xref: /openbmc/linux/drivers/md/dm-bufio.c (revision 3a83f4677539bce8eaa2bca9ee9c20e172d7ab04)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/vmalloc.h>
16 #include <linux/shrinker.h>
17 #include <linux/module.h>
18 #include <linux/rbtree.h>
19 #include <linux/stacktrace.h>
20 
21 #define DM_MSG_PREFIX "bufio"
22 
23 /*
24  * Memory management policy:
25  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
26  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
27  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
28  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
29  *	dirty buffers.
30  */
31 #define DM_BUFIO_MIN_BUFFERS		8
32 
33 #define DM_BUFIO_MEMORY_PERCENT		2
34 #define DM_BUFIO_VMALLOC_PERCENT	25
35 #define DM_BUFIO_WRITEBACK_PERCENT	75
36 
37 /*
38  * Check buffer ages in this interval (seconds)
39  */
40 #define DM_BUFIO_WORK_TIMER_SECS	30
41 
42 /*
43  * Free buffers when they are older than this (seconds)
44  */
45 #define DM_BUFIO_DEFAULT_AGE_SECS	300
46 
47 /*
48  * The nr of bytes of cached data to keep around.
49  */
50 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
51 
52 /*
53  * The number of bvec entries that are embedded directly in the buffer.
54  * If the chunk size is larger, dm-io is used to do the io.
55  */
56 #define DM_BUFIO_INLINE_VECS		16
57 
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
64 
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN	0
69 #define LIST_DIRTY	1
70 #define LIST_SIZE	2
71 
72 /*
73  * Linking of buffers:
74  *	All buffers are linked to cache_hash with their hash_list field.
75  *
76  *	Clean buffers that are not being written (B_WRITING not set)
77  *	are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *	Dirty and clean buffers that are being written are linked to
80  *	lru[LIST_DIRTY] with their lru_list field. When the write
81  *	finishes, the buffer cannot be relinked immediately (because we
82  *	are in an interrupt context and relinking requires process
83  *	context), so some clean-not-writing buffers can be held on
84  *	dirty_lru too.  They are later added to lru in the process
85  *	context.
86  */
87 struct dm_bufio_client {
88 	struct mutex lock;
89 
90 	struct list_head lru[LIST_SIZE];
91 	unsigned long n_buffers[LIST_SIZE];
92 
93 	struct block_device *bdev;
94 	unsigned block_size;
95 	unsigned char sectors_per_block_bits;
96 	unsigned char pages_per_block_bits;
97 	unsigned char blocks_per_page_bits;
98 	unsigned aux_size;
99 	void (*alloc_callback)(struct dm_buffer *);
100 	void (*write_callback)(struct dm_buffer *);
101 
102 	struct dm_io_client *dm_io;
103 
104 	struct list_head reserved_buffers;
105 	unsigned need_reserved_buffers;
106 
107 	unsigned minimum_buffers;
108 
109 	struct rb_root buffer_tree;
110 	wait_queue_head_t free_buffer_wait;
111 
112 	int async_write_error;
113 
114 	struct list_head client_list;
115 	struct shrinker shrinker;
116 };
117 
118 /*
119  * Buffer state bits.
120  */
121 #define B_READING	0
122 #define B_WRITING	1
123 #define B_DIRTY		2
124 
125 /*
126  * Describes how the block was allocated:
127  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
128  * See the comment at alloc_buffer_data.
129  */
130 enum data_mode {
131 	DATA_MODE_SLAB = 0,
132 	DATA_MODE_GET_FREE_PAGES = 1,
133 	DATA_MODE_VMALLOC = 2,
134 	DATA_MODE_LIMIT = 3
135 };
136 
137 struct dm_buffer {
138 	struct rb_node node;
139 	struct list_head lru_list;
140 	sector_t block;
141 	void *data;
142 	enum data_mode data_mode;
143 	unsigned char list_mode;		/* LIST_* */
144 	unsigned hold_count;
145 	int read_error;
146 	int write_error;
147 	unsigned long state;
148 	unsigned long last_accessed;
149 	struct dm_bufio_client *c;
150 	struct list_head write_list;
151 	struct bio bio;
152 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
154 #define MAX_STACK 10
155 	struct stack_trace stack_trace;
156 	unsigned long stack_entries[MAX_STACK];
157 #endif
158 };
159 
160 /*----------------------------------------------------------------*/
161 
162 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
163 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
164 
165 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
166 {
167 	unsigned ret = c->blocks_per_page_bits - 1;
168 
169 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
170 
171 	return ret;
172 }
173 
174 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
175 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
176 
177 #define dm_bufio_in_request()	(!!current->bio_list)
178 
179 static void dm_bufio_lock(struct dm_bufio_client *c)
180 {
181 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
182 }
183 
184 static int dm_bufio_trylock(struct dm_bufio_client *c)
185 {
186 	return mutex_trylock(&c->lock);
187 }
188 
189 static void dm_bufio_unlock(struct dm_bufio_client *c)
190 {
191 	mutex_unlock(&c->lock);
192 }
193 
194 /*----------------------------------------------------------------*/
195 
196 /*
197  * Default cache size: available memory divided by the ratio.
198  */
199 static unsigned long dm_bufio_default_cache_size;
200 
201 /*
202  * Total cache size set by the user.
203  */
204 static unsigned long dm_bufio_cache_size;
205 
206 /*
207  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
208  * at any time.  If it disagrees, the user has changed cache size.
209  */
210 static unsigned long dm_bufio_cache_size_latch;
211 
212 static DEFINE_SPINLOCK(param_spinlock);
213 
214 /*
215  * Buffers are freed after this timeout
216  */
217 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
218 static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
219 
220 static unsigned long dm_bufio_peak_allocated;
221 static unsigned long dm_bufio_allocated_kmem_cache;
222 static unsigned long dm_bufio_allocated_get_free_pages;
223 static unsigned long dm_bufio_allocated_vmalloc;
224 static unsigned long dm_bufio_current_allocated;
225 
226 /*----------------------------------------------------------------*/
227 
228 /*
229  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
230  */
231 static unsigned long dm_bufio_cache_size_per_client;
232 
233 /*
234  * The current number of clients.
235  */
236 static int dm_bufio_client_count;
237 
238 /*
239  * The list of all clients.
240  */
241 static LIST_HEAD(dm_bufio_all_clients);
242 
243 /*
244  * This mutex protects dm_bufio_cache_size_latch,
245  * dm_bufio_cache_size_per_client and dm_bufio_client_count
246  */
247 static DEFINE_MUTEX(dm_bufio_clients_lock);
248 
249 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
250 static void buffer_record_stack(struct dm_buffer *b)
251 {
252 	b->stack_trace.nr_entries = 0;
253 	b->stack_trace.max_entries = MAX_STACK;
254 	b->stack_trace.entries = b->stack_entries;
255 	b->stack_trace.skip = 2;
256 	save_stack_trace(&b->stack_trace);
257 }
258 #endif
259 
260 /*----------------------------------------------------------------
261  * A red/black tree acts as an index for all the buffers.
262  *--------------------------------------------------------------*/
263 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
264 {
265 	struct rb_node *n = c->buffer_tree.rb_node;
266 	struct dm_buffer *b;
267 
268 	while (n) {
269 		b = container_of(n, struct dm_buffer, node);
270 
271 		if (b->block == block)
272 			return b;
273 
274 		n = (b->block < block) ? n->rb_left : n->rb_right;
275 	}
276 
277 	return NULL;
278 }
279 
280 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
281 {
282 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
283 	struct dm_buffer *found;
284 
285 	while (*new) {
286 		found = container_of(*new, struct dm_buffer, node);
287 
288 		if (found->block == b->block) {
289 			BUG_ON(found != b);
290 			return;
291 		}
292 
293 		parent = *new;
294 		new = (found->block < b->block) ?
295 			&((*new)->rb_left) : &((*new)->rb_right);
296 	}
297 
298 	rb_link_node(&b->node, parent, new);
299 	rb_insert_color(&b->node, &c->buffer_tree);
300 }
301 
302 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
303 {
304 	rb_erase(&b->node, &c->buffer_tree);
305 }
306 
307 /*----------------------------------------------------------------*/
308 
309 static void adjust_total_allocated(enum data_mode data_mode, long diff)
310 {
311 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
312 		&dm_bufio_allocated_kmem_cache,
313 		&dm_bufio_allocated_get_free_pages,
314 		&dm_bufio_allocated_vmalloc,
315 	};
316 
317 	spin_lock(&param_spinlock);
318 
319 	*class_ptr[data_mode] += diff;
320 
321 	dm_bufio_current_allocated += diff;
322 
323 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
324 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
325 
326 	spin_unlock(&param_spinlock);
327 }
328 
329 /*
330  * Change the number of clients and recalculate per-client limit.
331  */
332 static void __cache_size_refresh(void)
333 {
334 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
335 	BUG_ON(dm_bufio_client_count < 0);
336 
337 	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
338 
339 	/*
340 	 * Use default if set to 0 and report the actual cache size used.
341 	 */
342 	if (!dm_bufio_cache_size_latch) {
343 		(void)cmpxchg(&dm_bufio_cache_size, 0,
344 			      dm_bufio_default_cache_size);
345 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
346 	}
347 
348 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
349 					 (dm_bufio_client_count ? : 1);
350 }
351 
352 /*
353  * Allocating buffer data.
354  *
355  * Small buffers are allocated with kmem_cache, to use space optimally.
356  *
357  * For large buffers, we choose between get_free_pages and vmalloc.
358  * Each has advantages and disadvantages.
359  *
360  * __get_free_pages can randomly fail if the memory is fragmented.
361  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
362  * as low as 128M) so using it for caching is not appropriate.
363  *
364  * If the allocation may fail we use __get_free_pages. Memory fragmentation
365  * won't have a fatal effect here, but it just causes flushes of some other
366  * buffers and more I/O will be performed. Don't use __get_free_pages if it
367  * always fails (i.e. order >= MAX_ORDER).
368  *
369  * If the allocation shouldn't fail we use __vmalloc. This is only for the
370  * initial reserve allocation, so there's no risk of wasting all vmalloc
371  * space.
372  */
373 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
374 			       enum data_mode *data_mode)
375 {
376 	unsigned noio_flag;
377 	void *ptr;
378 
379 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
380 		*data_mode = DATA_MODE_SLAB;
381 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
382 	}
383 
384 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
385 	    gfp_mask & __GFP_NORETRY) {
386 		*data_mode = DATA_MODE_GET_FREE_PAGES;
387 		return (void *)__get_free_pages(gfp_mask,
388 						c->pages_per_block_bits);
389 	}
390 
391 	*data_mode = DATA_MODE_VMALLOC;
392 
393 	/*
394 	 * __vmalloc allocates the data pages and auxiliary structures with
395 	 * gfp_flags that were specified, but pagetables are always allocated
396 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
397 	 *
398 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
399 	 * all allocations done by this process (including pagetables) are done
400 	 * as if GFP_NOIO was specified.
401 	 */
402 
403 	if (gfp_mask & __GFP_NORETRY)
404 		noio_flag = memalloc_noio_save();
405 
406 	ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
407 
408 	if (gfp_mask & __GFP_NORETRY)
409 		memalloc_noio_restore(noio_flag);
410 
411 	return ptr;
412 }
413 
414 /*
415  * Free buffer's data.
416  */
417 static void free_buffer_data(struct dm_bufio_client *c,
418 			     void *data, enum data_mode data_mode)
419 {
420 	switch (data_mode) {
421 	case DATA_MODE_SLAB:
422 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
423 		break;
424 
425 	case DATA_MODE_GET_FREE_PAGES:
426 		free_pages((unsigned long)data, c->pages_per_block_bits);
427 		break;
428 
429 	case DATA_MODE_VMALLOC:
430 		vfree(data);
431 		break;
432 
433 	default:
434 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
435 		       data_mode);
436 		BUG();
437 	}
438 }
439 
440 /*
441  * Allocate buffer and its data.
442  */
443 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
444 {
445 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
446 				      gfp_mask);
447 
448 	if (!b)
449 		return NULL;
450 
451 	b->c = c;
452 
453 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
454 	if (!b->data) {
455 		kfree(b);
456 		return NULL;
457 	}
458 
459 	adjust_total_allocated(b->data_mode, (long)c->block_size);
460 
461 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
462 	memset(&b->stack_trace, 0, sizeof(b->stack_trace));
463 #endif
464 	return b;
465 }
466 
467 /*
468  * Free buffer and its data.
469  */
470 static void free_buffer(struct dm_buffer *b)
471 {
472 	struct dm_bufio_client *c = b->c;
473 
474 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
475 
476 	free_buffer_data(c, b->data, b->data_mode);
477 	kfree(b);
478 }
479 
480 /*
481  * Link buffer to the hash list and clean or dirty queue.
482  */
483 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
484 {
485 	struct dm_bufio_client *c = b->c;
486 
487 	c->n_buffers[dirty]++;
488 	b->block = block;
489 	b->list_mode = dirty;
490 	list_add(&b->lru_list, &c->lru[dirty]);
491 	__insert(b->c, b);
492 	b->last_accessed = jiffies;
493 }
494 
495 /*
496  * Unlink buffer from the hash list and dirty or clean queue.
497  */
498 static void __unlink_buffer(struct dm_buffer *b)
499 {
500 	struct dm_bufio_client *c = b->c;
501 
502 	BUG_ON(!c->n_buffers[b->list_mode]);
503 
504 	c->n_buffers[b->list_mode]--;
505 	__remove(b->c, b);
506 	list_del(&b->lru_list);
507 }
508 
509 /*
510  * Place the buffer to the head of dirty or clean LRU queue.
511  */
512 static void __relink_lru(struct dm_buffer *b, int dirty)
513 {
514 	struct dm_bufio_client *c = b->c;
515 
516 	BUG_ON(!c->n_buffers[b->list_mode]);
517 
518 	c->n_buffers[b->list_mode]--;
519 	c->n_buffers[dirty]++;
520 	b->list_mode = dirty;
521 	list_move(&b->lru_list, &c->lru[dirty]);
522 	b->last_accessed = jiffies;
523 }
524 
525 /*----------------------------------------------------------------
526  * Submit I/O on the buffer.
527  *
528  * Bio interface is faster but it has some problems:
529  *	the vector list is limited (increasing this limit increases
530  *	memory-consumption per buffer, so it is not viable);
531  *
532  *	the memory must be direct-mapped, not vmalloced;
533  *
534  *	the I/O driver can reject requests spuriously if it thinks that
535  *	the requests are too big for the device or if they cross a
536  *	controller-defined memory boundary.
537  *
538  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
539  * it is not vmalloced, try using the bio interface.
540  *
541  * If the buffer is big, if it is vmalloced or if the underlying device
542  * rejects the bio because it is too large, use dm-io layer to do the I/O.
543  * The dm-io layer splits the I/O into multiple requests, avoiding the above
544  * shortcomings.
545  *--------------------------------------------------------------*/
546 
547 /*
548  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
549  * that the request was handled directly with bio interface.
550  */
551 static void dmio_complete(unsigned long error, void *context)
552 {
553 	struct dm_buffer *b = context;
554 
555 	b->bio.bi_error = error ? -EIO : 0;
556 	b->bio.bi_end_io(&b->bio);
557 }
558 
559 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
560 		     bio_end_io_t *end_io)
561 {
562 	int r;
563 	struct dm_io_request io_req = {
564 		.bi_op = rw,
565 		.bi_op_flags = 0,
566 		.notify.fn = dmio_complete,
567 		.notify.context = b,
568 		.client = b->c->dm_io,
569 	};
570 	struct dm_io_region region = {
571 		.bdev = b->c->bdev,
572 		.sector = block << b->c->sectors_per_block_bits,
573 		.count = b->c->block_size >> SECTOR_SHIFT,
574 	};
575 
576 	if (b->data_mode != DATA_MODE_VMALLOC) {
577 		io_req.mem.type = DM_IO_KMEM;
578 		io_req.mem.ptr.addr = b->data;
579 	} else {
580 		io_req.mem.type = DM_IO_VMA;
581 		io_req.mem.ptr.vma = b->data;
582 	}
583 
584 	b->bio.bi_end_io = end_io;
585 
586 	r = dm_io(&io_req, 1, &region, NULL);
587 	if (r) {
588 		b->bio.bi_error = r;
589 		end_io(&b->bio);
590 	}
591 }
592 
593 static void inline_endio(struct bio *bio)
594 {
595 	bio_end_io_t *end_fn = bio->bi_private;
596 	int error = bio->bi_error;
597 
598 	/*
599 	 * Reset the bio to free any attached resources
600 	 * (e.g. bio integrity profiles).
601 	 */
602 	bio_reset(bio);
603 
604 	bio->bi_error = error;
605 	end_fn(bio);
606 }
607 
608 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
609 			   bio_end_io_t *end_io)
610 {
611 	char *ptr;
612 	int len;
613 
614 	bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS);
615 	b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
616 	b->bio.bi_bdev = b->c->bdev;
617 	b->bio.bi_end_io = inline_endio;
618 	/*
619 	 * Use of .bi_private isn't a problem here because
620 	 * the dm_buffer's inline bio is local to bufio.
621 	 */
622 	b->bio.bi_private = end_io;
623 	bio_set_op_attrs(&b->bio, rw, 0);
624 
625 	/*
626 	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
627 	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
628 	 */
629 	ptr = b->data;
630 	len = b->c->block_size;
631 
632 	if (len >= PAGE_SIZE)
633 		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
634 	else
635 		BUG_ON((unsigned long)ptr & (len - 1));
636 
637 	do {
638 		if (!bio_add_page(&b->bio, virt_to_page(ptr),
639 				  len < PAGE_SIZE ? len : PAGE_SIZE,
640 				  offset_in_page(ptr))) {
641 			BUG_ON(b->c->block_size <= PAGE_SIZE);
642 			use_dmio(b, rw, block, end_io);
643 			return;
644 		}
645 
646 		len -= PAGE_SIZE;
647 		ptr += PAGE_SIZE;
648 	} while (len > 0);
649 
650 	submit_bio(&b->bio);
651 }
652 
653 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
654 		      bio_end_io_t *end_io)
655 {
656 	if (rw == WRITE && b->c->write_callback)
657 		b->c->write_callback(b);
658 
659 	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
660 	    b->data_mode != DATA_MODE_VMALLOC)
661 		use_inline_bio(b, rw, block, end_io);
662 	else
663 		use_dmio(b, rw, block, end_io);
664 }
665 
666 /*----------------------------------------------------------------
667  * Writing dirty buffers
668  *--------------------------------------------------------------*/
669 
670 /*
671  * The endio routine for write.
672  *
673  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
674  * it.
675  */
676 static void write_endio(struct bio *bio)
677 {
678 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
679 
680 	b->write_error = bio->bi_error;
681 	if (unlikely(bio->bi_error)) {
682 		struct dm_bufio_client *c = b->c;
683 		int error = bio->bi_error;
684 		(void)cmpxchg(&c->async_write_error, 0, error);
685 	}
686 
687 	BUG_ON(!test_bit(B_WRITING, &b->state));
688 
689 	smp_mb__before_atomic();
690 	clear_bit(B_WRITING, &b->state);
691 	smp_mb__after_atomic();
692 
693 	wake_up_bit(&b->state, B_WRITING);
694 }
695 
696 /*
697  * Initiate a write on a dirty buffer, but don't wait for it.
698  *
699  * - If the buffer is not dirty, exit.
700  * - If there some previous write going on, wait for it to finish (we can't
701  *   have two writes on the same buffer simultaneously).
702  * - Submit our write and don't wait on it. We set B_WRITING indicating
703  *   that there is a write in progress.
704  */
705 static void __write_dirty_buffer(struct dm_buffer *b,
706 				 struct list_head *write_list)
707 {
708 	if (!test_bit(B_DIRTY, &b->state))
709 		return;
710 
711 	clear_bit(B_DIRTY, &b->state);
712 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
713 
714 	if (!write_list)
715 		submit_io(b, WRITE, b->block, write_endio);
716 	else
717 		list_add_tail(&b->write_list, write_list);
718 }
719 
720 static void __flush_write_list(struct list_head *write_list)
721 {
722 	struct blk_plug plug;
723 	blk_start_plug(&plug);
724 	while (!list_empty(write_list)) {
725 		struct dm_buffer *b =
726 			list_entry(write_list->next, struct dm_buffer, write_list);
727 		list_del(&b->write_list);
728 		submit_io(b, WRITE, b->block, write_endio);
729 		cond_resched();
730 	}
731 	blk_finish_plug(&plug);
732 }
733 
734 /*
735  * Wait until any activity on the buffer finishes.  Possibly write the
736  * buffer if it is dirty.  When this function finishes, there is no I/O
737  * running on the buffer and the buffer is not dirty.
738  */
739 static void __make_buffer_clean(struct dm_buffer *b)
740 {
741 	BUG_ON(b->hold_count);
742 
743 	if (!b->state)	/* fast case */
744 		return;
745 
746 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
747 	__write_dirty_buffer(b, NULL);
748 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
749 }
750 
751 /*
752  * Find some buffer that is not held by anybody, clean it, unlink it and
753  * return it.
754  */
755 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
756 {
757 	struct dm_buffer *b;
758 
759 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
760 		BUG_ON(test_bit(B_WRITING, &b->state));
761 		BUG_ON(test_bit(B_DIRTY, &b->state));
762 
763 		if (!b->hold_count) {
764 			__make_buffer_clean(b);
765 			__unlink_buffer(b);
766 			return b;
767 		}
768 		cond_resched();
769 	}
770 
771 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
772 		BUG_ON(test_bit(B_READING, &b->state));
773 
774 		if (!b->hold_count) {
775 			__make_buffer_clean(b);
776 			__unlink_buffer(b);
777 			return b;
778 		}
779 		cond_resched();
780 	}
781 
782 	return NULL;
783 }
784 
785 /*
786  * Wait until some other threads free some buffer or release hold count on
787  * some buffer.
788  *
789  * This function is entered with c->lock held, drops it and regains it
790  * before exiting.
791  */
792 static void __wait_for_free_buffer(struct dm_bufio_client *c)
793 {
794 	DECLARE_WAITQUEUE(wait, current);
795 
796 	add_wait_queue(&c->free_buffer_wait, &wait);
797 	set_task_state(current, TASK_UNINTERRUPTIBLE);
798 	dm_bufio_unlock(c);
799 
800 	io_schedule();
801 
802 	remove_wait_queue(&c->free_buffer_wait, &wait);
803 
804 	dm_bufio_lock(c);
805 }
806 
807 enum new_flag {
808 	NF_FRESH = 0,
809 	NF_READ = 1,
810 	NF_GET = 2,
811 	NF_PREFETCH = 3
812 };
813 
814 /*
815  * Allocate a new buffer. If the allocation is not possible, wait until
816  * some other thread frees a buffer.
817  *
818  * May drop the lock and regain it.
819  */
820 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
821 {
822 	struct dm_buffer *b;
823 
824 	/*
825 	 * dm-bufio is resistant to allocation failures (it just keeps
826 	 * one buffer reserved in cases all the allocations fail).
827 	 * So set flags to not try too hard:
828 	 *	GFP_NOIO: don't recurse into the I/O layer
829 	 *	__GFP_NORETRY: don't retry and rather return failure
830 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
831 	 *	__GFP_NOWARN: don't print a warning in case of failure
832 	 *
833 	 * For debugging, if we set the cache size to 1, no new buffers will
834 	 * be allocated.
835 	 */
836 	while (1) {
837 		if (dm_bufio_cache_size_latch != 1) {
838 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
839 			if (b)
840 				return b;
841 		}
842 
843 		if (nf == NF_PREFETCH)
844 			return NULL;
845 
846 		if (!list_empty(&c->reserved_buffers)) {
847 			b = list_entry(c->reserved_buffers.next,
848 				       struct dm_buffer, lru_list);
849 			list_del(&b->lru_list);
850 			c->need_reserved_buffers++;
851 
852 			return b;
853 		}
854 
855 		b = __get_unclaimed_buffer(c);
856 		if (b)
857 			return b;
858 
859 		__wait_for_free_buffer(c);
860 	}
861 }
862 
863 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
864 {
865 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
866 
867 	if (!b)
868 		return NULL;
869 
870 	if (c->alloc_callback)
871 		c->alloc_callback(b);
872 
873 	return b;
874 }
875 
876 /*
877  * Free a buffer and wake other threads waiting for free buffers.
878  */
879 static void __free_buffer_wake(struct dm_buffer *b)
880 {
881 	struct dm_bufio_client *c = b->c;
882 
883 	if (!c->need_reserved_buffers)
884 		free_buffer(b);
885 	else {
886 		list_add(&b->lru_list, &c->reserved_buffers);
887 		c->need_reserved_buffers--;
888 	}
889 
890 	wake_up(&c->free_buffer_wait);
891 }
892 
893 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
894 					struct list_head *write_list)
895 {
896 	struct dm_buffer *b, *tmp;
897 
898 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
899 		BUG_ON(test_bit(B_READING, &b->state));
900 
901 		if (!test_bit(B_DIRTY, &b->state) &&
902 		    !test_bit(B_WRITING, &b->state)) {
903 			__relink_lru(b, LIST_CLEAN);
904 			continue;
905 		}
906 
907 		if (no_wait && test_bit(B_WRITING, &b->state))
908 			return;
909 
910 		__write_dirty_buffer(b, write_list);
911 		cond_resched();
912 	}
913 }
914 
915 /*
916  * Get writeback threshold and buffer limit for a given client.
917  */
918 static void __get_memory_limit(struct dm_bufio_client *c,
919 			       unsigned long *threshold_buffers,
920 			       unsigned long *limit_buffers)
921 {
922 	unsigned long buffers;
923 
924 	if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
925 		mutex_lock(&dm_bufio_clients_lock);
926 		__cache_size_refresh();
927 		mutex_unlock(&dm_bufio_clients_lock);
928 	}
929 
930 	buffers = dm_bufio_cache_size_per_client >>
931 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
932 
933 	if (buffers < c->minimum_buffers)
934 		buffers = c->minimum_buffers;
935 
936 	*limit_buffers = buffers;
937 	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
938 }
939 
940 /*
941  * Check if we're over watermark.
942  * If we are over threshold_buffers, start freeing buffers.
943  * If we're over "limit_buffers", block until we get under the limit.
944  */
945 static void __check_watermark(struct dm_bufio_client *c,
946 			      struct list_head *write_list)
947 {
948 	unsigned long threshold_buffers, limit_buffers;
949 
950 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
951 
952 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
953 	       limit_buffers) {
954 
955 		struct dm_buffer *b = __get_unclaimed_buffer(c);
956 
957 		if (!b)
958 			return;
959 
960 		__free_buffer_wake(b);
961 		cond_resched();
962 	}
963 
964 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
965 		__write_dirty_buffers_async(c, 1, write_list);
966 }
967 
968 /*----------------------------------------------------------------
969  * Getting a buffer
970  *--------------------------------------------------------------*/
971 
972 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
973 				     enum new_flag nf, int *need_submit,
974 				     struct list_head *write_list)
975 {
976 	struct dm_buffer *b, *new_b = NULL;
977 
978 	*need_submit = 0;
979 
980 	b = __find(c, block);
981 	if (b)
982 		goto found_buffer;
983 
984 	if (nf == NF_GET)
985 		return NULL;
986 
987 	new_b = __alloc_buffer_wait(c, nf);
988 	if (!new_b)
989 		return NULL;
990 
991 	/*
992 	 * We've had a period where the mutex was unlocked, so need to
993 	 * recheck the hash table.
994 	 */
995 	b = __find(c, block);
996 	if (b) {
997 		__free_buffer_wake(new_b);
998 		goto found_buffer;
999 	}
1000 
1001 	__check_watermark(c, write_list);
1002 
1003 	b = new_b;
1004 	b->hold_count = 1;
1005 	b->read_error = 0;
1006 	b->write_error = 0;
1007 	__link_buffer(b, block, LIST_CLEAN);
1008 
1009 	if (nf == NF_FRESH) {
1010 		b->state = 0;
1011 		return b;
1012 	}
1013 
1014 	b->state = 1 << B_READING;
1015 	*need_submit = 1;
1016 
1017 	return b;
1018 
1019 found_buffer:
1020 	if (nf == NF_PREFETCH)
1021 		return NULL;
1022 	/*
1023 	 * Note: it is essential that we don't wait for the buffer to be
1024 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1025 	 * dm_bufio_prefetch can be used in the driver request routine.
1026 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1027 	 * the same buffer, it would deadlock if we waited.
1028 	 */
1029 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1030 		return NULL;
1031 
1032 	b->hold_count++;
1033 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1034 		     test_bit(B_WRITING, &b->state));
1035 	return b;
1036 }
1037 
1038 /*
1039  * The endio routine for reading: set the error, clear the bit and wake up
1040  * anyone waiting on the buffer.
1041  */
1042 static void read_endio(struct bio *bio)
1043 {
1044 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1045 
1046 	b->read_error = bio->bi_error;
1047 
1048 	BUG_ON(!test_bit(B_READING, &b->state));
1049 
1050 	smp_mb__before_atomic();
1051 	clear_bit(B_READING, &b->state);
1052 	smp_mb__after_atomic();
1053 
1054 	wake_up_bit(&b->state, B_READING);
1055 }
1056 
1057 /*
1058  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1059  * functions is similar except that dm_bufio_new doesn't read the
1060  * buffer from the disk (assuming that the caller overwrites all the data
1061  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1062  */
1063 static void *new_read(struct dm_bufio_client *c, sector_t block,
1064 		      enum new_flag nf, struct dm_buffer **bp)
1065 {
1066 	int need_submit;
1067 	struct dm_buffer *b;
1068 
1069 	LIST_HEAD(write_list);
1070 
1071 	dm_bufio_lock(c);
1072 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1073 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1074 	if (b && b->hold_count == 1)
1075 		buffer_record_stack(b);
1076 #endif
1077 	dm_bufio_unlock(c);
1078 
1079 	__flush_write_list(&write_list);
1080 
1081 	if (!b)
1082 		return NULL;
1083 
1084 	if (need_submit)
1085 		submit_io(b, READ, b->block, read_endio);
1086 
1087 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1088 
1089 	if (b->read_error) {
1090 		int error = b->read_error;
1091 
1092 		dm_bufio_release(b);
1093 
1094 		return ERR_PTR(error);
1095 	}
1096 
1097 	*bp = b;
1098 
1099 	return b->data;
1100 }
1101 
1102 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1103 		   struct dm_buffer **bp)
1104 {
1105 	return new_read(c, block, NF_GET, bp);
1106 }
1107 EXPORT_SYMBOL_GPL(dm_bufio_get);
1108 
1109 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1110 		    struct dm_buffer **bp)
1111 {
1112 	BUG_ON(dm_bufio_in_request());
1113 
1114 	return new_read(c, block, NF_READ, bp);
1115 }
1116 EXPORT_SYMBOL_GPL(dm_bufio_read);
1117 
1118 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1119 		   struct dm_buffer **bp)
1120 {
1121 	BUG_ON(dm_bufio_in_request());
1122 
1123 	return new_read(c, block, NF_FRESH, bp);
1124 }
1125 EXPORT_SYMBOL_GPL(dm_bufio_new);
1126 
1127 void dm_bufio_prefetch(struct dm_bufio_client *c,
1128 		       sector_t block, unsigned n_blocks)
1129 {
1130 	struct blk_plug plug;
1131 
1132 	LIST_HEAD(write_list);
1133 
1134 	BUG_ON(dm_bufio_in_request());
1135 
1136 	blk_start_plug(&plug);
1137 	dm_bufio_lock(c);
1138 
1139 	for (; n_blocks--; block++) {
1140 		int need_submit;
1141 		struct dm_buffer *b;
1142 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1143 				&write_list);
1144 		if (unlikely(!list_empty(&write_list))) {
1145 			dm_bufio_unlock(c);
1146 			blk_finish_plug(&plug);
1147 			__flush_write_list(&write_list);
1148 			blk_start_plug(&plug);
1149 			dm_bufio_lock(c);
1150 		}
1151 		if (unlikely(b != NULL)) {
1152 			dm_bufio_unlock(c);
1153 
1154 			if (need_submit)
1155 				submit_io(b, READ, b->block, read_endio);
1156 			dm_bufio_release(b);
1157 
1158 			cond_resched();
1159 
1160 			if (!n_blocks)
1161 				goto flush_plug;
1162 			dm_bufio_lock(c);
1163 		}
1164 	}
1165 
1166 	dm_bufio_unlock(c);
1167 
1168 flush_plug:
1169 	blk_finish_plug(&plug);
1170 }
1171 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1172 
1173 void dm_bufio_release(struct dm_buffer *b)
1174 {
1175 	struct dm_bufio_client *c = b->c;
1176 
1177 	dm_bufio_lock(c);
1178 
1179 	BUG_ON(!b->hold_count);
1180 
1181 	b->hold_count--;
1182 	if (!b->hold_count) {
1183 		wake_up(&c->free_buffer_wait);
1184 
1185 		/*
1186 		 * If there were errors on the buffer, and the buffer is not
1187 		 * to be written, free the buffer. There is no point in caching
1188 		 * invalid buffer.
1189 		 */
1190 		if ((b->read_error || b->write_error) &&
1191 		    !test_bit(B_READING, &b->state) &&
1192 		    !test_bit(B_WRITING, &b->state) &&
1193 		    !test_bit(B_DIRTY, &b->state)) {
1194 			__unlink_buffer(b);
1195 			__free_buffer_wake(b);
1196 		}
1197 	}
1198 
1199 	dm_bufio_unlock(c);
1200 }
1201 EXPORT_SYMBOL_GPL(dm_bufio_release);
1202 
1203 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1204 {
1205 	struct dm_bufio_client *c = b->c;
1206 
1207 	dm_bufio_lock(c);
1208 
1209 	BUG_ON(test_bit(B_READING, &b->state));
1210 
1211 	if (!test_and_set_bit(B_DIRTY, &b->state))
1212 		__relink_lru(b, LIST_DIRTY);
1213 
1214 	dm_bufio_unlock(c);
1215 }
1216 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1217 
1218 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1219 {
1220 	LIST_HEAD(write_list);
1221 
1222 	BUG_ON(dm_bufio_in_request());
1223 
1224 	dm_bufio_lock(c);
1225 	__write_dirty_buffers_async(c, 0, &write_list);
1226 	dm_bufio_unlock(c);
1227 	__flush_write_list(&write_list);
1228 }
1229 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1230 
1231 /*
1232  * For performance, it is essential that the buffers are written asynchronously
1233  * and simultaneously (so that the block layer can merge the writes) and then
1234  * waited upon.
1235  *
1236  * Finally, we flush hardware disk cache.
1237  */
1238 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1239 {
1240 	int a, f;
1241 	unsigned long buffers_processed = 0;
1242 	struct dm_buffer *b, *tmp;
1243 
1244 	LIST_HEAD(write_list);
1245 
1246 	dm_bufio_lock(c);
1247 	__write_dirty_buffers_async(c, 0, &write_list);
1248 	dm_bufio_unlock(c);
1249 	__flush_write_list(&write_list);
1250 	dm_bufio_lock(c);
1251 
1252 again:
1253 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1254 		int dropped_lock = 0;
1255 
1256 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1257 			buffers_processed++;
1258 
1259 		BUG_ON(test_bit(B_READING, &b->state));
1260 
1261 		if (test_bit(B_WRITING, &b->state)) {
1262 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1263 				dropped_lock = 1;
1264 				b->hold_count++;
1265 				dm_bufio_unlock(c);
1266 				wait_on_bit_io(&b->state, B_WRITING,
1267 					       TASK_UNINTERRUPTIBLE);
1268 				dm_bufio_lock(c);
1269 				b->hold_count--;
1270 			} else
1271 				wait_on_bit_io(&b->state, B_WRITING,
1272 					       TASK_UNINTERRUPTIBLE);
1273 		}
1274 
1275 		if (!test_bit(B_DIRTY, &b->state) &&
1276 		    !test_bit(B_WRITING, &b->state))
1277 			__relink_lru(b, LIST_CLEAN);
1278 
1279 		cond_resched();
1280 
1281 		/*
1282 		 * If we dropped the lock, the list is no longer consistent,
1283 		 * so we must restart the search.
1284 		 *
1285 		 * In the most common case, the buffer just processed is
1286 		 * relinked to the clean list, so we won't loop scanning the
1287 		 * same buffer again and again.
1288 		 *
1289 		 * This may livelock if there is another thread simultaneously
1290 		 * dirtying buffers, so we count the number of buffers walked
1291 		 * and if it exceeds the total number of buffers, it means that
1292 		 * someone is doing some writes simultaneously with us.  In
1293 		 * this case, stop, dropping the lock.
1294 		 */
1295 		if (dropped_lock)
1296 			goto again;
1297 	}
1298 	wake_up(&c->free_buffer_wait);
1299 	dm_bufio_unlock(c);
1300 
1301 	a = xchg(&c->async_write_error, 0);
1302 	f = dm_bufio_issue_flush(c);
1303 	if (a)
1304 		return a;
1305 
1306 	return f;
1307 }
1308 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1309 
1310 /*
1311  * Use dm-io to send and empty barrier flush the device.
1312  */
1313 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1314 {
1315 	struct dm_io_request io_req = {
1316 		.bi_op = REQ_OP_WRITE,
1317 		.bi_op_flags = REQ_PREFLUSH,
1318 		.mem.type = DM_IO_KMEM,
1319 		.mem.ptr.addr = NULL,
1320 		.client = c->dm_io,
1321 	};
1322 	struct dm_io_region io_reg = {
1323 		.bdev = c->bdev,
1324 		.sector = 0,
1325 		.count = 0,
1326 	};
1327 
1328 	BUG_ON(dm_bufio_in_request());
1329 
1330 	return dm_io(&io_req, 1, &io_reg, NULL);
1331 }
1332 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1333 
1334 /*
1335  * We first delete any other buffer that may be at that new location.
1336  *
1337  * Then, we write the buffer to the original location if it was dirty.
1338  *
1339  * Then, if we are the only one who is holding the buffer, relink the buffer
1340  * in the hash queue for the new location.
1341  *
1342  * If there was someone else holding the buffer, we write it to the new
1343  * location but not relink it, because that other user needs to have the buffer
1344  * at the same place.
1345  */
1346 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1347 {
1348 	struct dm_bufio_client *c = b->c;
1349 	struct dm_buffer *new;
1350 
1351 	BUG_ON(dm_bufio_in_request());
1352 
1353 	dm_bufio_lock(c);
1354 
1355 retry:
1356 	new = __find(c, new_block);
1357 	if (new) {
1358 		if (new->hold_count) {
1359 			__wait_for_free_buffer(c);
1360 			goto retry;
1361 		}
1362 
1363 		/*
1364 		 * FIXME: Is there any point waiting for a write that's going
1365 		 * to be overwritten in a bit?
1366 		 */
1367 		__make_buffer_clean(new);
1368 		__unlink_buffer(new);
1369 		__free_buffer_wake(new);
1370 	}
1371 
1372 	BUG_ON(!b->hold_count);
1373 	BUG_ON(test_bit(B_READING, &b->state));
1374 
1375 	__write_dirty_buffer(b, NULL);
1376 	if (b->hold_count == 1) {
1377 		wait_on_bit_io(&b->state, B_WRITING,
1378 			       TASK_UNINTERRUPTIBLE);
1379 		set_bit(B_DIRTY, &b->state);
1380 		__unlink_buffer(b);
1381 		__link_buffer(b, new_block, LIST_DIRTY);
1382 	} else {
1383 		sector_t old_block;
1384 		wait_on_bit_lock_io(&b->state, B_WRITING,
1385 				    TASK_UNINTERRUPTIBLE);
1386 		/*
1387 		 * Relink buffer to "new_block" so that write_callback
1388 		 * sees "new_block" as a block number.
1389 		 * After the write, link the buffer back to old_block.
1390 		 * All this must be done in bufio lock, so that block number
1391 		 * change isn't visible to other threads.
1392 		 */
1393 		old_block = b->block;
1394 		__unlink_buffer(b);
1395 		__link_buffer(b, new_block, b->list_mode);
1396 		submit_io(b, WRITE, new_block, write_endio);
1397 		wait_on_bit_io(&b->state, B_WRITING,
1398 			       TASK_UNINTERRUPTIBLE);
1399 		__unlink_buffer(b);
1400 		__link_buffer(b, old_block, b->list_mode);
1401 	}
1402 
1403 	dm_bufio_unlock(c);
1404 	dm_bufio_release(b);
1405 }
1406 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1407 
1408 /*
1409  * Free the given buffer.
1410  *
1411  * This is just a hint, if the buffer is in use or dirty, this function
1412  * does nothing.
1413  */
1414 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1415 {
1416 	struct dm_buffer *b;
1417 
1418 	dm_bufio_lock(c);
1419 
1420 	b = __find(c, block);
1421 	if (b && likely(!b->hold_count) && likely(!b->state)) {
1422 		__unlink_buffer(b);
1423 		__free_buffer_wake(b);
1424 	}
1425 
1426 	dm_bufio_unlock(c);
1427 }
1428 EXPORT_SYMBOL(dm_bufio_forget);
1429 
1430 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1431 {
1432 	c->minimum_buffers = n;
1433 }
1434 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1435 
1436 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1437 {
1438 	return c->block_size;
1439 }
1440 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1441 
1442 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1443 {
1444 	return i_size_read(c->bdev->bd_inode) >>
1445 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1446 }
1447 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1448 
1449 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1450 {
1451 	return b->block;
1452 }
1453 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1454 
1455 void *dm_bufio_get_block_data(struct dm_buffer *b)
1456 {
1457 	return b->data;
1458 }
1459 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1460 
1461 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1462 {
1463 	return b + 1;
1464 }
1465 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1466 
1467 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1468 {
1469 	return b->c;
1470 }
1471 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1472 
1473 static void drop_buffers(struct dm_bufio_client *c)
1474 {
1475 	struct dm_buffer *b;
1476 	int i;
1477 	bool warned = false;
1478 
1479 	BUG_ON(dm_bufio_in_request());
1480 
1481 	/*
1482 	 * An optimization so that the buffers are not written one-by-one.
1483 	 */
1484 	dm_bufio_write_dirty_buffers_async(c);
1485 
1486 	dm_bufio_lock(c);
1487 
1488 	while ((b = __get_unclaimed_buffer(c)))
1489 		__free_buffer_wake(b);
1490 
1491 	for (i = 0; i < LIST_SIZE; i++)
1492 		list_for_each_entry(b, &c->lru[i], lru_list) {
1493 			WARN_ON(!warned);
1494 			warned = true;
1495 			DMERR("leaked buffer %llx, hold count %u, list %d",
1496 			      (unsigned long long)b->block, b->hold_count, i);
1497 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1498 			print_stack_trace(&b->stack_trace, 1);
1499 			b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1500 #endif
1501 		}
1502 
1503 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1504 	while ((b = __get_unclaimed_buffer(c)))
1505 		__free_buffer_wake(b);
1506 #endif
1507 
1508 	for (i = 0; i < LIST_SIZE; i++)
1509 		BUG_ON(!list_empty(&c->lru[i]));
1510 
1511 	dm_bufio_unlock(c);
1512 }
1513 
1514 /*
1515  * We may not be able to evict this buffer if IO pending or the client
1516  * is still using it.  Caller is expected to know buffer is too old.
1517  *
1518  * And if GFP_NOFS is used, we must not do any I/O because we hold
1519  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1520  * rerouted to different bufio client.
1521  */
1522 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1523 {
1524 	if (!(gfp & __GFP_FS)) {
1525 		if (test_bit(B_READING, &b->state) ||
1526 		    test_bit(B_WRITING, &b->state) ||
1527 		    test_bit(B_DIRTY, &b->state))
1528 			return false;
1529 	}
1530 
1531 	if (b->hold_count)
1532 		return false;
1533 
1534 	__make_buffer_clean(b);
1535 	__unlink_buffer(b);
1536 	__free_buffer_wake(b);
1537 
1538 	return true;
1539 }
1540 
1541 static unsigned get_retain_buffers(struct dm_bufio_client *c)
1542 {
1543         unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1544         return retain_bytes / c->block_size;
1545 }
1546 
1547 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1548 			    gfp_t gfp_mask)
1549 {
1550 	int l;
1551 	struct dm_buffer *b, *tmp;
1552 	unsigned long freed = 0;
1553 	unsigned long count = nr_to_scan;
1554 	unsigned retain_target = get_retain_buffers(c);
1555 
1556 	for (l = 0; l < LIST_SIZE; l++) {
1557 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1558 			if (__try_evict_buffer(b, gfp_mask))
1559 				freed++;
1560 			if (!--nr_to_scan || ((count - freed) <= retain_target))
1561 				return freed;
1562 			cond_resched();
1563 		}
1564 	}
1565 	return freed;
1566 }
1567 
1568 static unsigned long
1569 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1570 {
1571 	struct dm_bufio_client *c;
1572 	unsigned long freed;
1573 
1574 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1575 	if (sc->gfp_mask & __GFP_FS)
1576 		dm_bufio_lock(c);
1577 	else if (!dm_bufio_trylock(c))
1578 		return SHRINK_STOP;
1579 
1580 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1581 	dm_bufio_unlock(c);
1582 	return freed;
1583 }
1584 
1585 static unsigned long
1586 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1587 {
1588 	struct dm_bufio_client *c;
1589 	unsigned long count;
1590 
1591 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1592 	if (sc->gfp_mask & __GFP_FS)
1593 		dm_bufio_lock(c);
1594 	else if (!dm_bufio_trylock(c))
1595 		return 0;
1596 
1597 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1598 	dm_bufio_unlock(c);
1599 	return count;
1600 }
1601 
1602 /*
1603  * Create the buffering interface
1604  */
1605 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1606 					       unsigned reserved_buffers, unsigned aux_size,
1607 					       void (*alloc_callback)(struct dm_buffer *),
1608 					       void (*write_callback)(struct dm_buffer *))
1609 {
1610 	int r;
1611 	struct dm_bufio_client *c;
1612 	unsigned i;
1613 
1614 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1615 	       (block_size & (block_size - 1)));
1616 
1617 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1618 	if (!c) {
1619 		r = -ENOMEM;
1620 		goto bad_client;
1621 	}
1622 	c->buffer_tree = RB_ROOT;
1623 
1624 	c->bdev = bdev;
1625 	c->block_size = block_size;
1626 	c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1627 	c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1628 				  __ffs(block_size) - PAGE_SHIFT : 0;
1629 	c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1630 				  PAGE_SHIFT - __ffs(block_size) : 0);
1631 
1632 	c->aux_size = aux_size;
1633 	c->alloc_callback = alloc_callback;
1634 	c->write_callback = write_callback;
1635 
1636 	for (i = 0; i < LIST_SIZE; i++) {
1637 		INIT_LIST_HEAD(&c->lru[i]);
1638 		c->n_buffers[i] = 0;
1639 	}
1640 
1641 	mutex_init(&c->lock);
1642 	INIT_LIST_HEAD(&c->reserved_buffers);
1643 	c->need_reserved_buffers = reserved_buffers;
1644 
1645 	c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1646 
1647 	init_waitqueue_head(&c->free_buffer_wait);
1648 	c->async_write_error = 0;
1649 
1650 	c->dm_io = dm_io_client_create();
1651 	if (IS_ERR(c->dm_io)) {
1652 		r = PTR_ERR(c->dm_io);
1653 		goto bad_dm_io;
1654 	}
1655 
1656 	mutex_lock(&dm_bufio_clients_lock);
1657 	if (c->blocks_per_page_bits) {
1658 		if (!DM_BUFIO_CACHE_NAME(c)) {
1659 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1660 			if (!DM_BUFIO_CACHE_NAME(c)) {
1661 				r = -ENOMEM;
1662 				mutex_unlock(&dm_bufio_clients_lock);
1663 				goto bad_cache;
1664 			}
1665 		}
1666 
1667 		if (!DM_BUFIO_CACHE(c)) {
1668 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1669 							      c->block_size,
1670 							      c->block_size, 0, NULL);
1671 			if (!DM_BUFIO_CACHE(c)) {
1672 				r = -ENOMEM;
1673 				mutex_unlock(&dm_bufio_clients_lock);
1674 				goto bad_cache;
1675 			}
1676 		}
1677 	}
1678 	mutex_unlock(&dm_bufio_clients_lock);
1679 
1680 	while (c->need_reserved_buffers) {
1681 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1682 
1683 		if (!b) {
1684 			r = -ENOMEM;
1685 			goto bad_buffer;
1686 		}
1687 		__free_buffer_wake(b);
1688 	}
1689 
1690 	mutex_lock(&dm_bufio_clients_lock);
1691 	dm_bufio_client_count++;
1692 	list_add(&c->client_list, &dm_bufio_all_clients);
1693 	__cache_size_refresh();
1694 	mutex_unlock(&dm_bufio_clients_lock);
1695 
1696 	c->shrinker.count_objects = dm_bufio_shrink_count;
1697 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1698 	c->shrinker.seeks = 1;
1699 	c->shrinker.batch = 0;
1700 	register_shrinker(&c->shrinker);
1701 
1702 	return c;
1703 
1704 bad_buffer:
1705 bad_cache:
1706 	while (!list_empty(&c->reserved_buffers)) {
1707 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1708 						 struct dm_buffer, lru_list);
1709 		list_del(&b->lru_list);
1710 		free_buffer(b);
1711 	}
1712 	dm_io_client_destroy(c->dm_io);
1713 bad_dm_io:
1714 	kfree(c);
1715 bad_client:
1716 	return ERR_PTR(r);
1717 }
1718 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1719 
1720 /*
1721  * Free the buffering interface.
1722  * It is required that there are no references on any buffers.
1723  */
1724 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1725 {
1726 	unsigned i;
1727 
1728 	drop_buffers(c);
1729 
1730 	unregister_shrinker(&c->shrinker);
1731 
1732 	mutex_lock(&dm_bufio_clients_lock);
1733 
1734 	list_del(&c->client_list);
1735 	dm_bufio_client_count--;
1736 	__cache_size_refresh();
1737 
1738 	mutex_unlock(&dm_bufio_clients_lock);
1739 
1740 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1741 	BUG_ON(c->need_reserved_buffers);
1742 
1743 	while (!list_empty(&c->reserved_buffers)) {
1744 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1745 						 struct dm_buffer, lru_list);
1746 		list_del(&b->lru_list);
1747 		free_buffer(b);
1748 	}
1749 
1750 	for (i = 0; i < LIST_SIZE; i++)
1751 		if (c->n_buffers[i])
1752 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1753 
1754 	for (i = 0; i < LIST_SIZE; i++)
1755 		BUG_ON(c->n_buffers[i]);
1756 
1757 	dm_io_client_destroy(c->dm_io);
1758 	kfree(c);
1759 }
1760 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1761 
1762 static unsigned get_max_age_hz(void)
1763 {
1764 	unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1765 
1766 	if (max_age > UINT_MAX / HZ)
1767 		max_age = UINT_MAX / HZ;
1768 
1769 	return max_age * HZ;
1770 }
1771 
1772 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1773 {
1774 	return time_after_eq(jiffies, b->last_accessed + age_hz);
1775 }
1776 
1777 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1778 {
1779 	struct dm_buffer *b, *tmp;
1780 	unsigned retain_target = get_retain_buffers(c);
1781 	unsigned count;
1782 
1783 	dm_bufio_lock(c);
1784 
1785 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1786 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1787 		if (count <= retain_target)
1788 			break;
1789 
1790 		if (!older_than(b, age_hz))
1791 			break;
1792 
1793 		if (__try_evict_buffer(b, 0))
1794 			count--;
1795 
1796 		cond_resched();
1797 	}
1798 
1799 	dm_bufio_unlock(c);
1800 }
1801 
1802 static void cleanup_old_buffers(void)
1803 {
1804 	unsigned long max_age_hz = get_max_age_hz();
1805 	struct dm_bufio_client *c;
1806 
1807 	mutex_lock(&dm_bufio_clients_lock);
1808 
1809 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1810 		__evict_old_buffers(c, max_age_hz);
1811 
1812 	mutex_unlock(&dm_bufio_clients_lock);
1813 }
1814 
1815 static struct workqueue_struct *dm_bufio_wq;
1816 static struct delayed_work dm_bufio_work;
1817 
1818 static void work_fn(struct work_struct *w)
1819 {
1820 	cleanup_old_buffers();
1821 
1822 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1823 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1824 }
1825 
1826 /*----------------------------------------------------------------
1827  * Module setup
1828  *--------------------------------------------------------------*/
1829 
1830 /*
1831  * This is called only once for the whole dm_bufio module.
1832  * It initializes memory limit.
1833  */
1834 static int __init dm_bufio_init(void)
1835 {
1836 	__u64 mem;
1837 
1838 	dm_bufio_allocated_kmem_cache = 0;
1839 	dm_bufio_allocated_get_free_pages = 0;
1840 	dm_bufio_allocated_vmalloc = 0;
1841 	dm_bufio_current_allocated = 0;
1842 
1843 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1844 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1845 
1846 	mem = (__u64)((totalram_pages - totalhigh_pages) *
1847 		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1848 
1849 	if (mem > ULONG_MAX)
1850 		mem = ULONG_MAX;
1851 
1852 #ifdef CONFIG_MMU
1853 	/*
1854 	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1855 	 * in fs/proc/internal.h
1856 	 */
1857 	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1858 		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1859 #endif
1860 
1861 	dm_bufio_default_cache_size = mem;
1862 
1863 	mutex_lock(&dm_bufio_clients_lock);
1864 	__cache_size_refresh();
1865 	mutex_unlock(&dm_bufio_clients_lock);
1866 
1867 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1868 	if (!dm_bufio_wq)
1869 		return -ENOMEM;
1870 
1871 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1872 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1873 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1874 
1875 	return 0;
1876 }
1877 
1878 /*
1879  * This is called once when unloading the dm_bufio module.
1880  */
1881 static void __exit dm_bufio_exit(void)
1882 {
1883 	int bug = 0;
1884 	int i;
1885 
1886 	cancel_delayed_work_sync(&dm_bufio_work);
1887 	destroy_workqueue(dm_bufio_wq);
1888 
1889 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1890 		kmem_cache_destroy(dm_bufio_caches[i]);
1891 
1892 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1893 		kfree(dm_bufio_cache_names[i]);
1894 
1895 	if (dm_bufio_client_count) {
1896 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1897 			__func__, dm_bufio_client_count);
1898 		bug = 1;
1899 	}
1900 
1901 	if (dm_bufio_current_allocated) {
1902 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1903 			__func__, dm_bufio_current_allocated);
1904 		bug = 1;
1905 	}
1906 
1907 	if (dm_bufio_allocated_get_free_pages) {
1908 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1909 		       __func__, dm_bufio_allocated_get_free_pages);
1910 		bug = 1;
1911 	}
1912 
1913 	if (dm_bufio_allocated_vmalloc) {
1914 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1915 		       __func__, dm_bufio_allocated_vmalloc);
1916 		bug = 1;
1917 	}
1918 
1919 	BUG_ON(bug);
1920 }
1921 
1922 module_init(dm_bufio_init)
1923 module_exit(dm_bufio_exit)
1924 
1925 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1926 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1927 
1928 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1929 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1930 
1931 module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR);
1932 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1933 
1934 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1935 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1936 
1937 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1938 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1939 
1940 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1941 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1942 
1943 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1944 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1945 
1946 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1947 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1948 
1949 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1950 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1951 MODULE_LICENSE("GPL");
1952