xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision 1a4e39c2e5ca2eb494a53ecd73055562f690bca0)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 
20 #define DM_MSG_PREFIX "cache"
21 
22 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
23 	"A percentage of time allocated for copying to and/or from cache");
24 
25 /*----------------------------------------------------------------*/
26 
27 /*
28  * Glossary:
29  *
30  * oblock: index of an origin block
31  * cblock: index of a cache block
32  * promotion: movement of a block from origin to cache
33  * demotion: movement of a block from cache to origin
34  * migration: movement of a block between the origin and cache device,
35  *	      either direction
36  */
37 
38 /*----------------------------------------------------------------*/
39 
40 static size_t bitset_size_in_bytes(unsigned nr_entries)
41 {
42 	return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
43 }
44 
45 static unsigned long *alloc_bitset(unsigned nr_entries)
46 {
47 	size_t s = bitset_size_in_bytes(nr_entries);
48 	return vzalloc(s);
49 }
50 
51 static void clear_bitset(void *bitset, unsigned nr_entries)
52 {
53 	size_t s = bitset_size_in_bytes(nr_entries);
54 	memset(bitset, 0, s);
55 }
56 
57 static void free_bitset(unsigned long *bits)
58 {
59 	vfree(bits);
60 }
61 
62 /*----------------------------------------------------------------*/
63 
64 /*
65  * There are a couple of places where we let a bio run, but want to do some
66  * work before calling its endio function.  We do this by temporarily
67  * changing the endio fn.
68  */
69 struct dm_hook_info {
70 	bio_end_io_t *bi_end_io;
71 	void *bi_private;
72 };
73 
74 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
75 			bio_end_io_t *bi_end_io, void *bi_private)
76 {
77 	h->bi_end_io = bio->bi_end_io;
78 	h->bi_private = bio->bi_private;
79 
80 	bio->bi_end_io = bi_end_io;
81 	bio->bi_private = bi_private;
82 }
83 
84 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
85 {
86 	bio->bi_end_io = h->bi_end_io;
87 	bio->bi_private = h->bi_private;
88 
89 	/*
90 	 * Must bump bi_remaining to allow bio to complete with
91 	 * restored bi_end_io.
92 	 */
93 	atomic_inc(&bio->bi_remaining);
94 }
95 
96 /*----------------------------------------------------------------*/
97 
98 #define PRISON_CELLS 1024
99 #define MIGRATION_POOL_SIZE 128
100 #define COMMIT_PERIOD HZ
101 #define MIGRATION_COUNT_WINDOW 10
102 
103 /*
104  * The block size of the device holding cache data must be
105  * between 32KB and 1GB.
106  */
107 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
108 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
109 
110 /*
111  * FIXME: the cache is read/write for the time being.
112  */
113 enum cache_metadata_mode {
114 	CM_WRITE,		/* metadata may be changed */
115 	CM_READ_ONLY,		/* metadata may not be changed */
116 };
117 
118 enum cache_io_mode {
119 	/*
120 	 * Data is written to cached blocks only.  These blocks are marked
121 	 * dirty.  If you lose the cache device you will lose data.
122 	 * Potential performance increase for both reads and writes.
123 	 */
124 	CM_IO_WRITEBACK,
125 
126 	/*
127 	 * Data is written to both cache and origin.  Blocks are never
128 	 * dirty.  Potential performance benfit for reads only.
129 	 */
130 	CM_IO_WRITETHROUGH,
131 
132 	/*
133 	 * A degraded mode useful for various cache coherency situations
134 	 * (eg, rolling back snapshots).  Reads and writes always go to the
135 	 * origin.  If a write goes to a cached oblock, then the cache
136 	 * block is invalidated.
137 	 */
138 	CM_IO_PASSTHROUGH
139 };
140 
141 struct cache_features {
142 	enum cache_metadata_mode mode;
143 	enum cache_io_mode io_mode;
144 };
145 
146 struct cache_stats {
147 	atomic_t read_hit;
148 	atomic_t read_miss;
149 	atomic_t write_hit;
150 	atomic_t write_miss;
151 	atomic_t demotion;
152 	atomic_t promotion;
153 	atomic_t copies_avoided;
154 	atomic_t cache_cell_clash;
155 	atomic_t commit_count;
156 	atomic_t discard_count;
157 };
158 
159 /*
160  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
161  * the one-past-the-end value.
162  */
163 struct cblock_range {
164 	dm_cblock_t begin;
165 	dm_cblock_t end;
166 };
167 
168 struct invalidation_request {
169 	struct list_head list;
170 	struct cblock_range *cblocks;
171 
172 	atomic_t complete;
173 	int err;
174 
175 	wait_queue_head_t result_wait;
176 };
177 
178 struct cache {
179 	struct dm_target *ti;
180 	struct dm_target_callbacks callbacks;
181 
182 	struct dm_cache_metadata *cmd;
183 
184 	/*
185 	 * Metadata is written to this device.
186 	 */
187 	struct dm_dev *metadata_dev;
188 
189 	/*
190 	 * The slower of the two data devices.  Typically a spindle.
191 	 */
192 	struct dm_dev *origin_dev;
193 
194 	/*
195 	 * The faster of the two data devices.  Typically an SSD.
196 	 */
197 	struct dm_dev *cache_dev;
198 
199 	/*
200 	 * Size of the origin device in _complete_ blocks and native sectors.
201 	 */
202 	dm_oblock_t origin_blocks;
203 	sector_t origin_sectors;
204 
205 	/*
206 	 * Size of the cache device in blocks.
207 	 */
208 	dm_cblock_t cache_size;
209 
210 	/*
211 	 * Fields for converting from sectors to blocks.
212 	 */
213 	uint32_t sectors_per_block;
214 	int sectors_per_block_shift;
215 
216 	spinlock_t lock;
217 	struct bio_list deferred_bios;
218 	struct bio_list deferred_flush_bios;
219 	struct bio_list deferred_writethrough_bios;
220 	struct list_head quiesced_migrations;
221 	struct list_head completed_migrations;
222 	struct list_head need_commit_migrations;
223 	sector_t migration_threshold;
224 	wait_queue_head_t migration_wait;
225 	atomic_t nr_migrations;
226 
227 	wait_queue_head_t quiescing_wait;
228 	atomic_t quiescing;
229 	atomic_t quiescing_ack;
230 
231 	/*
232 	 * cache_size entries, dirty if set
233 	 */
234 	atomic_t nr_dirty;
235 	unsigned long *dirty_bitset;
236 
237 	/*
238 	 * origin_blocks entries, discarded if set.
239 	 */
240 	dm_oblock_t discard_nr_blocks;
241 	unsigned long *discard_bitset;
242 
243 	/*
244 	 * Rather than reconstructing the table line for the status we just
245 	 * save it and regurgitate.
246 	 */
247 	unsigned nr_ctr_args;
248 	const char **ctr_args;
249 
250 	struct dm_kcopyd_client *copier;
251 	struct workqueue_struct *wq;
252 	struct work_struct worker;
253 
254 	struct delayed_work waker;
255 	unsigned long last_commit_jiffies;
256 
257 	struct dm_bio_prison *prison;
258 	struct dm_deferred_set *all_io_ds;
259 
260 	mempool_t *migration_pool;
261 	struct dm_cache_migration *next_migration;
262 
263 	struct dm_cache_policy *policy;
264 	unsigned policy_nr_args;
265 
266 	bool need_tick_bio:1;
267 	bool sized:1;
268 	bool invalidate:1;
269 	bool commit_requested:1;
270 	bool loaded_mappings:1;
271 	bool loaded_discards:1;
272 
273 	/*
274 	 * Cache features such as write-through.
275 	 */
276 	struct cache_features features;
277 
278 	struct cache_stats stats;
279 
280 	/*
281 	 * Invalidation fields.
282 	 */
283 	spinlock_t invalidation_lock;
284 	struct list_head invalidation_requests;
285 };
286 
287 struct per_bio_data {
288 	bool tick:1;
289 	unsigned req_nr:2;
290 	struct dm_deferred_entry *all_io_entry;
291 	struct dm_hook_info hook_info;
292 
293 	/*
294 	 * writethrough fields.  These MUST remain at the end of this
295 	 * structure and the 'cache' member must be the first as it
296 	 * is used to determine the offset of the writethrough fields.
297 	 */
298 	struct cache *cache;
299 	dm_cblock_t cblock;
300 	struct dm_bio_details bio_details;
301 };
302 
303 struct dm_cache_migration {
304 	struct list_head list;
305 	struct cache *cache;
306 
307 	unsigned long start_jiffies;
308 	dm_oblock_t old_oblock;
309 	dm_oblock_t new_oblock;
310 	dm_cblock_t cblock;
311 
312 	bool err:1;
313 	bool writeback:1;
314 	bool demote:1;
315 	bool promote:1;
316 	bool requeue_holder:1;
317 	bool invalidate:1;
318 
319 	struct dm_bio_prison_cell *old_ocell;
320 	struct dm_bio_prison_cell *new_ocell;
321 };
322 
323 /*
324  * Processing a bio in the worker thread may require these memory
325  * allocations.  We prealloc to avoid deadlocks (the same worker thread
326  * frees them back to the mempool).
327  */
328 struct prealloc {
329 	struct dm_cache_migration *mg;
330 	struct dm_bio_prison_cell *cell1;
331 	struct dm_bio_prison_cell *cell2;
332 };
333 
334 static void wake_worker(struct cache *cache)
335 {
336 	queue_work(cache->wq, &cache->worker);
337 }
338 
339 /*----------------------------------------------------------------*/
340 
341 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
342 {
343 	/* FIXME: change to use a local slab. */
344 	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
345 }
346 
347 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
348 {
349 	dm_bio_prison_free_cell(cache->prison, cell);
350 }
351 
352 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
353 {
354 	if (!p->mg) {
355 		p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
356 		if (!p->mg)
357 			return -ENOMEM;
358 	}
359 
360 	if (!p->cell1) {
361 		p->cell1 = alloc_prison_cell(cache);
362 		if (!p->cell1)
363 			return -ENOMEM;
364 	}
365 
366 	if (!p->cell2) {
367 		p->cell2 = alloc_prison_cell(cache);
368 		if (!p->cell2)
369 			return -ENOMEM;
370 	}
371 
372 	return 0;
373 }
374 
375 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
376 {
377 	if (p->cell2)
378 		free_prison_cell(cache, p->cell2);
379 
380 	if (p->cell1)
381 		free_prison_cell(cache, p->cell1);
382 
383 	if (p->mg)
384 		mempool_free(p->mg, cache->migration_pool);
385 }
386 
387 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
388 {
389 	struct dm_cache_migration *mg = p->mg;
390 
391 	BUG_ON(!mg);
392 	p->mg = NULL;
393 
394 	return mg;
395 }
396 
397 /*
398  * You must have a cell within the prealloc struct to return.  If not this
399  * function will BUG() rather than returning NULL.
400  */
401 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
402 {
403 	struct dm_bio_prison_cell *r = NULL;
404 
405 	if (p->cell1) {
406 		r = p->cell1;
407 		p->cell1 = NULL;
408 
409 	} else if (p->cell2) {
410 		r = p->cell2;
411 		p->cell2 = NULL;
412 	} else
413 		BUG();
414 
415 	return r;
416 }
417 
418 /*
419  * You can't have more than two cells in a prealloc struct.  BUG() will be
420  * called if you try and overfill.
421  */
422 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
423 {
424 	if (!p->cell2)
425 		p->cell2 = cell;
426 
427 	else if (!p->cell1)
428 		p->cell1 = cell;
429 
430 	else
431 		BUG();
432 }
433 
434 /*----------------------------------------------------------------*/
435 
436 static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
437 {
438 	key->virtual = 0;
439 	key->dev = 0;
440 	key->block = from_oblock(oblock);
441 }
442 
443 /*
444  * The caller hands in a preallocated cell, and a free function for it.
445  * The cell will be freed if there's an error, or if it wasn't used because
446  * a cell with that key already exists.
447  */
448 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
449 
450 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
451 		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
452 		      cell_free_fn free_fn, void *free_context,
453 		      struct dm_bio_prison_cell **cell_result)
454 {
455 	int r;
456 	struct dm_cell_key key;
457 
458 	build_key(oblock, &key);
459 	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
460 	if (r)
461 		free_fn(free_context, cell_prealloc);
462 
463 	return r;
464 }
465 
466 static int get_cell(struct cache *cache,
467 		    dm_oblock_t oblock,
468 		    struct prealloc *structs,
469 		    struct dm_bio_prison_cell **cell_result)
470 {
471 	int r;
472 	struct dm_cell_key key;
473 	struct dm_bio_prison_cell *cell_prealloc;
474 
475 	cell_prealloc = prealloc_get_cell(structs);
476 
477 	build_key(oblock, &key);
478 	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
479 	if (r)
480 		prealloc_put_cell(structs, cell_prealloc);
481 
482 	return r;
483 }
484 
485 /*----------------------------------------------------------------*/
486 
487 static bool is_dirty(struct cache *cache, dm_cblock_t b)
488 {
489 	return test_bit(from_cblock(b), cache->dirty_bitset);
490 }
491 
492 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
493 {
494 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
495 		atomic_inc(&cache->nr_dirty);
496 		policy_set_dirty(cache->policy, oblock);
497 	}
498 }
499 
500 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
501 {
502 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
503 		policy_clear_dirty(cache->policy, oblock);
504 		if (atomic_dec_return(&cache->nr_dirty) == 0)
505 			dm_table_event(cache->ti->table);
506 	}
507 }
508 
509 /*----------------------------------------------------------------*/
510 
511 static bool block_size_is_power_of_two(struct cache *cache)
512 {
513 	return cache->sectors_per_block_shift >= 0;
514 }
515 
516 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
517 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
518 __always_inline
519 #endif
520 static dm_block_t block_div(dm_block_t b, uint32_t n)
521 {
522 	do_div(b, n);
523 
524 	return b;
525 }
526 
527 static void set_discard(struct cache *cache, dm_oblock_t b)
528 {
529 	unsigned long flags;
530 
531 	atomic_inc(&cache->stats.discard_count);
532 
533 	spin_lock_irqsave(&cache->lock, flags);
534 	set_bit(from_oblock(b), cache->discard_bitset);
535 	spin_unlock_irqrestore(&cache->lock, flags);
536 }
537 
538 static void clear_discard(struct cache *cache, dm_oblock_t b)
539 {
540 	unsigned long flags;
541 
542 	spin_lock_irqsave(&cache->lock, flags);
543 	clear_bit(from_oblock(b), cache->discard_bitset);
544 	spin_unlock_irqrestore(&cache->lock, flags);
545 }
546 
547 static bool is_discarded(struct cache *cache, dm_oblock_t b)
548 {
549 	int r;
550 	unsigned long flags;
551 
552 	spin_lock_irqsave(&cache->lock, flags);
553 	r = test_bit(from_oblock(b), cache->discard_bitset);
554 	spin_unlock_irqrestore(&cache->lock, flags);
555 
556 	return r;
557 }
558 
559 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
560 {
561 	int r;
562 	unsigned long flags;
563 
564 	spin_lock_irqsave(&cache->lock, flags);
565 	r = test_bit(from_oblock(b), cache->discard_bitset);
566 	spin_unlock_irqrestore(&cache->lock, flags);
567 
568 	return r;
569 }
570 
571 /*----------------------------------------------------------------*/
572 
573 static void load_stats(struct cache *cache)
574 {
575 	struct dm_cache_statistics stats;
576 
577 	dm_cache_metadata_get_stats(cache->cmd, &stats);
578 	atomic_set(&cache->stats.read_hit, stats.read_hits);
579 	atomic_set(&cache->stats.read_miss, stats.read_misses);
580 	atomic_set(&cache->stats.write_hit, stats.write_hits);
581 	atomic_set(&cache->stats.write_miss, stats.write_misses);
582 }
583 
584 static void save_stats(struct cache *cache)
585 {
586 	struct dm_cache_statistics stats;
587 
588 	stats.read_hits = atomic_read(&cache->stats.read_hit);
589 	stats.read_misses = atomic_read(&cache->stats.read_miss);
590 	stats.write_hits = atomic_read(&cache->stats.write_hit);
591 	stats.write_misses = atomic_read(&cache->stats.write_miss);
592 
593 	dm_cache_metadata_set_stats(cache->cmd, &stats);
594 }
595 
596 /*----------------------------------------------------------------
597  * Per bio data
598  *--------------------------------------------------------------*/
599 
600 /*
601  * If using writeback, leave out struct per_bio_data's writethrough fields.
602  */
603 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
604 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
605 
606 static bool writethrough_mode(struct cache_features *f)
607 {
608 	return f->io_mode == CM_IO_WRITETHROUGH;
609 }
610 
611 static bool writeback_mode(struct cache_features *f)
612 {
613 	return f->io_mode == CM_IO_WRITEBACK;
614 }
615 
616 static bool passthrough_mode(struct cache_features *f)
617 {
618 	return f->io_mode == CM_IO_PASSTHROUGH;
619 }
620 
621 static size_t get_per_bio_data_size(struct cache *cache)
622 {
623 	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
624 }
625 
626 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
627 {
628 	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
629 	BUG_ON(!pb);
630 	return pb;
631 }
632 
633 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
634 {
635 	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
636 
637 	pb->tick = false;
638 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
639 	pb->all_io_entry = NULL;
640 
641 	return pb;
642 }
643 
644 /*----------------------------------------------------------------
645  * Remapping
646  *--------------------------------------------------------------*/
647 static void remap_to_origin(struct cache *cache, struct bio *bio)
648 {
649 	bio->bi_bdev = cache->origin_dev->bdev;
650 }
651 
652 static void remap_to_cache(struct cache *cache, struct bio *bio,
653 			   dm_cblock_t cblock)
654 {
655 	sector_t bi_sector = bio->bi_iter.bi_sector;
656 	sector_t block = from_cblock(cblock);
657 
658 	bio->bi_bdev = cache->cache_dev->bdev;
659 	if (!block_size_is_power_of_two(cache))
660 		bio->bi_iter.bi_sector =
661 			(block * cache->sectors_per_block) +
662 			sector_div(bi_sector, cache->sectors_per_block);
663 	else
664 		bio->bi_iter.bi_sector =
665 			(block << cache->sectors_per_block_shift) |
666 			(bi_sector & (cache->sectors_per_block - 1));
667 }
668 
669 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
670 {
671 	unsigned long flags;
672 	size_t pb_data_size = get_per_bio_data_size(cache);
673 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
674 
675 	spin_lock_irqsave(&cache->lock, flags);
676 	if (cache->need_tick_bio &&
677 	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
678 		pb->tick = true;
679 		cache->need_tick_bio = false;
680 	}
681 	spin_unlock_irqrestore(&cache->lock, flags);
682 }
683 
684 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
685 				  dm_oblock_t oblock)
686 {
687 	check_if_tick_bio_needed(cache, bio);
688 	remap_to_origin(cache, bio);
689 	if (bio_data_dir(bio) == WRITE)
690 		clear_discard(cache, oblock);
691 }
692 
693 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
694 				 dm_oblock_t oblock, dm_cblock_t cblock)
695 {
696 	check_if_tick_bio_needed(cache, bio);
697 	remap_to_cache(cache, bio, cblock);
698 	if (bio_data_dir(bio) == WRITE) {
699 		set_dirty(cache, oblock, cblock);
700 		clear_discard(cache, oblock);
701 	}
702 }
703 
704 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
705 {
706 	sector_t block_nr = bio->bi_iter.bi_sector;
707 
708 	if (!block_size_is_power_of_two(cache))
709 		(void) sector_div(block_nr, cache->sectors_per_block);
710 	else
711 		block_nr >>= cache->sectors_per_block_shift;
712 
713 	return to_oblock(block_nr);
714 }
715 
716 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
717 {
718 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
719 }
720 
721 /*
722  * You must increment the deferred set whilst the prison cell is held.  To
723  * encourage this, we ask for 'cell' to be passed in.
724  */
725 static void inc_ds(struct cache *cache, struct bio *bio,
726 		   struct dm_bio_prison_cell *cell)
727 {
728 	size_t pb_data_size = get_per_bio_data_size(cache);
729 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
730 
731 	BUG_ON(!cell);
732 	BUG_ON(pb->all_io_entry);
733 
734 	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
735 }
736 
737 static void issue(struct cache *cache, struct bio *bio)
738 {
739 	unsigned long flags;
740 
741 	if (!bio_triggers_commit(cache, bio)) {
742 		generic_make_request(bio);
743 		return;
744 	}
745 
746 	/*
747 	 * Batch together any bios that trigger commits and then issue a
748 	 * single commit for them in do_worker().
749 	 */
750 	spin_lock_irqsave(&cache->lock, flags);
751 	cache->commit_requested = true;
752 	bio_list_add(&cache->deferred_flush_bios, bio);
753 	spin_unlock_irqrestore(&cache->lock, flags);
754 }
755 
756 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
757 {
758 	inc_ds(cache, bio, cell);
759 	issue(cache, bio);
760 }
761 
762 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
763 {
764 	unsigned long flags;
765 
766 	spin_lock_irqsave(&cache->lock, flags);
767 	bio_list_add(&cache->deferred_writethrough_bios, bio);
768 	spin_unlock_irqrestore(&cache->lock, flags);
769 
770 	wake_worker(cache);
771 }
772 
773 static void writethrough_endio(struct bio *bio, int err)
774 {
775 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
776 
777 	dm_unhook_bio(&pb->hook_info, bio);
778 
779 	if (err) {
780 		bio_endio(bio, err);
781 		return;
782 	}
783 
784 	dm_bio_restore(&pb->bio_details, bio);
785 	remap_to_cache(pb->cache, bio, pb->cblock);
786 
787 	/*
788 	 * We can't issue this bio directly, since we're in interrupt
789 	 * context.  So it gets put on a bio list for processing by the
790 	 * worker thread.
791 	 */
792 	defer_writethrough_bio(pb->cache, bio);
793 }
794 
795 /*
796  * When running in writethrough mode we need to send writes to clean blocks
797  * to both the cache and origin devices.  In future we'd like to clone the
798  * bio and send them in parallel, but for now we're doing them in
799  * series as this is easier.
800  */
801 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
802 				       dm_oblock_t oblock, dm_cblock_t cblock)
803 {
804 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
805 
806 	pb->cache = cache;
807 	pb->cblock = cblock;
808 	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
809 	dm_bio_record(&pb->bio_details, bio);
810 
811 	remap_to_origin_clear_discard(pb->cache, bio, oblock);
812 }
813 
814 /*----------------------------------------------------------------
815  * Migration processing
816  *
817  * Migration covers moving data from the origin device to the cache, or
818  * vice versa.
819  *--------------------------------------------------------------*/
820 static void free_migration(struct dm_cache_migration *mg)
821 {
822 	mempool_free(mg, mg->cache->migration_pool);
823 }
824 
825 static void inc_nr_migrations(struct cache *cache)
826 {
827 	atomic_inc(&cache->nr_migrations);
828 }
829 
830 static void dec_nr_migrations(struct cache *cache)
831 {
832 	atomic_dec(&cache->nr_migrations);
833 
834 	/*
835 	 * Wake the worker in case we're suspending the target.
836 	 */
837 	wake_up(&cache->migration_wait);
838 }
839 
840 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
841 			 bool holder)
842 {
843 	(holder ? dm_cell_release : dm_cell_release_no_holder)
844 		(cache->prison, cell, &cache->deferred_bios);
845 	free_prison_cell(cache, cell);
846 }
847 
848 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
849 		       bool holder)
850 {
851 	unsigned long flags;
852 
853 	spin_lock_irqsave(&cache->lock, flags);
854 	__cell_defer(cache, cell, holder);
855 	spin_unlock_irqrestore(&cache->lock, flags);
856 
857 	wake_worker(cache);
858 }
859 
860 static void cleanup_migration(struct dm_cache_migration *mg)
861 {
862 	struct cache *cache = mg->cache;
863 	free_migration(mg);
864 	dec_nr_migrations(cache);
865 }
866 
867 static void migration_failure(struct dm_cache_migration *mg)
868 {
869 	struct cache *cache = mg->cache;
870 
871 	if (mg->writeback) {
872 		DMWARN_LIMIT("writeback failed; couldn't copy block");
873 		set_dirty(cache, mg->old_oblock, mg->cblock);
874 		cell_defer(cache, mg->old_ocell, false);
875 
876 	} else if (mg->demote) {
877 		DMWARN_LIMIT("demotion failed; couldn't copy block");
878 		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
879 
880 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
881 		if (mg->promote)
882 			cell_defer(cache, mg->new_ocell, true);
883 	} else {
884 		DMWARN_LIMIT("promotion failed; couldn't copy block");
885 		policy_remove_mapping(cache->policy, mg->new_oblock);
886 		cell_defer(cache, mg->new_ocell, true);
887 	}
888 
889 	cleanup_migration(mg);
890 }
891 
892 static void migration_success_pre_commit(struct dm_cache_migration *mg)
893 {
894 	unsigned long flags;
895 	struct cache *cache = mg->cache;
896 
897 	if (mg->writeback) {
898 		clear_dirty(cache, mg->old_oblock, mg->cblock);
899 		cell_defer(cache, mg->old_ocell, false);
900 		cleanup_migration(mg);
901 		return;
902 
903 	} else if (mg->demote) {
904 		if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
905 			DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
906 			policy_force_mapping(cache->policy, mg->new_oblock,
907 					     mg->old_oblock);
908 			if (mg->promote)
909 				cell_defer(cache, mg->new_ocell, true);
910 			cleanup_migration(mg);
911 			return;
912 		}
913 	} else {
914 		if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
915 			DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
916 			policy_remove_mapping(cache->policy, mg->new_oblock);
917 			cleanup_migration(mg);
918 			return;
919 		}
920 	}
921 
922 	spin_lock_irqsave(&cache->lock, flags);
923 	list_add_tail(&mg->list, &cache->need_commit_migrations);
924 	cache->commit_requested = true;
925 	spin_unlock_irqrestore(&cache->lock, flags);
926 }
927 
928 static void migration_success_post_commit(struct dm_cache_migration *mg)
929 {
930 	unsigned long flags;
931 	struct cache *cache = mg->cache;
932 
933 	if (mg->writeback) {
934 		DMWARN("writeback unexpectedly triggered commit");
935 		return;
936 
937 	} else if (mg->demote) {
938 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
939 
940 		if (mg->promote) {
941 			mg->demote = false;
942 
943 			spin_lock_irqsave(&cache->lock, flags);
944 			list_add_tail(&mg->list, &cache->quiesced_migrations);
945 			spin_unlock_irqrestore(&cache->lock, flags);
946 
947 		} else {
948 			if (mg->invalidate)
949 				policy_remove_mapping(cache->policy, mg->old_oblock);
950 			cleanup_migration(mg);
951 		}
952 
953 	} else {
954 		clear_dirty(cache, mg->new_oblock, mg->cblock);
955 		if (mg->requeue_holder)
956 			cell_defer(cache, mg->new_ocell, true);
957 		else {
958 			bio_endio(mg->new_ocell->holder, 0);
959 			cell_defer(cache, mg->new_ocell, false);
960 		}
961 		cleanup_migration(mg);
962 	}
963 }
964 
965 static void copy_complete(int read_err, unsigned long write_err, void *context)
966 {
967 	unsigned long flags;
968 	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
969 	struct cache *cache = mg->cache;
970 
971 	if (read_err || write_err)
972 		mg->err = true;
973 
974 	spin_lock_irqsave(&cache->lock, flags);
975 	list_add_tail(&mg->list, &cache->completed_migrations);
976 	spin_unlock_irqrestore(&cache->lock, flags);
977 
978 	wake_worker(cache);
979 }
980 
981 static void issue_copy_real(struct dm_cache_migration *mg)
982 {
983 	int r;
984 	struct dm_io_region o_region, c_region;
985 	struct cache *cache = mg->cache;
986 	sector_t cblock = from_cblock(mg->cblock);
987 
988 	o_region.bdev = cache->origin_dev->bdev;
989 	o_region.count = cache->sectors_per_block;
990 
991 	c_region.bdev = cache->cache_dev->bdev;
992 	c_region.sector = cblock * cache->sectors_per_block;
993 	c_region.count = cache->sectors_per_block;
994 
995 	if (mg->writeback || mg->demote) {
996 		/* demote */
997 		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
998 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
999 	} else {
1000 		/* promote */
1001 		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1002 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1003 	}
1004 
1005 	if (r < 0) {
1006 		DMERR_LIMIT("issuing migration failed");
1007 		migration_failure(mg);
1008 	}
1009 }
1010 
1011 static void overwrite_endio(struct bio *bio, int err)
1012 {
1013 	struct dm_cache_migration *mg = bio->bi_private;
1014 	struct cache *cache = mg->cache;
1015 	size_t pb_data_size = get_per_bio_data_size(cache);
1016 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1017 	unsigned long flags;
1018 
1019 	dm_unhook_bio(&pb->hook_info, bio);
1020 
1021 	if (err)
1022 		mg->err = true;
1023 
1024 	mg->requeue_holder = false;
1025 
1026 	spin_lock_irqsave(&cache->lock, flags);
1027 	list_add_tail(&mg->list, &cache->completed_migrations);
1028 	spin_unlock_irqrestore(&cache->lock, flags);
1029 
1030 	wake_worker(cache);
1031 }
1032 
1033 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1034 {
1035 	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1036 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1037 
1038 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1039 	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1040 
1041 	/*
1042 	 * No need to inc_ds() here, since the cell will be held for the
1043 	 * duration of the io.
1044 	 */
1045 	generic_make_request(bio);
1046 }
1047 
1048 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1049 {
1050 	return (bio_data_dir(bio) == WRITE) &&
1051 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1052 }
1053 
1054 static void avoid_copy(struct dm_cache_migration *mg)
1055 {
1056 	atomic_inc(&mg->cache->stats.copies_avoided);
1057 	migration_success_pre_commit(mg);
1058 }
1059 
1060 static void issue_copy(struct dm_cache_migration *mg)
1061 {
1062 	bool avoid;
1063 	struct cache *cache = mg->cache;
1064 
1065 	if (mg->writeback || mg->demote)
1066 		avoid = !is_dirty(cache, mg->cblock) ||
1067 			is_discarded_oblock(cache, mg->old_oblock);
1068 	else {
1069 		struct bio *bio = mg->new_ocell->holder;
1070 
1071 		avoid = is_discarded_oblock(cache, mg->new_oblock);
1072 
1073 		if (!avoid && bio_writes_complete_block(cache, bio)) {
1074 			issue_overwrite(mg, bio);
1075 			return;
1076 		}
1077 	}
1078 
1079 	avoid ? avoid_copy(mg) : issue_copy_real(mg);
1080 }
1081 
1082 static void complete_migration(struct dm_cache_migration *mg)
1083 {
1084 	if (mg->err)
1085 		migration_failure(mg);
1086 	else
1087 		migration_success_pre_commit(mg);
1088 }
1089 
1090 static void process_migrations(struct cache *cache, struct list_head *head,
1091 			       void (*fn)(struct dm_cache_migration *))
1092 {
1093 	unsigned long flags;
1094 	struct list_head list;
1095 	struct dm_cache_migration *mg, *tmp;
1096 
1097 	INIT_LIST_HEAD(&list);
1098 	spin_lock_irqsave(&cache->lock, flags);
1099 	list_splice_init(head, &list);
1100 	spin_unlock_irqrestore(&cache->lock, flags);
1101 
1102 	list_for_each_entry_safe(mg, tmp, &list, list)
1103 		fn(mg);
1104 }
1105 
1106 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1107 {
1108 	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1109 }
1110 
1111 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1112 {
1113 	unsigned long flags;
1114 	struct cache *cache = mg->cache;
1115 
1116 	spin_lock_irqsave(&cache->lock, flags);
1117 	__queue_quiesced_migration(mg);
1118 	spin_unlock_irqrestore(&cache->lock, flags);
1119 
1120 	wake_worker(cache);
1121 }
1122 
1123 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1124 {
1125 	unsigned long flags;
1126 	struct dm_cache_migration *mg, *tmp;
1127 
1128 	spin_lock_irqsave(&cache->lock, flags);
1129 	list_for_each_entry_safe(mg, tmp, work, list)
1130 		__queue_quiesced_migration(mg);
1131 	spin_unlock_irqrestore(&cache->lock, flags);
1132 
1133 	wake_worker(cache);
1134 }
1135 
1136 static void check_for_quiesced_migrations(struct cache *cache,
1137 					  struct per_bio_data *pb)
1138 {
1139 	struct list_head work;
1140 
1141 	if (!pb->all_io_entry)
1142 		return;
1143 
1144 	INIT_LIST_HEAD(&work);
1145 	dm_deferred_entry_dec(pb->all_io_entry, &work);
1146 
1147 	if (!list_empty(&work))
1148 		queue_quiesced_migrations(cache, &work);
1149 }
1150 
1151 static void quiesce_migration(struct dm_cache_migration *mg)
1152 {
1153 	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1154 		queue_quiesced_migration(mg);
1155 }
1156 
1157 static void promote(struct cache *cache, struct prealloc *structs,
1158 		    dm_oblock_t oblock, dm_cblock_t cblock,
1159 		    struct dm_bio_prison_cell *cell)
1160 {
1161 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1162 
1163 	mg->err = false;
1164 	mg->writeback = false;
1165 	mg->demote = false;
1166 	mg->promote = true;
1167 	mg->requeue_holder = true;
1168 	mg->invalidate = false;
1169 	mg->cache = cache;
1170 	mg->new_oblock = oblock;
1171 	mg->cblock = cblock;
1172 	mg->old_ocell = NULL;
1173 	mg->new_ocell = cell;
1174 	mg->start_jiffies = jiffies;
1175 
1176 	inc_nr_migrations(cache);
1177 	quiesce_migration(mg);
1178 }
1179 
1180 static void writeback(struct cache *cache, struct prealloc *structs,
1181 		      dm_oblock_t oblock, dm_cblock_t cblock,
1182 		      struct dm_bio_prison_cell *cell)
1183 {
1184 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1185 
1186 	mg->err = false;
1187 	mg->writeback = true;
1188 	mg->demote = false;
1189 	mg->promote = false;
1190 	mg->requeue_holder = true;
1191 	mg->invalidate = false;
1192 	mg->cache = cache;
1193 	mg->old_oblock = oblock;
1194 	mg->cblock = cblock;
1195 	mg->old_ocell = cell;
1196 	mg->new_ocell = NULL;
1197 	mg->start_jiffies = jiffies;
1198 
1199 	inc_nr_migrations(cache);
1200 	quiesce_migration(mg);
1201 }
1202 
1203 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1204 				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1205 				dm_cblock_t cblock,
1206 				struct dm_bio_prison_cell *old_ocell,
1207 				struct dm_bio_prison_cell *new_ocell)
1208 {
1209 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1210 
1211 	mg->err = false;
1212 	mg->writeback = false;
1213 	mg->demote = true;
1214 	mg->promote = true;
1215 	mg->requeue_holder = true;
1216 	mg->invalidate = false;
1217 	mg->cache = cache;
1218 	mg->old_oblock = old_oblock;
1219 	mg->new_oblock = new_oblock;
1220 	mg->cblock = cblock;
1221 	mg->old_ocell = old_ocell;
1222 	mg->new_ocell = new_ocell;
1223 	mg->start_jiffies = jiffies;
1224 
1225 	inc_nr_migrations(cache);
1226 	quiesce_migration(mg);
1227 }
1228 
1229 /*
1230  * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1231  * block are thrown away.
1232  */
1233 static void invalidate(struct cache *cache, struct prealloc *structs,
1234 		       dm_oblock_t oblock, dm_cblock_t cblock,
1235 		       struct dm_bio_prison_cell *cell)
1236 {
1237 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1238 
1239 	mg->err = false;
1240 	mg->writeback = false;
1241 	mg->demote = true;
1242 	mg->promote = false;
1243 	mg->requeue_holder = true;
1244 	mg->invalidate = true;
1245 	mg->cache = cache;
1246 	mg->old_oblock = oblock;
1247 	mg->cblock = cblock;
1248 	mg->old_ocell = cell;
1249 	mg->new_ocell = NULL;
1250 	mg->start_jiffies = jiffies;
1251 
1252 	inc_nr_migrations(cache);
1253 	quiesce_migration(mg);
1254 }
1255 
1256 /*----------------------------------------------------------------
1257  * bio processing
1258  *--------------------------------------------------------------*/
1259 static void defer_bio(struct cache *cache, struct bio *bio)
1260 {
1261 	unsigned long flags;
1262 
1263 	spin_lock_irqsave(&cache->lock, flags);
1264 	bio_list_add(&cache->deferred_bios, bio);
1265 	spin_unlock_irqrestore(&cache->lock, flags);
1266 
1267 	wake_worker(cache);
1268 }
1269 
1270 static void process_flush_bio(struct cache *cache, struct bio *bio)
1271 {
1272 	size_t pb_data_size = get_per_bio_data_size(cache);
1273 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1274 
1275 	BUG_ON(bio->bi_iter.bi_size);
1276 	if (!pb->req_nr)
1277 		remap_to_origin(cache, bio);
1278 	else
1279 		remap_to_cache(cache, bio, 0);
1280 
1281 	/*
1282 	 * REQ_FLUSH is not directed at any particular block so we don't
1283 	 * need to inc_ds().  REQ_FUA's are split into a write + REQ_FLUSH
1284 	 * by dm-core.
1285 	 */
1286 	issue(cache, bio);
1287 }
1288 
1289 /*
1290  * People generally discard large parts of a device, eg, the whole device
1291  * when formatting.  Splitting these large discards up into cache block
1292  * sized ios and then quiescing (always neccessary for discard) takes too
1293  * long.
1294  *
1295  * We keep it simple, and allow any size of discard to come in, and just
1296  * mark off blocks on the discard bitset.  No passdown occurs!
1297  *
1298  * To implement passdown we need to change the bio_prison such that a cell
1299  * can have a key that spans many blocks.
1300  */
1301 static void process_discard_bio(struct cache *cache, struct bio *bio)
1302 {
1303 	dm_block_t start_block = dm_sector_div_up(bio->bi_iter.bi_sector,
1304 						  cache->sectors_per_block);
1305 	dm_block_t end_block = bio_end_sector(bio);
1306 	dm_block_t b;
1307 
1308 	end_block = block_div(end_block, cache->sectors_per_block);
1309 
1310 	for (b = start_block; b < end_block; b++)
1311 		set_discard(cache, to_oblock(b));
1312 
1313 	bio_endio(bio, 0);
1314 }
1315 
1316 static bool spare_migration_bandwidth(struct cache *cache)
1317 {
1318 	sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1319 		cache->sectors_per_block;
1320 	return current_volume < cache->migration_threshold;
1321 }
1322 
1323 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1324 {
1325 	atomic_inc(bio_data_dir(bio) == READ ?
1326 		   &cache->stats.read_hit : &cache->stats.write_hit);
1327 }
1328 
1329 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1330 {
1331 	atomic_inc(bio_data_dir(bio) == READ ?
1332 		   &cache->stats.read_miss : &cache->stats.write_miss);
1333 }
1334 
1335 static void process_bio(struct cache *cache, struct prealloc *structs,
1336 			struct bio *bio)
1337 {
1338 	int r;
1339 	bool release_cell = true;
1340 	dm_oblock_t block = get_bio_block(cache, bio);
1341 	struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1342 	struct policy_result lookup_result;
1343 	bool discarded_block = is_discarded_oblock(cache, block);
1344 	bool passthrough = passthrough_mode(&cache->features);
1345 	bool can_migrate = !passthrough && (discarded_block || spare_migration_bandwidth(cache));
1346 
1347 	/*
1348 	 * Check to see if that block is currently migrating.
1349 	 */
1350 	cell_prealloc = prealloc_get_cell(structs);
1351 	r = bio_detain(cache, block, bio, cell_prealloc,
1352 		       (cell_free_fn) prealloc_put_cell,
1353 		       structs, &new_ocell);
1354 	if (r > 0)
1355 		return;
1356 
1357 	r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1358 		       bio, &lookup_result);
1359 
1360 	if (r == -EWOULDBLOCK)
1361 		/* migration has been denied */
1362 		lookup_result.op = POLICY_MISS;
1363 
1364 	switch (lookup_result.op) {
1365 	case POLICY_HIT:
1366 		if (passthrough) {
1367 			inc_miss_counter(cache, bio);
1368 
1369 			/*
1370 			 * Passthrough always maps to the origin,
1371 			 * invalidating any cache blocks that are written
1372 			 * to.
1373 			 */
1374 
1375 			if (bio_data_dir(bio) == WRITE) {
1376 				atomic_inc(&cache->stats.demotion);
1377 				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1378 				release_cell = false;
1379 
1380 			} else {
1381 				/* FIXME: factor out issue_origin() */
1382 				remap_to_origin_clear_discard(cache, bio, block);
1383 				inc_and_issue(cache, bio, new_ocell);
1384 			}
1385 		} else {
1386 			inc_hit_counter(cache, bio);
1387 
1388 			if (bio_data_dir(bio) == WRITE &&
1389 			    writethrough_mode(&cache->features) &&
1390 			    !is_dirty(cache, lookup_result.cblock)) {
1391 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1392 				inc_and_issue(cache, bio, new_ocell);
1393 
1394 			} else  {
1395 				remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
1396 				inc_and_issue(cache, bio, new_ocell);
1397 			}
1398 		}
1399 
1400 		break;
1401 
1402 	case POLICY_MISS:
1403 		inc_miss_counter(cache, bio);
1404 		remap_to_origin_clear_discard(cache, bio, block);
1405 		inc_and_issue(cache, bio, new_ocell);
1406 		break;
1407 
1408 	case POLICY_NEW:
1409 		atomic_inc(&cache->stats.promotion);
1410 		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1411 		release_cell = false;
1412 		break;
1413 
1414 	case POLICY_REPLACE:
1415 		cell_prealloc = prealloc_get_cell(structs);
1416 		r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1417 			       (cell_free_fn) prealloc_put_cell,
1418 			       structs, &old_ocell);
1419 		if (r > 0) {
1420 			/*
1421 			 * We have to be careful to avoid lock inversion of
1422 			 * the cells.  So we back off, and wait for the
1423 			 * old_ocell to become free.
1424 			 */
1425 			policy_force_mapping(cache->policy, block,
1426 					     lookup_result.old_oblock);
1427 			atomic_inc(&cache->stats.cache_cell_clash);
1428 			break;
1429 		}
1430 		atomic_inc(&cache->stats.demotion);
1431 		atomic_inc(&cache->stats.promotion);
1432 
1433 		demote_then_promote(cache, structs, lookup_result.old_oblock,
1434 				    block, lookup_result.cblock,
1435 				    old_ocell, new_ocell);
1436 		release_cell = false;
1437 		break;
1438 
1439 	default:
1440 		DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1441 			    (unsigned) lookup_result.op);
1442 		bio_io_error(bio);
1443 	}
1444 
1445 	if (release_cell)
1446 		cell_defer(cache, new_ocell, false);
1447 }
1448 
1449 static int need_commit_due_to_time(struct cache *cache)
1450 {
1451 	return jiffies < cache->last_commit_jiffies ||
1452 	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1453 }
1454 
1455 static int commit_if_needed(struct cache *cache)
1456 {
1457 	int r = 0;
1458 
1459 	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1460 	    dm_cache_changed_this_transaction(cache->cmd)) {
1461 		atomic_inc(&cache->stats.commit_count);
1462 		cache->commit_requested = false;
1463 		r = dm_cache_commit(cache->cmd, false);
1464 		cache->last_commit_jiffies = jiffies;
1465 	}
1466 
1467 	return r;
1468 }
1469 
1470 static void process_deferred_bios(struct cache *cache)
1471 {
1472 	unsigned long flags;
1473 	struct bio_list bios;
1474 	struct bio *bio;
1475 	struct prealloc structs;
1476 
1477 	memset(&structs, 0, sizeof(structs));
1478 	bio_list_init(&bios);
1479 
1480 	spin_lock_irqsave(&cache->lock, flags);
1481 	bio_list_merge(&bios, &cache->deferred_bios);
1482 	bio_list_init(&cache->deferred_bios);
1483 	spin_unlock_irqrestore(&cache->lock, flags);
1484 
1485 	while (!bio_list_empty(&bios)) {
1486 		/*
1487 		 * If we've got no free migration structs, and processing
1488 		 * this bio might require one, we pause until there are some
1489 		 * prepared mappings to process.
1490 		 */
1491 		if (prealloc_data_structs(cache, &structs)) {
1492 			spin_lock_irqsave(&cache->lock, flags);
1493 			bio_list_merge(&cache->deferred_bios, &bios);
1494 			spin_unlock_irqrestore(&cache->lock, flags);
1495 			break;
1496 		}
1497 
1498 		bio = bio_list_pop(&bios);
1499 
1500 		if (bio->bi_rw & REQ_FLUSH)
1501 			process_flush_bio(cache, bio);
1502 		else if (bio->bi_rw & REQ_DISCARD)
1503 			process_discard_bio(cache, bio);
1504 		else
1505 			process_bio(cache, &structs, bio);
1506 	}
1507 
1508 	prealloc_free_structs(cache, &structs);
1509 }
1510 
1511 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1512 {
1513 	unsigned long flags;
1514 	struct bio_list bios;
1515 	struct bio *bio;
1516 
1517 	bio_list_init(&bios);
1518 
1519 	spin_lock_irqsave(&cache->lock, flags);
1520 	bio_list_merge(&bios, &cache->deferred_flush_bios);
1521 	bio_list_init(&cache->deferred_flush_bios);
1522 	spin_unlock_irqrestore(&cache->lock, flags);
1523 
1524 	/*
1525 	 * These bios have already been through inc_ds()
1526 	 */
1527 	while ((bio = bio_list_pop(&bios)))
1528 		submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1529 }
1530 
1531 static void process_deferred_writethrough_bios(struct cache *cache)
1532 {
1533 	unsigned long flags;
1534 	struct bio_list bios;
1535 	struct bio *bio;
1536 
1537 	bio_list_init(&bios);
1538 
1539 	spin_lock_irqsave(&cache->lock, flags);
1540 	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1541 	bio_list_init(&cache->deferred_writethrough_bios);
1542 	spin_unlock_irqrestore(&cache->lock, flags);
1543 
1544 	/*
1545 	 * These bios have already been through inc_ds()
1546 	 */
1547 	while ((bio = bio_list_pop(&bios)))
1548 		generic_make_request(bio);
1549 }
1550 
1551 static void writeback_some_dirty_blocks(struct cache *cache)
1552 {
1553 	int r = 0;
1554 	dm_oblock_t oblock;
1555 	dm_cblock_t cblock;
1556 	struct prealloc structs;
1557 	struct dm_bio_prison_cell *old_ocell;
1558 
1559 	memset(&structs, 0, sizeof(structs));
1560 
1561 	while (spare_migration_bandwidth(cache)) {
1562 		if (prealloc_data_structs(cache, &structs))
1563 			break;
1564 
1565 		r = policy_writeback_work(cache->policy, &oblock, &cblock);
1566 		if (r)
1567 			break;
1568 
1569 		r = get_cell(cache, oblock, &structs, &old_ocell);
1570 		if (r) {
1571 			policy_set_dirty(cache->policy, oblock);
1572 			break;
1573 		}
1574 
1575 		writeback(cache, &structs, oblock, cblock, old_ocell);
1576 	}
1577 
1578 	prealloc_free_structs(cache, &structs);
1579 }
1580 
1581 /*----------------------------------------------------------------
1582  * Invalidations.
1583  * Dropping something from the cache *without* writing back.
1584  *--------------------------------------------------------------*/
1585 
1586 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
1587 {
1588 	int r = 0;
1589 	uint64_t begin = from_cblock(req->cblocks->begin);
1590 	uint64_t end = from_cblock(req->cblocks->end);
1591 
1592 	while (begin != end) {
1593 		r = policy_remove_cblock(cache->policy, to_cblock(begin));
1594 		if (!r) {
1595 			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
1596 			if (r)
1597 				break;
1598 
1599 		} else if (r == -ENODATA) {
1600 			/* harmless, already unmapped */
1601 			r = 0;
1602 
1603 		} else {
1604 			DMERR("policy_remove_cblock failed");
1605 			break;
1606 		}
1607 
1608 		begin++;
1609         }
1610 
1611 	cache->commit_requested = true;
1612 
1613 	req->err = r;
1614 	atomic_set(&req->complete, 1);
1615 
1616 	wake_up(&req->result_wait);
1617 }
1618 
1619 static void process_invalidation_requests(struct cache *cache)
1620 {
1621 	struct list_head list;
1622 	struct invalidation_request *req, *tmp;
1623 
1624 	INIT_LIST_HEAD(&list);
1625 	spin_lock(&cache->invalidation_lock);
1626 	list_splice_init(&cache->invalidation_requests, &list);
1627 	spin_unlock(&cache->invalidation_lock);
1628 
1629 	list_for_each_entry_safe (req, tmp, &list, list)
1630 		process_invalidation_request(cache, req);
1631 }
1632 
1633 /*----------------------------------------------------------------
1634  * Main worker loop
1635  *--------------------------------------------------------------*/
1636 static bool is_quiescing(struct cache *cache)
1637 {
1638 	return atomic_read(&cache->quiescing);
1639 }
1640 
1641 static void ack_quiescing(struct cache *cache)
1642 {
1643 	if (is_quiescing(cache)) {
1644 		atomic_inc(&cache->quiescing_ack);
1645 		wake_up(&cache->quiescing_wait);
1646 	}
1647 }
1648 
1649 static void wait_for_quiescing_ack(struct cache *cache)
1650 {
1651 	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
1652 }
1653 
1654 static void start_quiescing(struct cache *cache)
1655 {
1656 	atomic_inc(&cache->quiescing);
1657 	wait_for_quiescing_ack(cache);
1658 }
1659 
1660 static void stop_quiescing(struct cache *cache)
1661 {
1662 	atomic_set(&cache->quiescing, 0);
1663 	atomic_set(&cache->quiescing_ack, 0);
1664 }
1665 
1666 static void wait_for_migrations(struct cache *cache)
1667 {
1668 	wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
1669 }
1670 
1671 static void stop_worker(struct cache *cache)
1672 {
1673 	cancel_delayed_work(&cache->waker);
1674 	flush_workqueue(cache->wq);
1675 }
1676 
1677 static void requeue_deferred_io(struct cache *cache)
1678 {
1679 	struct bio *bio;
1680 	struct bio_list bios;
1681 
1682 	bio_list_init(&bios);
1683 	bio_list_merge(&bios, &cache->deferred_bios);
1684 	bio_list_init(&cache->deferred_bios);
1685 
1686 	while ((bio = bio_list_pop(&bios)))
1687 		bio_endio(bio, DM_ENDIO_REQUEUE);
1688 }
1689 
1690 static int more_work(struct cache *cache)
1691 {
1692 	if (is_quiescing(cache))
1693 		return !list_empty(&cache->quiesced_migrations) ||
1694 			!list_empty(&cache->completed_migrations) ||
1695 			!list_empty(&cache->need_commit_migrations);
1696 	else
1697 		return !bio_list_empty(&cache->deferred_bios) ||
1698 			!bio_list_empty(&cache->deferred_flush_bios) ||
1699 			!bio_list_empty(&cache->deferred_writethrough_bios) ||
1700 			!list_empty(&cache->quiesced_migrations) ||
1701 			!list_empty(&cache->completed_migrations) ||
1702 			!list_empty(&cache->need_commit_migrations) ||
1703 			cache->invalidate;
1704 }
1705 
1706 static void do_worker(struct work_struct *ws)
1707 {
1708 	struct cache *cache = container_of(ws, struct cache, worker);
1709 
1710 	do {
1711 		if (!is_quiescing(cache)) {
1712 			writeback_some_dirty_blocks(cache);
1713 			process_deferred_writethrough_bios(cache);
1714 			process_deferred_bios(cache);
1715 			process_invalidation_requests(cache);
1716 		}
1717 
1718 		process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1719 		process_migrations(cache, &cache->completed_migrations, complete_migration);
1720 
1721 		if (commit_if_needed(cache)) {
1722 			process_deferred_flush_bios(cache, false);
1723 			process_migrations(cache, &cache->need_commit_migrations, migration_failure);
1724 
1725 			/*
1726 			 * FIXME: rollback metadata or just go into a
1727 			 * failure mode and error everything
1728 			 */
1729 		} else {
1730 			process_deferred_flush_bios(cache, true);
1731 			process_migrations(cache, &cache->need_commit_migrations,
1732 					   migration_success_post_commit);
1733 		}
1734 
1735 		ack_quiescing(cache);
1736 
1737 	} while (more_work(cache));
1738 }
1739 
1740 /*
1741  * We want to commit periodically so that not too much
1742  * unwritten metadata builds up.
1743  */
1744 static void do_waker(struct work_struct *ws)
1745 {
1746 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1747 	policy_tick(cache->policy);
1748 	wake_worker(cache);
1749 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1750 }
1751 
1752 /*----------------------------------------------------------------*/
1753 
1754 static int is_congested(struct dm_dev *dev, int bdi_bits)
1755 {
1756 	struct request_queue *q = bdev_get_queue(dev->bdev);
1757 	return bdi_congested(&q->backing_dev_info, bdi_bits);
1758 }
1759 
1760 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1761 {
1762 	struct cache *cache = container_of(cb, struct cache, callbacks);
1763 
1764 	return is_congested(cache->origin_dev, bdi_bits) ||
1765 		is_congested(cache->cache_dev, bdi_bits);
1766 }
1767 
1768 /*----------------------------------------------------------------
1769  * Target methods
1770  *--------------------------------------------------------------*/
1771 
1772 /*
1773  * This function gets called on the error paths of the constructor, so we
1774  * have to cope with a partially initialised struct.
1775  */
1776 static void destroy(struct cache *cache)
1777 {
1778 	unsigned i;
1779 
1780 	if (cache->next_migration)
1781 		mempool_free(cache->next_migration, cache->migration_pool);
1782 
1783 	if (cache->migration_pool)
1784 		mempool_destroy(cache->migration_pool);
1785 
1786 	if (cache->all_io_ds)
1787 		dm_deferred_set_destroy(cache->all_io_ds);
1788 
1789 	if (cache->prison)
1790 		dm_bio_prison_destroy(cache->prison);
1791 
1792 	if (cache->wq)
1793 		destroy_workqueue(cache->wq);
1794 
1795 	if (cache->dirty_bitset)
1796 		free_bitset(cache->dirty_bitset);
1797 
1798 	if (cache->discard_bitset)
1799 		free_bitset(cache->discard_bitset);
1800 
1801 	if (cache->copier)
1802 		dm_kcopyd_client_destroy(cache->copier);
1803 
1804 	if (cache->cmd)
1805 		dm_cache_metadata_close(cache->cmd);
1806 
1807 	if (cache->metadata_dev)
1808 		dm_put_device(cache->ti, cache->metadata_dev);
1809 
1810 	if (cache->origin_dev)
1811 		dm_put_device(cache->ti, cache->origin_dev);
1812 
1813 	if (cache->cache_dev)
1814 		dm_put_device(cache->ti, cache->cache_dev);
1815 
1816 	if (cache->policy)
1817 		dm_cache_policy_destroy(cache->policy);
1818 
1819 	for (i = 0; i < cache->nr_ctr_args ; i++)
1820 		kfree(cache->ctr_args[i]);
1821 	kfree(cache->ctr_args);
1822 
1823 	kfree(cache);
1824 }
1825 
1826 static void cache_dtr(struct dm_target *ti)
1827 {
1828 	struct cache *cache = ti->private;
1829 
1830 	destroy(cache);
1831 }
1832 
1833 static sector_t get_dev_size(struct dm_dev *dev)
1834 {
1835 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1836 }
1837 
1838 /*----------------------------------------------------------------*/
1839 
1840 /*
1841  * Construct a cache device mapping.
1842  *
1843  * cache <metadata dev> <cache dev> <origin dev> <block size>
1844  *       <#feature args> [<feature arg>]*
1845  *       <policy> <#policy args> [<policy arg>]*
1846  *
1847  * metadata dev    : fast device holding the persistent metadata
1848  * cache dev	   : fast device holding cached data blocks
1849  * origin dev	   : slow device holding original data blocks
1850  * block size	   : cache unit size in sectors
1851  *
1852  * #feature args   : number of feature arguments passed
1853  * feature args    : writethrough.  (The default is writeback.)
1854  *
1855  * policy	   : the replacement policy to use
1856  * #policy args    : an even number of policy arguments corresponding
1857  *		     to key/value pairs passed to the policy
1858  * policy args	   : key/value pairs passed to the policy
1859  *		     E.g. 'sequential_threshold 1024'
1860  *		     See cache-policies.txt for details.
1861  *
1862  * Optional feature arguments are:
1863  *   writethrough  : write through caching that prohibits cache block
1864  *		     content from being different from origin block content.
1865  *		     Without this argument, the default behaviour is to write
1866  *		     back cache block contents later for performance reasons,
1867  *		     so they may differ from the corresponding origin blocks.
1868  */
1869 struct cache_args {
1870 	struct dm_target *ti;
1871 
1872 	struct dm_dev *metadata_dev;
1873 
1874 	struct dm_dev *cache_dev;
1875 	sector_t cache_sectors;
1876 
1877 	struct dm_dev *origin_dev;
1878 	sector_t origin_sectors;
1879 
1880 	uint32_t block_size;
1881 
1882 	const char *policy_name;
1883 	int policy_argc;
1884 	const char **policy_argv;
1885 
1886 	struct cache_features features;
1887 };
1888 
1889 static void destroy_cache_args(struct cache_args *ca)
1890 {
1891 	if (ca->metadata_dev)
1892 		dm_put_device(ca->ti, ca->metadata_dev);
1893 
1894 	if (ca->cache_dev)
1895 		dm_put_device(ca->ti, ca->cache_dev);
1896 
1897 	if (ca->origin_dev)
1898 		dm_put_device(ca->ti, ca->origin_dev);
1899 
1900 	kfree(ca);
1901 }
1902 
1903 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1904 {
1905 	if (!as->argc) {
1906 		*error = "Insufficient args";
1907 		return false;
1908 	}
1909 
1910 	return true;
1911 }
1912 
1913 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1914 			      char **error)
1915 {
1916 	int r;
1917 	sector_t metadata_dev_size;
1918 	char b[BDEVNAME_SIZE];
1919 
1920 	if (!at_least_one_arg(as, error))
1921 		return -EINVAL;
1922 
1923 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1924 			  &ca->metadata_dev);
1925 	if (r) {
1926 		*error = "Error opening metadata device";
1927 		return r;
1928 	}
1929 
1930 	metadata_dev_size = get_dev_size(ca->metadata_dev);
1931 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1932 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1933 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1934 
1935 	return 0;
1936 }
1937 
1938 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1939 			   char **error)
1940 {
1941 	int r;
1942 
1943 	if (!at_least_one_arg(as, error))
1944 		return -EINVAL;
1945 
1946 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1947 			  &ca->cache_dev);
1948 	if (r) {
1949 		*error = "Error opening cache device";
1950 		return r;
1951 	}
1952 	ca->cache_sectors = get_dev_size(ca->cache_dev);
1953 
1954 	return 0;
1955 }
1956 
1957 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1958 			    char **error)
1959 {
1960 	int r;
1961 
1962 	if (!at_least_one_arg(as, error))
1963 		return -EINVAL;
1964 
1965 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1966 			  &ca->origin_dev);
1967 	if (r) {
1968 		*error = "Error opening origin device";
1969 		return r;
1970 	}
1971 
1972 	ca->origin_sectors = get_dev_size(ca->origin_dev);
1973 	if (ca->ti->len > ca->origin_sectors) {
1974 		*error = "Device size larger than cached device";
1975 		return -EINVAL;
1976 	}
1977 
1978 	return 0;
1979 }
1980 
1981 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1982 			    char **error)
1983 {
1984 	unsigned long block_size;
1985 
1986 	if (!at_least_one_arg(as, error))
1987 		return -EINVAL;
1988 
1989 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
1990 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1991 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1992 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1993 		*error = "Invalid data block size";
1994 		return -EINVAL;
1995 	}
1996 
1997 	if (block_size > ca->cache_sectors) {
1998 		*error = "Data block size is larger than the cache device";
1999 		return -EINVAL;
2000 	}
2001 
2002 	ca->block_size = block_size;
2003 
2004 	return 0;
2005 }
2006 
2007 static void init_features(struct cache_features *cf)
2008 {
2009 	cf->mode = CM_WRITE;
2010 	cf->io_mode = CM_IO_WRITEBACK;
2011 }
2012 
2013 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2014 			  char **error)
2015 {
2016 	static struct dm_arg _args[] = {
2017 		{0, 1, "Invalid number of cache feature arguments"},
2018 	};
2019 
2020 	int r;
2021 	unsigned argc;
2022 	const char *arg;
2023 	struct cache_features *cf = &ca->features;
2024 
2025 	init_features(cf);
2026 
2027 	r = dm_read_arg_group(_args, as, &argc, error);
2028 	if (r)
2029 		return -EINVAL;
2030 
2031 	while (argc--) {
2032 		arg = dm_shift_arg(as);
2033 
2034 		if (!strcasecmp(arg, "writeback"))
2035 			cf->io_mode = CM_IO_WRITEBACK;
2036 
2037 		else if (!strcasecmp(arg, "writethrough"))
2038 			cf->io_mode = CM_IO_WRITETHROUGH;
2039 
2040 		else if (!strcasecmp(arg, "passthrough"))
2041 			cf->io_mode = CM_IO_PASSTHROUGH;
2042 
2043 		else {
2044 			*error = "Unrecognised cache feature requested";
2045 			return -EINVAL;
2046 		}
2047 	}
2048 
2049 	return 0;
2050 }
2051 
2052 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2053 			char **error)
2054 {
2055 	static struct dm_arg _args[] = {
2056 		{0, 1024, "Invalid number of policy arguments"},
2057 	};
2058 
2059 	int r;
2060 
2061 	if (!at_least_one_arg(as, error))
2062 		return -EINVAL;
2063 
2064 	ca->policy_name = dm_shift_arg(as);
2065 
2066 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2067 	if (r)
2068 		return -EINVAL;
2069 
2070 	ca->policy_argv = (const char **)as->argv;
2071 	dm_consume_args(as, ca->policy_argc);
2072 
2073 	return 0;
2074 }
2075 
2076 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2077 			    char **error)
2078 {
2079 	int r;
2080 	struct dm_arg_set as;
2081 
2082 	as.argc = argc;
2083 	as.argv = argv;
2084 
2085 	r = parse_metadata_dev(ca, &as, error);
2086 	if (r)
2087 		return r;
2088 
2089 	r = parse_cache_dev(ca, &as, error);
2090 	if (r)
2091 		return r;
2092 
2093 	r = parse_origin_dev(ca, &as, error);
2094 	if (r)
2095 		return r;
2096 
2097 	r = parse_block_size(ca, &as, error);
2098 	if (r)
2099 		return r;
2100 
2101 	r = parse_features(ca, &as, error);
2102 	if (r)
2103 		return r;
2104 
2105 	r = parse_policy(ca, &as, error);
2106 	if (r)
2107 		return r;
2108 
2109 	return 0;
2110 }
2111 
2112 /*----------------------------------------------------------------*/
2113 
2114 static struct kmem_cache *migration_cache;
2115 
2116 #define NOT_CORE_OPTION 1
2117 
2118 static int process_config_option(struct cache *cache, const char *key, const char *value)
2119 {
2120 	unsigned long tmp;
2121 
2122 	if (!strcasecmp(key, "migration_threshold")) {
2123 		if (kstrtoul(value, 10, &tmp))
2124 			return -EINVAL;
2125 
2126 		cache->migration_threshold = tmp;
2127 		return 0;
2128 	}
2129 
2130 	return NOT_CORE_OPTION;
2131 }
2132 
2133 static int set_config_value(struct cache *cache, const char *key, const char *value)
2134 {
2135 	int r = process_config_option(cache, key, value);
2136 
2137 	if (r == NOT_CORE_OPTION)
2138 		r = policy_set_config_value(cache->policy, key, value);
2139 
2140 	if (r)
2141 		DMWARN("bad config value for %s: %s", key, value);
2142 
2143 	return r;
2144 }
2145 
2146 static int set_config_values(struct cache *cache, int argc, const char **argv)
2147 {
2148 	int r = 0;
2149 
2150 	if (argc & 1) {
2151 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2152 		return -EINVAL;
2153 	}
2154 
2155 	while (argc) {
2156 		r = set_config_value(cache, argv[0], argv[1]);
2157 		if (r)
2158 			break;
2159 
2160 		argc -= 2;
2161 		argv += 2;
2162 	}
2163 
2164 	return r;
2165 }
2166 
2167 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2168 			       char **error)
2169 {
2170 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2171 							   cache->cache_size,
2172 							   cache->origin_sectors,
2173 							   cache->sectors_per_block);
2174 	if (IS_ERR(p)) {
2175 		*error = "Error creating cache's policy";
2176 		return PTR_ERR(p);
2177 	}
2178 	cache->policy = p;
2179 
2180 	return 0;
2181 }
2182 
2183 #define DEFAULT_MIGRATION_THRESHOLD 2048
2184 
2185 static int cache_create(struct cache_args *ca, struct cache **result)
2186 {
2187 	int r = 0;
2188 	char **error = &ca->ti->error;
2189 	struct cache *cache;
2190 	struct dm_target *ti = ca->ti;
2191 	dm_block_t origin_blocks;
2192 	struct dm_cache_metadata *cmd;
2193 	bool may_format = ca->features.mode == CM_WRITE;
2194 
2195 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2196 	if (!cache)
2197 		return -ENOMEM;
2198 
2199 	cache->ti = ca->ti;
2200 	ti->private = cache;
2201 	ti->num_flush_bios = 2;
2202 	ti->flush_supported = true;
2203 
2204 	ti->num_discard_bios = 1;
2205 	ti->discards_supported = true;
2206 	ti->discard_zeroes_data_unsupported = true;
2207 	/* Discard bios must be split on a block boundary */
2208 	ti->split_discard_bios = true;
2209 
2210 	cache->features = ca->features;
2211 	ti->per_bio_data_size = get_per_bio_data_size(cache);
2212 
2213 	cache->callbacks.congested_fn = cache_is_congested;
2214 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2215 
2216 	cache->metadata_dev = ca->metadata_dev;
2217 	cache->origin_dev = ca->origin_dev;
2218 	cache->cache_dev = ca->cache_dev;
2219 
2220 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2221 
2222 	/* FIXME: factor out this whole section */
2223 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2224 	origin_blocks = block_div(origin_blocks, ca->block_size);
2225 	cache->origin_blocks = to_oblock(origin_blocks);
2226 
2227 	cache->sectors_per_block = ca->block_size;
2228 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2229 		r = -EINVAL;
2230 		goto bad;
2231 	}
2232 
2233 	if (ca->block_size & (ca->block_size - 1)) {
2234 		dm_block_t cache_size = ca->cache_sectors;
2235 
2236 		cache->sectors_per_block_shift = -1;
2237 		cache_size = block_div(cache_size, ca->block_size);
2238 		cache->cache_size = to_cblock(cache_size);
2239 	} else {
2240 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2241 		cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
2242 	}
2243 
2244 	r = create_cache_policy(cache, ca, error);
2245 	if (r)
2246 		goto bad;
2247 
2248 	cache->policy_nr_args = ca->policy_argc;
2249 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2250 
2251 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2252 	if (r) {
2253 		*error = "Error setting cache policy's config values";
2254 		goto bad;
2255 	}
2256 
2257 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2258 				     ca->block_size, may_format,
2259 				     dm_cache_policy_get_hint_size(cache->policy));
2260 	if (IS_ERR(cmd)) {
2261 		*error = "Error creating metadata object";
2262 		r = PTR_ERR(cmd);
2263 		goto bad;
2264 	}
2265 	cache->cmd = cmd;
2266 
2267 	if (passthrough_mode(&cache->features)) {
2268 		bool all_clean;
2269 
2270 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2271 		if (r) {
2272 			*error = "dm_cache_metadata_all_clean() failed";
2273 			goto bad;
2274 		}
2275 
2276 		if (!all_clean) {
2277 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2278 			r = -EINVAL;
2279 			goto bad;
2280 		}
2281 	}
2282 
2283 	spin_lock_init(&cache->lock);
2284 	bio_list_init(&cache->deferred_bios);
2285 	bio_list_init(&cache->deferred_flush_bios);
2286 	bio_list_init(&cache->deferred_writethrough_bios);
2287 	INIT_LIST_HEAD(&cache->quiesced_migrations);
2288 	INIT_LIST_HEAD(&cache->completed_migrations);
2289 	INIT_LIST_HEAD(&cache->need_commit_migrations);
2290 	atomic_set(&cache->nr_migrations, 0);
2291 	init_waitqueue_head(&cache->migration_wait);
2292 
2293 	init_waitqueue_head(&cache->quiescing_wait);
2294 	atomic_set(&cache->quiescing, 0);
2295 	atomic_set(&cache->quiescing_ack, 0);
2296 
2297 	r = -ENOMEM;
2298 	atomic_set(&cache->nr_dirty, 0);
2299 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2300 	if (!cache->dirty_bitset) {
2301 		*error = "could not allocate dirty bitset";
2302 		goto bad;
2303 	}
2304 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2305 
2306 	cache->discard_nr_blocks = cache->origin_blocks;
2307 	cache->discard_bitset = alloc_bitset(from_oblock(cache->discard_nr_blocks));
2308 	if (!cache->discard_bitset) {
2309 		*error = "could not allocate discard bitset";
2310 		goto bad;
2311 	}
2312 	clear_bitset(cache->discard_bitset, from_oblock(cache->discard_nr_blocks));
2313 
2314 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2315 	if (IS_ERR(cache->copier)) {
2316 		*error = "could not create kcopyd client";
2317 		r = PTR_ERR(cache->copier);
2318 		goto bad;
2319 	}
2320 
2321 	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2322 	if (!cache->wq) {
2323 		*error = "could not create workqueue for metadata object";
2324 		goto bad;
2325 	}
2326 	INIT_WORK(&cache->worker, do_worker);
2327 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2328 	cache->last_commit_jiffies = jiffies;
2329 
2330 	cache->prison = dm_bio_prison_create(PRISON_CELLS);
2331 	if (!cache->prison) {
2332 		*error = "could not create bio prison";
2333 		goto bad;
2334 	}
2335 
2336 	cache->all_io_ds = dm_deferred_set_create();
2337 	if (!cache->all_io_ds) {
2338 		*error = "could not create all_io deferred set";
2339 		goto bad;
2340 	}
2341 
2342 	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2343 							 migration_cache);
2344 	if (!cache->migration_pool) {
2345 		*error = "Error creating cache's migration mempool";
2346 		goto bad;
2347 	}
2348 
2349 	cache->next_migration = NULL;
2350 
2351 	cache->need_tick_bio = true;
2352 	cache->sized = false;
2353 	cache->invalidate = false;
2354 	cache->commit_requested = false;
2355 	cache->loaded_mappings = false;
2356 	cache->loaded_discards = false;
2357 
2358 	load_stats(cache);
2359 
2360 	atomic_set(&cache->stats.demotion, 0);
2361 	atomic_set(&cache->stats.promotion, 0);
2362 	atomic_set(&cache->stats.copies_avoided, 0);
2363 	atomic_set(&cache->stats.cache_cell_clash, 0);
2364 	atomic_set(&cache->stats.commit_count, 0);
2365 	atomic_set(&cache->stats.discard_count, 0);
2366 
2367 	spin_lock_init(&cache->invalidation_lock);
2368 	INIT_LIST_HEAD(&cache->invalidation_requests);
2369 
2370 	*result = cache;
2371 	return 0;
2372 
2373 bad:
2374 	destroy(cache);
2375 	return r;
2376 }
2377 
2378 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2379 {
2380 	unsigned i;
2381 	const char **copy;
2382 
2383 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2384 	if (!copy)
2385 		return -ENOMEM;
2386 	for (i = 0; i < argc; i++) {
2387 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2388 		if (!copy[i]) {
2389 			while (i--)
2390 				kfree(copy[i]);
2391 			kfree(copy);
2392 			return -ENOMEM;
2393 		}
2394 	}
2395 
2396 	cache->nr_ctr_args = argc;
2397 	cache->ctr_args = copy;
2398 
2399 	return 0;
2400 }
2401 
2402 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2403 {
2404 	int r = -EINVAL;
2405 	struct cache_args *ca;
2406 	struct cache *cache = NULL;
2407 
2408 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2409 	if (!ca) {
2410 		ti->error = "Error allocating memory for cache";
2411 		return -ENOMEM;
2412 	}
2413 	ca->ti = ti;
2414 
2415 	r = parse_cache_args(ca, argc, argv, &ti->error);
2416 	if (r)
2417 		goto out;
2418 
2419 	r = cache_create(ca, &cache);
2420 	if (r)
2421 		goto out;
2422 
2423 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2424 	if (r) {
2425 		destroy(cache);
2426 		goto out;
2427 	}
2428 
2429 	ti->private = cache;
2430 
2431 out:
2432 	destroy_cache_args(ca);
2433 	return r;
2434 }
2435 
2436 static int __cache_map(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell **cell)
2437 {
2438 	int r;
2439 	dm_oblock_t block = get_bio_block(cache, bio);
2440 	size_t pb_data_size = get_per_bio_data_size(cache);
2441 	bool can_migrate = false;
2442 	bool discarded_block;
2443 	struct policy_result lookup_result;
2444 	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
2445 
2446 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2447 		/*
2448 		 * This can only occur if the io goes to a partial block at
2449 		 * the end of the origin device.  We don't cache these.
2450 		 * Just remap to the origin and carry on.
2451 		 */
2452 		remap_to_origin(cache, bio);
2453 		return DM_MAPIO_REMAPPED;
2454 	}
2455 
2456 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2457 		defer_bio(cache, bio);
2458 		return DM_MAPIO_SUBMITTED;
2459 	}
2460 
2461 	/*
2462 	 * Check to see if that block is currently migrating.
2463 	 */
2464 	*cell = alloc_prison_cell(cache);
2465 	if (!*cell) {
2466 		defer_bio(cache, bio);
2467 		return DM_MAPIO_SUBMITTED;
2468 	}
2469 
2470 	r = bio_detain(cache, block, bio, *cell,
2471 		       (cell_free_fn) free_prison_cell,
2472 		       cache, cell);
2473 	if (r) {
2474 		if (r < 0)
2475 			defer_bio(cache, bio);
2476 
2477 		return DM_MAPIO_SUBMITTED;
2478 	}
2479 
2480 	discarded_block = is_discarded_oblock(cache, block);
2481 
2482 	r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2483 		       bio, &lookup_result);
2484 	if (r == -EWOULDBLOCK) {
2485 		cell_defer(cache, *cell, true);
2486 		return DM_MAPIO_SUBMITTED;
2487 
2488 	} else if (r) {
2489 		DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2490 		cell_defer(cache, *cell, false);
2491 		bio_io_error(bio);
2492 		return DM_MAPIO_SUBMITTED;
2493 	}
2494 
2495 	r = DM_MAPIO_REMAPPED;
2496 	switch (lookup_result.op) {
2497 	case POLICY_HIT:
2498 		if (passthrough_mode(&cache->features)) {
2499 			if (bio_data_dir(bio) == WRITE) {
2500 				/*
2501 				 * We need to invalidate this block, so
2502 				 * defer for the worker thread.
2503 				 */
2504 				cell_defer(cache, *cell, true);
2505 				r = DM_MAPIO_SUBMITTED;
2506 
2507 			} else {
2508 				inc_miss_counter(cache, bio);
2509 				remap_to_origin_clear_discard(cache, bio, block);
2510 			}
2511 
2512 		} else {
2513 			inc_hit_counter(cache, bio);
2514 			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
2515 			    !is_dirty(cache, lookup_result.cblock))
2516 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2517 			else
2518 				remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2519 		}
2520 		break;
2521 
2522 	case POLICY_MISS:
2523 		inc_miss_counter(cache, bio);
2524 		if (pb->req_nr != 0) {
2525 			/*
2526 			 * This is a duplicate writethrough io that is no
2527 			 * longer needed because the block has been demoted.
2528 			 */
2529 			bio_endio(bio, 0);
2530 			cell_defer(cache, *cell, false);
2531 			r = DM_MAPIO_SUBMITTED;
2532 
2533 		} else
2534 			remap_to_origin_clear_discard(cache, bio, block);
2535 
2536 		break;
2537 
2538 	default:
2539 		DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2540 			    (unsigned) lookup_result.op);
2541 		cell_defer(cache, *cell, false);
2542 		bio_io_error(bio);
2543 		r = DM_MAPIO_SUBMITTED;
2544 	}
2545 
2546 	return r;
2547 }
2548 
2549 static int cache_map(struct dm_target *ti, struct bio *bio)
2550 {
2551 	int r;
2552 	struct dm_bio_prison_cell *cell;
2553 	struct cache *cache = ti->private;
2554 
2555 	r = __cache_map(cache, bio, &cell);
2556 	if (r == DM_MAPIO_REMAPPED) {
2557 		inc_ds(cache, bio, cell);
2558 		cell_defer(cache, cell, false);
2559 	}
2560 
2561 	return r;
2562 }
2563 
2564 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2565 {
2566 	struct cache *cache = ti->private;
2567 	unsigned long flags;
2568 	size_t pb_data_size = get_per_bio_data_size(cache);
2569 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2570 
2571 	if (pb->tick) {
2572 		policy_tick(cache->policy);
2573 
2574 		spin_lock_irqsave(&cache->lock, flags);
2575 		cache->need_tick_bio = true;
2576 		spin_unlock_irqrestore(&cache->lock, flags);
2577 	}
2578 
2579 	check_for_quiesced_migrations(cache, pb);
2580 
2581 	return 0;
2582 }
2583 
2584 static int write_dirty_bitset(struct cache *cache)
2585 {
2586 	unsigned i, r;
2587 
2588 	for (i = 0; i < from_cblock(cache->cache_size); i++) {
2589 		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2590 				       is_dirty(cache, to_cblock(i)));
2591 		if (r)
2592 			return r;
2593 	}
2594 
2595 	return 0;
2596 }
2597 
2598 static int write_discard_bitset(struct cache *cache)
2599 {
2600 	unsigned i, r;
2601 
2602 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->sectors_per_block,
2603 					   cache->origin_blocks);
2604 	if (r) {
2605 		DMERR("could not resize on-disk discard bitset");
2606 		return r;
2607 	}
2608 
2609 	for (i = 0; i < from_oblock(cache->discard_nr_blocks); i++) {
2610 		r = dm_cache_set_discard(cache->cmd, to_oblock(i),
2611 					 is_discarded(cache, to_oblock(i)));
2612 		if (r)
2613 			return r;
2614 	}
2615 
2616 	return 0;
2617 }
2618 
2619 /*
2620  * returns true on success
2621  */
2622 static bool sync_metadata(struct cache *cache)
2623 {
2624 	int r1, r2, r3, r4;
2625 
2626 	r1 = write_dirty_bitset(cache);
2627 	if (r1)
2628 		DMERR("could not write dirty bitset");
2629 
2630 	r2 = write_discard_bitset(cache);
2631 	if (r2)
2632 		DMERR("could not write discard bitset");
2633 
2634 	save_stats(cache);
2635 
2636 	r3 = dm_cache_write_hints(cache->cmd, cache->policy);
2637 	if (r3)
2638 		DMERR("could not write hints");
2639 
2640 	/*
2641 	 * If writing the above metadata failed, we still commit, but don't
2642 	 * set the clean shutdown flag.  This will effectively force every
2643 	 * dirty bit to be set on reload.
2644 	 */
2645 	r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2646 	if (r4)
2647 		DMERR("could not write cache metadata.  Data loss may occur.");
2648 
2649 	return !r1 && !r2 && !r3 && !r4;
2650 }
2651 
2652 static void cache_postsuspend(struct dm_target *ti)
2653 {
2654 	struct cache *cache = ti->private;
2655 
2656 	start_quiescing(cache);
2657 	wait_for_migrations(cache);
2658 	stop_worker(cache);
2659 	requeue_deferred_io(cache);
2660 	stop_quiescing(cache);
2661 
2662 	(void) sync_metadata(cache);
2663 }
2664 
2665 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2666 			bool dirty, uint32_t hint, bool hint_valid)
2667 {
2668 	int r;
2669 	struct cache *cache = context;
2670 
2671 	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2672 	if (r)
2673 		return r;
2674 
2675 	if (dirty)
2676 		set_dirty(cache, oblock, cblock);
2677 	else
2678 		clear_dirty(cache, oblock, cblock);
2679 
2680 	return 0;
2681 }
2682 
2683 static int load_discard(void *context, sector_t discard_block_size,
2684 			dm_oblock_t oblock, bool discard)
2685 {
2686 	struct cache *cache = context;
2687 
2688 	if (discard)
2689 		set_discard(cache, oblock);
2690 	else
2691 		clear_discard(cache, oblock);
2692 
2693 	return 0;
2694 }
2695 
2696 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2697 {
2698 	sector_t size = get_dev_size(cache->cache_dev);
2699 	(void) sector_div(size, cache->sectors_per_block);
2700 	return to_cblock(size);
2701 }
2702 
2703 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2704 {
2705 	if (from_cblock(new_size) > from_cblock(cache->cache_size))
2706 		return true;
2707 
2708 	/*
2709 	 * We can't drop a dirty block when shrinking the cache.
2710 	 */
2711 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2712 		new_size = to_cblock(from_cblock(new_size) + 1);
2713 		if (is_dirty(cache, new_size)) {
2714 			DMERR("unable to shrink cache; cache block %llu is dirty",
2715 			      (unsigned long long) from_cblock(new_size));
2716 			return false;
2717 		}
2718 	}
2719 
2720 	return true;
2721 }
2722 
2723 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2724 {
2725 	int r;
2726 
2727 	r = dm_cache_resize(cache->cmd, new_size);
2728 	if (r) {
2729 		DMERR("could not resize cache metadata");
2730 		return r;
2731 	}
2732 
2733 	cache->cache_size = new_size;
2734 
2735 	return 0;
2736 }
2737 
2738 static int cache_preresume(struct dm_target *ti)
2739 {
2740 	int r = 0;
2741 	struct cache *cache = ti->private;
2742 	dm_cblock_t csize = get_cache_dev_size(cache);
2743 
2744 	/*
2745 	 * Check to see if the cache has resized.
2746 	 */
2747 	if (!cache->sized) {
2748 		r = resize_cache_dev(cache, csize);
2749 		if (r)
2750 			return r;
2751 
2752 		cache->sized = true;
2753 
2754 	} else if (csize != cache->cache_size) {
2755 		if (!can_resize(cache, csize))
2756 			return -EINVAL;
2757 
2758 		r = resize_cache_dev(cache, csize);
2759 		if (r)
2760 			return r;
2761 	}
2762 
2763 	if (!cache->loaded_mappings) {
2764 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2765 					   load_mapping, cache);
2766 		if (r) {
2767 			DMERR("could not load cache mappings");
2768 			return r;
2769 		}
2770 
2771 		cache->loaded_mappings = true;
2772 	}
2773 
2774 	if (!cache->loaded_discards) {
2775 		r = dm_cache_load_discards(cache->cmd, load_discard, cache);
2776 		if (r) {
2777 			DMERR("could not load origin discards");
2778 			return r;
2779 		}
2780 
2781 		cache->loaded_discards = true;
2782 	}
2783 
2784 	return r;
2785 }
2786 
2787 static void cache_resume(struct dm_target *ti)
2788 {
2789 	struct cache *cache = ti->private;
2790 
2791 	cache->need_tick_bio = true;
2792 	do_waker(&cache->waker.work);
2793 }
2794 
2795 /*
2796  * Status format:
2797  *
2798  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
2799  * <cache block size> <#used cache blocks>/<#total cache blocks>
2800  * <#read hits> <#read misses> <#write hits> <#write misses>
2801  * <#demotions> <#promotions> <#dirty>
2802  * <#features> <features>*
2803  * <#core args> <core args>
2804  * <policy name> <#policy args> <policy args>*
2805  */
2806 static void cache_status(struct dm_target *ti, status_type_t type,
2807 			 unsigned status_flags, char *result, unsigned maxlen)
2808 {
2809 	int r = 0;
2810 	unsigned i;
2811 	ssize_t sz = 0;
2812 	dm_block_t nr_free_blocks_metadata = 0;
2813 	dm_block_t nr_blocks_metadata = 0;
2814 	char buf[BDEVNAME_SIZE];
2815 	struct cache *cache = ti->private;
2816 	dm_cblock_t residency;
2817 
2818 	switch (type) {
2819 	case STATUSTYPE_INFO:
2820 		/* Commit to ensure statistics aren't out-of-date */
2821 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2822 			r = dm_cache_commit(cache->cmd, false);
2823 			if (r)
2824 				DMERR("could not commit metadata for accurate status");
2825 		}
2826 
2827 		r = dm_cache_get_free_metadata_block_count(cache->cmd,
2828 							   &nr_free_blocks_metadata);
2829 		if (r) {
2830 			DMERR("could not get metadata free block count");
2831 			goto err;
2832 		}
2833 
2834 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2835 		if (r) {
2836 			DMERR("could not get metadata device size");
2837 			goto err;
2838 		}
2839 
2840 		residency = policy_residency(cache->policy);
2841 
2842 		DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
2843 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
2844 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2845 		       (unsigned long long)nr_blocks_metadata,
2846 		       cache->sectors_per_block,
2847 		       (unsigned long long) from_cblock(residency),
2848 		       (unsigned long long) from_cblock(cache->cache_size),
2849 		       (unsigned) atomic_read(&cache->stats.read_hit),
2850 		       (unsigned) atomic_read(&cache->stats.read_miss),
2851 		       (unsigned) atomic_read(&cache->stats.write_hit),
2852 		       (unsigned) atomic_read(&cache->stats.write_miss),
2853 		       (unsigned) atomic_read(&cache->stats.demotion),
2854 		       (unsigned) atomic_read(&cache->stats.promotion),
2855 		       (unsigned long) atomic_read(&cache->nr_dirty));
2856 
2857 		if (writethrough_mode(&cache->features))
2858 			DMEMIT("1 writethrough ");
2859 
2860 		else if (passthrough_mode(&cache->features))
2861 			DMEMIT("1 passthrough ");
2862 
2863 		else if (writeback_mode(&cache->features))
2864 			DMEMIT("1 writeback ");
2865 
2866 		else {
2867 			DMERR("internal error: unknown io mode: %d", (int) cache->features.io_mode);
2868 			goto err;
2869 		}
2870 
2871 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2872 
2873 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
2874 		if (sz < maxlen) {
2875 			r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2876 			if (r)
2877 				DMERR("policy_emit_config_values returned %d", r);
2878 		}
2879 
2880 		break;
2881 
2882 	case STATUSTYPE_TABLE:
2883 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2884 		DMEMIT("%s ", buf);
2885 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2886 		DMEMIT("%s ", buf);
2887 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2888 		DMEMIT("%s", buf);
2889 
2890 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
2891 			DMEMIT(" %s", cache->ctr_args[i]);
2892 		if (cache->nr_ctr_args)
2893 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
2894 	}
2895 
2896 	return;
2897 
2898 err:
2899 	DMEMIT("Error");
2900 }
2901 
2902 /*
2903  * A cache block range can take two forms:
2904  *
2905  * i) A single cblock, eg. '3456'
2906  * ii) A begin and end cblock with dots between, eg. 123-234
2907  */
2908 static int parse_cblock_range(struct cache *cache, const char *str,
2909 			      struct cblock_range *result)
2910 {
2911 	char dummy;
2912 	uint64_t b, e;
2913 	int r;
2914 
2915 	/*
2916 	 * Try and parse form (ii) first.
2917 	 */
2918 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
2919 	if (r < 0)
2920 		return r;
2921 
2922 	if (r == 2) {
2923 		result->begin = to_cblock(b);
2924 		result->end = to_cblock(e);
2925 		return 0;
2926 	}
2927 
2928 	/*
2929 	 * That didn't work, try form (i).
2930 	 */
2931 	r = sscanf(str, "%llu%c", &b, &dummy);
2932 	if (r < 0)
2933 		return r;
2934 
2935 	if (r == 1) {
2936 		result->begin = to_cblock(b);
2937 		result->end = to_cblock(from_cblock(result->begin) + 1u);
2938 		return 0;
2939 	}
2940 
2941 	DMERR("invalid cblock range '%s'", str);
2942 	return -EINVAL;
2943 }
2944 
2945 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
2946 {
2947 	uint64_t b = from_cblock(range->begin);
2948 	uint64_t e = from_cblock(range->end);
2949 	uint64_t n = from_cblock(cache->cache_size);
2950 
2951 	if (b >= n) {
2952 		DMERR("begin cblock out of range: %llu >= %llu", b, n);
2953 		return -EINVAL;
2954 	}
2955 
2956 	if (e > n) {
2957 		DMERR("end cblock out of range: %llu > %llu", e, n);
2958 		return -EINVAL;
2959 	}
2960 
2961 	if (b >= e) {
2962 		DMERR("invalid cblock range: %llu >= %llu", b, e);
2963 		return -EINVAL;
2964 	}
2965 
2966 	return 0;
2967 }
2968 
2969 static int request_invalidation(struct cache *cache, struct cblock_range *range)
2970 {
2971 	struct invalidation_request req;
2972 
2973 	INIT_LIST_HEAD(&req.list);
2974 	req.cblocks = range;
2975 	atomic_set(&req.complete, 0);
2976 	req.err = 0;
2977 	init_waitqueue_head(&req.result_wait);
2978 
2979 	spin_lock(&cache->invalidation_lock);
2980 	list_add(&req.list, &cache->invalidation_requests);
2981 	spin_unlock(&cache->invalidation_lock);
2982 	wake_worker(cache);
2983 
2984 	wait_event(req.result_wait, atomic_read(&req.complete));
2985 	return req.err;
2986 }
2987 
2988 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
2989 					      const char **cblock_ranges)
2990 {
2991 	int r = 0;
2992 	unsigned i;
2993 	struct cblock_range range;
2994 
2995 	if (!passthrough_mode(&cache->features)) {
2996 		DMERR("cache has to be in passthrough mode for invalidation");
2997 		return -EPERM;
2998 	}
2999 
3000 	for (i = 0; i < count; i++) {
3001 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3002 		if (r)
3003 			break;
3004 
3005 		r = validate_cblock_range(cache, &range);
3006 		if (r)
3007 			break;
3008 
3009 		/*
3010 		 * Pass begin and end origin blocks to the worker and wake it.
3011 		 */
3012 		r = request_invalidation(cache, &range);
3013 		if (r)
3014 			break;
3015 	}
3016 
3017 	return r;
3018 }
3019 
3020 /*
3021  * Supports
3022  *	"<key> <value>"
3023  * and
3024  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3025  *
3026  * The key migration_threshold is supported by the cache target core.
3027  */
3028 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3029 {
3030 	struct cache *cache = ti->private;
3031 
3032 	if (!argc)
3033 		return -EINVAL;
3034 
3035 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3036 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3037 
3038 	if (argc != 2)
3039 		return -EINVAL;
3040 
3041 	return set_config_value(cache, argv[0], argv[1]);
3042 }
3043 
3044 static int cache_iterate_devices(struct dm_target *ti,
3045 				 iterate_devices_callout_fn fn, void *data)
3046 {
3047 	int r = 0;
3048 	struct cache *cache = ti->private;
3049 
3050 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3051 	if (!r)
3052 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3053 
3054 	return r;
3055 }
3056 
3057 /*
3058  * We assume I/O is going to the origin (which is the volume
3059  * more likely to have restrictions e.g. by being striped).
3060  * (Looking up the exact location of the data would be expensive
3061  * and could always be out of date by the time the bio is submitted.)
3062  */
3063 static int cache_bvec_merge(struct dm_target *ti,
3064 			    struct bvec_merge_data *bvm,
3065 			    struct bio_vec *biovec, int max_size)
3066 {
3067 	struct cache *cache = ti->private;
3068 	struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
3069 
3070 	if (!q->merge_bvec_fn)
3071 		return max_size;
3072 
3073 	bvm->bi_bdev = cache->origin_dev->bdev;
3074 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3075 }
3076 
3077 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3078 {
3079 	/*
3080 	 * FIXME: these limits may be incompatible with the cache device
3081 	 */
3082 	limits->max_discard_sectors = cache->sectors_per_block;
3083 	limits->discard_granularity = cache->sectors_per_block << SECTOR_SHIFT;
3084 }
3085 
3086 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3087 {
3088 	struct cache *cache = ti->private;
3089 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3090 
3091 	/*
3092 	 * If the system-determined stacked limits are compatible with the
3093 	 * cache's blocksize (io_opt is a factor) do not override them.
3094 	 */
3095 	if (io_opt_sectors < cache->sectors_per_block ||
3096 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3097 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3098 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3099 	}
3100 	set_discard_limits(cache, limits);
3101 }
3102 
3103 /*----------------------------------------------------------------*/
3104 
3105 static struct target_type cache_target = {
3106 	.name = "cache",
3107 	.version = {1, 5, 0},
3108 	.module = THIS_MODULE,
3109 	.ctr = cache_ctr,
3110 	.dtr = cache_dtr,
3111 	.map = cache_map,
3112 	.end_io = cache_end_io,
3113 	.postsuspend = cache_postsuspend,
3114 	.preresume = cache_preresume,
3115 	.resume = cache_resume,
3116 	.status = cache_status,
3117 	.message = cache_message,
3118 	.iterate_devices = cache_iterate_devices,
3119 	.merge = cache_bvec_merge,
3120 	.io_hints = cache_io_hints,
3121 };
3122 
3123 static int __init dm_cache_init(void)
3124 {
3125 	int r;
3126 
3127 	r = dm_register_target(&cache_target);
3128 	if (r) {
3129 		DMERR("cache target registration failed: %d", r);
3130 		return r;
3131 	}
3132 
3133 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3134 	if (!migration_cache) {
3135 		dm_unregister_target(&cache_target);
3136 		return -ENOMEM;
3137 	}
3138 
3139 	return 0;
3140 }
3141 
3142 static void __exit dm_cache_exit(void)
3143 {
3144 	dm_unregister_target(&cache_target);
3145 	kmem_cache_destroy(migration_cache);
3146 }
3147 
3148 module_init(dm_cache_init);
3149 module_exit(dm_cache_exit);
3150 
3151 MODULE_DESCRIPTION(DM_NAME " cache target");
3152 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3153 MODULE_LICENSE("GPL");
3154