1 /* 2 * Copyright (C) 2009-2011 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/dm-bufio.h> 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/slab.h> 14 #include <linux/sched/mm.h> 15 #include <linux/jiffies.h> 16 #include <linux/vmalloc.h> 17 #include <linux/shrinker.h> 18 #include <linux/module.h> 19 #include <linux/rbtree.h> 20 #include <linux/stacktrace.h> 21 22 #define DM_MSG_PREFIX "bufio" 23 24 /* 25 * Memory management policy: 26 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 27 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 28 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 29 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 30 * dirty buffers. 31 */ 32 #define DM_BUFIO_MIN_BUFFERS 8 33 34 #define DM_BUFIO_MEMORY_PERCENT 2 35 #define DM_BUFIO_VMALLOC_PERCENT 25 36 #define DM_BUFIO_WRITEBACK_RATIO 3 37 #define DM_BUFIO_LOW_WATERMARK_RATIO 16 38 39 /* 40 * Check buffer ages in this interval (seconds) 41 */ 42 #define DM_BUFIO_WORK_TIMER_SECS 30 43 44 /* 45 * Free buffers when they are older than this (seconds) 46 */ 47 #define DM_BUFIO_DEFAULT_AGE_SECS 300 48 49 /* 50 * The nr of bytes of cached data to keep around. 51 */ 52 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 53 54 /* 55 * Align buffer writes to this boundary. 56 * Tests show that SSDs have the highest IOPS when using 4k writes. 57 */ 58 #define DM_BUFIO_WRITE_ALIGN 4096 59 60 /* 61 * dm_buffer->list_mode 62 */ 63 #define LIST_CLEAN 0 64 #define LIST_DIRTY 1 65 #define LIST_SIZE 2 66 67 /* 68 * Linking of buffers: 69 * All buffers are linked to buffer_tree with their node field. 70 * 71 * Clean buffers that are not being written (B_WRITING not set) 72 * are linked to lru[LIST_CLEAN] with their lru_list field. 73 * 74 * Dirty and clean buffers that are being written are linked to 75 * lru[LIST_DIRTY] with their lru_list field. When the write 76 * finishes, the buffer cannot be relinked immediately (because we 77 * are in an interrupt context and relinking requires process 78 * context), so some clean-not-writing buffers can be held on 79 * dirty_lru too. They are later added to lru in the process 80 * context. 81 */ 82 struct dm_bufio_client { 83 struct mutex lock; 84 85 struct list_head lru[LIST_SIZE]; 86 unsigned long n_buffers[LIST_SIZE]; 87 88 struct block_device *bdev; 89 unsigned block_size; 90 s8 sectors_per_block_bits; 91 void (*alloc_callback)(struct dm_buffer *); 92 void (*write_callback)(struct dm_buffer *); 93 94 struct kmem_cache *slab_buffer; 95 struct kmem_cache *slab_cache; 96 struct dm_io_client *dm_io; 97 98 struct list_head reserved_buffers; 99 unsigned need_reserved_buffers; 100 101 unsigned minimum_buffers; 102 103 struct rb_root buffer_tree; 104 wait_queue_head_t free_buffer_wait; 105 106 sector_t start; 107 108 int async_write_error; 109 110 struct list_head client_list; 111 struct shrinker shrinker; 112 }; 113 114 /* 115 * Buffer state bits. 116 */ 117 #define B_READING 0 118 #define B_WRITING 1 119 #define B_DIRTY 2 120 121 /* 122 * Describes how the block was allocated: 123 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 124 * See the comment at alloc_buffer_data. 125 */ 126 enum data_mode { 127 DATA_MODE_SLAB = 0, 128 DATA_MODE_GET_FREE_PAGES = 1, 129 DATA_MODE_VMALLOC = 2, 130 DATA_MODE_LIMIT = 3 131 }; 132 133 struct dm_buffer { 134 struct rb_node node; 135 struct list_head lru_list; 136 struct list_head global_list; 137 sector_t block; 138 void *data; 139 unsigned char data_mode; /* DATA_MODE_* */ 140 unsigned char list_mode; /* LIST_* */ 141 blk_status_t read_error; 142 blk_status_t write_error; 143 unsigned accessed; 144 unsigned hold_count; 145 unsigned long state; 146 unsigned long last_accessed; 147 unsigned dirty_start; 148 unsigned dirty_end; 149 unsigned write_start; 150 unsigned write_end; 151 struct dm_bufio_client *c; 152 struct list_head write_list; 153 void (*end_io)(struct dm_buffer *, blk_status_t); 154 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 155 #define MAX_STACK 10 156 unsigned int stack_len; 157 unsigned long stack_entries[MAX_STACK]; 158 #endif 159 }; 160 161 /*----------------------------------------------------------------*/ 162 163 #define dm_bufio_in_request() (!!current->bio_list) 164 165 static void dm_bufio_lock(struct dm_bufio_client *c) 166 { 167 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 168 } 169 170 static int dm_bufio_trylock(struct dm_bufio_client *c) 171 { 172 return mutex_trylock(&c->lock); 173 } 174 175 static void dm_bufio_unlock(struct dm_bufio_client *c) 176 { 177 mutex_unlock(&c->lock); 178 } 179 180 /*----------------------------------------------------------------*/ 181 182 /* 183 * Default cache size: available memory divided by the ratio. 184 */ 185 static unsigned long dm_bufio_default_cache_size; 186 187 /* 188 * Total cache size set by the user. 189 */ 190 static unsigned long dm_bufio_cache_size; 191 192 /* 193 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 194 * at any time. If it disagrees, the user has changed cache size. 195 */ 196 static unsigned long dm_bufio_cache_size_latch; 197 198 static DEFINE_SPINLOCK(global_spinlock); 199 200 static LIST_HEAD(global_queue); 201 202 static unsigned long global_num = 0; 203 204 /* 205 * Buffers are freed after this timeout 206 */ 207 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 208 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 209 210 static unsigned long dm_bufio_peak_allocated; 211 static unsigned long dm_bufio_allocated_kmem_cache; 212 static unsigned long dm_bufio_allocated_get_free_pages; 213 static unsigned long dm_bufio_allocated_vmalloc; 214 static unsigned long dm_bufio_current_allocated; 215 216 /*----------------------------------------------------------------*/ 217 218 /* 219 * The current number of clients. 220 */ 221 static int dm_bufio_client_count; 222 223 /* 224 * The list of all clients. 225 */ 226 static LIST_HEAD(dm_bufio_all_clients); 227 228 /* 229 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count 230 */ 231 static DEFINE_MUTEX(dm_bufio_clients_lock); 232 233 static struct workqueue_struct *dm_bufio_wq; 234 static struct delayed_work dm_bufio_cleanup_old_work; 235 static struct work_struct dm_bufio_replacement_work; 236 237 238 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 239 static void buffer_record_stack(struct dm_buffer *b) 240 { 241 b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2); 242 } 243 #endif 244 245 /*---------------------------------------------------------------- 246 * A red/black tree acts as an index for all the buffers. 247 *--------------------------------------------------------------*/ 248 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) 249 { 250 struct rb_node *n = c->buffer_tree.rb_node; 251 struct dm_buffer *b; 252 253 while (n) { 254 b = container_of(n, struct dm_buffer, node); 255 256 if (b->block == block) 257 return b; 258 259 n = (b->block < block) ? n->rb_left : n->rb_right; 260 } 261 262 return NULL; 263 } 264 265 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b) 266 { 267 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL; 268 struct dm_buffer *found; 269 270 while (*new) { 271 found = container_of(*new, struct dm_buffer, node); 272 273 if (found->block == b->block) { 274 BUG_ON(found != b); 275 return; 276 } 277 278 parent = *new; 279 new = (found->block < b->block) ? 280 &((*new)->rb_left) : &((*new)->rb_right); 281 } 282 283 rb_link_node(&b->node, parent, new); 284 rb_insert_color(&b->node, &c->buffer_tree); 285 } 286 287 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b) 288 { 289 rb_erase(&b->node, &c->buffer_tree); 290 } 291 292 /*----------------------------------------------------------------*/ 293 294 static void adjust_total_allocated(struct dm_buffer *b, bool unlink) 295 { 296 unsigned char data_mode; 297 long diff; 298 299 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 300 &dm_bufio_allocated_kmem_cache, 301 &dm_bufio_allocated_get_free_pages, 302 &dm_bufio_allocated_vmalloc, 303 }; 304 305 data_mode = b->data_mode; 306 diff = (long)b->c->block_size; 307 if (unlink) 308 diff = -diff; 309 310 spin_lock(&global_spinlock); 311 312 *class_ptr[data_mode] += diff; 313 314 dm_bufio_current_allocated += diff; 315 316 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 317 dm_bufio_peak_allocated = dm_bufio_current_allocated; 318 319 b->accessed = 1; 320 321 if (!unlink) { 322 list_add(&b->global_list, &global_queue); 323 global_num++; 324 if (dm_bufio_current_allocated > dm_bufio_cache_size) 325 queue_work(dm_bufio_wq, &dm_bufio_replacement_work); 326 } else { 327 list_del(&b->global_list); 328 global_num--; 329 } 330 331 spin_unlock(&global_spinlock); 332 } 333 334 /* 335 * Change the number of clients and recalculate per-client limit. 336 */ 337 static void __cache_size_refresh(void) 338 { 339 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock)); 340 BUG_ON(dm_bufio_client_count < 0); 341 342 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size); 343 344 /* 345 * Use default if set to 0 and report the actual cache size used. 346 */ 347 if (!dm_bufio_cache_size_latch) { 348 (void)cmpxchg(&dm_bufio_cache_size, 0, 349 dm_bufio_default_cache_size); 350 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 351 } 352 } 353 354 /* 355 * Allocating buffer data. 356 * 357 * Small buffers are allocated with kmem_cache, to use space optimally. 358 * 359 * For large buffers, we choose between get_free_pages and vmalloc. 360 * Each has advantages and disadvantages. 361 * 362 * __get_free_pages can randomly fail if the memory is fragmented. 363 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 364 * as low as 128M) so using it for caching is not appropriate. 365 * 366 * If the allocation may fail we use __get_free_pages. Memory fragmentation 367 * won't have a fatal effect here, but it just causes flushes of some other 368 * buffers and more I/O will be performed. Don't use __get_free_pages if it 369 * always fails (i.e. order >= MAX_ORDER). 370 * 371 * If the allocation shouldn't fail we use __vmalloc. This is only for the 372 * initial reserve allocation, so there's no risk of wasting all vmalloc 373 * space. 374 */ 375 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 376 unsigned char *data_mode) 377 { 378 if (unlikely(c->slab_cache != NULL)) { 379 *data_mode = DATA_MODE_SLAB; 380 return kmem_cache_alloc(c->slab_cache, gfp_mask); 381 } 382 383 if (c->block_size <= KMALLOC_MAX_SIZE && 384 gfp_mask & __GFP_NORETRY) { 385 *data_mode = DATA_MODE_GET_FREE_PAGES; 386 return (void *)__get_free_pages(gfp_mask, 387 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 388 } 389 390 *data_mode = DATA_MODE_VMALLOC; 391 392 /* 393 * __vmalloc allocates the data pages and auxiliary structures with 394 * gfp_flags that were specified, but pagetables are always allocated 395 * with GFP_KERNEL, no matter what was specified as gfp_mask. 396 * 397 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that 398 * all allocations done by this process (including pagetables) are done 399 * as if GFP_NOIO was specified. 400 */ 401 if (gfp_mask & __GFP_NORETRY) { 402 unsigned noio_flag = memalloc_noio_save(); 403 void *ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL); 404 405 memalloc_noio_restore(noio_flag); 406 return ptr; 407 } 408 409 return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL); 410 } 411 412 /* 413 * Free buffer's data. 414 */ 415 static void free_buffer_data(struct dm_bufio_client *c, 416 void *data, unsigned char data_mode) 417 { 418 switch (data_mode) { 419 case DATA_MODE_SLAB: 420 kmem_cache_free(c->slab_cache, data); 421 break; 422 423 case DATA_MODE_GET_FREE_PAGES: 424 free_pages((unsigned long)data, 425 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 426 break; 427 428 case DATA_MODE_VMALLOC: 429 vfree(data); 430 break; 431 432 default: 433 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 434 data_mode); 435 BUG(); 436 } 437 } 438 439 /* 440 * Allocate buffer and its data. 441 */ 442 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 443 { 444 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask); 445 446 if (!b) 447 return NULL; 448 449 b->c = c; 450 451 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 452 if (!b->data) { 453 kmem_cache_free(c->slab_buffer, b); 454 return NULL; 455 } 456 457 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 458 b->stack_len = 0; 459 #endif 460 return b; 461 } 462 463 /* 464 * Free buffer and its data. 465 */ 466 static void free_buffer(struct dm_buffer *b) 467 { 468 struct dm_bufio_client *c = b->c; 469 470 free_buffer_data(c, b->data, b->data_mode); 471 kmem_cache_free(c->slab_buffer, b); 472 } 473 474 /* 475 * Link buffer to the buffer tree and clean or dirty queue. 476 */ 477 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty) 478 { 479 struct dm_bufio_client *c = b->c; 480 481 c->n_buffers[dirty]++; 482 b->block = block; 483 b->list_mode = dirty; 484 list_add(&b->lru_list, &c->lru[dirty]); 485 __insert(b->c, b); 486 b->last_accessed = jiffies; 487 488 adjust_total_allocated(b, false); 489 } 490 491 /* 492 * Unlink buffer from the buffer tree and dirty or clean queue. 493 */ 494 static void __unlink_buffer(struct dm_buffer *b) 495 { 496 struct dm_bufio_client *c = b->c; 497 498 BUG_ON(!c->n_buffers[b->list_mode]); 499 500 c->n_buffers[b->list_mode]--; 501 __remove(b->c, b); 502 list_del(&b->lru_list); 503 504 adjust_total_allocated(b, true); 505 } 506 507 /* 508 * Place the buffer to the head of dirty or clean LRU queue. 509 */ 510 static void __relink_lru(struct dm_buffer *b, int dirty) 511 { 512 struct dm_bufio_client *c = b->c; 513 514 b->accessed = 1; 515 516 BUG_ON(!c->n_buffers[b->list_mode]); 517 518 c->n_buffers[b->list_mode]--; 519 c->n_buffers[dirty]++; 520 b->list_mode = dirty; 521 list_move(&b->lru_list, &c->lru[dirty]); 522 b->last_accessed = jiffies; 523 } 524 525 /*---------------------------------------------------------------- 526 * Submit I/O on the buffer. 527 * 528 * Bio interface is faster but it has some problems: 529 * the vector list is limited (increasing this limit increases 530 * memory-consumption per buffer, so it is not viable); 531 * 532 * the memory must be direct-mapped, not vmalloced; 533 * 534 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 535 * it is not vmalloced, try using the bio interface. 536 * 537 * If the buffer is big, if it is vmalloced or if the underlying device 538 * rejects the bio because it is too large, use dm-io layer to do the I/O. 539 * The dm-io layer splits the I/O into multiple requests, avoiding the above 540 * shortcomings. 541 *--------------------------------------------------------------*/ 542 543 /* 544 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 545 * that the request was handled directly with bio interface. 546 */ 547 static void dmio_complete(unsigned long error, void *context) 548 { 549 struct dm_buffer *b = context; 550 551 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0); 552 } 553 554 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector, 555 unsigned n_sectors, unsigned offset) 556 { 557 int r; 558 struct dm_io_request io_req = { 559 .bi_op = rw, 560 .bi_op_flags = 0, 561 .notify.fn = dmio_complete, 562 .notify.context = b, 563 .client = b->c->dm_io, 564 }; 565 struct dm_io_region region = { 566 .bdev = b->c->bdev, 567 .sector = sector, 568 .count = n_sectors, 569 }; 570 571 if (b->data_mode != DATA_MODE_VMALLOC) { 572 io_req.mem.type = DM_IO_KMEM; 573 io_req.mem.ptr.addr = (char *)b->data + offset; 574 } else { 575 io_req.mem.type = DM_IO_VMA; 576 io_req.mem.ptr.vma = (char *)b->data + offset; 577 } 578 579 r = dm_io(&io_req, 1, ®ion, NULL); 580 if (unlikely(r)) 581 b->end_io(b, errno_to_blk_status(r)); 582 } 583 584 static void bio_complete(struct bio *bio) 585 { 586 struct dm_buffer *b = bio->bi_private; 587 blk_status_t status = bio->bi_status; 588 bio_put(bio); 589 b->end_io(b, status); 590 } 591 592 static void use_bio(struct dm_buffer *b, int rw, sector_t sector, 593 unsigned n_sectors, unsigned offset) 594 { 595 struct bio *bio; 596 char *ptr; 597 unsigned vec_size, len; 598 599 vec_size = b->c->block_size >> PAGE_SHIFT; 600 if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT)) 601 vec_size += 2; 602 603 bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size); 604 if (!bio) { 605 dmio: 606 use_dmio(b, rw, sector, n_sectors, offset); 607 return; 608 } 609 610 bio->bi_iter.bi_sector = sector; 611 bio_set_dev(bio, b->c->bdev); 612 bio_set_op_attrs(bio, rw, 0); 613 bio->bi_end_io = bio_complete; 614 bio->bi_private = b; 615 616 ptr = (char *)b->data + offset; 617 len = n_sectors << SECTOR_SHIFT; 618 619 do { 620 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len); 621 if (!bio_add_page(bio, virt_to_page(ptr), this_step, 622 offset_in_page(ptr))) { 623 bio_put(bio); 624 goto dmio; 625 } 626 627 len -= this_step; 628 ptr += this_step; 629 } while (len > 0); 630 631 submit_bio(bio); 632 } 633 634 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block) 635 { 636 sector_t sector; 637 638 if (likely(c->sectors_per_block_bits >= 0)) 639 sector = block << c->sectors_per_block_bits; 640 else 641 sector = block * (c->block_size >> SECTOR_SHIFT); 642 sector += c->start; 643 644 return sector; 645 } 646 647 static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t)) 648 { 649 unsigned n_sectors; 650 sector_t sector; 651 unsigned offset, end; 652 653 b->end_io = end_io; 654 655 sector = block_to_sector(b->c, b->block); 656 657 if (rw != REQ_OP_WRITE) { 658 n_sectors = b->c->block_size >> SECTOR_SHIFT; 659 offset = 0; 660 } else { 661 if (b->c->write_callback) 662 b->c->write_callback(b); 663 offset = b->write_start; 664 end = b->write_end; 665 offset &= -DM_BUFIO_WRITE_ALIGN; 666 end += DM_BUFIO_WRITE_ALIGN - 1; 667 end &= -DM_BUFIO_WRITE_ALIGN; 668 if (unlikely(end > b->c->block_size)) 669 end = b->c->block_size; 670 671 sector += offset >> SECTOR_SHIFT; 672 n_sectors = (end - offset) >> SECTOR_SHIFT; 673 } 674 675 if (b->data_mode != DATA_MODE_VMALLOC) 676 use_bio(b, rw, sector, n_sectors, offset); 677 else 678 use_dmio(b, rw, sector, n_sectors, offset); 679 } 680 681 /*---------------------------------------------------------------- 682 * Writing dirty buffers 683 *--------------------------------------------------------------*/ 684 685 /* 686 * The endio routine for write. 687 * 688 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 689 * it. 690 */ 691 static void write_endio(struct dm_buffer *b, blk_status_t status) 692 { 693 b->write_error = status; 694 if (unlikely(status)) { 695 struct dm_bufio_client *c = b->c; 696 697 (void)cmpxchg(&c->async_write_error, 0, 698 blk_status_to_errno(status)); 699 } 700 701 BUG_ON(!test_bit(B_WRITING, &b->state)); 702 703 smp_mb__before_atomic(); 704 clear_bit(B_WRITING, &b->state); 705 smp_mb__after_atomic(); 706 707 wake_up_bit(&b->state, B_WRITING); 708 } 709 710 /* 711 * Initiate a write on a dirty buffer, but don't wait for it. 712 * 713 * - If the buffer is not dirty, exit. 714 * - If there some previous write going on, wait for it to finish (we can't 715 * have two writes on the same buffer simultaneously). 716 * - Submit our write and don't wait on it. We set B_WRITING indicating 717 * that there is a write in progress. 718 */ 719 static void __write_dirty_buffer(struct dm_buffer *b, 720 struct list_head *write_list) 721 { 722 if (!test_bit(B_DIRTY, &b->state)) 723 return; 724 725 clear_bit(B_DIRTY, &b->state); 726 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 727 728 b->write_start = b->dirty_start; 729 b->write_end = b->dirty_end; 730 731 if (!write_list) 732 submit_io(b, REQ_OP_WRITE, write_endio); 733 else 734 list_add_tail(&b->write_list, write_list); 735 } 736 737 static void __flush_write_list(struct list_head *write_list) 738 { 739 struct blk_plug plug; 740 blk_start_plug(&plug); 741 while (!list_empty(write_list)) { 742 struct dm_buffer *b = 743 list_entry(write_list->next, struct dm_buffer, write_list); 744 list_del(&b->write_list); 745 submit_io(b, REQ_OP_WRITE, write_endio); 746 cond_resched(); 747 } 748 blk_finish_plug(&plug); 749 } 750 751 /* 752 * Wait until any activity on the buffer finishes. Possibly write the 753 * buffer if it is dirty. When this function finishes, there is no I/O 754 * running on the buffer and the buffer is not dirty. 755 */ 756 static void __make_buffer_clean(struct dm_buffer *b) 757 { 758 BUG_ON(b->hold_count); 759 760 if (!b->state) /* fast case */ 761 return; 762 763 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 764 __write_dirty_buffer(b, NULL); 765 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 766 } 767 768 /* 769 * Find some buffer that is not held by anybody, clean it, unlink it and 770 * return it. 771 */ 772 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 773 { 774 struct dm_buffer *b; 775 776 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) { 777 BUG_ON(test_bit(B_WRITING, &b->state)); 778 BUG_ON(test_bit(B_DIRTY, &b->state)); 779 780 if (!b->hold_count) { 781 __make_buffer_clean(b); 782 __unlink_buffer(b); 783 return b; 784 } 785 cond_resched(); 786 } 787 788 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) { 789 BUG_ON(test_bit(B_READING, &b->state)); 790 791 if (!b->hold_count) { 792 __make_buffer_clean(b); 793 __unlink_buffer(b); 794 return b; 795 } 796 cond_resched(); 797 } 798 799 return NULL; 800 } 801 802 /* 803 * Wait until some other threads free some buffer or release hold count on 804 * some buffer. 805 * 806 * This function is entered with c->lock held, drops it and regains it 807 * before exiting. 808 */ 809 static void __wait_for_free_buffer(struct dm_bufio_client *c) 810 { 811 DECLARE_WAITQUEUE(wait, current); 812 813 add_wait_queue(&c->free_buffer_wait, &wait); 814 set_current_state(TASK_UNINTERRUPTIBLE); 815 dm_bufio_unlock(c); 816 817 io_schedule(); 818 819 remove_wait_queue(&c->free_buffer_wait, &wait); 820 821 dm_bufio_lock(c); 822 } 823 824 enum new_flag { 825 NF_FRESH = 0, 826 NF_READ = 1, 827 NF_GET = 2, 828 NF_PREFETCH = 3 829 }; 830 831 /* 832 * Allocate a new buffer. If the allocation is not possible, wait until 833 * some other thread frees a buffer. 834 * 835 * May drop the lock and regain it. 836 */ 837 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 838 { 839 struct dm_buffer *b; 840 bool tried_noio_alloc = false; 841 842 /* 843 * dm-bufio is resistant to allocation failures (it just keeps 844 * one buffer reserved in cases all the allocations fail). 845 * So set flags to not try too hard: 846 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 847 * mutex and wait ourselves. 848 * __GFP_NORETRY: don't retry and rather return failure 849 * __GFP_NOMEMALLOC: don't use emergency reserves 850 * __GFP_NOWARN: don't print a warning in case of failure 851 * 852 * For debugging, if we set the cache size to 1, no new buffers will 853 * be allocated. 854 */ 855 while (1) { 856 if (dm_bufio_cache_size_latch != 1) { 857 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 858 if (b) 859 return b; 860 } 861 862 if (nf == NF_PREFETCH) 863 return NULL; 864 865 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 866 dm_bufio_unlock(c); 867 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 868 dm_bufio_lock(c); 869 if (b) 870 return b; 871 tried_noio_alloc = true; 872 } 873 874 if (!list_empty(&c->reserved_buffers)) { 875 b = list_entry(c->reserved_buffers.next, 876 struct dm_buffer, lru_list); 877 list_del(&b->lru_list); 878 c->need_reserved_buffers++; 879 880 return b; 881 } 882 883 b = __get_unclaimed_buffer(c); 884 if (b) 885 return b; 886 887 __wait_for_free_buffer(c); 888 } 889 } 890 891 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 892 { 893 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 894 895 if (!b) 896 return NULL; 897 898 if (c->alloc_callback) 899 c->alloc_callback(b); 900 901 return b; 902 } 903 904 /* 905 * Free a buffer and wake other threads waiting for free buffers. 906 */ 907 static void __free_buffer_wake(struct dm_buffer *b) 908 { 909 struct dm_bufio_client *c = b->c; 910 911 if (!c->need_reserved_buffers) 912 free_buffer(b); 913 else { 914 list_add(&b->lru_list, &c->reserved_buffers); 915 c->need_reserved_buffers--; 916 } 917 918 wake_up(&c->free_buffer_wait); 919 } 920 921 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 922 struct list_head *write_list) 923 { 924 struct dm_buffer *b, *tmp; 925 926 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 927 BUG_ON(test_bit(B_READING, &b->state)); 928 929 if (!test_bit(B_DIRTY, &b->state) && 930 !test_bit(B_WRITING, &b->state)) { 931 __relink_lru(b, LIST_CLEAN); 932 continue; 933 } 934 935 if (no_wait && test_bit(B_WRITING, &b->state)) 936 return; 937 938 __write_dirty_buffer(b, write_list); 939 cond_resched(); 940 } 941 } 942 943 /* 944 * Check if we're over watermark. 945 * If we are over threshold_buffers, start freeing buffers. 946 * If we're over "limit_buffers", block until we get under the limit. 947 */ 948 static void __check_watermark(struct dm_bufio_client *c, 949 struct list_head *write_list) 950 { 951 if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO) 952 __write_dirty_buffers_async(c, 1, write_list); 953 } 954 955 /*---------------------------------------------------------------- 956 * Getting a buffer 957 *--------------------------------------------------------------*/ 958 959 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 960 enum new_flag nf, int *need_submit, 961 struct list_head *write_list) 962 { 963 struct dm_buffer *b, *new_b = NULL; 964 965 *need_submit = 0; 966 967 b = __find(c, block); 968 if (b) 969 goto found_buffer; 970 971 if (nf == NF_GET) 972 return NULL; 973 974 new_b = __alloc_buffer_wait(c, nf); 975 if (!new_b) 976 return NULL; 977 978 /* 979 * We've had a period where the mutex was unlocked, so need to 980 * recheck the buffer tree. 981 */ 982 b = __find(c, block); 983 if (b) { 984 __free_buffer_wake(new_b); 985 goto found_buffer; 986 } 987 988 __check_watermark(c, write_list); 989 990 b = new_b; 991 b->hold_count = 1; 992 b->read_error = 0; 993 b->write_error = 0; 994 __link_buffer(b, block, LIST_CLEAN); 995 996 if (nf == NF_FRESH) { 997 b->state = 0; 998 return b; 999 } 1000 1001 b->state = 1 << B_READING; 1002 *need_submit = 1; 1003 1004 return b; 1005 1006 found_buffer: 1007 if (nf == NF_PREFETCH) 1008 return NULL; 1009 /* 1010 * Note: it is essential that we don't wait for the buffer to be 1011 * read if dm_bufio_get function is used. Both dm_bufio_get and 1012 * dm_bufio_prefetch can be used in the driver request routine. 1013 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1014 * the same buffer, it would deadlock if we waited. 1015 */ 1016 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state))) 1017 return NULL; 1018 1019 b->hold_count++; 1020 __relink_lru(b, test_bit(B_DIRTY, &b->state) || 1021 test_bit(B_WRITING, &b->state)); 1022 return b; 1023 } 1024 1025 /* 1026 * The endio routine for reading: set the error, clear the bit and wake up 1027 * anyone waiting on the buffer. 1028 */ 1029 static void read_endio(struct dm_buffer *b, blk_status_t status) 1030 { 1031 b->read_error = status; 1032 1033 BUG_ON(!test_bit(B_READING, &b->state)); 1034 1035 smp_mb__before_atomic(); 1036 clear_bit(B_READING, &b->state); 1037 smp_mb__after_atomic(); 1038 1039 wake_up_bit(&b->state, B_READING); 1040 } 1041 1042 /* 1043 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1044 * functions is similar except that dm_bufio_new doesn't read the 1045 * buffer from the disk (assuming that the caller overwrites all the data 1046 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1047 */ 1048 static void *new_read(struct dm_bufio_client *c, sector_t block, 1049 enum new_flag nf, struct dm_buffer **bp) 1050 { 1051 int need_submit; 1052 struct dm_buffer *b; 1053 1054 LIST_HEAD(write_list); 1055 1056 dm_bufio_lock(c); 1057 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1058 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1059 if (b && b->hold_count == 1) 1060 buffer_record_stack(b); 1061 #endif 1062 dm_bufio_unlock(c); 1063 1064 __flush_write_list(&write_list); 1065 1066 if (!b) 1067 return NULL; 1068 1069 if (need_submit) 1070 submit_io(b, REQ_OP_READ, read_endio); 1071 1072 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1073 1074 if (b->read_error) { 1075 int error = blk_status_to_errno(b->read_error); 1076 1077 dm_bufio_release(b); 1078 1079 return ERR_PTR(error); 1080 } 1081 1082 *bp = b; 1083 1084 return b->data; 1085 } 1086 1087 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1088 struct dm_buffer **bp) 1089 { 1090 return new_read(c, block, NF_GET, bp); 1091 } 1092 EXPORT_SYMBOL_GPL(dm_bufio_get); 1093 1094 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1095 struct dm_buffer **bp) 1096 { 1097 BUG_ON(dm_bufio_in_request()); 1098 1099 return new_read(c, block, NF_READ, bp); 1100 } 1101 EXPORT_SYMBOL_GPL(dm_bufio_read); 1102 1103 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1104 struct dm_buffer **bp) 1105 { 1106 BUG_ON(dm_bufio_in_request()); 1107 1108 return new_read(c, block, NF_FRESH, bp); 1109 } 1110 EXPORT_SYMBOL_GPL(dm_bufio_new); 1111 1112 void dm_bufio_prefetch(struct dm_bufio_client *c, 1113 sector_t block, unsigned n_blocks) 1114 { 1115 struct blk_plug plug; 1116 1117 LIST_HEAD(write_list); 1118 1119 BUG_ON(dm_bufio_in_request()); 1120 1121 blk_start_plug(&plug); 1122 dm_bufio_lock(c); 1123 1124 for (; n_blocks--; block++) { 1125 int need_submit; 1126 struct dm_buffer *b; 1127 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1128 &write_list); 1129 if (unlikely(!list_empty(&write_list))) { 1130 dm_bufio_unlock(c); 1131 blk_finish_plug(&plug); 1132 __flush_write_list(&write_list); 1133 blk_start_plug(&plug); 1134 dm_bufio_lock(c); 1135 } 1136 if (unlikely(b != NULL)) { 1137 dm_bufio_unlock(c); 1138 1139 if (need_submit) 1140 submit_io(b, REQ_OP_READ, read_endio); 1141 dm_bufio_release(b); 1142 1143 cond_resched(); 1144 1145 if (!n_blocks) 1146 goto flush_plug; 1147 dm_bufio_lock(c); 1148 } 1149 } 1150 1151 dm_bufio_unlock(c); 1152 1153 flush_plug: 1154 blk_finish_plug(&plug); 1155 } 1156 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 1157 1158 void dm_bufio_release(struct dm_buffer *b) 1159 { 1160 struct dm_bufio_client *c = b->c; 1161 1162 dm_bufio_lock(c); 1163 1164 BUG_ON(!b->hold_count); 1165 1166 b->hold_count--; 1167 if (!b->hold_count) { 1168 wake_up(&c->free_buffer_wait); 1169 1170 /* 1171 * If there were errors on the buffer, and the buffer is not 1172 * to be written, free the buffer. There is no point in caching 1173 * invalid buffer. 1174 */ 1175 if ((b->read_error || b->write_error) && 1176 !test_bit(B_READING, &b->state) && 1177 !test_bit(B_WRITING, &b->state) && 1178 !test_bit(B_DIRTY, &b->state)) { 1179 __unlink_buffer(b); 1180 __free_buffer_wake(b); 1181 } 1182 } 1183 1184 dm_bufio_unlock(c); 1185 } 1186 EXPORT_SYMBOL_GPL(dm_bufio_release); 1187 1188 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b, 1189 unsigned start, unsigned end) 1190 { 1191 struct dm_bufio_client *c = b->c; 1192 1193 BUG_ON(start >= end); 1194 BUG_ON(end > b->c->block_size); 1195 1196 dm_bufio_lock(c); 1197 1198 BUG_ON(test_bit(B_READING, &b->state)); 1199 1200 if (!test_and_set_bit(B_DIRTY, &b->state)) { 1201 b->dirty_start = start; 1202 b->dirty_end = end; 1203 __relink_lru(b, LIST_DIRTY); 1204 } else { 1205 if (start < b->dirty_start) 1206 b->dirty_start = start; 1207 if (end > b->dirty_end) 1208 b->dirty_end = end; 1209 } 1210 1211 dm_bufio_unlock(c); 1212 } 1213 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty); 1214 1215 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 1216 { 1217 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size); 1218 } 1219 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 1220 1221 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 1222 { 1223 LIST_HEAD(write_list); 1224 1225 BUG_ON(dm_bufio_in_request()); 1226 1227 dm_bufio_lock(c); 1228 __write_dirty_buffers_async(c, 0, &write_list); 1229 dm_bufio_unlock(c); 1230 __flush_write_list(&write_list); 1231 } 1232 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 1233 1234 /* 1235 * For performance, it is essential that the buffers are written asynchronously 1236 * and simultaneously (so that the block layer can merge the writes) and then 1237 * waited upon. 1238 * 1239 * Finally, we flush hardware disk cache. 1240 */ 1241 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 1242 { 1243 int a, f; 1244 unsigned long buffers_processed = 0; 1245 struct dm_buffer *b, *tmp; 1246 1247 LIST_HEAD(write_list); 1248 1249 dm_bufio_lock(c); 1250 __write_dirty_buffers_async(c, 0, &write_list); 1251 dm_bufio_unlock(c); 1252 __flush_write_list(&write_list); 1253 dm_bufio_lock(c); 1254 1255 again: 1256 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 1257 int dropped_lock = 0; 1258 1259 if (buffers_processed < c->n_buffers[LIST_DIRTY]) 1260 buffers_processed++; 1261 1262 BUG_ON(test_bit(B_READING, &b->state)); 1263 1264 if (test_bit(B_WRITING, &b->state)) { 1265 if (buffers_processed < c->n_buffers[LIST_DIRTY]) { 1266 dropped_lock = 1; 1267 b->hold_count++; 1268 dm_bufio_unlock(c); 1269 wait_on_bit_io(&b->state, B_WRITING, 1270 TASK_UNINTERRUPTIBLE); 1271 dm_bufio_lock(c); 1272 b->hold_count--; 1273 } else 1274 wait_on_bit_io(&b->state, B_WRITING, 1275 TASK_UNINTERRUPTIBLE); 1276 } 1277 1278 if (!test_bit(B_DIRTY, &b->state) && 1279 !test_bit(B_WRITING, &b->state)) 1280 __relink_lru(b, LIST_CLEAN); 1281 1282 cond_resched(); 1283 1284 /* 1285 * If we dropped the lock, the list is no longer consistent, 1286 * so we must restart the search. 1287 * 1288 * In the most common case, the buffer just processed is 1289 * relinked to the clean list, so we won't loop scanning the 1290 * same buffer again and again. 1291 * 1292 * This may livelock if there is another thread simultaneously 1293 * dirtying buffers, so we count the number of buffers walked 1294 * and if it exceeds the total number of buffers, it means that 1295 * someone is doing some writes simultaneously with us. In 1296 * this case, stop, dropping the lock. 1297 */ 1298 if (dropped_lock) 1299 goto again; 1300 } 1301 wake_up(&c->free_buffer_wait); 1302 dm_bufio_unlock(c); 1303 1304 a = xchg(&c->async_write_error, 0); 1305 f = dm_bufio_issue_flush(c); 1306 if (a) 1307 return a; 1308 1309 return f; 1310 } 1311 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 1312 1313 /* 1314 * Use dm-io to send an empty barrier to flush the device. 1315 */ 1316 int dm_bufio_issue_flush(struct dm_bufio_client *c) 1317 { 1318 struct dm_io_request io_req = { 1319 .bi_op = REQ_OP_WRITE, 1320 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC, 1321 .mem.type = DM_IO_KMEM, 1322 .mem.ptr.addr = NULL, 1323 .client = c->dm_io, 1324 }; 1325 struct dm_io_region io_reg = { 1326 .bdev = c->bdev, 1327 .sector = 0, 1328 .count = 0, 1329 }; 1330 1331 BUG_ON(dm_bufio_in_request()); 1332 1333 return dm_io(&io_req, 1, &io_reg, NULL); 1334 } 1335 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 1336 1337 /* 1338 * Use dm-io to send a discard request to flush the device. 1339 */ 1340 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count) 1341 { 1342 struct dm_io_request io_req = { 1343 .bi_op = REQ_OP_DISCARD, 1344 .bi_op_flags = REQ_SYNC, 1345 .mem.type = DM_IO_KMEM, 1346 .mem.ptr.addr = NULL, 1347 .client = c->dm_io, 1348 }; 1349 struct dm_io_region io_reg = { 1350 .bdev = c->bdev, 1351 .sector = block_to_sector(c, block), 1352 .count = block_to_sector(c, count), 1353 }; 1354 1355 BUG_ON(dm_bufio_in_request()); 1356 1357 return dm_io(&io_req, 1, &io_reg, NULL); 1358 } 1359 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard); 1360 1361 /* 1362 * Free the specified range of buffers. If a buffer is held by other process, it 1363 * is not freed. If a buffer is dirty, it is discarded without writeback. 1364 * Finally, send the discard request to the device. 1365 */ 1366 int dm_bufio_discard_buffers(struct dm_bufio_client *c, sector_t block, sector_t count) 1367 { 1368 sector_t i; 1369 1370 for (i = block; i < block + count; i++) { 1371 struct dm_buffer *b; 1372 dm_bufio_lock(c); 1373 b = __find(c, i); 1374 if (b && likely(!b->hold_count)) { 1375 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1376 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 1377 __unlink_buffer(b); 1378 __free_buffer_wake(b); 1379 } 1380 dm_bufio_unlock(c); 1381 } 1382 1383 return dm_bufio_issue_discard(c, block, count); 1384 } 1385 EXPORT_SYMBOL_GPL(dm_bufio_discard_buffers); 1386 1387 /* 1388 * We first delete any other buffer that may be at that new location. 1389 * 1390 * Then, we write the buffer to the original location if it was dirty. 1391 * 1392 * Then, if we are the only one who is holding the buffer, relink the buffer 1393 * in the buffer tree for the new location. 1394 * 1395 * If there was someone else holding the buffer, we write it to the new 1396 * location but not relink it, because that other user needs to have the buffer 1397 * at the same place. 1398 */ 1399 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block) 1400 { 1401 struct dm_bufio_client *c = b->c; 1402 struct dm_buffer *new; 1403 1404 BUG_ON(dm_bufio_in_request()); 1405 1406 dm_bufio_lock(c); 1407 1408 retry: 1409 new = __find(c, new_block); 1410 if (new) { 1411 if (new->hold_count) { 1412 __wait_for_free_buffer(c); 1413 goto retry; 1414 } 1415 1416 /* 1417 * FIXME: Is there any point waiting for a write that's going 1418 * to be overwritten in a bit? 1419 */ 1420 __make_buffer_clean(new); 1421 __unlink_buffer(new); 1422 __free_buffer_wake(new); 1423 } 1424 1425 BUG_ON(!b->hold_count); 1426 BUG_ON(test_bit(B_READING, &b->state)); 1427 1428 __write_dirty_buffer(b, NULL); 1429 if (b->hold_count == 1) { 1430 wait_on_bit_io(&b->state, B_WRITING, 1431 TASK_UNINTERRUPTIBLE); 1432 set_bit(B_DIRTY, &b->state); 1433 b->dirty_start = 0; 1434 b->dirty_end = c->block_size; 1435 __unlink_buffer(b); 1436 __link_buffer(b, new_block, LIST_DIRTY); 1437 } else { 1438 sector_t old_block; 1439 wait_on_bit_lock_io(&b->state, B_WRITING, 1440 TASK_UNINTERRUPTIBLE); 1441 /* 1442 * Relink buffer to "new_block" so that write_callback 1443 * sees "new_block" as a block number. 1444 * After the write, link the buffer back to old_block. 1445 * All this must be done in bufio lock, so that block number 1446 * change isn't visible to other threads. 1447 */ 1448 old_block = b->block; 1449 __unlink_buffer(b); 1450 __link_buffer(b, new_block, b->list_mode); 1451 submit_io(b, REQ_OP_WRITE, write_endio); 1452 wait_on_bit_io(&b->state, B_WRITING, 1453 TASK_UNINTERRUPTIBLE); 1454 __unlink_buffer(b); 1455 __link_buffer(b, old_block, b->list_mode); 1456 } 1457 1458 dm_bufio_unlock(c); 1459 dm_bufio_release(b); 1460 } 1461 EXPORT_SYMBOL_GPL(dm_bufio_release_move); 1462 1463 /* 1464 * Free the given buffer. 1465 * 1466 * This is just a hint, if the buffer is in use or dirty, this function 1467 * does nothing. 1468 */ 1469 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 1470 { 1471 struct dm_buffer *b; 1472 1473 dm_bufio_lock(c); 1474 1475 b = __find(c, block); 1476 if (b && likely(!b->hold_count) && likely(!b->state)) { 1477 __unlink_buffer(b); 1478 __free_buffer_wake(b); 1479 } 1480 1481 dm_bufio_unlock(c); 1482 } 1483 EXPORT_SYMBOL_GPL(dm_bufio_forget); 1484 1485 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n) 1486 { 1487 c->minimum_buffers = n; 1488 } 1489 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers); 1490 1491 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c) 1492 { 1493 return c->block_size; 1494 } 1495 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 1496 1497 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 1498 { 1499 sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT; 1500 if (likely(c->sectors_per_block_bits >= 0)) 1501 s >>= c->sectors_per_block_bits; 1502 else 1503 sector_div(s, c->block_size >> SECTOR_SHIFT); 1504 return s; 1505 } 1506 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 1507 1508 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 1509 { 1510 return b->block; 1511 } 1512 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 1513 1514 void *dm_bufio_get_block_data(struct dm_buffer *b) 1515 { 1516 return b->data; 1517 } 1518 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 1519 1520 void *dm_bufio_get_aux_data(struct dm_buffer *b) 1521 { 1522 return b + 1; 1523 } 1524 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 1525 1526 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 1527 { 1528 return b->c; 1529 } 1530 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 1531 1532 static void drop_buffers(struct dm_bufio_client *c) 1533 { 1534 struct dm_buffer *b; 1535 int i; 1536 bool warned = false; 1537 1538 BUG_ON(dm_bufio_in_request()); 1539 1540 /* 1541 * An optimization so that the buffers are not written one-by-one. 1542 */ 1543 dm_bufio_write_dirty_buffers_async(c); 1544 1545 dm_bufio_lock(c); 1546 1547 while ((b = __get_unclaimed_buffer(c))) 1548 __free_buffer_wake(b); 1549 1550 for (i = 0; i < LIST_SIZE; i++) 1551 list_for_each_entry(b, &c->lru[i], lru_list) { 1552 WARN_ON(!warned); 1553 warned = true; 1554 DMERR("leaked buffer %llx, hold count %u, list %d", 1555 (unsigned long long)b->block, b->hold_count, i); 1556 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1557 stack_trace_print(b->stack_entries, b->stack_len, 1); 1558 /* mark unclaimed to avoid BUG_ON below */ 1559 b->hold_count = 0; 1560 #endif 1561 } 1562 1563 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1564 while ((b = __get_unclaimed_buffer(c))) 1565 __free_buffer_wake(b); 1566 #endif 1567 1568 for (i = 0; i < LIST_SIZE; i++) 1569 BUG_ON(!list_empty(&c->lru[i])); 1570 1571 dm_bufio_unlock(c); 1572 } 1573 1574 /* 1575 * We may not be able to evict this buffer if IO pending or the client 1576 * is still using it. Caller is expected to know buffer is too old. 1577 * 1578 * And if GFP_NOFS is used, we must not do any I/O because we hold 1579 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 1580 * rerouted to different bufio client. 1581 */ 1582 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp) 1583 { 1584 if (!(gfp & __GFP_FS)) { 1585 if (test_bit(B_READING, &b->state) || 1586 test_bit(B_WRITING, &b->state) || 1587 test_bit(B_DIRTY, &b->state)) 1588 return false; 1589 } 1590 1591 if (b->hold_count) 1592 return false; 1593 1594 __make_buffer_clean(b); 1595 __unlink_buffer(b); 1596 __free_buffer_wake(b); 1597 1598 return true; 1599 } 1600 1601 static unsigned long get_retain_buffers(struct dm_bufio_client *c) 1602 { 1603 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes); 1604 if (likely(c->sectors_per_block_bits >= 0)) 1605 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT; 1606 else 1607 retain_bytes /= c->block_size; 1608 return retain_bytes; 1609 } 1610 1611 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan, 1612 gfp_t gfp_mask) 1613 { 1614 int l; 1615 struct dm_buffer *b, *tmp; 1616 unsigned long freed = 0; 1617 unsigned long count = c->n_buffers[LIST_CLEAN] + 1618 c->n_buffers[LIST_DIRTY]; 1619 unsigned long retain_target = get_retain_buffers(c); 1620 1621 for (l = 0; l < LIST_SIZE; l++) { 1622 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) { 1623 if (__try_evict_buffer(b, gfp_mask)) 1624 freed++; 1625 if (!--nr_to_scan || ((count - freed) <= retain_target)) 1626 return freed; 1627 cond_resched(); 1628 } 1629 } 1630 return freed; 1631 } 1632 1633 static unsigned long 1634 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1635 { 1636 struct dm_bufio_client *c; 1637 unsigned long freed; 1638 1639 c = container_of(shrink, struct dm_bufio_client, shrinker); 1640 if (sc->gfp_mask & __GFP_FS) 1641 dm_bufio_lock(c); 1642 else if (!dm_bufio_trylock(c)) 1643 return SHRINK_STOP; 1644 1645 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask); 1646 dm_bufio_unlock(c); 1647 return freed; 1648 } 1649 1650 static unsigned long 1651 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1652 { 1653 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker); 1654 unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) + 1655 READ_ONCE(c->n_buffers[LIST_DIRTY]); 1656 unsigned long retain_target = get_retain_buffers(c); 1657 1658 return (count < retain_target) ? 0 : (count - retain_target); 1659 } 1660 1661 /* 1662 * Create the buffering interface 1663 */ 1664 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size, 1665 unsigned reserved_buffers, unsigned aux_size, 1666 void (*alloc_callback)(struct dm_buffer *), 1667 void (*write_callback)(struct dm_buffer *)) 1668 { 1669 int r; 1670 struct dm_bufio_client *c; 1671 unsigned i; 1672 char slab_name[27]; 1673 1674 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) { 1675 DMERR("%s: block size not specified or is not multiple of 512b", __func__); 1676 r = -EINVAL; 1677 goto bad_client; 1678 } 1679 1680 c = kzalloc(sizeof(*c), GFP_KERNEL); 1681 if (!c) { 1682 r = -ENOMEM; 1683 goto bad_client; 1684 } 1685 c->buffer_tree = RB_ROOT; 1686 1687 c->bdev = bdev; 1688 c->block_size = block_size; 1689 if (is_power_of_2(block_size)) 1690 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 1691 else 1692 c->sectors_per_block_bits = -1; 1693 1694 c->alloc_callback = alloc_callback; 1695 c->write_callback = write_callback; 1696 1697 for (i = 0; i < LIST_SIZE; i++) { 1698 INIT_LIST_HEAD(&c->lru[i]); 1699 c->n_buffers[i] = 0; 1700 } 1701 1702 mutex_init(&c->lock); 1703 INIT_LIST_HEAD(&c->reserved_buffers); 1704 c->need_reserved_buffers = reserved_buffers; 1705 1706 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS); 1707 1708 init_waitqueue_head(&c->free_buffer_wait); 1709 c->async_write_error = 0; 1710 1711 c->dm_io = dm_io_client_create(); 1712 if (IS_ERR(c->dm_io)) { 1713 r = PTR_ERR(c->dm_io); 1714 goto bad_dm_io; 1715 } 1716 1717 if (block_size <= KMALLOC_MAX_SIZE && 1718 (block_size < PAGE_SIZE || !is_power_of_2(block_size))) { 1719 unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE); 1720 snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size); 1721 c->slab_cache = kmem_cache_create(slab_name, block_size, align, 1722 SLAB_RECLAIM_ACCOUNT, NULL); 1723 if (!c->slab_cache) { 1724 r = -ENOMEM; 1725 goto bad; 1726 } 1727 } 1728 if (aux_size) 1729 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size); 1730 else 1731 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer"); 1732 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size, 1733 0, SLAB_RECLAIM_ACCOUNT, NULL); 1734 if (!c->slab_buffer) { 1735 r = -ENOMEM; 1736 goto bad; 1737 } 1738 1739 while (c->need_reserved_buffers) { 1740 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 1741 1742 if (!b) { 1743 r = -ENOMEM; 1744 goto bad; 1745 } 1746 __free_buffer_wake(b); 1747 } 1748 1749 c->shrinker.count_objects = dm_bufio_shrink_count; 1750 c->shrinker.scan_objects = dm_bufio_shrink_scan; 1751 c->shrinker.seeks = 1; 1752 c->shrinker.batch = 0; 1753 r = register_shrinker(&c->shrinker); 1754 if (r) 1755 goto bad; 1756 1757 mutex_lock(&dm_bufio_clients_lock); 1758 dm_bufio_client_count++; 1759 list_add(&c->client_list, &dm_bufio_all_clients); 1760 __cache_size_refresh(); 1761 mutex_unlock(&dm_bufio_clients_lock); 1762 1763 return c; 1764 1765 bad: 1766 while (!list_empty(&c->reserved_buffers)) { 1767 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1768 struct dm_buffer, lru_list); 1769 list_del(&b->lru_list); 1770 free_buffer(b); 1771 } 1772 kmem_cache_destroy(c->slab_cache); 1773 kmem_cache_destroy(c->slab_buffer); 1774 dm_io_client_destroy(c->dm_io); 1775 bad_dm_io: 1776 mutex_destroy(&c->lock); 1777 kfree(c); 1778 bad_client: 1779 return ERR_PTR(r); 1780 } 1781 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 1782 1783 /* 1784 * Free the buffering interface. 1785 * It is required that there are no references on any buffers. 1786 */ 1787 void dm_bufio_client_destroy(struct dm_bufio_client *c) 1788 { 1789 unsigned i; 1790 1791 drop_buffers(c); 1792 1793 unregister_shrinker(&c->shrinker); 1794 1795 mutex_lock(&dm_bufio_clients_lock); 1796 1797 list_del(&c->client_list); 1798 dm_bufio_client_count--; 1799 __cache_size_refresh(); 1800 1801 mutex_unlock(&dm_bufio_clients_lock); 1802 1803 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree)); 1804 BUG_ON(c->need_reserved_buffers); 1805 1806 while (!list_empty(&c->reserved_buffers)) { 1807 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1808 struct dm_buffer, lru_list); 1809 list_del(&b->lru_list); 1810 free_buffer(b); 1811 } 1812 1813 for (i = 0; i < LIST_SIZE; i++) 1814 if (c->n_buffers[i]) 1815 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]); 1816 1817 for (i = 0; i < LIST_SIZE; i++) 1818 BUG_ON(c->n_buffers[i]); 1819 1820 kmem_cache_destroy(c->slab_cache); 1821 kmem_cache_destroy(c->slab_buffer); 1822 dm_io_client_destroy(c->dm_io); 1823 mutex_destroy(&c->lock); 1824 kfree(c); 1825 } 1826 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 1827 1828 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start) 1829 { 1830 c->start = start; 1831 } 1832 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset); 1833 1834 static unsigned get_max_age_hz(void) 1835 { 1836 unsigned max_age = READ_ONCE(dm_bufio_max_age); 1837 1838 if (max_age > UINT_MAX / HZ) 1839 max_age = UINT_MAX / HZ; 1840 1841 return max_age * HZ; 1842 } 1843 1844 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 1845 { 1846 return time_after_eq(jiffies, b->last_accessed + age_hz); 1847 } 1848 1849 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 1850 { 1851 struct dm_buffer *b, *tmp; 1852 unsigned long retain_target = get_retain_buffers(c); 1853 unsigned long count; 1854 LIST_HEAD(write_list); 1855 1856 dm_bufio_lock(c); 1857 1858 __check_watermark(c, &write_list); 1859 if (unlikely(!list_empty(&write_list))) { 1860 dm_bufio_unlock(c); 1861 __flush_write_list(&write_list); 1862 dm_bufio_lock(c); 1863 } 1864 1865 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1866 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) { 1867 if (count <= retain_target) 1868 break; 1869 1870 if (!older_than(b, age_hz)) 1871 break; 1872 1873 if (__try_evict_buffer(b, 0)) 1874 count--; 1875 1876 cond_resched(); 1877 } 1878 1879 dm_bufio_unlock(c); 1880 } 1881 1882 static void do_global_cleanup(struct work_struct *w) 1883 { 1884 struct dm_bufio_client *locked_client = NULL; 1885 struct dm_bufio_client *current_client; 1886 struct dm_buffer *b; 1887 unsigned spinlock_hold_count; 1888 unsigned long threshold = dm_bufio_cache_size - 1889 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO; 1890 unsigned long loops = global_num * 2; 1891 1892 mutex_lock(&dm_bufio_clients_lock); 1893 1894 while (1) { 1895 cond_resched(); 1896 1897 spin_lock(&global_spinlock); 1898 if (unlikely(dm_bufio_current_allocated <= threshold)) 1899 break; 1900 1901 spinlock_hold_count = 0; 1902 get_next: 1903 if (!loops--) 1904 break; 1905 if (unlikely(list_empty(&global_queue))) 1906 break; 1907 b = list_entry(global_queue.prev, struct dm_buffer, global_list); 1908 1909 if (b->accessed) { 1910 b->accessed = 0; 1911 list_move(&b->global_list, &global_queue); 1912 if (likely(++spinlock_hold_count < 16)) 1913 goto get_next; 1914 spin_unlock(&global_spinlock); 1915 continue; 1916 } 1917 1918 current_client = b->c; 1919 if (unlikely(current_client != locked_client)) { 1920 if (locked_client) 1921 dm_bufio_unlock(locked_client); 1922 1923 if (!dm_bufio_trylock(current_client)) { 1924 spin_unlock(&global_spinlock); 1925 dm_bufio_lock(current_client); 1926 locked_client = current_client; 1927 continue; 1928 } 1929 1930 locked_client = current_client; 1931 } 1932 1933 spin_unlock(&global_spinlock); 1934 1935 if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) { 1936 spin_lock(&global_spinlock); 1937 list_move(&b->global_list, &global_queue); 1938 spin_unlock(&global_spinlock); 1939 } 1940 } 1941 1942 spin_unlock(&global_spinlock); 1943 1944 if (locked_client) 1945 dm_bufio_unlock(locked_client); 1946 1947 mutex_unlock(&dm_bufio_clients_lock); 1948 } 1949 1950 static void cleanup_old_buffers(void) 1951 { 1952 unsigned long max_age_hz = get_max_age_hz(); 1953 struct dm_bufio_client *c; 1954 1955 mutex_lock(&dm_bufio_clients_lock); 1956 1957 __cache_size_refresh(); 1958 1959 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 1960 __evict_old_buffers(c, max_age_hz); 1961 1962 mutex_unlock(&dm_bufio_clients_lock); 1963 } 1964 1965 static void work_fn(struct work_struct *w) 1966 { 1967 cleanup_old_buffers(); 1968 1969 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 1970 DM_BUFIO_WORK_TIMER_SECS * HZ); 1971 } 1972 1973 /*---------------------------------------------------------------- 1974 * Module setup 1975 *--------------------------------------------------------------*/ 1976 1977 /* 1978 * This is called only once for the whole dm_bufio module. 1979 * It initializes memory limit. 1980 */ 1981 static int __init dm_bufio_init(void) 1982 { 1983 __u64 mem; 1984 1985 dm_bufio_allocated_kmem_cache = 0; 1986 dm_bufio_allocated_get_free_pages = 0; 1987 dm_bufio_allocated_vmalloc = 0; 1988 dm_bufio_current_allocated = 0; 1989 1990 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(), 1991 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT; 1992 1993 if (mem > ULONG_MAX) 1994 mem = ULONG_MAX; 1995 1996 #ifdef CONFIG_MMU 1997 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100)) 1998 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100); 1999 #endif 2000 2001 dm_bufio_default_cache_size = mem; 2002 2003 mutex_lock(&dm_bufio_clients_lock); 2004 __cache_size_refresh(); 2005 mutex_unlock(&dm_bufio_clients_lock); 2006 2007 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 2008 if (!dm_bufio_wq) 2009 return -ENOMEM; 2010 2011 INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn); 2012 INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup); 2013 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 2014 DM_BUFIO_WORK_TIMER_SECS * HZ); 2015 2016 return 0; 2017 } 2018 2019 /* 2020 * This is called once when unloading the dm_bufio module. 2021 */ 2022 static void __exit dm_bufio_exit(void) 2023 { 2024 int bug = 0; 2025 2026 cancel_delayed_work_sync(&dm_bufio_cleanup_old_work); 2027 flush_workqueue(dm_bufio_wq); 2028 destroy_workqueue(dm_bufio_wq); 2029 2030 if (dm_bufio_client_count) { 2031 DMCRIT("%s: dm_bufio_client_count leaked: %d", 2032 __func__, dm_bufio_client_count); 2033 bug = 1; 2034 } 2035 2036 if (dm_bufio_current_allocated) { 2037 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 2038 __func__, dm_bufio_current_allocated); 2039 bug = 1; 2040 } 2041 2042 if (dm_bufio_allocated_get_free_pages) { 2043 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 2044 __func__, dm_bufio_allocated_get_free_pages); 2045 bug = 1; 2046 } 2047 2048 if (dm_bufio_allocated_vmalloc) { 2049 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 2050 __func__, dm_bufio_allocated_vmalloc); 2051 bug = 1; 2052 } 2053 2054 BUG_ON(bug); 2055 } 2056 2057 module_init(dm_bufio_init) 2058 module_exit(dm_bufio_exit) 2059 2060 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR); 2061 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 2062 2063 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR); 2064 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 2065 2066 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR); 2067 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 2068 2069 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR); 2070 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 2071 2072 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO); 2073 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 2074 2075 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO); 2076 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 2077 2078 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO); 2079 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 2080 2081 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO); 2082 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 2083 2084 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2085 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 2086 MODULE_LICENSE("GPL"); 2087