 
136 #define N_COMMIT_IDS			4
137 
138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142 
143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145 	return (seq + 1) % N_COMMIT_IDS;
146 }
147 
148 /*
149  * In-memory structures
150  */
151 
152 struct journal_node {
153 	struct rb_node node;
154 	sector_t sector;
155 };
156 
157 struct alg_spec {
158 	char *alg_string;
159 	char *key_string;
160 	__u8 *key;
161 	unsigned int key_size;
162 };
163 
164 struct dm_integrity_c {
165 	struct dm_dev *dev;
166 	struct dm_dev *meta_dev;
167 	unsigned int tag_size;
168 	__s8 log2_tag_size;
169 	sector_t start;
170 	mempool_t journal_io_mempool;
171 	struct dm_io_client *io;
172 	struct dm_bufio_client *bufio;
173 	struct workqueue_struct *metadata_wq;
174 	struct superblock *sb;
175 	unsigned int journal_pages;
176 	unsigned int n_bitmap_blocks;
177 
178 	struct page_list *journal;
179 	struct page_list *journal_io;
180 	struct page_list *journal_xor;
181 	struct page_list *recalc_bitmap;
182 	struct page_list *may_write_bitmap;
183 	struct bitmap_block_status *bbs;
184 	unsigned int bitmap_flush_interval;
185 	int synchronous_mode;
186 	struct bio_list synchronous_bios;
187 	struct delayed_work bitmap_flush_work;
188 
189 	struct crypto_skcipher *journal_crypt;
190 	struct scatterlist **journal_scatterlist;
191 	struct scatterlist **journal_io_scatterlist;
192 	struct skcipher_request **sk_requests;
193 
194 	struct crypto_shash *journal_mac;
195 
196 	struct journal_node *journal_tree;
197 	struct rb_root journal_tree_root;
198 
199 	sector_t provided_data_sectors;
200 
201 	unsigned short journal_entry_size;
202 	unsigned char journal_entries_per_sector;
203 	unsigned char journal_section_entries;
204 	unsigned short journal_section_sectors;
205 	unsigned int journal_sections;
206 	unsigned int journal_entries;
207 	sector_t data_device_sectors;
208 	sector_t meta_device_sectors;
209 	unsigned int initial_sectors;
210 	unsigned int metadata_run;
211 	__s8 log2_metadata_run;
212 	__u8 log2_buffer_sectors;
213 	__u8 sectors_per_block;
214 	__u8 log2_blocks_per_bitmap_bit;
215 
216 	unsigned char mode;
217 
218 	int failed;
219 
220 	struct crypto_shash *internal_hash;
221 
222 	struct dm_target *ti;
223 
224 	/* these variables are locked with endio_wait.lock */
225 	struct rb_root in_progress;
226 	struct list_head wait_list;
227 	wait_queue_head_t endio_wait;
228 	struct workqueue_struct *wait_wq;
229 	struct workqueue_struct *offload_wq;
230 
231 	unsigned char commit_seq;
232 	commit_id_t commit_ids[N_COMMIT_IDS];
233 
234 	unsigned int committed_section;
235 	unsigned int n_committed_sections;
236 
237 	unsigned int uncommitted_section;
238 	unsigned int n_uncommitted_sections;
239 
240 	unsigned int free_section;
241 	unsigned char free_section_entry;
242 	unsigned int free_sectors;
243 
244 	unsigned int free_sectors_threshold;
245 
246 	struct workqueue_struct *commit_wq;
247 	struct work_struct commit_work;
248 
249 	struct workqueue_struct *writer_wq;
250 	struct work_struct writer_work;
251 
252 	struct workqueue_struct *recalc_wq;
253 	struct work_struct recalc_work;
254 
255 	struct bio_list flush_bio_list;
256 
257 	unsigned long autocommit_jiffies;
258 	struct timer_list autocommit_timer;
259 	unsigned int autocommit_msec;
260 
261 	wait_queue_head_t copy_to_journal_wait;
262 
263 	struct completion crypto_backoff;
264 
265 	bool wrote_to_journal;
266 	bool journal_uptodate;
267 	bool just_formatted;
268 	bool recalculate_flag;
269 	bool reset_recalculate_flag;
270 	bool discard;
271 	bool fix_padding;
272 	bool fix_hmac;
273 	bool legacy_recalculate;
274 
275 	struct alg_spec internal_hash_alg;
276 	struct alg_spec journal_crypt_alg;
277 	struct alg_spec journal_mac_alg;
278 
279 	atomic64_t number_of_mismatches;
280 
281 	mempool_t recheck_pool;
282 
283 	struct notifier_block reboot_notifier;
284 };
285 
286 struct dm_integrity_range {
287 	sector_t logical_sector;
288 	sector_t n_sectors;
289 	bool waiting;
290 	union {
291 		struct rb_node node;
292 		struct {
293 			struct task_struct *task;
294 			struct list_head wait_entry;
295 		};
296 	};
297 };
298 
299 struct dm_integrity_io {
300 	struct work_struct work;
301 
302 	struct dm_integrity_c *ic;
303 	enum req_op op;
304 	bool fua;
305 
306 	struct dm_integrity_range range;
307 
308 	sector_t metadata_block;
309 	unsigned int metadata_offset;
310 
311 	atomic_t in_flight;
312 	blk_status_t bi_status;
313 
314 	struct completion *completion;
315 
316 	struct dm_bio_details bio_details;
317 };
318 
319 struct journal_completion {
320 	struct dm_integrity_c *ic;
321 	atomic_t in_flight;
322 	struct completion comp;
323 };
324 
325 struct journal_io {
326 	struct dm_integrity_range range;
327 	struct journal_completion *comp;
328 };
329 
330 struct bitmap_block_status {
331 	struct work_struct work;
332 	struct dm_integrity_c *ic;
333 	unsigned int idx;
334 	unsigned long *bitmap;
335 	struct bio_list bio_queue;
336 	spinlock_t bio_queue_lock;
337 
338 };
339 
340 static struct kmem_cache *journal_io_cache;
341 
342 #define JOURNAL_IO_MEMPOOL	32
343 
344 #ifdef DEBUG_PRINT
345 #define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
346 #define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
347 						       len ? ": " : "", len, bytes)
348 #else
349 #define DEBUG_print(x, ...)			do { } while (0)
350 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
351 #endif
352 
353 static void dm_integrity_prepare(struct request *rq)
354 {
355 }
356 
357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
358 {
359 }
360 
361 /*
362  * DM Integrity profile, protection is performed layer above (dm-crypt)
363  */
364 static const struct blk_integrity_profile dm_integrity_profile = {
365 	.name			= "DM-DIF-EXT-TAG",
366 	.generate_fn		= NULL,
367 	.verify_fn		= NULL,
368 	.prepare_fn		= dm_integrity_prepare,
369 	.complete_fn		= dm_integrity_complete,
370 };
371 
372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
373 static void integrity_bio_wait(struct work_struct *w);
374 static void dm_integrity_dtr(struct dm_target *ti);
375 
376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
377 {
378 	if (err == -EILSEQ)
379 		atomic64_inc(&ic->number_of_mismatches);
380 	if (!cmpxchg(&ic->failed, 0, err))
381 		DMERR("Error on %s: %d", msg, err);
382 }
383 
384 static int dm_integrity_failed(struct dm_integrity_c *ic)
385 {
386 	return READ_ONCE(ic->failed);
387 }
388 
389 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
390 {
391 	if (ic->legacy_recalculate)
392 		return false;
393 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
394 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
395 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
396 		return true;
397 	return false;
398 }
399 
400 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
401 					  unsigned int j, unsigned char seq)
402 {
403 	/*
404 	 * Xor the number with section and sector, so that if a piece of
405 	 * journal is written at wrong place, it is detected.
406 	 */
407 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
408 }
409 
410 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
411 				sector_t *area, sector_t *offset)
412 {
413 	if (!ic->meta_dev) {
414 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
415 		*area = data_sector >> log2_interleave_sectors;
416 		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
417 	} else {
418 		*area = 0;
419 		*offset = data_sector;
420 	}
421 }
422 
423 #define sector_to_block(ic, n)						\
424 do {									\
425 	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
426 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
427 } while (0)
428 
429 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
430 					    sector_t offset, unsigned int *metadata_offset)
431 {
432 	__u64 ms;
433 	unsigned int mo;
434 
435 	ms = area << ic->sb->log2_interleave_sectors;
436 	if (likely(ic->log2_metadata_run >= 0))
437 		ms += area << ic->log2_metadata_run;
438 	else
439 		ms += area * ic->metadata_run;
440 	ms >>= ic->log2_buffer_sectors;
441 
442 	sector_to_block(ic, offset);
443 
444 	if (likely(ic->log2_tag_size >= 0)) {
445 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
446 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
447 	} else {
448 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
449 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
450 	}
451 	*metadata_offset = mo;
452 	return ms;
453 }
454 
455 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
456 {
457 	sector_t result;
458 
459 	if (ic->meta_dev)
460 		return offset;
461 
462 	result = area << ic->sb->log2_interleave_sectors;
463 	if (likely(ic->log2_metadata_run >= 0))
464 		result += (area + 1) << ic->log2_metadata_run;
465 	else
466 		result += (area + 1) * ic->metadata_run;
467 
468 	result += (sector_t)ic->initial_sectors + offset;
469 	result += ic->start;
470 
471 	return result;
472 }
473 
474 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
475 {
476 	if (unlikely(*sec_ptr >= ic->journal_sections))
477 		*sec_ptr -= ic->journal_sections;
478 }
479 
480 static void sb_set_version(struct dm_integrity_c *ic)
481 {
482 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
483 		ic->sb->version = SB_VERSION_5;
484 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
485 		ic->sb->version = SB_VERSION_4;
486 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
487 		ic->sb->version = SB_VERSION_3;
488 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
489 		ic->sb->version = SB_VERSION_2;
490 	else
491 		ic->sb->version = SB_VERSION_1;
492 }
493 
494 static int sb_mac(struct dm_integrity_c *ic, bool wr)
495 {
496 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
497 	int r;
498 	unsigned int size = crypto_shash_digestsize(ic->journal_mac);
499 
500 	if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
501 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
502 		return -EINVAL;
503 	}
504 
505 	desc->tfm = ic->journal_mac;
506 
507 	r = crypto_shash_init(desc);
508 	if (unlikely(r < 0)) {
509 		dm_integrity_io_error(ic, "crypto_shash_init", r);
510 		return r;
511 	}
512 
513 	r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
514 	if (unlikely(r < 0)) {
515 		dm_integrity_io_error(ic, "crypto_shash_update", r);
516 		return r;
517 	}
518 
519 	if (likely(wr)) {
520 		r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
521 		if (unlikely(r < 0)) {
522 			dm_integrity_io_error(ic, "crypto_shash_final", r);
523 			return r;
524 		}
525 	} else {
526 		__u8 result[HASH_MAX_DIGESTSIZE];
527 
528 		r = crypto_shash_final(desc, result);
529 		if (unlikely(r < 0)) {
530 			dm_integrity_io_error(ic, "crypto_shash_final", r);
531 			return r;
532 		}
533 		if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
534 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
535 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
536 			return -EILSEQ;
537 		}
538 	}
539 
540 	return 0;
541 }
542 
543 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
544 {
545 	struct dm_io_request io_req;
546 	struct dm_io_region io_loc;
547 	const enum req_op op = opf & REQ_OP_MASK;
548 	int r;
549 
550 	io_req.bi_opf = opf;
551 	io_req.mem.type = DM_IO_KMEM;
552 	io_req.mem.ptr.addr = ic->sb;
553 	io_req.notify.fn = NULL;
554 	io_req.client = ic->io;
555 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
556 	io_loc.sector = ic->start;
557 	io_loc.count = SB_SECTORS;
558 
559 	if (op == REQ_OP_WRITE) {
560 		sb_set_version(ic);
561 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
562 			r = sb_mac(ic, true);
563 			if (unlikely(r))
564 				return r;
565 		}
566 	}
567 
568 	r = dm_io(&io_req, 1, &io_loc, NULL);
569 	if (unlikely(r))
570 		return r;
571 
572 	if (op == REQ_OP_READ) {
573 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
574 			r = sb_mac(ic, false);
575 			if (unlikely(r))
576 				return r;
577 		}
578 	}
579 
580 	return 0;
581 }
582 
583 #define BITMAP_OP_TEST_ALL_SET		0
584 #define BITMAP_OP_TEST_ALL_CLEAR	1
585 #define BITMAP_OP_SET			2
586 #define BITMAP_OP_CLEAR			3
587 
588 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
589 			    sector_t sector, sector_t n_sectors, int mode)
590 {
591 	unsigned long bit, end_bit, this_end_bit, page, end_page;
592 	unsigned long *data;
593 
594 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
595 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
596 			sector,
597 			n_sectors,
598 			ic->sb->log2_sectors_per_block,
599 			ic->log2_blocks_per_bitmap_bit,
600 			mode);
601 		BUG();
602 	}
603 
604 	if (unlikely(!n_sectors))
605 		return true;
606 
607 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
608 	end_bit = (sector + n_sectors - 1) >>
609 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
610 
611 	page = bit / (PAGE_SIZE * 8);
612 	bit %= PAGE_SIZE * 8;
613 
614 	end_page = end_bit / (PAGE_SIZE * 8);
615 	end_bit %= PAGE_SIZE * 8;
616 
617 repeat:
618 	if (page < end_page)
619 		this_end_bit = PAGE_SIZE * 8 - 1;
620 	else
621 		this_end_bit = end_bit;
622 
623 	data = lowmem_page_address(bitmap[page].page);
624 
625 	if (mode == BITMAP_OP_TEST_ALL_SET) {
626 		while (bit <= this_end_bit) {
627 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
628 				do {
629 					if (data[bit / BITS_PER_LONG] != -1)
630 						return false;
631 					bit += BITS_PER_LONG;
632 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
633 				continue;
634 			}
635 			if (!test_bit(bit, data))
636 				return false;
637 			bit++;
638 		}
639 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
640 		while (bit <= this_end_bit) {
641 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
642 				do {
643 					if (data[bit / BITS_PER_LONG] != 0)
644 						return false;
645 					bit += BITS_PER_LONG;
646 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
647 				continue;
648 			}
649 			if (test_bit(bit, data))
650 				return false;
651 			bit++;
652 		}
653 	} else if (mode == BITMAP_OP_SET) {
654 		while (bit <= this_end_bit) {
655 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
656 				do {
657 					data[bit / BITS_PER_LONG] = -1;
658 					bit += BITS_PER_LONG;
659 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
660 				continue;
661 			}
662 			__set_bit(bit, data);
663 			bit++;
664 		}
665 	} else if (mode == BITMAP_OP_CLEAR) {
666 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
667 			clear_page(data);
668 		else {
669 			while (bit <= this_end_bit) {
670 				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
671 					do {
672 						data[bit / BITS_PER_LONG] = 0;
673 						bit += BITS_PER_LONG;
674 					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
675 					continue;
676 				}
677 				__clear_bit(bit, data);
678 				bit++;
679 			}
680 		}
681 	} else {
682 		BUG();
683 	}
684 
685 	if (unlikely(page < end_page)) {
686 		bit = 0;
687 		page++;
688 		goto repeat;
689 	}
690 
691 	return true;
692 }
693 
694 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
695 {
696 	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
697 	unsigned int i;
698 
699 	for (i = 0; i < n_bitmap_pages; i++) {
700 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
701 		unsigned long *src_data = lowmem_page_address(src[i].page);
702 
703 		copy_page(dst_data, src_data);
704 	}
705 }
706 
707 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
708 {
709 	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
710 	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
711 
712 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
713 	return &ic->bbs[bitmap_block];
714 }
715 
716 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
717 				 bool e, const char *function)
718 {
719 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
720 	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
721 
722 	if (unlikely(section >= ic->journal_sections) ||
723 	    unlikely(offset >= limit)) {
724 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
725 		       function, section, offset, ic->journal_sections, limit);
726 		BUG();
727 	}
728 #endif
729 }
730 
731 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
732 			       unsigned int *pl_index, unsigned int *pl_offset)
733 {
734 	unsigned int sector;
735 
736 	access_journal_check(ic, section, offset, false, "page_list_location");
737 
738 	sector = section * ic->journal_section_sectors + offset;
739 
740 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
741 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
742 }
743 
744 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
745 					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
746 {
747 	unsigned int pl_index, pl_offset;
748 	char *va;
749 
750 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
751 
752 	if (n_sectors)
753 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
754 
755 	va = lowmem_page_address(pl[pl_index].page);
756 
757 	return (struct journal_sector *)(va + pl_offset);
758 }
759 
760 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
761 {
762 	return access_page_list(ic, ic->journal, section, offset, NULL);
763 }
764 
765 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
766 {
767 	unsigned int rel_sector, offset;
768 	struct journal_sector *js;
769 
770 	access_journal_check(ic, section, n, true, "access_journal_entry");
771 
772 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
773 	offset = n / JOURNAL_BLOCK_SECTORS;
774 
775 	js = access_journal(ic, section, rel_sector);
776 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
777 }
778 
779 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
780 {
781 	n <<= ic->sb->log2_sectors_per_block;
782 
783 	n += JOURNAL_BLOCK_SECTORS;
784 
785 	access_journal_check(ic, section, n, false, "access_journal_data");
786 
787 	return access_journal(ic, section, n);
788 }
789 
790 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
791 {
792 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
793 	int r;
794 	unsigned int j, size;
795 
796 	desc->tfm = ic->journal_mac;
797 
798 	r = crypto_shash_init(desc);
799 	if (unlikely(r < 0)) {
800 		dm_integrity_io_error(ic, "crypto_shash_init", r);
801 		goto err;
802 	}
803 
804 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
805 		__le64 section_le;
806 
807 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
808 		if (unlikely(r < 0)) {
809 			dm_integrity_io_error(ic, "crypto_shash_update", r);
810 			goto err;
811 		}
812 
813 		section_le = cpu_to_le64(section);
814 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
815 		if (unlikely(r < 0)) {
816 			dm_integrity_io_error(ic, "crypto_shash_update", r);
817 			goto err;
818 		}
819 	}
820 
821 	for (j = 0; j < ic->journal_section_entries; j++) {
822 		struct journal_entry *je = access_journal_entry(ic, section, j);
823 
824 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
825 		if (unlikely(r < 0)) {
826 			dm_integrity_io_error(ic, "crypto_shash_update", r);
827 			goto err;
828 		}
829 	}
830 
831 	size = crypto_shash_digestsize(ic->journal_mac);
832 
833 	if (likely(size <= JOURNAL_MAC_SIZE)) {
834 		r = crypto_shash_final(desc, result);
835 		if (unlikely(r < 0)) {
836 			dm_integrity_io_error(ic, "crypto_shash_final", r);
837 			goto err;
838 		}
839 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
840 	} else {
841 		__u8 digest[HASH_MAX_DIGESTSIZE];
842 
843 		if (WARN_ON(size > sizeof(digest))) {
844 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
845 			goto err;
846 		}
847 		r = crypto_shash_final(desc, digest);
848 		if (unlikely(r < 0)) {
849 			dm_integrity_io_error(ic, "crypto_shash_final", r);
850 			goto err;
851 		}
852 		memcpy(result, digest, JOURNAL_MAC_SIZE);
853 	}
854 
855 	return;
856 err:
857 	memset(result, 0, JOURNAL_MAC_SIZE);
858 }
859 
860 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
861 {
862 	__u8 result[JOURNAL_MAC_SIZE];
863 	unsigned int j;
864 
865 	if (!ic->journal_mac)
866 		return;
867 
868 	section_mac(ic, section, result);
869 
870 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
871 		struct journal_sector *js = access_journal(ic, section, j);
872 
873 		if (likely(wr))
874 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
875 		else {
876 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
877 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
878 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
879 			}
880 		}
881 	}
882 }
883 
884 static void complete_journal_op(void *context)
885 {
886 	struct journal_completion *comp = context;
887 
888 	BUG_ON(!atomic_read(&comp->in_flight));
889 	if (likely(atomic_dec_and_test(&comp->in_flight)))
890 		complete(&comp->comp);
891 }
892 
893 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
894 			unsigned int n_sections, struct journal_completion *comp)
895 {
896 	struct async_submit_ctl submit;
897 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
898 	unsigned int pl_index, pl_offset, section_index;
899 	struct page_list *source_pl, *target_pl;
900 
901 	if (likely(encrypt)) {
902 		source_pl = ic->journal;
903 		target_pl = ic->journal_io;
904 	} else {
905 		source_pl = ic->journal_io;
906 		target_pl = ic->journal;
907 	}
908 
909 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
910 
911 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
912 
913 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
914 
915 	section_index = pl_index;
916 
917 	do {
918 		size_t this_step;
919 		struct page *src_pages[2];
920 		struct page *dst_page;
921 
922 		while (unlikely(pl_index == section_index)) {
923 			unsigned int dummy;
924 
925 			if (likely(encrypt))
926 				rw_section_mac(ic, section, true);
927 			section++;
928 			n_sections--;
929 			if (!n_sections)
930 				break;
931 			page_list_location(ic, section, 0, &section_index, &dummy);
932 		}
933 
934 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
935 		dst_page = target_pl[pl_index].page;
936 		src_pages[0] = source_pl[pl_index].page;
937 		src_pages[1] = ic->journal_xor[pl_index].page;
938 
939 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
940 
941 		pl_index++;
942 		pl_offset = 0;
943 		n_bytes -= this_step;
944 	} while (n_bytes);
945 
946 	BUG_ON(n_sections);
947 
948 	async_tx_issue_pending_all();
949 }
950 
951 static void complete_journal_encrypt(void *data, int err)
952 {
953 	struct journal_completion *comp = data;
954 
955 	if (unlikely(err)) {
956 		if (likely(err == -EINPROGRESS)) {
957 			complete(&comp->ic->crypto_backoff);
958 			return;
959 		}
960 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
961 	}
962 	complete_journal_op(comp);
963 }
964 
965 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
966 {
967 	int r;
968 
969 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
970 				      complete_journal_encrypt, comp);
971 	if (likely(encrypt))
972 		r = crypto_skcipher_encrypt(req);
973 	else
974 		r = crypto_skcipher_decrypt(req);
975 	if (likely(!r))
976 		return false;
977 	if (likely(r == -EINPROGRESS))
978 		return true;
979 	if (likely(r == -EBUSY)) {
980 		wait_for_completion(&comp->ic->crypto_backoff);
981 		reinit_completion(&comp->ic->crypto_backoff);
982 		return true;
983 	}
984 	dm_integrity_io_error(comp->ic, "encrypt", r);
985 	return false;
986 }
987 
988 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
989 			  unsigned int n_sections, struct journal_completion *comp)
990 {
991 	struct scatterlist **source_sg;
992 	struct scatterlist **target_sg;
993 
994 	atomic_add(2, &comp->in_flight);
995 
996 	if (likely(encrypt)) {
997 		source_sg = ic->journal_scatterlist;
998 		target_sg = ic->journal_io_scatterlist;
999 	} else {
1000 		source_sg = ic->journal_io_scatterlist;
1001 		target_sg = ic->journal_scatterlist;
1002 	}
1003 
1004 	do {
1005 		struct skcipher_request *req;
1006 		unsigned int ivsize;
1007 		char *iv;
1008 
1009 		if (likely(encrypt))
1010 			rw_section_mac(ic, section, true);
1011 
1012 		req = ic->sk_requests[section];
1013 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1014 		iv = req->iv;
1015 
1016 		memcpy(iv, iv + ivsize, ivsize);
1017 
1018 		req->src = source_sg[section];
1019 		req->dst = target_sg[section];
1020 
1021 		if (unlikely(do_crypt(encrypt, req, comp)))
1022 			atomic_inc(&comp->in_flight);
1023 
1024 		section++;
1025 		n_sections--;
1026 	} while (n_sections);
1027 
1028 	atomic_dec(&comp->in_flight);
1029 	complete_journal_op(comp);
1030 }
1031 
1032 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1033 			    unsigned int n_sections, struct journal_completion *comp)
1034 {
1035 	if (ic->journal_xor)
1036 		return xor_journal(ic, encrypt, section, n_sections, comp);
1037 	else
1038 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1039 }
1040 
1041 static void complete_journal_io(unsigned long error, void *context)
1042 {
1043 	struct journal_completion *comp = context;
1044 
1045 	if (unlikely(error != 0))
1046 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1047 	complete_journal_op(comp);
1048 }
1049 
1050 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1051 			       unsigned int sector, unsigned int n_sectors,
1052 			       struct journal_completion *comp)
1053 {
1054 	struct dm_io_request io_req;
1055 	struct dm_io_region io_loc;
1056 	unsigned int pl_index, pl_offset;
1057 	int r;
1058 
1059 	if (unlikely(dm_integrity_failed(ic))) {
1060 		if (comp)
1061 			complete_journal_io(-1UL, comp);
1062 		return;
1063 	}
1064 
1065 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1066 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1067 
1068 	io_req.bi_opf = opf;
1069 	io_req.mem.type = DM_IO_PAGE_LIST;
1070 	if (ic->journal_io)
1071 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1072 	else
1073 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1074 	io_req.mem.offset = pl_offset;
1075 	if (likely(comp != NULL)) {
1076 		io_req.notify.fn = complete_journal_io;
1077 		io_req.notify.context = comp;
1078 	} else {
1079 		io_req.notify.fn = NULL;
1080 	}
1081 	io_req.client = ic->io;
1082 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1083 	io_loc.sector = ic->start + SB_SECTORS + sector;
1084 	io_loc.count = n_sectors;
1085 
1086 	r = dm_io(&io_req, 1, &io_loc, NULL);
1087 	if (unlikely(r)) {
1088 		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1089 				      "reading journal" : "writing journal", r);
1090 		if (comp) {
1091 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1092 			complete_journal_io(-1UL, comp);
1093 		}
1094 	}
1095 }
1096 
1097 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1098 		       unsigned int section, unsigned int n_sections,
1099 		       struct journal_completion *comp)
1100 {
1101 	unsigned int sector, n_sectors;
1102 
1103 	sector = section * ic->journal_section_sectors;
1104 	n_sectors = n_sections * ic->journal_section_sectors;
1105 
1106 	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1107 }
1108 
1109 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1110 {
1111 	struct journal_completion io_comp;
1112 	struct journal_completion crypt_comp_1;
1113 	struct journal_completion crypt_comp_2;
1114 	unsigned int i;
1115 
1116 	io_comp.ic = ic;
1117 	init_completion(&io_comp.comp);
1118 
1119 	if (commit_start + commit_sections <= ic->journal_sections) {
1120 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1121 		if (ic->journal_io) {
1122 			crypt_comp_1.ic = ic;
1123 			init_completion(&crypt_comp_1.comp);
1124 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1125 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1126 			wait_for_completion_io(&crypt_comp_1.comp);
1127 		} else {
1128 			for (i = 0; i < commit_sections; i++)
1129 				rw_section_mac(ic, commit_start + i, true);
1130 		}
1131 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1132 			   commit_sections, &io_comp);
1133 	} else {
1134 		unsigned int to_end;
1135 
1136 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1137 		to_end = ic->journal_sections - commit_start;
1138 		if (ic->journal_io) {
1139 			crypt_comp_1.ic = ic;
1140 			init_completion(&crypt_comp_1.comp);
1141 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1142 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1143 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1144 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1145 					   commit_start, to_end, &io_comp);
1146 				reinit_completion(&crypt_comp_1.comp);
1147 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1148 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1149 				wait_for_completion_io(&crypt_comp_1.comp);
1150 			} else {
1151 				crypt_comp_2.ic = ic;
1152 				init_completion(&crypt_comp_2.comp);
1153 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1154 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1155 				wait_for_completion_io(&crypt_comp_1.comp);
1156 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1157 				wait_for_completion_io(&crypt_comp_2.comp);
1158 			}
1159 		} else {
1160 			for (i = 0; i < to_end; i++)
1161 				rw_section_mac(ic, commit_start + i, true);
1162 			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1163 			for (i = 0; i < commit_sections - to_end; i++)
1164 				rw_section_mac(ic, i, true);
1165 		}
1166 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1167 	}
1168 
1169 	wait_for_completion_io(&io_comp.comp);
1170 }
1171 
1172 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1173 			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1174 {
1175 	struct dm_io_request io_req;
1176 	struct dm_io_region io_loc;
1177 	int r;
1178 	unsigned int sector, pl_index, pl_offset;
1179 
1180 	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1181 
1182 	if (unlikely(dm_integrity_failed(ic))) {
1183 		fn(-1UL, data);
1184 		return;
1185 	}
1186 
1187 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1188 
1189 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1190 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1191 
1192 	io_req.bi_opf = REQ_OP_WRITE;
1193 	io_req.mem.type = DM_IO_PAGE_LIST;
1194 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1195 	io_req.mem.offset = pl_offset;
1196 	io_req.notify.fn = fn;
1197 	io_req.notify.context = data;
1198 	io_req.client = ic->io;
1199 	io_loc.bdev = ic->dev->bdev;
1200 	io_loc.sector = target;
1201 	io_loc.count = n_sectors;
1202 
1203 	r = dm_io(&io_req, 1, &io_loc, NULL);
1204 	if (unlikely(r)) {
1205 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1206 		fn(-1UL, data);
1207 	}
1208 }
1209 
1210 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1211 {
1212 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1213 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1214 }
1215 
1216 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1217 {
1218 	struct rb_node **n = &ic->in_progress.rb_node;
1219 	struct rb_node *parent;
1220 
1221 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1222 
1223 	if (likely(check_waiting)) {
1224 		struct dm_integrity_range *range;
1225 
1226 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1227 			if (unlikely(ranges_overlap(range, new_range)))
1228 				return false;
1229 		}
1230 	}
1231 
1232 	parent = NULL;
1233 
1234 	while (*n) {
1235 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1236 
1237 		parent = *n;
1238 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1239 			n = &range->node.rb_left;
1240 		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1241 			n = &range->node.rb_right;
1242 		else
1243 			return false;
1244 	}
1245 
1246 	rb_link_node(&new_range->node, parent, n);
1247 	rb_insert_color(&new_range->node, &ic->in_progress);
1248 
1249 	return true;
1250 }
1251 
1252 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1253 {
1254 	rb_erase(&range->node, &ic->in_progress);
1255 	while (unlikely(!list_empty(&ic->wait_list))) {
1256 		struct dm_integrity_range *last_range =
1257 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1258 		struct task_struct *last_range_task;
1259 
1260 		last_range_task = last_range->task;
1261 		list_del(&last_range->wait_entry);
1262 		if (!add_new_range(ic, last_range, false)) {
1263 			last_range->task = last_range_task;
1264 			list_add(&last_range->wait_entry, &ic->wait_list);
1265 			break;
1266 		}
1267 		last_range->waiting = false;
1268 		wake_up_process(last_range_task);
1269 	}
1270 }
1271 
1272 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1273 {
1274 	unsigned long flags;
1275 
1276 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1277 	remove_range_unlocked(ic, range);
1278 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1279 }
1280 
1281 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1282 {
1283 	new_range->waiting = true;
1284 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1285 	new_range->task = current;
1286 	do {
1287 		__set_current_state(TASK_UNINTERRUPTIBLE);
1288 		spin_unlock_irq(&ic->endio_wait.lock);
1289 		io_schedule();
1290 		spin_lock_irq(&ic->endio_wait.lock);
1291 	} while (unlikely(new_range->waiting));
1292 }
1293 
1294 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1295 {
1296 	if (unlikely(!add_new_range(ic, new_range, true)))
1297 		wait_and_add_new_range(ic, new_range);
1298 }
1299 
1300 static void init_journal_node(struct journal_node *node)
1301 {
1302 	RB_CLEAR_NODE(&node->node);
1303 	node->sector = (sector_t)-1;
1304 }
1305 
1306 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1307 {
1308 	struct rb_node **link;
1309 	struct rb_node *parent;
1310 
1311 	node->sector = sector;
1312 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1313 
1314 	link = &ic->journal_tree_root.rb_node;
1315 	parent = NULL;
1316 
1317 	while (*link) {
1318 		struct journal_node *j;
1319 
1320 		parent = *link;
1321 		j = container_of(parent, struct journal_node, node);
1322 		if (sector < j->sector)
1323 			link = &j->node.rb_left;
1324 		else
1325 			link = &j->node.rb_right;
1326 	}
1327 
1328 	rb_link_node(&node->node, parent, link);
1329 	rb_insert_color(&node->node, &ic->journal_tree_root);
1330 }
1331 
1332 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1333 {
1334 	BUG_ON(RB_EMPTY_NODE(&node->node));
1335 	rb_erase(&node->node, &ic->journal_tree_root);
1336 	init_journal_node(node);
1337 }
1338 
1339 #define NOT_FOUND	(-1U)
1340 
1341 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1342 {
1343 	struct rb_node *n = ic->journal_tree_root.rb_node;
1344 	unsigned int found = NOT_FOUND;
1345 
1346 	*next_sector = (sector_t)-1;
1347 	while (n) {
1348 		struct journal_node *j = container_of(n, struct journal_node, node);
1349 
1350 		if (sector == j->sector)
1351 			found = j - ic->journal_tree;
1352 
1353 		if (sector < j->sector) {
1354 			*next_sector = j->sector;
1355 			n = j->node.rb_left;
1356 		} else
1357 			n = j->node.rb_right;
1358 	}
1359 
1360 	return found;
1361 }
1362 
1363 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1364 {
1365 	struct journal_node *node, *next_node;
1366 	struct rb_node *next;
1367 
1368 	if (unlikely(pos >= ic->journal_entries))
1369 		return false;
1370 	node = &ic->journal_tree[pos];
1371 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1372 		return false;
1373 	if (unlikely(node->sector != sector))
1374 		return false;
1375 
1376 	next = rb_next(&node->node);
1377 	if (unlikely(!next))
1378 		return true;
1379 
1380 	next_node = container_of(next, struct journal_node, node);
1381 	return next_node->sector != sector;
1382 }
1383 
1384 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1385 {
1386 	struct rb_node *next;
1387 	struct journal_node *next_node;
1388 	unsigned int next_section;
1389 
1390 	BUG_ON(RB_EMPTY_NODE(&node->node));
1391 
1392 	next = rb_next(&node->node);
1393 	if (unlikely(!next))
1394 		return false;
1395 
1396 	next_node = container_of(next, struct journal_node, node);
1397 
1398 	if (next_node->sector != node->sector)
1399 		return false;
1400 
1401 	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1402 	if (next_section >= ic->committed_section &&
1403 	    next_section < ic->committed_section + ic->n_committed_sections)
1404 		return true;
1405 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1406 		return true;
1407 
1408 	return false;
1409 }
1410 
1411 #define TAG_READ	0
1412 #define TAG_WRITE	1
1413 #define TAG_CMP		2
1414 
1415 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1416 			       unsigned int *metadata_offset, unsigned int total_size, int op)
1417 {
1418 #define MAY_BE_FILLER		1
1419 #define MAY_BE_HASH		2
1420 	unsigned int hash_offset = 0;
1421 	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1422 
1423 	do {
1424 		unsigned char *data, *dp;
1425 		struct dm_buffer *b;
1426 		unsigned int to_copy;
1427 		int r;
1428 
1429 		r = dm_integrity_failed(ic);
1430 		if (unlikely(r))
1431 			return r;
1432 
1433 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1434 		if (IS_ERR(data))
1435 			return PTR_ERR(data);
1436 
1437 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1438 		dp = data + *metadata_offset;
1439 		if (op == TAG_READ) {
1440 			memcpy(tag, dp, to_copy);
1441 		} else if (op == TAG_WRITE) {
1442 			if (memcmp(dp, tag, to_copy)) {
1443 				memcpy(dp, tag, to_copy);
1444 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1445 			}
1446 		} else {
1447 			/* e.g.: op == TAG_CMP */
1448 
1449 			if (likely(is_power_of_2(ic->tag_size))) {
1450 				if (unlikely(memcmp(dp, tag, to_copy)))
1451 					if (unlikely(!ic->discard) ||
1452 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1453 						goto thorough_test;
1454 				}
1455 			} else {
1456 				unsigned int i, ts;
1457 thorough_test:
1458 				ts = total_size;
1459 
1460 				for (i = 0; i < to_copy; i++, ts--) {
1461 					if (unlikely(dp[i] != tag[i]))
1462 						may_be &= ~MAY_BE_HASH;
1463 					if (likely(dp[i] != DISCARD_FILLER))
1464 						may_be &= ~MAY_BE_FILLER;
1465 					hash_offset++;
1466 					if (unlikely(hash_offset == ic->tag_size)) {
1467 						if (unlikely(!may_be)) {
1468 							dm_bufio_release(b);
1469 							return ts;
1470 						}
1471 						hash_offset = 0;
1472 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1473 					}
1474 				}
1475 			}
1476 		}
1477 		dm_bufio_release(b);
1478 
1479 		tag += to_copy;
1480 		*metadata_offset += to_copy;
1481 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1482 			(*metadata_block)++;
1483 			*metadata_offset = 0;
1484 		}
1485 
1486 		if (unlikely(!is_power_of_2(ic->tag_size)))
1487 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1488 
1489 		total_size -= to_copy;
1490 	} while (unlikely(total_size));
1491 
1492 	return 0;
1493 #undef MAY_BE_FILLER
1494 #undef MAY_BE_HASH
1495 }
1496 
1497 struct flush_request {
1498 	struct dm_io_request io_req;
1499 	struct dm_io_region io_reg;
1500 	struct dm_integrity_c *ic;
1501 	struct completion comp;
1502 };
1503 
1504 static void flush_notify(unsigned long error, void *fr_)
1505 {
1506 	struct flush_request *fr = fr_;
1507 
1508 	if (unlikely(error != 0))
1509 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1510 	complete(&fr->comp);
1511 }
1512 
1513 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1514 {
1515 	int r;
1516 	struct flush_request fr;
1517 
1518 	if (!ic->meta_dev)
1519 		flush_data = false;
1520 	if (flush_data) {
1521 		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1522 		fr.io_req.mem.type = DM_IO_KMEM,
1523 		fr.io_req.mem.ptr.addr = NULL,
1524 		fr.io_req.notify.fn = flush_notify,
1525 		fr.io_req.notify.context = &fr;
1526 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1527 		fr.io_reg.bdev = ic->dev->bdev,
1528 		fr.io_reg.sector = 0,
1529 		fr.io_reg.count = 0,
1530 		fr.ic = ic;
1531 		init_completion(&fr.comp);
1532 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1533 		BUG_ON(r);
1534 	}
1535 
1536 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1537 	if (unlikely(r))
1538 		dm_integrity_io_error(ic, "writing tags", r);
1539 
1540 	if (flush_data)
1541 		wait_for_completion(&fr.comp);
1542 }
1543 
1544 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1545 {
1546 	DECLARE_WAITQUEUE(wait, current);
1547 
1548 	__add_wait_queue(&ic->endio_wait, &wait);
1549 	__set_current_state(TASK_UNINTERRUPTIBLE);
1550 	spin_unlock_irq(&ic->endio_wait.lock);
1551 	io_schedule();
1552 	spin_lock_irq(&ic->endio_wait.lock);
1553 	__remove_wait_queue(&ic->endio_wait, &wait);
1554 }
1555 
1556 static void autocommit_fn(struct timer_list *t)
1557 {
1558 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1559 
1560 	if (likely(!dm_integrity_failed(ic)))
1561 		queue_work(ic->commit_wq, &ic->commit_work);
1562 }
1563 
1564 static void schedule_autocommit(struct dm_integrity_c *ic)
1565 {
1566 	if (!timer_pending(&ic->autocommit_timer))
1567 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1568 }
1569 
1570 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1571 {
1572 	struct bio *bio;
1573 	unsigned long flags;
1574 
1575 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1576 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1577 	bio_list_add(&ic->flush_bio_list, bio);
1578 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1579 
1580 	queue_work(ic->commit_wq, &ic->commit_work);
1581 }
1582 
1583 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1584 {
1585 	int r;
1586 
1587 	r = dm_integrity_failed(ic);
1588 	if (unlikely(r) && !bio->bi_status)
1589 		bio->bi_status = errno_to_blk_status(r);
1590 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1591 		unsigned long flags;
1592 
1593 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1594 		bio_list_add(&ic->synchronous_bios, bio);
1595 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1596 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1597 		return;
1598 	}
1599 	bio_endio(bio);
1600 }
1601 
1602 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1603 {
1604 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1605 
1606 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1607 		submit_flush_bio(ic, dio);
1608 	else
1609 		do_endio(ic, bio);
1610 }
1611 
1612 static void dec_in_flight(struct dm_integrity_io *dio)
1613 {
1614 	if (atomic_dec_and_test(&dio->in_flight)) {
1615 		struct dm_integrity_c *ic = dio->ic;
1616 		struct bio *bio;
1617 
1618 		remove_range(ic, &dio->range);
1619 
1620 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1621 			schedule_autocommit(ic);
1622 
1623 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1624 		if (unlikely(dio->bi_status) && !bio->bi_status)
1625 			bio->bi_status = dio->bi_status;
1626 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1627 			dio->range.logical_sector += dio->range.n_sectors;
1628 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1629 			INIT_WORK(&dio->work, integrity_bio_wait);
1630 			queue_work(ic->offload_wq, &dio->work);
1631 			return;
1632 		}
1633 		do_endio_flush(ic, dio);
1634 	}
1635 }
1636 
1637 static void integrity_end_io(struct bio *bio)
1638 {
1639 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1640 
1641 	dm_bio_restore(&dio->bio_details, bio);
1642 	if (bio->bi_integrity)
1643 		bio->bi_opf |= REQ_INTEGRITY;
1644 
1645 	if (dio->completion)
1646 		complete(dio->completion);
1647 
1648 	dec_in_flight(dio);
1649 }
1650 
1651 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1652 				      const char *data, char *result)
1653 {
1654 	__le64 sector_le = cpu_to_le64(sector);
1655 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1656 	int r;
1657 	unsigned int digest_size;
1658 
1659 	req->tfm = ic->internal_hash;
1660 
1661 	r = crypto_shash_init(req);
1662 	if (unlikely(r < 0)) {
1663 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1664 		goto failed;
1665 	}
1666 
1667 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1668 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1669 		if (unlikely(r < 0)) {
1670 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1671 			goto failed;
1672 		}
1673 	}
1674 
1675 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1676 	if (unlikely(r < 0)) {
1677 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1678 		goto failed;
1679 	}
1680 
1681 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1682 	if (unlikely(r < 0)) {
1683 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1684 		goto failed;
1685 	}
1686 
1687 	r = crypto_shash_final(req, result);
1688 	if (unlikely(r < 0)) {
1689 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1690 		goto failed;
1691 	}
1692 
1693 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1694 	if (unlikely(digest_size < ic->tag_size))
1695 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1696 
1697 	return;
1698 
1699 failed:
1700 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1701 	get_random_bytes(result, ic->tag_size);
1702 }
1703 
1704 static void integrity_recheck(struct dm_integrity_io *dio)
1705 {
1706 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1707 	struct dm_integrity_c *ic = dio->ic;
1708 	struct bvec_iter iter;
1709 	struct bio_vec bv;
1710 	sector_t sector, logical_sector, area, offset;
1711 	char checksum_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1712 	struct page *page;
1713 	void *buffer;
1714 
1715 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1716 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1717 							     &dio->metadata_offset);
1718 	sector = get_data_sector(ic, area, offset);
1719 	logical_sector = dio->range.logical_sector;
1720 
1721 	page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1722 	buffer = page_to_virt(page);
1723 
1724 	__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1725 		unsigned pos = 0;
1726 
1727 		do {
1728 			char *mem;
1729 			int r;
1730 			struct dm_io_request io_req;
1731 			struct dm_io_region io_loc;
1732 			io_req.bi_opf = REQ_OP_READ;
1733 			io_req.mem.type = DM_IO_KMEM;
1734 			io_req.mem.ptr.addr = buffer;
1735 			io_req.notify.fn = NULL;
1736 			io_req.client = ic->io;
1737 			io_loc.bdev = ic->dev->bdev;
1738 			io_loc.sector = sector;
1739 			io_loc.count = ic->sectors_per_block;
1740 
1741 			r = dm_io(&io_req, 1, &io_loc, NULL);
1742 			if (unlikely(r)) {
1743 				dio->bi_status = errno_to_blk_status(r);
1744 				goto free_ret;
1745 			}
1746 
1747 			integrity_sector_checksum(ic, logical_sector, buffer,
1748 						  checksum_onstack);
1749 			r = dm_integrity_rw_tag(ic, checksum_onstack, &dio->metadata_block,
1750 						&dio->metadata_offset, ic->tag_size, TAG_CMP);
1751 			if (r) {
1752 				if (r > 0) {
1753 					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1754 						    bio->bi_bdev, logical_sector);
1755 					atomic64_inc(&ic->number_of_mismatches);
1756 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1757 							 bio, logical_sector, 0);
1758 					r = -EILSEQ;
1759 				}
1760 				dio->bi_status = errno_to_blk_status(r);
1761 				goto free_ret;
1762 			}
1763 
1764 			mem = bvec_kmap_local(&bv);
1765 			memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1766 			kunmap_local(mem);
1767 
1768 			pos += ic->sectors_per_block << SECTOR_SHIFT;
1769 			sector += ic->sectors_per_block;
1770 			logical_sector += ic->sectors_per_block;
1771 		} while (pos < bv.bv_len);
1772 	}
1773 free_ret:
1774 	mempool_free(page, &ic->recheck_pool);
1775 }
1776 
1777 static void integrity_metadata(struct work_struct *w)
1778 {
1779 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1780 	struct dm_integrity_c *ic = dio->ic;
1781 
1782 	int r;
1783 
1784 	if (ic->internal_hash) {
1785 		struct bvec_iter iter;
1786 		struct bio_vec bv;
1787 		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1788 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1789 		char *checksums;
1790 		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1791 		char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1792 		sector_t sector;
1793 		unsigned int sectors_to_process;
1794 
1795 		if (unlikely(ic->mode == 'R'))
1796 			goto skip_io;
1797 
1798 		if (likely(dio->op != REQ_OP_DISCARD))
1799 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1800 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1801 		else
1802 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1803 		if (!checksums) {
1804 			checksums = checksums_onstack;
1805 			if (WARN_ON(extra_space &&
1806 				    digest_size > sizeof(checksums_onstack))) {
1807 				r = -EINVAL;
1808 				goto error;
1809 			}
1810 		}
1811 
1812 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1813 			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1814 			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1815 			unsigned int max_blocks = max_size / ic->tag_size;
1816 
1817 			memset(checksums, DISCARD_FILLER, max_size);
1818 
1819 			while (bi_size) {
1820 				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1821 
1822 				this_step_blocks = min(this_step_blocks, max_blocks);
1823 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1824 							this_step_blocks * ic->tag_size, TAG_WRITE);
1825 				if (unlikely(r)) {
1826 					if (likely(checksums != checksums_onstack))
1827 						kfree(checksums);
1828 					goto error;
1829 				}
1830 
1831 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1832 			}
1833 
1834 			if (likely(checksums != checksums_onstack))
1835 				kfree(checksums);
1836 			goto skip_io;
1837 		}
1838 
1839 		sector = dio->range.logical_sector;
1840 		sectors_to_process = dio->range.n_sectors;
1841 
1842 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1843 			struct bio_vec bv_copy = bv;
1844 			unsigned int pos;
1845 			char *mem, *checksums_ptr;
1846 
1847 again:
1848 			mem = bvec_kmap_local(&bv_copy);
1849 			pos = 0;
1850 			checksums_ptr = checksums;
1851 			do {
1852 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1853 				checksums_ptr += ic->tag_size;
1854 				sectors_to_process -= ic->sectors_per_block;
1855 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1856 				sector += ic->sectors_per_block;
1857 			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1858 			kunmap_local(mem);
1859 
1860 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1861 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1862 			if (unlikely(r)) {
1863 				if (r > 0) {
1864 					integrity_recheck(dio);
1865 					goto skip_io;
1866 				}
1867 				if (likely(checksums != checksums_onstack))
1868 					kfree(checksums);
1869 				goto error;
1870 			}
1871 
1872 			if (!sectors_to_process)
1873 				break;
1874 
1875 			if (unlikely(pos < bv_copy.bv_len)) {
1876 				bv_copy.bv_offset += pos;
1877 				bv_copy.bv_len -= pos;
1878 				goto again;
1879 			}
1880 		}
1881 
1882 		if (likely(checksums != checksums_onstack))
1883 			kfree(checksums);
1884 	} else {
1885 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1886 
1887 		if (bip) {
1888 			struct bio_vec biv;
1889 			struct bvec_iter iter;
1890 			unsigned int data_to_process = dio->range.n_sectors;
1891 
1892 			sector_to_block(ic, data_to_process);
1893 			data_to_process *= ic->tag_size;
1894 
1895 			bip_for_each_vec(biv, bip, iter) {
1896 				unsigned char *tag;
1897 				unsigned int this_len;
1898 
1899 				BUG_ON(PageHighMem(biv.bv_page));
1900 				tag = bvec_virt(&biv);
1901 				this_len = min(biv.bv_len, data_to_process);
1902 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1903 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1904 				if (unlikely(r))
1905 					goto error;
1906 				data_to_process -= this_len;
1907 				if (!data_to_process)
1908 					break;
1909 			}
1910 		}
1911 	}
1912 skip_io:
1913 	dec_in_flight(dio);
1914 	return;
1915 error:
1916 	dio->bi_status = errno_to_blk_status(r);
1917 	dec_in_flight(dio);
1918 }
1919 
1920 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1921 {
1922 	struct dm_integrity_c *ic = ti->private;
1923 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1924 	struct bio_integrity_payload *bip;
1925 
1926 	sector_t area, offset;
1927 
1928 	dio->ic = ic;
1929 	dio->bi_status = 0;
1930 	dio->op = bio_op(bio);
1931 
1932 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1933 		if (ti->max_io_len) {
1934 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1935 			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1936 			sector_t start_boundary = sec >> log2_max_io_len;
1937 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1938 
1939 			if (start_boundary < end_boundary) {
1940 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1941 
1942 				dm_accept_partial_bio(bio, len);
1943 			}
1944 		}
1945 	}
1946 
1947 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1948 		submit_flush_bio(ic, dio);
1949 		return DM_MAPIO_SUBMITTED;
1950 	}
1951 
1952 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1953 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1954 	if (unlikely(dio->fua)) {
1955 		/*
1956 		 * Don't pass down the FUA flag because we have to flush
1957 		 * disk cache anyway.
1958 		 */
1959 		bio->bi_opf &= ~REQ_FUA;
1960 	}
1961 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1962 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1963 		      dio->range.logical_sector, bio_sectors(bio),
1964 		      ic->provided_data_sectors);
1965 		return DM_MAPIO_KILL;
1966 	}
1967 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1968 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1969 		      ic->sectors_per_block,
1970 		      dio->range.logical_sector, bio_sectors(bio));
1971 		return DM_MAPIO_KILL;
1972 	}
1973 
1974 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1975 		struct bvec_iter iter;
1976 		struct bio_vec bv;
1977 
1978 		bio_for_each_segment(bv, bio, iter) {
1979 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1980 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1981 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1982 				return DM_MAPIO_KILL;
1983 			}
1984 		}
1985 	}
1986 
1987 	bip = bio_integrity(bio);
1988 	if (!ic->internal_hash) {
1989 		if (bip) {
1990 			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1991 
1992 			if (ic->log2_tag_size >= 0)
1993 				wanted_tag_size <<= ic->log2_tag_size;
1994 			else
1995 				wanted_tag_size *= ic->tag_size;
1996 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1997 				DMERR("Invalid integrity data size %u, expected %u",
1998 				      bip->bip_iter.bi_size, wanted_tag_size);
1999 				return DM_MAPIO_KILL;
2000 			}
2001 		}
2002 	} else {
2003 		if (unlikely(bip != NULL)) {
2004 			DMERR("Unexpected integrity data when using internal hash");
2005 			return DM_MAPIO_KILL;
2006 		}
2007 	}
2008 
2009 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2010 		return DM_MAPIO_KILL;
2011 
2012 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2013 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2014 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2015 
2016 	dm_integrity_map_continue(dio, true);
2017 	return DM_MAPIO_SUBMITTED;
2018 }
2019 
2020 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2021 				 unsigned int journal_section, unsigned int journal_entry)
2022 {
2023 	struct dm_integrity_c *ic = dio->ic;
2024 	sector_t logical_sector;
2025 	unsigned int n_sectors;
2026 
2027 	logical_sector = dio->range.logical_sector;
2028 	n_sectors = dio->range.n_sectors;
2029 	do {
2030 		struct bio_vec bv = bio_iovec(bio);
2031 		char *mem;
2032 
2033 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2034 			bv.bv_len = n_sectors << SECTOR_SHIFT;
2035 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2036 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2037 retry_kmap:
2038 		mem = kmap_local_page(bv.bv_page);
2039 		if (likely(dio->op == REQ_OP_WRITE))
2040 			flush_dcache_page(bv.bv_page);
2041 
2042 		do {
2043 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2044 
2045 			if (unlikely(dio->op == REQ_OP_READ)) {
2046 				struct journal_sector *js;
2047 				char *mem_ptr;
2048 				unsigned int s;
2049 
2050 				if (unlikely(journal_entry_is_inprogress(je))) {
2051 					flush_dcache_page(bv.bv_page);
2052 					kunmap_local(mem);
2053 
2054 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2055 					goto retry_kmap;
2056 				}
2057 				smp_rmb();
2058 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2059 				js = access_journal_data(ic, journal_section, journal_entry);
2060 				mem_ptr = mem + bv.bv_offset;
2061 				s = 0;
2062 				do {
2063 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2064 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2065 					js++;
2066 					mem_ptr += 1 << SECTOR_SHIFT;
2067 				} while (++s < ic->sectors_per_block);
2068 #ifdef INTERNAL_VERIFY
2069 				if (ic->internal_hash) {
2070 					char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2071 
2072 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2073 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2074 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2075 							    logical_sector);
2076 						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2077 								 bio, logical_sector, 0);
2078 					}
2079 				}
2080 #endif
2081 			}
2082 
2083 			if (!ic->internal_hash) {
2084 				struct bio_integrity_payload *bip = bio_integrity(bio);
2085 				unsigned int tag_todo = ic->tag_size;
2086 				char *tag_ptr = journal_entry_tag(ic, je);
2087 
2088 				if (bip) {
2089 					do {
2090 						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2091 						unsigned int tag_now = min(biv.bv_len, tag_todo);
2092 						char *tag_addr;
2093 
2094 						BUG_ON(PageHighMem(biv.bv_page));
2095 						tag_addr = bvec_virt(&biv);
2096 						if (likely(dio->op == REQ_OP_WRITE))
2097 							memcpy(tag_ptr, tag_addr, tag_now);
2098 						else
2099 							memcpy(tag_addr, tag_ptr, tag_now);
2100 						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2101 						tag_ptr += tag_now;
2102 						tag_todo -= tag_now;
2103 					} while (unlikely(tag_todo));
2104 				} else if (likely(dio->op == REQ_OP_WRITE))
2105 					memset(tag_ptr, 0, tag_todo);
2106 			}
2107 
2108 			if (likely(dio->op == REQ_OP_WRITE)) {
2109 				struct journal_sector *js;
2110 				unsigned int s;
2111 
2112 				js = access_journal_data(ic, journal_section, journal_entry);
2113 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2114 
2115 				s = 0;
2116 				do {
2117 					je->last_bytes[s] = js[s].commit_id;
2118 				} while (++s < ic->sectors_per_block);
2119 
2120 				if (ic->internal_hash) {
2121 					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2122 
2123 					if (unlikely(digest_size > ic->tag_size)) {
2124 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2125 
2126 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2127 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2128 					} else
2129 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2130 				}
2131 
2132 				journal_entry_set_sector(je, logical_sector);
2133 			}
2134 			logical_sector += ic->sectors_per_block;
2135 
2136 			journal_entry++;
2137 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2138 				journal_entry = 0;
2139 				journal_section++;
2140 				wraparound_section(ic, &journal_section);
2141 			}
2142 
2143 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2144 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2145 
2146 		if (unlikely(dio->op == REQ_OP_READ))
2147 			flush_dcache_page(bv.bv_page);
2148 		kunmap_local(mem);
2149 	} while (n_sectors);
2150 
2151 	if (likely(dio->op == REQ_OP_WRITE)) {
2152 		smp_mb();
2153 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2154 			wake_up(&ic->copy_to_journal_wait);
2155 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2156 			queue_work(ic->commit_wq, &ic->commit_work);
2157 		else
2158 			schedule_autocommit(ic);
2159 	} else
2160 		remove_range(ic, &dio->range);
2161 
2162 	if (unlikely(bio->bi_iter.bi_size)) {
2163 		sector_t area, offset;
2164 
2165 		dio->range.logical_sector = logical_sector;
2166 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2167 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2168 		return true;
2169 	}
2170 
2171 	return false;
2172 }
2173 
2174 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2175 {
2176 	struct dm_integrity_c *ic = dio->ic;
2177 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2178 	unsigned int journal_section, journal_entry;
2179 	unsigned int journal_read_pos;
2180 	struct completion read_comp;
2181 	bool discard_retried = false;
2182 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2183 
2184 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2185 		need_sync_io = true;
2186 
2187 	if (need_sync_io && from_map) {
2188 		INIT_WORK(&dio->work, integrity_bio_wait);
2189 		queue_work(ic->offload_wq, &dio->work);
2190 		return;
2191 	}
2192 
2193 lock_retry:
2194 	spin_lock_irq(&ic->endio_wait.lock);
2195 retry:
2196 	if (unlikely(dm_integrity_failed(ic))) {
2197 		spin_unlock_irq(&ic->endio_wait.lock);
2198 		do_endio(ic, bio);
2199 		return;
2200 	}
2201 	dio->range.n_sectors = bio_sectors(bio);
2202 	journal_read_pos = NOT_FOUND;
2203 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2204 		if (dio->op == REQ_OP_WRITE) {
2205 			unsigned int next_entry, i, pos;
2206 			unsigned int ws, we, range_sectors;
2207 
2208 			dio->range.n_sectors = min(dio->range.n_sectors,
2209 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2210 			if (unlikely(!dio->range.n_sectors)) {
2211 				if (from_map)
2212 					goto offload_to_thread;
2213 				sleep_on_endio_wait(ic);
2214 				goto retry;
2215 			}
2216 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2217 			ic->free_sectors -= range_sectors;
2218 			journal_section = ic->free_section;
2219 			journal_entry = ic->free_section_entry;
2220 
2221 			next_entry = ic->free_section_entry + range_sectors;
2222 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2223 			ic->free_section += next_entry / ic->journal_section_entries;
2224 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2225 			wraparound_section(ic, &ic->free_section);
2226 
2227 			pos = journal_section * ic->journal_section_entries + journal_entry;
2228 			ws = journal_section;
2229 			we = journal_entry;
2230 			i = 0;
2231 			do {
2232 				struct journal_entry *je;
2233 
2234 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2235 				pos++;
2236 				if (unlikely(pos >= ic->journal_entries))
2237 					pos = 0;
2238 
2239 				je = access_journal_entry(ic, ws, we);
2240 				BUG_ON(!journal_entry_is_unused(je));
2241 				journal_entry_set_inprogress(je);
2242 				we++;
2243 				if (unlikely(we == ic->journal_section_entries)) {
2244 					we = 0;
2245 					ws++;
2246 					wraparound_section(ic, &ws);
2247 				}
2248 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2249 
2250 			spin_unlock_irq(&ic->endio_wait.lock);
2251 			goto journal_read_write;
2252 		} else {
2253 			sector_t next_sector;
2254 
2255 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2256 			if (likely(journal_read_pos == NOT_FOUND)) {
2257 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2258 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2259 			} else {
2260 				unsigned int i;
2261 				unsigned int jp = journal_read_pos + 1;
2262 
2263 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2264 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2265 						break;
2266 				}
2267 				dio->range.n_sectors = i;
2268 			}
2269 		}
2270 	}
2271 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2272 		/*
2273 		 * We must not sleep in the request routine because it could
2274 		 * stall bios on current->bio_list.
2275 		 * So, we offload the bio to a workqueue if we have to sleep.
2276 		 */
2277 		if (from_map) {
2278 offload_to_thread:
2279 			spin_unlock_irq(&ic->endio_wait.lock);
2280 			INIT_WORK(&dio->work, integrity_bio_wait);
2281 			queue_work(ic->wait_wq, &dio->work);
2282 			return;
2283 		}
2284 		if (journal_read_pos != NOT_FOUND)
2285 			dio->range.n_sectors = ic->sectors_per_block;
2286 		wait_and_add_new_range(ic, &dio->range);
2287 		/*
2288 		 * wait_and_add_new_range drops the spinlock, so the journal
2289 		 * may have been changed arbitrarily. We need to recheck.
2290 		 * To simplify the code, we restrict I/O size to just one block.
2291 		 */
2292 		if (journal_read_pos != NOT_FOUND) {
2293 			sector_t next_sector;
2294 			unsigned int new_pos;
2295 
2296 			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2297 			if (unlikely(new_pos != journal_read_pos)) {
2298 				remove_range_unlocked(ic, &dio->range);
2299 				goto retry;
2300 			}
2301 		}
2302 	}
2303 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2304 		sector_t next_sector;
2305 		unsigned int new_pos;
2306 
2307 		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2308 		if (unlikely(new_pos != NOT_FOUND) ||
2309 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2310 			remove_range_unlocked(ic, &dio->range);
2311 			spin_unlock_irq(&ic->endio_wait.lock);
2312 			queue_work(ic->commit_wq, &ic->commit_work);
2313 			flush_workqueue(ic->commit_wq);
2314 			queue_work(ic->writer_wq, &ic->writer_work);
2315 			flush_workqueue(ic->writer_wq);
2316 			discard_retried = true;
2317 			goto lock_retry;
2318 		}
2319 	}
2320 	spin_unlock_irq(&ic->endio_wait.lock);
2321 
2322 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2323 		journal_section = journal_read_pos / ic->journal_section_entries;
2324 		journal_entry = journal_read_pos % ic->journal_section_entries;
2325 		goto journal_read_write;
2326 	}
2327 
2328 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2329 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2330 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2331 			struct bitmap_block_status *bbs;
2332 
2333 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2334 			spin_lock(&bbs->bio_queue_lock);
2335 			bio_list_add(&bbs->bio_queue, bio);
2336 			spin_unlock(&bbs->bio_queue_lock);
2337 			queue_work(ic->writer_wq, &bbs->work);
2338 			return;
2339 		}
2340 	}
2341 
2342 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2343 
2344 	if (need_sync_io) {
2345 		init_completion(&read_comp);
2346 		dio->completion = &read_comp;
2347 	} else
2348 		dio->completion = NULL;
2349 
2350 	dm_bio_record(&dio->bio_details, bio);
2351 	bio_set_dev(bio, ic->dev->bdev);
2352 	bio->bi_integrity = NULL;
2353 	bio->bi_opf &= ~REQ_INTEGRITY;
2354 	bio->bi_end_io = integrity_end_io;
2355 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2356 
2357 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2358 		integrity_metadata(&dio->work);
2359 		dm_integrity_flush_buffers(ic, false);
2360 
2361 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2362 		dio->completion = NULL;
2363 
2364 		submit_bio_noacct(bio);
2365 
2366 		return;
2367 	}
2368 
2369 	submit_bio_noacct(bio);
2370 
2371 	if (need_sync_io) {
2372 		wait_for_completion_io(&read_comp);
2373 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2374 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2375 			goto skip_check;
2376 		if (ic->mode == 'B') {
2377 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2378 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2379 				goto skip_check;
2380 		}
2381 
2382 		if (likely(!bio->bi_status))
2383 			integrity_metadata(&dio->work);
2384 		else
2385 skip_check:
2386 			dec_in_flight(dio);
2387 	} else {
2388 		INIT_WORK(&dio->work, integrity_metadata);
2389 		queue_work(ic->metadata_wq, &dio->work);
2390 	}
2391 
2392 	return;
2393 
2394 journal_read_write:
2395 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2396 		goto lock_retry;
2397 
2398 	do_endio_flush(ic, dio);
2399 }
2400 
2401 
2402 static void integrity_bio_wait(struct work_struct *w)
2403 {
2404 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2405 
2406 	dm_integrity_map_continue(dio, false);
2407 }
2408 
2409 static void pad_uncommitted(struct dm_integrity_c *ic)
2410 {
2411 	if (ic->free_section_entry) {
2412 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2413 		ic->free_section_entry = 0;
2414 		ic->free_section++;
2415 		wraparound_section(ic, &ic->free_section);
2416 		ic->n_uncommitted_sections++;
2417 	}
2418 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2419 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2420 		    ic->journal_section_entries + ic->free_sectors)) {
2421 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2422 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2423 		       "journal_section_entries %u, free_sectors %u",
2424 		       ic->journal_sections, ic->journal_section_entries,
2425 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2426 		       ic->journal_section_entries, ic->free_sectors);
2427 	}
2428 }
2429 
2430 static void integrity_commit(struct work_struct *w)
2431 {
2432 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2433 	unsigned int commit_start, commit_sections;
2434 	unsigned int i, j, n;
2435 	struct bio *flushes;
2436 
2437 	del_timer(&ic->autocommit_timer);
2438 
2439 	spin_lock_irq(&ic->endio_wait.lock);
2440 	flushes = bio_list_get(&ic->flush_bio_list);
2441 	if (unlikely(ic->mode != 'J')) {
2442 		spin_unlock_irq(&ic->endio_wait.lock);
2443 		dm_integrity_flush_buffers(ic, true);
2444 		goto release_flush_bios;
2445 	}
2446 
2447 	pad_uncommitted(ic);
2448 	commit_start = ic->uncommitted_section;
2449 	commit_sections = ic->n_uncommitted_sections;
2450 	spin_unlock_irq(&ic->endio_wait.lock);
2451 
2452 	if (!commit_sections)
2453 		goto release_flush_bios;
2454 
2455 	ic->wrote_to_journal = true;
2456 
2457 	i = commit_start;
2458 	for (n = 0; n < commit_sections; n++) {
2459 		for (j = 0; j < ic->journal_section_entries; j++) {
2460 			struct journal_entry *je;
2461 
2462 			je = access_journal_entry(ic, i, j);
2463 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2464 		}
2465 		for (j = 0; j < ic->journal_section_sectors; j++) {
2466 			struct journal_sector *js;
2467 
2468 			js = access_journal(ic, i, j);
2469 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2470 		}
2471 		i++;
2472 		if (unlikely(i >= ic->journal_sections))
2473 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2474 		wraparound_section(ic, &i);
2475 	}
2476 	smp_rmb();
2477 
2478 	write_journal(ic, commit_start, commit_sections);
2479 
2480 	spin_lock_irq(&ic->endio_wait.lock);
2481 	ic->uncommitted_section += commit_sections;
2482 	wraparound_section(ic, &ic->uncommitted_section);
2483 	ic->n_uncommitted_sections -= commit_sections;
2484 	ic->n_committed_sections += commit_sections;
2485 	spin_unlock_irq(&ic->endio_wait.lock);
2486 
2487 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2488 		queue_work(ic->writer_wq, &ic->writer_work);
2489 
2490 release_flush_bios:
2491 	while (flushes) {
2492 		struct bio *next = flushes->bi_next;
2493 
2494 		flushes->bi_next = NULL;
2495 		do_endio(ic, flushes);
2496 		flushes = next;
2497 	}
2498 }
2499 
2500 static void complete_copy_from_journal(unsigned long error, void *context)
2501 {
2502 	struct journal_io *io = context;
2503 	struct journal_completion *comp = io->comp;
2504 	struct dm_integrity_c *ic = comp->ic;
2505 
2506 	remove_range(ic, &io->range);
2507 	mempool_free(io, &ic->journal_io_mempool);
2508 	if (unlikely(error != 0))
2509 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2510 	complete_journal_op(comp);
2511 }
2512 
2513 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2514 			       struct journal_entry *je)
2515 {
2516 	unsigned int s = 0;
2517 
2518 	do {
2519 		js->commit_id = je->last_bytes[s];
2520 		js++;
2521 	} while (++s < ic->sectors_per_block);
2522 }
2523 
2524 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2525 			     unsigned int write_sections, bool from_replay)
2526 {
2527 	unsigned int i, j, n;
2528 	struct journal_completion comp;
2529 	struct blk_plug plug;
2530 
2531 	blk_start_plug(&plug);
2532 
2533 	comp.ic = ic;
2534 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2535 	init_completion(&comp.comp);
2536 
2537 	i = write_start;
2538 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2539 #ifndef INTERNAL_VERIFY
2540 		if (unlikely(from_replay))
2541 #endif
2542 			rw_section_mac(ic, i, false);
2543 		for (j = 0; j < ic->journal_section_entries; j++) {
2544 			struct journal_entry *je = access_journal_entry(ic, i, j);
2545 			sector_t sec, area, offset;
2546 			unsigned int k, l, next_loop;
2547 			sector_t metadata_block;
2548 			unsigned int metadata_offset;
2549 			struct journal_io *io;
2550 
2551 			if (journal_entry_is_unused(je))
2552 				continue;
2553 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2554 			sec = journal_entry_get_sector(je);
2555 			if (unlikely(from_replay)) {
2556 				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2557 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2558 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2559 				}
2560 				if (unlikely(sec >= ic->provided_data_sectors)) {
2561 					journal_entry_set_unused(je);
2562 					continue;
2563 				}
2564 			}
2565 			get_area_and_offset(ic, sec, &area, &offset);
2566 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2567 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2568 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2569 				sector_t sec2, area2, offset2;
2570 
2571 				if (journal_entry_is_unused(je2))
2572 					break;
2573 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2574 				sec2 = journal_entry_get_sector(je2);
2575 				if (unlikely(sec2 >= ic->provided_data_sectors))
2576 					break;
2577 				get_area_and_offset(ic, sec2, &area2, &offset2);
2578 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2579 					break;
2580 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2581 			}
2582 			next_loop = k - 1;
2583 
2584 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2585 			io->comp = &comp;
2586 			io->range.logical_sector = sec;
2587 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2588 
2589 			spin_lock_irq(&ic->endio_wait.lock);
2590 			add_new_range_and_wait(ic, &io->range);
2591 
2592 			if (likely(!from_replay)) {
2593 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2594 
2595 				/* don't write if there is newer committed sector */
2596 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2597 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2598 
2599 					journal_entry_set_unused(je2);
2600 					remove_journal_node(ic, &section_node[j]);
2601 					j++;
2602 					sec += ic->sectors_per_block;
2603 					offset += ic->sectors_per_block;
2604 				}
2605 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2606 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2607 
2608 					journal_entry_set_unused(je2);
2609 					remove_journal_node(ic, &section_node[k - 1]);
2610 					k--;
2611 				}
2612 				if (j == k) {
2613 					remove_range_unlocked(ic, &io->range);
2614 					spin_unlock_irq(&ic->endio_wait.lock);
2615 					mempool_free(io, &ic->journal_io_mempool);
2616 					goto skip_io;
2617 				}
2618 				for (l = j; l < k; l++)
2619 					remove_journal_node(ic, &section_node[l]);
2620 			}
2621 			spin_unlock_irq(&ic->endio_wait.lock);
2622 
2623 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2624 			for (l = j; l < k; l++) {
2625 				int r;
2626 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2627 
2628 				if (
2629 #ifndef INTERNAL_VERIFY
2630 				    unlikely(from_replay) &&
2631 #endif
2632 				    ic->internal_hash) {
2633 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2634 
2635 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2636 								  (char *)access_journal_data(ic, i, l), test_tag);
2637 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2638 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2639 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2640 					}
2641 				}
2642 
2643 				journal_entry_set_unused(je2);
2644 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2645 							ic->tag_size, TAG_WRITE);
2646 				if (unlikely(r))
2647 					dm_integrity_io_error(ic, "reading tags", r);
2648 			}
2649 
2650 			atomic_inc(&comp.in_flight);
2651 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2652 					  (k - j) << ic->sb->log2_sectors_per_block,
2653 					  get_data_sector(ic, area, offset),
2654 					  complete_copy_from_journal, io);
2655 skip_io:
2656 			j = next_loop;
2657 		}
2658 	}
2659 
2660 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2661 
2662 	blk_finish_plug(&plug);
2663 
2664 	complete_journal_op(&comp);
2665 	wait_for_completion_io(&comp.comp);
2666 
2667 	dm_integrity_flush_buffers(ic, true);
2668 }
2669 
2670 static void integrity_writer(struct work_struct *w)
2671 {
2672 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2673 	unsigned int write_start, write_sections;
2674 	unsigned int prev_free_sectors;
2675 
2676 	spin_lock_irq(&ic->endio_wait.lock);
2677 	write_start = ic->committed_section;
2678 	write_sections = ic->n_committed_sections;
2679 	spin_unlock_irq(&ic->endio_wait.lock);
2680 
2681 	if (!write_sections)
2682 		return;
2683 
2684 	do_journal_write(ic, write_start, write_sections, false);
2685 
2686 	spin_lock_irq(&ic->endio_wait.lock);
2687 
2688 	ic->committed_section += write_sections;
2689 	wraparound_section(ic, &ic->committed_section);
2690 	ic->n_committed_sections -= write_sections;
2691 
2692 	prev_free_sectors = ic->free_sectors;
2693 	ic->free_sectors += write_sections * ic->journal_section_entries;
2694 	if (unlikely(!prev_free_sectors))
2695 		wake_up_locked(&ic->endio_wait);
2696 
2697 	spin_unlock_irq(&ic->endio_wait.lock);
2698 }
2699 
2700 static void recalc_write_super(struct dm_integrity_c *ic)
2701 {
2702 	int r;
2703 
2704 	dm_integrity_flush_buffers(ic, false);
2705 	if (dm_integrity_failed(ic))
2706 		return;
2707 
2708 	r = sync_rw_sb(ic, REQ_OP_WRITE);
2709 	if (unlikely(r))
2710 		dm_integrity_io_error(ic, "writing superblock", r);
2711 }
2712 
2713 static void integrity_recalc(struct work_struct *w)
2714 {
2715 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2716 	size_t recalc_tags_size;
2717 	u8 *recalc_buffer = NULL;
2718 	u8 *recalc_tags = NULL;
2719 	struct dm_integrity_range range;
2720 	struct dm_io_request io_req;
2721 	struct dm_io_region io_loc;
2722 	sector_t area, offset;
2723 	sector_t metadata_block;
2724 	unsigned int metadata_offset;
2725 	sector_t logical_sector, n_sectors;
2726 	__u8 *t;
2727 	unsigned int i;
2728 	int r;
2729 	unsigned int super_counter = 0;
2730 	unsigned recalc_sectors = RECALC_SECTORS;
2731 
2732 retry:
2733 	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2734 	if (!recalc_buffer) {
2735 oom:
2736 		recalc_sectors >>= 1;
2737 		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2738 			goto retry;
2739 		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2740 		goto free_ret;
2741 	}
2742 	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2743 	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2744 		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2745 	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2746 	if (!recalc_tags) {
2747 		vfree(recalc_buffer);
2748 		recalc_buffer = NULL;
2749 		goto oom;
2750 	}
2751 
2752 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2753 
2754 	spin_lock_irq(&ic->endio_wait.lock);
2755 
2756 next_chunk:
2757 
2758 	if (unlikely(dm_post_suspending(ic->ti)))
2759 		goto unlock_ret;
2760 
2761 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2762 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2763 		if (ic->mode == 'B') {
2764 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2765 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2766 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2767 		}
2768 		goto unlock_ret;
2769 	}
2770 
2771 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2772 	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2773 	if (!ic->meta_dev)
2774 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2775 
2776 	add_new_range_and_wait(ic, &range);
2777 	spin_unlock_irq(&ic->endio_wait.lock);
2778 	logical_sector = range.logical_sector;
2779 	n_sectors = range.n_sectors;
2780 
2781 	if (ic->mode == 'B') {
2782 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2783 			goto advance_and_next;
2784 
2785 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2786 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2787 			logical_sector += ic->sectors_per_block;
2788 			n_sectors -= ic->sectors_per_block;
2789 			cond_resched();
2790 		}
2791 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2792 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2793 			n_sectors -= ic->sectors_per_block;
2794 			cond_resched();
2795 		}
2796 		get_area_and_offset(ic, logical_sector, &area, &offset);
2797 	}
2798 
2799 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2800 
2801 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2802 		recalc_write_super(ic);
2803 		if (ic->mode == 'B')
2804 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2805 
2806 		super_counter = 0;
2807 	}
2808 
2809 	if (unlikely(dm_integrity_failed(ic)))
2810 		goto err;
2811 
2812 	io_req.bi_opf = REQ_OP_READ;
2813 	io_req.mem.type = DM_IO_VMA;
2814 	io_req.mem.ptr.addr = recalc_buffer;
2815 	io_req.notify.fn = NULL;
2816 	io_req.client = ic->io;
2817 	io_loc.bdev = ic->dev->bdev;
2818 	io_loc.sector = get_data_sector(ic, area, offset);
2819 	io_loc.count = n_sectors;
2820 
2821 	r = dm_io(&io_req, 1, &io_loc, NULL);
2822 	if (unlikely(r)) {
2823 		dm_integrity_io_error(ic, "reading data", r);
2824 		goto err;
2825 	}
2826 
2827 	t = recalc_tags;
2828 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2829 		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2830 		t += ic->tag_size;
2831 	}
2832 
2833 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2834 
2835 	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2836 	if (unlikely(r)) {
2837 		dm_integrity_io_error(ic, "writing tags", r);
2838 		goto err;
2839 	}
2840 
2841 	if (ic->mode == 'B') {
2842 		sector_t start, end;
2843 
2844 		start = (range.logical_sector >>
2845 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2846 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2847 		end = ((range.logical_sector + range.n_sectors) >>
2848 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2849 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2850 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2851 	}
2852 
2853 advance_and_next:
2854 	cond_resched();
2855 
2856 	spin_lock_irq(&ic->endio_wait.lock);
2857 	remove_range_unlocked(ic, &range);
2858 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2859 	goto next_chunk;
2860 
2861 err:
2862 	remove_range(ic, &range);
2863 	goto free_ret;
2864 
2865 unlock_ret:
2866 	spin_unlock_irq(&ic->endio_wait.lock);
2867 
2868 	recalc_write_super(ic);
2869 
2870 free_ret:
2871 	vfree(recalc_buffer);
2872 	kvfree(recalc_tags);
2873 }
2874 
2875 static void bitmap_block_work(struct work_struct *w)
2876 {
2877 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2878 	struct dm_integrity_c *ic = bbs->ic;
2879 	struct bio *bio;
2880 	struct bio_list bio_queue;
2881 	struct bio_list waiting;
2882 
2883 	bio_list_init(&waiting);
2884 
2885 	spin_lock(&bbs->bio_queue_lock);
2886 	bio_queue = bbs->bio_queue;
2887 	bio_list_init(&bbs->bio_queue);
2888 	spin_unlock(&bbs->bio_queue_lock);
2889 
2890 	while ((bio = bio_list_pop(&bio_queue))) {
2891 		struct dm_integrity_io *dio;
2892 
2893 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2894 
2895 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2896 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2897 			remove_range(ic, &dio->range);
2898 			INIT_WORK(&dio->work, integrity_bio_wait);
2899 			queue_work(ic->offload_wq, &dio->work);
2900 		} else {
2901 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2902 					dio->range.n_sectors, BITMAP_OP_SET);
2903 			bio_list_add(&waiting, bio);
2904 		}
2905 	}
2906 
2907 	if (bio_list_empty(&waiting))
2908 		return;
2909 
2910 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2911 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2912 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2913 
2914 	while ((bio = bio_list_pop(&waiting))) {
2915 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2916 
2917 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2918 				dio->range.n_sectors, BITMAP_OP_SET);
2919 
2920 		remove_range(ic, &dio->range);
2921 		INIT_WORK(&dio->work, integrity_bio_wait);
2922 		queue_work(ic->offload_wq, &dio->work);
2923 	}
2924 
2925 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2926 }
2927 
2928 static void bitmap_flush_work(struct work_struct *work)
2929 {
2930 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2931 	struct dm_integrity_range range;
2932 	unsigned long limit;
2933 	struct bio *bio;
2934 
2935 	dm_integrity_flush_buffers(ic, false);
2936 
2937 	range.logical_sector = 0;
2938 	range.n_sectors = ic->provided_data_sectors;
2939 
2940 	spin_lock_irq(&ic->endio_wait.lock);
2941 	add_new_range_and_wait(ic, &range);
2942 	spin_unlock_irq(&ic->endio_wait.lock);
2943 
2944 	dm_integrity_flush_buffers(ic, true);
2945 
2946 	limit = ic->provided_data_sectors;
2947 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2948 		limit = le64_to_cpu(ic->sb->recalc_sector)
2949 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2950 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2951 	}
2952 	/*DEBUG_print("zeroing journal\n");*/
2953 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2954 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2955 
2956 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2957 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2958 
2959 	spin_lock_irq(&ic->endio_wait.lock);
2960 	remove_range_unlocked(ic, &range);
2961 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2962 		bio_endio(bio);
2963 		spin_unlock_irq(&ic->endio_wait.lock);
2964 		spin_lock_irq(&ic->endio_wait.lock);
2965 	}
2966 	spin_unlock_irq(&ic->endio_wait.lock);
2967 }
2968 
2969 
2970 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2971 			 unsigned int n_sections, unsigned char commit_seq)
2972 {
2973 	unsigned int i, j, n;
2974 
2975 	if (!n_sections)
2976 		return;
2977 
2978 	for (n = 0; n < n_sections; n++) {
2979 		i = start_section + n;
2980 		wraparound_section(ic, &i);
2981 		for (j = 0; j < ic->journal_section_sectors; j++) {
2982 			struct journal_sector *js = access_journal(ic, i, j);
2983 
2984 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2985 			memset(&js->sectors, 0, sizeof(js->sectors));
2986 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2987 		}
2988 		for (j = 0; j < ic->journal_section_entries; j++) {
2989 			struct journal_entry *je = access_journal_entry(ic, i, j);
2990 
2991 			journal_entry_set_unused(je);
2992 		}
2993 	}
2994 
2995 	write_journal(ic, start_section, n_sections);
2996 }
2997 
2998 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2999 {
3000 	unsigned char k;
3001 
3002 	for (k = 0; k < N_COMMIT_IDS; k++) {
3003 		if (dm_integrity_commit_id(ic, i, j, k) == id)
3004 			return k;
3005 	}
3006 	dm_integrity_io_error(ic, "journal commit id", -EIO);
3007 	return -EIO;
3008 }
3009 
3010 static void replay_journal(struct dm_integrity_c *ic)
3011 {
3012 	unsigned int i, j;
3013 	bool used_commit_ids[N_COMMIT_IDS];
3014 	unsigned int max_commit_id_sections[N_COMMIT_IDS];
3015 	unsigned int write_start, write_sections;
3016 	unsigned int continue_section;
3017 	bool journal_empty;
3018 	unsigned char unused, last_used, want_commit_seq;
3019 
3020 	if (ic->mode == 'R')
3021 		return;
3022 
3023 	if (ic->journal_uptodate)
3024 		return;
3025 
3026 	last_used = 0;
3027 	write_start = 0;
3028 
3029 	if (!ic->just_formatted) {
3030 		DEBUG_print("reading journal\n");
3031 		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3032 		if (ic->journal_io)
3033 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3034 		if (ic->journal_io) {
3035 			struct journal_completion crypt_comp;
3036 
3037 			crypt_comp.ic = ic;
3038 			init_completion(&crypt_comp.comp);
3039 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3040 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3041 			wait_for_completion(&crypt_comp.comp);
3042 		}
3043 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3044 	}
3045 
3046 	if (dm_integrity_failed(ic))
3047 		goto clear_journal;
3048 
3049 	journal_empty = true;
3050 	memset(used_commit_ids, 0, sizeof(used_commit_ids));
3051 	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3052 	for (i = 0; i < ic->journal_sections; i++) {
3053 		for (j = 0; j < ic->journal_section_sectors; j++) {
3054 			int k;
3055 			struct journal_sector *js = access_journal(ic, i, j);
3056 
3057 			k = find_commit_seq(ic, i, j, js->commit_id);
3058 			if (k < 0)
3059 				goto clear_journal;
3060 			used_commit_ids[k] = true;
3061 			max_commit_id_sections[k] = i;
3062 		}
3063 		if (journal_empty) {
3064 			for (j = 0; j < ic->journal_section_entries; j++) {
3065 				struct journal_entry *je = access_journal_entry(ic, i, j);
3066 
3067 				if (!journal_entry_is_unused(je)) {
3068 					journal_empty = false;
3069 					break;
3070 				}
3071 			}
3072 		}
3073 	}
3074 
3075 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3076 		unused = N_COMMIT_IDS - 1;
3077 		while (unused && !used_commit_ids[unused - 1])
3078 			unused--;
3079 	} else {
3080 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3081 			if (!used_commit_ids[unused])
3082 				break;
3083 		if (unused == N_COMMIT_IDS) {
3084 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3085 			goto clear_journal;
3086 		}
3087 	}
3088 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3089 		    unused, used_commit_ids[0], used_commit_ids[1],
3090 		    used_commit_ids[2], used_commit_ids[3]);
3091 
3092 	last_used = prev_commit_seq(unused);
3093 	want_commit_seq = prev_commit_seq(last_used);
3094 
3095 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3096 		journal_empty = true;
3097 
3098 	write_start = max_commit_id_sections[last_used] + 1;
3099 	if (unlikely(write_start >= ic->journal_sections))
3100 		want_commit_seq = next_commit_seq(want_commit_seq);
3101 	wraparound_section(ic, &write_start);
3102 
3103 	i = write_start;
3104 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3105 		for (j = 0; j < ic->journal_section_sectors; j++) {
3106 			struct journal_sector *js = access_journal(ic, i, j);
3107 
3108 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3109 				/*
3110 				 * This could be caused by crash during writing.
3111 				 * We won't replay the inconsistent part of the
3112 				 * journal.
3113 				 */
3114 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3115 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3116 				goto brk;
3117 			}
3118 		}
3119 		i++;
3120 		if (unlikely(i >= ic->journal_sections))
3121 			want_commit_seq = next_commit_seq(want_commit_seq);
3122 		wraparound_section(ic, &i);
3123 	}
3124 brk:
3125 
3126 	if (!journal_empty) {
3127 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3128 			    write_sections, write_start, want_commit_seq);
3129 		do_journal_write(ic, write_start, write_sections, true);
3130 	}
3131 
3132 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3133 		continue_section = write_start;
3134 		ic->commit_seq = want_commit_seq;
3135 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3136 	} else {
3137 		unsigned int s;
3138 		unsigned char erase_seq;
3139 
3140 clear_journal:
3141 		DEBUG_print("clearing journal\n");
3142 
3143 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3144 		s = write_start;
3145 		init_journal(ic, s, 1, erase_seq);
3146 		s++;
3147 		wraparound_section(ic, &s);
3148 		if (ic->journal_sections >= 2) {
3149 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3150 			s += ic->journal_sections - 2;
3151 			wraparound_section(ic, &s);
3152 			init_journal(ic, s, 1, erase_seq);
3153 		}
3154 
3155 		continue_section = 0;
3156 		ic->commit_seq = next_commit_seq(erase_seq);
3157 	}
3158 
3159 	ic->committed_section = continue_section;
3160 	ic->n_committed_sections = 0;
3161 
3162 	ic->uncommitted_section = continue_section;
3163 	ic->n_uncommitted_sections = 0;
3164 
3165 	ic->free_section = continue_section;
3166 	ic->free_section_entry = 0;
3167 	ic->free_sectors = ic->journal_entries;
3168 
3169 	ic->journal_tree_root = RB_ROOT;
3170 	for (i = 0; i < ic->journal_entries; i++)
3171 		init_journal_node(&ic->journal_tree[i]);
3172 }
3173 
3174 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3175 {
3176 	DEBUG_print("%s\n", __func__);
3177 
3178 	if (ic->mode == 'B') {
3179 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3180 		ic->synchronous_mode = 1;
3181 
3182 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3183 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3184 		flush_workqueue(ic->commit_wq);
3185 	}
3186 }
3187 
3188 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3189 {
3190 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3191 
3192 	DEBUG_print("%s\n", __func__);
3193 
3194 	dm_integrity_enter_synchronous_mode(ic);
3195 
3196 	return NOTIFY_DONE;
3197 }
3198 
3199 static void dm_integrity_postsuspend(struct dm_target *ti)
3200 {
3201 	struct dm_integrity_c *ic = ti->private;
3202 	int r;
3203 
3204 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3205 
3206 	del_timer_sync(&ic->autocommit_timer);
3207 
3208 	if (ic->recalc_wq)
3209 		drain_workqueue(ic->recalc_wq);
3210 
3211 	if (ic->mode == 'B')
3212 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3213 
3214 	queue_work(ic->commit_wq, &ic->commit_work);
3215 	drain_workqueue(ic->commit_wq);
3216 
3217 	if (ic->mode == 'J') {
3218 		queue_work(ic->writer_wq, &ic->writer_work);
3219 		drain_workqueue(ic->writer_wq);
3220 		dm_integrity_flush_buffers(ic, true);
3221 		if (ic->wrote_to_journal) {
3222 			init_journal(ic, ic->free_section,
3223 				     ic->journal_sections - ic->free_section, ic->commit_seq);
3224 			if (ic->free_section) {
3225 				init_journal(ic, 0, ic->free_section,
3226 					     next_commit_seq(ic->commit_seq));
3227 			}
3228 		}
3229 	}
3230 
3231 	if (ic->mode == 'B') {
3232 		dm_integrity_flush_buffers(ic, true);
3233 #if 1
3234 		/* set to 0 to test bitmap replay code */
3235 		init_journal(ic, 0, ic->journal_sections, 0);
3236 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3237 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3238 		if (unlikely(r))
3239 			dm_integrity_io_error(ic, "writing superblock", r);
3240 #endif
3241 	}
3242 
3243 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3244 
3245 	ic->journal_uptodate = true;
3246 }
3247 
3248 static void dm_integrity_resume(struct dm_target *ti)
3249 {
3250 	struct dm_integrity_c *ic = ti->private;
3251 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3252 	int r;
3253 
3254 	DEBUG_print("resume\n");
3255 
3256 	ic->wrote_to_journal = false;
3257 
3258 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3259 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3260 		    ic->mode == 'B' &&
3261 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3262 			rw_journal_sectors(ic, REQ_OP_READ, 0,
3263 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3264 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3265 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3266 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3267 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3268 		}
3269 
3270 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3271 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3272 		if (unlikely(r))
3273 			dm_integrity_io_error(ic, "writing superblock", r);
3274 	}
3275 
3276 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3277 		DEBUG_print("resume dirty_bitmap\n");
3278 		rw_journal_sectors(ic, REQ_OP_READ, 0,
3279 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3280 		if (ic->mode == 'B') {
3281 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3282 			    !ic->reset_recalculate_flag) {
3283 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3284 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3285 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3286 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3287 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3288 					ic->sb->recalc_sector = cpu_to_le64(0);
3289 				}
3290 			} else {
3291 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3292 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3293 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3294 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3295 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3296 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3297 				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3298 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3299 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3300 				ic->sb->recalc_sector = cpu_to_le64(0);
3301 			}
3302 		} else {
3303 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3304 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3305 			    ic->reset_recalculate_flag) {
3306 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3307 				ic->sb->recalc_sector = cpu_to_le64(0);
3308 			}
3309 			init_journal(ic, 0, ic->journal_sections, 0);
3310 			replay_journal(ic);
3311 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3312 		}
3313 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3314 		if (unlikely(r))
3315 			dm_integrity_io_error(ic, "writing superblock", r);
3316 	} else {
3317 		replay_journal(ic);
3318 		if (ic->reset_recalculate_flag) {
3319 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3320 			ic->sb->recalc_sector = cpu_to_le64(0);
3321 		}
3322 		if (ic->mode == 'B') {
3323 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3324 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3325 			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3326 			if (unlikely(r))
3327 				dm_integrity_io_error(ic, "writing superblock", r);
3328 
3329 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3330 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3331 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3332 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3333 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3334 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3335 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3336 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3337 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3338 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3339 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3340 			}
3341 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3342 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3343 		}
3344 	}
3345 
3346 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3347 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3348 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3349 
3350 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3351 		if (recalc_pos < ic->provided_data_sectors) {
3352 			queue_work(ic->recalc_wq, &ic->recalc_work);
3353 		} else if (recalc_pos > ic->provided_data_sectors) {
3354 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3355 			recalc_write_super(ic);
3356 		}
3357 	}
3358 
3359 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3360 	ic->reboot_notifier.next = NULL;
3361 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3362 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3363 
3364 #if 0
3365 	/* set to 1 to stress test synchronous mode */
3366 	dm_integrity_enter_synchronous_mode(ic);
3367 #endif
3368 }
3369 
3370 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3371 				unsigned int status_flags, char *result, unsigned int maxlen)
3372 {
3373 	struct dm_integrity_c *ic = ti->private;
3374 	unsigned int arg_count;
3375 	size_t sz = 0;
3376 
3377 	switch (type) {
3378 	case STATUSTYPE_INFO:
3379 		DMEMIT("%llu %llu",
3380 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3381 			ic->provided_data_sectors);
3382 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3383 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3384 		else
3385 			DMEMIT(" -");
3386 		break;
3387 
3388 	case STATUSTYPE_TABLE: {
3389 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3390 
3391 		watermark_percentage += ic->journal_entries / 2;
3392 		do_div(watermark_percentage, ic->journal_entries);
3393 		arg_count = 3;
3394 		arg_count += !!ic->meta_dev;
3395 		arg_count += ic->sectors_per_block != 1;
3396 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3397 		arg_count += ic->reset_recalculate_flag;
3398 		arg_count += ic->discard;
3399 		arg_count += ic->mode == 'J';
3400 		arg_count += ic->mode == 'J';
3401 		arg_count += ic->mode == 'B';
3402 		arg_count += ic->mode == 'B';
3403 		arg_count += !!ic->internal_hash_alg.alg_string;
3404 		arg_count += !!ic->journal_crypt_alg.alg_string;
3405 		arg_count += !!ic->journal_mac_alg.alg_string;
3406 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3407 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3408 		arg_count += ic->legacy_recalculate;
3409 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3410 		       ic->tag_size, ic->mode, arg_count);
3411 		if (ic->meta_dev)
3412 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3413 		if (ic->sectors_per_block != 1)
3414 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3415 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3416 			DMEMIT(" recalculate");
3417 		if (ic->reset_recalculate_flag)
3418 			DMEMIT(" reset_recalculate");
3419 		if (ic->discard)
3420 			DMEMIT(" allow_discards");
3421 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3422 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3423 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3424 		if (ic->mode == 'J') {
3425 			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3426 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3427 		}
3428 		if (ic->mode == 'B') {
3429 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3430 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3431 		}
3432 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3433 			DMEMIT(" fix_padding");
3434 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3435 			DMEMIT(" fix_hmac");
3436 		if (ic->legacy_recalculate)
3437 			DMEMIT(" legacy_recalculate");
3438 
3439 #define EMIT_ALG(a, n)							\
3440 		do {							\
3441 			if (ic->a.alg_string) {				\
3442 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3443 				if (ic->a.key_string)			\
3444 					DMEMIT(":%s", ic->a.key_string);\
3445 			}						\
3446 		} while (0)
3447 		EMIT_ALG(internal_hash_alg, "internal_hash");
3448 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3449 		EMIT_ALG(journal_mac_alg, "journal_mac");
3450 		break;
3451 	}
3452 	case STATUSTYPE_IMA:
3453 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3454 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3455 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3456 
3457 		if (ic->meta_dev)
3458 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3459 		if (ic->sectors_per_block != 1)
3460 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3461 
3462 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3463 		       'y' : 'n');
3464 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3465 		DMEMIT(",fix_padding=%c",
3466 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3467 		DMEMIT(",fix_hmac=%c",
3468 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3469 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3470 
3471 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3472 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3473 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3474 		DMEMIT(";");
3475 		break;
3476 	}
3477 }
3478 
3479 static int dm_integrity_iterate_devices(struct dm_target *ti,
3480 					iterate_devices_callout_fn fn, void *data)
3481 {
3482 	struct dm_integrity_c *ic = ti->private;
3483 
3484 	if (!ic->meta_dev)
3485 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3486 	else
3487 		return fn(ti, ic->dev, 0, ti->len, data);
3488 }
3489 
3490 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3491 {
3492 	struct dm_integrity_c *ic = ti->private;
3493 
3494 	if (ic->sectors_per_block > 1) {
3495 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3496 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3497 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3498 		limits->dma_alignment = limits->logical_block_size - 1;
3499 	}
3500 }
3501 
3502 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3503 {
3504 	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3505 
3506 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3507 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3508 					 JOURNAL_ENTRY_ROUNDUP);
3509 
3510 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3511 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3512 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3513 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3514 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3515 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3516 }
3517 
3518 static int calculate_device_limits(struct dm_integrity_c *ic)
3519 {
3520 	__u64 initial_sectors;
3521 
3522 	calculate_journal_section_size(ic);
3523 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3524 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3525 		return -EINVAL;
3526 	ic->initial_sectors = initial_sectors;
3527 
3528 	if (!ic->meta_dev) {
3529 		sector_t last_sector, last_area, last_offset;
3530 
3531 		/* we have to maintain excessive padding for compatibility with existing volumes */
3532 		__u64 metadata_run_padding =
3533 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3534 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3535 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3536 
3537 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3538 					    metadata_run_padding) >> SECTOR_SHIFT;
3539 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3540 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3541 		else
3542 			ic->log2_metadata_run = -1;
3543 
3544 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3545 		last_sector = get_data_sector(ic, last_area, last_offset);
3546 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3547 			return -EINVAL;
3548 	} else {
3549 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3550 
3551 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3552 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3553 		meta_size <<= ic->log2_buffer_sectors;
3554 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3555 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3556 			return -EINVAL;
3557 		ic->metadata_run = 1;
3558 		ic->log2_metadata_run = 0;
3559 	}
3560 
3561 	return 0;
3562 }
3563 
3564 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3565 {
3566 	if (!ic->meta_dev) {
3567 		int test_bit;
3568 
3569 		ic->provided_data_sectors = 0;
3570 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3571 			__u64 prev_data_sectors = ic->provided_data_sectors;
3572 
3573 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3574 			if (calculate_device_limits(ic))
3575 				ic->provided_data_sectors = prev_data_sectors;
3576 		}
3577 	} else {
3578 		ic->provided_data_sectors = ic->data_device_sectors;
3579 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3580 	}
3581 }
3582 
3583 static int initialize_superblock(struct dm_integrity_c *ic,
3584 				 unsigned int journal_sectors, unsigned int interleave_sectors)
3585 {
3586 	unsigned int journal_sections;
3587 	int test_bit;
3588 
3589 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3590 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3591 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3592 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3593 	if (ic->journal_mac_alg.alg_string)
3594 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3595 
3596 	calculate_journal_section_size(ic);
3597 	journal_sections = journal_sectors / ic->journal_section_sectors;
3598 	if (!journal_sections)
3599 		journal_sections = 1;
3600 
3601 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3602 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3603 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3604 	}
3605 
3606 	if (!ic->meta_dev) {
3607 		if (ic->fix_padding)
3608 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3609 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3610 		if (!interleave_sectors)
3611 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3612 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3613 		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3614 		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3615 
3616 		get_provided_data_sectors(ic);
3617 		if (!ic->provided_data_sectors)
3618 			return -EINVAL;
3619 	} else {
3620 		ic->sb->log2_interleave_sectors = 0;
3621 
3622 		get_provided_data_sectors(ic);
3623 		if (!ic->provided_data_sectors)
3624 			return -EINVAL;
3625 
3626 try_smaller_buffer:
3627 		ic->sb->journal_sections = cpu_to_le32(0);
3628 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3629 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3630 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3631 
3632 			if (test_journal_sections > journal_sections)
3633 				continue;
3634 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3635 			if (calculate_device_limits(ic))
3636 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3637 
3638 		}
3639 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3640 			if (ic->log2_buffer_sectors > 3) {
3641 				ic->log2_buffer_sectors--;
3642 				goto try_smaller_buffer;
3643 			}
3644 			return -EINVAL;
3645 		}
3646 	}
3647 
3648 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3649 
3650 	sb_set_version(ic);
3651 
3652 	return 0;
3653 }
3654 
3655 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3656 {
3657 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3658 	struct blk_integrity bi;
3659 
3660 	memset(&bi, 0, sizeof(bi));
3661 	bi.profile = &dm_integrity_profile;
3662 	bi.tuple_size = ic->tag_size;
3663 	bi.tag_size = bi.tuple_size;
3664 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3665 
3666 	blk_integrity_register(disk, &bi);
3667 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3668 }
3669 
3670 static void dm_integrity_free_page_list(struct page_list *pl)
3671 {
3672 	unsigned int i;
3673 
3674 	if (!pl)
3675 		return;
3676 	for (i = 0; pl[i].page; i++)
3677 		__free_page(pl[i].page);
3678 	kvfree(pl);
3679 }
3680 
3681 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3682 {
3683 	struct page_list *pl;
3684 	unsigned int i;
3685 
3686 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3687 	if (!pl)
3688 		return NULL;
3689 
3690 	for (i = 0; i < n_pages; i++) {
3691 		pl[i].page = alloc_page(GFP_KERNEL);
3692 		if (!pl[i].page) {
3693 			dm_integrity_free_page_list(pl);
3694 			return NULL;
3695 		}
3696 		if (i)
3697 			pl[i - 1].next = &pl[i];
3698 	}
3699 	pl[i].page = NULL;
3700 	pl[i].next = NULL;
3701 
3702 	return pl;
3703 }
3704 
3705 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3706 {
3707 	unsigned int i;
3708 
3709 	for (i = 0; i < ic->journal_sections; i++)
3710 		kvfree(sl[i]);
3711 	kvfree(sl);
3712 }
3713 
3714 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3715 								   struct page_list *pl)
3716 {
3717 	struct scatterlist **sl;
3718 	unsigned int i;
3719 
3720 	sl = kvmalloc_array(ic->journal_sections,
3721 			    sizeof(struct scatterlist *),
3722 			    GFP_KERNEL | __GFP_ZERO);
3723 	if (!sl)
3724 		return NULL;
3725 
3726 	for (i = 0; i < ic->journal_sections; i++) {
3727 		struct scatterlist *s;
3728 		unsigned int start_index, start_offset;
3729 		unsigned int end_index, end_offset;
3730 		unsigned int n_pages;
3731 		unsigned int idx;
3732 
3733 		page_list_location(ic, i, 0, &start_index, &start_offset);
3734 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3735 				   &end_index, &end_offset);
3736 
3737 		n_pages = (end_index - start_index + 1);
3738 
3739 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3740 				   GFP_KERNEL);
3741 		if (!s) {
3742 			dm_integrity_free_journal_scatterlist(ic, sl);
3743 			return NULL;
3744 		}
3745 
3746 		sg_init_table(s, n_pages);
3747 		for (idx = start_index; idx <= end_index; idx++) {
3748 			char *va = lowmem_page_address(pl[idx].page);
3749 			unsigned int start = 0, end = PAGE_SIZE;
3750 
3751 			if (idx == start_index)
3752 				start = start_offset;
3753 			if (idx == end_index)
3754 				end = end_offset + (1 << SECTOR_SHIFT);
3755 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3756 		}
3757 
3758 		sl[i] = s;
3759 	}
3760 
3761 	return sl;
3762 }
3763 
3764 static void free_alg(struct alg_spec *a)
3765 {
3766 	kfree_sensitive(a->alg_string);
3767 	kfree_sensitive(a->key);
3768 	memset(a, 0, sizeof(*a));
3769 }
3770 
3771 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3772 {
3773 	char *k;
3774 
3775 	free_alg(a);
3776 
3777 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3778 	if (!a->alg_string)
3779 		goto nomem;
3780 
3781 	k = strchr(a->alg_string, ':');
3782 	if (k) {
3783 		*k = 0;
3784 		a->key_string = k + 1;
3785 		if (strlen(a->key_string) & 1)
3786 			goto inval;
3787 
3788 		a->key_size = strlen(a->key_string) / 2;
3789 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3790 		if (!a->key)
3791 			goto nomem;
3792 		if (hex2bin(a->key, a->key_string, a->key_size))
3793 			goto inval;
3794 	}
3795 
3796 	return 0;
3797 inval:
3798 	*error = error_inval;
3799 	return -EINVAL;
3800 nomem:
3801 	*error = "Out of memory for an argument";
3802 	return -ENOMEM;
3803 }
3804 
3805 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3806 		   char *error_alg, char *error_key)
3807 {
3808 	int r;
3809 
3810 	if (a->alg_string) {
3811 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3812 		if (IS_ERR(*hash)) {
3813 			*error = error_alg;
3814 			r = PTR_ERR(*hash);
3815 			*hash = NULL;
3816 			return r;
3817 		}
3818 
3819 		if (a->key) {
3820 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3821 			if (r) {
3822 				*error = error_key;
3823 				return r;
3824 			}
3825 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3826 			*error = error_key;
3827 			return -ENOKEY;
3828 		}
3829 	}
3830 
3831 	return 0;
3832 }
3833 
3834 static int create_journal(struct dm_integrity_c *ic, char **error)
3835 {
3836 	int r = 0;
3837 	unsigned int i;
3838 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3839 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3840 	struct skcipher_request *req = NULL;
3841 
3842 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3843 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3844 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3845 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3846 
3847 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3848 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3849 	journal_desc_size = journal_pages * sizeof(struct page_list);
3850 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3851 		*error = "Journal doesn't fit into memory";
3852 		r = -ENOMEM;
3853 		goto bad;
3854 	}
3855 	ic->journal_pages = journal_pages;
3856 
3857 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3858 	if (!ic->journal) {
3859 		*error = "Could not allocate memory for journal";
3860 		r = -ENOMEM;
3861 		goto bad;
3862 	}
3863 	if (ic->journal_crypt_alg.alg_string) {
3864 		unsigned int ivsize, blocksize;
3865 		struct journal_completion comp;
3866 
3867 		comp.ic = ic;
3868 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3869 		if (IS_ERR(ic->journal_crypt)) {
3870 			*error = "Invalid journal cipher";
3871 			r = PTR_ERR(ic->journal_crypt);
3872 			ic->journal_crypt = NULL;
3873 			goto bad;
3874 		}
3875 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3876 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3877 
3878 		if (ic->journal_crypt_alg.key) {
3879 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3880 						   ic->journal_crypt_alg.key_size);
3881 			if (r) {
3882 				*error = "Error setting encryption key";
3883 				goto bad;
3884 			}
3885 		}
3886 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3887 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3888 
3889 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3890 		if (!ic->journal_io) {
3891 			*error = "Could not allocate memory for journal io";
3892 			r = -ENOMEM;
3893 			goto bad;
3894 		}
3895 
3896 		if (blocksize == 1) {
3897 			struct scatterlist *sg;
3898 
3899 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3900 			if (!req) {
3901 				*error = "Could not allocate crypt request";
3902 				r = -ENOMEM;
3903 				goto bad;
3904 			}
3905 
3906 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3907 			if (!crypt_iv) {
3908 				*error = "Could not allocate iv";
3909 				r = -ENOMEM;
3910 				goto bad;
3911 			}
3912 
3913 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3914 			if (!ic->journal_xor) {
3915 				*error = "Could not allocate memory for journal xor";
3916 				r = -ENOMEM;
3917 				goto bad;
3918 			}
3919 
3920 			sg = kvmalloc_array(ic->journal_pages + 1,
3921 					    sizeof(struct scatterlist),
3922 					    GFP_KERNEL);
3923 			if (!sg) {
3924 				*error = "Unable to allocate sg list";
3925 				r = -ENOMEM;
3926 				goto bad;
3927 			}
3928 			sg_init_table(sg, ic->journal_pages + 1);
3929 			for (i = 0; i < ic->journal_pages; i++) {
3930 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3931 
3932 				clear_page(va);
3933 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3934 			}
3935 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3936 
3937 			skcipher_request_set_crypt(req, sg, sg,
3938 						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3939 			init_completion(&comp.comp);
3940 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3941 			if (do_crypt(true, req, &comp))
3942 				wait_for_completion(&comp.comp);
3943 			kvfree(sg);
3944 			r = dm_integrity_failed(ic);
3945 			if (r) {
3946 				*error = "Unable to encrypt journal";
3947 				goto bad;
3948 			}
3949 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3950 
3951 			crypto_free_skcipher(ic->journal_crypt);
3952 			ic->journal_crypt = NULL;
3953 		} else {
3954 			unsigned int crypt_len = roundup(ivsize, blocksize);
3955 
3956 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3957 			if (!req) {
3958 				*error = "Could not allocate crypt request";
3959 				r = -ENOMEM;
3960 				goto bad;
3961 			}
3962 
3963 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3964 			if (!crypt_iv) {
3965 				*error = "Could not allocate iv";
3966 				r = -ENOMEM;
3967 				goto bad;
3968 			}
3969 
3970 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3971 			if (!crypt_data) {
3972 				*error = "Unable to allocate crypt data";
3973 				r = -ENOMEM;
3974 				goto bad;
3975 			}
3976 
3977 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3978 			if (!ic->journal_scatterlist) {
3979 				*error = "Unable to allocate sg list";
3980 				r = -ENOMEM;
3981 				goto bad;
3982 			}
3983 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3984 			if (!ic->journal_io_scatterlist) {
3985 				*error = "Unable to allocate sg list";
3986 				r = -ENOMEM;
3987 				goto bad;
3988 			}
3989 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3990 							 sizeof(struct skcipher_request *),
3991 							 GFP_KERNEL | __GFP_ZERO);
3992 			if (!ic->sk_requests) {
3993 				*error = "Unable to allocate sk requests";
3994 				r = -ENOMEM;
3995 				goto bad;
3996 			}
3997 			for (i = 0; i < ic->journal_sections; i++) {
3998 				struct scatterlist sg;
3999 				struct skcipher_request *section_req;
4000 				__le32 section_le = cpu_to_le32(i);
4001 
4002 				memset(crypt_iv, 0x00, ivsize);
4003 				memset(crypt_data, 0x00, crypt_len);
4004 				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
4005 
4006 				sg_init_one(&sg, crypt_data, crypt_len);
4007 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
4008 				init_completion(&comp.comp);
4009 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4010 				if (do_crypt(true, req, &comp))
4011 					wait_for_completion(&comp.comp);
4012 
4013 				r = dm_integrity_failed(ic);
4014 				if (r) {
4015 					*error = "Unable to generate iv";
4016 					goto bad;
4017 				}
4018 
4019 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4020 				if (!section_req) {
4021 					*error = "Unable to allocate crypt request";
4022 					r = -ENOMEM;
4023 					goto bad;
4024 				}
4025 				section_req->iv = kmalloc_array(ivsize, 2,
4026 								GFP_KERNEL);
4027 				if (!section_req->iv) {
4028 					skcipher_request_free(section_req);
4029 					*error = "Unable to allocate iv";
4030 					r = -ENOMEM;
4031 					goto bad;
4032 				}
4033 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4034 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4035 				ic->sk_requests[i] = section_req;
4036 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4037 			}
4038 		}
4039 	}
4040 
4041 	for (i = 0; i < N_COMMIT_IDS; i++) {
4042 		unsigned int j;
4043 
4044 retest_commit_id:
4045 		for (j = 0; j < i; j++) {
4046 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
4047 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4048 				goto retest_commit_id;
4049 			}
4050 		}
4051 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4052 	}
4053 
4054 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4055 	if (journal_tree_size > ULONG_MAX) {
4056 		*error = "Journal doesn't fit into memory";
4057 		r = -ENOMEM;
4058 		goto bad;
4059 	}
4060 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4061 	if (!ic->journal_tree) {
4062 		*error = "Could not allocate memory for journal tree";
4063 		r = -ENOMEM;
4064 	}
4065 bad:
4066 	kfree(crypt_data);
4067 	kfree(crypt_iv);
4068 	skcipher_request_free(req);
4069 
4070 	return r;
4071 }
4072 
4073 /*
4074  * Construct a integrity mapping
4075  *
4076  * Arguments:
4077  *	device
4078  *	offset from the start of the device
4079  *	tag size
4080  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4081  *	number of optional arguments
4082  *	optional arguments:
4083  *		journal_sectors
4084  *		interleave_sectors
4085  *		buffer_sectors
4086  *		journal_watermark
4087  *		commit_time
4088  *		meta_device
4089  *		block_size
4090  *		sectors_per_bit
4091  *		bitmap_flush_interval
4092  *		internal_hash
4093  *		journal_crypt
4094  *		journal_mac
4095  *		recalculate
4096  */
4097 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4098 {
4099 	struct dm_integrity_c *ic;
4100 	char dummy;
4101 	int r;
4102 	unsigned int extra_args;
4103 	struct dm_arg_set as;
4104 	static const struct dm_arg _args[] = {
4105 		{0, 18, "Invalid number of feature args"},
4106 	};
4107 	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4108 	bool should_write_sb;
4109 	__u64 threshold;
4110 	unsigned long long start;
4111 	__s8 log2_sectors_per_bitmap_bit = -1;
4112 	__s8 log2_blocks_per_bitmap_bit;
4113 	__u64 bits_in_journal;
4114 	__u64 n_bitmap_bits;
4115 
4116 #define DIRECT_ARGUMENTS	4
4117 
4118 	if (argc <= DIRECT_ARGUMENTS) {
4119 		ti->error = "Invalid argument count";
4120 		return -EINVAL;
4121 	}
4122 
4123 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4124 	if (!ic) {
4125 		ti->error = "Cannot allocate integrity context";
4126 		return -ENOMEM;
4127 	}
4128 	ti->private = ic;
4129 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4130 	ic->ti = ti;
4131 
4132 	ic->in_progress = RB_ROOT;
4133 	INIT_LIST_HEAD(&ic->wait_list);
4134 	init_waitqueue_head(&ic->endio_wait);
4135 	bio_list_init(&ic->flush_bio_list);
4136 	init_waitqueue_head(&ic->copy_to_journal_wait);
4137 	init_completion(&ic->crypto_backoff);
4138 	atomic64_set(&ic->number_of_mismatches, 0);
4139 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4140 
4141 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4142 	if (r) {
4143 		ti->error = "Device lookup failed";
4144 		goto bad;
4145 	}
4146 
4147 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4148 		ti->error = "Invalid starting offset";
4149 		r = -EINVAL;
4150 		goto bad;
4151 	}
4152 	ic->start = start;
4153 
4154 	if (strcmp(argv[2], "-")) {
4155 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4156 			ti->error = "Invalid tag size";
4157 			r = -EINVAL;
4158 			goto bad;
4159 		}
4160 	}
4161 
4162 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4163 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4164 		ic->mode = argv[3][0];
4165 	} else {
4166 		ti->error = "Invalid mode (expecting J, B, D, R)";
4167 		r = -EINVAL;
4168 		goto bad;
4169 	}
4170 
4171 	journal_sectors = 0;
4172 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4173 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4174 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4175 	sync_msec = DEFAULT_SYNC_MSEC;
4176 	ic->sectors_per_block = 1;
4177 
4178 	as.argc = argc - DIRECT_ARGUMENTS;
4179 	as.argv = argv + DIRECT_ARGUMENTS;
4180 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4181 	if (r)
4182 		goto bad;
4183 
4184 	while (extra_args--) {
4185 		const char *opt_string;
4186 		unsigned int val;
4187 		unsigned long long llval;
4188 
4189 		opt_string = dm_shift_arg(&as);
4190 		if (!opt_string) {
4191 			r = -EINVAL;
4192 			ti->error = "Not enough feature arguments";
4193 			goto bad;
4194 		}
4195 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4196 			journal_sectors = val ? val : 1;
4197 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4198 			interleave_sectors = val;
4199 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4200 			buffer_sectors = val;
4201 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4202 			journal_watermark = val;
4203 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4204 			sync_msec = val;
4205 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4206 			if (ic->meta_dev) {
4207 				dm_put_device(ti, ic->meta_dev);
4208 				ic->meta_dev = NULL;
4209 			}
4210 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4211 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4212 			if (r) {
4213 				ti->error = "Device lookup failed";
4214 				goto bad;
4215 			}
4216 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4217 			if (val < 1 << SECTOR_SHIFT ||
4218 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4219 			    (val & (val - 1))) {
4220 				r = -EINVAL;
4221 				ti->error = "Invalid block_size argument";
4222 				goto bad;
4223 			}
4224 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4225 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4226 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4227 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4228 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4229 				r = -EINVAL;
4230 				ti->error = "Invalid bitmap_flush_interval argument";
4231 				goto bad;
4232 			}
4233 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4234 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4235 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4236 					    "Invalid internal_hash argument");
4237 			if (r)
4238 				goto bad;
4239 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4240 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4241 					    "Invalid journal_crypt argument");
4242 			if (r)
4243 				goto bad;
4244 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4245 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4246 					    "Invalid journal_mac argument");
4247 			if (r)
4248 				goto bad;
4249 		} else if (!strcmp(opt_string, "recalculate")) {
4250 			ic->recalculate_flag = true;
4251 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4252 			ic->recalculate_flag = true;
4253 			ic->reset_recalculate_flag = true;
4254 		} else if (!strcmp(opt_string, "allow_discards")) {
4255 			ic->discard = true;
4256 		} else if (!strcmp(opt_string, "fix_padding")) {
4257 			ic->fix_padding = true;
4258 		} else if (!strcmp(opt_string, "fix_hmac")) {
4259 			ic->fix_hmac = true;
4260 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4261 			ic->legacy_recalculate = true;
4262 		} else {
4263 			r = -EINVAL;
4264 			ti->error = "Invalid argument";
4265 			goto bad;
4266 		}
4267 	}
4268 
4269 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4270 	if (!ic->meta_dev)
4271 		ic->meta_device_sectors = ic->data_device_sectors;
4272 	else
4273 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4274 
4275 	if (!journal_sectors) {
4276 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4277 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4278 	}
4279 
4280 	if (!buffer_sectors)
4281 		buffer_sectors = 1;
4282 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4283 
4284 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4285 		    "Invalid internal hash", "Error setting internal hash key");
4286 	if (r)
4287 		goto bad;
4288 
4289 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4290 		    "Invalid journal mac", "Error setting journal mac key");
4291 	if (r)
4292 		goto bad;
4293 
4294 	if (!ic->tag_size) {
4295 		if (!ic->internal_hash) {
4296 			ti->error = "Unknown tag size";
4297 			r = -EINVAL;
4298 			goto bad;
4299 		}
4300 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4301 	}
4302 	if (ic->tag_size > MAX_TAG_SIZE) {
4303 		ti->error = "Too big tag size";
4304 		r = -EINVAL;
4305 		goto bad;
4306 	}
4307 	if (!(ic->tag_size & (ic->tag_size - 1)))
4308 		ic->log2_tag_size = __ffs(ic->tag_size);
4309 	else
4310 		ic->log2_tag_size = -1;
4311 
4312 	if (ic->mode == 'B' && !ic->internal_hash) {
4313 		r = -EINVAL;
4314 		ti->error = "Bitmap mode can be only used with internal hash";
4315 		goto bad;
4316 	}
4317 
4318 	if (ic->discard && !ic->internal_hash) {
4319 		r = -EINVAL;
4320 		ti->error = "Discard can be only used with internal hash";
4321 		goto bad;
4322 	}
4323 
4324 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4325 	ic->autocommit_msec = sync_msec;
4326 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4327 
4328 	ic->io = dm_io_client_create();
4329 	if (IS_ERR(ic->io)) {
4330 		r = PTR_ERR(ic->io);
4331 		ic->io = NULL;
4332 		ti->error = "Cannot allocate dm io";
4333 		goto bad;
4334 	}
4335 
4336 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4337 	if (r) {
4338 		ti->error = "Cannot allocate mempool";
4339 		goto bad;
4340 	}
4341 
4342 	r = mempool_init_page_pool(&ic->recheck_pool, 1, 0);
4343 	if (r) {
4344 		ti->error = "Cannot allocate mempool";
4345 		goto bad;
4346 	}
4347 
4348 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4349 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4350 	if (!ic->metadata_wq) {
4351 		ti->error = "Cannot allocate workqueue";
4352 		r = -ENOMEM;
4353 		goto bad;
4354 	}
4355 
4356 	/*
4357 	 * If this workqueue weren't ordered, it would cause bio reordering
4358 	 * and reduced performance.
4359 	 */
4360 	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4361 	if (!ic->wait_wq) {
4362 		ti->error = "Cannot allocate workqueue";
4363 		r = -ENOMEM;
4364 		goto bad;
4365 	}
4366 
4367 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4368 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4369 	if (!ic->offload_wq) {
4370 		ti->error = "Cannot allocate workqueue";
4371 		r = -ENOMEM;
4372 		goto bad;
4373 	}
4374 
4375 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4376 	if (!ic->commit_wq) {
4377 		ti->error = "Cannot allocate workqueue";
4378 		r = -ENOMEM;
4379 		goto bad;
4380 	}
4381 	INIT_WORK(&ic->commit_work, integrity_commit);
4382 
4383 	if (ic->mode == 'J' || ic->mode == 'B') {
4384 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4385 		if (!ic->writer_wq) {
4386 			ti->error = "Cannot allocate workqueue";
4387 			r = -ENOMEM;
4388 			goto bad;
4389 		}
4390 		INIT_WORK(&ic->writer_work, integrity_writer);
4391 	}
4392 
4393 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4394 	if (!ic->sb) {
4395 		r = -ENOMEM;
4396 		ti->error = "Cannot allocate superblock area";
4397 		goto bad;
4398 	}
4399 
4400 	r = sync_rw_sb(ic, REQ_OP_READ);
4401 	if (r) {
4402 		ti->error = "Error reading superblock";
4403 		goto bad;
4404 	}
4405 	should_write_sb = false;
4406 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4407 		if (ic->mode != 'R') {
4408 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4409 				r = -EINVAL;
4410 				ti->error = "The device is not initialized";
4411 				goto bad;
4412 			}
4413 		}
4414 
4415 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4416 		if (r) {
4417 			ti->error = "Could not initialize superblock";
4418 			goto bad;
4419 		}
4420 		if (ic->mode != 'R')
4421 			should_write_sb = true;
4422 	}
4423 
4424 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4425 		r = -EINVAL;
4426 		ti->error = "Unknown version";
4427 		goto bad;
4428 	}
4429 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4430 		r = -EINVAL;
4431 		ti->error = "Tag size doesn't match the information in superblock";
4432 		goto bad;
4433 	}
4434 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4435 		r = -EINVAL;
4436 		ti->error = "Block size doesn't match the information in superblock";
4437 		goto bad;
4438 	}
4439 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4440 		r = -EINVAL;
4441 		ti->error = "Corrupted superblock, journal_sections is 0";
4442 		goto bad;
4443 	}
4444 	/* make sure that ti->max_io_len doesn't overflow */
4445 	if (!ic->meta_dev) {
4446 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4447 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4448 			r = -EINVAL;
4449 			ti->error = "Invalid interleave_sectors in the superblock";
4450 			goto bad;
4451 		}
4452 	} else {
4453 		if (ic->sb->log2_interleave_sectors) {
4454 			r = -EINVAL;
4455 			ti->error = "Invalid interleave_sectors in the superblock";
4456 			goto bad;
4457 		}
4458 	}
4459 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4460 		r = -EINVAL;
4461 		ti->error = "Journal mac mismatch";
4462 		goto bad;
4463 	}
4464 
4465 	get_provided_data_sectors(ic);
4466 	if (!ic->provided_data_sectors) {
4467 		r = -EINVAL;
4468 		ti->error = "The device is too small";
4469 		goto bad;
4470 	}
4471 
4472 try_smaller_buffer:
4473 	r = calculate_device_limits(ic);
4474 	if (r) {
4475 		if (ic->meta_dev) {
4476 			if (ic->log2_buffer_sectors > 3) {
4477 				ic->log2_buffer_sectors--;
4478 				goto try_smaller_buffer;
4479 			}
4480 		}
4481 		ti->error = "The device is too small";
4482 		goto bad;
4483 	}
4484 
4485 	if (log2_sectors_per_bitmap_bit < 0)
4486 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4487 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4488 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4489 
4490 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4491 	if (bits_in_journal > UINT_MAX)
4492 		bits_in_journal = UINT_MAX;
4493 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4494 		log2_sectors_per_bitmap_bit++;
4495 
4496 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4497 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4498 	if (should_write_sb)
4499 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4500 
4501 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4502 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4503 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4504 
4505 	if (!ic->meta_dev)
4506 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4507 
4508 	if (ti->len > ic->provided_data_sectors) {
4509 		r = -EINVAL;
4510 		ti->error = "Not enough provided sectors for requested mapping size";
4511 		goto bad;
4512 	}
4513 
4514 
4515 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4516 	threshold += 50;
4517 	do_div(threshold, 100);
4518 	ic->free_sectors_threshold = threshold;
4519 
4520 	DEBUG_print("initialized:\n");
4521 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4522 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4523 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4524 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4525 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4526 	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4527 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4528 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4529 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4530 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4531 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4532 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4533 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4534 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4535 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4536 
4537 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4538 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4539 		ic->sb->recalc_sector = cpu_to_le64(0);
4540 	}
4541 
4542 	if (ic->internal_hash) {
4543 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4544 		if (!ic->recalc_wq) {
4545 			ti->error = "Cannot allocate workqueue";
4546 			r = -ENOMEM;
4547 			goto bad;
4548 		}
4549 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4550 	} else {
4551 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4552 			ti->error = "Recalculate can only be specified with internal_hash";
4553 			r = -EINVAL;
4554 			goto bad;
4555 		}
4556 	}
4557 
4558 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4559 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4560 	    dm_integrity_disable_recalculate(ic)) {
4561 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4562 		r = -EOPNOTSUPP;
4563 		goto bad;
4564 	}
4565 
4566 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4567 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4568 	if (IS_ERR(ic->bufio)) {
4569 		r = PTR_ERR(ic->bufio);
4570 		ti->error = "Cannot initialize dm-bufio";
4571 		ic->bufio = NULL;
4572 		goto bad;
4573 	}
4574 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4575 
4576 	if (ic->mode != 'R') {
4577 		r = create_journal(ic, &ti->error);
4578 		if (r)
4579 			goto bad;
4580 
4581 	}
4582 
4583 	if (ic->mode == 'B') {
4584 		unsigned int i;
4585 		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4586 
4587 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4588 		if (!ic->recalc_bitmap) {
4589 			r = -ENOMEM;
4590 			goto bad;
4591 		}
4592 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4593 		if (!ic->may_write_bitmap) {
4594 			r = -ENOMEM;
4595 			goto bad;
4596 		}
4597 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4598 		if (!ic->bbs) {
4599 			r = -ENOMEM;
4600 			goto bad;
4601 		}
4602 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4603 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4604 			struct bitmap_block_status *bbs = &ic->bbs[i];
4605 			unsigned int sector, pl_index, pl_offset;
4606 
4607 			INIT_WORK(&bbs->work, bitmap_block_work);
4608 			bbs->ic = ic;
4609 			bbs->idx = i;
4610 			bio_list_init(&bbs->bio_queue);
4611 			spin_lock_init(&bbs->bio_queue_lock);
4612 
4613 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4614 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4615 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4616 
4617 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4618 		}
4619 	}
4620 
4621 	if (should_write_sb) {
4622 		init_journal(ic, 0, ic->journal_sections, 0);
4623 		r = dm_integrity_failed(ic);
4624 		if (unlikely(r)) {
4625 			ti->error = "Error initializing journal";
4626 			goto bad;
4627 		}
4628 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4629 		if (r) {
4630 			ti->error = "Error initializing superblock";
4631 			goto bad;
4632 		}
4633 		ic->just_formatted = true;
4634 	}
4635 
4636 	if (!ic->meta_dev) {
4637 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4638 		if (r)
4639 			goto bad;
4640 	}
4641 	if (ic->mode == 'B') {
4642 		unsigned int max_io_len;
4643 
4644 		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4645 		if (!max_io_len)
4646 			max_io_len = 1U << 31;
4647 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4648 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4649 			r = dm_set_target_max_io_len(ti, max_io_len);
4650 			if (r)
4651 				goto bad;
4652 		}
4653 	}
4654 
4655 	if (!ic->internal_hash)
4656 		dm_integrity_set(ti, ic);
4657 
4658 	ti->num_flush_bios = 1;
4659 	ti->flush_supported = true;
4660 	if (ic->discard)
4661 		ti->num_discard_bios = 1;
4662 
4663 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4664 	return 0;
4665 
4666 bad:
4667 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4668 	dm_integrity_dtr(ti);
4669 	return r;
4670 }
4671 
4672 static void dm_integrity_dtr(struct dm_target *ti)
4673 {
4674 	struct dm_integrity_c *ic = ti->private;
4675 
4676 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4677 	BUG_ON(!list_empty(&ic->wait_list));
4678 
4679 	if (ic->mode == 'B')
4680 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4681 	if (ic->metadata_wq)
4682 		destroy_workqueue(ic->metadata_wq);
4683 	if (ic->wait_wq)
4684 		destroy_workqueue(ic->wait_wq);
4685 	if (ic->offload_wq)
4686 		destroy_workqueue(ic->offload_wq);
4687 	if (ic->commit_wq)
4688 		destroy_workqueue(ic->commit_wq);
4689 	if (ic->writer_wq)
4690 		destroy_workqueue(ic->writer_wq);
4691 	if (ic->recalc_wq)
4692 		destroy_workqueue(ic->recalc_wq);
4693 	kvfree(ic->bbs);
4694 	if (ic->bufio)
4695 		dm_bufio_client_destroy(ic->bufio);
4696 	mempool_exit(&ic->recheck_pool);
4697 	mempool_exit(&ic->journal_io_mempool);
4698 	if (ic->io)
4699 		dm_io_client_destroy(ic->io);
4700 	if (ic->dev)
4701 		dm_put_device(ti, ic->dev);
4702 	if (ic->meta_dev)
4703 		dm_put_device(ti, ic->meta_dev);
4704 	dm_integrity_free_page_list(ic->journal);
4705 	dm_integrity_free_page_list(ic->journal_io);
4706 	dm_integrity_free_page_list(ic->journal_xor);
4707 	dm_integrity_free_page_list(ic->recalc_bitmap);
4708 	dm_integrity_free_page_list(ic->may_write_bitmap);
4709 	if (ic->journal_scatterlist)
4710 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4711 	if (ic->journal_io_scatterlist)
4712 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4713 	if (ic->sk_requests) {
4714 		unsigned int i;
4715 
4716 		for (i = 0; i < ic->journal_sections; i++) {
4717 			struct skcipher_request *req;
4718 
4719 			req = ic->sk_requests[i];
4720 			if (req) {
4721 				kfree_sensitive(req->iv);
4722 				skcipher_request_free(req);
4723 			}
4724 		}
4725 		kvfree(ic->sk_requests);
4726 	}
4727 	kvfree(ic->journal_tree);
4728 	if (ic->sb)
4729 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4730 
4731 	if (ic->internal_hash)
4732 		crypto_free_shash(ic->internal_hash);
4733 	free_alg(&ic->internal_hash_alg);
4734 
4735 	if (ic->journal_crypt)
4736 		crypto_free_skcipher(ic->journal_crypt);
4737 	free_alg(&ic->journal_crypt_alg);
4738 
4739 	if (ic->journal_mac)
4740 		crypto_free_shash(ic->journal_mac);
4741 	free_alg(&ic->journal_mac_alg);
4742 
4743 	kfree(ic);
4744 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4745 }
4746 
4747 static struct target_type integrity_target = {
4748 	.name			= "integrity",
4749 	.version		= {1, 10, 0},
4750 	.module			= THIS_MODULE,
4751 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4752 	.ctr			= dm_integrity_ctr,
4753 	.dtr			= dm_integrity_dtr,
4754 	.map			= dm_integrity_map,
4755 	.postsuspend		= dm_integrity_postsuspend,
4756 	.resume			= dm_integrity_resume,
4757 	.status			= dm_integrity_status,
4758 	.iterate_devices	= dm_integrity_iterate_devices,
4759 	.io_hints		= dm_integrity_io_hints,
4760 };
4761 
4762 static int __init dm_integrity_init(void)
4763 {
4764 	int r;
4765 
4766 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4767 					     sizeof(struct journal_io), 0, 0, NULL);
4768 	if (!journal_io_cache) {
4769 		DMERR("can't allocate journal io cache");
4770 		return -ENOMEM;
4771 	}
4772 
4773 	r = dm_register_target(&integrity_target);
4774 	if (r < 0) {
4775 		kmem_cache_destroy(journal_io_cache);
4776 		return r;
4777 	}
4778 
4779 	return 0;
4780 }
4781 
4782 static void __exit dm_integrity_exit(void)
4783 {
4784 	dm_unregister_target(&integrity_target);
4785 	kmem_cache_destroy(journal_io_cache);
4786 }
4787 
4788 module_init(dm_integrity_init);
4789 module_exit(dm_integrity_exit);
4790 
4791 MODULE_AUTHOR("Milan Broz");
4792 MODULE_AUTHOR("Mikulas Patocka");
4793 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4794 MODULE_LICENSE("GPL");
4795