xref: /openbmc/linux/drivers/md/bcache/util.h (revision 9a02b7eeeb446a0418ec83afc80eb38bc188f5c8)
1 
2 #ifndef _BCACHE_UTIL_H
3 #define _BCACHE_UTIL_H
4 
5 #include <linux/blkdev.h>
6 #include <linux/errno.h>
7 #include <linux/kernel.h>
8 #include <linux/llist.h>
9 #include <linux/ratelimit.h>
10 #include <linux/vmalloc.h>
11 #include <linux/workqueue.h>
12 
13 #include "closure.h"
14 
15 #define PAGE_SECTORS		(PAGE_SIZE / 512)
16 
17 struct closure;
18 
19 #ifdef CONFIG_BCACHE_DEBUG
20 
21 #define atomic_dec_bug(v)	BUG_ON(atomic_dec_return(v) < 0)
22 #define atomic_inc_bug(v, i)	BUG_ON(atomic_inc_return(v) <= i)
23 
24 #else /* DEBUG */
25 
26 #define atomic_dec_bug(v)	atomic_dec(v)
27 #define atomic_inc_bug(v, i)	atomic_inc(v)
28 
29 #endif
30 
31 #define DECLARE_HEAP(type, name)					\
32 	struct {							\
33 		size_t size, used;					\
34 		type *data;						\
35 	} name
36 
37 #define init_heap(heap, _size, gfp)					\
38 ({									\
39 	size_t _bytes;							\
40 	(heap)->used = 0;						\
41 	(heap)->size = (_size);						\
42 	_bytes = (heap)->size * sizeof(*(heap)->data);			\
43 	(heap)->data = NULL;						\
44 	if (_bytes < KMALLOC_MAX_SIZE)					\
45 		(heap)->data = kmalloc(_bytes, (gfp));			\
46 	if ((!(heap)->data) && ((gfp) & GFP_KERNEL))			\
47 		(heap)->data = vmalloc(_bytes);				\
48 	(heap)->data;							\
49 })
50 
51 #define free_heap(heap)							\
52 do {									\
53 	if (is_vmalloc_addr((heap)->data))				\
54 		vfree((heap)->data);					\
55 	else								\
56 		kfree((heap)->data);					\
57 	(heap)->data = NULL;						\
58 } while (0)
59 
60 #define heap_swap(h, i, j)	swap((h)->data[i], (h)->data[j])
61 
62 #define heap_sift(h, i, cmp)						\
63 do {									\
64 	size_t _r, _j = i;						\
65 									\
66 	for (; _j * 2 + 1 < (h)->used; _j = _r) {			\
67 		_r = _j * 2 + 1;					\
68 		if (_r + 1 < (h)->used &&				\
69 		    cmp((h)->data[_r], (h)->data[_r + 1]))		\
70 			_r++;						\
71 									\
72 		if (cmp((h)->data[_r], (h)->data[_j]))			\
73 			break;						\
74 		heap_swap(h, _r, _j);					\
75 	}								\
76 } while (0)
77 
78 #define heap_sift_down(h, i, cmp)					\
79 do {									\
80 	while (i) {							\
81 		size_t p = (i - 1) / 2;					\
82 		if (cmp((h)->data[i], (h)->data[p]))			\
83 			break;						\
84 		heap_swap(h, i, p);					\
85 		i = p;							\
86 	}								\
87 } while (0)
88 
89 #define heap_add(h, d, cmp)						\
90 ({									\
91 	bool _r = !heap_full(h);					\
92 	if (_r) {							\
93 		size_t _i = (h)->used++;				\
94 		(h)->data[_i] = d;					\
95 									\
96 		heap_sift_down(h, _i, cmp);				\
97 		heap_sift(h, _i, cmp);					\
98 	}								\
99 	_r;								\
100 })
101 
102 #define heap_pop(h, d, cmp)						\
103 ({									\
104 	bool _r = (h)->used;						\
105 	if (_r) {							\
106 		(d) = (h)->data[0];					\
107 		(h)->used--;						\
108 		heap_swap(h, 0, (h)->used);				\
109 		heap_sift(h, 0, cmp);					\
110 	}								\
111 	_r;								\
112 })
113 
114 #define heap_peek(h)	((h)->used ? (h)->data[0] : NULL)
115 
116 #define heap_full(h)	((h)->used == (h)->size)
117 
118 #define DECLARE_FIFO(type, name)					\
119 	struct {							\
120 		size_t front, back, size, mask;				\
121 		type *data;						\
122 	} name
123 
124 #define fifo_for_each(c, fifo, iter)					\
125 	for (iter = (fifo)->front;					\
126 	     c = (fifo)->data[iter], iter != (fifo)->back;		\
127 	     iter = (iter + 1) & (fifo)->mask)
128 
129 #define __init_fifo(fifo, gfp)						\
130 ({									\
131 	size_t _allocated_size, _bytes;					\
132 	BUG_ON(!(fifo)->size);						\
133 									\
134 	_allocated_size = roundup_pow_of_two((fifo)->size + 1);		\
135 	_bytes = _allocated_size * sizeof(*(fifo)->data);		\
136 									\
137 	(fifo)->mask = _allocated_size - 1;				\
138 	(fifo)->front = (fifo)->back = 0;				\
139 	(fifo)->data = NULL;						\
140 									\
141 	if (_bytes < KMALLOC_MAX_SIZE)					\
142 		(fifo)->data = kmalloc(_bytes, (gfp));			\
143 	if ((!(fifo)->data) && ((gfp) & GFP_KERNEL))			\
144 		(fifo)->data = vmalloc(_bytes);				\
145 	(fifo)->data;							\
146 })
147 
148 #define init_fifo_exact(fifo, _size, gfp)				\
149 ({									\
150 	(fifo)->size = (_size);						\
151 	__init_fifo(fifo, gfp);						\
152 })
153 
154 #define init_fifo(fifo, _size, gfp)					\
155 ({									\
156 	(fifo)->size = (_size);						\
157 	if ((fifo)->size > 4)						\
158 		(fifo)->size = roundup_pow_of_two((fifo)->size) - 1;	\
159 	__init_fifo(fifo, gfp);						\
160 })
161 
162 #define free_fifo(fifo)							\
163 do {									\
164 	if (is_vmalloc_addr((fifo)->data))				\
165 		vfree((fifo)->data);					\
166 	else								\
167 		kfree((fifo)->data);					\
168 	(fifo)->data = NULL;						\
169 } while (0)
170 
171 #define fifo_used(fifo)		(((fifo)->back - (fifo)->front) & (fifo)->mask)
172 #define fifo_free(fifo)		((fifo)->size - fifo_used(fifo))
173 
174 #define fifo_empty(fifo)	(!fifo_used(fifo))
175 #define fifo_full(fifo)		(!fifo_free(fifo))
176 
177 #define fifo_front(fifo)	((fifo)->data[(fifo)->front])
178 #define fifo_back(fifo)							\
179 	((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
180 
181 #define fifo_idx(fifo, p)	(((p) - &fifo_front(fifo)) & (fifo)->mask)
182 
183 #define fifo_push_back(fifo, i)						\
184 ({									\
185 	bool _r = !fifo_full((fifo));					\
186 	if (_r) {							\
187 		(fifo)->data[(fifo)->back++] = (i);			\
188 		(fifo)->back &= (fifo)->mask;				\
189 	}								\
190 	_r;								\
191 })
192 
193 #define fifo_pop_front(fifo, i)						\
194 ({									\
195 	bool _r = !fifo_empty((fifo));					\
196 	if (_r) {							\
197 		(i) = (fifo)->data[(fifo)->front++];			\
198 		(fifo)->front &= (fifo)->mask;				\
199 	}								\
200 	_r;								\
201 })
202 
203 #define fifo_push_front(fifo, i)					\
204 ({									\
205 	bool _r = !fifo_full((fifo));					\
206 	if (_r) {							\
207 		--(fifo)->front;					\
208 		(fifo)->front &= (fifo)->mask;				\
209 		(fifo)->data[(fifo)->front] = (i);			\
210 	}								\
211 	_r;								\
212 })
213 
214 #define fifo_pop_back(fifo, i)						\
215 ({									\
216 	bool _r = !fifo_empty((fifo));					\
217 	if (_r) {							\
218 		--(fifo)->back;						\
219 		(fifo)->back &= (fifo)->mask;				\
220 		(i) = (fifo)->data[(fifo)->back]			\
221 	}								\
222 	_r;								\
223 })
224 
225 #define fifo_push(fifo, i)	fifo_push_back(fifo, (i))
226 #define fifo_pop(fifo, i)	fifo_pop_front(fifo, (i))
227 
228 #define fifo_swap(l, r)							\
229 do {									\
230 	swap((l)->front, (r)->front);					\
231 	swap((l)->back, (r)->back);					\
232 	swap((l)->size, (r)->size);					\
233 	swap((l)->mask, (r)->mask);					\
234 	swap((l)->data, (r)->data);					\
235 } while (0)
236 
237 #define fifo_move(dest, src)						\
238 do {									\
239 	typeof(*((dest)->data)) _t;					\
240 	while (!fifo_full(dest) &&					\
241 	       fifo_pop(src, _t))					\
242 		fifo_push(dest, _t);					\
243 } while (0)
244 
245 /*
246  * Simple array based allocator - preallocates a number of elements and you can
247  * never allocate more than that, also has no locking.
248  *
249  * Handy because if you know you only need a fixed number of elements you don't
250  * have to worry about memory allocation failure, and sometimes a mempool isn't
251  * what you want.
252  *
253  * We treat the free elements as entries in a singly linked list, and the
254  * freelist as a stack - allocating and freeing push and pop off the freelist.
255  */
256 
257 #define DECLARE_ARRAY_ALLOCATOR(type, name, size)			\
258 	struct {							\
259 		type	*freelist;					\
260 		type	data[size];					\
261 	} name
262 
263 #define array_alloc(array)						\
264 ({									\
265 	typeof((array)->freelist) _ret = (array)->freelist;		\
266 									\
267 	if (_ret)							\
268 		(array)->freelist = *((typeof((array)->freelist) *) _ret);\
269 									\
270 	_ret;								\
271 })
272 
273 #define array_free(array, ptr)						\
274 do {									\
275 	typeof((array)->freelist) _ptr = ptr;				\
276 									\
277 	*((typeof((array)->freelist) *) _ptr) = (array)->freelist;	\
278 	(array)->freelist = _ptr;					\
279 } while (0)
280 
281 #define array_allocator_init(array)					\
282 do {									\
283 	typeof((array)->freelist) _i;					\
284 									\
285 	BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));	\
286 	(array)->freelist = NULL;					\
287 									\
288 	for (_i = (array)->data;					\
289 	     _i < (array)->data + ARRAY_SIZE((array)->data);		\
290 	     _i++)							\
291 		array_free(array, _i);					\
292 } while (0)
293 
294 #define array_freelist_empty(array)	((array)->freelist == NULL)
295 
296 #define ANYSINT_MAX(t)							\
297 	((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
298 
299 int bch_strtoint_h(const char *, int *);
300 int bch_strtouint_h(const char *, unsigned int *);
301 int bch_strtoll_h(const char *, long long *);
302 int bch_strtoull_h(const char *, unsigned long long *);
303 
304 static inline int bch_strtol_h(const char *cp, long *res)
305 {
306 #if BITS_PER_LONG == 32
307 	return bch_strtoint_h(cp, (int *) res);
308 #else
309 	return bch_strtoll_h(cp, (long long *) res);
310 #endif
311 }
312 
313 static inline int bch_strtoul_h(const char *cp, long *res)
314 {
315 #if BITS_PER_LONG == 32
316 	return bch_strtouint_h(cp, (unsigned int *) res);
317 #else
318 	return bch_strtoull_h(cp, (unsigned long long *) res);
319 #endif
320 }
321 
322 #define strtoi_h(cp, res)						\
323 	(__builtin_types_compatible_p(typeof(*res), int)		\
324 	? bch_strtoint_h(cp, (void *) res)				\
325 	: __builtin_types_compatible_p(typeof(*res), long)		\
326 	? bch_strtol_h(cp, (void *) res)				\
327 	: __builtin_types_compatible_p(typeof(*res), long long)		\
328 	? bch_strtoll_h(cp, (void *) res)				\
329 	: __builtin_types_compatible_p(typeof(*res), unsigned int)	\
330 	? bch_strtouint_h(cp, (void *) res)				\
331 	: __builtin_types_compatible_p(typeof(*res), unsigned long)	\
332 	? bch_strtoul_h(cp, (void *) res)				\
333 	: __builtin_types_compatible_p(typeof(*res), unsigned long long)\
334 	? bch_strtoull_h(cp, (void *) res) : -EINVAL)
335 
336 #define strtoul_safe(cp, var)						\
337 ({									\
338 	unsigned long _v;						\
339 	int _r = kstrtoul(cp, 10, &_v);					\
340 	if (!_r)							\
341 		var = _v;						\
342 	_r;								\
343 })
344 
345 #define strtoul_safe_clamp(cp, var, min, max)				\
346 ({									\
347 	unsigned long _v;						\
348 	int _r = kstrtoul(cp, 10, &_v);					\
349 	if (!_r)							\
350 		var = clamp_t(typeof(var), _v, min, max);		\
351 	_r;								\
352 })
353 
354 #define snprint(buf, size, var)						\
355 	snprintf(buf, size,						\
356 		__builtin_types_compatible_p(typeof(var), int)		\
357 		     ? "%i\n" :						\
358 		__builtin_types_compatible_p(typeof(var), unsigned)	\
359 		     ? "%u\n" :						\
360 		__builtin_types_compatible_p(typeof(var), long)		\
361 		     ? "%li\n" :					\
362 		__builtin_types_compatible_p(typeof(var), unsigned long)\
363 		     ? "%lu\n" :					\
364 		__builtin_types_compatible_p(typeof(var), int64_t)	\
365 		     ? "%lli\n" :					\
366 		__builtin_types_compatible_p(typeof(var), uint64_t)	\
367 		     ? "%llu\n" :					\
368 		__builtin_types_compatible_p(typeof(var), const char *)	\
369 		     ? "%s\n" : "%i\n", var)
370 
371 ssize_t bch_hprint(char *buf, int64_t v);
372 
373 bool bch_is_zero(const char *p, size_t n);
374 int bch_parse_uuid(const char *s, char *uuid);
375 
376 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
377 			    size_t selected);
378 
379 ssize_t bch_read_string_list(const char *buf, const char * const list[]);
380 
381 struct time_stats {
382 	spinlock_t	lock;
383 	/*
384 	 * all fields are in nanoseconds, averages are ewmas stored left shifted
385 	 * by 8
386 	 */
387 	uint64_t	max_duration;
388 	uint64_t	average_duration;
389 	uint64_t	average_frequency;
390 	uint64_t	last;
391 };
392 
393 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
394 
395 static inline unsigned local_clock_us(void)
396 {
397 	return local_clock() >> 10;
398 }
399 
400 #define NSEC_PER_ns			1L
401 #define NSEC_PER_us			NSEC_PER_USEC
402 #define NSEC_PER_ms			NSEC_PER_MSEC
403 #define NSEC_PER_sec			NSEC_PER_SEC
404 
405 #define __print_time_stat(stats, name, stat, units)			\
406 	sysfs_print(name ## _ ## stat ## _ ## units,			\
407 		    div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
408 
409 #define sysfs_print_time_stats(stats, name,				\
410 			       frequency_units,				\
411 			       duration_units)				\
412 do {									\
413 	__print_time_stat(stats, name,					\
414 			  average_frequency,	frequency_units);	\
415 	__print_time_stat(stats, name,					\
416 			  average_duration,	duration_units);	\
417 	__print_time_stat(stats, name,					\
418 			  max_duration,		duration_units);	\
419 									\
420 	sysfs_print(name ## _last_ ## frequency_units, (stats)->last	\
421 		    ? div_s64(local_clock() - (stats)->last,		\
422 			      NSEC_PER_ ## frequency_units)		\
423 		    : -1LL);						\
424 } while (0)
425 
426 #define sysfs_time_stats_attribute(name,				\
427 				   frequency_units,			\
428 				   duration_units)			\
429 read_attribute(name ## _average_frequency_ ## frequency_units);		\
430 read_attribute(name ## _average_duration_ ## duration_units);		\
431 read_attribute(name ## _max_duration_ ## duration_units);		\
432 read_attribute(name ## _last_ ## frequency_units)
433 
434 #define sysfs_time_stats_attribute_list(name,				\
435 					frequency_units,		\
436 					duration_units)			\
437 &sysfs_ ## name ## _average_frequency_ ## frequency_units,		\
438 &sysfs_ ## name ## _average_duration_ ## duration_units,		\
439 &sysfs_ ## name ## _max_duration_ ## duration_units,			\
440 &sysfs_ ## name ## _last_ ## frequency_units,
441 
442 #define ewma_add(ewma, val, weight, factor)				\
443 ({									\
444 	(ewma) *= (weight) - 1;						\
445 	(ewma) += (val) << factor;					\
446 	(ewma) /= (weight);						\
447 	(ewma) >> factor;						\
448 })
449 
450 struct bch_ratelimit {
451 	/* Next time we want to do some work, in nanoseconds */
452 	uint64_t		next;
453 
454 	/*
455 	 * Rate at which we want to do work, in units per nanosecond
456 	 * The units here correspond to the units passed to bch_next_delay()
457 	 */
458 	unsigned		rate;
459 };
460 
461 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
462 {
463 	d->next = local_clock();
464 }
465 
466 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
467 
468 #define __DIV_SAFE(n, d, zero)						\
469 ({									\
470 	typeof(n) _n = (n);						\
471 	typeof(d) _d = (d);						\
472 	_d ? _n / _d : zero;						\
473 })
474 
475 #define DIV_SAFE(n, d)	__DIV_SAFE(n, d, 0)
476 
477 #define container_of_or_null(ptr, type, member)				\
478 ({									\
479 	typeof(ptr) _ptr = ptr;						\
480 	_ptr ? container_of(_ptr, type, member) : NULL;			\
481 })
482 
483 #define RB_INSERT(root, new, member, cmp)				\
484 ({									\
485 	__label__ dup;							\
486 	struct rb_node **n = &(root)->rb_node, *parent = NULL;		\
487 	typeof(new) this;						\
488 	int res, ret = -1;						\
489 									\
490 	while (*n) {							\
491 		parent = *n;						\
492 		this = container_of(*n, typeof(*(new)), member);	\
493 		res = cmp(new, this);					\
494 		if (!res)						\
495 			goto dup;					\
496 		n = res < 0						\
497 			? &(*n)->rb_left				\
498 			: &(*n)->rb_right;				\
499 	}								\
500 									\
501 	rb_link_node(&(new)->member, parent, n);			\
502 	rb_insert_color(&(new)->member, root);				\
503 	ret = 0;							\
504 dup:									\
505 	ret;								\
506 })
507 
508 #define RB_SEARCH(root, search, member, cmp)				\
509 ({									\
510 	struct rb_node *n = (root)->rb_node;				\
511 	typeof(&(search)) this, ret = NULL;				\
512 	int res;							\
513 									\
514 	while (n) {							\
515 		this = container_of(n, typeof(search), member);		\
516 		res = cmp(&(search), this);				\
517 		if (!res) {						\
518 			ret = this;					\
519 			break;						\
520 		}							\
521 		n = res < 0						\
522 			? n->rb_left					\
523 			: n->rb_right;					\
524 	}								\
525 	ret;								\
526 })
527 
528 #define RB_GREATER(root, search, member, cmp)				\
529 ({									\
530 	struct rb_node *n = (root)->rb_node;				\
531 	typeof(&(search)) this, ret = NULL;				\
532 	int res;							\
533 									\
534 	while (n) {							\
535 		this = container_of(n, typeof(search), member);		\
536 		res = cmp(&(search), this);				\
537 		if (res < 0) {						\
538 			ret = this;					\
539 			n = n->rb_left;					\
540 		} else							\
541 			n = n->rb_right;				\
542 	}								\
543 	ret;								\
544 })
545 
546 #define RB_FIRST(root, type, member)					\
547 	container_of_or_null(rb_first(root), type, member)
548 
549 #define RB_LAST(root, type, member)					\
550 	container_of_or_null(rb_last(root), type, member)
551 
552 #define RB_NEXT(ptr, member)						\
553 	container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
554 
555 #define RB_PREV(ptr, member)						\
556 	container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
557 
558 /* Does linear interpolation between powers of two */
559 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
560 {
561 	unsigned fract = x & ~(~0 << fract_bits);
562 
563 	x >>= fract_bits;
564 	x   = 1 << x;
565 	x  += (x * fract) >> fract_bits;
566 
567 	return x;
568 }
569 
570 void bch_bio_map(struct bio *bio, void *base);
571 
572 static inline sector_t bdev_sectors(struct block_device *bdev)
573 {
574 	return bdev->bd_inode->i_size >> 9;
575 }
576 
577 #define closure_bio_submit(bio, cl, dev)				\
578 do {									\
579 	closure_get(cl);						\
580 	bch_generic_make_request(bio, &(dev)->bio_split_hook);		\
581 } while (0)
582 
583 uint64_t bch_crc64_update(uint64_t, const void *, size_t);
584 uint64_t bch_crc64(const void *, size_t);
585 
586 #endif /* _BCACHE_UTIL_H */
587