xref: /openbmc/linux/drivers/md/bcache/super.c (revision ebaa1ac12b0c97337a5bad1d57334056791aaa88)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17 
18 #include <linux/blkdev.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28 
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31 
32 static const char bcache_magic[] = {
33 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36 
37 static const char invalid_uuid[] = {
38 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41 
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47 
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_journal_wq;
53 
54 
55 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
56 /* limitation of partitions number on single bcache device */
57 #define BCACHE_MINORS		128
58 /* limitation of bcache devices number on single system */
59 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
60 
61 /* Superblock */
62 
63 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
64 {
65 	unsigned int bucket_size = le16_to_cpu(s->bucket_size);
66 
67 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES &&
68 	     bch_has_feature_large_bucket(sb))
69 		bucket_size |= le16_to_cpu(s->bucket_size_hi) << 16;
70 
71 	return bucket_size;
72 }
73 
74 static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
75 				     struct cache_sb_disk *s)
76 {
77 	const char *err;
78 	unsigned int i;
79 
80 	sb->first_bucket= le16_to_cpu(s->first_bucket);
81 	sb->nbuckets	= le64_to_cpu(s->nbuckets);
82 	sb->bucket_size	= get_bucket_size(sb, s);
83 
84 	sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
85 	sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
86 
87 	err = "Too many journal buckets";
88 	if (sb->keys > SB_JOURNAL_BUCKETS)
89 		goto err;
90 
91 	err = "Too many buckets";
92 	if (sb->nbuckets > LONG_MAX)
93 		goto err;
94 
95 	err = "Not enough buckets";
96 	if (sb->nbuckets < 1 << 7)
97 		goto err;
98 
99 	err = "Bad block size (not power of 2)";
100 	if (!is_power_of_2(sb->block_size))
101 		goto err;
102 
103 	err = "Bad block size (larger than page size)";
104 	if (sb->block_size > PAGE_SECTORS)
105 		goto err;
106 
107 	err = "Bad bucket size (not power of 2)";
108 	if (!is_power_of_2(sb->bucket_size))
109 		goto err;
110 
111 	err = "Bad bucket size (smaller than page size)";
112 	if (sb->bucket_size < PAGE_SECTORS)
113 		goto err;
114 
115 	err = "Invalid superblock: device too small";
116 	if (get_capacity(bdev->bd_disk) <
117 	    sb->bucket_size * sb->nbuckets)
118 		goto err;
119 
120 	err = "Bad UUID";
121 	if (bch_is_zero(sb->set_uuid, 16))
122 		goto err;
123 
124 	err = "Bad cache device number in set";
125 	if (!sb->nr_in_set ||
126 	    sb->nr_in_set <= sb->nr_this_dev ||
127 	    sb->nr_in_set > MAX_CACHES_PER_SET)
128 		goto err;
129 
130 	err = "Journal buckets not sequential";
131 	for (i = 0; i < sb->keys; i++)
132 		if (sb->d[i] != sb->first_bucket + i)
133 			goto err;
134 
135 	err = "Too many journal buckets";
136 	if (sb->first_bucket + sb->keys > sb->nbuckets)
137 		goto err;
138 
139 	err = "Invalid superblock: first bucket comes before end of super";
140 	if (sb->first_bucket * sb->bucket_size < 16)
141 		goto err;
142 
143 	err = NULL;
144 err:
145 	return err;
146 }
147 
148 
149 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
150 			      struct cache_sb_disk **res)
151 {
152 	const char *err;
153 	struct cache_sb_disk *s;
154 	struct page *page;
155 	unsigned int i;
156 
157 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
158 				   SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
159 	if (IS_ERR(page))
160 		return "IO error";
161 	s = page_address(page) + offset_in_page(SB_OFFSET);
162 
163 	sb->offset		= le64_to_cpu(s->offset);
164 	sb->version		= le64_to_cpu(s->version);
165 
166 	memcpy(sb->magic,	s->magic, 16);
167 	memcpy(sb->uuid,	s->uuid, 16);
168 	memcpy(sb->set_uuid,	s->set_uuid, 16);
169 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
170 
171 	sb->flags		= le64_to_cpu(s->flags);
172 	sb->seq			= le64_to_cpu(s->seq);
173 	sb->last_mount		= le32_to_cpu(s->last_mount);
174 	sb->keys		= le16_to_cpu(s->keys);
175 
176 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
177 		sb->d[i] = le64_to_cpu(s->d[i]);
178 
179 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
180 		 sb->version, sb->flags, sb->seq, sb->keys);
181 
182 	err = "Not a bcache superblock (bad offset)";
183 	if (sb->offset != SB_SECTOR)
184 		goto err;
185 
186 	err = "Not a bcache superblock (bad magic)";
187 	if (memcmp(sb->magic, bcache_magic, 16))
188 		goto err;
189 
190 	err = "Bad checksum";
191 	if (s->csum != csum_set(s))
192 		goto err;
193 
194 	err = "Bad UUID";
195 	if (bch_is_zero(sb->uuid, 16))
196 		goto err;
197 
198 	sb->block_size	= le16_to_cpu(s->block_size);
199 
200 	err = "Superblock block size smaller than device block size";
201 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
202 		goto err;
203 
204 	switch (sb->version) {
205 	case BCACHE_SB_VERSION_BDEV:
206 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
207 		break;
208 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
209 	case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
210 		sb->data_offset	= le64_to_cpu(s->data_offset);
211 
212 		err = "Bad data offset";
213 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
214 			goto err;
215 
216 		break;
217 	case BCACHE_SB_VERSION_CDEV:
218 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
219 		err = read_super_common(sb, bdev, s);
220 		if (err)
221 			goto err;
222 		break;
223 	case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
224 		/*
225 		 * Feature bits are needed in read_super_common(),
226 		 * convert them firstly.
227 		 */
228 		sb->feature_compat = le64_to_cpu(s->feature_compat);
229 		sb->feature_incompat = le64_to_cpu(s->feature_incompat);
230 		sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
231 		err = read_super_common(sb, bdev, s);
232 		if (err)
233 			goto err;
234 		break;
235 	default:
236 		err = "Unsupported superblock version";
237 		goto err;
238 	}
239 
240 	sb->last_mount = (u32)ktime_get_real_seconds();
241 	*res = s;
242 	return NULL;
243 err:
244 	put_page(page);
245 	return err;
246 }
247 
248 static void write_bdev_super_endio(struct bio *bio)
249 {
250 	struct cached_dev *dc = bio->bi_private;
251 
252 	if (bio->bi_status)
253 		bch_count_backing_io_errors(dc, bio);
254 
255 	closure_put(&dc->sb_write);
256 }
257 
258 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
259 		struct bio *bio)
260 {
261 	unsigned int i;
262 
263 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
264 	bio->bi_iter.bi_sector	= SB_SECTOR;
265 	__bio_add_page(bio, virt_to_page(out), SB_SIZE,
266 			offset_in_page(out));
267 
268 	out->offset		= cpu_to_le64(sb->offset);
269 
270 	memcpy(out->uuid,	sb->uuid, 16);
271 	memcpy(out->set_uuid,	sb->set_uuid, 16);
272 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
273 
274 	out->flags		= cpu_to_le64(sb->flags);
275 	out->seq		= cpu_to_le64(sb->seq);
276 
277 	out->last_mount		= cpu_to_le32(sb->last_mount);
278 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
279 	out->keys		= cpu_to_le16(sb->keys);
280 
281 	for (i = 0; i < sb->keys; i++)
282 		out->d[i] = cpu_to_le64(sb->d[i]);
283 
284 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
285 		out->feature_compat    = cpu_to_le64(sb->feature_compat);
286 		out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
287 		out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
288 	}
289 
290 	out->version		= cpu_to_le64(sb->version);
291 	out->csum = csum_set(out);
292 
293 	pr_debug("ver %llu, flags %llu, seq %llu\n",
294 		 sb->version, sb->flags, sb->seq);
295 
296 	submit_bio(bio);
297 }
298 
299 static void bch_write_bdev_super_unlock(struct closure *cl)
300 {
301 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
302 
303 	up(&dc->sb_write_mutex);
304 }
305 
306 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
307 {
308 	struct closure *cl = &dc->sb_write;
309 	struct bio *bio = &dc->sb_bio;
310 
311 	down(&dc->sb_write_mutex);
312 	closure_init(cl, parent);
313 
314 	bio_init(bio, dc->sb_bv, 1);
315 	bio_set_dev(bio, dc->bdev);
316 	bio->bi_end_io	= write_bdev_super_endio;
317 	bio->bi_private = dc;
318 
319 	closure_get(cl);
320 	/* I/O request sent to backing device */
321 	__write_super(&dc->sb, dc->sb_disk, bio);
322 
323 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
324 }
325 
326 static void write_super_endio(struct bio *bio)
327 {
328 	struct cache *ca = bio->bi_private;
329 
330 	/* is_read = 0 */
331 	bch_count_io_errors(ca, bio->bi_status, 0,
332 			    "writing superblock");
333 	closure_put(&ca->set->sb_write);
334 }
335 
336 static void bcache_write_super_unlock(struct closure *cl)
337 {
338 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
339 
340 	up(&c->sb_write_mutex);
341 }
342 
343 void bcache_write_super(struct cache_set *c)
344 {
345 	struct closure *cl = &c->sb_write;
346 	struct cache *ca = c->cache;
347 	struct bio *bio = &ca->sb_bio;
348 	unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
349 
350 	down(&c->sb_write_mutex);
351 	closure_init(cl, &c->cl);
352 
353 	c->sb.seq++;
354 
355 	if (c->sb.version > version)
356 		version = c->sb.version;
357 
358 	ca->sb.version		= version;
359 	ca->sb.seq		= c->sb.seq;
360 	ca->sb.last_mount	= c->sb.last_mount;
361 
362 	SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
363 
364 	bio_init(bio, ca->sb_bv, 1);
365 	bio_set_dev(bio, ca->bdev);
366 	bio->bi_end_io	= write_super_endio;
367 	bio->bi_private = ca;
368 
369 	closure_get(cl);
370 	__write_super(&ca->sb, ca->sb_disk, bio);
371 
372 	closure_return_with_destructor(cl, bcache_write_super_unlock);
373 }
374 
375 /* UUID io */
376 
377 static void uuid_endio(struct bio *bio)
378 {
379 	struct closure *cl = bio->bi_private;
380 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
381 
382 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
383 	bch_bbio_free(bio, c);
384 	closure_put(cl);
385 }
386 
387 static void uuid_io_unlock(struct closure *cl)
388 {
389 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
390 
391 	up(&c->uuid_write_mutex);
392 }
393 
394 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
395 		    struct bkey *k, struct closure *parent)
396 {
397 	struct closure *cl = &c->uuid_write;
398 	struct uuid_entry *u;
399 	unsigned int i;
400 	char buf[80];
401 
402 	BUG_ON(!parent);
403 	down(&c->uuid_write_mutex);
404 	closure_init(cl, parent);
405 
406 	for (i = 0; i < KEY_PTRS(k); i++) {
407 		struct bio *bio = bch_bbio_alloc(c);
408 
409 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
410 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
411 
412 		bio->bi_end_io	= uuid_endio;
413 		bio->bi_private = cl;
414 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
415 		bch_bio_map(bio, c->uuids);
416 
417 		bch_submit_bbio(bio, c, k, i);
418 
419 		if (op != REQ_OP_WRITE)
420 			break;
421 	}
422 
423 	bch_extent_to_text(buf, sizeof(buf), k);
424 	pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
425 
426 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
427 		if (!bch_is_zero(u->uuid, 16))
428 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
429 				 u - c->uuids, u->uuid, u->label,
430 				 u->first_reg, u->last_reg, u->invalidated);
431 
432 	closure_return_with_destructor(cl, uuid_io_unlock);
433 }
434 
435 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
436 {
437 	struct bkey *k = &j->uuid_bucket;
438 
439 	if (__bch_btree_ptr_invalid(c, k))
440 		return "bad uuid pointer";
441 
442 	bkey_copy(&c->uuid_bucket, k);
443 	uuid_io(c, REQ_OP_READ, 0, k, cl);
444 
445 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
446 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
447 		struct uuid_entry	*u1 = (void *) c->uuids;
448 		int i;
449 
450 		closure_sync(cl);
451 
452 		/*
453 		 * Since the new uuid entry is bigger than the old, we have to
454 		 * convert starting at the highest memory address and work down
455 		 * in order to do it in place
456 		 */
457 
458 		for (i = c->nr_uuids - 1;
459 		     i >= 0;
460 		     --i) {
461 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
462 			memcpy(u1[i].label,	u0[i].label, 32);
463 
464 			u1[i].first_reg		= u0[i].first_reg;
465 			u1[i].last_reg		= u0[i].last_reg;
466 			u1[i].invalidated	= u0[i].invalidated;
467 
468 			u1[i].flags	= 0;
469 			u1[i].sectors	= 0;
470 		}
471 	}
472 
473 	return NULL;
474 }
475 
476 static int __uuid_write(struct cache_set *c)
477 {
478 	BKEY_PADDED(key) k;
479 	struct closure cl;
480 	struct cache *ca;
481 	unsigned int size;
482 
483 	closure_init_stack(&cl);
484 	lockdep_assert_held(&bch_register_lock);
485 
486 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
487 		return 1;
488 
489 	size =  meta_bucket_pages(&c->sb) * PAGE_SECTORS;
490 	SET_KEY_SIZE(&k.key, size);
491 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
492 	closure_sync(&cl);
493 
494 	/* Only one bucket used for uuid write */
495 	ca = PTR_CACHE(c, &k.key, 0);
496 	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
497 
498 	bkey_copy(&c->uuid_bucket, &k.key);
499 	bkey_put(c, &k.key);
500 	return 0;
501 }
502 
503 int bch_uuid_write(struct cache_set *c)
504 {
505 	int ret = __uuid_write(c);
506 
507 	if (!ret)
508 		bch_journal_meta(c, NULL);
509 
510 	return ret;
511 }
512 
513 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
514 {
515 	struct uuid_entry *u;
516 
517 	for (u = c->uuids;
518 	     u < c->uuids + c->nr_uuids; u++)
519 		if (!memcmp(u->uuid, uuid, 16))
520 			return u;
521 
522 	return NULL;
523 }
524 
525 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
526 {
527 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
528 
529 	return uuid_find(c, zero_uuid);
530 }
531 
532 /*
533  * Bucket priorities/gens:
534  *
535  * For each bucket, we store on disk its
536  *   8 bit gen
537  *  16 bit priority
538  *
539  * See alloc.c for an explanation of the gen. The priority is used to implement
540  * lru (and in the future other) cache replacement policies; for most purposes
541  * it's just an opaque integer.
542  *
543  * The gens and the priorities don't have a whole lot to do with each other, and
544  * it's actually the gens that must be written out at specific times - it's no
545  * big deal if the priorities don't get written, if we lose them we just reuse
546  * buckets in suboptimal order.
547  *
548  * On disk they're stored in a packed array, and in as many buckets are required
549  * to fit them all. The buckets we use to store them form a list; the journal
550  * header points to the first bucket, the first bucket points to the second
551  * bucket, et cetera.
552  *
553  * This code is used by the allocation code; periodically (whenever it runs out
554  * of buckets to allocate from) the allocation code will invalidate some
555  * buckets, but it can't use those buckets until their new gens are safely on
556  * disk.
557  */
558 
559 static void prio_endio(struct bio *bio)
560 {
561 	struct cache *ca = bio->bi_private;
562 
563 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
564 	bch_bbio_free(bio, ca->set);
565 	closure_put(&ca->prio);
566 }
567 
568 static void prio_io(struct cache *ca, uint64_t bucket, int op,
569 		    unsigned long op_flags)
570 {
571 	struct closure *cl = &ca->prio;
572 	struct bio *bio = bch_bbio_alloc(ca->set);
573 
574 	closure_init_stack(cl);
575 
576 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
577 	bio_set_dev(bio, ca->bdev);
578 	bio->bi_iter.bi_size	= meta_bucket_bytes(&ca->sb);
579 
580 	bio->bi_end_io	= prio_endio;
581 	bio->bi_private = ca;
582 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
583 	bch_bio_map(bio, ca->disk_buckets);
584 
585 	closure_bio_submit(ca->set, bio, &ca->prio);
586 	closure_sync(cl);
587 }
588 
589 int bch_prio_write(struct cache *ca, bool wait)
590 {
591 	int i;
592 	struct bucket *b;
593 	struct closure cl;
594 
595 	pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
596 		 fifo_used(&ca->free[RESERVE_PRIO]),
597 		 fifo_used(&ca->free[RESERVE_NONE]),
598 		 fifo_used(&ca->free_inc));
599 
600 	/*
601 	 * Pre-check if there are enough free buckets. In the non-blocking
602 	 * scenario it's better to fail early rather than starting to allocate
603 	 * buckets and do a cleanup later in case of failure.
604 	 */
605 	if (!wait) {
606 		size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
607 			       fifo_used(&ca->free[RESERVE_NONE]);
608 		if (prio_buckets(ca) > avail)
609 			return -ENOMEM;
610 	}
611 
612 	closure_init_stack(&cl);
613 
614 	lockdep_assert_held(&ca->set->bucket_lock);
615 
616 	ca->disk_buckets->seq++;
617 
618 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
619 			&ca->meta_sectors_written);
620 
621 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
622 		long bucket;
623 		struct prio_set *p = ca->disk_buckets;
624 		struct bucket_disk *d = p->data;
625 		struct bucket_disk *end = d + prios_per_bucket(ca);
626 
627 		for (b = ca->buckets + i * prios_per_bucket(ca);
628 		     b < ca->buckets + ca->sb.nbuckets && d < end;
629 		     b++, d++) {
630 			d->prio = cpu_to_le16(b->prio);
631 			d->gen = b->gen;
632 		}
633 
634 		p->next_bucket	= ca->prio_buckets[i + 1];
635 		p->magic	= pset_magic(&ca->sb);
636 		p->csum		= bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
637 
638 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
639 		BUG_ON(bucket == -1);
640 
641 		mutex_unlock(&ca->set->bucket_lock);
642 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
643 		mutex_lock(&ca->set->bucket_lock);
644 
645 		ca->prio_buckets[i] = bucket;
646 		atomic_dec_bug(&ca->buckets[bucket].pin);
647 	}
648 
649 	mutex_unlock(&ca->set->bucket_lock);
650 
651 	bch_journal_meta(ca->set, &cl);
652 	closure_sync(&cl);
653 
654 	mutex_lock(&ca->set->bucket_lock);
655 
656 	/*
657 	 * Don't want the old priorities to get garbage collected until after we
658 	 * finish writing the new ones, and they're journalled
659 	 */
660 	for (i = 0; i < prio_buckets(ca); i++) {
661 		if (ca->prio_last_buckets[i])
662 			__bch_bucket_free(ca,
663 				&ca->buckets[ca->prio_last_buckets[i]]);
664 
665 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
666 	}
667 	return 0;
668 }
669 
670 static int prio_read(struct cache *ca, uint64_t bucket)
671 {
672 	struct prio_set *p = ca->disk_buckets;
673 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
674 	struct bucket *b;
675 	unsigned int bucket_nr = 0;
676 	int ret = -EIO;
677 
678 	for (b = ca->buckets;
679 	     b < ca->buckets + ca->sb.nbuckets;
680 	     b++, d++) {
681 		if (d == end) {
682 			ca->prio_buckets[bucket_nr] = bucket;
683 			ca->prio_last_buckets[bucket_nr] = bucket;
684 			bucket_nr++;
685 
686 			prio_io(ca, bucket, REQ_OP_READ, 0);
687 
688 			if (p->csum !=
689 			    bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
690 				pr_warn("bad csum reading priorities\n");
691 				goto out;
692 			}
693 
694 			if (p->magic != pset_magic(&ca->sb)) {
695 				pr_warn("bad magic reading priorities\n");
696 				goto out;
697 			}
698 
699 			bucket = p->next_bucket;
700 			d = p->data;
701 		}
702 
703 		b->prio = le16_to_cpu(d->prio);
704 		b->gen = b->last_gc = d->gen;
705 	}
706 
707 	ret = 0;
708 out:
709 	return ret;
710 }
711 
712 /* Bcache device */
713 
714 static int open_dev(struct block_device *b, fmode_t mode)
715 {
716 	struct bcache_device *d = b->bd_disk->private_data;
717 
718 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
719 		return -ENXIO;
720 
721 	closure_get(&d->cl);
722 	return 0;
723 }
724 
725 static void release_dev(struct gendisk *b, fmode_t mode)
726 {
727 	struct bcache_device *d = b->private_data;
728 
729 	closure_put(&d->cl);
730 }
731 
732 static int ioctl_dev(struct block_device *b, fmode_t mode,
733 		     unsigned int cmd, unsigned long arg)
734 {
735 	struct bcache_device *d = b->bd_disk->private_data;
736 
737 	return d->ioctl(d, mode, cmd, arg);
738 }
739 
740 static const struct block_device_operations bcache_cached_ops = {
741 	.submit_bio	= cached_dev_submit_bio,
742 	.open		= open_dev,
743 	.release	= release_dev,
744 	.ioctl		= ioctl_dev,
745 	.owner		= THIS_MODULE,
746 };
747 
748 static const struct block_device_operations bcache_flash_ops = {
749 	.submit_bio	= flash_dev_submit_bio,
750 	.open		= open_dev,
751 	.release	= release_dev,
752 	.ioctl		= ioctl_dev,
753 	.owner		= THIS_MODULE,
754 };
755 
756 void bcache_device_stop(struct bcache_device *d)
757 {
758 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
759 		/*
760 		 * closure_fn set to
761 		 * - cached device: cached_dev_flush()
762 		 * - flash dev: flash_dev_flush()
763 		 */
764 		closure_queue(&d->cl);
765 }
766 
767 static void bcache_device_unlink(struct bcache_device *d)
768 {
769 	lockdep_assert_held(&bch_register_lock);
770 
771 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
772 		struct cache *ca = d->c->cache;
773 
774 		sysfs_remove_link(&d->c->kobj, d->name);
775 		sysfs_remove_link(&d->kobj, "cache");
776 
777 		bd_unlink_disk_holder(ca->bdev, d->disk);
778 	}
779 }
780 
781 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
782 			       const char *name)
783 {
784 	struct cache *ca = c->cache;
785 	int ret;
786 
787 	bd_link_disk_holder(ca->bdev, d->disk);
788 
789 	snprintf(d->name, BCACHEDEVNAME_SIZE,
790 		 "%s%u", name, d->id);
791 
792 	ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
793 	if (ret < 0)
794 		pr_err("Couldn't create device -> cache set symlink\n");
795 
796 	ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
797 	if (ret < 0)
798 		pr_err("Couldn't create cache set -> device symlink\n");
799 
800 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
801 }
802 
803 static void bcache_device_detach(struct bcache_device *d)
804 {
805 	lockdep_assert_held(&bch_register_lock);
806 
807 	atomic_dec(&d->c->attached_dev_nr);
808 
809 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
810 		struct uuid_entry *u = d->c->uuids + d->id;
811 
812 		SET_UUID_FLASH_ONLY(u, 0);
813 		memcpy(u->uuid, invalid_uuid, 16);
814 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
815 		bch_uuid_write(d->c);
816 	}
817 
818 	bcache_device_unlink(d);
819 
820 	d->c->devices[d->id] = NULL;
821 	closure_put(&d->c->caching);
822 	d->c = NULL;
823 }
824 
825 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
826 				 unsigned int id)
827 {
828 	d->id = id;
829 	d->c = c;
830 	c->devices[id] = d;
831 
832 	if (id >= c->devices_max_used)
833 		c->devices_max_used = id + 1;
834 
835 	closure_get(&c->caching);
836 }
837 
838 static inline int first_minor_to_idx(int first_minor)
839 {
840 	return (first_minor/BCACHE_MINORS);
841 }
842 
843 static inline int idx_to_first_minor(int idx)
844 {
845 	return (idx * BCACHE_MINORS);
846 }
847 
848 static void bcache_device_free(struct bcache_device *d)
849 {
850 	struct gendisk *disk = d->disk;
851 
852 	lockdep_assert_held(&bch_register_lock);
853 
854 	if (disk)
855 		pr_info("%s stopped\n", disk->disk_name);
856 	else
857 		pr_err("bcache device (NULL gendisk) stopped\n");
858 
859 	if (d->c)
860 		bcache_device_detach(d);
861 
862 	if (disk) {
863 		bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
864 
865 		if (disk_added)
866 			del_gendisk(disk);
867 
868 		if (disk->queue)
869 			blk_cleanup_queue(disk->queue);
870 
871 		ida_simple_remove(&bcache_device_idx,
872 				  first_minor_to_idx(disk->first_minor));
873 		if (disk_added)
874 			put_disk(disk);
875 	}
876 
877 	bioset_exit(&d->bio_split);
878 	kvfree(d->full_dirty_stripes);
879 	kvfree(d->stripe_sectors_dirty);
880 
881 	closure_debug_destroy(&d->cl);
882 }
883 
884 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
885 		sector_t sectors, struct block_device *cached_bdev,
886 		const struct block_device_operations *ops)
887 {
888 	struct request_queue *q;
889 	const size_t max_stripes = min_t(size_t, INT_MAX,
890 					 SIZE_MAX / sizeof(atomic_t));
891 	uint64_t n;
892 	int idx;
893 
894 	if (!d->stripe_size)
895 		d->stripe_size = 1 << 31;
896 
897 	n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
898 	if (!n || n > max_stripes) {
899 		pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
900 			n);
901 		return -ENOMEM;
902 	}
903 	d->nr_stripes = n;
904 
905 	n = d->nr_stripes * sizeof(atomic_t);
906 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
907 	if (!d->stripe_sectors_dirty)
908 		return -ENOMEM;
909 
910 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
911 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
912 	if (!d->full_dirty_stripes)
913 		return -ENOMEM;
914 
915 	idx = ida_simple_get(&bcache_device_idx, 0,
916 				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
917 	if (idx < 0)
918 		return idx;
919 
920 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
921 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
922 		goto err;
923 
924 	d->disk = alloc_disk(BCACHE_MINORS);
925 	if (!d->disk)
926 		goto err;
927 
928 	set_capacity(d->disk, sectors);
929 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
930 
931 	d->disk->major		= bcache_major;
932 	d->disk->first_minor	= idx_to_first_minor(idx);
933 	d->disk->fops		= ops;
934 	d->disk->private_data	= d;
935 
936 	q = blk_alloc_queue(NUMA_NO_NODE);
937 	if (!q)
938 		return -ENOMEM;
939 
940 	d->disk->queue			= q;
941 	q->limits.max_hw_sectors	= UINT_MAX;
942 	q->limits.max_sectors		= UINT_MAX;
943 	q->limits.max_segment_size	= UINT_MAX;
944 	q->limits.max_segments		= BIO_MAX_PAGES;
945 	blk_queue_max_discard_sectors(q, UINT_MAX);
946 	q->limits.discard_granularity	= 512;
947 	q->limits.io_min		= block_size;
948 	q->limits.logical_block_size	= block_size;
949 	q->limits.physical_block_size	= block_size;
950 
951 	if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
952 		/*
953 		 * This should only happen with BCACHE_SB_VERSION_BDEV.
954 		 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
955 		 */
956 		pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
957 			d->disk->disk_name, q->limits.logical_block_size,
958 			PAGE_SIZE, bdev_logical_block_size(cached_bdev));
959 
960 		/* This also adjusts physical block size/min io size if needed */
961 		blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
962 	}
963 
964 	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
965 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
966 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
967 
968 	blk_queue_write_cache(q, true, true);
969 
970 	return 0;
971 
972 err:
973 	ida_simple_remove(&bcache_device_idx, idx);
974 	return -ENOMEM;
975 
976 }
977 
978 /* Cached device */
979 
980 static void calc_cached_dev_sectors(struct cache_set *c)
981 {
982 	uint64_t sectors = 0;
983 	struct cached_dev *dc;
984 
985 	list_for_each_entry(dc, &c->cached_devs, list)
986 		sectors += bdev_sectors(dc->bdev);
987 
988 	c->cached_dev_sectors = sectors;
989 }
990 
991 #define BACKING_DEV_OFFLINE_TIMEOUT 5
992 static int cached_dev_status_update(void *arg)
993 {
994 	struct cached_dev *dc = arg;
995 	struct request_queue *q;
996 
997 	/*
998 	 * If this delayed worker is stopping outside, directly quit here.
999 	 * dc->io_disable might be set via sysfs interface, so check it
1000 	 * here too.
1001 	 */
1002 	while (!kthread_should_stop() && !dc->io_disable) {
1003 		q = bdev_get_queue(dc->bdev);
1004 		if (blk_queue_dying(q))
1005 			dc->offline_seconds++;
1006 		else
1007 			dc->offline_seconds = 0;
1008 
1009 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1010 			pr_err("%s: device offline for %d seconds\n",
1011 			       dc->backing_dev_name,
1012 			       BACKING_DEV_OFFLINE_TIMEOUT);
1013 			pr_err("%s: disable I/O request due to backing device offline\n",
1014 			       dc->disk.name);
1015 			dc->io_disable = true;
1016 			/* let others know earlier that io_disable is true */
1017 			smp_mb();
1018 			bcache_device_stop(&dc->disk);
1019 			break;
1020 		}
1021 		schedule_timeout_interruptible(HZ);
1022 	}
1023 
1024 	wait_for_kthread_stop();
1025 	return 0;
1026 }
1027 
1028 
1029 int bch_cached_dev_run(struct cached_dev *dc)
1030 {
1031 	struct bcache_device *d = &dc->disk;
1032 	char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1033 	char *env[] = {
1034 		"DRIVER=bcache",
1035 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1036 		kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1037 		NULL,
1038 	};
1039 
1040 	if (dc->io_disable) {
1041 		pr_err("I/O disabled on cached dev %s\n",
1042 		       dc->backing_dev_name);
1043 		kfree(env[1]);
1044 		kfree(env[2]);
1045 		kfree(buf);
1046 		return -EIO;
1047 	}
1048 
1049 	if (atomic_xchg(&dc->running, 1)) {
1050 		kfree(env[1]);
1051 		kfree(env[2]);
1052 		kfree(buf);
1053 		pr_info("cached dev %s is running already\n",
1054 		       dc->backing_dev_name);
1055 		return -EBUSY;
1056 	}
1057 
1058 	if (!d->c &&
1059 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1060 		struct closure cl;
1061 
1062 		closure_init_stack(&cl);
1063 
1064 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1065 		bch_write_bdev_super(dc, &cl);
1066 		closure_sync(&cl);
1067 	}
1068 
1069 	add_disk(d->disk);
1070 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
1071 	/*
1072 	 * won't show up in the uevent file, use udevadm monitor -e instead
1073 	 * only class / kset properties are persistent
1074 	 */
1075 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1076 	kfree(env[1]);
1077 	kfree(env[2]);
1078 	kfree(buf);
1079 
1080 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1081 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1082 			      &d->kobj, "bcache")) {
1083 		pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1084 		return -ENOMEM;
1085 	}
1086 
1087 	dc->status_update_thread = kthread_run(cached_dev_status_update,
1088 					       dc, "bcache_status_update");
1089 	if (IS_ERR(dc->status_update_thread)) {
1090 		pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 /*
1097  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1098  * work dc->writeback_rate_update is running. Wait until the routine
1099  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1100  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1101  * seconds, give up waiting here and continue to cancel it too.
1102  */
1103 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1104 {
1105 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1106 
1107 	do {
1108 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1109 			      &dc->disk.flags))
1110 			break;
1111 		time_out--;
1112 		schedule_timeout_interruptible(1);
1113 	} while (time_out > 0);
1114 
1115 	if (time_out == 0)
1116 		pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1117 
1118 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1119 }
1120 
1121 static void cached_dev_detach_finish(struct work_struct *w)
1122 {
1123 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1124 	struct closure cl;
1125 
1126 	closure_init_stack(&cl);
1127 
1128 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1129 	BUG_ON(refcount_read(&dc->count));
1130 
1131 
1132 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1133 		cancel_writeback_rate_update_dwork(dc);
1134 
1135 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1136 		kthread_stop(dc->writeback_thread);
1137 		dc->writeback_thread = NULL;
1138 	}
1139 
1140 	memset(&dc->sb.set_uuid, 0, 16);
1141 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1142 
1143 	bch_write_bdev_super(dc, &cl);
1144 	closure_sync(&cl);
1145 
1146 	mutex_lock(&bch_register_lock);
1147 
1148 	calc_cached_dev_sectors(dc->disk.c);
1149 	bcache_device_detach(&dc->disk);
1150 	list_move(&dc->list, &uncached_devices);
1151 
1152 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1153 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1154 
1155 	mutex_unlock(&bch_register_lock);
1156 
1157 	pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1158 
1159 	/* Drop ref we took in cached_dev_detach() */
1160 	closure_put(&dc->disk.cl);
1161 }
1162 
1163 void bch_cached_dev_detach(struct cached_dev *dc)
1164 {
1165 	lockdep_assert_held(&bch_register_lock);
1166 
1167 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1168 		return;
1169 
1170 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1171 		return;
1172 
1173 	/*
1174 	 * Block the device from being closed and freed until we're finished
1175 	 * detaching
1176 	 */
1177 	closure_get(&dc->disk.cl);
1178 
1179 	bch_writeback_queue(dc);
1180 
1181 	cached_dev_put(dc);
1182 }
1183 
1184 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1185 			  uint8_t *set_uuid)
1186 {
1187 	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1188 	struct uuid_entry *u;
1189 	struct cached_dev *exist_dc, *t;
1190 	int ret = 0;
1191 
1192 	if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1193 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1194 		return -ENOENT;
1195 
1196 	if (dc->disk.c) {
1197 		pr_err("Can't attach %s: already attached\n",
1198 		       dc->backing_dev_name);
1199 		return -EINVAL;
1200 	}
1201 
1202 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1203 		pr_err("Can't attach %s: shutting down\n",
1204 		       dc->backing_dev_name);
1205 		return -EINVAL;
1206 	}
1207 
1208 	if (dc->sb.block_size < c->sb.block_size) {
1209 		/* Will die */
1210 		pr_err("Couldn't attach %s: block size less than set's block size\n",
1211 		       dc->backing_dev_name);
1212 		return -EINVAL;
1213 	}
1214 
1215 	/* Check whether already attached */
1216 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1217 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1218 			pr_err("Tried to attach %s but duplicate UUID already attached\n",
1219 				dc->backing_dev_name);
1220 
1221 			return -EINVAL;
1222 		}
1223 	}
1224 
1225 	u = uuid_find(c, dc->sb.uuid);
1226 
1227 	if (u &&
1228 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1229 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1230 		memcpy(u->uuid, invalid_uuid, 16);
1231 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1232 		u = NULL;
1233 	}
1234 
1235 	if (!u) {
1236 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1237 			pr_err("Couldn't find uuid for %s in set\n",
1238 			       dc->backing_dev_name);
1239 			return -ENOENT;
1240 		}
1241 
1242 		u = uuid_find_empty(c);
1243 		if (!u) {
1244 			pr_err("Not caching %s, no room for UUID\n",
1245 			       dc->backing_dev_name);
1246 			return -EINVAL;
1247 		}
1248 	}
1249 
1250 	/*
1251 	 * Deadlocks since we're called via sysfs...
1252 	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1253 	 */
1254 
1255 	if (bch_is_zero(u->uuid, 16)) {
1256 		struct closure cl;
1257 
1258 		closure_init_stack(&cl);
1259 
1260 		memcpy(u->uuid, dc->sb.uuid, 16);
1261 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1262 		u->first_reg = u->last_reg = rtime;
1263 		bch_uuid_write(c);
1264 
1265 		memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1266 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1267 
1268 		bch_write_bdev_super(dc, &cl);
1269 		closure_sync(&cl);
1270 	} else {
1271 		u->last_reg = rtime;
1272 		bch_uuid_write(c);
1273 	}
1274 
1275 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1276 	list_move(&dc->list, &c->cached_devs);
1277 	calc_cached_dev_sectors(c);
1278 
1279 	/*
1280 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1281 	 * cached_dev_get()
1282 	 */
1283 	smp_wmb();
1284 	refcount_set(&dc->count, 1);
1285 
1286 	/* Block writeback thread, but spawn it */
1287 	down_write(&dc->writeback_lock);
1288 	if (bch_cached_dev_writeback_start(dc)) {
1289 		up_write(&dc->writeback_lock);
1290 		pr_err("Couldn't start writeback facilities for %s\n",
1291 		       dc->disk.disk->disk_name);
1292 		return -ENOMEM;
1293 	}
1294 
1295 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1296 		atomic_set(&dc->has_dirty, 1);
1297 		bch_writeback_queue(dc);
1298 	}
1299 
1300 	bch_sectors_dirty_init(&dc->disk);
1301 
1302 	ret = bch_cached_dev_run(dc);
1303 	if (ret && (ret != -EBUSY)) {
1304 		up_write(&dc->writeback_lock);
1305 		/*
1306 		 * bch_register_lock is held, bcache_device_stop() is not
1307 		 * able to be directly called. The kthread and kworker
1308 		 * created previously in bch_cached_dev_writeback_start()
1309 		 * have to be stopped manually here.
1310 		 */
1311 		kthread_stop(dc->writeback_thread);
1312 		cancel_writeback_rate_update_dwork(dc);
1313 		pr_err("Couldn't run cached device %s\n",
1314 		       dc->backing_dev_name);
1315 		return ret;
1316 	}
1317 
1318 	bcache_device_link(&dc->disk, c, "bdev");
1319 	atomic_inc(&c->attached_dev_nr);
1320 
1321 	/* Allow the writeback thread to proceed */
1322 	up_write(&dc->writeback_lock);
1323 
1324 	pr_info("Caching %s as %s on set %pU\n",
1325 		dc->backing_dev_name,
1326 		dc->disk.disk->disk_name,
1327 		dc->disk.c->set_uuid);
1328 	return 0;
1329 }
1330 
1331 /* when dc->disk.kobj released */
1332 void bch_cached_dev_release(struct kobject *kobj)
1333 {
1334 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1335 					     disk.kobj);
1336 	kfree(dc);
1337 	module_put(THIS_MODULE);
1338 }
1339 
1340 static void cached_dev_free(struct closure *cl)
1341 {
1342 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1343 
1344 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1345 		cancel_writeback_rate_update_dwork(dc);
1346 
1347 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1348 		kthread_stop(dc->writeback_thread);
1349 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1350 		kthread_stop(dc->status_update_thread);
1351 
1352 	mutex_lock(&bch_register_lock);
1353 
1354 	if (atomic_read(&dc->running))
1355 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1356 	bcache_device_free(&dc->disk);
1357 	list_del(&dc->list);
1358 
1359 	mutex_unlock(&bch_register_lock);
1360 
1361 	if (dc->sb_disk)
1362 		put_page(virt_to_page(dc->sb_disk));
1363 
1364 	if (!IS_ERR_OR_NULL(dc->bdev))
1365 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1366 
1367 	wake_up(&unregister_wait);
1368 
1369 	kobject_put(&dc->disk.kobj);
1370 }
1371 
1372 static void cached_dev_flush(struct closure *cl)
1373 {
1374 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1375 	struct bcache_device *d = &dc->disk;
1376 
1377 	mutex_lock(&bch_register_lock);
1378 	bcache_device_unlink(d);
1379 	mutex_unlock(&bch_register_lock);
1380 
1381 	bch_cache_accounting_destroy(&dc->accounting);
1382 	kobject_del(&d->kobj);
1383 
1384 	continue_at(cl, cached_dev_free, system_wq);
1385 }
1386 
1387 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1388 {
1389 	int ret;
1390 	struct io *io;
1391 	struct request_queue *q = bdev_get_queue(dc->bdev);
1392 
1393 	__module_get(THIS_MODULE);
1394 	INIT_LIST_HEAD(&dc->list);
1395 	closure_init(&dc->disk.cl, NULL);
1396 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1397 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1398 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1399 	sema_init(&dc->sb_write_mutex, 1);
1400 	INIT_LIST_HEAD(&dc->io_lru);
1401 	spin_lock_init(&dc->io_lock);
1402 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1403 
1404 	dc->sequential_cutoff		= 4 << 20;
1405 
1406 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1407 		list_add(&io->lru, &dc->io_lru);
1408 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1409 	}
1410 
1411 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1412 
1413 	if (dc->disk.stripe_size)
1414 		dc->partial_stripes_expensive =
1415 			q->limits.raid_partial_stripes_expensive;
1416 
1417 	ret = bcache_device_init(&dc->disk, block_size,
1418 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset,
1419 			 dc->bdev, &bcache_cached_ops);
1420 	if (ret)
1421 		return ret;
1422 
1423 	blk_queue_io_opt(dc->disk.disk->queue,
1424 		max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1425 
1426 	atomic_set(&dc->io_errors, 0);
1427 	dc->io_disable = false;
1428 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1429 	/* default to auto */
1430 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1431 
1432 	bch_cached_dev_request_init(dc);
1433 	bch_cached_dev_writeback_init(dc);
1434 	return 0;
1435 }
1436 
1437 /* Cached device - bcache superblock */
1438 
1439 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1440 				 struct block_device *bdev,
1441 				 struct cached_dev *dc)
1442 {
1443 	const char *err = "cannot allocate memory";
1444 	struct cache_set *c;
1445 	int ret = -ENOMEM;
1446 
1447 	bdevname(bdev, dc->backing_dev_name);
1448 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1449 	dc->bdev = bdev;
1450 	dc->bdev->bd_holder = dc;
1451 	dc->sb_disk = sb_disk;
1452 
1453 	if (cached_dev_init(dc, sb->block_size << 9))
1454 		goto err;
1455 
1456 	err = "error creating kobject";
1457 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1458 			"bcache"))
1459 		goto err;
1460 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1461 		goto err;
1462 
1463 	pr_info("registered backing device %s\n", dc->backing_dev_name);
1464 
1465 	list_add(&dc->list, &uncached_devices);
1466 	/* attach to a matched cache set if it exists */
1467 	list_for_each_entry(c, &bch_cache_sets, list)
1468 		bch_cached_dev_attach(dc, c, NULL);
1469 
1470 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1471 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1472 		err = "failed to run cached device";
1473 		ret = bch_cached_dev_run(dc);
1474 		if (ret)
1475 			goto err;
1476 	}
1477 
1478 	return 0;
1479 err:
1480 	pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1481 	bcache_device_stop(&dc->disk);
1482 	return ret;
1483 }
1484 
1485 /* Flash only volumes */
1486 
1487 /* When d->kobj released */
1488 void bch_flash_dev_release(struct kobject *kobj)
1489 {
1490 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1491 					       kobj);
1492 	kfree(d);
1493 }
1494 
1495 static void flash_dev_free(struct closure *cl)
1496 {
1497 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1498 
1499 	mutex_lock(&bch_register_lock);
1500 	atomic_long_sub(bcache_dev_sectors_dirty(d),
1501 			&d->c->flash_dev_dirty_sectors);
1502 	bcache_device_free(d);
1503 	mutex_unlock(&bch_register_lock);
1504 	kobject_put(&d->kobj);
1505 }
1506 
1507 static void flash_dev_flush(struct closure *cl)
1508 {
1509 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1510 
1511 	mutex_lock(&bch_register_lock);
1512 	bcache_device_unlink(d);
1513 	mutex_unlock(&bch_register_lock);
1514 	kobject_del(&d->kobj);
1515 	continue_at(cl, flash_dev_free, system_wq);
1516 }
1517 
1518 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1519 {
1520 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1521 					  GFP_KERNEL);
1522 	if (!d)
1523 		return -ENOMEM;
1524 
1525 	closure_init(&d->cl, NULL);
1526 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1527 
1528 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1529 
1530 	if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1531 			NULL, &bcache_flash_ops))
1532 		goto err;
1533 
1534 	bcache_device_attach(d, c, u - c->uuids);
1535 	bch_sectors_dirty_init(d);
1536 	bch_flash_dev_request_init(d);
1537 	add_disk(d->disk);
1538 
1539 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1540 		goto err;
1541 
1542 	bcache_device_link(d, c, "volume");
1543 
1544 	return 0;
1545 err:
1546 	kobject_put(&d->kobj);
1547 	return -ENOMEM;
1548 }
1549 
1550 static int flash_devs_run(struct cache_set *c)
1551 {
1552 	int ret = 0;
1553 	struct uuid_entry *u;
1554 
1555 	for (u = c->uuids;
1556 	     u < c->uuids + c->nr_uuids && !ret;
1557 	     u++)
1558 		if (UUID_FLASH_ONLY(u))
1559 			ret = flash_dev_run(c, u);
1560 
1561 	return ret;
1562 }
1563 
1564 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1565 {
1566 	struct uuid_entry *u;
1567 
1568 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1569 		return -EINTR;
1570 
1571 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1572 		return -EPERM;
1573 
1574 	u = uuid_find_empty(c);
1575 	if (!u) {
1576 		pr_err("Can't create volume, no room for UUID\n");
1577 		return -EINVAL;
1578 	}
1579 
1580 	get_random_bytes(u->uuid, 16);
1581 	memset(u->label, 0, 32);
1582 	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1583 
1584 	SET_UUID_FLASH_ONLY(u, 1);
1585 	u->sectors = size >> 9;
1586 
1587 	bch_uuid_write(c);
1588 
1589 	return flash_dev_run(c, u);
1590 }
1591 
1592 bool bch_cached_dev_error(struct cached_dev *dc)
1593 {
1594 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1595 		return false;
1596 
1597 	dc->io_disable = true;
1598 	/* make others know io_disable is true earlier */
1599 	smp_mb();
1600 
1601 	pr_err("stop %s: too many IO errors on backing device %s\n",
1602 	       dc->disk.disk->disk_name, dc->backing_dev_name);
1603 
1604 	bcache_device_stop(&dc->disk);
1605 	return true;
1606 }
1607 
1608 /* Cache set */
1609 
1610 __printf(2, 3)
1611 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1612 {
1613 	struct va_format vaf;
1614 	va_list args;
1615 
1616 	if (c->on_error != ON_ERROR_PANIC &&
1617 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1618 		return false;
1619 
1620 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1621 		pr_info("CACHE_SET_IO_DISABLE already set\n");
1622 
1623 	/*
1624 	 * XXX: we can be called from atomic context
1625 	 * acquire_console_sem();
1626 	 */
1627 
1628 	va_start(args, fmt);
1629 
1630 	vaf.fmt = fmt;
1631 	vaf.va = &args;
1632 
1633 	pr_err("error on %pU: %pV, disabling caching\n",
1634 	       c->set_uuid, &vaf);
1635 
1636 	va_end(args);
1637 
1638 	if (c->on_error == ON_ERROR_PANIC)
1639 		panic("panic forced after error\n");
1640 
1641 	bch_cache_set_unregister(c);
1642 	return true;
1643 }
1644 
1645 /* When c->kobj released */
1646 void bch_cache_set_release(struct kobject *kobj)
1647 {
1648 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1649 
1650 	kfree(c);
1651 	module_put(THIS_MODULE);
1652 }
1653 
1654 static void cache_set_free(struct closure *cl)
1655 {
1656 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1657 	struct cache *ca;
1658 
1659 	debugfs_remove(c->debug);
1660 
1661 	bch_open_buckets_free(c);
1662 	bch_btree_cache_free(c);
1663 	bch_journal_free(c);
1664 
1665 	mutex_lock(&bch_register_lock);
1666 	ca = c->cache;
1667 	if (ca) {
1668 		ca->set = NULL;
1669 		c->cache = NULL;
1670 		kobject_put(&ca->kobj);
1671 	}
1672 
1673 	bch_bset_sort_state_free(&c->sort);
1674 	free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->sb)));
1675 
1676 	if (c->moving_gc_wq)
1677 		destroy_workqueue(c->moving_gc_wq);
1678 	bioset_exit(&c->bio_split);
1679 	mempool_exit(&c->fill_iter);
1680 	mempool_exit(&c->bio_meta);
1681 	mempool_exit(&c->search);
1682 	kfree(c->devices);
1683 
1684 	list_del(&c->list);
1685 	mutex_unlock(&bch_register_lock);
1686 
1687 	pr_info("Cache set %pU unregistered\n", c->set_uuid);
1688 	wake_up(&unregister_wait);
1689 
1690 	closure_debug_destroy(&c->cl);
1691 	kobject_put(&c->kobj);
1692 }
1693 
1694 static void cache_set_flush(struct closure *cl)
1695 {
1696 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1697 	struct cache *ca = c->cache;
1698 	struct btree *b;
1699 
1700 	bch_cache_accounting_destroy(&c->accounting);
1701 
1702 	kobject_put(&c->internal);
1703 	kobject_del(&c->kobj);
1704 
1705 	if (!IS_ERR_OR_NULL(c->gc_thread))
1706 		kthread_stop(c->gc_thread);
1707 
1708 	if (!IS_ERR_OR_NULL(c->root))
1709 		list_add(&c->root->list, &c->btree_cache);
1710 
1711 	/*
1712 	 * Avoid flushing cached nodes if cache set is retiring
1713 	 * due to too many I/O errors detected.
1714 	 */
1715 	if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1716 		list_for_each_entry(b, &c->btree_cache, list) {
1717 			mutex_lock(&b->write_lock);
1718 			if (btree_node_dirty(b))
1719 				__bch_btree_node_write(b, NULL);
1720 			mutex_unlock(&b->write_lock);
1721 		}
1722 
1723 	if (ca->alloc_thread)
1724 		kthread_stop(ca->alloc_thread);
1725 
1726 	if (c->journal.cur) {
1727 		cancel_delayed_work_sync(&c->journal.work);
1728 		/* flush last journal entry if needed */
1729 		c->journal.work.work.func(&c->journal.work.work);
1730 	}
1731 
1732 	closure_return(cl);
1733 }
1734 
1735 /*
1736  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1737  * cache set is unregistering due to too many I/O errors. In this condition,
1738  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1739  * value and whether the broken cache has dirty data:
1740  *
1741  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1742  *  BCH_CACHED_STOP_AUTO               0               NO
1743  *  BCH_CACHED_STOP_AUTO               1               YES
1744  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1745  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1746  *
1747  * The expected behavior is, if stop_when_cache_set_failed is configured to
1748  * "auto" via sysfs interface, the bcache device will not be stopped if the
1749  * backing device is clean on the broken cache device.
1750  */
1751 static void conditional_stop_bcache_device(struct cache_set *c,
1752 					   struct bcache_device *d,
1753 					   struct cached_dev *dc)
1754 {
1755 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1756 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1757 			d->disk->disk_name, c->set_uuid);
1758 		bcache_device_stop(d);
1759 	} else if (atomic_read(&dc->has_dirty)) {
1760 		/*
1761 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1762 		 * and dc->has_dirty == 1
1763 		 */
1764 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1765 			d->disk->disk_name);
1766 		/*
1767 		 * There might be a small time gap that cache set is
1768 		 * released but bcache device is not. Inside this time
1769 		 * gap, regular I/O requests will directly go into
1770 		 * backing device as no cache set attached to. This
1771 		 * behavior may also introduce potential inconsistence
1772 		 * data in writeback mode while cache is dirty.
1773 		 * Therefore before calling bcache_device_stop() due
1774 		 * to a broken cache device, dc->io_disable should be
1775 		 * explicitly set to true.
1776 		 */
1777 		dc->io_disable = true;
1778 		/* make others know io_disable is true earlier */
1779 		smp_mb();
1780 		bcache_device_stop(d);
1781 	} else {
1782 		/*
1783 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1784 		 * and dc->has_dirty == 0
1785 		 */
1786 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1787 			d->disk->disk_name);
1788 	}
1789 }
1790 
1791 static void __cache_set_unregister(struct closure *cl)
1792 {
1793 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1794 	struct cached_dev *dc;
1795 	struct bcache_device *d;
1796 	size_t i;
1797 
1798 	mutex_lock(&bch_register_lock);
1799 
1800 	for (i = 0; i < c->devices_max_used; i++) {
1801 		d = c->devices[i];
1802 		if (!d)
1803 			continue;
1804 
1805 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1806 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1807 			dc = container_of(d, struct cached_dev, disk);
1808 			bch_cached_dev_detach(dc);
1809 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1810 				conditional_stop_bcache_device(c, d, dc);
1811 		} else {
1812 			bcache_device_stop(d);
1813 		}
1814 	}
1815 
1816 	mutex_unlock(&bch_register_lock);
1817 
1818 	continue_at(cl, cache_set_flush, system_wq);
1819 }
1820 
1821 void bch_cache_set_stop(struct cache_set *c)
1822 {
1823 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1824 		/* closure_fn set to __cache_set_unregister() */
1825 		closure_queue(&c->caching);
1826 }
1827 
1828 void bch_cache_set_unregister(struct cache_set *c)
1829 {
1830 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1831 	bch_cache_set_stop(c);
1832 }
1833 
1834 #define alloc_meta_bucket_pages(gfp, sb)		\
1835 	((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1836 
1837 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1838 {
1839 	int iter_size;
1840 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1841 
1842 	if (!c)
1843 		return NULL;
1844 
1845 	__module_get(THIS_MODULE);
1846 	closure_init(&c->cl, NULL);
1847 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1848 
1849 	closure_init(&c->caching, &c->cl);
1850 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1851 
1852 	/* Maybe create continue_at_noreturn() and use it here? */
1853 	closure_set_stopped(&c->cl);
1854 	closure_put(&c->cl);
1855 
1856 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1857 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1858 
1859 	bch_cache_accounting_init(&c->accounting, &c->cl);
1860 
1861 	memcpy(c->set_uuid, sb->set_uuid, 16);
1862 	c->sb.block_size	= sb->block_size;
1863 	c->sb.bucket_size	= sb->bucket_size;
1864 	c->sb.nr_in_set		= sb->nr_in_set;
1865 	c->sb.last_mount	= sb->last_mount;
1866 	c->sb.version		= sb->version;
1867 	if (c->sb.version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
1868 		c->sb.feature_compat = sb->feature_compat;
1869 		c->sb.feature_ro_compat = sb->feature_ro_compat;
1870 		c->sb.feature_incompat = sb->feature_incompat;
1871 	}
1872 
1873 	c->bucket_bits		= ilog2(sb->bucket_size);
1874 	c->block_bits		= ilog2(sb->block_size);
1875 	c->nr_uuids		= meta_bucket_bytes(&c->sb) / sizeof(struct uuid_entry);
1876 	c->devices_max_used	= 0;
1877 	atomic_set(&c->attached_dev_nr, 0);
1878 	c->btree_pages		= meta_bucket_pages(&c->sb);
1879 	if (c->btree_pages > BTREE_MAX_PAGES)
1880 		c->btree_pages = max_t(int, c->btree_pages / 4,
1881 				       BTREE_MAX_PAGES);
1882 
1883 	sema_init(&c->sb_write_mutex, 1);
1884 	mutex_init(&c->bucket_lock);
1885 	init_waitqueue_head(&c->btree_cache_wait);
1886 	spin_lock_init(&c->btree_cannibalize_lock);
1887 	init_waitqueue_head(&c->bucket_wait);
1888 	init_waitqueue_head(&c->gc_wait);
1889 	sema_init(&c->uuid_write_mutex, 1);
1890 
1891 	spin_lock_init(&c->btree_gc_time.lock);
1892 	spin_lock_init(&c->btree_split_time.lock);
1893 	spin_lock_init(&c->btree_read_time.lock);
1894 
1895 	bch_moving_init_cache_set(c);
1896 
1897 	INIT_LIST_HEAD(&c->list);
1898 	INIT_LIST_HEAD(&c->cached_devs);
1899 	INIT_LIST_HEAD(&c->btree_cache);
1900 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1901 	INIT_LIST_HEAD(&c->btree_cache_freed);
1902 	INIT_LIST_HEAD(&c->data_buckets);
1903 
1904 	iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1905 		sizeof(struct btree_iter_set);
1906 
1907 	c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1908 	if (!c->devices)
1909 		goto err;
1910 
1911 	if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1912 		goto err;
1913 
1914 	if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1915 			sizeof(struct bbio) +
1916 			sizeof(struct bio_vec) * meta_bucket_pages(&c->sb)))
1917 		goto err;
1918 
1919 	if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1920 		goto err;
1921 
1922 	if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1923 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
1924 		goto err;
1925 
1926 	c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, &c->sb);
1927 	if (!c->uuids)
1928 		goto err;
1929 
1930 	c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1931 	if (!c->moving_gc_wq)
1932 		goto err;
1933 
1934 	if (bch_journal_alloc(c))
1935 		goto err;
1936 
1937 	if (bch_btree_cache_alloc(c))
1938 		goto err;
1939 
1940 	if (bch_open_buckets_alloc(c))
1941 		goto err;
1942 
1943 	if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1944 		goto err;
1945 
1946 	c->congested_read_threshold_us	= 2000;
1947 	c->congested_write_threshold_us	= 20000;
1948 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1949 	c->idle_max_writeback_rate_enabled = 1;
1950 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1951 
1952 	return c;
1953 err:
1954 	bch_cache_set_unregister(c);
1955 	return NULL;
1956 }
1957 
1958 static int run_cache_set(struct cache_set *c)
1959 {
1960 	const char *err = "cannot allocate memory";
1961 	struct cached_dev *dc, *t;
1962 	struct cache *ca = c->cache;
1963 	struct closure cl;
1964 	LIST_HEAD(journal);
1965 	struct journal_replay *l;
1966 
1967 	closure_init_stack(&cl);
1968 
1969 	c->nbuckets = ca->sb.nbuckets;
1970 	set_gc_sectors(c);
1971 
1972 	if (CACHE_SYNC(&c->sb)) {
1973 		struct bkey *k;
1974 		struct jset *j;
1975 
1976 		err = "cannot allocate memory for journal";
1977 		if (bch_journal_read(c, &journal))
1978 			goto err;
1979 
1980 		pr_debug("btree_journal_read() done\n");
1981 
1982 		err = "no journal entries found";
1983 		if (list_empty(&journal))
1984 			goto err;
1985 
1986 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1987 
1988 		err = "IO error reading priorities";
1989 		if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
1990 			goto err;
1991 
1992 		/*
1993 		 * If prio_read() fails it'll call cache_set_error and we'll
1994 		 * tear everything down right away, but if we perhaps checked
1995 		 * sooner we could avoid journal replay.
1996 		 */
1997 
1998 		k = &j->btree_root;
1999 
2000 		err = "bad btree root";
2001 		if (__bch_btree_ptr_invalid(c, k))
2002 			goto err;
2003 
2004 		err = "error reading btree root";
2005 		c->root = bch_btree_node_get(c, NULL, k,
2006 					     j->btree_level,
2007 					     true, NULL);
2008 		if (IS_ERR_OR_NULL(c->root))
2009 			goto err;
2010 
2011 		list_del_init(&c->root->list);
2012 		rw_unlock(true, c->root);
2013 
2014 		err = uuid_read(c, j, &cl);
2015 		if (err)
2016 			goto err;
2017 
2018 		err = "error in recovery";
2019 		if (bch_btree_check(c))
2020 			goto err;
2021 
2022 		bch_journal_mark(c, &journal);
2023 		bch_initial_gc_finish(c);
2024 		pr_debug("btree_check() done\n");
2025 
2026 		/*
2027 		 * bcache_journal_next() can't happen sooner, or
2028 		 * btree_gc_finish() will give spurious errors about last_gc >
2029 		 * gc_gen - this is a hack but oh well.
2030 		 */
2031 		bch_journal_next(&c->journal);
2032 
2033 		err = "error starting allocator thread";
2034 		if (bch_cache_allocator_start(ca))
2035 			goto err;
2036 
2037 		/*
2038 		 * First place it's safe to allocate: btree_check() and
2039 		 * btree_gc_finish() have to run before we have buckets to
2040 		 * allocate, and bch_bucket_alloc_set() might cause a journal
2041 		 * entry to be written so bcache_journal_next() has to be called
2042 		 * first.
2043 		 *
2044 		 * If the uuids were in the old format we have to rewrite them
2045 		 * before the next journal entry is written:
2046 		 */
2047 		if (j->version < BCACHE_JSET_VERSION_UUID)
2048 			__uuid_write(c);
2049 
2050 		err = "bcache: replay journal failed";
2051 		if (bch_journal_replay(c, &journal))
2052 			goto err;
2053 	} else {
2054 		unsigned int j;
2055 
2056 		pr_notice("invalidating existing data\n");
2057 		ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2058 					2, SB_JOURNAL_BUCKETS);
2059 
2060 		for (j = 0; j < ca->sb.keys; j++)
2061 			ca->sb.d[j] = ca->sb.first_bucket + j;
2062 
2063 		bch_initial_gc_finish(c);
2064 
2065 		err = "error starting allocator thread";
2066 		if (bch_cache_allocator_start(ca))
2067 			goto err;
2068 
2069 		mutex_lock(&c->bucket_lock);
2070 		bch_prio_write(ca, true);
2071 		mutex_unlock(&c->bucket_lock);
2072 
2073 		err = "cannot allocate new UUID bucket";
2074 		if (__uuid_write(c))
2075 			goto err;
2076 
2077 		err = "cannot allocate new btree root";
2078 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2079 		if (IS_ERR_OR_NULL(c->root))
2080 			goto err;
2081 
2082 		mutex_lock(&c->root->write_lock);
2083 		bkey_copy_key(&c->root->key, &MAX_KEY);
2084 		bch_btree_node_write(c->root, &cl);
2085 		mutex_unlock(&c->root->write_lock);
2086 
2087 		bch_btree_set_root(c->root);
2088 		rw_unlock(true, c->root);
2089 
2090 		/*
2091 		 * We don't want to write the first journal entry until
2092 		 * everything is set up - fortunately journal entries won't be
2093 		 * written until the SET_CACHE_SYNC() here:
2094 		 */
2095 		SET_CACHE_SYNC(&c->sb, true);
2096 
2097 		bch_journal_next(&c->journal);
2098 		bch_journal_meta(c, &cl);
2099 	}
2100 
2101 	err = "error starting gc thread";
2102 	if (bch_gc_thread_start(c))
2103 		goto err;
2104 
2105 	closure_sync(&cl);
2106 	c->sb.last_mount = (u32)ktime_get_real_seconds();
2107 	bcache_write_super(c);
2108 
2109 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2110 		bch_cached_dev_attach(dc, c, NULL);
2111 
2112 	flash_devs_run(c);
2113 
2114 	set_bit(CACHE_SET_RUNNING, &c->flags);
2115 	return 0;
2116 err:
2117 	while (!list_empty(&journal)) {
2118 		l = list_first_entry(&journal, struct journal_replay, list);
2119 		list_del(&l->list);
2120 		kfree(l);
2121 	}
2122 
2123 	closure_sync(&cl);
2124 
2125 	bch_cache_set_error(c, "%s", err);
2126 
2127 	return -EIO;
2128 }
2129 
2130 static const char *register_cache_set(struct cache *ca)
2131 {
2132 	char buf[12];
2133 	const char *err = "cannot allocate memory";
2134 	struct cache_set *c;
2135 
2136 	list_for_each_entry(c, &bch_cache_sets, list)
2137 		if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2138 			if (c->cache)
2139 				return "duplicate cache set member";
2140 
2141 			if (!CACHE_SYNC(&ca->sb))
2142 				SET_CACHE_SYNC(&c->sb, false);
2143 
2144 			goto found;
2145 		}
2146 
2147 	c = bch_cache_set_alloc(&ca->sb);
2148 	if (!c)
2149 		return err;
2150 
2151 	err = "error creating kobject";
2152 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2153 	    kobject_add(&c->internal, &c->kobj, "internal"))
2154 		goto err;
2155 
2156 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2157 		goto err;
2158 
2159 	bch_debug_init_cache_set(c);
2160 
2161 	list_add(&c->list, &bch_cache_sets);
2162 found:
2163 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2164 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2165 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
2166 		goto err;
2167 
2168 	kobject_get(&ca->kobj);
2169 	ca->set = c;
2170 	ca->set->cache = ca;
2171 
2172 	err = "failed to run cache set";
2173 	if (run_cache_set(c) < 0)
2174 		goto err;
2175 
2176 	return NULL;
2177 err:
2178 	bch_cache_set_unregister(c);
2179 	return err;
2180 }
2181 
2182 /* Cache device */
2183 
2184 /* When ca->kobj released */
2185 void bch_cache_release(struct kobject *kobj)
2186 {
2187 	struct cache *ca = container_of(kobj, struct cache, kobj);
2188 	unsigned int i;
2189 
2190 	if (ca->set) {
2191 		BUG_ON(ca->set->cache != ca);
2192 		ca->set->cache = NULL;
2193 	}
2194 
2195 	free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2196 	kfree(ca->prio_buckets);
2197 	vfree(ca->buckets);
2198 
2199 	free_heap(&ca->heap);
2200 	free_fifo(&ca->free_inc);
2201 
2202 	for (i = 0; i < RESERVE_NR; i++)
2203 		free_fifo(&ca->free[i]);
2204 
2205 	if (ca->sb_disk)
2206 		put_page(virt_to_page(ca->sb_disk));
2207 
2208 	if (!IS_ERR_OR_NULL(ca->bdev))
2209 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2210 
2211 	kfree(ca);
2212 	module_put(THIS_MODULE);
2213 }
2214 
2215 static int cache_alloc(struct cache *ca)
2216 {
2217 	size_t free;
2218 	size_t btree_buckets;
2219 	struct bucket *b;
2220 	int ret = -ENOMEM;
2221 	const char *err = NULL;
2222 
2223 	__module_get(THIS_MODULE);
2224 	kobject_init(&ca->kobj, &bch_cache_ktype);
2225 
2226 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2227 
2228 	/*
2229 	 * when ca->sb.njournal_buckets is not zero, journal exists,
2230 	 * and in bch_journal_replay(), tree node may split,
2231 	 * so bucket of RESERVE_BTREE type is needed,
2232 	 * the worst situation is all journal buckets are valid journal,
2233 	 * and all the keys need to replay,
2234 	 * so the number of  RESERVE_BTREE type buckets should be as much
2235 	 * as journal buckets
2236 	 */
2237 	btree_buckets = ca->sb.njournal_buckets ?: 8;
2238 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2239 	if (!free) {
2240 		ret = -EPERM;
2241 		err = "ca->sb.nbuckets is too small";
2242 		goto err_free;
2243 	}
2244 
2245 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2246 						GFP_KERNEL)) {
2247 		err = "ca->free[RESERVE_BTREE] alloc failed";
2248 		goto err_btree_alloc;
2249 	}
2250 
2251 	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2252 							GFP_KERNEL)) {
2253 		err = "ca->free[RESERVE_PRIO] alloc failed";
2254 		goto err_prio_alloc;
2255 	}
2256 
2257 	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2258 		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2259 		goto err_movinggc_alloc;
2260 	}
2261 
2262 	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2263 		err = "ca->free[RESERVE_NONE] alloc failed";
2264 		goto err_none_alloc;
2265 	}
2266 
2267 	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2268 		err = "ca->free_inc alloc failed";
2269 		goto err_free_inc_alloc;
2270 	}
2271 
2272 	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2273 		err = "ca->heap alloc failed";
2274 		goto err_heap_alloc;
2275 	}
2276 
2277 	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2278 			      ca->sb.nbuckets));
2279 	if (!ca->buckets) {
2280 		err = "ca->buckets alloc failed";
2281 		goto err_buckets_alloc;
2282 	}
2283 
2284 	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2285 				   prio_buckets(ca), 2),
2286 				   GFP_KERNEL);
2287 	if (!ca->prio_buckets) {
2288 		err = "ca->prio_buckets alloc failed";
2289 		goto err_prio_buckets_alloc;
2290 	}
2291 
2292 	ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2293 	if (!ca->disk_buckets) {
2294 		err = "ca->disk_buckets alloc failed";
2295 		goto err_disk_buckets_alloc;
2296 	}
2297 
2298 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2299 
2300 	for_each_bucket(b, ca)
2301 		atomic_set(&b->pin, 0);
2302 	return 0;
2303 
2304 err_disk_buckets_alloc:
2305 	kfree(ca->prio_buckets);
2306 err_prio_buckets_alloc:
2307 	vfree(ca->buckets);
2308 err_buckets_alloc:
2309 	free_heap(&ca->heap);
2310 err_heap_alloc:
2311 	free_fifo(&ca->free_inc);
2312 err_free_inc_alloc:
2313 	free_fifo(&ca->free[RESERVE_NONE]);
2314 err_none_alloc:
2315 	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2316 err_movinggc_alloc:
2317 	free_fifo(&ca->free[RESERVE_PRIO]);
2318 err_prio_alloc:
2319 	free_fifo(&ca->free[RESERVE_BTREE]);
2320 err_btree_alloc:
2321 err_free:
2322 	module_put(THIS_MODULE);
2323 	if (err)
2324 		pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2325 	return ret;
2326 }
2327 
2328 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2329 				struct block_device *bdev, struct cache *ca)
2330 {
2331 	const char *err = NULL; /* must be set for any error case */
2332 	int ret = 0;
2333 
2334 	bdevname(bdev, ca->cache_dev_name);
2335 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2336 	ca->bdev = bdev;
2337 	ca->bdev->bd_holder = ca;
2338 	ca->sb_disk = sb_disk;
2339 
2340 	if (blk_queue_discard(bdev_get_queue(bdev)))
2341 		ca->discard = CACHE_DISCARD(&ca->sb);
2342 
2343 	ret = cache_alloc(ca);
2344 	if (ret != 0) {
2345 		/*
2346 		 * If we failed here, it means ca->kobj is not initialized yet,
2347 		 * kobject_put() won't be called and there is no chance to
2348 		 * call blkdev_put() to bdev in bch_cache_release(). So we
2349 		 * explicitly call blkdev_put() here.
2350 		 */
2351 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2352 		if (ret == -ENOMEM)
2353 			err = "cache_alloc(): -ENOMEM";
2354 		else if (ret == -EPERM)
2355 			err = "cache_alloc(): cache device is too small";
2356 		else
2357 			err = "cache_alloc(): unknown error";
2358 		goto err;
2359 	}
2360 
2361 	if (kobject_add(&ca->kobj,
2362 			&part_to_dev(bdev->bd_part)->kobj,
2363 			"bcache")) {
2364 		err = "error calling kobject_add";
2365 		ret = -ENOMEM;
2366 		goto out;
2367 	}
2368 
2369 	mutex_lock(&bch_register_lock);
2370 	err = register_cache_set(ca);
2371 	mutex_unlock(&bch_register_lock);
2372 
2373 	if (err) {
2374 		ret = -ENODEV;
2375 		goto out;
2376 	}
2377 
2378 	pr_info("registered cache device %s\n", ca->cache_dev_name);
2379 
2380 out:
2381 	kobject_put(&ca->kobj);
2382 
2383 err:
2384 	if (err)
2385 		pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2386 
2387 	return ret;
2388 }
2389 
2390 /* Global interfaces/init */
2391 
2392 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2393 			       const char *buffer, size_t size);
2394 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2395 					 struct kobj_attribute *attr,
2396 					 const char *buffer, size_t size);
2397 
2398 kobj_attribute_write(register,		register_bcache);
2399 kobj_attribute_write(register_quiet,	register_bcache);
2400 kobj_attribute_write(pendings_cleanup,	bch_pending_bdevs_cleanup);
2401 
2402 static bool bch_is_open_backing(struct block_device *bdev)
2403 {
2404 	struct cache_set *c, *tc;
2405 	struct cached_dev *dc, *t;
2406 
2407 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2408 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2409 			if (dc->bdev == bdev)
2410 				return true;
2411 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2412 		if (dc->bdev == bdev)
2413 			return true;
2414 	return false;
2415 }
2416 
2417 static bool bch_is_open_cache(struct block_device *bdev)
2418 {
2419 	struct cache_set *c, *tc;
2420 
2421 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2422 		struct cache *ca = c->cache;
2423 
2424 		if (ca->bdev == bdev)
2425 			return true;
2426 	}
2427 
2428 	return false;
2429 }
2430 
2431 static bool bch_is_open(struct block_device *bdev)
2432 {
2433 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2434 }
2435 
2436 struct async_reg_args {
2437 	struct delayed_work reg_work;
2438 	char *path;
2439 	struct cache_sb *sb;
2440 	struct cache_sb_disk *sb_disk;
2441 	struct block_device *bdev;
2442 };
2443 
2444 static void register_bdev_worker(struct work_struct *work)
2445 {
2446 	int fail = false;
2447 	struct async_reg_args *args =
2448 		container_of(work, struct async_reg_args, reg_work.work);
2449 	struct cached_dev *dc;
2450 
2451 	dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2452 	if (!dc) {
2453 		fail = true;
2454 		put_page(virt_to_page(args->sb_disk));
2455 		blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2456 		goto out;
2457 	}
2458 
2459 	mutex_lock(&bch_register_lock);
2460 	if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2461 		fail = true;
2462 	mutex_unlock(&bch_register_lock);
2463 
2464 out:
2465 	if (fail)
2466 		pr_info("error %s: fail to register backing device\n",
2467 			args->path);
2468 	kfree(args->sb);
2469 	kfree(args->path);
2470 	kfree(args);
2471 	module_put(THIS_MODULE);
2472 }
2473 
2474 static void register_cache_worker(struct work_struct *work)
2475 {
2476 	int fail = false;
2477 	struct async_reg_args *args =
2478 		container_of(work, struct async_reg_args, reg_work.work);
2479 	struct cache *ca;
2480 
2481 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2482 	if (!ca) {
2483 		fail = true;
2484 		put_page(virt_to_page(args->sb_disk));
2485 		blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2486 		goto out;
2487 	}
2488 
2489 	/* blkdev_put() will be called in bch_cache_release() */
2490 	if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2491 		fail = true;
2492 
2493 out:
2494 	if (fail)
2495 		pr_info("error %s: fail to register cache device\n",
2496 			args->path);
2497 	kfree(args->sb);
2498 	kfree(args->path);
2499 	kfree(args);
2500 	module_put(THIS_MODULE);
2501 }
2502 
2503 static void register_device_aync(struct async_reg_args *args)
2504 {
2505 	if (SB_IS_BDEV(args->sb))
2506 		INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2507 	else
2508 		INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2509 
2510 	/* 10 jiffies is enough for a delay */
2511 	queue_delayed_work(system_wq, &args->reg_work, 10);
2512 }
2513 
2514 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2515 			       const char *buffer, size_t size)
2516 {
2517 	const char *err;
2518 	char *path = NULL;
2519 	struct cache_sb *sb;
2520 	struct cache_sb_disk *sb_disk;
2521 	struct block_device *bdev;
2522 	ssize_t ret;
2523 	bool async_registration = false;
2524 
2525 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2526 	async_registration = true;
2527 #endif
2528 
2529 	ret = -EBUSY;
2530 	err = "failed to reference bcache module";
2531 	if (!try_module_get(THIS_MODULE))
2532 		goto out;
2533 
2534 	/* For latest state of bcache_is_reboot */
2535 	smp_mb();
2536 	err = "bcache is in reboot";
2537 	if (bcache_is_reboot)
2538 		goto out_module_put;
2539 
2540 	ret = -ENOMEM;
2541 	err = "cannot allocate memory";
2542 	path = kstrndup(buffer, size, GFP_KERNEL);
2543 	if (!path)
2544 		goto out_module_put;
2545 
2546 	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2547 	if (!sb)
2548 		goto out_free_path;
2549 
2550 	ret = -EINVAL;
2551 	err = "failed to open device";
2552 	bdev = blkdev_get_by_path(strim(path),
2553 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2554 				  sb);
2555 	if (IS_ERR(bdev)) {
2556 		if (bdev == ERR_PTR(-EBUSY)) {
2557 			bdev = lookup_bdev(strim(path));
2558 			mutex_lock(&bch_register_lock);
2559 			if (!IS_ERR(bdev) && bch_is_open(bdev))
2560 				err = "device already registered";
2561 			else
2562 				err = "device busy";
2563 			mutex_unlock(&bch_register_lock);
2564 			if (!IS_ERR(bdev))
2565 				bdput(bdev);
2566 			if (attr == &ksysfs_register_quiet)
2567 				goto done;
2568 		}
2569 		goto out_free_sb;
2570 	}
2571 
2572 	err = "failed to set blocksize";
2573 	if (set_blocksize(bdev, 4096))
2574 		goto out_blkdev_put;
2575 
2576 	err = read_super(sb, bdev, &sb_disk);
2577 	if (err)
2578 		goto out_blkdev_put;
2579 
2580 	err = "failed to register device";
2581 
2582 	if (async_registration) {
2583 		/* register in asynchronous way */
2584 		struct async_reg_args *args =
2585 			kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2586 
2587 		if (!args) {
2588 			ret = -ENOMEM;
2589 			err = "cannot allocate memory";
2590 			goto out_put_sb_page;
2591 		}
2592 
2593 		args->path	= path;
2594 		args->sb	= sb;
2595 		args->sb_disk	= sb_disk;
2596 		args->bdev	= bdev;
2597 		register_device_aync(args);
2598 		/* No wait and returns to user space */
2599 		goto async_done;
2600 	}
2601 
2602 	if (SB_IS_BDEV(sb)) {
2603 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2604 
2605 		if (!dc)
2606 			goto out_put_sb_page;
2607 
2608 		mutex_lock(&bch_register_lock);
2609 		ret = register_bdev(sb, sb_disk, bdev, dc);
2610 		mutex_unlock(&bch_register_lock);
2611 		/* blkdev_put() will be called in cached_dev_free() */
2612 		if (ret < 0)
2613 			goto out_free_sb;
2614 	} else {
2615 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2616 
2617 		if (!ca)
2618 			goto out_put_sb_page;
2619 
2620 		/* blkdev_put() will be called in bch_cache_release() */
2621 		if (register_cache(sb, sb_disk, bdev, ca) != 0)
2622 			goto out_free_sb;
2623 	}
2624 
2625 done:
2626 	kfree(sb);
2627 	kfree(path);
2628 	module_put(THIS_MODULE);
2629 async_done:
2630 	return size;
2631 
2632 out_put_sb_page:
2633 	put_page(virt_to_page(sb_disk));
2634 out_blkdev_put:
2635 	blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2636 out_free_sb:
2637 	kfree(sb);
2638 out_free_path:
2639 	kfree(path);
2640 	path = NULL;
2641 out_module_put:
2642 	module_put(THIS_MODULE);
2643 out:
2644 	pr_info("error %s: %s\n", path?path:"", err);
2645 	return ret;
2646 }
2647 
2648 
2649 struct pdev {
2650 	struct list_head list;
2651 	struct cached_dev *dc;
2652 };
2653 
2654 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2655 					 struct kobj_attribute *attr,
2656 					 const char *buffer,
2657 					 size_t size)
2658 {
2659 	LIST_HEAD(pending_devs);
2660 	ssize_t ret = size;
2661 	struct cached_dev *dc, *tdc;
2662 	struct pdev *pdev, *tpdev;
2663 	struct cache_set *c, *tc;
2664 
2665 	mutex_lock(&bch_register_lock);
2666 	list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2667 		pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2668 		if (!pdev)
2669 			break;
2670 		pdev->dc = dc;
2671 		list_add(&pdev->list, &pending_devs);
2672 	}
2673 
2674 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2675 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2676 			char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2677 			char *set_uuid = c->set_uuid;
2678 
2679 			if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2680 				list_del(&pdev->list);
2681 				kfree(pdev);
2682 				break;
2683 			}
2684 		}
2685 	}
2686 	mutex_unlock(&bch_register_lock);
2687 
2688 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2689 		pr_info("delete pdev %p\n", pdev);
2690 		list_del(&pdev->list);
2691 		bcache_device_stop(&pdev->dc->disk);
2692 		kfree(pdev);
2693 	}
2694 
2695 	return ret;
2696 }
2697 
2698 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2699 {
2700 	if (bcache_is_reboot)
2701 		return NOTIFY_DONE;
2702 
2703 	if (code == SYS_DOWN ||
2704 	    code == SYS_HALT ||
2705 	    code == SYS_POWER_OFF) {
2706 		DEFINE_WAIT(wait);
2707 		unsigned long start = jiffies;
2708 		bool stopped = false;
2709 
2710 		struct cache_set *c, *tc;
2711 		struct cached_dev *dc, *tdc;
2712 
2713 		mutex_lock(&bch_register_lock);
2714 
2715 		if (bcache_is_reboot)
2716 			goto out;
2717 
2718 		/* New registration is rejected since now */
2719 		bcache_is_reboot = true;
2720 		/*
2721 		 * Make registering caller (if there is) on other CPU
2722 		 * core know bcache_is_reboot set to true earlier
2723 		 */
2724 		smp_mb();
2725 
2726 		if (list_empty(&bch_cache_sets) &&
2727 		    list_empty(&uncached_devices))
2728 			goto out;
2729 
2730 		mutex_unlock(&bch_register_lock);
2731 
2732 		pr_info("Stopping all devices:\n");
2733 
2734 		/*
2735 		 * The reason bch_register_lock is not held to call
2736 		 * bch_cache_set_stop() and bcache_device_stop() is to
2737 		 * avoid potential deadlock during reboot, because cache
2738 		 * set or bcache device stopping process will acqurie
2739 		 * bch_register_lock too.
2740 		 *
2741 		 * We are safe here because bcache_is_reboot sets to
2742 		 * true already, register_bcache() will reject new
2743 		 * registration now. bcache_is_reboot also makes sure
2744 		 * bcache_reboot() won't be re-entered on by other thread,
2745 		 * so there is no race in following list iteration by
2746 		 * list_for_each_entry_safe().
2747 		 */
2748 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2749 			bch_cache_set_stop(c);
2750 
2751 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2752 			bcache_device_stop(&dc->disk);
2753 
2754 
2755 		/*
2756 		 * Give an early chance for other kthreads and
2757 		 * kworkers to stop themselves
2758 		 */
2759 		schedule();
2760 
2761 		/* What's a condition variable? */
2762 		while (1) {
2763 			long timeout = start + 10 * HZ - jiffies;
2764 
2765 			mutex_lock(&bch_register_lock);
2766 			stopped = list_empty(&bch_cache_sets) &&
2767 				list_empty(&uncached_devices);
2768 
2769 			if (timeout < 0 || stopped)
2770 				break;
2771 
2772 			prepare_to_wait(&unregister_wait, &wait,
2773 					TASK_UNINTERRUPTIBLE);
2774 
2775 			mutex_unlock(&bch_register_lock);
2776 			schedule_timeout(timeout);
2777 		}
2778 
2779 		finish_wait(&unregister_wait, &wait);
2780 
2781 		if (stopped)
2782 			pr_info("All devices stopped\n");
2783 		else
2784 			pr_notice("Timeout waiting for devices to be closed\n");
2785 out:
2786 		mutex_unlock(&bch_register_lock);
2787 	}
2788 
2789 	return NOTIFY_DONE;
2790 }
2791 
2792 static struct notifier_block reboot = {
2793 	.notifier_call	= bcache_reboot,
2794 	.priority	= INT_MAX, /* before any real devices */
2795 };
2796 
2797 static void bcache_exit(void)
2798 {
2799 	bch_debug_exit();
2800 	bch_request_exit();
2801 	if (bcache_kobj)
2802 		kobject_put(bcache_kobj);
2803 	if (bcache_wq)
2804 		destroy_workqueue(bcache_wq);
2805 	if (bch_journal_wq)
2806 		destroy_workqueue(bch_journal_wq);
2807 
2808 	if (bcache_major)
2809 		unregister_blkdev(bcache_major, "bcache");
2810 	unregister_reboot_notifier(&reboot);
2811 	mutex_destroy(&bch_register_lock);
2812 }
2813 
2814 /* Check and fixup module parameters */
2815 static void check_module_parameters(void)
2816 {
2817 	if (bch_cutoff_writeback_sync == 0)
2818 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2819 	else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2820 		pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2821 			bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2822 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2823 	}
2824 
2825 	if (bch_cutoff_writeback == 0)
2826 		bch_cutoff_writeback = CUTOFF_WRITEBACK;
2827 	else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2828 		pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2829 			bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2830 		bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2831 	}
2832 
2833 	if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2834 		pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2835 			bch_cutoff_writeback, bch_cutoff_writeback_sync);
2836 		bch_cutoff_writeback = bch_cutoff_writeback_sync;
2837 	}
2838 }
2839 
2840 static int __init bcache_init(void)
2841 {
2842 	static const struct attribute *files[] = {
2843 		&ksysfs_register.attr,
2844 		&ksysfs_register_quiet.attr,
2845 		&ksysfs_pendings_cleanup.attr,
2846 		NULL
2847 	};
2848 
2849 	check_module_parameters();
2850 
2851 	mutex_init(&bch_register_lock);
2852 	init_waitqueue_head(&unregister_wait);
2853 	register_reboot_notifier(&reboot);
2854 
2855 	bcache_major = register_blkdev(0, "bcache");
2856 	if (bcache_major < 0) {
2857 		unregister_reboot_notifier(&reboot);
2858 		mutex_destroy(&bch_register_lock);
2859 		return bcache_major;
2860 	}
2861 
2862 	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2863 	if (!bcache_wq)
2864 		goto err;
2865 
2866 	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2867 	if (!bch_journal_wq)
2868 		goto err;
2869 
2870 	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2871 	if (!bcache_kobj)
2872 		goto err;
2873 
2874 	if (bch_request_init() ||
2875 	    sysfs_create_files(bcache_kobj, files))
2876 		goto err;
2877 
2878 	bch_debug_init();
2879 	closure_debug_init();
2880 
2881 	bcache_is_reboot = false;
2882 
2883 	return 0;
2884 err:
2885 	bcache_exit();
2886 	return -ENOMEM;
2887 }
2888 
2889 /*
2890  * Module hooks
2891  */
2892 module_exit(bcache_exit);
2893 module_init(bcache_init);
2894 
2895 module_param(bch_cutoff_writeback, uint, 0);
2896 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2897 
2898 module_param(bch_cutoff_writeback_sync, uint, 0);
2899 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2900 
2901 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2902 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2903 MODULE_LICENSE("GPL");
2904