xref: /openbmc/linux/drivers/md/dm-crypt.c (revision 5972511b77809cb7c9ccdb79b825c54921c5c546)
1 /*
2  * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
22 #include <asm/page.h>
23 #include <asm/unaligned.h>
24 
25 #include "dm.h"
26 
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
29 
30 /*
31  * per bio private data
32  */
33 struct crypt_io {
34 	struct dm_target *target;
35 	struct bio *base_bio;
36 	struct bio *first_clone;
37 	struct work_struct work;
38 	atomic_t pending;
39 	int error;
40 	int post_process;
41 };
42 
43 /*
44  * context holding the current state of a multi-part conversion
45  */
46 struct convert_context {
47 	struct bio *bio_in;
48 	struct bio *bio_out;
49 	unsigned int offset_in;
50 	unsigned int offset_out;
51 	unsigned int idx_in;
52 	unsigned int idx_out;
53 	sector_t sector;
54 	int write;
55 };
56 
57 struct crypt_config;
58 
59 struct crypt_iv_operations {
60 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
61 	           const char *opts);
62 	void (*dtr)(struct crypt_config *cc);
63 	const char *(*status)(struct crypt_config *cc);
64 	int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
65 };
66 
67 /*
68  * Crypt: maps a linear range of a block device
69  * and encrypts / decrypts at the same time.
70  */
71 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
72 struct crypt_config {
73 	struct dm_dev *dev;
74 	sector_t start;
75 
76 	/*
77 	 * pool for per bio private data and
78 	 * for encryption buffer pages
79 	 */
80 	mempool_t *io_pool;
81 	mempool_t *page_pool;
82 	struct bio_set *bs;
83 
84 	/*
85 	 * crypto related data
86 	 */
87 	struct crypt_iv_operations *iv_gen_ops;
88 	char *iv_mode;
89 	union {
90 		struct crypto_cipher *essiv_tfm;
91 		int benbi_shift;
92 	} iv_gen_private;
93 	sector_t iv_offset;
94 	unsigned int iv_size;
95 
96 	char cipher[CRYPTO_MAX_ALG_NAME];
97 	char chainmode[CRYPTO_MAX_ALG_NAME];
98 	struct crypto_blkcipher *tfm;
99 	unsigned long flags;
100 	unsigned int key_size;
101 	u8 key[0];
102 };
103 
104 #define MIN_IOS        16
105 #define MIN_POOL_PAGES 32
106 #define MIN_BIO_PAGES  8
107 
108 static struct kmem_cache *_crypt_io_pool;
109 
110 /*
111  * Different IV generation algorithms:
112  *
113  * plain: the initial vector is the 32-bit little-endian version of the sector
114  *        number, padded with zeros if neccessary.
115  *
116  * essiv: "encrypted sector|salt initial vector", the sector number is
117  *        encrypted with the bulk cipher using a salt as key. The salt
118  *        should be derived from the bulk cipher's key via hashing.
119  *
120  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
121  *        (needed for LRW-32-AES and possible other narrow block modes)
122  *
123  * plumb: unimplemented, see:
124  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
125  */
126 
127 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
128 {
129 	memset(iv, 0, cc->iv_size);
130 	*(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
131 
132 	return 0;
133 }
134 
135 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
136 	                      const char *opts)
137 {
138 	struct crypto_cipher *essiv_tfm;
139 	struct crypto_hash *hash_tfm;
140 	struct hash_desc desc;
141 	struct scatterlist sg;
142 	unsigned int saltsize;
143 	u8 *salt;
144 	int err;
145 
146 	if (opts == NULL) {
147 		ti->error = "Digest algorithm missing for ESSIV mode";
148 		return -EINVAL;
149 	}
150 
151 	/* Hash the cipher key with the given hash algorithm */
152 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
153 	if (IS_ERR(hash_tfm)) {
154 		ti->error = "Error initializing ESSIV hash";
155 		return PTR_ERR(hash_tfm);
156 	}
157 
158 	saltsize = crypto_hash_digestsize(hash_tfm);
159 	salt = kmalloc(saltsize, GFP_KERNEL);
160 	if (salt == NULL) {
161 		ti->error = "Error kmallocing salt storage in ESSIV";
162 		crypto_free_hash(hash_tfm);
163 		return -ENOMEM;
164 	}
165 
166 	sg_set_buf(&sg, cc->key, cc->key_size);
167 	desc.tfm = hash_tfm;
168 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
169 	err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
170 	crypto_free_hash(hash_tfm);
171 
172 	if (err) {
173 		ti->error = "Error calculating hash in ESSIV";
174 		return err;
175 	}
176 
177 	/* Setup the essiv_tfm with the given salt */
178 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
179 	if (IS_ERR(essiv_tfm)) {
180 		ti->error = "Error allocating crypto tfm for ESSIV";
181 		kfree(salt);
182 		return PTR_ERR(essiv_tfm);
183 	}
184 	if (crypto_cipher_blocksize(essiv_tfm) !=
185 	    crypto_blkcipher_ivsize(cc->tfm)) {
186 		ti->error = "Block size of ESSIV cipher does "
187 			        "not match IV size of block cipher";
188 		crypto_free_cipher(essiv_tfm);
189 		kfree(salt);
190 		return -EINVAL;
191 	}
192 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
193 	if (err) {
194 		ti->error = "Failed to set key for ESSIV cipher";
195 		crypto_free_cipher(essiv_tfm);
196 		kfree(salt);
197 		return err;
198 	}
199 	kfree(salt);
200 
201 	cc->iv_gen_private.essiv_tfm = essiv_tfm;
202 	return 0;
203 }
204 
205 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
206 {
207 	crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
208 	cc->iv_gen_private.essiv_tfm = NULL;
209 }
210 
211 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
212 {
213 	memset(iv, 0, cc->iv_size);
214 	*(u64 *)iv = cpu_to_le64(sector);
215 	crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
216 	return 0;
217 }
218 
219 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
220 			      const char *opts)
221 {
222 	unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
223 	int log = ilog2(bs);
224 
225 	/* we need to calculate how far we must shift the sector count
226 	 * to get the cipher block count, we use this shift in _gen */
227 
228 	if (1 << log != bs) {
229 		ti->error = "cypher blocksize is not a power of 2";
230 		return -EINVAL;
231 	}
232 
233 	if (log > 9) {
234 		ti->error = "cypher blocksize is > 512";
235 		return -EINVAL;
236 	}
237 
238 	cc->iv_gen_private.benbi_shift = 9 - log;
239 
240 	return 0;
241 }
242 
243 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
244 {
245 }
246 
247 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
248 {
249 	__be64 val;
250 
251 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
252 
253 	val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
254 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
255 
256 	return 0;
257 }
258 
259 static struct crypt_iv_operations crypt_iv_plain_ops = {
260 	.generator = crypt_iv_plain_gen
261 };
262 
263 static struct crypt_iv_operations crypt_iv_essiv_ops = {
264 	.ctr       = crypt_iv_essiv_ctr,
265 	.dtr       = crypt_iv_essiv_dtr,
266 	.generator = crypt_iv_essiv_gen
267 };
268 
269 static struct crypt_iv_operations crypt_iv_benbi_ops = {
270 	.ctr	   = crypt_iv_benbi_ctr,
271 	.dtr	   = crypt_iv_benbi_dtr,
272 	.generator = crypt_iv_benbi_gen
273 };
274 
275 static int
276 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
277                           struct scatterlist *in, unsigned int length,
278                           int write, sector_t sector)
279 {
280 	u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
281 	struct blkcipher_desc desc = {
282 		.tfm = cc->tfm,
283 		.info = iv,
284 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP,
285 	};
286 	int r;
287 
288 	if (cc->iv_gen_ops) {
289 		r = cc->iv_gen_ops->generator(cc, iv, sector);
290 		if (r < 0)
291 			return r;
292 
293 		if (write)
294 			r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
295 		else
296 			r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
297 	} else {
298 		if (write)
299 			r = crypto_blkcipher_encrypt(&desc, out, in, length);
300 		else
301 			r = crypto_blkcipher_decrypt(&desc, out, in, length);
302 	}
303 
304 	return r;
305 }
306 
307 static void
308 crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
309                    struct bio *bio_out, struct bio *bio_in,
310                    sector_t sector, int write)
311 {
312 	ctx->bio_in = bio_in;
313 	ctx->bio_out = bio_out;
314 	ctx->offset_in = 0;
315 	ctx->offset_out = 0;
316 	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
317 	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
318 	ctx->sector = sector + cc->iv_offset;
319 	ctx->write = write;
320 }
321 
322 /*
323  * Encrypt / decrypt data from one bio to another one (can be the same one)
324  */
325 static int crypt_convert(struct crypt_config *cc,
326                          struct convert_context *ctx)
327 {
328 	int r = 0;
329 
330 	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
331 	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
332 		struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
333 		struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
334 		struct scatterlist sg_in = {
335 			.page = bv_in->bv_page,
336 			.offset = bv_in->bv_offset + ctx->offset_in,
337 			.length = 1 << SECTOR_SHIFT
338 		};
339 		struct scatterlist sg_out = {
340 			.page = bv_out->bv_page,
341 			.offset = bv_out->bv_offset + ctx->offset_out,
342 			.length = 1 << SECTOR_SHIFT
343 		};
344 
345 		ctx->offset_in += sg_in.length;
346 		if (ctx->offset_in >= bv_in->bv_len) {
347 			ctx->offset_in = 0;
348 			ctx->idx_in++;
349 		}
350 
351 		ctx->offset_out += sg_out.length;
352 		if (ctx->offset_out >= bv_out->bv_len) {
353 			ctx->offset_out = 0;
354 			ctx->idx_out++;
355 		}
356 
357 		r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
358 		                              ctx->write, ctx->sector);
359 		if (r < 0)
360 			break;
361 
362 		ctx->sector++;
363 	}
364 
365 	return r;
366 }
367 
368  static void dm_crypt_bio_destructor(struct bio *bio)
369  {
370 	struct crypt_io *io = bio->bi_private;
371 	struct crypt_config *cc = io->target->private;
372 
373 	bio_free(bio, cc->bs);
374  }
375 
376 /*
377  * Generate a new unfragmented bio with the given size
378  * This should never violate the device limitations
379  * May return a smaller bio when running out of pages
380  */
381 static struct bio *
382 crypt_alloc_buffer(struct crypt_config *cc, unsigned int size,
383                    struct bio *base_bio, unsigned int *bio_vec_idx)
384 {
385 	struct bio *clone;
386 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
387 	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
388 	unsigned int i;
389 
390 	if (base_bio) {
391 		clone = bio_alloc_bioset(GFP_NOIO, base_bio->bi_max_vecs, cc->bs);
392 		__bio_clone(clone, base_bio);
393 	} else
394 		clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
395 
396 	if (!clone)
397 		return NULL;
398 
399 	clone->bi_destructor = dm_crypt_bio_destructor;
400 
401 	/* if the last bio was not complete, continue where that one ended */
402 	clone->bi_idx = *bio_vec_idx;
403 	clone->bi_vcnt = *bio_vec_idx;
404 	clone->bi_size = 0;
405 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
406 
407 	/* clone->bi_idx pages have already been allocated */
408 	size -= clone->bi_idx * PAGE_SIZE;
409 
410 	for (i = clone->bi_idx; i < nr_iovecs; i++) {
411 		struct bio_vec *bv = bio_iovec_idx(clone, i);
412 
413 		bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
414 		if (!bv->bv_page)
415 			break;
416 
417 		/*
418 		 * if additional pages cannot be allocated without waiting,
419 		 * return a partially allocated bio, the caller will then try
420 		 * to allocate additional bios while submitting this partial bio
421 		 */
422 		if ((i - clone->bi_idx) == (MIN_BIO_PAGES - 1))
423 			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
424 
425 		bv->bv_offset = 0;
426 		if (size > PAGE_SIZE)
427 			bv->bv_len = PAGE_SIZE;
428 		else
429 			bv->bv_len = size;
430 
431 		clone->bi_size += bv->bv_len;
432 		clone->bi_vcnt++;
433 		size -= bv->bv_len;
434 	}
435 
436 	if (!clone->bi_size) {
437 		bio_put(clone);
438 		return NULL;
439 	}
440 
441 	/*
442 	 * Remember the last bio_vec allocated to be able
443 	 * to correctly continue after the splitting.
444 	 */
445 	*bio_vec_idx = clone->bi_vcnt;
446 
447 	return clone;
448 }
449 
450 static void crypt_free_buffer_pages(struct crypt_config *cc,
451                                     struct bio *clone, unsigned int bytes)
452 {
453 	unsigned int i, start, end;
454 	struct bio_vec *bv;
455 
456 	/*
457 	 * This is ugly, but Jens Axboe thinks that using bi_idx in the
458 	 * endio function is too dangerous at the moment, so I calculate the
459 	 * correct position using bi_vcnt and bi_size.
460 	 * The bv_offset and bv_len fields might already be modified but we
461 	 * know that we always allocated whole pages.
462 	 * A fix to the bi_idx issue in the kernel is in the works, so
463 	 * we will hopefully be able to revert to the cleaner solution soon.
464 	 */
465 	i = clone->bi_vcnt - 1;
466 	bv = bio_iovec_idx(clone, i);
467 	end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - clone->bi_size;
468 	start = end - bytes;
469 
470 	start >>= PAGE_SHIFT;
471 	if (!clone->bi_size)
472 		end = clone->bi_vcnt;
473 	else
474 		end >>= PAGE_SHIFT;
475 
476 	for (i = start; i < end; i++) {
477 		bv = bio_iovec_idx(clone, i);
478 		BUG_ON(!bv->bv_page);
479 		mempool_free(bv->bv_page, cc->page_pool);
480 		bv->bv_page = NULL;
481 	}
482 }
483 
484 /*
485  * One of the bios was finished. Check for completion of
486  * the whole request and correctly clean up the buffer.
487  */
488 static void dec_pending(struct crypt_io *io, int error)
489 {
490 	struct crypt_config *cc = (struct crypt_config *) io->target->private;
491 
492 	if (error < 0)
493 		io->error = error;
494 
495 	if (!atomic_dec_and_test(&io->pending))
496 		return;
497 
498 	if (io->first_clone)
499 		bio_put(io->first_clone);
500 
501 	bio_endio(io->base_bio, io->base_bio->bi_size, io->error);
502 
503 	mempool_free(io, cc->io_pool);
504 }
505 
506 /*
507  * kcryptd:
508  *
509  * Needed because it would be very unwise to do decryption in an
510  * interrupt context.
511  */
512 static struct workqueue_struct *_kcryptd_workqueue;
513 static void kcryptd_do_work(struct work_struct *work);
514 
515 static void kcryptd_queue_io(struct crypt_io *io)
516 {
517 	INIT_WORK(&io->work, kcryptd_do_work);
518 	queue_work(_kcryptd_workqueue, &io->work);
519 }
520 
521 static int crypt_endio(struct bio *clone, unsigned int done, int error)
522 {
523 	struct crypt_io *io = clone->bi_private;
524 	struct crypt_config *cc = io->target->private;
525 	unsigned read_io = bio_data_dir(clone) == READ;
526 
527 	/*
528 	 * free the processed pages, even if
529 	 * it's only a partially completed write
530 	 */
531 	if (!read_io)
532 		crypt_free_buffer_pages(cc, clone, done);
533 
534 	/* keep going - not finished yet */
535 	if (unlikely(clone->bi_size))
536 		return 1;
537 
538 	if (!read_io)
539 		goto out;
540 
541 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE))) {
542 		error = -EIO;
543 		goto out;
544 	}
545 
546 	bio_put(clone);
547 	io->post_process = 1;
548 	kcryptd_queue_io(io);
549 	return 0;
550 
551 out:
552 	bio_put(clone);
553 	dec_pending(io, error);
554 	return error;
555 }
556 
557 static void clone_init(struct crypt_io *io, struct bio *clone)
558 {
559 	struct crypt_config *cc = io->target->private;
560 
561 	clone->bi_private = io;
562 	clone->bi_end_io  = crypt_endio;
563 	clone->bi_bdev    = cc->dev->bdev;
564 	clone->bi_rw      = io->base_bio->bi_rw;
565 }
566 
567 static void process_read(struct crypt_io *io)
568 {
569 	struct crypt_config *cc = io->target->private;
570 	struct bio *base_bio = io->base_bio;
571 	struct bio *clone;
572 	sector_t sector = base_bio->bi_sector - io->target->begin;
573 
574 	atomic_inc(&io->pending);
575 
576 	/*
577 	 * The block layer might modify the bvec array, so always
578 	 * copy the required bvecs because we need the original
579 	 * one in order to decrypt the whole bio data *afterwards*.
580 	 */
581 	clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
582 	if (unlikely(!clone)) {
583 		dec_pending(io, -ENOMEM);
584 		return;
585 	}
586 
587 	clone_init(io, clone);
588 	clone->bi_destructor = dm_crypt_bio_destructor;
589 	clone->bi_idx = 0;
590 	clone->bi_vcnt = bio_segments(base_bio);
591 	clone->bi_size = base_bio->bi_size;
592 	clone->bi_sector = cc->start + sector;
593 	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
594 	       sizeof(struct bio_vec) * clone->bi_vcnt);
595 
596 	generic_make_request(clone);
597 }
598 
599 static void process_write(struct crypt_io *io)
600 {
601 	struct crypt_config *cc = io->target->private;
602 	struct bio *base_bio = io->base_bio;
603 	struct bio *clone;
604 	struct convert_context ctx;
605 	unsigned remaining = base_bio->bi_size;
606 	sector_t sector = base_bio->bi_sector - io->target->begin;
607 	unsigned bvec_idx = 0;
608 
609 	atomic_inc(&io->pending);
610 
611 	crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1);
612 
613 	/*
614 	 * The allocated buffers can be smaller than the whole bio,
615 	 * so repeat the whole process until all the data can be handled.
616 	 */
617 	while (remaining) {
618 		clone = crypt_alloc_buffer(cc, base_bio->bi_size,
619 					   io->first_clone, &bvec_idx);
620 		if (unlikely(!clone)) {
621 			dec_pending(io, -ENOMEM);
622 			return;
623 		}
624 
625 		ctx.bio_out = clone;
626 
627 		if (unlikely(crypt_convert(cc, &ctx) < 0)) {
628 			crypt_free_buffer_pages(cc, clone, clone->bi_size);
629 			bio_put(clone);
630 			dec_pending(io, -EIO);
631 			return;
632 		}
633 
634 		clone_init(io, clone);
635 		clone->bi_sector = cc->start + sector;
636 
637 		if (!io->first_clone) {
638 			/*
639 			 * hold a reference to the first clone, because it
640 			 * holds the bio_vec array and that can't be freed
641 			 * before all other clones are released
642 			 */
643 			bio_get(clone);
644 			io->first_clone = clone;
645 		}
646 
647 		remaining -= clone->bi_size;
648 		sector += bio_sectors(clone);
649 
650 		/* prevent bio_put of first_clone */
651 		if (remaining)
652 			atomic_inc(&io->pending);
653 
654 		generic_make_request(clone);
655 
656 		/* out of memory -> run queues */
657 		if (remaining)
658 			congestion_wait(bio_data_dir(clone), HZ/100);
659 	}
660 }
661 
662 static void process_read_endio(struct crypt_io *io)
663 {
664 	struct crypt_config *cc = io->target->private;
665 	struct convert_context ctx;
666 
667 	crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
668 			   io->base_bio->bi_sector - io->target->begin, 0);
669 
670 	dec_pending(io, crypt_convert(cc, &ctx));
671 }
672 
673 static void kcryptd_do_work(struct work_struct *work)
674 {
675 	struct crypt_io *io = container_of(work, struct crypt_io, work);
676 
677 	if (io->post_process)
678 		process_read_endio(io);
679 	else if (bio_data_dir(io->base_bio) == READ)
680 		process_read(io);
681 	else
682 		process_write(io);
683 }
684 
685 /*
686  * Decode key from its hex representation
687  */
688 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
689 {
690 	char buffer[3];
691 	char *endp;
692 	unsigned int i;
693 
694 	buffer[2] = '\0';
695 
696 	for (i = 0; i < size; i++) {
697 		buffer[0] = *hex++;
698 		buffer[1] = *hex++;
699 
700 		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
701 
702 		if (endp != &buffer[2])
703 			return -EINVAL;
704 	}
705 
706 	if (*hex != '\0')
707 		return -EINVAL;
708 
709 	return 0;
710 }
711 
712 /*
713  * Encode key into its hex representation
714  */
715 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
716 {
717 	unsigned int i;
718 
719 	for (i = 0; i < size; i++) {
720 		sprintf(hex, "%02x", *key);
721 		hex += 2;
722 		key++;
723 	}
724 }
725 
726 static int crypt_set_key(struct crypt_config *cc, char *key)
727 {
728 	unsigned key_size = strlen(key) >> 1;
729 
730 	if (cc->key_size && cc->key_size != key_size)
731 		return -EINVAL;
732 
733 	cc->key_size = key_size; /* initial settings */
734 
735 	if ((!key_size && strcmp(key, "-")) ||
736 	    (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
737 		return -EINVAL;
738 
739 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
740 
741 	return 0;
742 }
743 
744 static int crypt_wipe_key(struct crypt_config *cc)
745 {
746 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
747 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
748 	return 0;
749 }
750 
751 /*
752  * Construct an encryption mapping:
753  * <cipher> <key> <iv_offset> <dev_path> <start>
754  */
755 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
756 {
757 	struct crypt_config *cc;
758 	struct crypto_blkcipher *tfm;
759 	char *tmp;
760 	char *cipher;
761 	char *chainmode;
762 	char *ivmode;
763 	char *ivopts;
764 	unsigned int key_size;
765 	unsigned long long tmpll;
766 
767 	if (argc != 5) {
768 		ti->error = "Not enough arguments";
769 		return -EINVAL;
770 	}
771 
772 	tmp = argv[0];
773 	cipher = strsep(&tmp, "-");
774 	chainmode = strsep(&tmp, "-");
775 	ivopts = strsep(&tmp, "-");
776 	ivmode = strsep(&ivopts, ":");
777 
778 	if (tmp)
779 		DMWARN("Unexpected additional cipher options");
780 
781 	key_size = strlen(argv[1]) >> 1;
782 
783  	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
784 	if (cc == NULL) {
785 		ti->error =
786 			"Cannot allocate transparent encryption context";
787 		return -ENOMEM;
788 	}
789 
790  	if (crypt_set_key(cc, argv[1])) {
791 		ti->error = "Error decoding key";
792 		goto bad1;
793 	}
794 
795 	/* Compatiblity mode for old dm-crypt cipher strings */
796 	if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
797 		chainmode = "cbc";
798 		ivmode = "plain";
799 	}
800 
801 	if (strcmp(chainmode, "ecb") && !ivmode) {
802 		ti->error = "This chaining mode requires an IV mechanism";
803 		goto bad1;
804 	}
805 
806 	if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)", chainmode,
807 		     cipher) >= CRYPTO_MAX_ALG_NAME) {
808 		ti->error = "Chain mode + cipher name is too long";
809 		goto bad1;
810 	}
811 
812 	tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
813 	if (IS_ERR(tfm)) {
814 		ti->error = "Error allocating crypto tfm";
815 		goto bad1;
816 	}
817 
818 	strcpy(cc->cipher, cipher);
819 	strcpy(cc->chainmode, chainmode);
820 	cc->tfm = tfm;
821 
822 	/*
823 	 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
824 	 * See comments at iv code
825 	 */
826 
827 	if (ivmode == NULL)
828 		cc->iv_gen_ops = NULL;
829 	else if (strcmp(ivmode, "plain") == 0)
830 		cc->iv_gen_ops = &crypt_iv_plain_ops;
831 	else if (strcmp(ivmode, "essiv") == 0)
832 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
833 	else if (strcmp(ivmode, "benbi") == 0)
834 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
835 	else {
836 		ti->error = "Invalid IV mode";
837 		goto bad2;
838 	}
839 
840 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
841 	    cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
842 		goto bad2;
843 
844 	cc->iv_size = crypto_blkcipher_ivsize(tfm);
845 	if (cc->iv_size)
846 		/* at least a 64 bit sector number should fit in our buffer */
847 		cc->iv_size = max(cc->iv_size,
848 		                  (unsigned int)(sizeof(u64) / sizeof(u8)));
849 	else {
850 		if (cc->iv_gen_ops) {
851 			DMWARN("Selected cipher does not support IVs");
852 			if (cc->iv_gen_ops->dtr)
853 				cc->iv_gen_ops->dtr(cc);
854 			cc->iv_gen_ops = NULL;
855 		}
856 	}
857 
858 	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
859 	if (!cc->io_pool) {
860 		ti->error = "Cannot allocate crypt io mempool";
861 		goto bad3;
862 	}
863 
864 	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
865 	if (!cc->page_pool) {
866 		ti->error = "Cannot allocate page mempool";
867 		goto bad4;
868 	}
869 
870 	cc->bs = bioset_create(MIN_IOS, MIN_IOS);
871 	if (!cc->bs) {
872 		ti->error = "Cannot allocate crypt bioset";
873 		goto bad_bs;
874 	}
875 
876 	if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
877 		ti->error = "Error setting key";
878 		goto bad5;
879 	}
880 
881 	if (sscanf(argv[2], "%llu", &tmpll) != 1) {
882 		ti->error = "Invalid iv_offset sector";
883 		goto bad5;
884 	}
885 	cc->iv_offset = tmpll;
886 
887 	if (sscanf(argv[4], "%llu", &tmpll) != 1) {
888 		ti->error = "Invalid device sector";
889 		goto bad5;
890 	}
891 	cc->start = tmpll;
892 
893 	if (dm_get_device(ti, argv[3], cc->start, ti->len,
894 	                  dm_table_get_mode(ti->table), &cc->dev)) {
895 		ti->error = "Device lookup failed";
896 		goto bad5;
897 	}
898 
899 	if (ivmode && cc->iv_gen_ops) {
900 		if (ivopts)
901 			*(ivopts - 1) = ':';
902 		cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
903 		if (!cc->iv_mode) {
904 			ti->error = "Error kmallocing iv_mode string";
905 			goto bad5;
906 		}
907 		strcpy(cc->iv_mode, ivmode);
908 	} else
909 		cc->iv_mode = NULL;
910 
911 	ti->private = cc;
912 	return 0;
913 
914 bad5:
915 	bioset_free(cc->bs);
916 bad_bs:
917 	mempool_destroy(cc->page_pool);
918 bad4:
919 	mempool_destroy(cc->io_pool);
920 bad3:
921 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
922 		cc->iv_gen_ops->dtr(cc);
923 bad2:
924 	crypto_free_blkcipher(tfm);
925 bad1:
926 	/* Must zero key material before freeing */
927 	memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
928 	kfree(cc);
929 	return -EINVAL;
930 }
931 
932 static void crypt_dtr(struct dm_target *ti)
933 {
934 	struct crypt_config *cc = (struct crypt_config *) ti->private;
935 
936 	bioset_free(cc->bs);
937 	mempool_destroy(cc->page_pool);
938 	mempool_destroy(cc->io_pool);
939 
940 	kfree(cc->iv_mode);
941 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
942 		cc->iv_gen_ops->dtr(cc);
943 	crypto_free_blkcipher(cc->tfm);
944 	dm_put_device(ti, cc->dev);
945 
946 	/* Must zero key material before freeing */
947 	memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
948 	kfree(cc);
949 }
950 
951 static int crypt_map(struct dm_target *ti, struct bio *bio,
952 		     union map_info *map_context)
953 {
954 	struct crypt_config *cc = ti->private;
955 	struct crypt_io *io;
956 
957 	io = mempool_alloc(cc->io_pool, GFP_NOIO);
958 	io->target = ti;
959 	io->base_bio = bio;
960 	io->first_clone = NULL;
961 	io->error = io->post_process = 0;
962 	atomic_set(&io->pending, 0);
963 	kcryptd_queue_io(io);
964 
965 	return DM_MAPIO_SUBMITTED;
966 }
967 
968 static int crypt_status(struct dm_target *ti, status_type_t type,
969 			char *result, unsigned int maxlen)
970 {
971 	struct crypt_config *cc = (struct crypt_config *) ti->private;
972 	unsigned int sz = 0;
973 
974 	switch (type) {
975 	case STATUSTYPE_INFO:
976 		result[0] = '\0';
977 		break;
978 
979 	case STATUSTYPE_TABLE:
980 		if (cc->iv_mode)
981 			DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
982 			       cc->iv_mode);
983 		else
984 			DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
985 
986 		if (cc->key_size > 0) {
987 			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
988 				return -ENOMEM;
989 
990 			crypt_encode_key(result + sz, cc->key, cc->key_size);
991 			sz += cc->key_size << 1;
992 		} else {
993 			if (sz >= maxlen)
994 				return -ENOMEM;
995 			result[sz++] = '-';
996 		}
997 
998 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
999 				cc->dev->name, (unsigned long long)cc->start);
1000 		break;
1001 	}
1002 	return 0;
1003 }
1004 
1005 static void crypt_postsuspend(struct dm_target *ti)
1006 {
1007 	struct crypt_config *cc = ti->private;
1008 
1009 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1010 }
1011 
1012 static int crypt_preresume(struct dm_target *ti)
1013 {
1014 	struct crypt_config *cc = ti->private;
1015 
1016 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1017 		DMERR("aborting resume - crypt key is not set.");
1018 		return -EAGAIN;
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 static void crypt_resume(struct dm_target *ti)
1025 {
1026 	struct crypt_config *cc = ti->private;
1027 
1028 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1029 }
1030 
1031 /* Message interface
1032  *	key set <key>
1033  *	key wipe
1034  */
1035 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1036 {
1037 	struct crypt_config *cc = ti->private;
1038 
1039 	if (argc < 2)
1040 		goto error;
1041 
1042 	if (!strnicmp(argv[0], MESG_STR("key"))) {
1043 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1044 			DMWARN("not suspended during key manipulation.");
1045 			return -EINVAL;
1046 		}
1047 		if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1048 			return crypt_set_key(cc, argv[2]);
1049 		if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1050 			return crypt_wipe_key(cc);
1051 	}
1052 
1053 error:
1054 	DMWARN("unrecognised message received.");
1055 	return -EINVAL;
1056 }
1057 
1058 static struct target_type crypt_target = {
1059 	.name   = "crypt",
1060 	.version= {1, 3, 0},
1061 	.module = THIS_MODULE,
1062 	.ctr    = crypt_ctr,
1063 	.dtr    = crypt_dtr,
1064 	.map    = crypt_map,
1065 	.status = crypt_status,
1066 	.postsuspend = crypt_postsuspend,
1067 	.preresume = crypt_preresume,
1068 	.resume = crypt_resume,
1069 	.message = crypt_message,
1070 };
1071 
1072 static int __init dm_crypt_init(void)
1073 {
1074 	int r;
1075 
1076 	_crypt_io_pool = kmem_cache_create("dm-crypt_io",
1077 	                                   sizeof(struct crypt_io),
1078 	                                   0, 0, NULL, NULL);
1079 	if (!_crypt_io_pool)
1080 		return -ENOMEM;
1081 
1082 	_kcryptd_workqueue = create_workqueue("kcryptd");
1083 	if (!_kcryptd_workqueue) {
1084 		r = -ENOMEM;
1085 		DMERR("couldn't create kcryptd");
1086 		goto bad1;
1087 	}
1088 
1089 	r = dm_register_target(&crypt_target);
1090 	if (r < 0) {
1091 		DMERR("register failed %d", r);
1092 		goto bad2;
1093 	}
1094 
1095 	return 0;
1096 
1097 bad2:
1098 	destroy_workqueue(_kcryptd_workqueue);
1099 bad1:
1100 	kmem_cache_destroy(_crypt_io_pool);
1101 	return r;
1102 }
1103 
1104 static void __exit dm_crypt_exit(void)
1105 {
1106 	int r = dm_unregister_target(&crypt_target);
1107 
1108 	if (r < 0)
1109 		DMERR("unregister failed %d", r);
1110 
1111 	destroy_workqueue(_kcryptd_workqueue);
1112 	kmem_cache_destroy(_crypt_io_pool);
1113 }
1114 
1115 module_init(dm_crypt_init);
1116 module_exit(dm_crypt_exit);
1117 
1118 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1119 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1120 MODULE_LICENSE("GPL");
1121