xref: /openbmc/linux/drivers/md/dm-integrity.c (revision 496cc140279b4517a23f4534e468ec9c66283f4b)
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bio-record.h"
10 
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25 
26 #include "dm-audit.h"
27 
28 #define DM_MSG_PREFIX "integrity"
29 
30 #define DEFAULT_INTERLEAVE_SECTORS	32768
31 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
32 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
33 #define DEFAULT_BUFFER_SECTORS		128
34 #define DEFAULT_JOURNAL_WATERMARK	50
35 #define DEFAULT_SYNC_MSEC		10000
36 #define DEFAULT_MAX_JOURNAL_SECTORS	131072
37 #define MIN_LOG2_INTERLEAVE_SECTORS	3
38 #define MAX_LOG2_INTERLEAVE_SECTORS	31
39 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
40 #define RECALC_SECTORS			32768
41 #define RECALC_WRITE_SUPER		16
42 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
43 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
44 #define DISCARD_FILLER			0xf6
45 #define SALT_SIZE			16
46 
47 /*
48  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
49  * so it should not be enabled in the official kernel
50  */
51 //#define DEBUG_PRINT
52 //#define INTERNAL_VERIFY
53 
54 /*
55  * On disk structures
56  */
57 
58 #define SB_MAGIC			"integrt"
59 #define SB_VERSION_1			1
60 #define SB_VERSION_2			2
61 #define SB_VERSION_3			3
62 #define SB_VERSION_4			4
63 #define SB_VERSION_5			5
64 #define SB_SECTORS			8
65 #define MAX_SECTORS_PER_BLOCK		8
66 
67 struct superblock {
68 	__u8 magic[8];
69 	__u8 version;
70 	__u8 log2_interleave_sectors;
71 	__le16 integrity_tag_size;
72 	__le32 journal_sections;
73 	__le64 provided_data_sectors;	/* userspace uses this value */
74 	__le32 flags;
75 	__u8 log2_sectors_per_block;
76 	__u8 log2_blocks_per_bitmap_bit;
77 	__u8 pad[2];
78 	__le64 recalc_sector;
79 	__u8 pad2[8];
80 	__u8 salt[SALT_SIZE];
81 };
82 
83 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
84 #define SB_FLAG_RECALCULATING		0x2
85 #define SB_FLAG_DIRTY_BITMAP		0x4
86 #define SB_FLAG_FIXED_PADDING		0x8
87 #define SB_FLAG_FIXED_HMAC		0x10
88 
89 #define	JOURNAL_ENTRY_ROUNDUP		8
90 
91 typedef __le64 commit_id_t;
92 #define JOURNAL_MAC_PER_SECTOR		8
93 
94 struct journal_entry {
95 	union {
96 		struct {
97 			__le32 sector_lo;
98 			__le32 sector_hi;
99 		} s;
100 		__le64 sector;
101 	} u;
102 	commit_id_t last_bytes[];
103 	/* __u8 tag[0]; */
104 };
105 
106 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
107 
108 #if BITS_PER_LONG == 64
109 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
110 #else
111 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
112 #endif
113 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
114 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
115 #define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
116 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
117 #define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
118 
119 #define JOURNAL_BLOCK_SECTORS		8
120 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
121 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
122 
123 struct journal_sector {
124 	struct_group(sectors,
125 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
126 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
127 	);
128 	commit_id_t commit_id;
129 };
130 
131 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
132 
133 #define METADATA_PADDING_SECTORS	8
134 
135 #define N_COMMIT_IDS			4
136 
137 static unsigned char prev_commit_seq(unsigned char seq)
138 {
139 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
140 }
141 
142 static unsigned char next_commit_seq(unsigned char seq)
143 {
144 	return (seq + 1) % N_COMMIT_IDS;
145 }
146 
147 /*
148  * In-memory structures
149  */
150 
151 struct journal_node {
152 	struct rb_node node;
153 	sector_t sector;
154 };
155 
156 struct alg_spec {
157 	char *alg_string;
158 	char *key_string;
159 	__u8 *key;
160 	unsigned key_size;
161 };
162 
163 struct dm_integrity_c {
164 	struct dm_dev *dev;
165 	struct dm_dev *meta_dev;
166 	unsigned tag_size;
167 	__s8 log2_tag_size;
168 	sector_t start;
169 	mempool_t journal_io_mempool;
170 	struct dm_io_client *io;
171 	struct dm_bufio_client *bufio;
172 	struct workqueue_struct *metadata_wq;
173 	struct superblock *sb;
174 	unsigned journal_pages;
175 	unsigned n_bitmap_blocks;
176 
177 	struct page_list *journal;
178 	struct page_list *journal_io;
179 	struct page_list *journal_xor;
180 	struct page_list *recalc_bitmap;
181 	struct page_list *may_write_bitmap;
182 	struct bitmap_block_status *bbs;
183 	unsigned bitmap_flush_interval;
184 	int synchronous_mode;
185 	struct bio_list synchronous_bios;
186 	struct delayed_work bitmap_flush_work;
187 
188 	struct crypto_skcipher *journal_crypt;
189 	struct scatterlist **journal_scatterlist;
190 	struct scatterlist **journal_io_scatterlist;
191 	struct skcipher_request **sk_requests;
192 
193 	struct crypto_shash *journal_mac;
194 
195 	struct journal_node *journal_tree;
196 	struct rb_root journal_tree_root;
197 
198 	sector_t provided_data_sectors;
199 
200 	unsigned short journal_entry_size;
201 	unsigned char journal_entries_per_sector;
202 	unsigned char journal_section_entries;
203 	unsigned short journal_section_sectors;
204 	unsigned journal_sections;
205 	unsigned journal_entries;
206 	sector_t data_device_sectors;
207 	sector_t meta_device_sectors;
208 	unsigned initial_sectors;
209 	unsigned metadata_run;
210 	__s8 log2_metadata_run;
211 	__u8 log2_buffer_sectors;
212 	__u8 sectors_per_block;
213 	__u8 log2_blocks_per_bitmap_bit;
214 
215 	unsigned char mode;
216 
217 	int failed;
218 
219 	struct crypto_shash *internal_hash;
220 
221 	struct dm_target *ti;
222 
223 	/* these variables are locked with endio_wait.lock */
224 	struct rb_root in_progress;
225 	struct list_head wait_list;
226 	wait_queue_head_t endio_wait;
227 	struct workqueue_struct *wait_wq;
228 	struct workqueue_struct *offload_wq;
229 
230 	unsigned char commit_seq;
231 	commit_id_t commit_ids[N_COMMIT_IDS];
232 
233 	unsigned committed_section;
234 	unsigned n_committed_sections;
235 
236 	unsigned uncommitted_section;
237 	unsigned n_uncommitted_sections;
238 
239 	unsigned free_section;
240 	unsigned char free_section_entry;
241 	unsigned free_sectors;
242 
243 	unsigned free_sectors_threshold;
244 
245 	struct workqueue_struct *commit_wq;
246 	struct work_struct commit_work;
247 
248 	struct workqueue_struct *writer_wq;
249 	struct work_struct writer_work;
250 
251 	struct workqueue_struct *recalc_wq;
252 	struct work_struct recalc_work;
253 	u8 *recalc_buffer;
254 	u8 *recalc_tags;
255 
256 	struct bio_list flush_bio_list;
257 
258 	unsigned long autocommit_jiffies;
259 	struct timer_list autocommit_timer;
260 	unsigned autocommit_msec;
261 
262 	wait_queue_head_t copy_to_journal_wait;
263 
264 	struct completion crypto_backoff;
265 
266 	bool journal_uptodate;
267 	bool just_formatted;
268 	bool recalculate_flag;
269 	bool reset_recalculate_flag;
270 	bool discard;
271 	bool fix_padding;
272 	bool fix_hmac;
273 	bool legacy_recalculate;
274 
275 	struct alg_spec internal_hash_alg;
276 	struct alg_spec journal_crypt_alg;
277 	struct alg_spec journal_mac_alg;
278 
279 	atomic64_t number_of_mismatches;
280 
281 	struct notifier_block reboot_notifier;
282 };
283 
284 struct dm_integrity_range {
285 	sector_t logical_sector;
286 	sector_t n_sectors;
287 	bool waiting;
288 	union {
289 		struct rb_node node;
290 		struct {
291 			struct task_struct *task;
292 			struct list_head wait_entry;
293 		};
294 	};
295 };
296 
297 struct dm_integrity_io {
298 	struct work_struct work;
299 
300 	struct dm_integrity_c *ic;
301 	enum req_opf op;
302 	bool fua;
303 
304 	struct dm_integrity_range range;
305 
306 	sector_t metadata_block;
307 	unsigned metadata_offset;
308 
309 	atomic_t in_flight;
310 	blk_status_t bi_status;
311 
312 	struct completion *completion;
313 
314 	struct dm_bio_details bio_details;
315 };
316 
317 struct journal_completion {
318 	struct dm_integrity_c *ic;
319 	atomic_t in_flight;
320 	struct completion comp;
321 };
322 
323 struct journal_io {
324 	struct dm_integrity_range range;
325 	struct journal_completion *comp;
326 };
327 
328 struct bitmap_block_status {
329 	struct work_struct work;
330 	struct dm_integrity_c *ic;
331 	unsigned idx;
332 	unsigned long *bitmap;
333 	struct bio_list bio_queue;
334 	spinlock_t bio_queue_lock;
335 
336 };
337 
338 static struct kmem_cache *journal_io_cache;
339 
340 #define JOURNAL_IO_MEMPOOL	32
341 
342 #ifdef DEBUG_PRINT
343 #define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
344 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
345 {
346 	va_list args;
347 	va_start(args, msg);
348 	vprintk(msg, args);
349 	va_end(args);
350 	if (len)
351 		pr_cont(":");
352 	while (len) {
353 		pr_cont(" %02x", *bytes);
354 		bytes++;
355 		len--;
356 	}
357 	pr_cont("\n");
358 }
359 #define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
360 #else
361 #define DEBUG_print(x, ...)			do { } while (0)
362 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
363 #endif
364 
365 static void dm_integrity_prepare(struct request *rq)
366 {
367 }
368 
369 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
370 {
371 }
372 
373 /*
374  * DM Integrity profile, protection is performed layer above (dm-crypt)
375  */
376 static const struct blk_integrity_profile dm_integrity_profile = {
377 	.name			= "DM-DIF-EXT-TAG",
378 	.generate_fn		= NULL,
379 	.verify_fn		= NULL,
380 	.prepare_fn		= dm_integrity_prepare,
381 	.complete_fn		= dm_integrity_complete,
382 };
383 
384 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
385 static void integrity_bio_wait(struct work_struct *w);
386 static void dm_integrity_dtr(struct dm_target *ti);
387 
388 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
389 {
390 	if (err == -EILSEQ)
391 		atomic64_inc(&ic->number_of_mismatches);
392 	if (!cmpxchg(&ic->failed, 0, err))
393 		DMERR("Error on %s: %d", msg, err);
394 }
395 
396 static int dm_integrity_failed(struct dm_integrity_c *ic)
397 {
398 	return READ_ONCE(ic->failed);
399 }
400 
401 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
402 {
403 	if (ic->legacy_recalculate)
404 		return false;
405 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
406 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
407 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
408 		return true;
409 	return false;
410 }
411 
412 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
413 					  unsigned j, unsigned char seq)
414 {
415 	/*
416 	 * Xor the number with section and sector, so that if a piece of
417 	 * journal is written at wrong place, it is detected.
418 	 */
419 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
420 }
421 
422 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
423 				sector_t *area, sector_t *offset)
424 {
425 	if (!ic->meta_dev) {
426 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
427 		*area = data_sector >> log2_interleave_sectors;
428 		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
429 	} else {
430 		*area = 0;
431 		*offset = data_sector;
432 	}
433 }
434 
435 #define sector_to_block(ic, n)						\
436 do {									\
437 	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
438 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
439 } while (0)
440 
441 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
442 					    sector_t offset, unsigned *metadata_offset)
443 {
444 	__u64 ms;
445 	unsigned mo;
446 
447 	ms = area << ic->sb->log2_interleave_sectors;
448 	if (likely(ic->log2_metadata_run >= 0))
449 		ms += area << ic->log2_metadata_run;
450 	else
451 		ms += area * ic->metadata_run;
452 	ms >>= ic->log2_buffer_sectors;
453 
454 	sector_to_block(ic, offset);
455 
456 	if (likely(ic->log2_tag_size >= 0)) {
457 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
458 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
459 	} else {
460 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
461 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
462 	}
463 	*metadata_offset = mo;
464 	return ms;
465 }
466 
467 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
468 {
469 	sector_t result;
470 
471 	if (ic->meta_dev)
472 		return offset;
473 
474 	result = area << ic->sb->log2_interleave_sectors;
475 	if (likely(ic->log2_metadata_run >= 0))
476 		result += (area + 1) << ic->log2_metadata_run;
477 	else
478 		result += (area + 1) * ic->metadata_run;
479 
480 	result += (sector_t)ic->initial_sectors + offset;
481 	result += ic->start;
482 
483 	return result;
484 }
485 
486 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
487 {
488 	if (unlikely(*sec_ptr >= ic->journal_sections))
489 		*sec_ptr -= ic->journal_sections;
490 }
491 
492 static void sb_set_version(struct dm_integrity_c *ic)
493 {
494 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
495 		ic->sb->version = SB_VERSION_5;
496 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
497 		ic->sb->version = SB_VERSION_4;
498 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
499 		ic->sb->version = SB_VERSION_3;
500 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
501 		ic->sb->version = SB_VERSION_2;
502 	else
503 		ic->sb->version = SB_VERSION_1;
504 }
505 
506 static int sb_mac(struct dm_integrity_c *ic, bool wr)
507 {
508 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
509 	int r;
510 	unsigned size = crypto_shash_digestsize(ic->journal_mac);
511 
512 	if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
513 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
514 		return -EINVAL;
515 	}
516 
517 	desc->tfm = ic->journal_mac;
518 
519 	r = crypto_shash_init(desc);
520 	if (unlikely(r < 0)) {
521 		dm_integrity_io_error(ic, "crypto_shash_init", r);
522 		return r;
523 	}
524 
525 	r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
526 	if (unlikely(r < 0)) {
527 		dm_integrity_io_error(ic, "crypto_shash_update", r);
528 		return r;
529 	}
530 
531 	if (likely(wr)) {
532 		r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
533 		if (unlikely(r < 0)) {
534 			dm_integrity_io_error(ic, "crypto_shash_final", r);
535 			return r;
536 		}
537 	} else {
538 		__u8 result[HASH_MAX_DIGESTSIZE];
539 		r = crypto_shash_final(desc, result);
540 		if (unlikely(r < 0)) {
541 			dm_integrity_io_error(ic, "crypto_shash_final", r);
542 			return r;
543 		}
544 		if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
545 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
546 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
547 			return -EILSEQ;
548 		}
549 	}
550 
551 	return 0;
552 }
553 
554 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
555 {
556 	struct dm_io_request io_req;
557 	struct dm_io_region io_loc;
558 	int r;
559 
560 	io_req.bi_op = op;
561 	io_req.bi_op_flags = op_flags;
562 	io_req.mem.type = DM_IO_KMEM;
563 	io_req.mem.ptr.addr = ic->sb;
564 	io_req.notify.fn = NULL;
565 	io_req.client = ic->io;
566 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
567 	io_loc.sector = ic->start;
568 	io_loc.count = SB_SECTORS;
569 
570 	if (op == REQ_OP_WRITE) {
571 		sb_set_version(ic);
572 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
573 			r = sb_mac(ic, true);
574 			if (unlikely(r))
575 				return r;
576 		}
577 	}
578 
579 	r = dm_io(&io_req, 1, &io_loc, NULL);
580 	if (unlikely(r))
581 		return r;
582 
583 	if (op == REQ_OP_READ) {
584 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
585 			r = sb_mac(ic, false);
586 			if (unlikely(r))
587 				return r;
588 		}
589 	}
590 
591 	return 0;
592 }
593 
594 #define BITMAP_OP_TEST_ALL_SET		0
595 #define BITMAP_OP_TEST_ALL_CLEAR	1
596 #define BITMAP_OP_SET			2
597 #define BITMAP_OP_CLEAR			3
598 
599 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
600 			    sector_t sector, sector_t n_sectors, int mode)
601 {
602 	unsigned long bit, end_bit, this_end_bit, page, end_page;
603 	unsigned long *data;
604 
605 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
606 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
607 			sector,
608 			n_sectors,
609 			ic->sb->log2_sectors_per_block,
610 			ic->log2_blocks_per_bitmap_bit,
611 			mode);
612 		BUG();
613 	}
614 
615 	if (unlikely(!n_sectors))
616 		return true;
617 
618 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
619 	end_bit = (sector + n_sectors - 1) >>
620 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
621 
622 	page = bit / (PAGE_SIZE * 8);
623 	bit %= PAGE_SIZE * 8;
624 
625 	end_page = end_bit / (PAGE_SIZE * 8);
626 	end_bit %= PAGE_SIZE * 8;
627 
628 repeat:
629 	if (page < end_page) {
630 		this_end_bit = PAGE_SIZE * 8 - 1;
631 	} else {
632 		this_end_bit = end_bit;
633 	}
634 
635 	data = lowmem_page_address(bitmap[page].page);
636 
637 	if (mode == BITMAP_OP_TEST_ALL_SET) {
638 		while (bit <= this_end_bit) {
639 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
640 				do {
641 					if (data[bit / BITS_PER_LONG] != -1)
642 						return false;
643 					bit += BITS_PER_LONG;
644 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
645 				continue;
646 			}
647 			if (!test_bit(bit, data))
648 				return false;
649 			bit++;
650 		}
651 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
652 		while (bit <= this_end_bit) {
653 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
654 				do {
655 					if (data[bit / BITS_PER_LONG] != 0)
656 						return false;
657 					bit += BITS_PER_LONG;
658 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
659 				continue;
660 			}
661 			if (test_bit(bit, data))
662 				return false;
663 			bit++;
664 		}
665 	} else if (mode == BITMAP_OP_SET) {
666 		while (bit <= this_end_bit) {
667 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
668 				do {
669 					data[bit / BITS_PER_LONG] = -1;
670 					bit += BITS_PER_LONG;
671 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
672 				continue;
673 			}
674 			__set_bit(bit, data);
675 			bit++;
676 		}
677 	} else if (mode == BITMAP_OP_CLEAR) {
678 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
679 			clear_page(data);
680 		else while (bit <= this_end_bit) {
681 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
682 				do {
683 					data[bit / BITS_PER_LONG] = 0;
684 					bit += BITS_PER_LONG;
685 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
686 				continue;
687 			}
688 			__clear_bit(bit, data);
689 			bit++;
690 		}
691 	} else {
692 		BUG();
693 	}
694 
695 	if (unlikely(page < end_page)) {
696 		bit = 0;
697 		page++;
698 		goto repeat;
699 	}
700 
701 	return true;
702 }
703 
704 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
705 {
706 	unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
707 	unsigned i;
708 
709 	for (i = 0; i < n_bitmap_pages; i++) {
710 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
711 		unsigned long *src_data = lowmem_page_address(src[i].page);
712 		copy_page(dst_data, src_data);
713 	}
714 }
715 
716 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
717 {
718 	unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
719 	unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
720 
721 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
722 	return &ic->bbs[bitmap_block];
723 }
724 
725 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
726 				 bool e, const char *function)
727 {
728 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
729 	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
730 
731 	if (unlikely(section >= ic->journal_sections) ||
732 	    unlikely(offset >= limit)) {
733 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
734 		       function, section, offset, ic->journal_sections, limit);
735 		BUG();
736 	}
737 #endif
738 }
739 
740 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
741 			       unsigned *pl_index, unsigned *pl_offset)
742 {
743 	unsigned sector;
744 
745 	access_journal_check(ic, section, offset, false, "page_list_location");
746 
747 	sector = section * ic->journal_section_sectors + offset;
748 
749 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
750 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
751 }
752 
753 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
754 					       unsigned section, unsigned offset, unsigned *n_sectors)
755 {
756 	unsigned pl_index, pl_offset;
757 	char *va;
758 
759 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
760 
761 	if (n_sectors)
762 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
763 
764 	va = lowmem_page_address(pl[pl_index].page);
765 
766 	return (struct journal_sector *)(va + pl_offset);
767 }
768 
769 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
770 {
771 	return access_page_list(ic, ic->journal, section, offset, NULL);
772 }
773 
774 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
775 {
776 	unsigned rel_sector, offset;
777 	struct journal_sector *js;
778 
779 	access_journal_check(ic, section, n, true, "access_journal_entry");
780 
781 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
782 	offset = n / JOURNAL_BLOCK_SECTORS;
783 
784 	js = access_journal(ic, section, rel_sector);
785 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
786 }
787 
788 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
789 {
790 	n <<= ic->sb->log2_sectors_per_block;
791 
792 	n += JOURNAL_BLOCK_SECTORS;
793 
794 	access_journal_check(ic, section, n, false, "access_journal_data");
795 
796 	return access_journal(ic, section, n);
797 }
798 
799 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
800 {
801 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
802 	int r;
803 	unsigned j, size;
804 
805 	desc->tfm = ic->journal_mac;
806 
807 	r = crypto_shash_init(desc);
808 	if (unlikely(r < 0)) {
809 		dm_integrity_io_error(ic, "crypto_shash_init", r);
810 		goto err;
811 	}
812 
813 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
814 		__le64 section_le;
815 
816 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
817 		if (unlikely(r < 0)) {
818 			dm_integrity_io_error(ic, "crypto_shash_update", r);
819 			goto err;
820 		}
821 
822 		section_le = cpu_to_le64(section);
823 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
824 		if (unlikely(r < 0)) {
825 			dm_integrity_io_error(ic, "crypto_shash_update", r);
826 			goto err;
827 		}
828 	}
829 
830 	for (j = 0; j < ic->journal_section_entries; j++) {
831 		struct journal_entry *je = access_journal_entry(ic, section, j);
832 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
833 		if (unlikely(r < 0)) {
834 			dm_integrity_io_error(ic, "crypto_shash_update", r);
835 			goto err;
836 		}
837 	}
838 
839 	size = crypto_shash_digestsize(ic->journal_mac);
840 
841 	if (likely(size <= JOURNAL_MAC_SIZE)) {
842 		r = crypto_shash_final(desc, result);
843 		if (unlikely(r < 0)) {
844 			dm_integrity_io_error(ic, "crypto_shash_final", r);
845 			goto err;
846 		}
847 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
848 	} else {
849 		__u8 digest[HASH_MAX_DIGESTSIZE];
850 
851 		if (WARN_ON(size > sizeof(digest))) {
852 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
853 			goto err;
854 		}
855 		r = crypto_shash_final(desc, digest);
856 		if (unlikely(r < 0)) {
857 			dm_integrity_io_error(ic, "crypto_shash_final", r);
858 			goto err;
859 		}
860 		memcpy(result, digest, JOURNAL_MAC_SIZE);
861 	}
862 
863 	return;
864 err:
865 	memset(result, 0, JOURNAL_MAC_SIZE);
866 }
867 
868 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
869 {
870 	__u8 result[JOURNAL_MAC_SIZE];
871 	unsigned j;
872 
873 	if (!ic->journal_mac)
874 		return;
875 
876 	section_mac(ic, section, result);
877 
878 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
879 		struct journal_sector *js = access_journal(ic, section, j);
880 
881 		if (likely(wr))
882 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
883 		else {
884 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
885 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
886 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
887 			}
888 		}
889 	}
890 }
891 
892 static void complete_journal_op(void *context)
893 {
894 	struct journal_completion *comp = context;
895 	BUG_ON(!atomic_read(&comp->in_flight));
896 	if (likely(atomic_dec_and_test(&comp->in_flight)))
897 		complete(&comp->comp);
898 }
899 
900 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
901 			unsigned n_sections, struct journal_completion *comp)
902 {
903 	struct async_submit_ctl submit;
904 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
905 	unsigned pl_index, pl_offset, section_index;
906 	struct page_list *source_pl, *target_pl;
907 
908 	if (likely(encrypt)) {
909 		source_pl = ic->journal;
910 		target_pl = ic->journal_io;
911 	} else {
912 		source_pl = ic->journal_io;
913 		target_pl = ic->journal;
914 	}
915 
916 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
917 
918 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
919 
920 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
921 
922 	section_index = pl_index;
923 
924 	do {
925 		size_t this_step;
926 		struct page *src_pages[2];
927 		struct page *dst_page;
928 
929 		while (unlikely(pl_index == section_index)) {
930 			unsigned dummy;
931 			if (likely(encrypt))
932 				rw_section_mac(ic, section, true);
933 			section++;
934 			n_sections--;
935 			if (!n_sections)
936 				break;
937 			page_list_location(ic, section, 0, &section_index, &dummy);
938 		}
939 
940 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
941 		dst_page = target_pl[pl_index].page;
942 		src_pages[0] = source_pl[pl_index].page;
943 		src_pages[1] = ic->journal_xor[pl_index].page;
944 
945 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
946 
947 		pl_index++;
948 		pl_offset = 0;
949 		n_bytes -= this_step;
950 	} while (n_bytes);
951 
952 	BUG_ON(n_sections);
953 
954 	async_tx_issue_pending_all();
955 }
956 
957 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
958 {
959 	struct journal_completion *comp = req->data;
960 	if (unlikely(err)) {
961 		if (likely(err == -EINPROGRESS)) {
962 			complete(&comp->ic->crypto_backoff);
963 			return;
964 		}
965 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
966 	}
967 	complete_journal_op(comp);
968 }
969 
970 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
971 {
972 	int r;
973 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
974 				      complete_journal_encrypt, comp);
975 	if (likely(encrypt))
976 		r = crypto_skcipher_encrypt(req);
977 	else
978 		r = crypto_skcipher_decrypt(req);
979 	if (likely(!r))
980 		return false;
981 	if (likely(r == -EINPROGRESS))
982 		return true;
983 	if (likely(r == -EBUSY)) {
984 		wait_for_completion(&comp->ic->crypto_backoff);
985 		reinit_completion(&comp->ic->crypto_backoff);
986 		return true;
987 	}
988 	dm_integrity_io_error(comp->ic, "encrypt", r);
989 	return false;
990 }
991 
992 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
993 			  unsigned n_sections, struct journal_completion *comp)
994 {
995 	struct scatterlist **source_sg;
996 	struct scatterlist **target_sg;
997 
998 	atomic_add(2, &comp->in_flight);
999 
1000 	if (likely(encrypt)) {
1001 		source_sg = ic->journal_scatterlist;
1002 		target_sg = ic->journal_io_scatterlist;
1003 	} else {
1004 		source_sg = ic->journal_io_scatterlist;
1005 		target_sg = ic->journal_scatterlist;
1006 	}
1007 
1008 	do {
1009 		struct skcipher_request *req;
1010 		unsigned ivsize;
1011 		char *iv;
1012 
1013 		if (likely(encrypt))
1014 			rw_section_mac(ic, section, true);
1015 
1016 		req = ic->sk_requests[section];
1017 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1018 		iv = req->iv;
1019 
1020 		memcpy(iv, iv + ivsize, ivsize);
1021 
1022 		req->src = source_sg[section];
1023 		req->dst = target_sg[section];
1024 
1025 		if (unlikely(do_crypt(encrypt, req, comp)))
1026 			atomic_inc(&comp->in_flight);
1027 
1028 		section++;
1029 		n_sections--;
1030 	} while (n_sections);
1031 
1032 	atomic_dec(&comp->in_flight);
1033 	complete_journal_op(comp);
1034 }
1035 
1036 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
1037 			    unsigned n_sections, struct journal_completion *comp)
1038 {
1039 	if (ic->journal_xor)
1040 		return xor_journal(ic, encrypt, section, n_sections, comp);
1041 	else
1042 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1043 }
1044 
1045 static void complete_journal_io(unsigned long error, void *context)
1046 {
1047 	struct journal_completion *comp = context;
1048 	if (unlikely(error != 0))
1049 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1050 	complete_journal_op(comp);
1051 }
1052 
1053 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
1054 			       unsigned sector, unsigned n_sectors, struct journal_completion *comp)
1055 {
1056 	struct dm_io_request io_req;
1057 	struct dm_io_region io_loc;
1058 	unsigned pl_index, pl_offset;
1059 	int r;
1060 
1061 	if (unlikely(dm_integrity_failed(ic))) {
1062 		if (comp)
1063 			complete_journal_io(-1UL, comp);
1064 		return;
1065 	}
1066 
1067 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1068 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1069 
1070 	io_req.bi_op = op;
1071 	io_req.bi_op_flags = op_flags;
1072 	io_req.mem.type = DM_IO_PAGE_LIST;
1073 	if (ic->journal_io)
1074 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1075 	else
1076 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1077 	io_req.mem.offset = pl_offset;
1078 	if (likely(comp != NULL)) {
1079 		io_req.notify.fn = complete_journal_io;
1080 		io_req.notify.context = comp;
1081 	} else {
1082 		io_req.notify.fn = NULL;
1083 	}
1084 	io_req.client = ic->io;
1085 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1086 	io_loc.sector = ic->start + SB_SECTORS + sector;
1087 	io_loc.count = n_sectors;
1088 
1089 	r = dm_io(&io_req, 1, &io_loc, NULL);
1090 	if (unlikely(r)) {
1091 		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
1092 		if (comp) {
1093 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1094 			complete_journal_io(-1UL, comp);
1095 		}
1096 	}
1097 }
1098 
1099 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
1100 		       unsigned n_sections, struct journal_completion *comp)
1101 {
1102 	unsigned sector, n_sectors;
1103 
1104 	sector = section * ic->journal_section_sectors;
1105 	n_sectors = n_sections * ic->journal_section_sectors;
1106 
1107 	rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1108 }
1109 
1110 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1111 {
1112 	struct journal_completion io_comp;
1113 	struct journal_completion crypt_comp_1;
1114 	struct journal_completion crypt_comp_2;
1115 	unsigned i;
1116 
1117 	io_comp.ic = ic;
1118 	init_completion(&io_comp.comp);
1119 
1120 	if (commit_start + commit_sections <= ic->journal_sections) {
1121 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1122 		if (ic->journal_io) {
1123 			crypt_comp_1.ic = ic;
1124 			init_completion(&crypt_comp_1.comp);
1125 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1126 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1127 			wait_for_completion_io(&crypt_comp_1.comp);
1128 		} else {
1129 			for (i = 0; i < commit_sections; i++)
1130 				rw_section_mac(ic, commit_start + i, true);
1131 		}
1132 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1133 			   commit_sections, &io_comp);
1134 	} else {
1135 		unsigned to_end;
1136 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1137 		to_end = ic->journal_sections - commit_start;
1138 		if (ic->journal_io) {
1139 			crypt_comp_1.ic = ic;
1140 			init_completion(&crypt_comp_1.comp);
1141 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1142 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1143 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1144 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1145 				reinit_completion(&crypt_comp_1.comp);
1146 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1147 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1148 				wait_for_completion_io(&crypt_comp_1.comp);
1149 			} else {
1150 				crypt_comp_2.ic = ic;
1151 				init_completion(&crypt_comp_2.comp);
1152 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1153 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1154 				wait_for_completion_io(&crypt_comp_1.comp);
1155 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1156 				wait_for_completion_io(&crypt_comp_2.comp);
1157 			}
1158 		} else {
1159 			for (i = 0; i < to_end; i++)
1160 				rw_section_mac(ic, commit_start + i, true);
1161 			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1162 			for (i = 0; i < commit_sections - to_end; i++)
1163 				rw_section_mac(ic, i, true);
1164 		}
1165 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1166 	}
1167 
1168 	wait_for_completion_io(&io_comp.comp);
1169 }
1170 
1171 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1172 			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1173 {
1174 	struct dm_io_request io_req;
1175 	struct dm_io_region io_loc;
1176 	int r;
1177 	unsigned sector, pl_index, pl_offset;
1178 
1179 	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1180 
1181 	if (unlikely(dm_integrity_failed(ic))) {
1182 		fn(-1UL, data);
1183 		return;
1184 	}
1185 
1186 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1187 
1188 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1189 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1190 
1191 	io_req.bi_op = REQ_OP_WRITE;
1192 	io_req.bi_op_flags = 0;
1193 	io_req.mem.type = DM_IO_PAGE_LIST;
1194 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1195 	io_req.mem.offset = pl_offset;
1196 	io_req.notify.fn = fn;
1197 	io_req.notify.context = data;
1198 	io_req.client = ic->io;
1199 	io_loc.bdev = ic->dev->bdev;
1200 	io_loc.sector = target;
1201 	io_loc.count = n_sectors;
1202 
1203 	r = dm_io(&io_req, 1, &io_loc, NULL);
1204 	if (unlikely(r)) {
1205 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1206 		fn(-1UL, data);
1207 	}
1208 }
1209 
1210 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1211 {
1212 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1213 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1214 }
1215 
1216 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1217 {
1218 	struct rb_node **n = &ic->in_progress.rb_node;
1219 	struct rb_node *parent;
1220 
1221 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1222 
1223 	if (likely(check_waiting)) {
1224 		struct dm_integrity_range *range;
1225 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1226 			if (unlikely(ranges_overlap(range, new_range)))
1227 				return false;
1228 		}
1229 	}
1230 
1231 	parent = NULL;
1232 
1233 	while (*n) {
1234 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1235 
1236 		parent = *n;
1237 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1238 			n = &range->node.rb_left;
1239 		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1240 			n = &range->node.rb_right;
1241 		} else {
1242 			return false;
1243 		}
1244 	}
1245 
1246 	rb_link_node(&new_range->node, parent, n);
1247 	rb_insert_color(&new_range->node, &ic->in_progress);
1248 
1249 	return true;
1250 }
1251 
1252 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1253 {
1254 	rb_erase(&range->node, &ic->in_progress);
1255 	while (unlikely(!list_empty(&ic->wait_list))) {
1256 		struct dm_integrity_range *last_range =
1257 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1258 		struct task_struct *last_range_task;
1259 		last_range_task = last_range->task;
1260 		list_del(&last_range->wait_entry);
1261 		if (!add_new_range(ic, last_range, false)) {
1262 			last_range->task = last_range_task;
1263 			list_add(&last_range->wait_entry, &ic->wait_list);
1264 			break;
1265 		}
1266 		last_range->waiting = false;
1267 		wake_up_process(last_range_task);
1268 	}
1269 }
1270 
1271 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1272 {
1273 	unsigned long flags;
1274 
1275 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1276 	remove_range_unlocked(ic, range);
1277 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1278 }
1279 
1280 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1281 {
1282 	new_range->waiting = true;
1283 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1284 	new_range->task = current;
1285 	do {
1286 		__set_current_state(TASK_UNINTERRUPTIBLE);
1287 		spin_unlock_irq(&ic->endio_wait.lock);
1288 		io_schedule();
1289 		spin_lock_irq(&ic->endio_wait.lock);
1290 	} while (unlikely(new_range->waiting));
1291 }
1292 
1293 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1294 {
1295 	if (unlikely(!add_new_range(ic, new_range, true)))
1296 		wait_and_add_new_range(ic, new_range);
1297 }
1298 
1299 static void init_journal_node(struct journal_node *node)
1300 {
1301 	RB_CLEAR_NODE(&node->node);
1302 	node->sector = (sector_t)-1;
1303 }
1304 
1305 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1306 {
1307 	struct rb_node **link;
1308 	struct rb_node *parent;
1309 
1310 	node->sector = sector;
1311 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1312 
1313 	link = &ic->journal_tree_root.rb_node;
1314 	parent = NULL;
1315 
1316 	while (*link) {
1317 		struct journal_node *j;
1318 		parent = *link;
1319 		j = container_of(parent, struct journal_node, node);
1320 		if (sector < j->sector)
1321 			link = &j->node.rb_left;
1322 		else
1323 			link = &j->node.rb_right;
1324 	}
1325 
1326 	rb_link_node(&node->node, parent, link);
1327 	rb_insert_color(&node->node, &ic->journal_tree_root);
1328 }
1329 
1330 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1331 {
1332 	BUG_ON(RB_EMPTY_NODE(&node->node));
1333 	rb_erase(&node->node, &ic->journal_tree_root);
1334 	init_journal_node(node);
1335 }
1336 
1337 #define NOT_FOUND	(-1U)
1338 
1339 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1340 {
1341 	struct rb_node *n = ic->journal_tree_root.rb_node;
1342 	unsigned found = NOT_FOUND;
1343 	*next_sector = (sector_t)-1;
1344 	while (n) {
1345 		struct journal_node *j = container_of(n, struct journal_node, node);
1346 		if (sector == j->sector) {
1347 			found = j - ic->journal_tree;
1348 		}
1349 		if (sector < j->sector) {
1350 			*next_sector = j->sector;
1351 			n = j->node.rb_left;
1352 		} else {
1353 			n = j->node.rb_right;
1354 		}
1355 	}
1356 
1357 	return found;
1358 }
1359 
1360 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1361 {
1362 	struct journal_node *node, *next_node;
1363 	struct rb_node *next;
1364 
1365 	if (unlikely(pos >= ic->journal_entries))
1366 		return false;
1367 	node = &ic->journal_tree[pos];
1368 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1369 		return false;
1370 	if (unlikely(node->sector != sector))
1371 		return false;
1372 
1373 	next = rb_next(&node->node);
1374 	if (unlikely(!next))
1375 		return true;
1376 
1377 	next_node = container_of(next, struct journal_node, node);
1378 	return next_node->sector != sector;
1379 }
1380 
1381 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1382 {
1383 	struct rb_node *next;
1384 	struct journal_node *next_node;
1385 	unsigned next_section;
1386 
1387 	BUG_ON(RB_EMPTY_NODE(&node->node));
1388 
1389 	next = rb_next(&node->node);
1390 	if (unlikely(!next))
1391 		return false;
1392 
1393 	next_node = container_of(next, struct journal_node, node);
1394 
1395 	if (next_node->sector != node->sector)
1396 		return false;
1397 
1398 	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1399 	if (next_section >= ic->committed_section &&
1400 	    next_section < ic->committed_section + ic->n_committed_sections)
1401 		return true;
1402 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1403 		return true;
1404 
1405 	return false;
1406 }
1407 
1408 #define TAG_READ	0
1409 #define TAG_WRITE	1
1410 #define TAG_CMP		2
1411 
1412 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1413 			       unsigned *metadata_offset, unsigned total_size, int op)
1414 {
1415 #define MAY_BE_FILLER		1
1416 #define MAY_BE_HASH		2
1417 	unsigned hash_offset = 0;
1418 	unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1419 
1420 	do {
1421 		unsigned char *data, *dp;
1422 		struct dm_buffer *b;
1423 		unsigned to_copy;
1424 		int r;
1425 
1426 		r = dm_integrity_failed(ic);
1427 		if (unlikely(r))
1428 			return r;
1429 
1430 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1431 		if (IS_ERR(data))
1432 			return PTR_ERR(data);
1433 
1434 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1435 		dp = data + *metadata_offset;
1436 		if (op == TAG_READ) {
1437 			memcpy(tag, dp, to_copy);
1438 		} else if (op == TAG_WRITE) {
1439 			if (memcmp(dp, tag, to_copy)) {
1440 				memcpy(dp, tag, to_copy);
1441 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1442 			}
1443 		} else {
1444 			/* e.g.: op == TAG_CMP */
1445 
1446 			if (likely(is_power_of_2(ic->tag_size))) {
1447 				if (unlikely(memcmp(dp, tag, to_copy)))
1448 					if (unlikely(!ic->discard) ||
1449 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1450 						goto thorough_test;
1451 				}
1452 			} else {
1453 				unsigned i, ts;
1454 thorough_test:
1455 				ts = total_size;
1456 
1457 				for (i = 0; i < to_copy; i++, ts--) {
1458 					if (unlikely(dp[i] != tag[i]))
1459 						may_be &= ~MAY_BE_HASH;
1460 					if (likely(dp[i] != DISCARD_FILLER))
1461 						may_be &= ~MAY_BE_FILLER;
1462 					hash_offset++;
1463 					if (unlikely(hash_offset == ic->tag_size)) {
1464 						if (unlikely(!may_be)) {
1465 							dm_bufio_release(b);
1466 							return ts;
1467 						}
1468 						hash_offset = 0;
1469 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1470 					}
1471 				}
1472 			}
1473 		}
1474 		dm_bufio_release(b);
1475 
1476 		tag += to_copy;
1477 		*metadata_offset += to_copy;
1478 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1479 			(*metadata_block)++;
1480 			*metadata_offset = 0;
1481 		}
1482 
1483 		if (unlikely(!is_power_of_2(ic->tag_size))) {
1484 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1485 		}
1486 
1487 		total_size -= to_copy;
1488 	} while (unlikely(total_size));
1489 
1490 	return 0;
1491 #undef MAY_BE_FILLER
1492 #undef MAY_BE_HASH
1493 }
1494 
1495 struct flush_request {
1496 	struct dm_io_request io_req;
1497 	struct dm_io_region io_reg;
1498 	struct dm_integrity_c *ic;
1499 	struct completion comp;
1500 };
1501 
1502 static void flush_notify(unsigned long error, void *fr_)
1503 {
1504 	struct flush_request *fr = fr_;
1505 	if (unlikely(error != 0))
1506 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1507 	complete(&fr->comp);
1508 }
1509 
1510 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1511 {
1512 	int r;
1513 
1514 	struct flush_request fr;
1515 
1516 	if (!ic->meta_dev)
1517 		flush_data = false;
1518 	if (flush_data) {
1519 		fr.io_req.bi_op = REQ_OP_WRITE,
1520 		fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1521 		fr.io_req.mem.type = DM_IO_KMEM,
1522 		fr.io_req.mem.ptr.addr = NULL,
1523 		fr.io_req.notify.fn = flush_notify,
1524 		fr.io_req.notify.context = &fr;
1525 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1526 		fr.io_reg.bdev = ic->dev->bdev,
1527 		fr.io_reg.sector = 0,
1528 		fr.io_reg.count = 0,
1529 		fr.ic = ic;
1530 		init_completion(&fr.comp);
1531 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1532 		BUG_ON(r);
1533 	}
1534 
1535 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1536 	if (unlikely(r))
1537 		dm_integrity_io_error(ic, "writing tags", r);
1538 
1539 	if (flush_data)
1540 		wait_for_completion(&fr.comp);
1541 }
1542 
1543 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1544 {
1545 	DECLARE_WAITQUEUE(wait, current);
1546 	__add_wait_queue(&ic->endio_wait, &wait);
1547 	__set_current_state(TASK_UNINTERRUPTIBLE);
1548 	spin_unlock_irq(&ic->endio_wait.lock);
1549 	io_schedule();
1550 	spin_lock_irq(&ic->endio_wait.lock);
1551 	__remove_wait_queue(&ic->endio_wait, &wait);
1552 }
1553 
1554 static void autocommit_fn(struct timer_list *t)
1555 {
1556 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1557 
1558 	if (likely(!dm_integrity_failed(ic)))
1559 		queue_work(ic->commit_wq, &ic->commit_work);
1560 }
1561 
1562 static void schedule_autocommit(struct dm_integrity_c *ic)
1563 {
1564 	if (!timer_pending(&ic->autocommit_timer))
1565 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1566 }
1567 
1568 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1569 {
1570 	struct bio *bio;
1571 	unsigned long flags;
1572 
1573 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1574 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1575 	bio_list_add(&ic->flush_bio_list, bio);
1576 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1577 
1578 	queue_work(ic->commit_wq, &ic->commit_work);
1579 }
1580 
1581 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1582 {
1583 	int r = dm_integrity_failed(ic);
1584 	if (unlikely(r) && !bio->bi_status)
1585 		bio->bi_status = errno_to_blk_status(r);
1586 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1587 		unsigned long flags;
1588 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1589 		bio_list_add(&ic->synchronous_bios, bio);
1590 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1591 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1592 		return;
1593 	}
1594 	bio_endio(bio);
1595 }
1596 
1597 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1598 {
1599 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1600 
1601 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1602 		submit_flush_bio(ic, dio);
1603 	else
1604 		do_endio(ic, bio);
1605 }
1606 
1607 static void dec_in_flight(struct dm_integrity_io *dio)
1608 {
1609 	if (atomic_dec_and_test(&dio->in_flight)) {
1610 		struct dm_integrity_c *ic = dio->ic;
1611 		struct bio *bio;
1612 
1613 		remove_range(ic, &dio->range);
1614 
1615 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1616 			schedule_autocommit(ic);
1617 
1618 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1619 
1620 		if (unlikely(dio->bi_status) && !bio->bi_status)
1621 			bio->bi_status = dio->bi_status;
1622 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1623 			dio->range.logical_sector += dio->range.n_sectors;
1624 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1625 			INIT_WORK(&dio->work, integrity_bio_wait);
1626 			queue_work(ic->offload_wq, &dio->work);
1627 			return;
1628 		}
1629 		do_endio_flush(ic, dio);
1630 	}
1631 }
1632 
1633 static void integrity_end_io(struct bio *bio)
1634 {
1635 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1636 
1637 	dm_bio_restore(&dio->bio_details, bio);
1638 	if (bio->bi_integrity)
1639 		bio->bi_opf |= REQ_INTEGRITY;
1640 
1641 	if (dio->completion)
1642 		complete(dio->completion);
1643 
1644 	dec_in_flight(dio);
1645 }
1646 
1647 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1648 				      const char *data, char *result)
1649 {
1650 	__le64 sector_le = cpu_to_le64(sector);
1651 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1652 	int r;
1653 	unsigned digest_size;
1654 
1655 	req->tfm = ic->internal_hash;
1656 
1657 	r = crypto_shash_init(req);
1658 	if (unlikely(r < 0)) {
1659 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1660 		goto failed;
1661 	}
1662 
1663 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1664 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1665 		if (unlikely(r < 0)) {
1666 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1667 			goto failed;
1668 		}
1669 	}
1670 
1671 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1672 	if (unlikely(r < 0)) {
1673 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1674 		goto failed;
1675 	}
1676 
1677 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1678 	if (unlikely(r < 0)) {
1679 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1680 		goto failed;
1681 	}
1682 
1683 	r = crypto_shash_final(req, result);
1684 	if (unlikely(r < 0)) {
1685 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1686 		goto failed;
1687 	}
1688 
1689 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1690 	if (unlikely(digest_size < ic->tag_size))
1691 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1692 
1693 	return;
1694 
1695 failed:
1696 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1697 	get_random_bytes(result, ic->tag_size);
1698 }
1699 
1700 static void integrity_metadata(struct work_struct *w)
1701 {
1702 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1703 	struct dm_integrity_c *ic = dio->ic;
1704 
1705 	int r;
1706 
1707 	if (ic->internal_hash) {
1708 		struct bvec_iter iter;
1709 		struct bio_vec bv;
1710 		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1711 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1712 		char *checksums;
1713 		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1714 		char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1715 		sector_t sector;
1716 		unsigned sectors_to_process;
1717 
1718 		if (unlikely(ic->mode == 'R'))
1719 			goto skip_io;
1720 
1721 		if (likely(dio->op != REQ_OP_DISCARD))
1722 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1723 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1724 		else
1725 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1726 		if (!checksums) {
1727 			checksums = checksums_onstack;
1728 			if (WARN_ON(extra_space &&
1729 				    digest_size > sizeof(checksums_onstack))) {
1730 				r = -EINVAL;
1731 				goto error;
1732 			}
1733 		}
1734 
1735 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1736 			sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1737 			unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1738 			unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1739 			unsigned max_blocks = max_size / ic->tag_size;
1740 			memset(checksums, DISCARD_FILLER, max_size);
1741 
1742 			while (bi_size) {
1743 				unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1744 				this_step_blocks = min(this_step_blocks, max_blocks);
1745 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1746 							this_step_blocks * ic->tag_size, TAG_WRITE);
1747 				if (unlikely(r)) {
1748 					if (likely(checksums != checksums_onstack))
1749 						kfree(checksums);
1750 					goto error;
1751 				}
1752 
1753 				/*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1754 					printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1755 					printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1756 					BUG();
1757 				}*/
1758 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1759 				bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1760 			}
1761 
1762 			if (likely(checksums != checksums_onstack))
1763 				kfree(checksums);
1764 			goto skip_io;
1765 		}
1766 
1767 		sector = dio->range.logical_sector;
1768 		sectors_to_process = dio->range.n_sectors;
1769 
1770 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1771 			unsigned pos;
1772 			char *mem, *checksums_ptr;
1773 
1774 again:
1775 			mem = bvec_kmap_local(&bv);
1776 			pos = 0;
1777 			checksums_ptr = checksums;
1778 			do {
1779 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1780 				checksums_ptr += ic->tag_size;
1781 				sectors_to_process -= ic->sectors_per_block;
1782 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1783 				sector += ic->sectors_per_block;
1784 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1785 			kunmap_local(mem);
1786 
1787 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1788 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1789 			if (unlikely(r)) {
1790 				if (r > 0) {
1791 					char b[BDEVNAME_SIZE];
1792 					sector_t s;
1793 
1794 					s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1795 					DMERR_LIMIT("%s: Checksum failed at sector 0x%llx",
1796 						    bio_devname(bio, b), s);
1797 					r = -EILSEQ;
1798 					atomic64_inc(&ic->number_of_mismatches);
1799 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1800 							 bio, s, 0);
1801 				}
1802 				if (likely(checksums != checksums_onstack))
1803 					kfree(checksums);
1804 				goto error;
1805 			}
1806 
1807 			if (!sectors_to_process)
1808 				break;
1809 
1810 			if (unlikely(pos < bv.bv_len)) {
1811 				bv.bv_offset += pos;
1812 				bv.bv_len -= pos;
1813 				goto again;
1814 			}
1815 		}
1816 
1817 		if (likely(checksums != checksums_onstack))
1818 			kfree(checksums);
1819 	} else {
1820 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1821 
1822 		if (bip) {
1823 			struct bio_vec biv;
1824 			struct bvec_iter iter;
1825 			unsigned data_to_process = dio->range.n_sectors;
1826 			sector_to_block(ic, data_to_process);
1827 			data_to_process *= ic->tag_size;
1828 
1829 			bip_for_each_vec(biv, bip, iter) {
1830 				unsigned char *tag;
1831 				unsigned this_len;
1832 
1833 				BUG_ON(PageHighMem(biv.bv_page));
1834 				tag = bvec_virt(&biv);
1835 				this_len = min(biv.bv_len, data_to_process);
1836 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1837 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1838 				if (unlikely(r))
1839 					goto error;
1840 				data_to_process -= this_len;
1841 				if (!data_to_process)
1842 					break;
1843 			}
1844 		}
1845 	}
1846 skip_io:
1847 	dec_in_flight(dio);
1848 	return;
1849 error:
1850 	dio->bi_status = errno_to_blk_status(r);
1851 	dec_in_flight(dio);
1852 }
1853 
1854 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1855 {
1856 	struct dm_integrity_c *ic = ti->private;
1857 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1858 	struct bio_integrity_payload *bip;
1859 
1860 	sector_t area, offset;
1861 
1862 	dio->ic = ic;
1863 	dio->bi_status = 0;
1864 	dio->op = bio_op(bio);
1865 
1866 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1867 		if (ti->max_io_len) {
1868 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1869 			unsigned log2_max_io_len = __fls(ti->max_io_len);
1870 			sector_t start_boundary = sec >> log2_max_io_len;
1871 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1872 			if (start_boundary < end_boundary) {
1873 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1874 				dm_accept_partial_bio(bio, len);
1875 			}
1876 		}
1877 	}
1878 
1879 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1880 		submit_flush_bio(ic, dio);
1881 		return DM_MAPIO_SUBMITTED;
1882 	}
1883 
1884 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1885 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1886 	if (unlikely(dio->fua)) {
1887 		/*
1888 		 * Don't pass down the FUA flag because we have to flush
1889 		 * disk cache anyway.
1890 		 */
1891 		bio->bi_opf &= ~REQ_FUA;
1892 	}
1893 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1894 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1895 		      dio->range.logical_sector, bio_sectors(bio),
1896 		      ic->provided_data_sectors);
1897 		return DM_MAPIO_KILL;
1898 	}
1899 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1900 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1901 		      ic->sectors_per_block,
1902 		      dio->range.logical_sector, bio_sectors(bio));
1903 		return DM_MAPIO_KILL;
1904 	}
1905 
1906 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1907 		struct bvec_iter iter;
1908 		struct bio_vec bv;
1909 		bio_for_each_segment(bv, bio, iter) {
1910 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1911 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1912 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1913 				return DM_MAPIO_KILL;
1914 			}
1915 		}
1916 	}
1917 
1918 	bip = bio_integrity(bio);
1919 	if (!ic->internal_hash) {
1920 		if (bip) {
1921 			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1922 			if (ic->log2_tag_size >= 0)
1923 				wanted_tag_size <<= ic->log2_tag_size;
1924 			else
1925 				wanted_tag_size *= ic->tag_size;
1926 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1927 				DMERR("Invalid integrity data size %u, expected %u",
1928 				      bip->bip_iter.bi_size, wanted_tag_size);
1929 				return DM_MAPIO_KILL;
1930 			}
1931 		}
1932 	} else {
1933 		if (unlikely(bip != NULL)) {
1934 			DMERR("Unexpected integrity data when using internal hash");
1935 			return DM_MAPIO_KILL;
1936 		}
1937 	}
1938 
1939 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1940 		return DM_MAPIO_KILL;
1941 
1942 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1943 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1944 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1945 
1946 	dm_integrity_map_continue(dio, true);
1947 	return DM_MAPIO_SUBMITTED;
1948 }
1949 
1950 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1951 				 unsigned journal_section, unsigned journal_entry)
1952 {
1953 	struct dm_integrity_c *ic = dio->ic;
1954 	sector_t logical_sector;
1955 	unsigned n_sectors;
1956 
1957 	logical_sector = dio->range.logical_sector;
1958 	n_sectors = dio->range.n_sectors;
1959 	do {
1960 		struct bio_vec bv = bio_iovec(bio);
1961 		char *mem;
1962 
1963 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1964 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1965 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1966 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1967 retry_kmap:
1968 		mem = kmap_local_page(bv.bv_page);
1969 		if (likely(dio->op == REQ_OP_WRITE))
1970 			flush_dcache_page(bv.bv_page);
1971 
1972 		do {
1973 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1974 
1975 			if (unlikely(dio->op == REQ_OP_READ)) {
1976 				struct journal_sector *js;
1977 				char *mem_ptr;
1978 				unsigned s;
1979 
1980 				if (unlikely(journal_entry_is_inprogress(je))) {
1981 					flush_dcache_page(bv.bv_page);
1982 					kunmap_local(mem);
1983 
1984 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1985 					goto retry_kmap;
1986 				}
1987 				smp_rmb();
1988 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1989 				js = access_journal_data(ic, journal_section, journal_entry);
1990 				mem_ptr = mem + bv.bv_offset;
1991 				s = 0;
1992 				do {
1993 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1994 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1995 					js++;
1996 					mem_ptr += 1 << SECTOR_SHIFT;
1997 				} while (++s < ic->sectors_per_block);
1998 #ifdef INTERNAL_VERIFY
1999 				if (ic->internal_hash) {
2000 					char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2001 
2002 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2003 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2004 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2005 							    logical_sector);
2006 						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2007 								 bio, logical_sector, 0);
2008 					}
2009 				}
2010 #endif
2011 			}
2012 
2013 			if (!ic->internal_hash) {
2014 				struct bio_integrity_payload *bip = bio_integrity(bio);
2015 				unsigned tag_todo = ic->tag_size;
2016 				char *tag_ptr = journal_entry_tag(ic, je);
2017 
2018 				if (bip) do {
2019 					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2020 					unsigned tag_now = min(biv.bv_len, tag_todo);
2021 					char *tag_addr;
2022 					BUG_ON(PageHighMem(biv.bv_page));
2023 					tag_addr = bvec_virt(&biv);
2024 					if (likely(dio->op == REQ_OP_WRITE))
2025 						memcpy(tag_ptr, tag_addr, tag_now);
2026 					else
2027 						memcpy(tag_addr, tag_ptr, tag_now);
2028 					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2029 					tag_ptr += tag_now;
2030 					tag_todo -= tag_now;
2031 				} while (unlikely(tag_todo)); else {
2032 					if (likely(dio->op == REQ_OP_WRITE))
2033 						memset(tag_ptr, 0, tag_todo);
2034 				}
2035 			}
2036 
2037 			if (likely(dio->op == REQ_OP_WRITE)) {
2038 				struct journal_sector *js;
2039 				unsigned s;
2040 
2041 				js = access_journal_data(ic, journal_section, journal_entry);
2042 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2043 
2044 				s = 0;
2045 				do {
2046 					je->last_bytes[s] = js[s].commit_id;
2047 				} while (++s < ic->sectors_per_block);
2048 
2049 				if (ic->internal_hash) {
2050 					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
2051 					if (unlikely(digest_size > ic->tag_size)) {
2052 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2053 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2054 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2055 					} else
2056 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2057 				}
2058 
2059 				journal_entry_set_sector(je, logical_sector);
2060 			}
2061 			logical_sector += ic->sectors_per_block;
2062 
2063 			journal_entry++;
2064 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2065 				journal_entry = 0;
2066 				journal_section++;
2067 				wraparound_section(ic, &journal_section);
2068 			}
2069 
2070 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2071 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2072 
2073 		if (unlikely(dio->op == REQ_OP_READ))
2074 			flush_dcache_page(bv.bv_page);
2075 		kunmap_local(mem);
2076 	} while (n_sectors);
2077 
2078 	if (likely(dio->op == REQ_OP_WRITE)) {
2079 		smp_mb();
2080 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2081 			wake_up(&ic->copy_to_journal_wait);
2082 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2083 			queue_work(ic->commit_wq, &ic->commit_work);
2084 		} else {
2085 			schedule_autocommit(ic);
2086 		}
2087 	} else {
2088 		remove_range(ic, &dio->range);
2089 	}
2090 
2091 	if (unlikely(bio->bi_iter.bi_size)) {
2092 		sector_t area, offset;
2093 
2094 		dio->range.logical_sector = logical_sector;
2095 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2096 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2097 		return true;
2098 	}
2099 
2100 	return false;
2101 }
2102 
2103 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2104 {
2105 	struct dm_integrity_c *ic = dio->ic;
2106 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2107 	unsigned journal_section, journal_entry;
2108 	unsigned journal_read_pos;
2109 	struct completion read_comp;
2110 	bool discard_retried = false;
2111 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2112 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2113 		need_sync_io = true;
2114 
2115 	if (need_sync_io && from_map) {
2116 		INIT_WORK(&dio->work, integrity_bio_wait);
2117 		queue_work(ic->offload_wq, &dio->work);
2118 		return;
2119 	}
2120 
2121 lock_retry:
2122 	spin_lock_irq(&ic->endio_wait.lock);
2123 retry:
2124 	if (unlikely(dm_integrity_failed(ic))) {
2125 		spin_unlock_irq(&ic->endio_wait.lock);
2126 		do_endio(ic, bio);
2127 		return;
2128 	}
2129 	dio->range.n_sectors = bio_sectors(bio);
2130 	journal_read_pos = NOT_FOUND;
2131 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2132 		if (dio->op == REQ_OP_WRITE) {
2133 			unsigned next_entry, i, pos;
2134 			unsigned ws, we, range_sectors;
2135 
2136 			dio->range.n_sectors = min(dio->range.n_sectors,
2137 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2138 			if (unlikely(!dio->range.n_sectors)) {
2139 				if (from_map)
2140 					goto offload_to_thread;
2141 				sleep_on_endio_wait(ic);
2142 				goto retry;
2143 			}
2144 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2145 			ic->free_sectors -= range_sectors;
2146 			journal_section = ic->free_section;
2147 			journal_entry = ic->free_section_entry;
2148 
2149 			next_entry = ic->free_section_entry + range_sectors;
2150 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2151 			ic->free_section += next_entry / ic->journal_section_entries;
2152 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2153 			wraparound_section(ic, &ic->free_section);
2154 
2155 			pos = journal_section * ic->journal_section_entries + journal_entry;
2156 			ws = journal_section;
2157 			we = journal_entry;
2158 			i = 0;
2159 			do {
2160 				struct journal_entry *je;
2161 
2162 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2163 				pos++;
2164 				if (unlikely(pos >= ic->journal_entries))
2165 					pos = 0;
2166 
2167 				je = access_journal_entry(ic, ws, we);
2168 				BUG_ON(!journal_entry_is_unused(je));
2169 				journal_entry_set_inprogress(je);
2170 				we++;
2171 				if (unlikely(we == ic->journal_section_entries)) {
2172 					we = 0;
2173 					ws++;
2174 					wraparound_section(ic, &ws);
2175 				}
2176 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2177 
2178 			spin_unlock_irq(&ic->endio_wait.lock);
2179 			goto journal_read_write;
2180 		} else {
2181 			sector_t next_sector;
2182 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2183 			if (likely(journal_read_pos == NOT_FOUND)) {
2184 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2185 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2186 			} else {
2187 				unsigned i;
2188 				unsigned jp = journal_read_pos + 1;
2189 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2190 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2191 						break;
2192 				}
2193 				dio->range.n_sectors = i;
2194 			}
2195 		}
2196 	}
2197 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2198 		/*
2199 		 * We must not sleep in the request routine because it could
2200 		 * stall bios on current->bio_list.
2201 		 * So, we offload the bio to a workqueue if we have to sleep.
2202 		 */
2203 		if (from_map) {
2204 offload_to_thread:
2205 			spin_unlock_irq(&ic->endio_wait.lock);
2206 			INIT_WORK(&dio->work, integrity_bio_wait);
2207 			queue_work(ic->wait_wq, &dio->work);
2208 			return;
2209 		}
2210 		if (journal_read_pos != NOT_FOUND)
2211 			dio->range.n_sectors = ic->sectors_per_block;
2212 		wait_and_add_new_range(ic, &dio->range);
2213 		/*
2214 		 * wait_and_add_new_range drops the spinlock, so the journal
2215 		 * may have been changed arbitrarily. We need to recheck.
2216 		 * To simplify the code, we restrict I/O size to just one block.
2217 		 */
2218 		if (journal_read_pos != NOT_FOUND) {
2219 			sector_t next_sector;
2220 			unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2221 			if (unlikely(new_pos != journal_read_pos)) {
2222 				remove_range_unlocked(ic, &dio->range);
2223 				goto retry;
2224 			}
2225 		}
2226 	}
2227 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2228 		sector_t next_sector;
2229 		unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2230 		if (unlikely(new_pos != NOT_FOUND) ||
2231 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2232 			remove_range_unlocked(ic, &dio->range);
2233 			spin_unlock_irq(&ic->endio_wait.lock);
2234 			queue_work(ic->commit_wq, &ic->commit_work);
2235 			flush_workqueue(ic->commit_wq);
2236 			queue_work(ic->writer_wq, &ic->writer_work);
2237 			flush_workqueue(ic->writer_wq);
2238 			discard_retried = true;
2239 			goto lock_retry;
2240 		}
2241 	}
2242 	spin_unlock_irq(&ic->endio_wait.lock);
2243 
2244 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2245 		journal_section = journal_read_pos / ic->journal_section_entries;
2246 		journal_entry = journal_read_pos % ic->journal_section_entries;
2247 		goto journal_read_write;
2248 	}
2249 
2250 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2251 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2252 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2253 			struct bitmap_block_status *bbs;
2254 
2255 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2256 			spin_lock(&bbs->bio_queue_lock);
2257 			bio_list_add(&bbs->bio_queue, bio);
2258 			spin_unlock(&bbs->bio_queue_lock);
2259 			queue_work(ic->writer_wq, &bbs->work);
2260 			return;
2261 		}
2262 	}
2263 
2264 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2265 
2266 	if (need_sync_io) {
2267 		init_completion(&read_comp);
2268 		dio->completion = &read_comp;
2269 	} else
2270 		dio->completion = NULL;
2271 
2272 	dm_bio_record(&dio->bio_details, bio);
2273 	bio_set_dev(bio, ic->dev->bdev);
2274 	bio->bi_integrity = NULL;
2275 	bio->bi_opf &= ~REQ_INTEGRITY;
2276 	bio->bi_end_io = integrity_end_io;
2277 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2278 
2279 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2280 		integrity_metadata(&dio->work);
2281 		dm_integrity_flush_buffers(ic, false);
2282 
2283 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2284 		dio->completion = NULL;
2285 
2286 		submit_bio_noacct(bio);
2287 
2288 		return;
2289 	}
2290 
2291 	submit_bio_noacct(bio);
2292 
2293 	if (need_sync_io) {
2294 		wait_for_completion_io(&read_comp);
2295 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2296 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2297 			goto skip_check;
2298 		if (ic->mode == 'B') {
2299 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2300 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2301 				goto skip_check;
2302 		}
2303 
2304 		if (likely(!bio->bi_status))
2305 			integrity_metadata(&dio->work);
2306 		else
2307 skip_check:
2308 			dec_in_flight(dio);
2309 
2310 	} else {
2311 		INIT_WORK(&dio->work, integrity_metadata);
2312 		queue_work(ic->metadata_wq, &dio->work);
2313 	}
2314 
2315 	return;
2316 
2317 journal_read_write:
2318 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2319 		goto lock_retry;
2320 
2321 	do_endio_flush(ic, dio);
2322 }
2323 
2324 
2325 static void integrity_bio_wait(struct work_struct *w)
2326 {
2327 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2328 
2329 	dm_integrity_map_continue(dio, false);
2330 }
2331 
2332 static void pad_uncommitted(struct dm_integrity_c *ic)
2333 {
2334 	if (ic->free_section_entry) {
2335 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2336 		ic->free_section_entry = 0;
2337 		ic->free_section++;
2338 		wraparound_section(ic, &ic->free_section);
2339 		ic->n_uncommitted_sections++;
2340 	}
2341 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2342 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2343 		    ic->journal_section_entries + ic->free_sectors)) {
2344 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2345 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2346 		       "journal_section_entries %u, free_sectors %u",
2347 		       ic->journal_sections, ic->journal_section_entries,
2348 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2349 		       ic->journal_section_entries, ic->free_sectors);
2350 	}
2351 }
2352 
2353 static void integrity_commit(struct work_struct *w)
2354 {
2355 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2356 	unsigned commit_start, commit_sections;
2357 	unsigned i, j, n;
2358 	struct bio *flushes;
2359 
2360 	del_timer(&ic->autocommit_timer);
2361 
2362 	spin_lock_irq(&ic->endio_wait.lock);
2363 	flushes = bio_list_get(&ic->flush_bio_list);
2364 	if (unlikely(ic->mode != 'J')) {
2365 		spin_unlock_irq(&ic->endio_wait.lock);
2366 		dm_integrity_flush_buffers(ic, true);
2367 		goto release_flush_bios;
2368 	}
2369 
2370 	pad_uncommitted(ic);
2371 	commit_start = ic->uncommitted_section;
2372 	commit_sections = ic->n_uncommitted_sections;
2373 	spin_unlock_irq(&ic->endio_wait.lock);
2374 
2375 	if (!commit_sections)
2376 		goto release_flush_bios;
2377 
2378 	i = commit_start;
2379 	for (n = 0; n < commit_sections; n++) {
2380 		for (j = 0; j < ic->journal_section_entries; j++) {
2381 			struct journal_entry *je;
2382 			je = access_journal_entry(ic, i, j);
2383 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2384 		}
2385 		for (j = 0; j < ic->journal_section_sectors; j++) {
2386 			struct journal_sector *js;
2387 			js = access_journal(ic, i, j);
2388 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2389 		}
2390 		i++;
2391 		if (unlikely(i >= ic->journal_sections))
2392 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2393 		wraparound_section(ic, &i);
2394 	}
2395 	smp_rmb();
2396 
2397 	write_journal(ic, commit_start, commit_sections);
2398 
2399 	spin_lock_irq(&ic->endio_wait.lock);
2400 	ic->uncommitted_section += commit_sections;
2401 	wraparound_section(ic, &ic->uncommitted_section);
2402 	ic->n_uncommitted_sections -= commit_sections;
2403 	ic->n_committed_sections += commit_sections;
2404 	spin_unlock_irq(&ic->endio_wait.lock);
2405 
2406 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2407 		queue_work(ic->writer_wq, &ic->writer_work);
2408 
2409 release_flush_bios:
2410 	while (flushes) {
2411 		struct bio *next = flushes->bi_next;
2412 		flushes->bi_next = NULL;
2413 		do_endio(ic, flushes);
2414 		flushes = next;
2415 	}
2416 }
2417 
2418 static void complete_copy_from_journal(unsigned long error, void *context)
2419 {
2420 	struct journal_io *io = context;
2421 	struct journal_completion *comp = io->comp;
2422 	struct dm_integrity_c *ic = comp->ic;
2423 	remove_range(ic, &io->range);
2424 	mempool_free(io, &ic->journal_io_mempool);
2425 	if (unlikely(error != 0))
2426 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2427 	complete_journal_op(comp);
2428 }
2429 
2430 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2431 			       struct journal_entry *je)
2432 {
2433 	unsigned s = 0;
2434 	do {
2435 		js->commit_id = je->last_bytes[s];
2436 		js++;
2437 	} while (++s < ic->sectors_per_block);
2438 }
2439 
2440 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2441 			     unsigned write_sections, bool from_replay)
2442 {
2443 	unsigned i, j, n;
2444 	struct journal_completion comp;
2445 	struct blk_plug plug;
2446 
2447 	blk_start_plug(&plug);
2448 
2449 	comp.ic = ic;
2450 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2451 	init_completion(&comp.comp);
2452 
2453 	i = write_start;
2454 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2455 #ifndef INTERNAL_VERIFY
2456 		if (unlikely(from_replay))
2457 #endif
2458 			rw_section_mac(ic, i, false);
2459 		for (j = 0; j < ic->journal_section_entries; j++) {
2460 			struct journal_entry *je = access_journal_entry(ic, i, j);
2461 			sector_t sec, area, offset;
2462 			unsigned k, l, next_loop;
2463 			sector_t metadata_block;
2464 			unsigned metadata_offset;
2465 			struct journal_io *io;
2466 
2467 			if (journal_entry_is_unused(je))
2468 				continue;
2469 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2470 			sec = journal_entry_get_sector(je);
2471 			if (unlikely(from_replay)) {
2472 				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2473 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2474 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2475 				}
2476 			}
2477 			if (unlikely(sec >= ic->provided_data_sectors))
2478 				continue;
2479 			get_area_and_offset(ic, sec, &area, &offset);
2480 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2481 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2482 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2483 				sector_t sec2, area2, offset2;
2484 				if (journal_entry_is_unused(je2))
2485 					break;
2486 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2487 				sec2 = journal_entry_get_sector(je2);
2488 				if (unlikely(sec2 >= ic->provided_data_sectors))
2489 					break;
2490 				get_area_and_offset(ic, sec2, &area2, &offset2);
2491 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2492 					break;
2493 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2494 			}
2495 			next_loop = k - 1;
2496 
2497 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2498 			io->comp = &comp;
2499 			io->range.logical_sector = sec;
2500 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2501 
2502 			spin_lock_irq(&ic->endio_wait.lock);
2503 			add_new_range_and_wait(ic, &io->range);
2504 
2505 			if (likely(!from_replay)) {
2506 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2507 
2508 				/* don't write if there is newer committed sector */
2509 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2510 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2511 
2512 					journal_entry_set_unused(je2);
2513 					remove_journal_node(ic, &section_node[j]);
2514 					j++;
2515 					sec += ic->sectors_per_block;
2516 					offset += ic->sectors_per_block;
2517 				}
2518 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2519 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2520 
2521 					journal_entry_set_unused(je2);
2522 					remove_journal_node(ic, &section_node[k - 1]);
2523 					k--;
2524 				}
2525 				if (j == k) {
2526 					remove_range_unlocked(ic, &io->range);
2527 					spin_unlock_irq(&ic->endio_wait.lock);
2528 					mempool_free(io, &ic->journal_io_mempool);
2529 					goto skip_io;
2530 				}
2531 				for (l = j; l < k; l++) {
2532 					remove_journal_node(ic, &section_node[l]);
2533 				}
2534 			}
2535 			spin_unlock_irq(&ic->endio_wait.lock);
2536 
2537 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2538 			for (l = j; l < k; l++) {
2539 				int r;
2540 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2541 
2542 				if (
2543 #ifndef INTERNAL_VERIFY
2544 				    unlikely(from_replay) &&
2545 #endif
2546 				    ic->internal_hash) {
2547 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2548 
2549 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2550 								  (char *)access_journal_data(ic, i, l), test_tag);
2551 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2552 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2553 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2554 					}
2555 				}
2556 
2557 				journal_entry_set_unused(je2);
2558 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2559 							ic->tag_size, TAG_WRITE);
2560 				if (unlikely(r)) {
2561 					dm_integrity_io_error(ic, "reading tags", r);
2562 				}
2563 			}
2564 
2565 			atomic_inc(&comp.in_flight);
2566 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2567 					  (k - j) << ic->sb->log2_sectors_per_block,
2568 					  get_data_sector(ic, area, offset),
2569 					  complete_copy_from_journal, io);
2570 skip_io:
2571 			j = next_loop;
2572 		}
2573 	}
2574 
2575 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2576 
2577 	blk_finish_plug(&plug);
2578 
2579 	complete_journal_op(&comp);
2580 	wait_for_completion_io(&comp.comp);
2581 
2582 	dm_integrity_flush_buffers(ic, true);
2583 }
2584 
2585 static void integrity_writer(struct work_struct *w)
2586 {
2587 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2588 	unsigned write_start, write_sections;
2589 
2590 	unsigned prev_free_sectors;
2591 
2592 	/* the following test is not needed, but it tests the replay code */
2593 	if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2594 		return;
2595 
2596 	spin_lock_irq(&ic->endio_wait.lock);
2597 	write_start = ic->committed_section;
2598 	write_sections = ic->n_committed_sections;
2599 	spin_unlock_irq(&ic->endio_wait.lock);
2600 
2601 	if (!write_sections)
2602 		return;
2603 
2604 	do_journal_write(ic, write_start, write_sections, false);
2605 
2606 	spin_lock_irq(&ic->endio_wait.lock);
2607 
2608 	ic->committed_section += write_sections;
2609 	wraparound_section(ic, &ic->committed_section);
2610 	ic->n_committed_sections -= write_sections;
2611 
2612 	prev_free_sectors = ic->free_sectors;
2613 	ic->free_sectors += write_sections * ic->journal_section_entries;
2614 	if (unlikely(!prev_free_sectors))
2615 		wake_up_locked(&ic->endio_wait);
2616 
2617 	spin_unlock_irq(&ic->endio_wait.lock);
2618 }
2619 
2620 static void recalc_write_super(struct dm_integrity_c *ic)
2621 {
2622 	int r;
2623 
2624 	dm_integrity_flush_buffers(ic, false);
2625 	if (dm_integrity_failed(ic))
2626 		return;
2627 
2628 	r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2629 	if (unlikely(r))
2630 		dm_integrity_io_error(ic, "writing superblock", r);
2631 }
2632 
2633 static void integrity_recalc(struct work_struct *w)
2634 {
2635 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2636 	struct dm_integrity_range range;
2637 	struct dm_io_request io_req;
2638 	struct dm_io_region io_loc;
2639 	sector_t area, offset;
2640 	sector_t metadata_block;
2641 	unsigned metadata_offset;
2642 	sector_t logical_sector, n_sectors;
2643 	__u8 *t;
2644 	unsigned i;
2645 	int r;
2646 	unsigned super_counter = 0;
2647 
2648 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2649 
2650 	spin_lock_irq(&ic->endio_wait.lock);
2651 
2652 next_chunk:
2653 
2654 	if (unlikely(dm_post_suspending(ic->ti)))
2655 		goto unlock_ret;
2656 
2657 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2658 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2659 		if (ic->mode == 'B') {
2660 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2661 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2662 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2663 		}
2664 		goto unlock_ret;
2665 	}
2666 
2667 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2668 	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2669 	if (!ic->meta_dev)
2670 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2671 
2672 	add_new_range_and_wait(ic, &range);
2673 	spin_unlock_irq(&ic->endio_wait.lock);
2674 	logical_sector = range.logical_sector;
2675 	n_sectors = range.n_sectors;
2676 
2677 	if (ic->mode == 'B') {
2678 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2679 			goto advance_and_next;
2680 		}
2681 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2682 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2683 			logical_sector += ic->sectors_per_block;
2684 			n_sectors -= ic->sectors_per_block;
2685 			cond_resched();
2686 		}
2687 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2688 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2689 			n_sectors -= ic->sectors_per_block;
2690 			cond_resched();
2691 		}
2692 		get_area_and_offset(ic, logical_sector, &area, &offset);
2693 	}
2694 
2695 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2696 
2697 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2698 		recalc_write_super(ic);
2699 		if (ic->mode == 'B') {
2700 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2701 		}
2702 		super_counter = 0;
2703 	}
2704 
2705 	if (unlikely(dm_integrity_failed(ic)))
2706 		goto err;
2707 
2708 	io_req.bi_op = REQ_OP_READ;
2709 	io_req.bi_op_flags = 0;
2710 	io_req.mem.type = DM_IO_VMA;
2711 	io_req.mem.ptr.addr = ic->recalc_buffer;
2712 	io_req.notify.fn = NULL;
2713 	io_req.client = ic->io;
2714 	io_loc.bdev = ic->dev->bdev;
2715 	io_loc.sector = get_data_sector(ic, area, offset);
2716 	io_loc.count = n_sectors;
2717 
2718 	r = dm_io(&io_req, 1, &io_loc, NULL);
2719 	if (unlikely(r)) {
2720 		dm_integrity_io_error(ic, "reading data", r);
2721 		goto err;
2722 	}
2723 
2724 	t = ic->recalc_tags;
2725 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2726 		integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2727 		t += ic->tag_size;
2728 	}
2729 
2730 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2731 
2732 	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2733 	if (unlikely(r)) {
2734 		dm_integrity_io_error(ic, "writing tags", r);
2735 		goto err;
2736 	}
2737 
2738 	if (ic->mode == 'B') {
2739 		sector_t start, end;
2740 		start = (range.logical_sector >>
2741 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2742 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2743 		end = ((range.logical_sector + range.n_sectors) >>
2744 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2745 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2746 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2747 	}
2748 
2749 advance_and_next:
2750 	cond_resched();
2751 
2752 	spin_lock_irq(&ic->endio_wait.lock);
2753 	remove_range_unlocked(ic, &range);
2754 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2755 	goto next_chunk;
2756 
2757 err:
2758 	remove_range(ic, &range);
2759 	return;
2760 
2761 unlock_ret:
2762 	spin_unlock_irq(&ic->endio_wait.lock);
2763 
2764 	recalc_write_super(ic);
2765 }
2766 
2767 static void bitmap_block_work(struct work_struct *w)
2768 {
2769 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2770 	struct dm_integrity_c *ic = bbs->ic;
2771 	struct bio *bio;
2772 	struct bio_list bio_queue;
2773 	struct bio_list waiting;
2774 
2775 	bio_list_init(&waiting);
2776 
2777 	spin_lock(&bbs->bio_queue_lock);
2778 	bio_queue = bbs->bio_queue;
2779 	bio_list_init(&bbs->bio_queue);
2780 	spin_unlock(&bbs->bio_queue_lock);
2781 
2782 	while ((bio = bio_list_pop(&bio_queue))) {
2783 		struct dm_integrity_io *dio;
2784 
2785 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2786 
2787 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2788 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2789 			remove_range(ic, &dio->range);
2790 			INIT_WORK(&dio->work, integrity_bio_wait);
2791 			queue_work(ic->offload_wq, &dio->work);
2792 		} else {
2793 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2794 					dio->range.n_sectors, BITMAP_OP_SET);
2795 			bio_list_add(&waiting, bio);
2796 		}
2797 	}
2798 
2799 	if (bio_list_empty(&waiting))
2800 		return;
2801 
2802 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2803 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2804 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2805 
2806 	while ((bio = bio_list_pop(&waiting))) {
2807 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2808 
2809 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2810 				dio->range.n_sectors, BITMAP_OP_SET);
2811 
2812 		remove_range(ic, &dio->range);
2813 		INIT_WORK(&dio->work, integrity_bio_wait);
2814 		queue_work(ic->offload_wq, &dio->work);
2815 	}
2816 
2817 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2818 }
2819 
2820 static void bitmap_flush_work(struct work_struct *work)
2821 {
2822 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2823 	struct dm_integrity_range range;
2824 	unsigned long limit;
2825 	struct bio *bio;
2826 
2827 	dm_integrity_flush_buffers(ic, false);
2828 
2829 	range.logical_sector = 0;
2830 	range.n_sectors = ic->provided_data_sectors;
2831 
2832 	spin_lock_irq(&ic->endio_wait.lock);
2833 	add_new_range_and_wait(ic, &range);
2834 	spin_unlock_irq(&ic->endio_wait.lock);
2835 
2836 	dm_integrity_flush_buffers(ic, true);
2837 
2838 	limit = ic->provided_data_sectors;
2839 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2840 		limit = le64_to_cpu(ic->sb->recalc_sector)
2841 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2842 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2843 	}
2844 	/*DEBUG_print("zeroing journal\n");*/
2845 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2846 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2847 
2848 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2849 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2850 
2851 	spin_lock_irq(&ic->endio_wait.lock);
2852 	remove_range_unlocked(ic, &range);
2853 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2854 		bio_endio(bio);
2855 		spin_unlock_irq(&ic->endio_wait.lock);
2856 		spin_lock_irq(&ic->endio_wait.lock);
2857 	}
2858 	spin_unlock_irq(&ic->endio_wait.lock);
2859 }
2860 
2861 
2862 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2863 			 unsigned n_sections, unsigned char commit_seq)
2864 {
2865 	unsigned i, j, n;
2866 
2867 	if (!n_sections)
2868 		return;
2869 
2870 	for (n = 0; n < n_sections; n++) {
2871 		i = start_section + n;
2872 		wraparound_section(ic, &i);
2873 		for (j = 0; j < ic->journal_section_sectors; j++) {
2874 			struct journal_sector *js = access_journal(ic, i, j);
2875 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2876 			memset(&js->sectors, 0, sizeof(js->sectors));
2877 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2878 		}
2879 		for (j = 0; j < ic->journal_section_entries; j++) {
2880 			struct journal_entry *je = access_journal_entry(ic, i, j);
2881 			journal_entry_set_unused(je);
2882 		}
2883 	}
2884 
2885 	write_journal(ic, start_section, n_sections);
2886 }
2887 
2888 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2889 {
2890 	unsigned char k;
2891 	for (k = 0; k < N_COMMIT_IDS; k++) {
2892 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2893 			return k;
2894 	}
2895 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2896 	return -EIO;
2897 }
2898 
2899 static void replay_journal(struct dm_integrity_c *ic)
2900 {
2901 	unsigned i, j;
2902 	bool used_commit_ids[N_COMMIT_IDS];
2903 	unsigned max_commit_id_sections[N_COMMIT_IDS];
2904 	unsigned write_start, write_sections;
2905 	unsigned continue_section;
2906 	bool journal_empty;
2907 	unsigned char unused, last_used, want_commit_seq;
2908 
2909 	if (ic->mode == 'R')
2910 		return;
2911 
2912 	if (ic->journal_uptodate)
2913 		return;
2914 
2915 	last_used = 0;
2916 	write_start = 0;
2917 
2918 	if (!ic->just_formatted) {
2919 		DEBUG_print("reading journal\n");
2920 		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2921 		if (ic->journal_io)
2922 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2923 		if (ic->journal_io) {
2924 			struct journal_completion crypt_comp;
2925 			crypt_comp.ic = ic;
2926 			init_completion(&crypt_comp.comp);
2927 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2928 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2929 			wait_for_completion(&crypt_comp.comp);
2930 		}
2931 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2932 	}
2933 
2934 	if (dm_integrity_failed(ic))
2935 		goto clear_journal;
2936 
2937 	journal_empty = true;
2938 	memset(used_commit_ids, 0, sizeof used_commit_ids);
2939 	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2940 	for (i = 0; i < ic->journal_sections; i++) {
2941 		for (j = 0; j < ic->journal_section_sectors; j++) {
2942 			int k;
2943 			struct journal_sector *js = access_journal(ic, i, j);
2944 			k = find_commit_seq(ic, i, j, js->commit_id);
2945 			if (k < 0)
2946 				goto clear_journal;
2947 			used_commit_ids[k] = true;
2948 			max_commit_id_sections[k] = i;
2949 		}
2950 		if (journal_empty) {
2951 			for (j = 0; j < ic->journal_section_entries; j++) {
2952 				struct journal_entry *je = access_journal_entry(ic, i, j);
2953 				if (!journal_entry_is_unused(je)) {
2954 					journal_empty = false;
2955 					break;
2956 				}
2957 			}
2958 		}
2959 	}
2960 
2961 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2962 		unused = N_COMMIT_IDS - 1;
2963 		while (unused && !used_commit_ids[unused - 1])
2964 			unused--;
2965 	} else {
2966 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2967 			if (!used_commit_ids[unused])
2968 				break;
2969 		if (unused == N_COMMIT_IDS) {
2970 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2971 			goto clear_journal;
2972 		}
2973 	}
2974 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2975 		    unused, used_commit_ids[0], used_commit_ids[1],
2976 		    used_commit_ids[2], used_commit_ids[3]);
2977 
2978 	last_used = prev_commit_seq(unused);
2979 	want_commit_seq = prev_commit_seq(last_used);
2980 
2981 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2982 		journal_empty = true;
2983 
2984 	write_start = max_commit_id_sections[last_used] + 1;
2985 	if (unlikely(write_start >= ic->journal_sections))
2986 		want_commit_seq = next_commit_seq(want_commit_seq);
2987 	wraparound_section(ic, &write_start);
2988 
2989 	i = write_start;
2990 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2991 		for (j = 0; j < ic->journal_section_sectors; j++) {
2992 			struct journal_sector *js = access_journal(ic, i, j);
2993 
2994 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2995 				/*
2996 				 * This could be caused by crash during writing.
2997 				 * We won't replay the inconsistent part of the
2998 				 * journal.
2999 				 */
3000 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3001 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3002 				goto brk;
3003 			}
3004 		}
3005 		i++;
3006 		if (unlikely(i >= ic->journal_sections))
3007 			want_commit_seq = next_commit_seq(want_commit_seq);
3008 		wraparound_section(ic, &i);
3009 	}
3010 brk:
3011 
3012 	if (!journal_empty) {
3013 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3014 			    write_sections, write_start, want_commit_seq);
3015 		do_journal_write(ic, write_start, write_sections, true);
3016 	}
3017 
3018 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3019 		continue_section = write_start;
3020 		ic->commit_seq = want_commit_seq;
3021 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3022 	} else {
3023 		unsigned s;
3024 		unsigned char erase_seq;
3025 clear_journal:
3026 		DEBUG_print("clearing journal\n");
3027 
3028 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3029 		s = write_start;
3030 		init_journal(ic, s, 1, erase_seq);
3031 		s++;
3032 		wraparound_section(ic, &s);
3033 		if (ic->journal_sections >= 2) {
3034 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3035 			s += ic->journal_sections - 2;
3036 			wraparound_section(ic, &s);
3037 			init_journal(ic, s, 1, erase_seq);
3038 		}
3039 
3040 		continue_section = 0;
3041 		ic->commit_seq = next_commit_seq(erase_seq);
3042 	}
3043 
3044 	ic->committed_section = continue_section;
3045 	ic->n_committed_sections = 0;
3046 
3047 	ic->uncommitted_section = continue_section;
3048 	ic->n_uncommitted_sections = 0;
3049 
3050 	ic->free_section = continue_section;
3051 	ic->free_section_entry = 0;
3052 	ic->free_sectors = ic->journal_entries;
3053 
3054 	ic->journal_tree_root = RB_ROOT;
3055 	for (i = 0; i < ic->journal_entries; i++)
3056 		init_journal_node(&ic->journal_tree[i]);
3057 }
3058 
3059 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3060 {
3061 	DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3062 
3063 	if (ic->mode == 'B') {
3064 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3065 		ic->synchronous_mode = 1;
3066 
3067 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3068 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3069 		flush_workqueue(ic->commit_wq);
3070 	}
3071 }
3072 
3073 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3074 {
3075 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3076 
3077 	DEBUG_print("dm_integrity_reboot\n");
3078 
3079 	dm_integrity_enter_synchronous_mode(ic);
3080 
3081 	return NOTIFY_DONE;
3082 }
3083 
3084 static void dm_integrity_postsuspend(struct dm_target *ti)
3085 {
3086 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3087 	int r;
3088 
3089 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3090 
3091 	del_timer_sync(&ic->autocommit_timer);
3092 
3093 	if (ic->recalc_wq)
3094 		drain_workqueue(ic->recalc_wq);
3095 
3096 	if (ic->mode == 'B')
3097 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3098 
3099 	queue_work(ic->commit_wq, &ic->commit_work);
3100 	drain_workqueue(ic->commit_wq);
3101 
3102 	if (ic->mode == 'J') {
3103 		if (ic->meta_dev)
3104 			queue_work(ic->writer_wq, &ic->writer_work);
3105 		drain_workqueue(ic->writer_wq);
3106 		dm_integrity_flush_buffers(ic, true);
3107 	}
3108 
3109 	if (ic->mode == 'B') {
3110 		dm_integrity_flush_buffers(ic, true);
3111 #if 1
3112 		/* set to 0 to test bitmap replay code */
3113 		init_journal(ic, 0, ic->journal_sections, 0);
3114 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3115 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3116 		if (unlikely(r))
3117 			dm_integrity_io_error(ic, "writing superblock", r);
3118 #endif
3119 	}
3120 
3121 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3122 
3123 	ic->journal_uptodate = true;
3124 }
3125 
3126 static void dm_integrity_resume(struct dm_target *ti)
3127 {
3128 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3129 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3130 	int r;
3131 
3132 	DEBUG_print("resume\n");
3133 
3134 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3135 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3136 		    ic->mode == 'B' &&
3137 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3138 			rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3139 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3140 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3141 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3142 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3143 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3144 		}
3145 
3146 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3147 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3148 		if (unlikely(r))
3149 			dm_integrity_io_error(ic, "writing superblock", r);
3150 	}
3151 
3152 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3153 		DEBUG_print("resume dirty_bitmap\n");
3154 		rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3155 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3156 		if (ic->mode == 'B') {
3157 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3158 			    !ic->reset_recalculate_flag) {
3159 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3160 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3161 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3162 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3163 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3164 					ic->sb->recalc_sector = cpu_to_le64(0);
3165 				}
3166 			} else {
3167 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3168 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3169 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3170 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3171 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3172 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3173 				rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3174 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3175 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3176 				ic->sb->recalc_sector = cpu_to_le64(0);
3177 			}
3178 		} else {
3179 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3180 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3181 			    ic->reset_recalculate_flag) {
3182 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3183 				ic->sb->recalc_sector = cpu_to_le64(0);
3184 			}
3185 			init_journal(ic, 0, ic->journal_sections, 0);
3186 			replay_journal(ic);
3187 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3188 		}
3189 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3190 		if (unlikely(r))
3191 			dm_integrity_io_error(ic, "writing superblock", r);
3192 	} else {
3193 		replay_journal(ic);
3194 		if (ic->reset_recalculate_flag) {
3195 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3196 			ic->sb->recalc_sector = cpu_to_le64(0);
3197 		}
3198 		if (ic->mode == 'B') {
3199 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3200 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3201 			r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3202 			if (unlikely(r))
3203 				dm_integrity_io_error(ic, "writing superblock", r);
3204 
3205 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3206 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3207 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3208 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3209 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3210 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3211 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3212 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3213 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3214 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3215 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3216 			}
3217 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3218 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3219 		}
3220 	}
3221 
3222 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3223 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3224 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3225 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3226 		if (recalc_pos < ic->provided_data_sectors) {
3227 			queue_work(ic->recalc_wq, &ic->recalc_work);
3228 		} else if (recalc_pos > ic->provided_data_sectors) {
3229 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3230 			recalc_write_super(ic);
3231 		}
3232 	}
3233 
3234 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3235 	ic->reboot_notifier.next = NULL;
3236 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3237 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3238 
3239 #if 0
3240 	/* set to 1 to stress test synchronous mode */
3241 	dm_integrity_enter_synchronous_mode(ic);
3242 #endif
3243 }
3244 
3245 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3246 				unsigned status_flags, char *result, unsigned maxlen)
3247 {
3248 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3249 	unsigned arg_count;
3250 	size_t sz = 0;
3251 
3252 	switch (type) {
3253 	case STATUSTYPE_INFO:
3254 		DMEMIT("%llu %llu",
3255 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3256 			ic->provided_data_sectors);
3257 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3258 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3259 		else
3260 			DMEMIT(" -");
3261 		break;
3262 
3263 	case STATUSTYPE_TABLE: {
3264 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3265 		watermark_percentage += ic->journal_entries / 2;
3266 		do_div(watermark_percentage, ic->journal_entries);
3267 		arg_count = 3;
3268 		arg_count += !!ic->meta_dev;
3269 		arg_count += ic->sectors_per_block != 1;
3270 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3271 		arg_count += ic->reset_recalculate_flag;
3272 		arg_count += ic->discard;
3273 		arg_count += ic->mode == 'J';
3274 		arg_count += ic->mode == 'J';
3275 		arg_count += ic->mode == 'B';
3276 		arg_count += ic->mode == 'B';
3277 		arg_count += !!ic->internal_hash_alg.alg_string;
3278 		arg_count += !!ic->journal_crypt_alg.alg_string;
3279 		arg_count += !!ic->journal_mac_alg.alg_string;
3280 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3281 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3282 		arg_count += ic->legacy_recalculate;
3283 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3284 		       ic->tag_size, ic->mode, arg_count);
3285 		if (ic->meta_dev)
3286 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3287 		if (ic->sectors_per_block != 1)
3288 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3289 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3290 			DMEMIT(" recalculate");
3291 		if (ic->reset_recalculate_flag)
3292 			DMEMIT(" reset_recalculate");
3293 		if (ic->discard)
3294 			DMEMIT(" allow_discards");
3295 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3296 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3297 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3298 		if (ic->mode == 'J') {
3299 			DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3300 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3301 		}
3302 		if (ic->mode == 'B') {
3303 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3304 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3305 		}
3306 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3307 			DMEMIT(" fix_padding");
3308 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3309 			DMEMIT(" fix_hmac");
3310 		if (ic->legacy_recalculate)
3311 			DMEMIT(" legacy_recalculate");
3312 
3313 #define EMIT_ALG(a, n)							\
3314 		do {							\
3315 			if (ic->a.alg_string) {				\
3316 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3317 				if (ic->a.key_string)			\
3318 					DMEMIT(":%s", ic->a.key_string);\
3319 			}						\
3320 		} while (0)
3321 		EMIT_ALG(internal_hash_alg, "internal_hash");
3322 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3323 		EMIT_ALG(journal_mac_alg, "journal_mac");
3324 		break;
3325 	}
3326 	case STATUSTYPE_IMA:
3327 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3328 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3329 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3330 
3331 		if (ic->meta_dev)
3332 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3333 		if (ic->sectors_per_block != 1)
3334 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3335 
3336 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3337 		       'y' : 'n');
3338 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3339 		DMEMIT(",fix_padding=%c",
3340 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3341 		DMEMIT(",fix_hmac=%c",
3342 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3343 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3344 
3345 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3346 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3347 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3348 		DMEMIT(";");
3349 		break;
3350 	}
3351 }
3352 
3353 static int dm_integrity_iterate_devices(struct dm_target *ti,
3354 					iterate_devices_callout_fn fn, void *data)
3355 {
3356 	struct dm_integrity_c *ic = ti->private;
3357 
3358 	if (!ic->meta_dev)
3359 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3360 	else
3361 		return fn(ti, ic->dev, 0, ti->len, data);
3362 }
3363 
3364 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3365 {
3366 	struct dm_integrity_c *ic = ti->private;
3367 
3368 	if (ic->sectors_per_block > 1) {
3369 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3370 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3371 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3372 	}
3373 }
3374 
3375 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3376 {
3377 	unsigned sector_space = JOURNAL_SECTOR_DATA;
3378 
3379 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3380 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3381 					 JOURNAL_ENTRY_ROUNDUP);
3382 
3383 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3384 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3385 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3386 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3387 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3388 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3389 }
3390 
3391 static int calculate_device_limits(struct dm_integrity_c *ic)
3392 {
3393 	__u64 initial_sectors;
3394 
3395 	calculate_journal_section_size(ic);
3396 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3397 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3398 		return -EINVAL;
3399 	ic->initial_sectors = initial_sectors;
3400 
3401 	if (!ic->meta_dev) {
3402 		sector_t last_sector, last_area, last_offset;
3403 
3404 		/* we have to maintain excessive padding for compatibility with existing volumes */
3405 		__u64 metadata_run_padding =
3406 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3407 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3408 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3409 
3410 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3411 					    metadata_run_padding) >> SECTOR_SHIFT;
3412 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3413 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3414 		else
3415 			ic->log2_metadata_run = -1;
3416 
3417 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3418 		last_sector = get_data_sector(ic, last_area, last_offset);
3419 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3420 			return -EINVAL;
3421 	} else {
3422 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3423 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3424 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3425 		meta_size <<= ic->log2_buffer_sectors;
3426 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3427 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3428 			return -EINVAL;
3429 		ic->metadata_run = 1;
3430 		ic->log2_metadata_run = 0;
3431 	}
3432 
3433 	return 0;
3434 }
3435 
3436 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3437 {
3438 	if (!ic->meta_dev) {
3439 		int test_bit;
3440 		ic->provided_data_sectors = 0;
3441 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3442 			__u64 prev_data_sectors = ic->provided_data_sectors;
3443 
3444 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3445 			if (calculate_device_limits(ic))
3446 				ic->provided_data_sectors = prev_data_sectors;
3447 		}
3448 	} else {
3449 		ic->provided_data_sectors = ic->data_device_sectors;
3450 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3451 	}
3452 }
3453 
3454 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3455 {
3456 	unsigned journal_sections;
3457 	int test_bit;
3458 
3459 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3460 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3461 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3462 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3463 	if (ic->journal_mac_alg.alg_string)
3464 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3465 
3466 	calculate_journal_section_size(ic);
3467 	journal_sections = journal_sectors / ic->journal_section_sectors;
3468 	if (!journal_sections)
3469 		journal_sections = 1;
3470 
3471 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3472 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3473 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3474 	}
3475 
3476 	if (!ic->meta_dev) {
3477 		if (ic->fix_padding)
3478 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3479 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3480 		if (!interleave_sectors)
3481 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3482 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3483 		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3484 		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3485 
3486 		get_provided_data_sectors(ic);
3487 		if (!ic->provided_data_sectors)
3488 			return -EINVAL;
3489 	} else {
3490 		ic->sb->log2_interleave_sectors = 0;
3491 
3492 		get_provided_data_sectors(ic);
3493 		if (!ic->provided_data_sectors)
3494 			return -EINVAL;
3495 
3496 try_smaller_buffer:
3497 		ic->sb->journal_sections = cpu_to_le32(0);
3498 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3499 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3500 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3501 			if (test_journal_sections > journal_sections)
3502 				continue;
3503 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3504 			if (calculate_device_limits(ic))
3505 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3506 
3507 		}
3508 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3509 			if (ic->log2_buffer_sectors > 3) {
3510 				ic->log2_buffer_sectors--;
3511 				goto try_smaller_buffer;
3512 			}
3513 			return -EINVAL;
3514 		}
3515 	}
3516 
3517 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3518 
3519 	sb_set_version(ic);
3520 
3521 	return 0;
3522 }
3523 
3524 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3525 {
3526 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3527 	struct blk_integrity bi;
3528 
3529 	memset(&bi, 0, sizeof(bi));
3530 	bi.profile = &dm_integrity_profile;
3531 	bi.tuple_size = ic->tag_size;
3532 	bi.tag_size = bi.tuple_size;
3533 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3534 
3535 	blk_integrity_register(disk, &bi);
3536 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3537 }
3538 
3539 static void dm_integrity_free_page_list(struct page_list *pl)
3540 {
3541 	unsigned i;
3542 
3543 	if (!pl)
3544 		return;
3545 	for (i = 0; pl[i].page; i++)
3546 		__free_page(pl[i].page);
3547 	kvfree(pl);
3548 }
3549 
3550 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3551 {
3552 	struct page_list *pl;
3553 	unsigned i;
3554 
3555 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3556 	if (!pl)
3557 		return NULL;
3558 
3559 	for (i = 0; i < n_pages; i++) {
3560 		pl[i].page = alloc_page(GFP_KERNEL);
3561 		if (!pl[i].page) {
3562 			dm_integrity_free_page_list(pl);
3563 			return NULL;
3564 		}
3565 		if (i)
3566 			pl[i - 1].next = &pl[i];
3567 	}
3568 	pl[i].page = NULL;
3569 	pl[i].next = NULL;
3570 
3571 	return pl;
3572 }
3573 
3574 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3575 {
3576 	unsigned i;
3577 	for (i = 0; i < ic->journal_sections; i++)
3578 		kvfree(sl[i]);
3579 	kvfree(sl);
3580 }
3581 
3582 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3583 								   struct page_list *pl)
3584 {
3585 	struct scatterlist **sl;
3586 	unsigned i;
3587 
3588 	sl = kvmalloc_array(ic->journal_sections,
3589 			    sizeof(struct scatterlist *),
3590 			    GFP_KERNEL | __GFP_ZERO);
3591 	if (!sl)
3592 		return NULL;
3593 
3594 	for (i = 0; i < ic->journal_sections; i++) {
3595 		struct scatterlist *s;
3596 		unsigned start_index, start_offset;
3597 		unsigned end_index, end_offset;
3598 		unsigned n_pages;
3599 		unsigned idx;
3600 
3601 		page_list_location(ic, i, 0, &start_index, &start_offset);
3602 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3603 				   &end_index, &end_offset);
3604 
3605 		n_pages = (end_index - start_index + 1);
3606 
3607 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3608 				   GFP_KERNEL);
3609 		if (!s) {
3610 			dm_integrity_free_journal_scatterlist(ic, sl);
3611 			return NULL;
3612 		}
3613 
3614 		sg_init_table(s, n_pages);
3615 		for (idx = start_index; idx <= end_index; idx++) {
3616 			char *va = lowmem_page_address(pl[idx].page);
3617 			unsigned start = 0, end = PAGE_SIZE;
3618 			if (idx == start_index)
3619 				start = start_offset;
3620 			if (idx == end_index)
3621 				end = end_offset + (1 << SECTOR_SHIFT);
3622 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3623 		}
3624 
3625 		sl[i] = s;
3626 	}
3627 
3628 	return sl;
3629 }
3630 
3631 static void free_alg(struct alg_spec *a)
3632 {
3633 	kfree_sensitive(a->alg_string);
3634 	kfree_sensitive(a->key);
3635 	memset(a, 0, sizeof *a);
3636 }
3637 
3638 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3639 {
3640 	char *k;
3641 
3642 	free_alg(a);
3643 
3644 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3645 	if (!a->alg_string)
3646 		goto nomem;
3647 
3648 	k = strchr(a->alg_string, ':');
3649 	if (k) {
3650 		*k = 0;
3651 		a->key_string = k + 1;
3652 		if (strlen(a->key_string) & 1)
3653 			goto inval;
3654 
3655 		a->key_size = strlen(a->key_string) / 2;
3656 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3657 		if (!a->key)
3658 			goto nomem;
3659 		if (hex2bin(a->key, a->key_string, a->key_size))
3660 			goto inval;
3661 	}
3662 
3663 	return 0;
3664 inval:
3665 	*error = error_inval;
3666 	return -EINVAL;
3667 nomem:
3668 	*error = "Out of memory for an argument";
3669 	return -ENOMEM;
3670 }
3671 
3672 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3673 		   char *error_alg, char *error_key)
3674 {
3675 	int r;
3676 
3677 	if (a->alg_string) {
3678 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3679 		if (IS_ERR(*hash)) {
3680 			*error = error_alg;
3681 			r = PTR_ERR(*hash);
3682 			*hash = NULL;
3683 			return r;
3684 		}
3685 
3686 		if (a->key) {
3687 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3688 			if (r) {
3689 				*error = error_key;
3690 				return r;
3691 			}
3692 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3693 			*error = error_key;
3694 			return -ENOKEY;
3695 		}
3696 	}
3697 
3698 	return 0;
3699 }
3700 
3701 static int create_journal(struct dm_integrity_c *ic, char **error)
3702 {
3703 	int r = 0;
3704 	unsigned i;
3705 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3706 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3707 	struct skcipher_request *req = NULL;
3708 
3709 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3710 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3711 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3712 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3713 
3714 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3715 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3716 	journal_desc_size = journal_pages * sizeof(struct page_list);
3717 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3718 		*error = "Journal doesn't fit into memory";
3719 		r = -ENOMEM;
3720 		goto bad;
3721 	}
3722 	ic->journal_pages = journal_pages;
3723 
3724 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3725 	if (!ic->journal) {
3726 		*error = "Could not allocate memory for journal";
3727 		r = -ENOMEM;
3728 		goto bad;
3729 	}
3730 	if (ic->journal_crypt_alg.alg_string) {
3731 		unsigned ivsize, blocksize;
3732 		struct journal_completion comp;
3733 
3734 		comp.ic = ic;
3735 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3736 		if (IS_ERR(ic->journal_crypt)) {
3737 			*error = "Invalid journal cipher";
3738 			r = PTR_ERR(ic->journal_crypt);
3739 			ic->journal_crypt = NULL;
3740 			goto bad;
3741 		}
3742 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3743 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3744 
3745 		if (ic->journal_crypt_alg.key) {
3746 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3747 						   ic->journal_crypt_alg.key_size);
3748 			if (r) {
3749 				*error = "Error setting encryption key";
3750 				goto bad;
3751 			}
3752 		}
3753 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3754 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3755 
3756 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3757 		if (!ic->journal_io) {
3758 			*error = "Could not allocate memory for journal io";
3759 			r = -ENOMEM;
3760 			goto bad;
3761 		}
3762 
3763 		if (blocksize == 1) {
3764 			struct scatterlist *sg;
3765 
3766 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3767 			if (!req) {
3768 				*error = "Could not allocate crypt request";
3769 				r = -ENOMEM;
3770 				goto bad;
3771 			}
3772 
3773 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3774 			if (!crypt_iv) {
3775 				*error = "Could not allocate iv";
3776 				r = -ENOMEM;
3777 				goto bad;
3778 			}
3779 
3780 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3781 			if (!ic->journal_xor) {
3782 				*error = "Could not allocate memory for journal xor";
3783 				r = -ENOMEM;
3784 				goto bad;
3785 			}
3786 
3787 			sg = kvmalloc_array(ic->journal_pages + 1,
3788 					    sizeof(struct scatterlist),
3789 					    GFP_KERNEL);
3790 			if (!sg) {
3791 				*error = "Unable to allocate sg list";
3792 				r = -ENOMEM;
3793 				goto bad;
3794 			}
3795 			sg_init_table(sg, ic->journal_pages + 1);
3796 			for (i = 0; i < ic->journal_pages; i++) {
3797 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3798 				clear_page(va);
3799 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3800 			}
3801 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3802 
3803 			skcipher_request_set_crypt(req, sg, sg,
3804 						   PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3805 			init_completion(&comp.comp);
3806 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3807 			if (do_crypt(true, req, &comp))
3808 				wait_for_completion(&comp.comp);
3809 			kvfree(sg);
3810 			r = dm_integrity_failed(ic);
3811 			if (r) {
3812 				*error = "Unable to encrypt journal";
3813 				goto bad;
3814 			}
3815 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3816 
3817 			crypto_free_skcipher(ic->journal_crypt);
3818 			ic->journal_crypt = NULL;
3819 		} else {
3820 			unsigned crypt_len = roundup(ivsize, blocksize);
3821 
3822 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3823 			if (!req) {
3824 				*error = "Could not allocate crypt request";
3825 				r = -ENOMEM;
3826 				goto bad;
3827 			}
3828 
3829 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3830 			if (!crypt_iv) {
3831 				*error = "Could not allocate iv";
3832 				r = -ENOMEM;
3833 				goto bad;
3834 			}
3835 
3836 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3837 			if (!crypt_data) {
3838 				*error = "Unable to allocate crypt data";
3839 				r = -ENOMEM;
3840 				goto bad;
3841 			}
3842 
3843 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3844 			if (!ic->journal_scatterlist) {
3845 				*error = "Unable to allocate sg list";
3846 				r = -ENOMEM;
3847 				goto bad;
3848 			}
3849 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3850 			if (!ic->journal_io_scatterlist) {
3851 				*error = "Unable to allocate sg list";
3852 				r = -ENOMEM;
3853 				goto bad;
3854 			}
3855 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3856 							 sizeof(struct skcipher_request *),
3857 							 GFP_KERNEL | __GFP_ZERO);
3858 			if (!ic->sk_requests) {
3859 				*error = "Unable to allocate sk requests";
3860 				r = -ENOMEM;
3861 				goto bad;
3862 			}
3863 			for (i = 0; i < ic->journal_sections; i++) {
3864 				struct scatterlist sg;
3865 				struct skcipher_request *section_req;
3866 				__le32 section_le = cpu_to_le32(i);
3867 
3868 				memset(crypt_iv, 0x00, ivsize);
3869 				memset(crypt_data, 0x00, crypt_len);
3870 				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3871 
3872 				sg_init_one(&sg, crypt_data, crypt_len);
3873 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3874 				init_completion(&comp.comp);
3875 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3876 				if (do_crypt(true, req, &comp))
3877 					wait_for_completion(&comp.comp);
3878 
3879 				r = dm_integrity_failed(ic);
3880 				if (r) {
3881 					*error = "Unable to generate iv";
3882 					goto bad;
3883 				}
3884 
3885 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3886 				if (!section_req) {
3887 					*error = "Unable to allocate crypt request";
3888 					r = -ENOMEM;
3889 					goto bad;
3890 				}
3891 				section_req->iv = kmalloc_array(ivsize, 2,
3892 								GFP_KERNEL);
3893 				if (!section_req->iv) {
3894 					skcipher_request_free(section_req);
3895 					*error = "Unable to allocate iv";
3896 					r = -ENOMEM;
3897 					goto bad;
3898 				}
3899 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3900 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3901 				ic->sk_requests[i] = section_req;
3902 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3903 			}
3904 		}
3905 	}
3906 
3907 	for (i = 0; i < N_COMMIT_IDS; i++) {
3908 		unsigned j;
3909 retest_commit_id:
3910 		for (j = 0; j < i; j++) {
3911 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3912 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3913 				goto retest_commit_id;
3914 			}
3915 		}
3916 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3917 	}
3918 
3919 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3920 	if (journal_tree_size > ULONG_MAX) {
3921 		*error = "Journal doesn't fit into memory";
3922 		r = -ENOMEM;
3923 		goto bad;
3924 	}
3925 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3926 	if (!ic->journal_tree) {
3927 		*error = "Could not allocate memory for journal tree";
3928 		r = -ENOMEM;
3929 	}
3930 bad:
3931 	kfree(crypt_data);
3932 	kfree(crypt_iv);
3933 	skcipher_request_free(req);
3934 
3935 	return r;
3936 }
3937 
3938 /*
3939  * Construct a integrity mapping
3940  *
3941  * Arguments:
3942  *	device
3943  *	offset from the start of the device
3944  *	tag size
3945  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3946  *	number of optional arguments
3947  *	optional arguments:
3948  *		journal_sectors
3949  *		interleave_sectors
3950  *		buffer_sectors
3951  *		journal_watermark
3952  *		commit_time
3953  *		meta_device
3954  *		block_size
3955  *		sectors_per_bit
3956  *		bitmap_flush_interval
3957  *		internal_hash
3958  *		journal_crypt
3959  *		journal_mac
3960  *		recalculate
3961  */
3962 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3963 {
3964 	struct dm_integrity_c *ic;
3965 	char dummy;
3966 	int r;
3967 	unsigned extra_args;
3968 	struct dm_arg_set as;
3969 	static const struct dm_arg _args[] = {
3970 		{0, 18, "Invalid number of feature args"},
3971 	};
3972 	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3973 	bool should_write_sb;
3974 	__u64 threshold;
3975 	unsigned long long start;
3976 	__s8 log2_sectors_per_bitmap_bit = -1;
3977 	__s8 log2_blocks_per_bitmap_bit;
3978 	__u64 bits_in_journal;
3979 	__u64 n_bitmap_bits;
3980 
3981 #define DIRECT_ARGUMENTS	4
3982 
3983 	if (argc <= DIRECT_ARGUMENTS) {
3984 		ti->error = "Invalid argument count";
3985 		return -EINVAL;
3986 	}
3987 
3988 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3989 	if (!ic) {
3990 		ti->error = "Cannot allocate integrity context";
3991 		return -ENOMEM;
3992 	}
3993 	ti->private = ic;
3994 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
3995 	ic->ti = ti;
3996 
3997 	ic->in_progress = RB_ROOT;
3998 	INIT_LIST_HEAD(&ic->wait_list);
3999 	init_waitqueue_head(&ic->endio_wait);
4000 	bio_list_init(&ic->flush_bio_list);
4001 	init_waitqueue_head(&ic->copy_to_journal_wait);
4002 	init_completion(&ic->crypto_backoff);
4003 	atomic64_set(&ic->number_of_mismatches, 0);
4004 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4005 
4006 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4007 	if (r) {
4008 		ti->error = "Device lookup failed";
4009 		goto bad;
4010 	}
4011 
4012 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4013 		ti->error = "Invalid starting offset";
4014 		r = -EINVAL;
4015 		goto bad;
4016 	}
4017 	ic->start = start;
4018 
4019 	if (strcmp(argv[2], "-")) {
4020 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4021 			ti->error = "Invalid tag size";
4022 			r = -EINVAL;
4023 			goto bad;
4024 		}
4025 	}
4026 
4027 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4028 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4029 		ic->mode = argv[3][0];
4030 	} else {
4031 		ti->error = "Invalid mode (expecting J, B, D, R)";
4032 		r = -EINVAL;
4033 		goto bad;
4034 	}
4035 
4036 	journal_sectors = 0;
4037 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4038 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4039 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4040 	sync_msec = DEFAULT_SYNC_MSEC;
4041 	ic->sectors_per_block = 1;
4042 
4043 	as.argc = argc - DIRECT_ARGUMENTS;
4044 	as.argv = argv + DIRECT_ARGUMENTS;
4045 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4046 	if (r)
4047 		goto bad;
4048 
4049 	while (extra_args--) {
4050 		const char *opt_string;
4051 		unsigned val;
4052 		unsigned long long llval;
4053 		opt_string = dm_shift_arg(&as);
4054 		if (!opt_string) {
4055 			r = -EINVAL;
4056 			ti->error = "Not enough feature arguments";
4057 			goto bad;
4058 		}
4059 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4060 			journal_sectors = val ? val : 1;
4061 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4062 			interleave_sectors = val;
4063 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4064 			buffer_sectors = val;
4065 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4066 			journal_watermark = val;
4067 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4068 			sync_msec = val;
4069 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4070 			if (ic->meta_dev) {
4071 				dm_put_device(ti, ic->meta_dev);
4072 				ic->meta_dev = NULL;
4073 			}
4074 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4075 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4076 			if (r) {
4077 				ti->error = "Device lookup failed";
4078 				goto bad;
4079 			}
4080 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4081 			if (val < 1 << SECTOR_SHIFT ||
4082 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4083 			    (val & (val -1))) {
4084 				r = -EINVAL;
4085 				ti->error = "Invalid block_size argument";
4086 				goto bad;
4087 			}
4088 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4089 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4090 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4091 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4092 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4093 				r = -EINVAL;
4094 				ti->error = "Invalid bitmap_flush_interval argument";
4095 				goto bad;
4096 			}
4097 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4098 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4099 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4100 					    "Invalid internal_hash argument");
4101 			if (r)
4102 				goto bad;
4103 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4104 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4105 					    "Invalid journal_crypt argument");
4106 			if (r)
4107 				goto bad;
4108 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4109 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4110 					    "Invalid journal_mac argument");
4111 			if (r)
4112 				goto bad;
4113 		} else if (!strcmp(opt_string, "recalculate")) {
4114 			ic->recalculate_flag = true;
4115 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4116 			ic->recalculate_flag = true;
4117 			ic->reset_recalculate_flag = true;
4118 		} else if (!strcmp(opt_string, "allow_discards")) {
4119 			ic->discard = true;
4120 		} else if (!strcmp(opt_string, "fix_padding")) {
4121 			ic->fix_padding = true;
4122 		} else if (!strcmp(opt_string, "fix_hmac")) {
4123 			ic->fix_hmac = true;
4124 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4125 			ic->legacy_recalculate = true;
4126 		} else {
4127 			r = -EINVAL;
4128 			ti->error = "Invalid argument";
4129 			goto bad;
4130 		}
4131 	}
4132 
4133 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4134 	if (!ic->meta_dev)
4135 		ic->meta_device_sectors = ic->data_device_sectors;
4136 	else
4137 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4138 
4139 	if (!journal_sectors) {
4140 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4141 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4142 	}
4143 
4144 	if (!buffer_sectors)
4145 		buffer_sectors = 1;
4146 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4147 
4148 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4149 		    "Invalid internal hash", "Error setting internal hash key");
4150 	if (r)
4151 		goto bad;
4152 
4153 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4154 		    "Invalid journal mac", "Error setting journal mac key");
4155 	if (r)
4156 		goto bad;
4157 
4158 	if (!ic->tag_size) {
4159 		if (!ic->internal_hash) {
4160 			ti->error = "Unknown tag size";
4161 			r = -EINVAL;
4162 			goto bad;
4163 		}
4164 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4165 	}
4166 	if (ic->tag_size > MAX_TAG_SIZE) {
4167 		ti->error = "Too big tag size";
4168 		r = -EINVAL;
4169 		goto bad;
4170 	}
4171 	if (!(ic->tag_size & (ic->tag_size - 1)))
4172 		ic->log2_tag_size = __ffs(ic->tag_size);
4173 	else
4174 		ic->log2_tag_size = -1;
4175 
4176 	if (ic->mode == 'B' && !ic->internal_hash) {
4177 		r = -EINVAL;
4178 		ti->error = "Bitmap mode can be only used with internal hash";
4179 		goto bad;
4180 	}
4181 
4182 	if (ic->discard && !ic->internal_hash) {
4183 		r = -EINVAL;
4184 		ti->error = "Discard can be only used with internal hash";
4185 		goto bad;
4186 	}
4187 
4188 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4189 	ic->autocommit_msec = sync_msec;
4190 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4191 
4192 	ic->io = dm_io_client_create();
4193 	if (IS_ERR(ic->io)) {
4194 		r = PTR_ERR(ic->io);
4195 		ic->io = NULL;
4196 		ti->error = "Cannot allocate dm io";
4197 		goto bad;
4198 	}
4199 
4200 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4201 	if (r) {
4202 		ti->error = "Cannot allocate mempool";
4203 		goto bad;
4204 	}
4205 
4206 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4207 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4208 	if (!ic->metadata_wq) {
4209 		ti->error = "Cannot allocate workqueue";
4210 		r = -ENOMEM;
4211 		goto bad;
4212 	}
4213 
4214 	/*
4215 	 * If this workqueue were percpu, it would cause bio reordering
4216 	 * and reduced performance.
4217 	 */
4218 	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4219 	if (!ic->wait_wq) {
4220 		ti->error = "Cannot allocate workqueue";
4221 		r = -ENOMEM;
4222 		goto bad;
4223 	}
4224 
4225 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4226 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4227 	if (!ic->offload_wq) {
4228 		ti->error = "Cannot allocate workqueue";
4229 		r = -ENOMEM;
4230 		goto bad;
4231 	}
4232 
4233 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4234 	if (!ic->commit_wq) {
4235 		ti->error = "Cannot allocate workqueue";
4236 		r = -ENOMEM;
4237 		goto bad;
4238 	}
4239 	INIT_WORK(&ic->commit_work, integrity_commit);
4240 
4241 	if (ic->mode == 'J' || ic->mode == 'B') {
4242 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4243 		if (!ic->writer_wq) {
4244 			ti->error = "Cannot allocate workqueue";
4245 			r = -ENOMEM;
4246 			goto bad;
4247 		}
4248 		INIT_WORK(&ic->writer_work, integrity_writer);
4249 	}
4250 
4251 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4252 	if (!ic->sb) {
4253 		r = -ENOMEM;
4254 		ti->error = "Cannot allocate superblock area";
4255 		goto bad;
4256 	}
4257 
4258 	r = sync_rw_sb(ic, REQ_OP_READ, 0);
4259 	if (r) {
4260 		ti->error = "Error reading superblock";
4261 		goto bad;
4262 	}
4263 	should_write_sb = false;
4264 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4265 		if (ic->mode != 'R') {
4266 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4267 				r = -EINVAL;
4268 				ti->error = "The device is not initialized";
4269 				goto bad;
4270 			}
4271 		}
4272 
4273 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4274 		if (r) {
4275 			ti->error = "Could not initialize superblock";
4276 			goto bad;
4277 		}
4278 		if (ic->mode != 'R')
4279 			should_write_sb = true;
4280 	}
4281 
4282 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4283 		r = -EINVAL;
4284 		ti->error = "Unknown version";
4285 		goto bad;
4286 	}
4287 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4288 		r = -EINVAL;
4289 		ti->error = "Tag size doesn't match the information in superblock";
4290 		goto bad;
4291 	}
4292 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4293 		r = -EINVAL;
4294 		ti->error = "Block size doesn't match the information in superblock";
4295 		goto bad;
4296 	}
4297 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4298 		r = -EINVAL;
4299 		ti->error = "Corrupted superblock, journal_sections is 0";
4300 		goto bad;
4301 	}
4302 	/* make sure that ti->max_io_len doesn't overflow */
4303 	if (!ic->meta_dev) {
4304 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4305 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4306 			r = -EINVAL;
4307 			ti->error = "Invalid interleave_sectors in the superblock";
4308 			goto bad;
4309 		}
4310 	} else {
4311 		if (ic->sb->log2_interleave_sectors) {
4312 			r = -EINVAL;
4313 			ti->error = "Invalid interleave_sectors in the superblock";
4314 			goto bad;
4315 		}
4316 	}
4317 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4318 		r = -EINVAL;
4319 		ti->error = "Journal mac mismatch";
4320 		goto bad;
4321 	}
4322 
4323 	get_provided_data_sectors(ic);
4324 	if (!ic->provided_data_sectors) {
4325 		r = -EINVAL;
4326 		ti->error = "The device is too small";
4327 		goto bad;
4328 	}
4329 
4330 try_smaller_buffer:
4331 	r = calculate_device_limits(ic);
4332 	if (r) {
4333 		if (ic->meta_dev) {
4334 			if (ic->log2_buffer_sectors > 3) {
4335 				ic->log2_buffer_sectors--;
4336 				goto try_smaller_buffer;
4337 			}
4338 		}
4339 		ti->error = "The device is too small";
4340 		goto bad;
4341 	}
4342 
4343 	if (log2_sectors_per_bitmap_bit < 0)
4344 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4345 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4346 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4347 
4348 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4349 	if (bits_in_journal > UINT_MAX)
4350 		bits_in_journal = UINT_MAX;
4351 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4352 		log2_sectors_per_bitmap_bit++;
4353 
4354 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4355 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4356 	if (should_write_sb) {
4357 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4358 	}
4359 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4360 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4361 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4362 
4363 	if (!ic->meta_dev)
4364 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4365 
4366 	if (ti->len > ic->provided_data_sectors) {
4367 		r = -EINVAL;
4368 		ti->error = "Not enough provided sectors for requested mapping size";
4369 		goto bad;
4370 	}
4371 
4372 
4373 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4374 	threshold += 50;
4375 	do_div(threshold, 100);
4376 	ic->free_sectors_threshold = threshold;
4377 
4378 	DEBUG_print("initialized:\n");
4379 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4380 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4381 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4382 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4383 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4384 	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4385 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4386 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4387 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4388 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4389 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4390 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4391 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4392 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4393 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4394 
4395 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4396 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4397 		ic->sb->recalc_sector = cpu_to_le64(0);
4398 	}
4399 
4400 	if (ic->internal_hash) {
4401 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4402 		if (!ic->recalc_wq ) {
4403 			ti->error = "Cannot allocate workqueue";
4404 			r = -ENOMEM;
4405 			goto bad;
4406 		}
4407 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4408 		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4409 		if (!ic->recalc_buffer) {
4410 			ti->error = "Cannot allocate buffer for recalculating";
4411 			r = -ENOMEM;
4412 			goto bad;
4413 		}
4414 		ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4415 						 ic->tag_size, GFP_KERNEL);
4416 		if (!ic->recalc_tags) {
4417 			ti->error = "Cannot allocate tags for recalculating";
4418 			r = -ENOMEM;
4419 			goto bad;
4420 		}
4421 	} else {
4422 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4423 			ti->error = "Recalculate can only be specified with internal_hash";
4424 			r = -EINVAL;
4425 			goto bad;
4426 		}
4427 	}
4428 
4429 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4430 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4431 	    dm_integrity_disable_recalculate(ic)) {
4432 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4433 		r = -EOPNOTSUPP;
4434 		goto bad;
4435 	}
4436 
4437 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4438 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4439 	if (IS_ERR(ic->bufio)) {
4440 		r = PTR_ERR(ic->bufio);
4441 		ti->error = "Cannot initialize dm-bufio";
4442 		ic->bufio = NULL;
4443 		goto bad;
4444 	}
4445 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4446 
4447 	if (ic->mode != 'R') {
4448 		r = create_journal(ic, &ti->error);
4449 		if (r)
4450 			goto bad;
4451 
4452 	}
4453 
4454 	if (ic->mode == 'B') {
4455 		unsigned i;
4456 		unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4457 
4458 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4459 		if (!ic->recalc_bitmap) {
4460 			r = -ENOMEM;
4461 			goto bad;
4462 		}
4463 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4464 		if (!ic->may_write_bitmap) {
4465 			r = -ENOMEM;
4466 			goto bad;
4467 		}
4468 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4469 		if (!ic->bbs) {
4470 			r = -ENOMEM;
4471 			goto bad;
4472 		}
4473 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4474 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4475 			struct bitmap_block_status *bbs = &ic->bbs[i];
4476 			unsigned sector, pl_index, pl_offset;
4477 
4478 			INIT_WORK(&bbs->work, bitmap_block_work);
4479 			bbs->ic = ic;
4480 			bbs->idx = i;
4481 			bio_list_init(&bbs->bio_queue);
4482 			spin_lock_init(&bbs->bio_queue_lock);
4483 
4484 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4485 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4486 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4487 
4488 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4489 		}
4490 	}
4491 
4492 	if (should_write_sb) {
4493 		int r;
4494 
4495 		init_journal(ic, 0, ic->journal_sections, 0);
4496 		r = dm_integrity_failed(ic);
4497 		if (unlikely(r)) {
4498 			ti->error = "Error initializing journal";
4499 			goto bad;
4500 		}
4501 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4502 		if (r) {
4503 			ti->error = "Error initializing superblock";
4504 			goto bad;
4505 		}
4506 		ic->just_formatted = true;
4507 	}
4508 
4509 	if (!ic->meta_dev) {
4510 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4511 		if (r)
4512 			goto bad;
4513 	}
4514 	if (ic->mode == 'B') {
4515 		unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4516 		if (!max_io_len)
4517 			max_io_len = 1U << 31;
4518 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4519 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4520 			r = dm_set_target_max_io_len(ti, max_io_len);
4521 			if (r)
4522 				goto bad;
4523 		}
4524 	}
4525 
4526 	if (!ic->internal_hash)
4527 		dm_integrity_set(ti, ic);
4528 
4529 	ti->num_flush_bios = 1;
4530 	ti->flush_supported = true;
4531 	if (ic->discard)
4532 		ti->num_discard_bios = 1;
4533 
4534 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4535 	return 0;
4536 
4537 bad:
4538 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4539 	dm_integrity_dtr(ti);
4540 	return r;
4541 }
4542 
4543 static void dm_integrity_dtr(struct dm_target *ti)
4544 {
4545 	struct dm_integrity_c *ic = ti->private;
4546 
4547 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4548 	BUG_ON(!list_empty(&ic->wait_list));
4549 
4550 	if (ic->metadata_wq)
4551 		destroy_workqueue(ic->metadata_wq);
4552 	if (ic->wait_wq)
4553 		destroy_workqueue(ic->wait_wq);
4554 	if (ic->offload_wq)
4555 		destroy_workqueue(ic->offload_wq);
4556 	if (ic->commit_wq)
4557 		destroy_workqueue(ic->commit_wq);
4558 	if (ic->writer_wq)
4559 		destroy_workqueue(ic->writer_wq);
4560 	if (ic->recalc_wq)
4561 		destroy_workqueue(ic->recalc_wq);
4562 	vfree(ic->recalc_buffer);
4563 	kvfree(ic->recalc_tags);
4564 	kvfree(ic->bbs);
4565 	if (ic->bufio)
4566 		dm_bufio_client_destroy(ic->bufio);
4567 	mempool_exit(&ic->journal_io_mempool);
4568 	if (ic->io)
4569 		dm_io_client_destroy(ic->io);
4570 	if (ic->dev)
4571 		dm_put_device(ti, ic->dev);
4572 	if (ic->meta_dev)
4573 		dm_put_device(ti, ic->meta_dev);
4574 	dm_integrity_free_page_list(ic->journal);
4575 	dm_integrity_free_page_list(ic->journal_io);
4576 	dm_integrity_free_page_list(ic->journal_xor);
4577 	dm_integrity_free_page_list(ic->recalc_bitmap);
4578 	dm_integrity_free_page_list(ic->may_write_bitmap);
4579 	if (ic->journal_scatterlist)
4580 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4581 	if (ic->journal_io_scatterlist)
4582 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4583 	if (ic->sk_requests) {
4584 		unsigned i;
4585 
4586 		for (i = 0; i < ic->journal_sections; i++) {
4587 			struct skcipher_request *req = ic->sk_requests[i];
4588 			if (req) {
4589 				kfree_sensitive(req->iv);
4590 				skcipher_request_free(req);
4591 			}
4592 		}
4593 		kvfree(ic->sk_requests);
4594 	}
4595 	kvfree(ic->journal_tree);
4596 	if (ic->sb)
4597 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4598 
4599 	if (ic->internal_hash)
4600 		crypto_free_shash(ic->internal_hash);
4601 	free_alg(&ic->internal_hash_alg);
4602 
4603 	if (ic->journal_crypt)
4604 		crypto_free_skcipher(ic->journal_crypt);
4605 	free_alg(&ic->journal_crypt_alg);
4606 
4607 	if (ic->journal_mac)
4608 		crypto_free_shash(ic->journal_mac);
4609 	free_alg(&ic->journal_mac_alg);
4610 
4611 	kfree(ic);
4612 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4613 }
4614 
4615 static struct target_type integrity_target = {
4616 	.name			= "integrity",
4617 	.version		= {1, 10, 0},
4618 	.module			= THIS_MODULE,
4619 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4620 	.ctr			= dm_integrity_ctr,
4621 	.dtr			= dm_integrity_dtr,
4622 	.map			= dm_integrity_map,
4623 	.postsuspend		= dm_integrity_postsuspend,
4624 	.resume			= dm_integrity_resume,
4625 	.status			= dm_integrity_status,
4626 	.iterate_devices	= dm_integrity_iterate_devices,
4627 	.io_hints		= dm_integrity_io_hints,
4628 };
4629 
4630 static int __init dm_integrity_init(void)
4631 {
4632 	int r;
4633 
4634 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4635 					     sizeof(struct journal_io), 0, 0, NULL);
4636 	if (!journal_io_cache) {
4637 		DMERR("can't allocate journal io cache");
4638 		return -ENOMEM;
4639 	}
4640 
4641 	r = dm_register_target(&integrity_target);
4642 
4643 	if (r < 0)
4644 		DMERR("register failed %d", r);
4645 
4646 	return r;
4647 }
4648 
4649 static void __exit dm_integrity_exit(void)
4650 {
4651 	dm_unregister_target(&integrity_target);
4652 	kmem_cache_destroy(journal_io_cache);
4653 }
4654 
4655 module_init(dm_integrity_init);
4656 module_exit(dm_integrity_exit);
4657 
4658 MODULE_AUTHOR("Milan Broz");
4659 MODULE_AUTHOR("Mikulas Patocka");
4660 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4661 MODULE_LICENSE("GPL");
4662