1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 4 * Copyright (C) 2016-2017 Milan Broz 5 * Copyright (C) 2016-2017 Mikulas Patocka 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include "dm-bio-record.h" 11 12 #include <linux/compiler.h> 13 #include <linux/module.h> 14 #include <linux/device-mapper.h> 15 #include <linux/dm-io.h> 16 #include <linux/vmalloc.h> 17 #include <linux/sort.h> 18 #include <linux/rbtree.h> 19 #include <linux/delay.h> 20 #include <linux/random.h> 21 #include <linux/reboot.h> 22 #include <crypto/hash.h> 23 #include <crypto/skcipher.h> 24 #include <linux/async_tx.h> 25 #include <linux/dm-bufio.h> 26 27 #include "dm-audit.h" 28 29 #define DM_MSG_PREFIX "integrity" 30 31 #define DEFAULT_INTERLEAVE_SECTORS 32768 32 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 33 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 34 #define DEFAULT_BUFFER_SECTORS 128 35 #define DEFAULT_JOURNAL_WATERMARK 50 36 #define DEFAULT_SYNC_MSEC 10000 37 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192) 38 #define MIN_LOG2_INTERLEAVE_SECTORS 3 39 #define MAX_LOG2_INTERLEAVE_SECTORS 31 40 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 41 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048) 42 #define RECALC_WRITE_SUPER 16 43 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 44 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 45 #define DISCARD_FILLER 0xf6 46 #define SALT_SIZE 16 47 48 /* 49 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 50 * so it should not be enabled in the official kernel 51 */ 52 //#define DEBUG_PRINT 53 //#define INTERNAL_VERIFY 54 55 /* 56 * On disk structures 57 */ 58 59 #define SB_MAGIC "integrt" 60 #define SB_VERSION_1 1 61 #define SB_VERSION_2 2 62 #define SB_VERSION_3 3 63 #define SB_VERSION_4 4 64 #define SB_VERSION_5 5 65 #define SB_SECTORS 8 66 #define MAX_SECTORS_PER_BLOCK 8 67 68 struct superblock { 69 __u8 magic[8]; 70 __u8 version; 71 __u8 log2_interleave_sectors; 72 __le16 integrity_tag_size; 73 __le32 journal_sections; 74 __le64 provided_data_sectors; /* userspace uses this value */ 75 __le32 flags; 76 __u8 log2_sectors_per_block; 77 __u8 log2_blocks_per_bitmap_bit; 78 __u8 pad[2]; 79 __le64 recalc_sector; 80 __u8 pad2[8]; 81 __u8 salt[SALT_SIZE]; 82 }; 83 84 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 85 #define SB_FLAG_RECALCULATING 0x2 86 #define SB_FLAG_DIRTY_BITMAP 0x4 87 #define SB_FLAG_FIXED_PADDING 0x8 88 #define SB_FLAG_FIXED_HMAC 0x10 89 90 #define JOURNAL_ENTRY_ROUNDUP 8 91 92 typedef __le64 commit_id_t; 93 #define JOURNAL_MAC_PER_SECTOR 8 94 95 struct journal_entry { 96 union { 97 struct { 98 __le32 sector_lo; 99 __le32 sector_hi; 100 } s; 101 __le64 sector; 102 } u; 103 commit_id_t last_bytes[]; 104 /* __u8 tag[0]; */ 105 }; 106 107 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 108 109 #if BITS_PER_LONG == 64 110 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 111 #else 112 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 113 #endif 114 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 115 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 116 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1)) 117 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 118 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2)) 119 120 #define JOURNAL_BLOCK_SECTORS 8 121 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 122 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 123 124 struct journal_sector { 125 struct_group(sectors, 126 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 127 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 128 ); 129 commit_id_t commit_id; 130 }; 131 132 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 133 134 #define METADATA_PADDING_SECTORS 8 135 136 #define N_COMMIT_IDS 4 137 138 static unsigned char prev_commit_seq(unsigned char seq) 139 { 140 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 141 } 142 143 static unsigned char next_commit_seq(unsigned char seq) 144 { 145 return (seq + 1) % N_COMMIT_IDS; 146 } 147 148 /* 149 * In-memory structures 150 */ 151 152 struct journal_node { 153 struct rb_node node; 154 sector_t sector; 155 }; 156 157 struct alg_spec { 158 char *alg_string; 159 char *key_string; 160 __u8 *key; 161 unsigned int key_size; 162 }; 163 164 struct dm_integrity_c { 165 struct dm_dev *dev; 166 struct dm_dev *meta_dev; 167 unsigned int tag_size; 168 __s8 log2_tag_size; 169 sector_t start; 170 mempool_t journal_io_mempool; 171 struct dm_io_client *io; 172 struct dm_bufio_client *bufio; 173 struct workqueue_struct *metadata_wq; 174 struct superblock *sb; 175 unsigned int journal_pages; 176 unsigned int n_bitmap_blocks; 177 178 struct page_list *journal; 179 struct page_list *journal_io; 180 struct page_list *journal_xor; 181 struct page_list *recalc_bitmap; 182 struct page_list *may_write_bitmap; 183 struct bitmap_block_status *bbs; 184 unsigned int bitmap_flush_interval; 185 int synchronous_mode; 186 struct bio_list synchronous_bios; 187 struct delayed_work bitmap_flush_work; 188 189 struct crypto_skcipher *journal_crypt; 190 struct scatterlist **journal_scatterlist; 191 struct scatterlist **journal_io_scatterlist; 192 struct skcipher_request **sk_requests; 193 194 struct crypto_shash *journal_mac; 195 196 struct journal_node *journal_tree; 197 struct rb_root journal_tree_root; 198 199 sector_t provided_data_sectors; 200 201 unsigned short journal_entry_size; 202 unsigned char journal_entries_per_sector; 203 unsigned char journal_section_entries; 204 unsigned short journal_section_sectors; 205 unsigned int journal_sections; 206 unsigned int journal_entries; 207 sector_t data_device_sectors; 208 sector_t meta_device_sectors; 209 unsigned int initial_sectors; 210 unsigned int metadata_run; 211 __s8 log2_metadata_run; 212 __u8 log2_buffer_sectors; 213 __u8 sectors_per_block; 214 __u8 log2_blocks_per_bitmap_bit; 215 216 unsigned char mode; 217 218 int failed; 219 220 struct crypto_shash *internal_hash; 221 222 struct dm_target *ti; 223 224 /* these variables are locked with endio_wait.lock */ 225 struct rb_root in_progress; 226 struct list_head wait_list; 227 wait_queue_head_t endio_wait; 228 struct workqueue_struct *wait_wq; 229 struct workqueue_struct *offload_wq; 230 231 unsigned char commit_seq; 232 commit_id_t commit_ids[N_COMMIT_IDS]; 233 234 unsigned int committed_section; 235 unsigned int n_committed_sections; 236 237 unsigned int uncommitted_section; 238 unsigned int n_uncommitted_sections; 239 240 unsigned int free_section; 241 unsigned char free_section_entry; 242 unsigned int free_sectors; 243 244 unsigned int free_sectors_threshold; 245 246 struct workqueue_struct *commit_wq; 247 struct work_struct commit_work; 248 249 struct workqueue_struct *writer_wq; 250 struct work_struct writer_work; 251 252 struct workqueue_struct *recalc_wq; 253 struct work_struct recalc_work; 254 255 struct bio_list flush_bio_list; 256 257 unsigned long autocommit_jiffies; 258 struct timer_list autocommit_timer; 259 unsigned int autocommit_msec; 260 261 wait_queue_head_t copy_to_journal_wait; 262 263 struct completion crypto_backoff; 264 265 bool wrote_to_journal; 266 bool journal_uptodate; 267 bool just_formatted; 268 bool recalculate_flag; 269 bool reset_recalculate_flag; 270 bool discard; 271 bool fix_padding; 272 bool fix_hmac; 273 bool legacy_recalculate; 274 275 struct alg_spec internal_hash_alg; 276 struct alg_spec journal_crypt_alg; 277 struct alg_spec journal_mac_alg; 278 279 atomic64_t number_of_mismatches; 280 281 mempool_t recheck_pool; 282 283 struct notifier_block reboot_notifier; 284 }; 285 286 struct dm_integrity_range { 287 sector_t logical_sector; 288 sector_t n_sectors; 289 bool waiting; 290 union { 291 struct rb_node node; 292 struct { 293 struct task_struct *task; 294 struct list_head wait_entry; 295 }; 296 }; 297 }; 298 299 struct dm_integrity_io { 300 struct work_struct work; 301 302 struct dm_integrity_c *ic; 303 enum req_op op; 304 bool fua; 305 306 struct dm_integrity_range range; 307 308 sector_t metadata_block; 309 unsigned int metadata_offset; 310 311 atomic_t in_flight; 312 blk_status_t bi_status; 313 314 struct completion *completion; 315 316 struct dm_bio_details bio_details; 317 }; 318 319 struct journal_completion { 320 struct dm_integrity_c *ic; 321 atomic_t in_flight; 322 struct completion comp; 323 }; 324 325 struct journal_io { 326 struct dm_integrity_range range; 327 struct journal_completion *comp; 328 }; 329 330 struct bitmap_block_status { 331 struct work_struct work; 332 struct dm_integrity_c *ic; 333 unsigned int idx; 334 unsigned long *bitmap; 335 struct bio_list bio_queue; 336 spinlock_t bio_queue_lock; 337 338 }; 339 340 static struct kmem_cache *journal_io_cache; 341 342 #define JOURNAL_IO_MEMPOOL 32 343 344 #ifdef DEBUG_PRINT 345 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 346 #define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \ 347 len ? ": " : "", len, bytes) 348 #else 349 #define DEBUG_print(x, ...) do { } while (0) 350 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 351 #endif 352 353 static void dm_integrity_prepare(struct request *rq) 354 { 355 } 356 357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 358 { 359 } 360 361 /* 362 * DM Integrity profile, protection is performed layer above (dm-crypt) 363 */ 364 static const struct blk_integrity_profile dm_integrity_profile = { 365 .name = "DM-DIF-EXT-TAG", 366 .generate_fn = NULL, 367 .verify_fn = NULL, 368 .prepare_fn = dm_integrity_prepare, 369 .complete_fn = dm_integrity_complete, 370 }; 371 372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 373 static void integrity_bio_wait(struct work_struct *w); 374 static void dm_integrity_dtr(struct dm_target *ti); 375 376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 377 { 378 if (err == -EILSEQ) 379 atomic64_inc(&ic->number_of_mismatches); 380 if (!cmpxchg(&ic->failed, 0, err)) 381 DMERR("Error on %s: %d", msg, err); 382 } 383 384 static int dm_integrity_failed(struct dm_integrity_c *ic) 385 { 386 return READ_ONCE(ic->failed); 387 } 388 389 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic) 390 { 391 if (ic->legacy_recalculate) 392 return false; 393 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ? 394 ic->internal_hash_alg.key || ic->journal_mac_alg.key : 395 ic->internal_hash_alg.key && !ic->journal_mac_alg.key) 396 return true; 397 return false; 398 } 399 400 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i, 401 unsigned int j, unsigned char seq) 402 { 403 /* 404 * Xor the number with section and sector, so that if a piece of 405 * journal is written at wrong place, it is detected. 406 */ 407 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 408 } 409 410 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 411 sector_t *area, sector_t *offset) 412 { 413 if (!ic->meta_dev) { 414 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 415 *area = data_sector >> log2_interleave_sectors; 416 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1); 417 } else { 418 *area = 0; 419 *offset = data_sector; 420 } 421 } 422 423 #define sector_to_block(ic, n) \ 424 do { \ 425 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \ 426 (n) >>= (ic)->sb->log2_sectors_per_block; \ 427 } while (0) 428 429 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 430 sector_t offset, unsigned int *metadata_offset) 431 { 432 __u64 ms; 433 unsigned int mo; 434 435 ms = area << ic->sb->log2_interleave_sectors; 436 if (likely(ic->log2_metadata_run >= 0)) 437 ms += area << ic->log2_metadata_run; 438 else 439 ms += area * ic->metadata_run; 440 ms >>= ic->log2_buffer_sectors; 441 442 sector_to_block(ic, offset); 443 444 if (likely(ic->log2_tag_size >= 0)) { 445 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 446 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 447 } else { 448 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 449 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 450 } 451 *metadata_offset = mo; 452 return ms; 453 } 454 455 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 456 { 457 sector_t result; 458 459 if (ic->meta_dev) 460 return offset; 461 462 result = area << ic->sb->log2_interleave_sectors; 463 if (likely(ic->log2_metadata_run >= 0)) 464 result += (area + 1) << ic->log2_metadata_run; 465 else 466 result += (area + 1) * ic->metadata_run; 467 468 result += (sector_t)ic->initial_sectors + offset; 469 result += ic->start; 470 471 return result; 472 } 473 474 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr) 475 { 476 if (unlikely(*sec_ptr >= ic->journal_sections)) 477 *sec_ptr -= ic->journal_sections; 478 } 479 480 static void sb_set_version(struct dm_integrity_c *ic) 481 { 482 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) 483 ic->sb->version = SB_VERSION_5; 484 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 485 ic->sb->version = SB_VERSION_4; 486 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 487 ic->sb->version = SB_VERSION_3; 488 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 489 ic->sb->version = SB_VERSION_2; 490 else 491 ic->sb->version = SB_VERSION_1; 492 } 493 494 static int sb_mac(struct dm_integrity_c *ic, bool wr) 495 { 496 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 497 int r; 498 unsigned int size = crypto_shash_digestsize(ic->journal_mac); 499 500 if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) { 501 dm_integrity_io_error(ic, "digest is too long", -EINVAL); 502 return -EINVAL; 503 } 504 505 desc->tfm = ic->journal_mac; 506 507 r = crypto_shash_init(desc); 508 if (unlikely(r < 0)) { 509 dm_integrity_io_error(ic, "crypto_shash_init", r); 510 return r; 511 } 512 513 r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size); 514 if (unlikely(r < 0)) { 515 dm_integrity_io_error(ic, "crypto_shash_update", r); 516 return r; 517 } 518 519 if (likely(wr)) { 520 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size); 521 if (unlikely(r < 0)) { 522 dm_integrity_io_error(ic, "crypto_shash_final", r); 523 return r; 524 } 525 } else { 526 __u8 result[HASH_MAX_DIGESTSIZE]; 527 528 r = crypto_shash_final(desc, result); 529 if (unlikely(r < 0)) { 530 dm_integrity_io_error(ic, "crypto_shash_final", r); 531 return r; 532 } 533 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) { 534 dm_integrity_io_error(ic, "superblock mac", -EILSEQ); 535 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0); 536 return -EILSEQ; 537 } 538 } 539 540 return 0; 541 } 542 543 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf) 544 { 545 struct dm_io_request io_req; 546 struct dm_io_region io_loc; 547 const enum req_op op = opf & REQ_OP_MASK; 548 int r; 549 550 io_req.bi_opf = opf; 551 io_req.mem.type = DM_IO_KMEM; 552 io_req.mem.ptr.addr = ic->sb; 553 io_req.notify.fn = NULL; 554 io_req.client = ic->io; 555 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 556 io_loc.sector = ic->start; 557 io_loc.count = SB_SECTORS; 558 559 if (op == REQ_OP_WRITE) { 560 sb_set_version(ic); 561 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 562 r = sb_mac(ic, true); 563 if (unlikely(r)) 564 return r; 565 } 566 } 567 568 r = dm_io(&io_req, 1, &io_loc, NULL); 569 if (unlikely(r)) 570 return r; 571 572 if (op == REQ_OP_READ) { 573 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 574 r = sb_mac(ic, false); 575 if (unlikely(r)) 576 return r; 577 } 578 } 579 580 return 0; 581 } 582 583 #define BITMAP_OP_TEST_ALL_SET 0 584 #define BITMAP_OP_TEST_ALL_CLEAR 1 585 #define BITMAP_OP_SET 2 586 #define BITMAP_OP_CLEAR 3 587 588 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 589 sector_t sector, sector_t n_sectors, int mode) 590 { 591 unsigned long bit, end_bit, this_end_bit, page, end_page; 592 unsigned long *data; 593 594 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 595 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 596 sector, 597 n_sectors, 598 ic->sb->log2_sectors_per_block, 599 ic->log2_blocks_per_bitmap_bit, 600 mode); 601 BUG(); 602 } 603 604 if (unlikely(!n_sectors)) 605 return true; 606 607 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 608 end_bit = (sector + n_sectors - 1) >> 609 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 610 611 page = bit / (PAGE_SIZE * 8); 612 bit %= PAGE_SIZE * 8; 613 614 end_page = end_bit / (PAGE_SIZE * 8); 615 end_bit %= PAGE_SIZE * 8; 616 617 repeat: 618 if (page < end_page) 619 this_end_bit = PAGE_SIZE * 8 - 1; 620 else 621 this_end_bit = end_bit; 622 623 data = lowmem_page_address(bitmap[page].page); 624 625 if (mode == BITMAP_OP_TEST_ALL_SET) { 626 while (bit <= this_end_bit) { 627 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 628 do { 629 if (data[bit / BITS_PER_LONG] != -1) 630 return false; 631 bit += BITS_PER_LONG; 632 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 633 continue; 634 } 635 if (!test_bit(bit, data)) 636 return false; 637 bit++; 638 } 639 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 640 while (bit <= this_end_bit) { 641 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 642 do { 643 if (data[bit / BITS_PER_LONG] != 0) 644 return false; 645 bit += BITS_PER_LONG; 646 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 647 continue; 648 } 649 if (test_bit(bit, data)) 650 return false; 651 bit++; 652 } 653 } else if (mode == BITMAP_OP_SET) { 654 while (bit <= this_end_bit) { 655 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 656 do { 657 data[bit / BITS_PER_LONG] = -1; 658 bit += BITS_PER_LONG; 659 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 660 continue; 661 } 662 __set_bit(bit, data); 663 bit++; 664 } 665 } else if (mode == BITMAP_OP_CLEAR) { 666 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 667 clear_page(data); 668 else { 669 while (bit <= this_end_bit) { 670 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 671 do { 672 data[bit / BITS_PER_LONG] = 0; 673 bit += BITS_PER_LONG; 674 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 675 continue; 676 } 677 __clear_bit(bit, data); 678 bit++; 679 } 680 } 681 } else { 682 BUG(); 683 } 684 685 if (unlikely(page < end_page)) { 686 bit = 0; 687 page++; 688 goto repeat; 689 } 690 691 return true; 692 } 693 694 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 695 { 696 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 697 unsigned int i; 698 699 for (i = 0; i < n_bitmap_pages; i++) { 700 unsigned long *dst_data = lowmem_page_address(dst[i].page); 701 unsigned long *src_data = lowmem_page_address(src[i].page); 702 703 copy_page(dst_data, src_data); 704 } 705 } 706 707 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 708 { 709 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 710 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 711 712 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 713 return &ic->bbs[bitmap_block]; 714 } 715 716 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 717 bool e, const char *function) 718 { 719 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 720 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 721 722 if (unlikely(section >= ic->journal_sections) || 723 unlikely(offset >= limit)) { 724 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 725 function, section, offset, ic->journal_sections, limit); 726 BUG(); 727 } 728 #endif 729 } 730 731 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 732 unsigned int *pl_index, unsigned int *pl_offset) 733 { 734 unsigned int sector; 735 736 access_journal_check(ic, section, offset, false, "page_list_location"); 737 738 sector = section * ic->journal_section_sectors + offset; 739 740 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 741 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 742 } 743 744 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 745 unsigned int section, unsigned int offset, unsigned int *n_sectors) 746 { 747 unsigned int pl_index, pl_offset; 748 char *va; 749 750 page_list_location(ic, section, offset, &pl_index, &pl_offset); 751 752 if (n_sectors) 753 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 754 755 va = lowmem_page_address(pl[pl_index].page); 756 757 return (struct journal_sector *)(va + pl_offset); 758 } 759 760 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset) 761 { 762 return access_page_list(ic, ic->journal, section, offset, NULL); 763 } 764 765 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n) 766 { 767 unsigned int rel_sector, offset; 768 struct journal_sector *js; 769 770 access_journal_check(ic, section, n, true, "access_journal_entry"); 771 772 rel_sector = n % JOURNAL_BLOCK_SECTORS; 773 offset = n / JOURNAL_BLOCK_SECTORS; 774 775 js = access_journal(ic, section, rel_sector); 776 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 777 } 778 779 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n) 780 { 781 n <<= ic->sb->log2_sectors_per_block; 782 783 n += JOURNAL_BLOCK_SECTORS; 784 785 access_journal_check(ic, section, n, false, "access_journal_data"); 786 787 return access_journal(ic, section, n); 788 } 789 790 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE]) 791 { 792 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 793 int r; 794 unsigned int j, size; 795 796 desc->tfm = ic->journal_mac; 797 798 r = crypto_shash_init(desc); 799 if (unlikely(r < 0)) { 800 dm_integrity_io_error(ic, "crypto_shash_init", r); 801 goto err; 802 } 803 804 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 805 __le64 section_le; 806 807 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE); 808 if (unlikely(r < 0)) { 809 dm_integrity_io_error(ic, "crypto_shash_update", r); 810 goto err; 811 } 812 813 section_le = cpu_to_le64(section); 814 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le)); 815 if (unlikely(r < 0)) { 816 dm_integrity_io_error(ic, "crypto_shash_update", r); 817 goto err; 818 } 819 } 820 821 for (j = 0; j < ic->journal_section_entries; j++) { 822 struct journal_entry *je = access_journal_entry(ic, section, j); 823 824 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector)); 825 if (unlikely(r < 0)) { 826 dm_integrity_io_error(ic, "crypto_shash_update", r); 827 goto err; 828 } 829 } 830 831 size = crypto_shash_digestsize(ic->journal_mac); 832 833 if (likely(size <= JOURNAL_MAC_SIZE)) { 834 r = crypto_shash_final(desc, result); 835 if (unlikely(r < 0)) { 836 dm_integrity_io_error(ic, "crypto_shash_final", r); 837 goto err; 838 } 839 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 840 } else { 841 __u8 digest[HASH_MAX_DIGESTSIZE]; 842 843 if (WARN_ON(size > sizeof(digest))) { 844 dm_integrity_io_error(ic, "digest_size", -EINVAL); 845 goto err; 846 } 847 r = crypto_shash_final(desc, digest); 848 if (unlikely(r < 0)) { 849 dm_integrity_io_error(ic, "crypto_shash_final", r); 850 goto err; 851 } 852 memcpy(result, digest, JOURNAL_MAC_SIZE); 853 } 854 855 return; 856 err: 857 memset(result, 0, JOURNAL_MAC_SIZE); 858 } 859 860 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr) 861 { 862 __u8 result[JOURNAL_MAC_SIZE]; 863 unsigned int j; 864 865 if (!ic->journal_mac) 866 return; 867 868 section_mac(ic, section, result); 869 870 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 871 struct journal_sector *js = access_journal(ic, section, j); 872 873 if (likely(wr)) 874 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 875 else { 876 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) { 877 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 878 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0); 879 } 880 } 881 } 882 } 883 884 static void complete_journal_op(void *context) 885 { 886 struct journal_completion *comp = context; 887 888 BUG_ON(!atomic_read(&comp->in_flight)); 889 if (likely(atomic_dec_and_test(&comp->in_flight))) 890 complete(&comp->comp); 891 } 892 893 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 894 unsigned int n_sections, struct journal_completion *comp) 895 { 896 struct async_submit_ctl submit; 897 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 898 unsigned int pl_index, pl_offset, section_index; 899 struct page_list *source_pl, *target_pl; 900 901 if (likely(encrypt)) { 902 source_pl = ic->journal; 903 target_pl = ic->journal_io; 904 } else { 905 source_pl = ic->journal_io; 906 target_pl = ic->journal; 907 } 908 909 page_list_location(ic, section, 0, &pl_index, &pl_offset); 910 911 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 912 913 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 914 915 section_index = pl_index; 916 917 do { 918 size_t this_step; 919 struct page *src_pages[2]; 920 struct page *dst_page; 921 922 while (unlikely(pl_index == section_index)) { 923 unsigned int dummy; 924 925 if (likely(encrypt)) 926 rw_section_mac(ic, section, true); 927 section++; 928 n_sections--; 929 if (!n_sections) 930 break; 931 page_list_location(ic, section, 0, §ion_index, &dummy); 932 } 933 934 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 935 dst_page = target_pl[pl_index].page; 936 src_pages[0] = source_pl[pl_index].page; 937 src_pages[1] = ic->journal_xor[pl_index].page; 938 939 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 940 941 pl_index++; 942 pl_offset = 0; 943 n_bytes -= this_step; 944 } while (n_bytes); 945 946 BUG_ON(n_sections); 947 948 async_tx_issue_pending_all(); 949 } 950 951 static void complete_journal_encrypt(void *data, int err) 952 { 953 struct journal_completion *comp = data; 954 955 if (unlikely(err)) { 956 if (likely(err == -EINPROGRESS)) { 957 complete(&comp->ic->crypto_backoff); 958 return; 959 } 960 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 961 } 962 complete_journal_op(comp); 963 } 964 965 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 966 { 967 int r; 968 969 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 970 complete_journal_encrypt, comp); 971 if (likely(encrypt)) 972 r = crypto_skcipher_encrypt(req); 973 else 974 r = crypto_skcipher_decrypt(req); 975 if (likely(!r)) 976 return false; 977 if (likely(r == -EINPROGRESS)) 978 return true; 979 if (likely(r == -EBUSY)) { 980 wait_for_completion(&comp->ic->crypto_backoff); 981 reinit_completion(&comp->ic->crypto_backoff); 982 return true; 983 } 984 dm_integrity_io_error(comp->ic, "encrypt", r); 985 return false; 986 } 987 988 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 989 unsigned int n_sections, struct journal_completion *comp) 990 { 991 struct scatterlist **source_sg; 992 struct scatterlist **target_sg; 993 994 atomic_add(2, &comp->in_flight); 995 996 if (likely(encrypt)) { 997 source_sg = ic->journal_scatterlist; 998 target_sg = ic->journal_io_scatterlist; 999 } else { 1000 source_sg = ic->journal_io_scatterlist; 1001 target_sg = ic->journal_scatterlist; 1002 } 1003 1004 do { 1005 struct skcipher_request *req; 1006 unsigned int ivsize; 1007 char *iv; 1008 1009 if (likely(encrypt)) 1010 rw_section_mac(ic, section, true); 1011 1012 req = ic->sk_requests[section]; 1013 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 1014 iv = req->iv; 1015 1016 memcpy(iv, iv + ivsize, ivsize); 1017 1018 req->src = source_sg[section]; 1019 req->dst = target_sg[section]; 1020 1021 if (unlikely(do_crypt(encrypt, req, comp))) 1022 atomic_inc(&comp->in_flight); 1023 1024 section++; 1025 n_sections--; 1026 } while (n_sections); 1027 1028 atomic_dec(&comp->in_flight); 1029 complete_journal_op(comp); 1030 } 1031 1032 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 1033 unsigned int n_sections, struct journal_completion *comp) 1034 { 1035 if (ic->journal_xor) 1036 return xor_journal(ic, encrypt, section, n_sections, comp); 1037 else 1038 return crypt_journal(ic, encrypt, section, n_sections, comp); 1039 } 1040 1041 static void complete_journal_io(unsigned long error, void *context) 1042 { 1043 struct journal_completion *comp = context; 1044 1045 if (unlikely(error != 0)) 1046 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 1047 complete_journal_op(comp); 1048 } 1049 1050 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf, 1051 unsigned int sector, unsigned int n_sectors, 1052 struct journal_completion *comp) 1053 { 1054 struct dm_io_request io_req; 1055 struct dm_io_region io_loc; 1056 unsigned int pl_index, pl_offset; 1057 int r; 1058 1059 if (unlikely(dm_integrity_failed(ic))) { 1060 if (comp) 1061 complete_journal_io(-1UL, comp); 1062 return; 1063 } 1064 1065 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1066 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1067 1068 io_req.bi_opf = opf; 1069 io_req.mem.type = DM_IO_PAGE_LIST; 1070 if (ic->journal_io) 1071 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 1072 else 1073 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1074 io_req.mem.offset = pl_offset; 1075 if (likely(comp != NULL)) { 1076 io_req.notify.fn = complete_journal_io; 1077 io_req.notify.context = comp; 1078 } else { 1079 io_req.notify.fn = NULL; 1080 } 1081 io_req.client = ic->io; 1082 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 1083 io_loc.sector = ic->start + SB_SECTORS + sector; 1084 io_loc.count = n_sectors; 1085 1086 r = dm_io(&io_req, 1, &io_loc, NULL); 1087 if (unlikely(r)) { 1088 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ? 1089 "reading journal" : "writing journal", r); 1090 if (comp) { 1091 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1092 complete_journal_io(-1UL, comp); 1093 } 1094 } 1095 } 1096 1097 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf, 1098 unsigned int section, unsigned int n_sections, 1099 struct journal_completion *comp) 1100 { 1101 unsigned int sector, n_sectors; 1102 1103 sector = section * ic->journal_section_sectors; 1104 n_sectors = n_sections * ic->journal_section_sectors; 1105 1106 rw_journal_sectors(ic, opf, sector, n_sectors, comp); 1107 } 1108 1109 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections) 1110 { 1111 struct journal_completion io_comp; 1112 struct journal_completion crypt_comp_1; 1113 struct journal_completion crypt_comp_2; 1114 unsigned int i; 1115 1116 io_comp.ic = ic; 1117 init_completion(&io_comp.comp); 1118 1119 if (commit_start + commit_sections <= ic->journal_sections) { 1120 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1121 if (ic->journal_io) { 1122 crypt_comp_1.ic = ic; 1123 init_completion(&crypt_comp_1.comp); 1124 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1125 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1126 wait_for_completion_io(&crypt_comp_1.comp); 1127 } else { 1128 for (i = 0; i < commit_sections; i++) 1129 rw_section_mac(ic, commit_start + i, true); 1130 } 1131 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start, 1132 commit_sections, &io_comp); 1133 } else { 1134 unsigned int to_end; 1135 1136 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1137 to_end = ic->journal_sections - commit_start; 1138 if (ic->journal_io) { 1139 crypt_comp_1.ic = ic; 1140 init_completion(&crypt_comp_1.comp); 1141 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1142 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1143 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1144 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 1145 commit_start, to_end, &io_comp); 1146 reinit_completion(&crypt_comp_1.comp); 1147 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1148 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1149 wait_for_completion_io(&crypt_comp_1.comp); 1150 } else { 1151 crypt_comp_2.ic = ic; 1152 init_completion(&crypt_comp_2.comp); 1153 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1154 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1155 wait_for_completion_io(&crypt_comp_1.comp); 1156 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1157 wait_for_completion_io(&crypt_comp_2.comp); 1158 } 1159 } else { 1160 for (i = 0; i < to_end; i++) 1161 rw_section_mac(ic, commit_start + i, true); 1162 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1163 for (i = 0; i < commit_sections - to_end; i++) 1164 rw_section_mac(ic, i, true); 1165 } 1166 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp); 1167 } 1168 1169 wait_for_completion_io(&io_comp.comp); 1170 } 1171 1172 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 1173 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data) 1174 { 1175 struct dm_io_request io_req; 1176 struct dm_io_region io_loc; 1177 int r; 1178 unsigned int sector, pl_index, pl_offset; 1179 1180 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1)); 1181 1182 if (unlikely(dm_integrity_failed(ic))) { 1183 fn(-1UL, data); 1184 return; 1185 } 1186 1187 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1188 1189 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1190 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1191 1192 io_req.bi_opf = REQ_OP_WRITE; 1193 io_req.mem.type = DM_IO_PAGE_LIST; 1194 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1195 io_req.mem.offset = pl_offset; 1196 io_req.notify.fn = fn; 1197 io_req.notify.context = data; 1198 io_req.client = ic->io; 1199 io_loc.bdev = ic->dev->bdev; 1200 io_loc.sector = target; 1201 io_loc.count = n_sectors; 1202 1203 r = dm_io(&io_req, 1, &io_loc, NULL); 1204 if (unlikely(r)) { 1205 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1206 fn(-1UL, data); 1207 } 1208 } 1209 1210 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1211 { 1212 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1213 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1214 } 1215 1216 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1217 { 1218 struct rb_node **n = &ic->in_progress.rb_node; 1219 struct rb_node *parent; 1220 1221 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1)); 1222 1223 if (likely(check_waiting)) { 1224 struct dm_integrity_range *range; 1225 1226 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1227 if (unlikely(ranges_overlap(range, new_range))) 1228 return false; 1229 } 1230 } 1231 1232 parent = NULL; 1233 1234 while (*n) { 1235 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1236 1237 parent = *n; 1238 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) 1239 n = &range->node.rb_left; 1240 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) 1241 n = &range->node.rb_right; 1242 else 1243 return false; 1244 } 1245 1246 rb_link_node(&new_range->node, parent, n); 1247 rb_insert_color(&new_range->node, &ic->in_progress); 1248 1249 return true; 1250 } 1251 1252 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1253 { 1254 rb_erase(&range->node, &ic->in_progress); 1255 while (unlikely(!list_empty(&ic->wait_list))) { 1256 struct dm_integrity_range *last_range = 1257 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1258 struct task_struct *last_range_task; 1259 1260 last_range_task = last_range->task; 1261 list_del(&last_range->wait_entry); 1262 if (!add_new_range(ic, last_range, false)) { 1263 last_range->task = last_range_task; 1264 list_add(&last_range->wait_entry, &ic->wait_list); 1265 break; 1266 } 1267 last_range->waiting = false; 1268 wake_up_process(last_range_task); 1269 } 1270 } 1271 1272 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1273 { 1274 unsigned long flags; 1275 1276 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1277 remove_range_unlocked(ic, range); 1278 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1279 } 1280 1281 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1282 { 1283 new_range->waiting = true; 1284 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1285 new_range->task = current; 1286 do { 1287 __set_current_state(TASK_UNINTERRUPTIBLE); 1288 spin_unlock_irq(&ic->endio_wait.lock); 1289 io_schedule(); 1290 spin_lock_irq(&ic->endio_wait.lock); 1291 } while (unlikely(new_range->waiting)); 1292 } 1293 1294 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1295 { 1296 if (unlikely(!add_new_range(ic, new_range, true))) 1297 wait_and_add_new_range(ic, new_range); 1298 } 1299 1300 static void init_journal_node(struct journal_node *node) 1301 { 1302 RB_CLEAR_NODE(&node->node); 1303 node->sector = (sector_t)-1; 1304 } 1305 1306 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1307 { 1308 struct rb_node **link; 1309 struct rb_node *parent; 1310 1311 node->sector = sector; 1312 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1313 1314 link = &ic->journal_tree_root.rb_node; 1315 parent = NULL; 1316 1317 while (*link) { 1318 struct journal_node *j; 1319 1320 parent = *link; 1321 j = container_of(parent, struct journal_node, node); 1322 if (sector < j->sector) 1323 link = &j->node.rb_left; 1324 else 1325 link = &j->node.rb_right; 1326 } 1327 1328 rb_link_node(&node->node, parent, link); 1329 rb_insert_color(&node->node, &ic->journal_tree_root); 1330 } 1331 1332 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1333 { 1334 BUG_ON(RB_EMPTY_NODE(&node->node)); 1335 rb_erase(&node->node, &ic->journal_tree_root); 1336 init_journal_node(node); 1337 } 1338 1339 #define NOT_FOUND (-1U) 1340 1341 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1342 { 1343 struct rb_node *n = ic->journal_tree_root.rb_node; 1344 unsigned int found = NOT_FOUND; 1345 1346 *next_sector = (sector_t)-1; 1347 while (n) { 1348 struct journal_node *j = container_of(n, struct journal_node, node); 1349 1350 if (sector == j->sector) 1351 found = j - ic->journal_tree; 1352 1353 if (sector < j->sector) { 1354 *next_sector = j->sector; 1355 n = j->node.rb_left; 1356 } else 1357 n = j->node.rb_right; 1358 } 1359 1360 return found; 1361 } 1362 1363 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector) 1364 { 1365 struct journal_node *node, *next_node; 1366 struct rb_node *next; 1367 1368 if (unlikely(pos >= ic->journal_entries)) 1369 return false; 1370 node = &ic->journal_tree[pos]; 1371 if (unlikely(RB_EMPTY_NODE(&node->node))) 1372 return false; 1373 if (unlikely(node->sector != sector)) 1374 return false; 1375 1376 next = rb_next(&node->node); 1377 if (unlikely(!next)) 1378 return true; 1379 1380 next_node = container_of(next, struct journal_node, node); 1381 return next_node->sector != sector; 1382 } 1383 1384 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1385 { 1386 struct rb_node *next; 1387 struct journal_node *next_node; 1388 unsigned int next_section; 1389 1390 BUG_ON(RB_EMPTY_NODE(&node->node)); 1391 1392 next = rb_next(&node->node); 1393 if (unlikely(!next)) 1394 return false; 1395 1396 next_node = container_of(next, struct journal_node, node); 1397 1398 if (next_node->sector != node->sector) 1399 return false; 1400 1401 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries; 1402 if (next_section >= ic->committed_section && 1403 next_section < ic->committed_section + ic->n_committed_sections) 1404 return true; 1405 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1406 return true; 1407 1408 return false; 1409 } 1410 1411 #define TAG_READ 0 1412 #define TAG_WRITE 1 1413 #define TAG_CMP 2 1414 1415 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1416 unsigned int *metadata_offset, unsigned int total_size, int op) 1417 { 1418 #define MAY_BE_FILLER 1 1419 #define MAY_BE_HASH 2 1420 unsigned int hash_offset = 0; 1421 unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1422 1423 do { 1424 unsigned char *data, *dp; 1425 struct dm_buffer *b; 1426 unsigned int to_copy; 1427 int r; 1428 1429 r = dm_integrity_failed(ic); 1430 if (unlikely(r)) 1431 return r; 1432 1433 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1434 if (IS_ERR(data)) 1435 return PTR_ERR(data); 1436 1437 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1438 dp = data + *metadata_offset; 1439 if (op == TAG_READ) { 1440 memcpy(tag, dp, to_copy); 1441 } else if (op == TAG_WRITE) { 1442 if (memcmp(dp, tag, to_copy)) { 1443 memcpy(dp, tag, to_copy); 1444 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1445 } 1446 } else { 1447 /* e.g.: op == TAG_CMP */ 1448 1449 if (likely(is_power_of_2(ic->tag_size))) { 1450 if (unlikely(memcmp(dp, tag, to_copy))) 1451 if (unlikely(!ic->discard) || 1452 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) { 1453 goto thorough_test; 1454 } 1455 } else { 1456 unsigned int i, ts; 1457 thorough_test: 1458 ts = total_size; 1459 1460 for (i = 0; i < to_copy; i++, ts--) { 1461 if (unlikely(dp[i] != tag[i])) 1462 may_be &= ~MAY_BE_HASH; 1463 if (likely(dp[i] != DISCARD_FILLER)) 1464 may_be &= ~MAY_BE_FILLER; 1465 hash_offset++; 1466 if (unlikely(hash_offset == ic->tag_size)) { 1467 if (unlikely(!may_be)) { 1468 dm_bufio_release(b); 1469 return ts; 1470 } 1471 hash_offset = 0; 1472 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1473 } 1474 } 1475 } 1476 } 1477 dm_bufio_release(b); 1478 1479 tag += to_copy; 1480 *metadata_offset += to_copy; 1481 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1482 (*metadata_block)++; 1483 *metadata_offset = 0; 1484 } 1485 1486 if (unlikely(!is_power_of_2(ic->tag_size))) 1487 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1488 1489 total_size -= to_copy; 1490 } while (unlikely(total_size)); 1491 1492 return 0; 1493 #undef MAY_BE_FILLER 1494 #undef MAY_BE_HASH 1495 } 1496 1497 struct flush_request { 1498 struct dm_io_request io_req; 1499 struct dm_io_region io_reg; 1500 struct dm_integrity_c *ic; 1501 struct completion comp; 1502 }; 1503 1504 static void flush_notify(unsigned long error, void *fr_) 1505 { 1506 struct flush_request *fr = fr_; 1507 1508 if (unlikely(error != 0)) 1509 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO); 1510 complete(&fr->comp); 1511 } 1512 1513 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data) 1514 { 1515 int r; 1516 struct flush_request fr; 1517 1518 if (!ic->meta_dev) 1519 flush_data = false; 1520 if (flush_data) { 1521 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, 1522 fr.io_req.mem.type = DM_IO_KMEM, 1523 fr.io_req.mem.ptr.addr = NULL, 1524 fr.io_req.notify.fn = flush_notify, 1525 fr.io_req.notify.context = &fr; 1526 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio), 1527 fr.io_reg.bdev = ic->dev->bdev, 1528 fr.io_reg.sector = 0, 1529 fr.io_reg.count = 0, 1530 fr.ic = ic; 1531 init_completion(&fr.comp); 1532 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL); 1533 BUG_ON(r); 1534 } 1535 1536 r = dm_bufio_write_dirty_buffers(ic->bufio); 1537 if (unlikely(r)) 1538 dm_integrity_io_error(ic, "writing tags", r); 1539 1540 if (flush_data) 1541 wait_for_completion(&fr.comp); 1542 } 1543 1544 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1545 { 1546 DECLARE_WAITQUEUE(wait, current); 1547 1548 __add_wait_queue(&ic->endio_wait, &wait); 1549 __set_current_state(TASK_UNINTERRUPTIBLE); 1550 spin_unlock_irq(&ic->endio_wait.lock); 1551 io_schedule(); 1552 spin_lock_irq(&ic->endio_wait.lock); 1553 __remove_wait_queue(&ic->endio_wait, &wait); 1554 } 1555 1556 static void autocommit_fn(struct timer_list *t) 1557 { 1558 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1559 1560 if (likely(!dm_integrity_failed(ic))) 1561 queue_work(ic->commit_wq, &ic->commit_work); 1562 } 1563 1564 static void schedule_autocommit(struct dm_integrity_c *ic) 1565 { 1566 if (!timer_pending(&ic->autocommit_timer)) 1567 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1568 } 1569 1570 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1571 { 1572 struct bio *bio; 1573 unsigned long flags; 1574 1575 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1576 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1577 bio_list_add(&ic->flush_bio_list, bio); 1578 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1579 1580 queue_work(ic->commit_wq, &ic->commit_work); 1581 } 1582 1583 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1584 { 1585 int r; 1586 1587 r = dm_integrity_failed(ic); 1588 if (unlikely(r) && !bio->bi_status) 1589 bio->bi_status = errno_to_blk_status(r); 1590 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1591 unsigned long flags; 1592 1593 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1594 bio_list_add(&ic->synchronous_bios, bio); 1595 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1596 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1597 return; 1598 } 1599 bio_endio(bio); 1600 } 1601 1602 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1603 { 1604 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1605 1606 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1607 submit_flush_bio(ic, dio); 1608 else 1609 do_endio(ic, bio); 1610 } 1611 1612 static void dec_in_flight(struct dm_integrity_io *dio) 1613 { 1614 if (atomic_dec_and_test(&dio->in_flight)) { 1615 struct dm_integrity_c *ic = dio->ic; 1616 struct bio *bio; 1617 1618 remove_range(ic, &dio->range); 1619 1620 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1621 schedule_autocommit(ic); 1622 1623 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1624 if (unlikely(dio->bi_status) && !bio->bi_status) 1625 bio->bi_status = dio->bi_status; 1626 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1627 dio->range.logical_sector += dio->range.n_sectors; 1628 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1629 INIT_WORK(&dio->work, integrity_bio_wait); 1630 queue_work(ic->offload_wq, &dio->work); 1631 return; 1632 } 1633 do_endio_flush(ic, dio); 1634 } 1635 } 1636 1637 static void integrity_end_io(struct bio *bio) 1638 { 1639 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1640 1641 dm_bio_restore(&dio->bio_details, bio); 1642 if (bio->bi_integrity) 1643 bio->bi_opf |= REQ_INTEGRITY; 1644 1645 if (dio->completion) 1646 complete(dio->completion); 1647 1648 dec_in_flight(dio); 1649 } 1650 1651 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1652 const char *data, char *result) 1653 { 1654 __le64 sector_le = cpu_to_le64(sector); 1655 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1656 int r; 1657 unsigned int digest_size; 1658 1659 req->tfm = ic->internal_hash; 1660 1661 r = crypto_shash_init(req); 1662 if (unlikely(r < 0)) { 1663 dm_integrity_io_error(ic, "crypto_shash_init", r); 1664 goto failed; 1665 } 1666 1667 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 1668 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE); 1669 if (unlikely(r < 0)) { 1670 dm_integrity_io_error(ic, "crypto_shash_update", r); 1671 goto failed; 1672 } 1673 } 1674 1675 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le)); 1676 if (unlikely(r < 0)) { 1677 dm_integrity_io_error(ic, "crypto_shash_update", r); 1678 goto failed; 1679 } 1680 1681 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1682 if (unlikely(r < 0)) { 1683 dm_integrity_io_error(ic, "crypto_shash_update", r); 1684 goto failed; 1685 } 1686 1687 r = crypto_shash_final(req, result); 1688 if (unlikely(r < 0)) { 1689 dm_integrity_io_error(ic, "crypto_shash_final", r); 1690 goto failed; 1691 } 1692 1693 digest_size = crypto_shash_digestsize(ic->internal_hash); 1694 if (unlikely(digest_size < ic->tag_size)) 1695 memset(result + digest_size, 0, ic->tag_size - digest_size); 1696 1697 return; 1698 1699 failed: 1700 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1701 get_random_bytes(result, ic->tag_size); 1702 } 1703 1704 static void integrity_recheck(struct dm_integrity_io *dio) 1705 { 1706 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1707 struct dm_integrity_c *ic = dio->ic; 1708 struct bvec_iter iter; 1709 struct bio_vec bv; 1710 sector_t sector, logical_sector, area, offset; 1711 char checksum_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1712 struct page *page; 1713 void *buffer; 1714 1715 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1716 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, 1717 &dio->metadata_offset); 1718 sector = get_data_sector(ic, area, offset); 1719 logical_sector = dio->range.logical_sector; 1720 1721 page = mempool_alloc(&ic->recheck_pool, GFP_NOIO); 1722 buffer = page_to_virt(page); 1723 1724 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1725 unsigned pos = 0; 1726 1727 do { 1728 char *mem; 1729 int r; 1730 struct dm_io_request io_req; 1731 struct dm_io_region io_loc; 1732 io_req.bi_opf = REQ_OP_READ; 1733 io_req.mem.type = DM_IO_KMEM; 1734 io_req.mem.ptr.addr = buffer; 1735 io_req.notify.fn = NULL; 1736 io_req.client = ic->io; 1737 io_loc.bdev = ic->dev->bdev; 1738 io_loc.sector = sector; 1739 io_loc.count = ic->sectors_per_block; 1740 1741 r = dm_io(&io_req, 1, &io_loc, NULL); 1742 if (unlikely(r)) { 1743 dio->bi_status = errno_to_blk_status(r); 1744 goto free_ret; 1745 } 1746 1747 integrity_sector_checksum(ic, logical_sector, buffer, 1748 checksum_onstack); 1749 r = dm_integrity_rw_tag(ic, checksum_onstack, &dio->metadata_block, 1750 &dio->metadata_offset, ic->tag_size, TAG_CMP); 1751 if (r) { 1752 if (r > 0) { 1753 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx", 1754 bio->bi_bdev, logical_sector); 1755 atomic64_inc(&ic->number_of_mismatches); 1756 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum", 1757 bio, logical_sector, 0); 1758 r = -EILSEQ; 1759 } 1760 dio->bi_status = errno_to_blk_status(r); 1761 goto free_ret; 1762 } 1763 1764 mem = bvec_kmap_local(&bv); 1765 memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT); 1766 kunmap_local(mem); 1767 1768 pos += ic->sectors_per_block << SECTOR_SHIFT; 1769 sector += ic->sectors_per_block; 1770 logical_sector += ic->sectors_per_block; 1771 } while (pos < bv.bv_len); 1772 } 1773 free_ret: 1774 mempool_free(page, &ic->recheck_pool); 1775 } 1776 1777 static void integrity_metadata(struct work_struct *w) 1778 { 1779 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1780 struct dm_integrity_c *ic = dio->ic; 1781 1782 int r; 1783 1784 if (ic->internal_hash) { 1785 struct bvec_iter iter; 1786 struct bio_vec bv; 1787 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash); 1788 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1789 char *checksums; 1790 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1791 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1792 sector_t sector; 1793 unsigned int sectors_to_process; 1794 1795 if (unlikely(ic->mode == 'R')) 1796 goto skip_io; 1797 1798 if (likely(dio->op != REQ_OP_DISCARD)) 1799 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1800 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1801 else 1802 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1803 if (!checksums) { 1804 checksums = checksums_onstack; 1805 if (WARN_ON(extra_space && 1806 digest_size > sizeof(checksums_onstack))) { 1807 r = -EINVAL; 1808 goto error; 1809 } 1810 } 1811 1812 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1813 unsigned int bi_size = dio->bio_details.bi_iter.bi_size; 1814 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1815 unsigned int max_blocks = max_size / ic->tag_size; 1816 1817 memset(checksums, DISCARD_FILLER, max_size); 1818 1819 while (bi_size) { 1820 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1821 1822 this_step_blocks = min(this_step_blocks, max_blocks); 1823 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1824 this_step_blocks * ic->tag_size, TAG_WRITE); 1825 if (unlikely(r)) { 1826 if (likely(checksums != checksums_onstack)) 1827 kfree(checksums); 1828 goto error; 1829 } 1830 1831 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1832 } 1833 1834 if (likely(checksums != checksums_onstack)) 1835 kfree(checksums); 1836 goto skip_io; 1837 } 1838 1839 sector = dio->range.logical_sector; 1840 sectors_to_process = dio->range.n_sectors; 1841 1842 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1843 struct bio_vec bv_copy = bv; 1844 unsigned int pos; 1845 char *mem, *checksums_ptr; 1846 1847 again: 1848 mem = bvec_kmap_local(&bv_copy); 1849 pos = 0; 1850 checksums_ptr = checksums; 1851 do { 1852 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1853 checksums_ptr += ic->tag_size; 1854 sectors_to_process -= ic->sectors_per_block; 1855 pos += ic->sectors_per_block << SECTOR_SHIFT; 1856 sector += ic->sectors_per_block; 1857 } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack); 1858 kunmap_local(mem); 1859 1860 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1861 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1862 if (unlikely(r)) { 1863 if (r > 0) { 1864 integrity_recheck(dio); 1865 goto skip_io; 1866 } 1867 if (likely(checksums != checksums_onstack)) 1868 kfree(checksums); 1869 goto error; 1870 } 1871 1872 if (!sectors_to_process) 1873 break; 1874 1875 if (unlikely(pos < bv_copy.bv_len)) { 1876 bv_copy.bv_offset += pos; 1877 bv_copy.bv_len -= pos; 1878 goto again; 1879 } 1880 } 1881 1882 if (likely(checksums != checksums_onstack)) 1883 kfree(checksums); 1884 } else { 1885 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1886 1887 if (bip) { 1888 struct bio_vec biv; 1889 struct bvec_iter iter; 1890 unsigned int data_to_process = dio->range.n_sectors; 1891 1892 sector_to_block(ic, data_to_process); 1893 data_to_process *= ic->tag_size; 1894 1895 bip_for_each_vec(biv, bip, iter) { 1896 unsigned char *tag; 1897 unsigned int this_len; 1898 1899 BUG_ON(PageHighMem(biv.bv_page)); 1900 tag = bvec_virt(&biv); 1901 this_len = min(biv.bv_len, data_to_process); 1902 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1903 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1904 if (unlikely(r)) 1905 goto error; 1906 data_to_process -= this_len; 1907 if (!data_to_process) 1908 break; 1909 } 1910 } 1911 } 1912 skip_io: 1913 dec_in_flight(dio); 1914 return; 1915 error: 1916 dio->bi_status = errno_to_blk_status(r); 1917 dec_in_flight(dio); 1918 } 1919 1920 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1921 { 1922 struct dm_integrity_c *ic = ti->private; 1923 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1924 struct bio_integrity_payload *bip; 1925 1926 sector_t area, offset; 1927 1928 dio->ic = ic; 1929 dio->bi_status = 0; 1930 dio->op = bio_op(bio); 1931 1932 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1933 if (ti->max_io_len) { 1934 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1935 unsigned int log2_max_io_len = __fls(ti->max_io_len); 1936 sector_t start_boundary = sec >> log2_max_io_len; 1937 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1938 1939 if (start_boundary < end_boundary) { 1940 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1941 1942 dm_accept_partial_bio(bio, len); 1943 } 1944 } 1945 } 1946 1947 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1948 submit_flush_bio(ic, dio); 1949 return DM_MAPIO_SUBMITTED; 1950 } 1951 1952 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1953 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1954 if (unlikely(dio->fua)) { 1955 /* 1956 * Don't pass down the FUA flag because we have to flush 1957 * disk cache anyway. 1958 */ 1959 bio->bi_opf &= ~REQ_FUA; 1960 } 1961 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1962 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1963 dio->range.logical_sector, bio_sectors(bio), 1964 ic->provided_data_sectors); 1965 return DM_MAPIO_KILL; 1966 } 1967 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) { 1968 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1969 ic->sectors_per_block, 1970 dio->range.logical_sector, bio_sectors(bio)); 1971 return DM_MAPIO_KILL; 1972 } 1973 1974 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) { 1975 struct bvec_iter iter; 1976 struct bio_vec bv; 1977 1978 bio_for_each_segment(bv, bio, iter) { 1979 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1980 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1981 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1982 return DM_MAPIO_KILL; 1983 } 1984 } 1985 } 1986 1987 bip = bio_integrity(bio); 1988 if (!ic->internal_hash) { 1989 if (bip) { 1990 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1991 1992 if (ic->log2_tag_size >= 0) 1993 wanted_tag_size <<= ic->log2_tag_size; 1994 else 1995 wanted_tag_size *= ic->tag_size; 1996 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1997 DMERR("Invalid integrity data size %u, expected %u", 1998 bip->bip_iter.bi_size, wanted_tag_size); 1999 return DM_MAPIO_KILL; 2000 } 2001 } 2002 } else { 2003 if (unlikely(bip != NULL)) { 2004 DMERR("Unexpected integrity data when using internal hash"); 2005 return DM_MAPIO_KILL; 2006 } 2007 } 2008 2009 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 2010 return DM_MAPIO_KILL; 2011 2012 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2013 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2014 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 2015 2016 dm_integrity_map_continue(dio, true); 2017 return DM_MAPIO_SUBMITTED; 2018 } 2019 2020 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 2021 unsigned int journal_section, unsigned int journal_entry) 2022 { 2023 struct dm_integrity_c *ic = dio->ic; 2024 sector_t logical_sector; 2025 unsigned int n_sectors; 2026 2027 logical_sector = dio->range.logical_sector; 2028 n_sectors = dio->range.n_sectors; 2029 do { 2030 struct bio_vec bv = bio_iovec(bio); 2031 char *mem; 2032 2033 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 2034 bv.bv_len = n_sectors << SECTOR_SHIFT; 2035 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 2036 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 2037 retry_kmap: 2038 mem = kmap_local_page(bv.bv_page); 2039 if (likely(dio->op == REQ_OP_WRITE)) 2040 flush_dcache_page(bv.bv_page); 2041 2042 do { 2043 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 2044 2045 if (unlikely(dio->op == REQ_OP_READ)) { 2046 struct journal_sector *js; 2047 char *mem_ptr; 2048 unsigned int s; 2049 2050 if (unlikely(journal_entry_is_inprogress(je))) { 2051 flush_dcache_page(bv.bv_page); 2052 kunmap_local(mem); 2053 2054 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2055 goto retry_kmap; 2056 } 2057 smp_rmb(); 2058 BUG_ON(journal_entry_get_sector(je) != logical_sector); 2059 js = access_journal_data(ic, journal_section, journal_entry); 2060 mem_ptr = mem + bv.bv_offset; 2061 s = 0; 2062 do { 2063 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 2064 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 2065 js++; 2066 mem_ptr += 1 << SECTOR_SHIFT; 2067 } while (++s < ic->sectors_per_block); 2068 #ifdef INTERNAL_VERIFY 2069 if (ic->internal_hash) { 2070 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2071 2072 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 2073 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 2074 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 2075 logical_sector); 2076 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum", 2077 bio, logical_sector, 0); 2078 } 2079 } 2080 #endif 2081 } 2082 2083 if (!ic->internal_hash) { 2084 struct bio_integrity_payload *bip = bio_integrity(bio); 2085 unsigned int tag_todo = ic->tag_size; 2086 char *tag_ptr = journal_entry_tag(ic, je); 2087 2088 if (bip) { 2089 do { 2090 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 2091 unsigned int tag_now = min(biv.bv_len, tag_todo); 2092 char *tag_addr; 2093 2094 BUG_ON(PageHighMem(biv.bv_page)); 2095 tag_addr = bvec_virt(&biv); 2096 if (likely(dio->op == REQ_OP_WRITE)) 2097 memcpy(tag_ptr, tag_addr, tag_now); 2098 else 2099 memcpy(tag_addr, tag_ptr, tag_now); 2100 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 2101 tag_ptr += tag_now; 2102 tag_todo -= tag_now; 2103 } while (unlikely(tag_todo)); 2104 } else if (likely(dio->op == REQ_OP_WRITE)) 2105 memset(tag_ptr, 0, tag_todo); 2106 } 2107 2108 if (likely(dio->op == REQ_OP_WRITE)) { 2109 struct journal_sector *js; 2110 unsigned int s; 2111 2112 js = access_journal_data(ic, journal_section, journal_entry); 2113 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 2114 2115 s = 0; 2116 do { 2117 je->last_bytes[s] = js[s].commit_id; 2118 } while (++s < ic->sectors_per_block); 2119 2120 if (ic->internal_hash) { 2121 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash); 2122 2123 if (unlikely(digest_size > ic->tag_size)) { 2124 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 2125 2126 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 2127 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 2128 } else 2129 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 2130 } 2131 2132 journal_entry_set_sector(je, logical_sector); 2133 } 2134 logical_sector += ic->sectors_per_block; 2135 2136 journal_entry++; 2137 if (unlikely(journal_entry == ic->journal_section_entries)) { 2138 journal_entry = 0; 2139 journal_section++; 2140 wraparound_section(ic, &journal_section); 2141 } 2142 2143 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 2144 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 2145 2146 if (unlikely(dio->op == REQ_OP_READ)) 2147 flush_dcache_page(bv.bv_page); 2148 kunmap_local(mem); 2149 } while (n_sectors); 2150 2151 if (likely(dio->op == REQ_OP_WRITE)) { 2152 smp_mb(); 2153 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 2154 wake_up(&ic->copy_to_journal_wait); 2155 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2156 queue_work(ic->commit_wq, &ic->commit_work); 2157 else 2158 schedule_autocommit(ic); 2159 } else 2160 remove_range(ic, &dio->range); 2161 2162 if (unlikely(bio->bi_iter.bi_size)) { 2163 sector_t area, offset; 2164 2165 dio->range.logical_sector = logical_sector; 2166 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2167 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2168 return true; 2169 } 2170 2171 return false; 2172 } 2173 2174 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 2175 { 2176 struct dm_integrity_c *ic = dio->ic; 2177 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2178 unsigned int journal_section, journal_entry; 2179 unsigned int journal_read_pos; 2180 struct completion read_comp; 2181 bool discard_retried = false; 2182 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 2183 2184 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 2185 need_sync_io = true; 2186 2187 if (need_sync_io && from_map) { 2188 INIT_WORK(&dio->work, integrity_bio_wait); 2189 queue_work(ic->offload_wq, &dio->work); 2190 return; 2191 } 2192 2193 lock_retry: 2194 spin_lock_irq(&ic->endio_wait.lock); 2195 retry: 2196 if (unlikely(dm_integrity_failed(ic))) { 2197 spin_unlock_irq(&ic->endio_wait.lock); 2198 do_endio(ic, bio); 2199 return; 2200 } 2201 dio->range.n_sectors = bio_sectors(bio); 2202 journal_read_pos = NOT_FOUND; 2203 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 2204 if (dio->op == REQ_OP_WRITE) { 2205 unsigned int next_entry, i, pos; 2206 unsigned int ws, we, range_sectors; 2207 2208 dio->range.n_sectors = min(dio->range.n_sectors, 2209 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 2210 if (unlikely(!dio->range.n_sectors)) { 2211 if (from_map) 2212 goto offload_to_thread; 2213 sleep_on_endio_wait(ic); 2214 goto retry; 2215 } 2216 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 2217 ic->free_sectors -= range_sectors; 2218 journal_section = ic->free_section; 2219 journal_entry = ic->free_section_entry; 2220 2221 next_entry = ic->free_section_entry + range_sectors; 2222 ic->free_section_entry = next_entry % ic->journal_section_entries; 2223 ic->free_section += next_entry / ic->journal_section_entries; 2224 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 2225 wraparound_section(ic, &ic->free_section); 2226 2227 pos = journal_section * ic->journal_section_entries + journal_entry; 2228 ws = journal_section; 2229 we = journal_entry; 2230 i = 0; 2231 do { 2232 struct journal_entry *je; 2233 2234 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 2235 pos++; 2236 if (unlikely(pos >= ic->journal_entries)) 2237 pos = 0; 2238 2239 je = access_journal_entry(ic, ws, we); 2240 BUG_ON(!journal_entry_is_unused(je)); 2241 journal_entry_set_inprogress(je); 2242 we++; 2243 if (unlikely(we == ic->journal_section_entries)) { 2244 we = 0; 2245 ws++; 2246 wraparound_section(ic, &ws); 2247 } 2248 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2249 2250 spin_unlock_irq(&ic->endio_wait.lock); 2251 goto journal_read_write; 2252 } else { 2253 sector_t next_sector; 2254 2255 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2256 if (likely(journal_read_pos == NOT_FOUND)) { 2257 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2258 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2259 } else { 2260 unsigned int i; 2261 unsigned int jp = journal_read_pos + 1; 2262 2263 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2264 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2265 break; 2266 } 2267 dio->range.n_sectors = i; 2268 } 2269 } 2270 } 2271 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2272 /* 2273 * We must not sleep in the request routine because it could 2274 * stall bios on current->bio_list. 2275 * So, we offload the bio to a workqueue if we have to sleep. 2276 */ 2277 if (from_map) { 2278 offload_to_thread: 2279 spin_unlock_irq(&ic->endio_wait.lock); 2280 INIT_WORK(&dio->work, integrity_bio_wait); 2281 queue_work(ic->wait_wq, &dio->work); 2282 return; 2283 } 2284 if (journal_read_pos != NOT_FOUND) 2285 dio->range.n_sectors = ic->sectors_per_block; 2286 wait_and_add_new_range(ic, &dio->range); 2287 /* 2288 * wait_and_add_new_range drops the spinlock, so the journal 2289 * may have been changed arbitrarily. We need to recheck. 2290 * To simplify the code, we restrict I/O size to just one block. 2291 */ 2292 if (journal_read_pos != NOT_FOUND) { 2293 sector_t next_sector; 2294 unsigned int new_pos; 2295 2296 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2297 if (unlikely(new_pos != journal_read_pos)) { 2298 remove_range_unlocked(ic, &dio->range); 2299 goto retry; 2300 } 2301 } 2302 } 2303 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2304 sector_t next_sector; 2305 unsigned int new_pos; 2306 2307 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2308 if (unlikely(new_pos != NOT_FOUND) || 2309 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2310 remove_range_unlocked(ic, &dio->range); 2311 spin_unlock_irq(&ic->endio_wait.lock); 2312 queue_work(ic->commit_wq, &ic->commit_work); 2313 flush_workqueue(ic->commit_wq); 2314 queue_work(ic->writer_wq, &ic->writer_work); 2315 flush_workqueue(ic->writer_wq); 2316 discard_retried = true; 2317 goto lock_retry; 2318 } 2319 } 2320 spin_unlock_irq(&ic->endio_wait.lock); 2321 2322 if (unlikely(journal_read_pos != NOT_FOUND)) { 2323 journal_section = journal_read_pos / ic->journal_section_entries; 2324 journal_entry = journal_read_pos % ic->journal_section_entries; 2325 goto journal_read_write; 2326 } 2327 2328 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2329 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2330 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2331 struct bitmap_block_status *bbs; 2332 2333 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2334 spin_lock(&bbs->bio_queue_lock); 2335 bio_list_add(&bbs->bio_queue, bio); 2336 spin_unlock(&bbs->bio_queue_lock); 2337 queue_work(ic->writer_wq, &bbs->work); 2338 return; 2339 } 2340 } 2341 2342 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2343 2344 if (need_sync_io) { 2345 init_completion(&read_comp); 2346 dio->completion = &read_comp; 2347 } else 2348 dio->completion = NULL; 2349 2350 dm_bio_record(&dio->bio_details, bio); 2351 bio_set_dev(bio, ic->dev->bdev); 2352 bio->bi_integrity = NULL; 2353 bio->bi_opf &= ~REQ_INTEGRITY; 2354 bio->bi_end_io = integrity_end_io; 2355 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2356 2357 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2358 integrity_metadata(&dio->work); 2359 dm_integrity_flush_buffers(ic, false); 2360 2361 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2362 dio->completion = NULL; 2363 2364 submit_bio_noacct(bio); 2365 2366 return; 2367 } 2368 2369 submit_bio_noacct(bio); 2370 2371 if (need_sync_io) { 2372 wait_for_completion_io(&read_comp); 2373 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2374 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2375 goto skip_check; 2376 if (ic->mode == 'B') { 2377 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2378 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2379 goto skip_check; 2380 } 2381 2382 if (likely(!bio->bi_status)) 2383 integrity_metadata(&dio->work); 2384 else 2385 skip_check: 2386 dec_in_flight(dio); 2387 } else { 2388 INIT_WORK(&dio->work, integrity_metadata); 2389 queue_work(ic->metadata_wq, &dio->work); 2390 } 2391 2392 return; 2393 2394 journal_read_write: 2395 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2396 goto lock_retry; 2397 2398 do_endio_flush(ic, dio); 2399 } 2400 2401 2402 static void integrity_bio_wait(struct work_struct *w) 2403 { 2404 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2405 2406 dm_integrity_map_continue(dio, false); 2407 } 2408 2409 static void pad_uncommitted(struct dm_integrity_c *ic) 2410 { 2411 if (ic->free_section_entry) { 2412 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2413 ic->free_section_entry = 0; 2414 ic->free_section++; 2415 wraparound_section(ic, &ic->free_section); 2416 ic->n_uncommitted_sections++; 2417 } 2418 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2419 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2420 ic->journal_section_entries + ic->free_sectors)) { 2421 DMCRIT("journal_sections %u, journal_section_entries %u, " 2422 "n_uncommitted_sections %u, n_committed_sections %u, " 2423 "journal_section_entries %u, free_sectors %u", 2424 ic->journal_sections, ic->journal_section_entries, 2425 ic->n_uncommitted_sections, ic->n_committed_sections, 2426 ic->journal_section_entries, ic->free_sectors); 2427 } 2428 } 2429 2430 static void integrity_commit(struct work_struct *w) 2431 { 2432 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2433 unsigned int commit_start, commit_sections; 2434 unsigned int i, j, n; 2435 struct bio *flushes; 2436 2437 del_timer(&ic->autocommit_timer); 2438 2439 spin_lock_irq(&ic->endio_wait.lock); 2440 flushes = bio_list_get(&ic->flush_bio_list); 2441 if (unlikely(ic->mode != 'J')) { 2442 spin_unlock_irq(&ic->endio_wait.lock); 2443 dm_integrity_flush_buffers(ic, true); 2444 goto release_flush_bios; 2445 } 2446 2447 pad_uncommitted(ic); 2448 commit_start = ic->uncommitted_section; 2449 commit_sections = ic->n_uncommitted_sections; 2450 spin_unlock_irq(&ic->endio_wait.lock); 2451 2452 if (!commit_sections) 2453 goto release_flush_bios; 2454 2455 ic->wrote_to_journal = true; 2456 2457 i = commit_start; 2458 for (n = 0; n < commit_sections; n++) { 2459 for (j = 0; j < ic->journal_section_entries; j++) { 2460 struct journal_entry *je; 2461 2462 je = access_journal_entry(ic, i, j); 2463 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2464 } 2465 for (j = 0; j < ic->journal_section_sectors; j++) { 2466 struct journal_sector *js; 2467 2468 js = access_journal(ic, i, j); 2469 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2470 } 2471 i++; 2472 if (unlikely(i >= ic->journal_sections)) 2473 ic->commit_seq = next_commit_seq(ic->commit_seq); 2474 wraparound_section(ic, &i); 2475 } 2476 smp_rmb(); 2477 2478 write_journal(ic, commit_start, commit_sections); 2479 2480 spin_lock_irq(&ic->endio_wait.lock); 2481 ic->uncommitted_section += commit_sections; 2482 wraparound_section(ic, &ic->uncommitted_section); 2483 ic->n_uncommitted_sections -= commit_sections; 2484 ic->n_committed_sections += commit_sections; 2485 spin_unlock_irq(&ic->endio_wait.lock); 2486 2487 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2488 queue_work(ic->writer_wq, &ic->writer_work); 2489 2490 release_flush_bios: 2491 while (flushes) { 2492 struct bio *next = flushes->bi_next; 2493 2494 flushes->bi_next = NULL; 2495 do_endio(ic, flushes); 2496 flushes = next; 2497 } 2498 } 2499 2500 static void complete_copy_from_journal(unsigned long error, void *context) 2501 { 2502 struct journal_io *io = context; 2503 struct journal_completion *comp = io->comp; 2504 struct dm_integrity_c *ic = comp->ic; 2505 2506 remove_range(ic, &io->range); 2507 mempool_free(io, &ic->journal_io_mempool); 2508 if (unlikely(error != 0)) 2509 dm_integrity_io_error(ic, "copying from journal", -EIO); 2510 complete_journal_op(comp); 2511 } 2512 2513 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2514 struct journal_entry *je) 2515 { 2516 unsigned int s = 0; 2517 2518 do { 2519 js->commit_id = je->last_bytes[s]; 2520 js++; 2521 } while (++s < ic->sectors_per_block); 2522 } 2523 2524 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start, 2525 unsigned int write_sections, bool from_replay) 2526 { 2527 unsigned int i, j, n; 2528 struct journal_completion comp; 2529 struct blk_plug plug; 2530 2531 blk_start_plug(&plug); 2532 2533 comp.ic = ic; 2534 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2535 init_completion(&comp.comp); 2536 2537 i = write_start; 2538 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2539 #ifndef INTERNAL_VERIFY 2540 if (unlikely(from_replay)) 2541 #endif 2542 rw_section_mac(ic, i, false); 2543 for (j = 0; j < ic->journal_section_entries; j++) { 2544 struct journal_entry *je = access_journal_entry(ic, i, j); 2545 sector_t sec, area, offset; 2546 unsigned int k, l, next_loop; 2547 sector_t metadata_block; 2548 unsigned int metadata_offset; 2549 struct journal_io *io; 2550 2551 if (journal_entry_is_unused(je)) 2552 continue; 2553 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2554 sec = journal_entry_get_sector(je); 2555 if (unlikely(from_replay)) { 2556 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) { 2557 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2558 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2559 } 2560 if (unlikely(sec >= ic->provided_data_sectors)) { 2561 journal_entry_set_unused(je); 2562 continue; 2563 } 2564 } 2565 get_area_and_offset(ic, sec, &area, &offset); 2566 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2567 for (k = j + 1; k < ic->journal_section_entries; k++) { 2568 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2569 sector_t sec2, area2, offset2; 2570 2571 if (journal_entry_is_unused(je2)) 2572 break; 2573 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2574 sec2 = journal_entry_get_sector(je2); 2575 if (unlikely(sec2 >= ic->provided_data_sectors)) 2576 break; 2577 get_area_and_offset(ic, sec2, &area2, &offset2); 2578 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2579 break; 2580 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2581 } 2582 next_loop = k - 1; 2583 2584 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2585 io->comp = ∁ 2586 io->range.logical_sector = sec; 2587 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2588 2589 spin_lock_irq(&ic->endio_wait.lock); 2590 add_new_range_and_wait(ic, &io->range); 2591 2592 if (likely(!from_replay)) { 2593 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2594 2595 /* don't write if there is newer committed sector */ 2596 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2597 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2598 2599 journal_entry_set_unused(je2); 2600 remove_journal_node(ic, §ion_node[j]); 2601 j++; 2602 sec += ic->sectors_per_block; 2603 offset += ic->sectors_per_block; 2604 } 2605 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2606 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2607 2608 journal_entry_set_unused(je2); 2609 remove_journal_node(ic, §ion_node[k - 1]); 2610 k--; 2611 } 2612 if (j == k) { 2613 remove_range_unlocked(ic, &io->range); 2614 spin_unlock_irq(&ic->endio_wait.lock); 2615 mempool_free(io, &ic->journal_io_mempool); 2616 goto skip_io; 2617 } 2618 for (l = j; l < k; l++) 2619 remove_journal_node(ic, §ion_node[l]); 2620 } 2621 spin_unlock_irq(&ic->endio_wait.lock); 2622 2623 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2624 for (l = j; l < k; l++) { 2625 int r; 2626 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2627 2628 if ( 2629 #ifndef INTERNAL_VERIFY 2630 unlikely(from_replay) && 2631 #endif 2632 ic->internal_hash) { 2633 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2634 2635 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2636 (char *)access_journal_data(ic, i, l), test_tag); 2637 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) { 2638 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2639 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0); 2640 } 2641 } 2642 2643 journal_entry_set_unused(je2); 2644 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2645 ic->tag_size, TAG_WRITE); 2646 if (unlikely(r)) 2647 dm_integrity_io_error(ic, "reading tags", r); 2648 } 2649 2650 atomic_inc(&comp.in_flight); 2651 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2652 (k - j) << ic->sb->log2_sectors_per_block, 2653 get_data_sector(ic, area, offset), 2654 complete_copy_from_journal, io); 2655 skip_io: 2656 j = next_loop; 2657 } 2658 } 2659 2660 dm_bufio_write_dirty_buffers_async(ic->bufio); 2661 2662 blk_finish_plug(&plug); 2663 2664 complete_journal_op(&comp); 2665 wait_for_completion_io(&comp.comp); 2666 2667 dm_integrity_flush_buffers(ic, true); 2668 } 2669 2670 static void integrity_writer(struct work_struct *w) 2671 { 2672 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2673 unsigned int write_start, write_sections; 2674 unsigned int prev_free_sectors; 2675 2676 spin_lock_irq(&ic->endio_wait.lock); 2677 write_start = ic->committed_section; 2678 write_sections = ic->n_committed_sections; 2679 spin_unlock_irq(&ic->endio_wait.lock); 2680 2681 if (!write_sections) 2682 return; 2683 2684 do_journal_write(ic, write_start, write_sections, false); 2685 2686 spin_lock_irq(&ic->endio_wait.lock); 2687 2688 ic->committed_section += write_sections; 2689 wraparound_section(ic, &ic->committed_section); 2690 ic->n_committed_sections -= write_sections; 2691 2692 prev_free_sectors = ic->free_sectors; 2693 ic->free_sectors += write_sections * ic->journal_section_entries; 2694 if (unlikely(!prev_free_sectors)) 2695 wake_up_locked(&ic->endio_wait); 2696 2697 spin_unlock_irq(&ic->endio_wait.lock); 2698 } 2699 2700 static void recalc_write_super(struct dm_integrity_c *ic) 2701 { 2702 int r; 2703 2704 dm_integrity_flush_buffers(ic, false); 2705 if (dm_integrity_failed(ic)) 2706 return; 2707 2708 r = sync_rw_sb(ic, REQ_OP_WRITE); 2709 if (unlikely(r)) 2710 dm_integrity_io_error(ic, "writing superblock", r); 2711 } 2712 2713 static void integrity_recalc(struct work_struct *w) 2714 { 2715 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2716 size_t recalc_tags_size; 2717 u8 *recalc_buffer = NULL; 2718 u8 *recalc_tags = NULL; 2719 struct dm_integrity_range range; 2720 struct dm_io_request io_req; 2721 struct dm_io_region io_loc; 2722 sector_t area, offset; 2723 sector_t metadata_block; 2724 unsigned int metadata_offset; 2725 sector_t logical_sector, n_sectors; 2726 __u8 *t; 2727 unsigned int i; 2728 int r; 2729 unsigned int super_counter = 0; 2730 unsigned recalc_sectors = RECALC_SECTORS; 2731 2732 retry: 2733 recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO); 2734 if (!recalc_buffer) { 2735 oom: 2736 recalc_sectors >>= 1; 2737 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block) 2738 goto retry; 2739 DMCRIT("out of memory for recalculate buffer - recalculation disabled"); 2740 goto free_ret; 2741 } 2742 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 2743 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size) 2744 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size; 2745 recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO); 2746 if (!recalc_tags) { 2747 vfree(recalc_buffer); 2748 recalc_buffer = NULL; 2749 goto oom; 2750 } 2751 2752 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2753 2754 spin_lock_irq(&ic->endio_wait.lock); 2755 2756 next_chunk: 2757 2758 if (unlikely(dm_post_suspending(ic->ti))) 2759 goto unlock_ret; 2760 2761 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2762 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2763 if (ic->mode == 'B') { 2764 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 2765 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2766 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2767 } 2768 goto unlock_ret; 2769 } 2770 2771 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2772 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector); 2773 if (!ic->meta_dev) 2774 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset); 2775 2776 add_new_range_and_wait(ic, &range); 2777 spin_unlock_irq(&ic->endio_wait.lock); 2778 logical_sector = range.logical_sector; 2779 n_sectors = range.n_sectors; 2780 2781 if (ic->mode == 'B') { 2782 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2783 goto advance_and_next; 2784 2785 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2786 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2787 logical_sector += ic->sectors_per_block; 2788 n_sectors -= ic->sectors_per_block; 2789 cond_resched(); 2790 } 2791 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2792 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2793 n_sectors -= ic->sectors_per_block; 2794 cond_resched(); 2795 } 2796 get_area_and_offset(ic, logical_sector, &area, &offset); 2797 } 2798 2799 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 2800 2801 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2802 recalc_write_super(ic); 2803 if (ic->mode == 'B') 2804 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2805 2806 super_counter = 0; 2807 } 2808 2809 if (unlikely(dm_integrity_failed(ic))) 2810 goto err; 2811 2812 io_req.bi_opf = REQ_OP_READ; 2813 io_req.mem.type = DM_IO_VMA; 2814 io_req.mem.ptr.addr = recalc_buffer; 2815 io_req.notify.fn = NULL; 2816 io_req.client = ic->io; 2817 io_loc.bdev = ic->dev->bdev; 2818 io_loc.sector = get_data_sector(ic, area, offset); 2819 io_loc.count = n_sectors; 2820 2821 r = dm_io(&io_req, 1, &io_loc, NULL); 2822 if (unlikely(r)) { 2823 dm_integrity_io_error(ic, "reading data", r); 2824 goto err; 2825 } 2826 2827 t = recalc_tags; 2828 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2829 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t); 2830 t += ic->tag_size; 2831 } 2832 2833 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2834 2835 r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE); 2836 if (unlikely(r)) { 2837 dm_integrity_io_error(ic, "writing tags", r); 2838 goto err; 2839 } 2840 2841 if (ic->mode == 'B') { 2842 sector_t start, end; 2843 2844 start = (range.logical_sector >> 2845 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2846 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2847 end = ((range.logical_sector + range.n_sectors) >> 2848 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2849 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2850 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR); 2851 } 2852 2853 advance_and_next: 2854 cond_resched(); 2855 2856 spin_lock_irq(&ic->endio_wait.lock); 2857 remove_range_unlocked(ic, &range); 2858 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2859 goto next_chunk; 2860 2861 err: 2862 remove_range(ic, &range); 2863 goto free_ret; 2864 2865 unlock_ret: 2866 spin_unlock_irq(&ic->endio_wait.lock); 2867 2868 recalc_write_super(ic); 2869 2870 free_ret: 2871 vfree(recalc_buffer); 2872 kvfree(recalc_tags); 2873 } 2874 2875 static void bitmap_block_work(struct work_struct *w) 2876 { 2877 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2878 struct dm_integrity_c *ic = bbs->ic; 2879 struct bio *bio; 2880 struct bio_list bio_queue; 2881 struct bio_list waiting; 2882 2883 bio_list_init(&waiting); 2884 2885 spin_lock(&bbs->bio_queue_lock); 2886 bio_queue = bbs->bio_queue; 2887 bio_list_init(&bbs->bio_queue); 2888 spin_unlock(&bbs->bio_queue_lock); 2889 2890 while ((bio = bio_list_pop(&bio_queue))) { 2891 struct dm_integrity_io *dio; 2892 2893 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2894 2895 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2896 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2897 remove_range(ic, &dio->range); 2898 INIT_WORK(&dio->work, integrity_bio_wait); 2899 queue_work(ic->offload_wq, &dio->work); 2900 } else { 2901 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2902 dio->range.n_sectors, BITMAP_OP_SET); 2903 bio_list_add(&waiting, bio); 2904 } 2905 } 2906 2907 if (bio_list_empty(&waiting)) 2908 return; 2909 2910 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 2911 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2912 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2913 2914 while ((bio = bio_list_pop(&waiting))) { 2915 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2916 2917 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2918 dio->range.n_sectors, BITMAP_OP_SET); 2919 2920 remove_range(ic, &dio->range); 2921 INIT_WORK(&dio->work, integrity_bio_wait); 2922 queue_work(ic->offload_wq, &dio->work); 2923 } 2924 2925 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2926 } 2927 2928 static void bitmap_flush_work(struct work_struct *work) 2929 { 2930 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2931 struct dm_integrity_range range; 2932 unsigned long limit; 2933 struct bio *bio; 2934 2935 dm_integrity_flush_buffers(ic, false); 2936 2937 range.logical_sector = 0; 2938 range.n_sectors = ic->provided_data_sectors; 2939 2940 spin_lock_irq(&ic->endio_wait.lock); 2941 add_new_range_and_wait(ic, &range); 2942 spin_unlock_irq(&ic->endio_wait.lock); 2943 2944 dm_integrity_flush_buffers(ic, true); 2945 2946 limit = ic->provided_data_sectors; 2947 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2948 limit = le64_to_cpu(ic->sb->recalc_sector) 2949 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2950 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2951 } 2952 /*DEBUG_print("zeroing journal\n");*/ 2953 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2954 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2955 2956 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 2957 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2958 2959 spin_lock_irq(&ic->endio_wait.lock); 2960 remove_range_unlocked(ic, &range); 2961 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2962 bio_endio(bio); 2963 spin_unlock_irq(&ic->endio_wait.lock); 2964 spin_lock_irq(&ic->endio_wait.lock); 2965 } 2966 spin_unlock_irq(&ic->endio_wait.lock); 2967 } 2968 2969 2970 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section, 2971 unsigned int n_sections, unsigned char commit_seq) 2972 { 2973 unsigned int i, j, n; 2974 2975 if (!n_sections) 2976 return; 2977 2978 for (n = 0; n < n_sections; n++) { 2979 i = start_section + n; 2980 wraparound_section(ic, &i); 2981 for (j = 0; j < ic->journal_section_sectors; j++) { 2982 struct journal_sector *js = access_journal(ic, i, j); 2983 2984 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA); 2985 memset(&js->sectors, 0, sizeof(js->sectors)); 2986 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2987 } 2988 for (j = 0; j < ic->journal_section_entries; j++) { 2989 struct journal_entry *je = access_journal_entry(ic, i, j); 2990 2991 journal_entry_set_unused(je); 2992 } 2993 } 2994 2995 write_journal(ic, start_section, n_sections); 2996 } 2997 2998 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id) 2999 { 3000 unsigned char k; 3001 3002 for (k = 0; k < N_COMMIT_IDS; k++) { 3003 if (dm_integrity_commit_id(ic, i, j, k) == id) 3004 return k; 3005 } 3006 dm_integrity_io_error(ic, "journal commit id", -EIO); 3007 return -EIO; 3008 } 3009 3010 static void replay_journal(struct dm_integrity_c *ic) 3011 { 3012 unsigned int i, j; 3013 bool used_commit_ids[N_COMMIT_IDS]; 3014 unsigned int max_commit_id_sections[N_COMMIT_IDS]; 3015 unsigned int write_start, write_sections; 3016 unsigned int continue_section; 3017 bool journal_empty; 3018 unsigned char unused, last_used, want_commit_seq; 3019 3020 if (ic->mode == 'R') 3021 return; 3022 3023 if (ic->journal_uptodate) 3024 return; 3025 3026 last_used = 0; 3027 write_start = 0; 3028 3029 if (!ic->just_formatted) { 3030 DEBUG_print("reading journal\n"); 3031 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL); 3032 if (ic->journal_io) 3033 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 3034 if (ic->journal_io) { 3035 struct journal_completion crypt_comp; 3036 3037 crypt_comp.ic = ic; 3038 init_completion(&crypt_comp.comp); 3039 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 3040 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 3041 wait_for_completion(&crypt_comp.comp); 3042 } 3043 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 3044 } 3045 3046 if (dm_integrity_failed(ic)) 3047 goto clear_journal; 3048 3049 journal_empty = true; 3050 memset(used_commit_ids, 0, sizeof(used_commit_ids)); 3051 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections)); 3052 for (i = 0; i < ic->journal_sections; i++) { 3053 for (j = 0; j < ic->journal_section_sectors; j++) { 3054 int k; 3055 struct journal_sector *js = access_journal(ic, i, j); 3056 3057 k = find_commit_seq(ic, i, j, js->commit_id); 3058 if (k < 0) 3059 goto clear_journal; 3060 used_commit_ids[k] = true; 3061 max_commit_id_sections[k] = i; 3062 } 3063 if (journal_empty) { 3064 for (j = 0; j < ic->journal_section_entries; j++) { 3065 struct journal_entry *je = access_journal_entry(ic, i, j); 3066 3067 if (!journal_entry_is_unused(je)) { 3068 journal_empty = false; 3069 break; 3070 } 3071 } 3072 } 3073 } 3074 3075 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 3076 unused = N_COMMIT_IDS - 1; 3077 while (unused && !used_commit_ids[unused - 1]) 3078 unused--; 3079 } else { 3080 for (unused = 0; unused < N_COMMIT_IDS; unused++) 3081 if (!used_commit_ids[unused]) 3082 break; 3083 if (unused == N_COMMIT_IDS) { 3084 dm_integrity_io_error(ic, "journal commit ids", -EIO); 3085 goto clear_journal; 3086 } 3087 } 3088 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 3089 unused, used_commit_ids[0], used_commit_ids[1], 3090 used_commit_ids[2], used_commit_ids[3]); 3091 3092 last_used = prev_commit_seq(unused); 3093 want_commit_seq = prev_commit_seq(last_used); 3094 3095 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 3096 journal_empty = true; 3097 3098 write_start = max_commit_id_sections[last_used] + 1; 3099 if (unlikely(write_start >= ic->journal_sections)) 3100 want_commit_seq = next_commit_seq(want_commit_seq); 3101 wraparound_section(ic, &write_start); 3102 3103 i = write_start; 3104 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 3105 for (j = 0; j < ic->journal_section_sectors; j++) { 3106 struct journal_sector *js = access_journal(ic, i, j); 3107 3108 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 3109 /* 3110 * This could be caused by crash during writing. 3111 * We won't replay the inconsistent part of the 3112 * journal. 3113 */ 3114 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 3115 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 3116 goto brk; 3117 } 3118 } 3119 i++; 3120 if (unlikely(i >= ic->journal_sections)) 3121 want_commit_seq = next_commit_seq(want_commit_seq); 3122 wraparound_section(ic, &i); 3123 } 3124 brk: 3125 3126 if (!journal_empty) { 3127 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 3128 write_sections, write_start, want_commit_seq); 3129 do_journal_write(ic, write_start, write_sections, true); 3130 } 3131 3132 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 3133 continue_section = write_start; 3134 ic->commit_seq = want_commit_seq; 3135 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 3136 } else { 3137 unsigned int s; 3138 unsigned char erase_seq; 3139 3140 clear_journal: 3141 DEBUG_print("clearing journal\n"); 3142 3143 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 3144 s = write_start; 3145 init_journal(ic, s, 1, erase_seq); 3146 s++; 3147 wraparound_section(ic, &s); 3148 if (ic->journal_sections >= 2) { 3149 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 3150 s += ic->journal_sections - 2; 3151 wraparound_section(ic, &s); 3152 init_journal(ic, s, 1, erase_seq); 3153 } 3154 3155 continue_section = 0; 3156 ic->commit_seq = next_commit_seq(erase_seq); 3157 } 3158 3159 ic->committed_section = continue_section; 3160 ic->n_committed_sections = 0; 3161 3162 ic->uncommitted_section = continue_section; 3163 ic->n_uncommitted_sections = 0; 3164 3165 ic->free_section = continue_section; 3166 ic->free_section_entry = 0; 3167 ic->free_sectors = ic->journal_entries; 3168 3169 ic->journal_tree_root = RB_ROOT; 3170 for (i = 0; i < ic->journal_entries; i++) 3171 init_journal_node(&ic->journal_tree[i]); 3172 } 3173 3174 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 3175 { 3176 DEBUG_print("%s\n", __func__); 3177 3178 if (ic->mode == 'B') { 3179 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 3180 ic->synchronous_mode = 1; 3181 3182 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3183 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 3184 flush_workqueue(ic->commit_wq); 3185 } 3186 } 3187 3188 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 3189 { 3190 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 3191 3192 DEBUG_print("%s\n", __func__); 3193 3194 dm_integrity_enter_synchronous_mode(ic); 3195 3196 return NOTIFY_DONE; 3197 } 3198 3199 static void dm_integrity_postsuspend(struct dm_target *ti) 3200 { 3201 struct dm_integrity_c *ic = ti->private; 3202 int r; 3203 3204 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 3205 3206 del_timer_sync(&ic->autocommit_timer); 3207 3208 if (ic->recalc_wq) 3209 drain_workqueue(ic->recalc_wq); 3210 3211 if (ic->mode == 'B') 3212 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3213 3214 queue_work(ic->commit_wq, &ic->commit_work); 3215 drain_workqueue(ic->commit_wq); 3216 3217 if (ic->mode == 'J') { 3218 queue_work(ic->writer_wq, &ic->writer_work); 3219 drain_workqueue(ic->writer_wq); 3220 dm_integrity_flush_buffers(ic, true); 3221 if (ic->wrote_to_journal) { 3222 init_journal(ic, ic->free_section, 3223 ic->journal_sections - ic->free_section, ic->commit_seq); 3224 if (ic->free_section) { 3225 init_journal(ic, 0, ic->free_section, 3226 next_commit_seq(ic->commit_seq)); 3227 } 3228 } 3229 } 3230 3231 if (ic->mode == 'B') { 3232 dm_integrity_flush_buffers(ic, true); 3233 #if 1 3234 /* set to 0 to test bitmap replay code */ 3235 init_journal(ic, 0, ic->journal_sections, 0); 3236 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3237 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3238 if (unlikely(r)) 3239 dm_integrity_io_error(ic, "writing superblock", r); 3240 #endif 3241 } 3242 3243 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3244 3245 ic->journal_uptodate = true; 3246 } 3247 3248 static void dm_integrity_resume(struct dm_target *ti) 3249 { 3250 struct dm_integrity_c *ic = ti->private; 3251 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3252 int r; 3253 3254 DEBUG_print("resume\n"); 3255 3256 ic->wrote_to_journal = false; 3257 3258 if (ic->provided_data_sectors != old_provided_data_sectors) { 3259 if (ic->provided_data_sectors > old_provided_data_sectors && 3260 ic->mode == 'B' && 3261 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3262 rw_journal_sectors(ic, REQ_OP_READ, 0, 3263 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3264 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 3265 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 3266 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3267 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3268 } 3269 3270 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3271 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3272 if (unlikely(r)) 3273 dm_integrity_io_error(ic, "writing superblock", r); 3274 } 3275 3276 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 3277 DEBUG_print("resume dirty_bitmap\n"); 3278 rw_journal_sectors(ic, REQ_OP_READ, 0, 3279 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3280 if (ic->mode == 'B') { 3281 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3282 !ic->reset_recalculate_flag) { 3283 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 3284 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 3285 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 3286 BITMAP_OP_TEST_ALL_CLEAR)) { 3287 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3288 ic->sb->recalc_sector = cpu_to_le64(0); 3289 } 3290 } else { 3291 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 3292 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 3293 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3294 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3295 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3296 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3297 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3298 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3299 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3300 ic->sb->recalc_sector = cpu_to_le64(0); 3301 } 3302 } else { 3303 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3304 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) || 3305 ic->reset_recalculate_flag) { 3306 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3307 ic->sb->recalc_sector = cpu_to_le64(0); 3308 } 3309 init_journal(ic, 0, ic->journal_sections, 0); 3310 replay_journal(ic); 3311 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3312 } 3313 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3314 if (unlikely(r)) 3315 dm_integrity_io_error(ic, "writing superblock", r); 3316 } else { 3317 replay_journal(ic); 3318 if (ic->reset_recalculate_flag) { 3319 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3320 ic->sb->recalc_sector = cpu_to_le64(0); 3321 } 3322 if (ic->mode == 'B') { 3323 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3324 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3325 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3326 if (unlikely(r)) 3327 dm_integrity_io_error(ic, "writing superblock", r); 3328 3329 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3330 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3331 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3332 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3333 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3334 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3335 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3336 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3337 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3338 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3339 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3340 } 3341 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3342 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3343 } 3344 } 3345 3346 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3347 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3348 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3349 3350 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3351 if (recalc_pos < ic->provided_data_sectors) { 3352 queue_work(ic->recalc_wq, &ic->recalc_work); 3353 } else if (recalc_pos > ic->provided_data_sectors) { 3354 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3355 recalc_write_super(ic); 3356 } 3357 } 3358 3359 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3360 ic->reboot_notifier.next = NULL; 3361 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3362 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3363 3364 #if 0 3365 /* set to 1 to stress test synchronous mode */ 3366 dm_integrity_enter_synchronous_mode(ic); 3367 #endif 3368 } 3369 3370 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3371 unsigned int status_flags, char *result, unsigned int maxlen) 3372 { 3373 struct dm_integrity_c *ic = ti->private; 3374 unsigned int arg_count; 3375 size_t sz = 0; 3376 3377 switch (type) { 3378 case STATUSTYPE_INFO: 3379 DMEMIT("%llu %llu", 3380 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3381 ic->provided_data_sectors); 3382 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3383 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3384 else 3385 DMEMIT(" -"); 3386 break; 3387 3388 case STATUSTYPE_TABLE: { 3389 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3390 3391 watermark_percentage += ic->journal_entries / 2; 3392 do_div(watermark_percentage, ic->journal_entries); 3393 arg_count = 3; 3394 arg_count += !!ic->meta_dev; 3395 arg_count += ic->sectors_per_block != 1; 3396 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3397 arg_count += ic->reset_recalculate_flag; 3398 arg_count += ic->discard; 3399 arg_count += ic->mode == 'J'; 3400 arg_count += ic->mode == 'J'; 3401 arg_count += ic->mode == 'B'; 3402 arg_count += ic->mode == 'B'; 3403 arg_count += !!ic->internal_hash_alg.alg_string; 3404 arg_count += !!ic->journal_crypt_alg.alg_string; 3405 arg_count += !!ic->journal_mac_alg.alg_string; 3406 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3407 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0; 3408 arg_count += ic->legacy_recalculate; 3409 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3410 ic->tag_size, ic->mode, arg_count); 3411 if (ic->meta_dev) 3412 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3413 if (ic->sectors_per_block != 1) 3414 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3415 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3416 DMEMIT(" recalculate"); 3417 if (ic->reset_recalculate_flag) 3418 DMEMIT(" reset_recalculate"); 3419 if (ic->discard) 3420 DMEMIT(" allow_discards"); 3421 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3422 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3423 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3424 if (ic->mode == 'J') { 3425 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage); 3426 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3427 } 3428 if (ic->mode == 'B') { 3429 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3430 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3431 } 3432 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3433 DMEMIT(" fix_padding"); 3434 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) 3435 DMEMIT(" fix_hmac"); 3436 if (ic->legacy_recalculate) 3437 DMEMIT(" legacy_recalculate"); 3438 3439 #define EMIT_ALG(a, n) \ 3440 do { \ 3441 if (ic->a.alg_string) { \ 3442 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3443 if (ic->a.key_string) \ 3444 DMEMIT(":%s", ic->a.key_string);\ 3445 } \ 3446 } while (0) 3447 EMIT_ALG(internal_hash_alg, "internal_hash"); 3448 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3449 EMIT_ALG(journal_mac_alg, "journal_mac"); 3450 break; 3451 } 3452 case STATUSTYPE_IMA: 3453 DMEMIT_TARGET_NAME_VERSION(ti->type); 3454 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c", 3455 ic->dev->name, ic->start, ic->tag_size, ic->mode); 3456 3457 if (ic->meta_dev) 3458 DMEMIT(",meta_device=%s", ic->meta_dev->name); 3459 if (ic->sectors_per_block != 1) 3460 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT); 3461 3462 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ? 3463 'y' : 'n'); 3464 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n'); 3465 DMEMIT(",fix_padding=%c", 3466 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n'); 3467 DMEMIT(",fix_hmac=%c", 3468 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n'); 3469 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n'); 3470 3471 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS); 3472 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors); 3473 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors); 3474 DMEMIT(";"); 3475 break; 3476 } 3477 } 3478 3479 static int dm_integrity_iterate_devices(struct dm_target *ti, 3480 iterate_devices_callout_fn fn, void *data) 3481 { 3482 struct dm_integrity_c *ic = ti->private; 3483 3484 if (!ic->meta_dev) 3485 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3486 else 3487 return fn(ti, ic->dev, 0, ti->len, data); 3488 } 3489 3490 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3491 { 3492 struct dm_integrity_c *ic = ti->private; 3493 3494 if (ic->sectors_per_block > 1) { 3495 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3496 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3497 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3498 limits->dma_alignment = limits->logical_block_size - 1; 3499 } 3500 } 3501 3502 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3503 { 3504 unsigned int sector_space = JOURNAL_SECTOR_DATA; 3505 3506 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3507 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3508 JOURNAL_ENTRY_ROUNDUP); 3509 3510 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3511 sector_space -= JOURNAL_MAC_PER_SECTOR; 3512 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3513 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3514 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3515 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3516 } 3517 3518 static int calculate_device_limits(struct dm_integrity_c *ic) 3519 { 3520 __u64 initial_sectors; 3521 3522 calculate_journal_section_size(ic); 3523 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3524 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3525 return -EINVAL; 3526 ic->initial_sectors = initial_sectors; 3527 3528 if (!ic->meta_dev) { 3529 sector_t last_sector, last_area, last_offset; 3530 3531 /* we have to maintain excessive padding for compatibility with existing volumes */ 3532 __u64 metadata_run_padding = 3533 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3534 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3535 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3536 3537 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3538 metadata_run_padding) >> SECTOR_SHIFT; 3539 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3540 ic->log2_metadata_run = __ffs(ic->metadata_run); 3541 else 3542 ic->log2_metadata_run = -1; 3543 3544 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3545 last_sector = get_data_sector(ic, last_area, last_offset); 3546 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3547 return -EINVAL; 3548 } else { 3549 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3550 3551 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3552 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3553 meta_size <<= ic->log2_buffer_sectors; 3554 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3555 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3556 return -EINVAL; 3557 ic->metadata_run = 1; 3558 ic->log2_metadata_run = 0; 3559 } 3560 3561 return 0; 3562 } 3563 3564 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3565 { 3566 if (!ic->meta_dev) { 3567 int test_bit; 3568 3569 ic->provided_data_sectors = 0; 3570 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3571 __u64 prev_data_sectors = ic->provided_data_sectors; 3572 3573 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3574 if (calculate_device_limits(ic)) 3575 ic->provided_data_sectors = prev_data_sectors; 3576 } 3577 } else { 3578 ic->provided_data_sectors = ic->data_device_sectors; 3579 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3580 } 3581 } 3582 3583 static int initialize_superblock(struct dm_integrity_c *ic, 3584 unsigned int journal_sectors, unsigned int interleave_sectors) 3585 { 3586 unsigned int journal_sections; 3587 int test_bit; 3588 3589 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3590 memcpy(ic->sb->magic, SB_MAGIC, 8); 3591 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3592 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3593 if (ic->journal_mac_alg.alg_string) 3594 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3595 3596 calculate_journal_section_size(ic); 3597 journal_sections = journal_sectors / ic->journal_section_sectors; 3598 if (!journal_sections) 3599 journal_sections = 1; 3600 3601 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) { 3602 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC); 3603 get_random_bytes(ic->sb->salt, SALT_SIZE); 3604 } 3605 3606 if (!ic->meta_dev) { 3607 if (ic->fix_padding) 3608 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3609 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3610 if (!interleave_sectors) 3611 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3612 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3613 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3614 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3615 3616 get_provided_data_sectors(ic); 3617 if (!ic->provided_data_sectors) 3618 return -EINVAL; 3619 } else { 3620 ic->sb->log2_interleave_sectors = 0; 3621 3622 get_provided_data_sectors(ic); 3623 if (!ic->provided_data_sectors) 3624 return -EINVAL; 3625 3626 try_smaller_buffer: 3627 ic->sb->journal_sections = cpu_to_le32(0); 3628 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3629 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3630 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3631 3632 if (test_journal_sections > journal_sections) 3633 continue; 3634 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3635 if (calculate_device_limits(ic)) 3636 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3637 3638 } 3639 if (!le32_to_cpu(ic->sb->journal_sections)) { 3640 if (ic->log2_buffer_sectors > 3) { 3641 ic->log2_buffer_sectors--; 3642 goto try_smaller_buffer; 3643 } 3644 return -EINVAL; 3645 } 3646 } 3647 3648 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3649 3650 sb_set_version(ic); 3651 3652 return 0; 3653 } 3654 3655 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3656 { 3657 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3658 struct blk_integrity bi; 3659 3660 memset(&bi, 0, sizeof(bi)); 3661 bi.profile = &dm_integrity_profile; 3662 bi.tuple_size = ic->tag_size; 3663 bi.tag_size = bi.tuple_size; 3664 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3665 3666 blk_integrity_register(disk, &bi); 3667 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3668 } 3669 3670 static void dm_integrity_free_page_list(struct page_list *pl) 3671 { 3672 unsigned int i; 3673 3674 if (!pl) 3675 return; 3676 for (i = 0; pl[i].page; i++) 3677 __free_page(pl[i].page); 3678 kvfree(pl); 3679 } 3680 3681 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages) 3682 { 3683 struct page_list *pl; 3684 unsigned int i; 3685 3686 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3687 if (!pl) 3688 return NULL; 3689 3690 for (i = 0; i < n_pages; i++) { 3691 pl[i].page = alloc_page(GFP_KERNEL); 3692 if (!pl[i].page) { 3693 dm_integrity_free_page_list(pl); 3694 return NULL; 3695 } 3696 if (i) 3697 pl[i - 1].next = &pl[i]; 3698 } 3699 pl[i].page = NULL; 3700 pl[i].next = NULL; 3701 3702 return pl; 3703 } 3704 3705 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3706 { 3707 unsigned int i; 3708 3709 for (i = 0; i < ic->journal_sections; i++) 3710 kvfree(sl[i]); 3711 kvfree(sl); 3712 } 3713 3714 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3715 struct page_list *pl) 3716 { 3717 struct scatterlist **sl; 3718 unsigned int i; 3719 3720 sl = kvmalloc_array(ic->journal_sections, 3721 sizeof(struct scatterlist *), 3722 GFP_KERNEL | __GFP_ZERO); 3723 if (!sl) 3724 return NULL; 3725 3726 for (i = 0; i < ic->journal_sections; i++) { 3727 struct scatterlist *s; 3728 unsigned int start_index, start_offset; 3729 unsigned int end_index, end_offset; 3730 unsigned int n_pages; 3731 unsigned int idx; 3732 3733 page_list_location(ic, i, 0, &start_index, &start_offset); 3734 page_list_location(ic, i, ic->journal_section_sectors - 1, 3735 &end_index, &end_offset); 3736 3737 n_pages = (end_index - start_index + 1); 3738 3739 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3740 GFP_KERNEL); 3741 if (!s) { 3742 dm_integrity_free_journal_scatterlist(ic, sl); 3743 return NULL; 3744 } 3745 3746 sg_init_table(s, n_pages); 3747 for (idx = start_index; idx <= end_index; idx++) { 3748 char *va = lowmem_page_address(pl[idx].page); 3749 unsigned int start = 0, end = PAGE_SIZE; 3750 3751 if (idx == start_index) 3752 start = start_offset; 3753 if (idx == end_index) 3754 end = end_offset + (1 << SECTOR_SHIFT); 3755 sg_set_buf(&s[idx - start_index], va + start, end - start); 3756 } 3757 3758 sl[i] = s; 3759 } 3760 3761 return sl; 3762 } 3763 3764 static void free_alg(struct alg_spec *a) 3765 { 3766 kfree_sensitive(a->alg_string); 3767 kfree_sensitive(a->key); 3768 memset(a, 0, sizeof(*a)); 3769 } 3770 3771 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3772 { 3773 char *k; 3774 3775 free_alg(a); 3776 3777 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3778 if (!a->alg_string) 3779 goto nomem; 3780 3781 k = strchr(a->alg_string, ':'); 3782 if (k) { 3783 *k = 0; 3784 a->key_string = k + 1; 3785 if (strlen(a->key_string) & 1) 3786 goto inval; 3787 3788 a->key_size = strlen(a->key_string) / 2; 3789 a->key = kmalloc(a->key_size, GFP_KERNEL); 3790 if (!a->key) 3791 goto nomem; 3792 if (hex2bin(a->key, a->key_string, a->key_size)) 3793 goto inval; 3794 } 3795 3796 return 0; 3797 inval: 3798 *error = error_inval; 3799 return -EINVAL; 3800 nomem: 3801 *error = "Out of memory for an argument"; 3802 return -ENOMEM; 3803 } 3804 3805 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3806 char *error_alg, char *error_key) 3807 { 3808 int r; 3809 3810 if (a->alg_string) { 3811 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3812 if (IS_ERR(*hash)) { 3813 *error = error_alg; 3814 r = PTR_ERR(*hash); 3815 *hash = NULL; 3816 return r; 3817 } 3818 3819 if (a->key) { 3820 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3821 if (r) { 3822 *error = error_key; 3823 return r; 3824 } 3825 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3826 *error = error_key; 3827 return -ENOKEY; 3828 } 3829 } 3830 3831 return 0; 3832 } 3833 3834 static int create_journal(struct dm_integrity_c *ic, char **error) 3835 { 3836 int r = 0; 3837 unsigned int i; 3838 __u64 journal_pages, journal_desc_size, journal_tree_size; 3839 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3840 struct skcipher_request *req = NULL; 3841 3842 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3843 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3844 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3845 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3846 3847 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3848 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3849 journal_desc_size = journal_pages * sizeof(struct page_list); 3850 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3851 *error = "Journal doesn't fit into memory"; 3852 r = -ENOMEM; 3853 goto bad; 3854 } 3855 ic->journal_pages = journal_pages; 3856 3857 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3858 if (!ic->journal) { 3859 *error = "Could not allocate memory for journal"; 3860 r = -ENOMEM; 3861 goto bad; 3862 } 3863 if (ic->journal_crypt_alg.alg_string) { 3864 unsigned int ivsize, blocksize; 3865 struct journal_completion comp; 3866 3867 comp.ic = ic; 3868 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3869 if (IS_ERR(ic->journal_crypt)) { 3870 *error = "Invalid journal cipher"; 3871 r = PTR_ERR(ic->journal_crypt); 3872 ic->journal_crypt = NULL; 3873 goto bad; 3874 } 3875 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3876 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3877 3878 if (ic->journal_crypt_alg.key) { 3879 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3880 ic->journal_crypt_alg.key_size); 3881 if (r) { 3882 *error = "Error setting encryption key"; 3883 goto bad; 3884 } 3885 } 3886 DEBUG_print("cipher %s, block size %u iv size %u\n", 3887 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3888 3889 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3890 if (!ic->journal_io) { 3891 *error = "Could not allocate memory for journal io"; 3892 r = -ENOMEM; 3893 goto bad; 3894 } 3895 3896 if (blocksize == 1) { 3897 struct scatterlist *sg; 3898 3899 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3900 if (!req) { 3901 *error = "Could not allocate crypt request"; 3902 r = -ENOMEM; 3903 goto bad; 3904 } 3905 3906 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3907 if (!crypt_iv) { 3908 *error = "Could not allocate iv"; 3909 r = -ENOMEM; 3910 goto bad; 3911 } 3912 3913 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3914 if (!ic->journal_xor) { 3915 *error = "Could not allocate memory for journal xor"; 3916 r = -ENOMEM; 3917 goto bad; 3918 } 3919 3920 sg = kvmalloc_array(ic->journal_pages + 1, 3921 sizeof(struct scatterlist), 3922 GFP_KERNEL); 3923 if (!sg) { 3924 *error = "Unable to allocate sg list"; 3925 r = -ENOMEM; 3926 goto bad; 3927 } 3928 sg_init_table(sg, ic->journal_pages + 1); 3929 for (i = 0; i < ic->journal_pages; i++) { 3930 char *va = lowmem_page_address(ic->journal_xor[i].page); 3931 3932 clear_page(va); 3933 sg_set_buf(&sg[i], va, PAGE_SIZE); 3934 } 3935 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids)); 3936 3937 skcipher_request_set_crypt(req, sg, sg, 3938 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv); 3939 init_completion(&comp.comp); 3940 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3941 if (do_crypt(true, req, &comp)) 3942 wait_for_completion(&comp.comp); 3943 kvfree(sg); 3944 r = dm_integrity_failed(ic); 3945 if (r) { 3946 *error = "Unable to encrypt journal"; 3947 goto bad; 3948 } 3949 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3950 3951 crypto_free_skcipher(ic->journal_crypt); 3952 ic->journal_crypt = NULL; 3953 } else { 3954 unsigned int crypt_len = roundup(ivsize, blocksize); 3955 3956 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3957 if (!req) { 3958 *error = "Could not allocate crypt request"; 3959 r = -ENOMEM; 3960 goto bad; 3961 } 3962 3963 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3964 if (!crypt_iv) { 3965 *error = "Could not allocate iv"; 3966 r = -ENOMEM; 3967 goto bad; 3968 } 3969 3970 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3971 if (!crypt_data) { 3972 *error = "Unable to allocate crypt data"; 3973 r = -ENOMEM; 3974 goto bad; 3975 } 3976 3977 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3978 if (!ic->journal_scatterlist) { 3979 *error = "Unable to allocate sg list"; 3980 r = -ENOMEM; 3981 goto bad; 3982 } 3983 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3984 if (!ic->journal_io_scatterlist) { 3985 *error = "Unable to allocate sg list"; 3986 r = -ENOMEM; 3987 goto bad; 3988 } 3989 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3990 sizeof(struct skcipher_request *), 3991 GFP_KERNEL | __GFP_ZERO); 3992 if (!ic->sk_requests) { 3993 *error = "Unable to allocate sk requests"; 3994 r = -ENOMEM; 3995 goto bad; 3996 } 3997 for (i = 0; i < ic->journal_sections; i++) { 3998 struct scatterlist sg; 3999 struct skcipher_request *section_req; 4000 __le32 section_le = cpu_to_le32(i); 4001 4002 memset(crypt_iv, 0x00, ivsize); 4003 memset(crypt_data, 0x00, crypt_len); 4004 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le))); 4005 4006 sg_init_one(&sg, crypt_data, crypt_len); 4007 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 4008 init_completion(&comp.comp); 4009 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 4010 if (do_crypt(true, req, &comp)) 4011 wait_for_completion(&comp.comp); 4012 4013 r = dm_integrity_failed(ic); 4014 if (r) { 4015 *error = "Unable to generate iv"; 4016 goto bad; 4017 } 4018 4019 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 4020 if (!section_req) { 4021 *error = "Unable to allocate crypt request"; 4022 r = -ENOMEM; 4023 goto bad; 4024 } 4025 section_req->iv = kmalloc_array(ivsize, 2, 4026 GFP_KERNEL); 4027 if (!section_req->iv) { 4028 skcipher_request_free(section_req); 4029 *error = "Unable to allocate iv"; 4030 r = -ENOMEM; 4031 goto bad; 4032 } 4033 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 4034 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 4035 ic->sk_requests[i] = section_req; 4036 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 4037 } 4038 } 4039 } 4040 4041 for (i = 0; i < N_COMMIT_IDS; i++) { 4042 unsigned int j; 4043 4044 retest_commit_id: 4045 for (j = 0; j < i; j++) { 4046 if (ic->commit_ids[j] == ic->commit_ids[i]) { 4047 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 4048 goto retest_commit_id; 4049 } 4050 } 4051 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 4052 } 4053 4054 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 4055 if (journal_tree_size > ULONG_MAX) { 4056 *error = "Journal doesn't fit into memory"; 4057 r = -ENOMEM; 4058 goto bad; 4059 } 4060 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 4061 if (!ic->journal_tree) { 4062 *error = "Could not allocate memory for journal tree"; 4063 r = -ENOMEM; 4064 } 4065 bad: 4066 kfree(crypt_data); 4067 kfree(crypt_iv); 4068 skcipher_request_free(req); 4069 4070 return r; 4071 } 4072 4073 /* 4074 * Construct a integrity mapping 4075 * 4076 * Arguments: 4077 * device 4078 * offset from the start of the device 4079 * tag size 4080 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 4081 * number of optional arguments 4082 * optional arguments: 4083 * journal_sectors 4084 * interleave_sectors 4085 * buffer_sectors 4086 * journal_watermark 4087 * commit_time 4088 * meta_device 4089 * block_size 4090 * sectors_per_bit 4091 * bitmap_flush_interval 4092 * internal_hash 4093 * journal_crypt 4094 * journal_mac 4095 * recalculate 4096 */ 4097 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv) 4098 { 4099 struct dm_integrity_c *ic; 4100 char dummy; 4101 int r; 4102 unsigned int extra_args; 4103 struct dm_arg_set as; 4104 static const struct dm_arg _args[] = { 4105 {0, 18, "Invalid number of feature args"}, 4106 }; 4107 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 4108 bool should_write_sb; 4109 __u64 threshold; 4110 unsigned long long start; 4111 __s8 log2_sectors_per_bitmap_bit = -1; 4112 __s8 log2_blocks_per_bitmap_bit; 4113 __u64 bits_in_journal; 4114 __u64 n_bitmap_bits; 4115 4116 #define DIRECT_ARGUMENTS 4 4117 4118 if (argc <= DIRECT_ARGUMENTS) { 4119 ti->error = "Invalid argument count"; 4120 return -EINVAL; 4121 } 4122 4123 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 4124 if (!ic) { 4125 ti->error = "Cannot allocate integrity context"; 4126 return -ENOMEM; 4127 } 4128 ti->private = ic; 4129 ti->per_io_data_size = sizeof(struct dm_integrity_io); 4130 ic->ti = ti; 4131 4132 ic->in_progress = RB_ROOT; 4133 INIT_LIST_HEAD(&ic->wait_list); 4134 init_waitqueue_head(&ic->endio_wait); 4135 bio_list_init(&ic->flush_bio_list); 4136 init_waitqueue_head(&ic->copy_to_journal_wait); 4137 init_completion(&ic->crypto_backoff); 4138 atomic64_set(&ic->number_of_mismatches, 0); 4139 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 4140 4141 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 4142 if (r) { 4143 ti->error = "Device lookup failed"; 4144 goto bad; 4145 } 4146 4147 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 4148 ti->error = "Invalid starting offset"; 4149 r = -EINVAL; 4150 goto bad; 4151 } 4152 ic->start = start; 4153 4154 if (strcmp(argv[2], "-")) { 4155 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 4156 ti->error = "Invalid tag size"; 4157 r = -EINVAL; 4158 goto bad; 4159 } 4160 } 4161 4162 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 4163 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 4164 ic->mode = argv[3][0]; 4165 } else { 4166 ti->error = "Invalid mode (expecting J, B, D, R)"; 4167 r = -EINVAL; 4168 goto bad; 4169 } 4170 4171 journal_sectors = 0; 4172 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 4173 buffer_sectors = DEFAULT_BUFFER_SECTORS; 4174 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 4175 sync_msec = DEFAULT_SYNC_MSEC; 4176 ic->sectors_per_block = 1; 4177 4178 as.argc = argc - DIRECT_ARGUMENTS; 4179 as.argv = argv + DIRECT_ARGUMENTS; 4180 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 4181 if (r) 4182 goto bad; 4183 4184 while (extra_args--) { 4185 const char *opt_string; 4186 unsigned int val; 4187 unsigned long long llval; 4188 4189 opt_string = dm_shift_arg(&as); 4190 if (!opt_string) { 4191 r = -EINVAL; 4192 ti->error = "Not enough feature arguments"; 4193 goto bad; 4194 } 4195 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 4196 journal_sectors = val ? val : 1; 4197 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 4198 interleave_sectors = val; 4199 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 4200 buffer_sectors = val; 4201 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 4202 journal_watermark = val; 4203 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 4204 sync_msec = val; 4205 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 4206 if (ic->meta_dev) { 4207 dm_put_device(ti, ic->meta_dev); 4208 ic->meta_dev = NULL; 4209 } 4210 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 4211 dm_table_get_mode(ti->table), &ic->meta_dev); 4212 if (r) { 4213 ti->error = "Device lookup failed"; 4214 goto bad; 4215 } 4216 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 4217 if (val < 1 << SECTOR_SHIFT || 4218 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 4219 (val & (val - 1))) { 4220 r = -EINVAL; 4221 ti->error = "Invalid block_size argument"; 4222 goto bad; 4223 } 4224 ic->sectors_per_block = val >> SECTOR_SHIFT; 4225 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 4226 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 4227 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 4228 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 4229 r = -EINVAL; 4230 ti->error = "Invalid bitmap_flush_interval argument"; 4231 goto bad; 4232 } 4233 ic->bitmap_flush_interval = msecs_to_jiffies(val); 4234 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 4235 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 4236 "Invalid internal_hash argument"); 4237 if (r) 4238 goto bad; 4239 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 4240 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 4241 "Invalid journal_crypt argument"); 4242 if (r) 4243 goto bad; 4244 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 4245 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 4246 "Invalid journal_mac argument"); 4247 if (r) 4248 goto bad; 4249 } else if (!strcmp(opt_string, "recalculate")) { 4250 ic->recalculate_flag = true; 4251 } else if (!strcmp(opt_string, "reset_recalculate")) { 4252 ic->recalculate_flag = true; 4253 ic->reset_recalculate_flag = true; 4254 } else if (!strcmp(opt_string, "allow_discards")) { 4255 ic->discard = true; 4256 } else if (!strcmp(opt_string, "fix_padding")) { 4257 ic->fix_padding = true; 4258 } else if (!strcmp(opt_string, "fix_hmac")) { 4259 ic->fix_hmac = true; 4260 } else if (!strcmp(opt_string, "legacy_recalculate")) { 4261 ic->legacy_recalculate = true; 4262 } else { 4263 r = -EINVAL; 4264 ti->error = "Invalid argument"; 4265 goto bad; 4266 } 4267 } 4268 4269 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev); 4270 if (!ic->meta_dev) 4271 ic->meta_device_sectors = ic->data_device_sectors; 4272 else 4273 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev); 4274 4275 if (!journal_sectors) { 4276 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 4277 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 4278 } 4279 4280 if (!buffer_sectors) 4281 buffer_sectors = 1; 4282 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 4283 4284 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 4285 "Invalid internal hash", "Error setting internal hash key"); 4286 if (r) 4287 goto bad; 4288 4289 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 4290 "Invalid journal mac", "Error setting journal mac key"); 4291 if (r) 4292 goto bad; 4293 4294 if (!ic->tag_size) { 4295 if (!ic->internal_hash) { 4296 ti->error = "Unknown tag size"; 4297 r = -EINVAL; 4298 goto bad; 4299 } 4300 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 4301 } 4302 if (ic->tag_size > MAX_TAG_SIZE) { 4303 ti->error = "Too big tag size"; 4304 r = -EINVAL; 4305 goto bad; 4306 } 4307 if (!(ic->tag_size & (ic->tag_size - 1))) 4308 ic->log2_tag_size = __ffs(ic->tag_size); 4309 else 4310 ic->log2_tag_size = -1; 4311 4312 if (ic->mode == 'B' && !ic->internal_hash) { 4313 r = -EINVAL; 4314 ti->error = "Bitmap mode can be only used with internal hash"; 4315 goto bad; 4316 } 4317 4318 if (ic->discard && !ic->internal_hash) { 4319 r = -EINVAL; 4320 ti->error = "Discard can be only used with internal hash"; 4321 goto bad; 4322 } 4323 4324 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 4325 ic->autocommit_msec = sync_msec; 4326 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 4327 4328 ic->io = dm_io_client_create(); 4329 if (IS_ERR(ic->io)) { 4330 r = PTR_ERR(ic->io); 4331 ic->io = NULL; 4332 ti->error = "Cannot allocate dm io"; 4333 goto bad; 4334 } 4335 4336 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 4337 if (r) { 4338 ti->error = "Cannot allocate mempool"; 4339 goto bad; 4340 } 4341 4342 r = mempool_init_page_pool(&ic->recheck_pool, 1, 0); 4343 if (r) { 4344 ti->error = "Cannot allocate mempool"; 4345 goto bad; 4346 } 4347 4348 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 4349 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 4350 if (!ic->metadata_wq) { 4351 ti->error = "Cannot allocate workqueue"; 4352 r = -ENOMEM; 4353 goto bad; 4354 } 4355 4356 /* 4357 * If this workqueue weren't ordered, it would cause bio reordering 4358 * and reduced performance. 4359 */ 4360 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM); 4361 if (!ic->wait_wq) { 4362 ti->error = "Cannot allocate workqueue"; 4363 r = -ENOMEM; 4364 goto bad; 4365 } 4366 4367 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 4368 METADATA_WORKQUEUE_MAX_ACTIVE); 4369 if (!ic->offload_wq) { 4370 ti->error = "Cannot allocate workqueue"; 4371 r = -ENOMEM; 4372 goto bad; 4373 } 4374 4375 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4376 if (!ic->commit_wq) { 4377 ti->error = "Cannot allocate workqueue"; 4378 r = -ENOMEM; 4379 goto bad; 4380 } 4381 INIT_WORK(&ic->commit_work, integrity_commit); 4382 4383 if (ic->mode == 'J' || ic->mode == 'B') { 4384 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4385 if (!ic->writer_wq) { 4386 ti->error = "Cannot allocate workqueue"; 4387 r = -ENOMEM; 4388 goto bad; 4389 } 4390 INIT_WORK(&ic->writer_work, integrity_writer); 4391 } 4392 4393 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4394 if (!ic->sb) { 4395 r = -ENOMEM; 4396 ti->error = "Cannot allocate superblock area"; 4397 goto bad; 4398 } 4399 4400 r = sync_rw_sb(ic, REQ_OP_READ); 4401 if (r) { 4402 ti->error = "Error reading superblock"; 4403 goto bad; 4404 } 4405 should_write_sb = false; 4406 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4407 if (ic->mode != 'R') { 4408 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4409 r = -EINVAL; 4410 ti->error = "The device is not initialized"; 4411 goto bad; 4412 } 4413 } 4414 4415 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4416 if (r) { 4417 ti->error = "Could not initialize superblock"; 4418 goto bad; 4419 } 4420 if (ic->mode != 'R') 4421 should_write_sb = true; 4422 } 4423 4424 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) { 4425 r = -EINVAL; 4426 ti->error = "Unknown version"; 4427 goto bad; 4428 } 4429 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4430 r = -EINVAL; 4431 ti->error = "Tag size doesn't match the information in superblock"; 4432 goto bad; 4433 } 4434 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4435 r = -EINVAL; 4436 ti->error = "Block size doesn't match the information in superblock"; 4437 goto bad; 4438 } 4439 if (!le32_to_cpu(ic->sb->journal_sections)) { 4440 r = -EINVAL; 4441 ti->error = "Corrupted superblock, journal_sections is 0"; 4442 goto bad; 4443 } 4444 /* make sure that ti->max_io_len doesn't overflow */ 4445 if (!ic->meta_dev) { 4446 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4447 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4448 r = -EINVAL; 4449 ti->error = "Invalid interleave_sectors in the superblock"; 4450 goto bad; 4451 } 4452 } else { 4453 if (ic->sb->log2_interleave_sectors) { 4454 r = -EINVAL; 4455 ti->error = "Invalid interleave_sectors in the superblock"; 4456 goto bad; 4457 } 4458 } 4459 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4460 r = -EINVAL; 4461 ti->error = "Journal mac mismatch"; 4462 goto bad; 4463 } 4464 4465 get_provided_data_sectors(ic); 4466 if (!ic->provided_data_sectors) { 4467 r = -EINVAL; 4468 ti->error = "The device is too small"; 4469 goto bad; 4470 } 4471 4472 try_smaller_buffer: 4473 r = calculate_device_limits(ic); 4474 if (r) { 4475 if (ic->meta_dev) { 4476 if (ic->log2_buffer_sectors > 3) { 4477 ic->log2_buffer_sectors--; 4478 goto try_smaller_buffer; 4479 } 4480 } 4481 ti->error = "The device is too small"; 4482 goto bad; 4483 } 4484 4485 if (log2_sectors_per_bitmap_bit < 0) 4486 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4487 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4488 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4489 4490 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4491 if (bits_in_journal > UINT_MAX) 4492 bits_in_journal = UINT_MAX; 4493 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4494 log2_sectors_per_bitmap_bit++; 4495 4496 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4497 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4498 if (should_write_sb) 4499 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4500 4501 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4502 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4503 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4504 4505 if (!ic->meta_dev) 4506 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4507 4508 if (ti->len > ic->provided_data_sectors) { 4509 r = -EINVAL; 4510 ti->error = "Not enough provided sectors for requested mapping size"; 4511 goto bad; 4512 } 4513 4514 4515 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 4516 threshold += 50; 4517 do_div(threshold, 100); 4518 ic->free_sectors_threshold = threshold; 4519 4520 DEBUG_print("initialized:\n"); 4521 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 4522 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 4523 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 4524 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 4525 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 4526 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections)); 4527 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 4528 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 4529 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev)); 4530 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 4531 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 4532 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 4533 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 4534 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4535 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 4536 4537 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4538 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4539 ic->sb->recalc_sector = cpu_to_le64(0); 4540 } 4541 4542 if (ic->internal_hash) { 4543 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4544 if (!ic->recalc_wq) { 4545 ti->error = "Cannot allocate workqueue"; 4546 r = -ENOMEM; 4547 goto bad; 4548 } 4549 INIT_WORK(&ic->recalc_work, integrity_recalc); 4550 } else { 4551 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 4552 ti->error = "Recalculate can only be specified with internal_hash"; 4553 r = -EINVAL; 4554 goto bad; 4555 } 4556 } 4557 4558 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 4559 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors && 4560 dm_integrity_disable_recalculate(ic)) { 4561 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\""; 4562 r = -EOPNOTSUPP; 4563 goto bad; 4564 } 4565 4566 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4567 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0); 4568 if (IS_ERR(ic->bufio)) { 4569 r = PTR_ERR(ic->bufio); 4570 ti->error = "Cannot initialize dm-bufio"; 4571 ic->bufio = NULL; 4572 goto bad; 4573 } 4574 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4575 4576 if (ic->mode != 'R') { 4577 r = create_journal(ic, &ti->error); 4578 if (r) 4579 goto bad; 4580 4581 } 4582 4583 if (ic->mode == 'B') { 4584 unsigned int i; 4585 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4586 4587 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4588 if (!ic->recalc_bitmap) { 4589 r = -ENOMEM; 4590 goto bad; 4591 } 4592 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4593 if (!ic->may_write_bitmap) { 4594 r = -ENOMEM; 4595 goto bad; 4596 } 4597 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4598 if (!ic->bbs) { 4599 r = -ENOMEM; 4600 goto bad; 4601 } 4602 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4603 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4604 struct bitmap_block_status *bbs = &ic->bbs[i]; 4605 unsigned int sector, pl_index, pl_offset; 4606 4607 INIT_WORK(&bbs->work, bitmap_block_work); 4608 bbs->ic = ic; 4609 bbs->idx = i; 4610 bio_list_init(&bbs->bio_queue); 4611 spin_lock_init(&bbs->bio_queue_lock); 4612 4613 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4614 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4615 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4616 4617 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4618 } 4619 } 4620 4621 if (should_write_sb) { 4622 init_journal(ic, 0, ic->journal_sections, 0); 4623 r = dm_integrity_failed(ic); 4624 if (unlikely(r)) { 4625 ti->error = "Error initializing journal"; 4626 goto bad; 4627 } 4628 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 4629 if (r) { 4630 ti->error = "Error initializing superblock"; 4631 goto bad; 4632 } 4633 ic->just_formatted = true; 4634 } 4635 4636 if (!ic->meta_dev) { 4637 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4638 if (r) 4639 goto bad; 4640 } 4641 if (ic->mode == 'B') { 4642 unsigned int max_io_len; 4643 4644 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4645 if (!max_io_len) 4646 max_io_len = 1U << 31; 4647 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4648 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4649 r = dm_set_target_max_io_len(ti, max_io_len); 4650 if (r) 4651 goto bad; 4652 } 4653 } 4654 4655 if (!ic->internal_hash) 4656 dm_integrity_set(ti, ic); 4657 4658 ti->num_flush_bios = 1; 4659 ti->flush_supported = true; 4660 if (ic->discard) 4661 ti->num_discard_bios = 1; 4662 4663 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 4664 return 0; 4665 4666 bad: 4667 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 4668 dm_integrity_dtr(ti); 4669 return r; 4670 } 4671 4672 static void dm_integrity_dtr(struct dm_target *ti) 4673 { 4674 struct dm_integrity_c *ic = ti->private; 4675 4676 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4677 BUG_ON(!list_empty(&ic->wait_list)); 4678 4679 if (ic->mode == 'B') 4680 cancel_delayed_work_sync(&ic->bitmap_flush_work); 4681 if (ic->metadata_wq) 4682 destroy_workqueue(ic->metadata_wq); 4683 if (ic->wait_wq) 4684 destroy_workqueue(ic->wait_wq); 4685 if (ic->offload_wq) 4686 destroy_workqueue(ic->offload_wq); 4687 if (ic->commit_wq) 4688 destroy_workqueue(ic->commit_wq); 4689 if (ic->writer_wq) 4690 destroy_workqueue(ic->writer_wq); 4691 if (ic->recalc_wq) 4692 destroy_workqueue(ic->recalc_wq); 4693 kvfree(ic->bbs); 4694 if (ic->bufio) 4695 dm_bufio_client_destroy(ic->bufio); 4696 mempool_exit(&ic->recheck_pool); 4697 mempool_exit(&ic->journal_io_mempool); 4698 if (ic->io) 4699 dm_io_client_destroy(ic->io); 4700 if (ic->dev) 4701 dm_put_device(ti, ic->dev); 4702 if (ic->meta_dev) 4703 dm_put_device(ti, ic->meta_dev); 4704 dm_integrity_free_page_list(ic->journal); 4705 dm_integrity_free_page_list(ic->journal_io); 4706 dm_integrity_free_page_list(ic->journal_xor); 4707 dm_integrity_free_page_list(ic->recalc_bitmap); 4708 dm_integrity_free_page_list(ic->may_write_bitmap); 4709 if (ic->journal_scatterlist) 4710 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4711 if (ic->journal_io_scatterlist) 4712 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4713 if (ic->sk_requests) { 4714 unsigned int i; 4715 4716 for (i = 0; i < ic->journal_sections; i++) { 4717 struct skcipher_request *req; 4718 4719 req = ic->sk_requests[i]; 4720 if (req) { 4721 kfree_sensitive(req->iv); 4722 skcipher_request_free(req); 4723 } 4724 } 4725 kvfree(ic->sk_requests); 4726 } 4727 kvfree(ic->journal_tree); 4728 if (ic->sb) 4729 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4730 4731 if (ic->internal_hash) 4732 crypto_free_shash(ic->internal_hash); 4733 free_alg(&ic->internal_hash_alg); 4734 4735 if (ic->journal_crypt) 4736 crypto_free_skcipher(ic->journal_crypt); 4737 free_alg(&ic->journal_crypt_alg); 4738 4739 if (ic->journal_mac) 4740 crypto_free_shash(ic->journal_mac); 4741 free_alg(&ic->journal_mac_alg); 4742 4743 kfree(ic); 4744 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 4745 } 4746 4747 static struct target_type integrity_target = { 4748 .name = "integrity", 4749 .version = {1, 10, 0}, 4750 .module = THIS_MODULE, 4751 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4752 .ctr = dm_integrity_ctr, 4753 .dtr = dm_integrity_dtr, 4754 .map = dm_integrity_map, 4755 .postsuspend = dm_integrity_postsuspend, 4756 .resume = dm_integrity_resume, 4757 .status = dm_integrity_status, 4758 .iterate_devices = dm_integrity_iterate_devices, 4759 .io_hints = dm_integrity_io_hints, 4760 }; 4761 4762 static int __init dm_integrity_init(void) 4763 { 4764 int r; 4765 4766 journal_io_cache = kmem_cache_create("integrity_journal_io", 4767 sizeof(struct journal_io), 0, 0, NULL); 4768 if (!journal_io_cache) { 4769 DMERR("can't allocate journal io cache"); 4770 return -ENOMEM; 4771 } 4772 4773 r = dm_register_target(&integrity_target); 4774 if (r < 0) { 4775 kmem_cache_destroy(journal_io_cache); 4776 return r; 4777 } 4778 4779 return 0; 4780 } 4781 4782 static void __exit dm_integrity_exit(void) 4783 { 4784 dm_unregister_target(&integrity_target); 4785 kmem_cache_destroy(journal_io_cache); 4786 } 4787 4788 module_init(dm_integrity_init); 4789 module_exit(dm_integrity_exit); 4790 4791 MODULE_AUTHOR("Milan Broz"); 4792 MODULE_AUTHOR("Mikulas Patocka"); 4793 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4794 MODULE_LICENSE("GPL"); 4795