1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 #include "features.h" 17 18 #include <linux/blkdev.h> 19 #include <linux/debugfs.h> 20 #include <linux/genhd.h> 21 #include <linux/idr.h> 22 #include <linux/kthread.h> 23 #include <linux/workqueue.h> 24 #include <linux/module.h> 25 #include <linux/random.h> 26 #include <linux/reboot.h> 27 #include <linux/sysfs.h> 28 29 unsigned int bch_cutoff_writeback; 30 unsigned int bch_cutoff_writeback_sync; 31 32 static const char bcache_magic[] = { 33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 35 }; 36 37 static const char invalid_uuid[] = { 38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 40 }; 41 42 static struct kobject *bcache_kobj; 43 struct mutex bch_register_lock; 44 bool bcache_is_reboot; 45 LIST_HEAD(bch_cache_sets); 46 static LIST_HEAD(uncached_devices); 47 48 static int bcache_major; 49 static DEFINE_IDA(bcache_device_idx); 50 static wait_queue_head_t unregister_wait; 51 struct workqueue_struct *bcache_wq; 52 struct workqueue_struct *bch_journal_wq; 53 54 55 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 56 /* limitation of partitions number on single bcache device */ 57 #define BCACHE_MINORS 128 58 /* limitation of bcache devices number on single system */ 59 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 60 61 /* Superblock */ 62 63 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s) 64 { 65 unsigned int bucket_size = le16_to_cpu(s->bucket_size); 66 67 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES && 68 bch_has_feature_large_bucket(sb)) 69 bucket_size |= le16_to_cpu(s->bucket_size_hi) << 16; 70 71 return bucket_size; 72 } 73 74 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev, 75 struct cache_sb_disk *s) 76 { 77 const char *err; 78 unsigned int i; 79 80 sb->first_bucket= le16_to_cpu(s->first_bucket); 81 sb->nbuckets = le64_to_cpu(s->nbuckets); 82 sb->bucket_size = get_bucket_size(sb, s); 83 84 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 85 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 86 87 err = "Too many journal buckets"; 88 if (sb->keys > SB_JOURNAL_BUCKETS) 89 goto err; 90 91 err = "Too many buckets"; 92 if (sb->nbuckets > LONG_MAX) 93 goto err; 94 95 err = "Not enough buckets"; 96 if (sb->nbuckets < 1 << 7) 97 goto err; 98 99 err = "Bad block size (not power of 2)"; 100 if (!is_power_of_2(sb->block_size)) 101 goto err; 102 103 err = "Bad block size (larger than page size)"; 104 if (sb->block_size > PAGE_SECTORS) 105 goto err; 106 107 err = "Bad bucket size (not power of 2)"; 108 if (!is_power_of_2(sb->bucket_size)) 109 goto err; 110 111 err = "Bad bucket size (smaller than page size)"; 112 if (sb->bucket_size < PAGE_SECTORS) 113 goto err; 114 115 err = "Invalid superblock: device too small"; 116 if (get_capacity(bdev->bd_disk) < 117 sb->bucket_size * sb->nbuckets) 118 goto err; 119 120 err = "Bad UUID"; 121 if (bch_is_zero(sb->set_uuid, 16)) 122 goto err; 123 124 err = "Bad cache device number in set"; 125 if (!sb->nr_in_set || 126 sb->nr_in_set <= sb->nr_this_dev || 127 sb->nr_in_set > MAX_CACHES_PER_SET) 128 goto err; 129 130 err = "Journal buckets not sequential"; 131 for (i = 0; i < sb->keys; i++) 132 if (sb->d[i] != sb->first_bucket + i) 133 goto err; 134 135 err = "Too many journal buckets"; 136 if (sb->first_bucket + sb->keys > sb->nbuckets) 137 goto err; 138 139 err = "Invalid superblock: first bucket comes before end of super"; 140 if (sb->first_bucket * sb->bucket_size < 16) 141 goto err; 142 143 err = NULL; 144 err: 145 return err; 146 } 147 148 149 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 150 struct cache_sb_disk **res) 151 { 152 const char *err; 153 struct cache_sb_disk *s; 154 struct page *page; 155 unsigned int i; 156 157 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 158 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 159 if (IS_ERR(page)) 160 return "IO error"; 161 s = page_address(page) + offset_in_page(SB_OFFSET); 162 163 sb->offset = le64_to_cpu(s->offset); 164 sb->version = le64_to_cpu(s->version); 165 166 memcpy(sb->magic, s->magic, 16); 167 memcpy(sb->uuid, s->uuid, 16); 168 memcpy(sb->set_uuid, s->set_uuid, 16); 169 memcpy(sb->label, s->label, SB_LABEL_SIZE); 170 171 sb->flags = le64_to_cpu(s->flags); 172 sb->seq = le64_to_cpu(s->seq); 173 sb->last_mount = le32_to_cpu(s->last_mount); 174 sb->keys = le16_to_cpu(s->keys); 175 176 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 177 sb->d[i] = le64_to_cpu(s->d[i]); 178 179 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 180 sb->version, sb->flags, sb->seq, sb->keys); 181 182 err = "Not a bcache superblock (bad offset)"; 183 if (sb->offset != SB_SECTOR) 184 goto err; 185 186 err = "Not a bcache superblock (bad magic)"; 187 if (memcmp(sb->magic, bcache_magic, 16)) 188 goto err; 189 190 err = "Bad checksum"; 191 if (s->csum != csum_set(s)) 192 goto err; 193 194 err = "Bad UUID"; 195 if (bch_is_zero(sb->uuid, 16)) 196 goto err; 197 198 sb->block_size = le16_to_cpu(s->block_size); 199 200 err = "Superblock block size smaller than device block size"; 201 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 202 goto err; 203 204 switch (sb->version) { 205 case BCACHE_SB_VERSION_BDEV: 206 sb->data_offset = BDEV_DATA_START_DEFAULT; 207 break; 208 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 209 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES: 210 sb->data_offset = le64_to_cpu(s->data_offset); 211 212 err = "Bad data offset"; 213 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 214 goto err; 215 216 break; 217 case BCACHE_SB_VERSION_CDEV: 218 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 219 err = read_super_common(sb, bdev, s); 220 if (err) 221 goto err; 222 break; 223 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES: 224 /* 225 * Feature bits are needed in read_super_common(), 226 * convert them firstly. 227 */ 228 sb->feature_compat = le64_to_cpu(s->feature_compat); 229 sb->feature_incompat = le64_to_cpu(s->feature_incompat); 230 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat); 231 232 /* Check incompatible features */ 233 err = "Unsupported compatible feature found"; 234 if (bch_has_unknown_compat_features(sb)) 235 goto err; 236 237 err = "Unsupported read-only compatible feature found"; 238 if (bch_has_unknown_ro_compat_features(sb)) 239 goto err; 240 241 err = "Unsupported incompatible feature found"; 242 if (bch_has_unknown_incompat_features(sb)) 243 goto err; 244 245 err = read_super_common(sb, bdev, s); 246 if (err) 247 goto err; 248 break; 249 default: 250 err = "Unsupported superblock version"; 251 goto err; 252 } 253 254 sb->last_mount = (u32)ktime_get_real_seconds(); 255 *res = s; 256 return NULL; 257 err: 258 put_page(page); 259 return err; 260 } 261 262 static void write_bdev_super_endio(struct bio *bio) 263 { 264 struct cached_dev *dc = bio->bi_private; 265 266 if (bio->bi_status) 267 bch_count_backing_io_errors(dc, bio); 268 269 closure_put(&dc->sb_write); 270 } 271 272 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 273 struct bio *bio) 274 { 275 unsigned int i; 276 277 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 278 bio->bi_iter.bi_sector = SB_SECTOR; 279 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 280 offset_in_page(out)); 281 282 out->offset = cpu_to_le64(sb->offset); 283 284 memcpy(out->uuid, sb->uuid, 16); 285 memcpy(out->set_uuid, sb->set_uuid, 16); 286 memcpy(out->label, sb->label, SB_LABEL_SIZE); 287 288 out->flags = cpu_to_le64(sb->flags); 289 out->seq = cpu_to_le64(sb->seq); 290 291 out->last_mount = cpu_to_le32(sb->last_mount); 292 out->first_bucket = cpu_to_le16(sb->first_bucket); 293 out->keys = cpu_to_le16(sb->keys); 294 295 for (i = 0; i < sb->keys; i++) 296 out->d[i] = cpu_to_le64(sb->d[i]); 297 298 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 299 out->feature_compat = cpu_to_le64(sb->feature_compat); 300 out->feature_incompat = cpu_to_le64(sb->feature_incompat); 301 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat); 302 } 303 304 out->version = cpu_to_le64(sb->version); 305 out->csum = csum_set(out); 306 307 pr_debug("ver %llu, flags %llu, seq %llu\n", 308 sb->version, sb->flags, sb->seq); 309 310 submit_bio(bio); 311 } 312 313 static void bch_write_bdev_super_unlock(struct closure *cl) 314 { 315 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 316 317 up(&dc->sb_write_mutex); 318 } 319 320 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 321 { 322 struct closure *cl = &dc->sb_write; 323 struct bio *bio = &dc->sb_bio; 324 325 down(&dc->sb_write_mutex); 326 closure_init(cl, parent); 327 328 bio_init(bio, dc->sb_bv, 1); 329 bio_set_dev(bio, dc->bdev); 330 bio->bi_end_io = write_bdev_super_endio; 331 bio->bi_private = dc; 332 333 closure_get(cl); 334 /* I/O request sent to backing device */ 335 __write_super(&dc->sb, dc->sb_disk, bio); 336 337 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 338 } 339 340 static void write_super_endio(struct bio *bio) 341 { 342 struct cache *ca = bio->bi_private; 343 344 /* is_read = 0 */ 345 bch_count_io_errors(ca, bio->bi_status, 0, 346 "writing superblock"); 347 closure_put(&ca->set->sb_write); 348 } 349 350 static void bcache_write_super_unlock(struct closure *cl) 351 { 352 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 353 354 up(&c->sb_write_mutex); 355 } 356 357 void bcache_write_super(struct cache_set *c) 358 { 359 struct closure *cl = &c->sb_write; 360 struct cache *ca = c->cache; 361 struct bio *bio = &ca->sb_bio; 362 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 363 364 down(&c->sb_write_mutex); 365 closure_init(cl, &c->cl); 366 367 ca->sb.seq++; 368 369 if (ca->sb.version < version) 370 ca->sb.version = version; 371 372 bio_init(bio, ca->sb_bv, 1); 373 bio_set_dev(bio, ca->bdev); 374 bio->bi_end_io = write_super_endio; 375 bio->bi_private = ca; 376 377 closure_get(cl); 378 __write_super(&ca->sb, ca->sb_disk, bio); 379 380 closure_return_with_destructor(cl, bcache_write_super_unlock); 381 } 382 383 /* UUID io */ 384 385 static void uuid_endio(struct bio *bio) 386 { 387 struct closure *cl = bio->bi_private; 388 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 389 390 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 391 bch_bbio_free(bio, c); 392 closure_put(cl); 393 } 394 395 static void uuid_io_unlock(struct closure *cl) 396 { 397 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 398 399 up(&c->uuid_write_mutex); 400 } 401 402 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, 403 struct bkey *k, struct closure *parent) 404 { 405 struct closure *cl = &c->uuid_write; 406 struct uuid_entry *u; 407 unsigned int i; 408 char buf[80]; 409 410 BUG_ON(!parent); 411 down(&c->uuid_write_mutex); 412 closure_init(cl, parent); 413 414 for (i = 0; i < KEY_PTRS(k); i++) { 415 struct bio *bio = bch_bbio_alloc(c); 416 417 bio->bi_opf = REQ_SYNC | REQ_META | op_flags; 418 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 419 420 bio->bi_end_io = uuid_endio; 421 bio->bi_private = cl; 422 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 423 bch_bio_map(bio, c->uuids); 424 425 bch_submit_bbio(bio, c, k, i); 426 427 if (op != REQ_OP_WRITE) 428 break; 429 } 430 431 bch_extent_to_text(buf, sizeof(buf), k); 432 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf); 433 434 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 435 if (!bch_is_zero(u->uuid, 16)) 436 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 437 u - c->uuids, u->uuid, u->label, 438 u->first_reg, u->last_reg, u->invalidated); 439 440 closure_return_with_destructor(cl, uuid_io_unlock); 441 } 442 443 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 444 { 445 struct bkey *k = &j->uuid_bucket; 446 447 if (__bch_btree_ptr_invalid(c, k)) 448 return "bad uuid pointer"; 449 450 bkey_copy(&c->uuid_bucket, k); 451 uuid_io(c, REQ_OP_READ, 0, k, cl); 452 453 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 454 struct uuid_entry_v0 *u0 = (void *) c->uuids; 455 struct uuid_entry *u1 = (void *) c->uuids; 456 int i; 457 458 closure_sync(cl); 459 460 /* 461 * Since the new uuid entry is bigger than the old, we have to 462 * convert starting at the highest memory address and work down 463 * in order to do it in place 464 */ 465 466 for (i = c->nr_uuids - 1; 467 i >= 0; 468 --i) { 469 memcpy(u1[i].uuid, u0[i].uuid, 16); 470 memcpy(u1[i].label, u0[i].label, 32); 471 472 u1[i].first_reg = u0[i].first_reg; 473 u1[i].last_reg = u0[i].last_reg; 474 u1[i].invalidated = u0[i].invalidated; 475 476 u1[i].flags = 0; 477 u1[i].sectors = 0; 478 } 479 } 480 481 return NULL; 482 } 483 484 static int __uuid_write(struct cache_set *c) 485 { 486 BKEY_PADDED(key) k; 487 struct closure cl; 488 struct cache *ca = c->cache; 489 unsigned int size; 490 491 closure_init_stack(&cl); 492 lockdep_assert_held(&bch_register_lock); 493 494 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true)) 495 return 1; 496 497 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS; 498 SET_KEY_SIZE(&k.key, size); 499 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); 500 closure_sync(&cl); 501 502 /* Only one bucket used for uuid write */ 503 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 504 505 bkey_copy(&c->uuid_bucket, &k.key); 506 bkey_put(c, &k.key); 507 return 0; 508 } 509 510 int bch_uuid_write(struct cache_set *c) 511 { 512 int ret = __uuid_write(c); 513 514 if (!ret) 515 bch_journal_meta(c, NULL); 516 517 return ret; 518 } 519 520 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 521 { 522 struct uuid_entry *u; 523 524 for (u = c->uuids; 525 u < c->uuids + c->nr_uuids; u++) 526 if (!memcmp(u->uuid, uuid, 16)) 527 return u; 528 529 return NULL; 530 } 531 532 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 533 { 534 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 535 536 return uuid_find(c, zero_uuid); 537 } 538 539 /* 540 * Bucket priorities/gens: 541 * 542 * For each bucket, we store on disk its 543 * 8 bit gen 544 * 16 bit priority 545 * 546 * See alloc.c for an explanation of the gen. The priority is used to implement 547 * lru (and in the future other) cache replacement policies; for most purposes 548 * it's just an opaque integer. 549 * 550 * The gens and the priorities don't have a whole lot to do with each other, and 551 * it's actually the gens that must be written out at specific times - it's no 552 * big deal if the priorities don't get written, if we lose them we just reuse 553 * buckets in suboptimal order. 554 * 555 * On disk they're stored in a packed array, and in as many buckets are required 556 * to fit them all. The buckets we use to store them form a list; the journal 557 * header points to the first bucket, the first bucket points to the second 558 * bucket, et cetera. 559 * 560 * This code is used by the allocation code; periodically (whenever it runs out 561 * of buckets to allocate from) the allocation code will invalidate some 562 * buckets, but it can't use those buckets until their new gens are safely on 563 * disk. 564 */ 565 566 static void prio_endio(struct bio *bio) 567 { 568 struct cache *ca = bio->bi_private; 569 570 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 571 bch_bbio_free(bio, ca->set); 572 closure_put(&ca->prio); 573 } 574 575 static void prio_io(struct cache *ca, uint64_t bucket, int op, 576 unsigned long op_flags) 577 { 578 struct closure *cl = &ca->prio; 579 struct bio *bio = bch_bbio_alloc(ca->set); 580 581 closure_init_stack(cl); 582 583 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 584 bio_set_dev(bio, ca->bdev); 585 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb); 586 587 bio->bi_end_io = prio_endio; 588 bio->bi_private = ca; 589 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 590 bch_bio_map(bio, ca->disk_buckets); 591 592 closure_bio_submit(ca->set, bio, &ca->prio); 593 closure_sync(cl); 594 } 595 596 int bch_prio_write(struct cache *ca, bool wait) 597 { 598 int i; 599 struct bucket *b; 600 struct closure cl; 601 602 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 603 fifo_used(&ca->free[RESERVE_PRIO]), 604 fifo_used(&ca->free[RESERVE_NONE]), 605 fifo_used(&ca->free_inc)); 606 607 /* 608 * Pre-check if there are enough free buckets. In the non-blocking 609 * scenario it's better to fail early rather than starting to allocate 610 * buckets and do a cleanup later in case of failure. 611 */ 612 if (!wait) { 613 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 614 fifo_used(&ca->free[RESERVE_NONE]); 615 if (prio_buckets(ca) > avail) 616 return -ENOMEM; 617 } 618 619 closure_init_stack(&cl); 620 621 lockdep_assert_held(&ca->set->bucket_lock); 622 623 ca->disk_buckets->seq++; 624 625 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 626 &ca->meta_sectors_written); 627 628 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 629 long bucket; 630 struct prio_set *p = ca->disk_buckets; 631 struct bucket_disk *d = p->data; 632 struct bucket_disk *end = d + prios_per_bucket(ca); 633 634 for (b = ca->buckets + i * prios_per_bucket(ca); 635 b < ca->buckets + ca->sb.nbuckets && d < end; 636 b++, d++) { 637 d->prio = cpu_to_le16(b->prio); 638 d->gen = b->gen; 639 } 640 641 p->next_bucket = ca->prio_buckets[i + 1]; 642 p->magic = pset_magic(&ca->sb); 643 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8); 644 645 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 646 BUG_ON(bucket == -1); 647 648 mutex_unlock(&ca->set->bucket_lock); 649 prio_io(ca, bucket, REQ_OP_WRITE, 0); 650 mutex_lock(&ca->set->bucket_lock); 651 652 ca->prio_buckets[i] = bucket; 653 atomic_dec_bug(&ca->buckets[bucket].pin); 654 } 655 656 mutex_unlock(&ca->set->bucket_lock); 657 658 bch_journal_meta(ca->set, &cl); 659 closure_sync(&cl); 660 661 mutex_lock(&ca->set->bucket_lock); 662 663 /* 664 * Don't want the old priorities to get garbage collected until after we 665 * finish writing the new ones, and they're journalled 666 */ 667 for (i = 0; i < prio_buckets(ca); i++) { 668 if (ca->prio_last_buckets[i]) 669 __bch_bucket_free(ca, 670 &ca->buckets[ca->prio_last_buckets[i]]); 671 672 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 673 } 674 return 0; 675 } 676 677 static int prio_read(struct cache *ca, uint64_t bucket) 678 { 679 struct prio_set *p = ca->disk_buckets; 680 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 681 struct bucket *b; 682 unsigned int bucket_nr = 0; 683 int ret = -EIO; 684 685 for (b = ca->buckets; 686 b < ca->buckets + ca->sb.nbuckets; 687 b++, d++) { 688 if (d == end) { 689 ca->prio_buckets[bucket_nr] = bucket; 690 ca->prio_last_buckets[bucket_nr] = bucket; 691 bucket_nr++; 692 693 prio_io(ca, bucket, REQ_OP_READ, 0); 694 695 if (p->csum != 696 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) { 697 pr_warn("bad csum reading priorities\n"); 698 goto out; 699 } 700 701 if (p->magic != pset_magic(&ca->sb)) { 702 pr_warn("bad magic reading priorities\n"); 703 goto out; 704 } 705 706 bucket = p->next_bucket; 707 d = p->data; 708 } 709 710 b->prio = le16_to_cpu(d->prio); 711 b->gen = b->last_gc = d->gen; 712 } 713 714 ret = 0; 715 out: 716 return ret; 717 } 718 719 /* Bcache device */ 720 721 static int open_dev(struct block_device *b, fmode_t mode) 722 { 723 struct bcache_device *d = b->bd_disk->private_data; 724 725 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 726 return -ENXIO; 727 728 closure_get(&d->cl); 729 return 0; 730 } 731 732 static void release_dev(struct gendisk *b, fmode_t mode) 733 { 734 struct bcache_device *d = b->private_data; 735 736 closure_put(&d->cl); 737 } 738 739 static int ioctl_dev(struct block_device *b, fmode_t mode, 740 unsigned int cmd, unsigned long arg) 741 { 742 struct bcache_device *d = b->bd_disk->private_data; 743 744 return d->ioctl(d, mode, cmd, arg); 745 } 746 747 static const struct block_device_operations bcache_cached_ops = { 748 .submit_bio = cached_dev_submit_bio, 749 .open = open_dev, 750 .release = release_dev, 751 .ioctl = ioctl_dev, 752 .owner = THIS_MODULE, 753 }; 754 755 static const struct block_device_operations bcache_flash_ops = { 756 .submit_bio = flash_dev_submit_bio, 757 .open = open_dev, 758 .release = release_dev, 759 .ioctl = ioctl_dev, 760 .owner = THIS_MODULE, 761 }; 762 763 void bcache_device_stop(struct bcache_device *d) 764 { 765 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 766 /* 767 * closure_fn set to 768 * - cached device: cached_dev_flush() 769 * - flash dev: flash_dev_flush() 770 */ 771 closure_queue(&d->cl); 772 } 773 774 static void bcache_device_unlink(struct bcache_device *d) 775 { 776 lockdep_assert_held(&bch_register_lock); 777 778 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 779 struct cache *ca = d->c->cache; 780 781 sysfs_remove_link(&d->c->kobj, d->name); 782 sysfs_remove_link(&d->kobj, "cache"); 783 784 bd_unlink_disk_holder(ca->bdev, d->disk); 785 } 786 } 787 788 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 789 const char *name) 790 { 791 struct cache *ca = c->cache; 792 int ret; 793 794 bd_link_disk_holder(ca->bdev, d->disk); 795 796 snprintf(d->name, BCACHEDEVNAME_SIZE, 797 "%s%u", name, d->id); 798 799 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 800 if (ret < 0) 801 pr_err("Couldn't create device -> cache set symlink\n"); 802 803 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 804 if (ret < 0) 805 pr_err("Couldn't create cache set -> device symlink\n"); 806 807 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 808 } 809 810 static void bcache_device_detach(struct bcache_device *d) 811 { 812 lockdep_assert_held(&bch_register_lock); 813 814 atomic_dec(&d->c->attached_dev_nr); 815 816 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 817 struct uuid_entry *u = d->c->uuids + d->id; 818 819 SET_UUID_FLASH_ONLY(u, 0); 820 memcpy(u->uuid, invalid_uuid, 16); 821 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 822 bch_uuid_write(d->c); 823 } 824 825 bcache_device_unlink(d); 826 827 d->c->devices[d->id] = NULL; 828 closure_put(&d->c->caching); 829 d->c = NULL; 830 } 831 832 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 833 unsigned int id) 834 { 835 d->id = id; 836 d->c = c; 837 c->devices[id] = d; 838 839 if (id >= c->devices_max_used) 840 c->devices_max_used = id + 1; 841 842 closure_get(&c->caching); 843 } 844 845 static inline int first_minor_to_idx(int first_minor) 846 { 847 return (first_minor/BCACHE_MINORS); 848 } 849 850 static inline int idx_to_first_minor(int idx) 851 { 852 return (idx * BCACHE_MINORS); 853 } 854 855 static void bcache_device_free(struct bcache_device *d) 856 { 857 struct gendisk *disk = d->disk; 858 859 lockdep_assert_held(&bch_register_lock); 860 861 if (disk) 862 pr_info("%s stopped\n", disk->disk_name); 863 else 864 pr_err("bcache device (NULL gendisk) stopped\n"); 865 866 if (d->c) 867 bcache_device_detach(d); 868 869 if (disk) { 870 bool disk_added = (disk->flags & GENHD_FL_UP) != 0; 871 872 if (disk_added) 873 del_gendisk(disk); 874 875 if (disk->queue) 876 blk_cleanup_queue(disk->queue); 877 878 ida_simple_remove(&bcache_device_idx, 879 first_minor_to_idx(disk->first_minor)); 880 if (disk_added) 881 put_disk(disk); 882 } 883 884 bioset_exit(&d->bio_split); 885 kvfree(d->full_dirty_stripes); 886 kvfree(d->stripe_sectors_dirty); 887 888 closure_debug_destroy(&d->cl); 889 } 890 891 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 892 sector_t sectors, struct block_device *cached_bdev, 893 const struct block_device_operations *ops) 894 { 895 struct request_queue *q; 896 const size_t max_stripes = min_t(size_t, INT_MAX, 897 SIZE_MAX / sizeof(atomic_t)); 898 uint64_t n; 899 int idx; 900 901 if (!d->stripe_size) 902 d->stripe_size = 1 << 31; 903 904 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 905 if (!n || n > max_stripes) { 906 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n", 907 n); 908 return -ENOMEM; 909 } 910 d->nr_stripes = n; 911 912 n = d->nr_stripes * sizeof(atomic_t); 913 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 914 if (!d->stripe_sectors_dirty) 915 return -ENOMEM; 916 917 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 918 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 919 if (!d->full_dirty_stripes) 920 return -ENOMEM; 921 922 idx = ida_simple_get(&bcache_device_idx, 0, 923 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 924 if (idx < 0) 925 return idx; 926 927 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 928 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 929 goto err; 930 931 d->disk = alloc_disk(BCACHE_MINORS); 932 if (!d->disk) 933 goto err; 934 935 set_capacity(d->disk, sectors); 936 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 937 938 d->disk->major = bcache_major; 939 d->disk->first_minor = idx_to_first_minor(idx); 940 d->disk->fops = ops; 941 d->disk->private_data = d; 942 943 q = blk_alloc_queue(NUMA_NO_NODE); 944 if (!q) 945 return -ENOMEM; 946 947 d->disk->queue = q; 948 q->limits.max_hw_sectors = UINT_MAX; 949 q->limits.max_sectors = UINT_MAX; 950 q->limits.max_segment_size = UINT_MAX; 951 q->limits.max_segments = BIO_MAX_PAGES; 952 blk_queue_max_discard_sectors(q, UINT_MAX); 953 q->limits.discard_granularity = 512; 954 q->limits.io_min = block_size; 955 q->limits.logical_block_size = block_size; 956 q->limits.physical_block_size = block_size; 957 958 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) { 959 /* 960 * This should only happen with BCACHE_SB_VERSION_BDEV. 961 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 962 */ 963 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 964 d->disk->disk_name, q->limits.logical_block_size, 965 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 966 967 /* This also adjusts physical block size/min io size if needed */ 968 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev)); 969 } 970 971 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 972 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); 973 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); 974 975 blk_queue_write_cache(q, true, true); 976 977 return 0; 978 979 err: 980 ida_simple_remove(&bcache_device_idx, idx); 981 return -ENOMEM; 982 983 } 984 985 /* Cached device */ 986 987 static void calc_cached_dev_sectors(struct cache_set *c) 988 { 989 uint64_t sectors = 0; 990 struct cached_dev *dc; 991 992 list_for_each_entry(dc, &c->cached_devs, list) 993 sectors += bdev_sectors(dc->bdev); 994 995 c->cached_dev_sectors = sectors; 996 } 997 998 #define BACKING_DEV_OFFLINE_TIMEOUT 5 999 static int cached_dev_status_update(void *arg) 1000 { 1001 struct cached_dev *dc = arg; 1002 struct request_queue *q; 1003 1004 /* 1005 * If this delayed worker is stopping outside, directly quit here. 1006 * dc->io_disable might be set via sysfs interface, so check it 1007 * here too. 1008 */ 1009 while (!kthread_should_stop() && !dc->io_disable) { 1010 q = bdev_get_queue(dc->bdev); 1011 if (blk_queue_dying(q)) 1012 dc->offline_seconds++; 1013 else 1014 dc->offline_seconds = 0; 1015 1016 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 1017 pr_err("%s: device offline for %d seconds\n", 1018 dc->backing_dev_name, 1019 BACKING_DEV_OFFLINE_TIMEOUT); 1020 pr_err("%s: disable I/O request due to backing device offline\n", 1021 dc->disk.name); 1022 dc->io_disable = true; 1023 /* let others know earlier that io_disable is true */ 1024 smp_mb(); 1025 bcache_device_stop(&dc->disk); 1026 break; 1027 } 1028 schedule_timeout_interruptible(HZ); 1029 } 1030 1031 wait_for_kthread_stop(); 1032 return 0; 1033 } 1034 1035 1036 int bch_cached_dev_run(struct cached_dev *dc) 1037 { 1038 struct bcache_device *d = &dc->disk; 1039 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 1040 char *env[] = { 1041 "DRIVER=bcache", 1042 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 1043 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 1044 NULL, 1045 }; 1046 1047 if (dc->io_disable) { 1048 pr_err("I/O disabled on cached dev %s\n", 1049 dc->backing_dev_name); 1050 kfree(env[1]); 1051 kfree(env[2]); 1052 kfree(buf); 1053 return -EIO; 1054 } 1055 1056 if (atomic_xchg(&dc->running, 1)) { 1057 kfree(env[1]); 1058 kfree(env[2]); 1059 kfree(buf); 1060 pr_info("cached dev %s is running already\n", 1061 dc->backing_dev_name); 1062 return -EBUSY; 1063 } 1064 1065 if (!d->c && 1066 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1067 struct closure cl; 1068 1069 closure_init_stack(&cl); 1070 1071 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1072 bch_write_bdev_super(dc, &cl); 1073 closure_sync(&cl); 1074 } 1075 1076 add_disk(d->disk); 1077 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1078 /* 1079 * won't show up in the uevent file, use udevadm monitor -e instead 1080 * only class / kset properties are persistent 1081 */ 1082 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1083 kfree(env[1]); 1084 kfree(env[2]); 1085 kfree(buf); 1086 1087 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1088 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1089 &d->kobj, "bcache")) { 1090 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1091 return -ENOMEM; 1092 } 1093 1094 dc->status_update_thread = kthread_run(cached_dev_status_update, 1095 dc, "bcache_status_update"); 1096 if (IS_ERR(dc->status_update_thread)) { 1097 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1098 } 1099 1100 return 0; 1101 } 1102 1103 /* 1104 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1105 * work dc->writeback_rate_update is running. Wait until the routine 1106 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1107 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1108 * seconds, give up waiting here and continue to cancel it too. 1109 */ 1110 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1111 { 1112 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1113 1114 do { 1115 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1116 &dc->disk.flags)) 1117 break; 1118 time_out--; 1119 schedule_timeout_interruptible(1); 1120 } while (time_out > 0); 1121 1122 if (time_out == 0) 1123 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1124 1125 cancel_delayed_work_sync(&dc->writeback_rate_update); 1126 } 1127 1128 static void cached_dev_detach_finish(struct work_struct *w) 1129 { 1130 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1131 1132 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1133 BUG_ON(refcount_read(&dc->count)); 1134 1135 1136 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1137 cancel_writeback_rate_update_dwork(dc); 1138 1139 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1140 kthread_stop(dc->writeback_thread); 1141 dc->writeback_thread = NULL; 1142 } 1143 1144 mutex_lock(&bch_register_lock); 1145 1146 calc_cached_dev_sectors(dc->disk.c); 1147 bcache_device_detach(&dc->disk); 1148 list_move(&dc->list, &uncached_devices); 1149 1150 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1151 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1152 1153 mutex_unlock(&bch_register_lock); 1154 1155 pr_info("Caching disabled for %s\n", dc->backing_dev_name); 1156 1157 /* Drop ref we took in cached_dev_detach() */ 1158 closure_put(&dc->disk.cl); 1159 } 1160 1161 void bch_cached_dev_detach(struct cached_dev *dc) 1162 { 1163 lockdep_assert_held(&bch_register_lock); 1164 1165 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1166 return; 1167 1168 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1169 return; 1170 1171 /* 1172 * Block the device from being closed and freed until we're finished 1173 * detaching 1174 */ 1175 closure_get(&dc->disk.cl); 1176 1177 bch_writeback_queue(dc); 1178 1179 cached_dev_put(dc); 1180 } 1181 1182 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1183 uint8_t *set_uuid) 1184 { 1185 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1186 struct uuid_entry *u; 1187 struct cached_dev *exist_dc, *t; 1188 int ret = 0; 1189 1190 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) || 1191 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16))) 1192 return -ENOENT; 1193 1194 if (dc->disk.c) { 1195 pr_err("Can't attach %s: already attached\n", 1196 dc->backing_dev_name); 1197 return -EINVAL; 1198 } 1199 1200 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1201 pr_err("Can't attach %s: shutting down\n", 1202 dc->backing_dev_name); 1203 return -EINVAL; 1204 } 1205 1206 if (dc->sb.block_size < c->cache->sb.block_size) { 1207 /* Will die */ 1208 pr_err("Couldn't attach %s: block size less than set's block size\n", 1209 dc->backing_dev_name); 1210 return -EINVAL; 1211 } 1212 1213 /* Check whether already attached */ 1214 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1215 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1216 pr_err("Tried to attach %s but duplicate UUID already attached\n", 1217 dc->backing_dev_name); 1218 1219 return -EINVAL; 1220 } 1221 } 1222 1223 u = uuid_find(c, dc->sb.uuid); 1224 1225 if (u && 1226 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1227 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1228 memcpy(u->uuid, invalid_uuid, 16); 1229 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1230 u = NULL; 1231 } 1232 1233 if (!u) { 1234 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1235 pr_err("Couldn't find uuid for %s in set\n", 1236 dc->backing_dev_name); 1237 return -ENOENT; 1238 } 1239 1240 u = uuid_find_empty(c); 1241 if (!u) { 1242 pr_err("Not caching %s, no room for UUID\n", 1243 dc->backing_dev_name); 1244 return -EINVAL; 1245 } 1246 } 1247 1248 /* 1249 * Deadlocks since we're called via sysfs... 1250 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1251 */ 1252 1253 if (bch_is_zero(u->uuid, 16)) { 1254 struct closure cl; 1255 1256 closure_init_stack(&cl); 1257 1258 memcpy(u->uuid, dc->sb.uuid, 16); 1259 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1260 u->first_reg = u->last_reg = rtime; 1261 bch_uuid_write(c); 1262 1263 memcpy(dc->sb.set_uuid, c->set_uuid, 16); 1264 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1265 1266 bch_write_bdev_super(dc, &cl); 1267 closure_sync(&cl); 1268 } else { 1269 u->last_reg = rtime; 1270 bch_uuid_write(c); 1271 } 1272 1273 bcache_device_attach(&dc->disk, c, u - c->uuids); 1274 list_move(&dc->list, &c->cached_devs); 1275 calc_cached_dev_sectors(c); 1276 1277 /* 1278 * dc->c must be set before dc->count != 0 - paired with the mb in 1279 * cached_dev_get() 1280 */ 1281 smp_wmb(); 1282 refcount_set(&dc->count, 1); 1283 1284 /* Block writeback thread, but spawn it */ 1285 down_write(&dc->writeback_lock); 1286 if (bch_cached_dev_writeback_start(dc)) { 1287 up_write(&dc->writeback_lock); 1288 pr_err("Couldn't start writeback facilities for %s\n", 1289 dc->disk.disk->disk_name); 1290 return -ENOMEM; 1291 } 1292 1293 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1294 atomic_set(&dc->has_dirty, 1); 1295 bch_writeback_queue(dc); 1296 } 1297 1298 bch_sectors_dirty_init(&dc->disk); 1299 1300 ret = bch_cached_dev_run(dc); 1301 if (ret && (ret != -EBUSY)) { 1302 up_write(&dc->writeback_lock); 1303 /* 1304 * bch_register_lock is held, bcache_device_stop() is not 1305 * able to be directly called. The kthread and kworker 1306 * created previously in bch_cached_dev_writeback_start() 1307 * have to be stopped manually here. 1308 */ 1309 kthread_stop(dc->writeback_thread); 1310 cancel_writeback_rate_update_dwork(dc); 1311 pr_err("Couldn't run cached device %s\n", 1312 dc->backing_dev_name); 1313 return ret; 1314 } 1315 1316 bcache_device_link(&dc->disk, c, "bdev"); 1317 atomic_inc(&c->attached_dev_nr); 1318 1319 /* Allow the writeback thread to proceed */ 1320 up_write(&dc->writeback_lock); 1321 1322 pr_info("Caching %s as %s on set %pU\n", 1323 dc->backing_dev_name, 1324 dc->disk.disk->disk_name, 1325 dc->disk.c->set_uuid); 1326 return 0; 1327 } 1328 1329 /* when dc->disk.kobj released */ 1330 void bch_cached_dev_release(struct kobject *kobj) 1331 { 1332 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1333 disk.kobj); 1334 kfree(dc); 1335 module_put(THIS_MODULE); 1336 } 1337 1338 static void cached_dev_free(struct closure *cl) 1339 { 1340 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1341 1342 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1343 cancel_writeback_rate_update_dwork(dc); 1344 1345 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1346 kthread_stop(dc->writeback_thread); 1347 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1348 kthread_stop(dc->status_update_thread); 1349 1350 mutex_lock(&bch_register_lock); 1351 1352 if (atomic_read(&dc->running)) 1353 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1354 bcache_device_free(&dc->disk); 1355 list_del(&dc->list); 1356 1357 mutex_unlock(&bch_register_lock); 1358 1359 if (dc->sb_disk) 1360 put_page(virt_to_page(dc->sb_disk)); 1361 1362 if (!IS_ERR_OR_NULL(dc->bdev)) 1363 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1364 1365 wake_up(&unregister_wait); 1366 1367 kobject_put(&dc->disk.kobj); 1368 } 1369 1370 static void cached_dev_flush(struct closure *cl) 1371 { 1372 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1373 struct bcache_device *d = &dc->disk; 1374 1375 mutex_lock(&bch_register_lock); 1376 bcache_device_unlink(d); 1377 mutex_unlock(&bch_register_lock); 1378 1379 bch_cache_accounting_destroy(&dc->accounting); 1380 kobject_del(&d->kobj); 1381 1382 continue_at(cl, cached_dev_free, system_wq); 1383 } 1384 1385 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1386 { 1387 int ret; 1388 struct io *io; 1389 struct request_queue *q = bdev_get_queue(dc->bdev); 1390 1391 __module_get(THIS_MODULE); 1392 INIT_LIST_HEAD(&dc->list); 1393 closure_init(&dc->disk.cl, NULL); 1394 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1395 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1396 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1397 sema_init(&dc->sb_write_mutex, 1); 1398 INIT_LIST_HEAD(&dc->io_lru); 1399 spin_lock_init(&dc->io_lock); 1400 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1401 1402 dc->sequential_cutoff = 4 << 20; 1403 1404 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1405 list_add(&io->lru, &dc->io_lru); 1406 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1407 } 1408 1409 dc->disk.stripe_size = q->limits.io_opt >> 9; 1410 1411 if (dc->disk.stripe_size) 1412 dc->partial_stripes_expensive = 1413 q->limits.raid_partial_stripes_expensive; 1414 1415 ret = bcache_device_init(&dc->disk, block_size, 1416 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset, 1417 dc->bdev, &bcache_cached_ops); 1418 if (ret) 1419 return ret; 1420 1421 blk_queue_io_opt(dc->disk.disk->queue, 1422 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q))); 1423 1424 atomic_set(&dc->io_errors, 0); 1425 dc->io_disable = false; 1426 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1427 /* default to auto */ 1428 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1429 1430 bch_cached_dev_request_init(dc); 1431 bch_cached_dev_writeback_init(dc); 1432 return 0; 1433 } 1434 1435 /* Cached device - bcache superblock */ 1436 1437 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1438 struct block_device *bdev, 1439 struct cached_dev *dc) 1440 { 1441 const char *err = "cannot allocate memory"; 1442 struct cache_set *c; 1443 int ret = -ENOMEM; 1444 1445 bdevname(bdev, dc->backing_dev_name); 1446 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1447 dc->bdev = bdev; 1448 dc->bdev->bd_holder = dc; 1449 dc->sb_disk = sb_disk; 1450 1451 if (cached_dev_init(dc, sb->block_size << 9)) 1452 goto err; 1453 1454 err = "error creating kobject"; 1455 if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache")) 1456 goto err; 1457 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1458 goto err; 1459 1460 pr_info("registered backing device %s\n", dc->backing_dev_name); 1461 1462 list_add(&dc->list, &uncached_devices); 1463 /* attach to a matched cache set if it exists */ 1464 list_for_each_entry(c, &bch_cache_sets, list) 1465 bch_cached_dev_attach(dc, c, NULL); 1466 1467 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1468 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1469 err = "failed to run cached device"; 1470 ret = bch_cached_dev_run(dc); 1471 if (ret) 1472 goto err; 1473 } 1474 1475 return 0; 1476 err: 1477 pr_notice("error %s: %s\n", dc->backing_dev_name, err); 1478 bcache_device_stop(&dc->disk); 1479 return ret; 1480 } 1481 1482 /* Flash only volumes */ 1483 1484 /* When d->kobj released */ 1485 void bch_flash_dev_release(struct kobject *kobj) 1486 { 1487 struct bcache_device *d = container_of(kobj, struct bcache_device, 1488 kobj); 1489 kfree(d); 1490 } 1491 1492 static void flash_dev_free(struct closure *cl) 1493 { 1494 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1495 1496 mutex_lock(&bch_register_lock); 1497 atomic_long_sub(bcache_dev_sectors_dirty(d), 1498 &d->c->flash_dev_dirty_sectors); 1499 bcache_device_free(d); 1500 mutex_unlock(&bch_register_lock); 1501 kobject_put(&d->kobj); 1502 } 1503 1504 static void flash_dev_flush(struct closure *cl) 1505 { 1506 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1507 1508 mutex_lock(&bch_register_lock); 1509 bcache_device_unlink(d); 1510 mutex_unlock(&bch_register_lock); 1511 kobject_del(&d->kobj); 1512 continue_at(cl, flash_dev_free, system_wq); 1513 } 1514 1515 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1516 { 1517 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1518 GFP_KERNEL); 1519 if (!d) 1520 return -ENOMEM; 1521 1522 closure_init(&d->cl, NULL); 1523 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1524 1525 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1526 1527 if (bcache_device_init(d, block_bytes(c->cache), u->sectors, 1528 NULL, &bcache_flash_ops)) 1529 goto err; 1530 1531 bcache_device_attach(d, c, u - c->uuids); 1532 bch_sectors_dirty_init(d); 1533 bch_flash_dev_request_init(d); 1534 add_disk(d->disk); 1535 1536 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) 1537 goto err; 1538 1539 bcache_device_link(d, c, "volume"); 1540 1541 return 0; 1542 err: 1543 kobject_put(&d->kobj); 1544 return -ENOMEM; 1545 } 1546 1547 static int flash_devs_run(struct cache_set *c) 1548 { 1549 int ret = 0; 1550 struct uuid_entry *u; 1551 1552 for (u = c->uuids; 1553 u < c->uuids + c->nr_uuids && !ret; 1554 u++) 1555 if (UUID_FLASH_ONLY(u)) 1556 ret = flash_dev_run(c, u); 1557 1558 return ret; 1559 } 1560 1561 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1562 { 1563 struct uuid_entry *u; 1564 1565 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1566 return -EINTR; 1567 1568 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1569 return -EPERM; 1570 1571 u = uuid_find_empty(c); 1572 if (!u) { 1573 pr_err("Can't create volume, no room for UUID\n"); 1574 return -EINVAL; 1575 } 1576 1577 get_random_bytes(u->uuid, 16); 1578 memset(u->label, 0, 32); 1579 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1580 1581 SET_UUID_FLASH_ONLY(u, 1); 1582 u->sectors = size >> 9; 1583 1584 bch_uuid_write(c); 1585 1586 return flash_dev_run(c, u); 1587 } 1588 1589 bool bch_cached_dev_error(struct cached_dev *dc) 1590 { 1591 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1592 return false; 1593 1594 dc->io_disable = true; 1595 /* make others know io_disable is true earlier */ 1596 smp_mb(); 1597 1598 pr_err("stop %s: too many IO errors on backing device %s\n", 1599 dc->disk.disk->disk_name, dc->backing_dev_name); 1600 1601 bcache_device_stop(&dc->disk); 1602 return true; 1603 } 1604 1605 /* Cache set */ 1606 1607 __printf(2, 3) 1608 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1609 { 1610 struct va_format vaf; 1611 va_list args; 1612 1613 if (c->on_error != ON_ERROR_PANIC && 1614 test_bit(CACHE_SET_STOPPING, &c->flags)) 1615 return false; 1616 1617 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1618 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1619 1620 /* 1621 * XXX: we can be called from atomic context 1622 * acquire_console_sem(); 1623 */ 1624 1625 va_start(args, fmt); 1626 1627 vaf.fmt = fmt; 1628 vaf.va = &args; 1629 1630 pr_err("error on %pU: %pV, disabling caching\n", 1631 c->set_uuid, &vaf); 1632 1633 va_end(args); 1634 1635 if (c->on_error == ON_ERROR_PANIC) 1636 panic("panic forced after error\n"); 1637 1638 bch_cache_set_unregister(c); 1639 return true; 1640 } 1641 1642 /* When c->kobj released */ 1643 void bch_cache_set_release(struct kobject *kobj) 1644 { 1645 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1646 1647 kfree(c); 1648 module_put(THIS_MODULE); 1649 } 1650 1651 static void cache_set_free(struct closure *cl) 1652 { 1653 struct cache_set *c = container_of(cl, struct cache_set, cl); 1654 struct cache *ca; 1655 1656 debugfs_remove(c->debug); 1657 1658 bch_open_buckets_free(c); 1659 bch_btree_cache_free(c); 1660 bch_journal_free(c); 1661 1662 mutex_lock(&bch_register_lock); 1663 bch_bset_sort_state_free(&c->sort); 1664 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb))); 1665 1666 ca = c->cache; 1667 if (ca) { 1668 ca->set = NULL; 1669 c->cache = NULL; 1670 kobject_put(&ca->kobj); 1671 } 1672 1673 1674 if (c->moving_gc_wq) 1675 destroy_workqueue(c->moving_gc_wq); 1676 bioset_exit(&c->bio_split); 1677 mempool_exit(&c->fill_iter); 1678 mempool_exit(&c->bio_meta); 1679 mempool_exit(&c->search); 1680 kfree(c->devices); 1681 1682 list_del(&c->list); 1683 mutex_unlock(&bch_register_lock); 1684 1685 pr_info("Cache set %pU unregistered\n", c->set_uuid); 1686 wake_up(&unregister_wait); 1687 1688 closure_debug_destroy(&c->cl); 1689 kobject_put(&c->kobj); 1690 } 1691 1692 static void cache_set_flush(struct closure *cl) 1693 { 1694 struct cache_set *c = container_of(cl, struct cache_set, caching); 1695 struct cache *ca = c->cache; 1696 struct btree *b; 1697 1698 bch_cache_accounting_destroy(&c->accounting); 1699 1700 kobject_put(&c->internal); 1701 kobject_del(&c->kobj); 1702 1703 if (!IS_ERR_OR_NULL(c->gc_thread)) 1704 kthread_stop(c->gc_thread); 1705 1706 if (!IS_ERR_OR_NULL(c->root)) 1707 list_add(&c->root->list, &c->btree_cache); 1708 1709 /* 1710 * Avoid flushing cached nodes if cache set is retiring 1711 * due to too many I/O errors detected. 1712 */ 1713 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1714 list_for_each_entry(b, &c->btree_cache, list) { 1715 mutex_lock(&b->write_lock); 1716 if (btree_node_dirty(b)) 1717 __bch_btree_node_write(b, NULL); 1718 mutex_unlock(&b->write_lock); 1719 } 1720 1721 if (ca->alloc_thread) 1722 kthread_stop(ca->alloc_thread); 1723 1724 if (c->journal.cur) { 1725 cancel_delayed_work_sync(&c->journal.work); 1726 /* flush last journal entry if needed */ 1727 c->journal.work.work.func(&c->journal.work.work); 1728 } 1729 1730 closure_return(cl); 1731 } 1732 1733 /* 1734 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1735 * cache set is unregistering due to too many I/O errors. In this condition, 1736 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1737 * value and whether the broken cache has dirty data: 1738 * 1739 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1740 * BCH_CACHED_STOP_AUTO 0 NO 1741 * BCH_CACHED_STOP_AUTO 1 YES 1742 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1743 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1744 * 1745 * The expected behavior is, if stop_when_cache_set_failed is configured to 1746 * "auto" via sysfs interface, the bcache device will not be stopped if the 1747 * backing device is clean on the broken cache device. 1748 */ 1749 static void conditional_stop_bcache_device(struct cache_set *c, 1750 struct bcache_device *d, 1751 struct cached_dev *dc) 1752 { 1753 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1754 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1755 d->disk->disk_name, c->set_uuid); 1756 bcache_device_stop(d); 1757 } else if (atomic_read(&dc->has_dirty)) { 1758 /* 1759 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1760 * and dc->has_dirty == 1 1761 */ 1762 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1763 d->disk->disk_name); 1764 /* 1765 * There might be a small time gap that cache set is 1766 * released but bcache device is not. Inside this time 1767 * gap, regular I/O requests will directly go into 1768 * backing device as no cache set attached to. This 1769 * behavior may also introduce potential inconsistence 1770 * data in writeback mode while cache is dirty. 1771 * Therefore before calling bcache_device_stop() due 1772 * to a broken cache device, dc->io_disable should be 1773 * explicitly set to true. 1774 */ 1775 dc->io_disable = true; 1776 /* make others know io_disable is true earlier */ 1777 smp_mb(); 1778 bcache_device_stop(d); 1779 } else { 1780 /* 1781 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1782 * and dc->has_dirty == 0 1783 */ 1784 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1785 d->disk->disk_name); 1786 } 1787 } 1788 1789 static void __cache_set_unregister(struct closure *cl) 1790 { 1791 struct cache_set *c = container_of(cl, struct cache_set, caching); 1792 struct cached_dev *dc; 1793 struct bcache_device *d; 1794 size_t i; 1795 1796 mutex_lock(&bch_register_lock); 1797 1798 for (i = 0; i < c->devices_max_used; i++) { 1799 d = c->devices[i]; 1800 if (!d) 1801 continue; 1802 1803 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1804 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1805 dc = container_of(d, struct cached_dev, disk); 1806 bch_cached_dev_detach(dc); 1807 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1808 conditional_stop_bcache_device(c, d, dc); 1809 } else { 1810 bcache_device_stop(d); 1811 } 1812 } 1813 1814 mutex_unlock(&bch_register_lock); 1815 1816 continue_at(cl, cache_set_flush, system_wq); 1817 } 1818 1819 void bch_cache_set_stop(struct cache_set *c) 1820 { 1821 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1822 /* closure_fn set to __cache_set_unregister() */ 1823 closure_queue(&c->caching); 1824 } 1825 1826 void bch_cache_set_unregister(struct cache_set *c) 1827 { 1828 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1829 bch_cache_set_stop(c); 1830 } 1831 1832 #define alloc_meta_bucket_pages(gfp, sb) \ 1833 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb)))) 1834 1835 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1836 { 1837 int iter_size; 1838 struct cache *ca = container_of(sb, struct cache, sb); 1839 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1840 1841 if (!c) 1842 return NULL; 1843 1844 __module_get(THIS_MODULE); 1845 closure_init(&c->cl, NULL); 1846 set_closure_fn(&c->cl, cache_set_free, system_wq); 1847 1848 closure_init(&c->caching, &c->cl); 1849 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1850 1851 /* Maybe create continue_at_noreturn() and use it here? */ 1852 closure_set_stopped(&c->cl); 1853 closure_put(&c->cl); 1854 1855 kobject_init(&c->kobj, &bch_cache_set_ktype); 1856 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1857 1858 bch_cache_accounting_init(&c->accounting, &c->cl); 1859 1860 memcpy(c->set_uuid, sb->set_uuid, 16); 1861 1862 c->cache = ca; 1863 c->cache->set = c; 1864 c->bucket_bits = ilog2(sb->bucket_size); 1865 c->block_bits = ilog2(sb->block_size); 1866 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry); 1867 c->devices_max_used = 0; 1868 atomic_set(&c->attached_dev_nr, 0); 1869 c->btree_pages = meta_bucket_pages(sb); 1870 if (c->btree_pages > BTREE_MAX_PAGES) 1871 c->btree_pages = max_t(int, c->btree_pages / 4, 1872 BTREE_MAX_PAGES); 1873 1874 sema_init(&c->sb_write_mutex, 1); 1875 mutex_init(&c->bucket_lock); 1876 init_waitqueue_head(&c->btree_cache_wait); 1877 spin_lock_init(&c->btree_cannibalize_lock); 1878 init_waitqueue_head(&c->bucket_wait); 1879 init_waitqueue_head(&c->gc_wait); 1880 sema_init(&c->uuid_write_mutex, 1); 1881 1882 spin_lock_init(&c->btree_gc_time.lock); 1883 spin_lock_init(&c->btree_split_time.lock); 1884 spin_lock_init(&c->btree_read_time.lock); 1885 1886 bch_moving_init_cache_set(c); 1887 1888 INIT_LIST_HEAD(&c->list); 1889 INIT_LIST_HEAD(&c->cached_devs); 1890 INIT_LIST_HEAD(&c->btree_cache); 1891 INIT_LIST_HEAD(&c->btree_cache_freeable); 1892 INIT_LIST_HEAD(&c->btree_cache_freed); 1893 INIT_LIST_HEAD(&c->data_buckets); 1894 1895 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) * 1896 sizeof(struct btree_iter_set); 1897 1898 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL); 1899 if (!c->devices) 1900 goto err; 1901 1902 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache)) 1903 goto err; 1904 1905 if (mempool_init_kmalloc_pool(&c->bio_meta, 2, 1906 sizeof(struct bbio) + 1907 sizeof(struct bio_vec) * meta_bucket_pages(sb))) 1908 goto err; 1909 1910 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size)) 1911 goto err; 1912 1913 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1914 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 1915 goto err; 1916 1917 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb); 1918 if (!c->uuids) 1919 goto err; 1920 1921 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0); 1922 if (!c->moving_gc_wq) 1923 goto err; 1924 1925 if (bch_journal_alloc(c)) 1926 goto err; 1927 1928 if (bch_btree_cache_alloc(c)) 1929 goto err; 1930 1931 if (bch_open_buckets_alloc(c)) 1932 goto err; 1933 1934 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1935 goto err; 1936 1937 c->congested_read_threshold_us = 2000; 1938 c->congested_write_threshold_us = 20000; 1939 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1940 c->idle_max_writeback_rate_enabled = 1; 1941 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1942 1943 return c; 1944 err: 1945 bch_cache_set_unregister(c); 1946 return NULL; 1947 } 1948 1949 static int run_cache_set(struct cache_set *c) 1950 { 1951 const char *err = "cannot allocate memory"; 1952 struct cached_dev *dc, *t; 1953 struct cache *ca = c->cache; 1954 struct closure cl; 1955 LIST_HEAD(journal); 1956 struct journal_replay *l; 1957 1958 closure_init_stack(&cl); 1959 1960 c->nbuckets = ca->sb.nbuckets; 1961 set_gc_sectors(c); 1962 1963 if (CACHE_SYNC(&c->cache->sb)) { 1964 struct bkey *k; 1965 struct jset *j; 1966 1967 err = "cannot allocate memory for journal"; 1968 if (bch_journal_read(c, &journal)) 1969 goto err; 1970 1971 pr_debug("btree_journal_read() done\n"); 1972 1973 err = "no journal entries found"; 1974 if (list_empty(&journal)) 1975 goto err; 1976 1977 j = &list_entry(journal.prev, struct journal_replay, list)->j; 1978 1979 err = "IO error reading priorities"; 1980 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 1981 goto err; 1982 1983 /* 1984 * If prio_read() fails it'll call cache_set_error and we'll 1985 * tear everything down right away, but if we perhaps checked 1986 * sooner we could avoid journal replay. 1987 */ 1988 1989 k = &j->btree_root; 1990 1991 err = "bad btree root"; 1992 if (__bch_btree_ptr_invalid(c, k)) 1993 goto err; 1994 1995 err = "error reading btree root"; 1996 c->root = bch_btree_node_get(c, NULL, k, 1997 j->btree_level, 1998 true, NULL); 1999 if (IS_ERR_OR_NULL(c->root)) 2000 goto err; 2001 2002 list_del_init(&c->root->list); 2003 rw_unlock(true, c->root); 2004 2005 err = uuid_read(c, j, &cl); 2006 if (err) 2007 goto err; 2008 2009 err = "error in recovery"; 2010 if (bch_btree_check(c)) 2011 goto err; 2012 2013 bch_journal_mark(c, &journal); 2014 bch_initial_gc_finish(c); 2015 pr_debug("btree_check() done\n"); 2016 2017 /* 2018 * bcache_journal_next() can't happen sooner, or 2019 * btree_gc_finish() will give spurious errors about last_gc > 2020 * gc_gen - this is a hack but oh well. 2021 */ 2022 bch_journal_next(&c->journal); 2023 2024 err = "error starting allocator thread"; 2025 if (bch_cache_allocator_start(ca)) 2026 goto err; 2027 2028 /* 2029 * First place it's safe to allocate: btree_check() and 2030 * btree_gc_finish() have to run before we have buckets to 2031 * allocate, and bch_bucket_alloc_set() might cause a journal 2032 * entry to be written so bcache_journal_next() has to be called 2033 * first. 2034 * 2035 * If the uuids were in the old format we have to rewrite them 2036 * before the next journal entry is written: 2037 */ 2038 if (j->version < BCACHE_JSET_VERSION_UUID) 2039 __uuid_write(c); 2040 2041 err = "bcache: replay journal failed"; 2042 if (bch_journal_replay(c, &journal)) 2043 goto err; 2044 } else { 2045 unsigned int j; 2046 2047 pr_notice("invalidating existing data\n"); 2048 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 2049 2, SB_JOURNAL_BUCKETS); 2050 2051 for (j = 0; j < ca->sb.keys; j++) 2052 ca->sb.d[j] = ca->sb.first_bucket + j; 2053 2054 bch_initial_gc_finish(c); 2055 2056 err = "error starting allocator thread"; 2057 if (bch_cache_allocator_start(ca)) 2058 goto err; 2059 2060 mutex_lock(&c->bucket_lock); 2061 bch_prio_write(ca, true); 2062 mutex_unlock(&c->bucket_lock); 2063 2064 err = "cannot allocate new UUID bucket"; 2065 if (__uuid_write(c)) 2066 goto err; 2067 2068 err = "cannot allocate new btree root"; 2069 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2070 if (IS_ERR_OR_NULL(c->root)) 2071 goto err; 2072 2073 mutex_lock(&c->root->write_lock); 2074 bkey_copy_key(&c->root->key, &MAX_KEY); 2075 bch_btree_node_write(c->root, &cl); 2076 mutex_unlock(&c->root->write_lock); 2077 2078 bch_btree_set_root(c->root); 2079 rw_unlock(true, c->root); 2080 2081 /* 2082 * We don't want to write the first journal entry until 2083 * everything is set up - fortunately journal entries won't be 2084 * written until the SET_CACHE_SYNC() here: 2085 */ 2086 SET_CACHE_SYNC(&c->cache->sb, true); 2087 2088 bch_journal_next(&c->journal); 2089 bch_journal_meta(c, &cl); 2090 } 2091 2092 err = "error starting gc thread"; 2093 if (bch_gc_thread_start(c)) 2094 goto err; 2095 2096 closure_sync(&cl); 2097 c->cache->sb.last_mount = (u32)ktime_get_real_seconds(); 2098 bcache_write_super(c); 2099 2100 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2101 bch_cached_dev_attach(dc, c, NULL); 2102 2103 flash_devs_run(c); 2104 2105 set_bit(CACHE_SET_RUNNING, &c->flags); 2106 return 0; 2107 err: 2108 while (!list_empty(&journal)) { 2109 l = list_first_entry(&journal, struct journal_replay, list); 2110 list_del(&l->list); 2111 kfree(l); 2112 } 2113 2114 closure_sync(&cl); 2115 2116 bch_cache_set_error(c, "%s", err); 2117 2118 return -EIO; 2119 } 2120 2121 static const char *register_cache_set(struct cache *ca) 2122 { 2123 char buf[12]; 2124 const char *err = "cannot allocate memory"; 2125 struct cache_set *c; 2126 2127 list_for_each_entry(c, &bch_cache_sets, list) 2128 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) { 2129 if (c->cache) 2130 return "duplicate cache set member"; 2131 2132 goto found; 2133 } 2134 2135 c = bch_cache_set_alloc(&ca->sb); 2136 if (!c) 2137 return err; 2138 2139 err = "error creating kobject"; 2140 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) || 2141 kobject_add(&c->internal, &c->kobj, "internal")) 2142 goto err; 2143 2144 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2145 goto err; 2146 2147 bch_debug_init_cache_set(c); 2148 2149 list_add(&c->list, &bch_cache_sets); 2150 found: 2151 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2152 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2153 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2154 goto err; 2155 2156 kobject_get(&ca->kobj); 2157 ca->set = c; 2158 ca->set->cache = ca; 2159 2160 err = "failed to run cache set"; 2161 if (run_cache_set(c) < 0) 2162 goto err; 2163 2164 return NULL; 2165 err: 2166 bch_cache_set_unregister(c); 2167 return err; 2168 } 2169 2170 /* Cache device */ 2171 2172 /* When ca->kobj released */ 2173 void bch_cache_release(struct kobject *kobj) 2174 { 2175 struct cache *ca = container_of(kobj, struct cache, kobj); 2176 unsigned int i; 2177 2178 if (ca->set) { 2179 BUG_ON(ca->set->cache != ca); 2180 ca->set->cache = NULL; 2181 } 2182 2183 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb))); 2184 kfree(ca->prio_buckets); 2185 vfree(ca->buckets); 2186 2187 free_heap(&ca->heap); 2188 free_fifo(&ca->free_inc); 2189 2190 for (i = 0; i < RESERVE_NR; i++) 2191 free_fifo(&ca->free[i]); 2192 2193 if (ca->sb_disk) 2194 put_page(virt_to_page(ca->sb_disk)); 2195 2196 if (!IS_ERR_OR_NULL(ca->bdev)) 2197 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2198 2199 kfree(ca); 2200 module_put(THIS_MODULE); 2201 } 2202 2203 static int cache_alloc(struct cache *ca) 2204 { 2205 size_t free; 2206 size_t btree_buckets; 2207 struct bucket *b; 2208 int ret = -ENOMEM; 2209 const char *err = NULL; 2210 2211 __module_get(THIS_MODULE); 2212 kobject_init(&ca->kobj, &bch_cache_ktype); 2213 2214 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); 2215 2216 /* 2217 * when ca->sb.njournal_buckets is not zero, journal exists, 2218 * and in bch_journal_replay(), tree node may split, 2219 * so bucket of RESERVE_BTREE type is needed, 2220 * the worst situation is all journal buckets are valid journal, 2221 * and all the keys need to replay, 2222 * so the number of RESERVE_BTREE type buckets should be as much 2223 * as journal buckets 2224 */ 2225 btree_buckets = ca->sb.njournal_buckets ?: 8; 2226 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2227 if (!free) { 2228 ret = -EPERM; 2229 err = "ca->sb.nbuckets is too small"; 2230 goto err_free; 2231 } 2232 2233 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2234 GFP_KERNEL)) { 2235 err = "ca->free[RESERVE_BTREE] alloc failed"; 2236 goto err_btree_alloc; 2237 } 2238 2239 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2240 GFP_KERNEL)) { 2241 err = "ca->free[RESERVE_PRIO] alloc failed"; 2242 goto err_prio_alloc; 2243 } 2244 2245 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2246 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2247 goto err_movinggc_alloc; 2248 } 2249 2250 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2251 err = "ca->free[RESERVE_NONE] alloc failed"; 2252 goto err_none_alloc; 2253 } 2254 2255 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2256 err = "ca->free_inc alloc failed"; 2257 goto err_free_inc_alloc; 2258 } 2259 2260 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2261 err = "ca->heap alloc failed"; 2262 goto err_heap_alloc; 2263 } 2264 2265 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2266 ca->sb.nbuckets)); 2267 if (!ca->buckets) { 2268 err = "ca->buckets alloc failed"; 2269 goto err_buckets_alloc; 2270 } 2271 2272 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2273 prio_buckets(ca), 2), 2274 GFP_KERNEL); 2275 if (!ca->prio_buckets) { 2276 err = "ca->prio_buckets alloc failed"; 2277 goto err_prio_buckets_alloc; 2278 } 2279 2280 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb); 2281 if (!ca->disk_buckets) { 2282 err = "ca->disk_buckets alloc failed"; 2283 goto err_disk_buckets_alloc; 2284 } 2285 2286 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2287 2288 for_each_bucket(b, ca) 2289 atomic_set(&b->pin, 0); 2290 return 0; 2291 2292 err_disk_buckets_alloc: 2293 kfree(ca->prio_buckets); 2294 err_prio_buckets_alloc: 2295 vfree(ca->buckets); 2296 err_buckets_alloc: 2297 free_heap(&ca->heap); 2298 err_heap_alloc: 2299 free_fifo(&ca->free_inc); 2300 err_free_inc_alloc: 2301 free_fifo(&ca->free[RESERVE_NONE]); 2302 err_none_alloc: 2303 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2304 err_movinggc_alloc: 2305 free_fifo(&ca->free[RESERVE_PRIO]); 2306 err_prio_alloc: 2307 free_fifo(&ca->free[RESERVE_BTREE]); 2308 err_btree_alloc: 2309 err_free: 2310 module_put(THIS_MODULE); 2311 if (err) 2312 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2313 return ret; 2314 } 2315 2316 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2317 struct block_device *bdev, struct cache *ca) 2318 { 2319 const char *err = NULL; /* must be set for any error case */ 2320 int ret = 0; 2321 2322 bdevname(bdev, ca->cache_dev_name); 2323 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2324 ca->bdev = bdev; 2325 ca->bdev->bd_holder = ca; 2326 ca->sb_disk = sb_disk; 2327 2328 if (blk_queue_discard(bdev_get_queue(bdev))) 2329 ca->discard = CACHE_DISCARD(&ca->sb); 2330 2331 ret = cache_alloc(ca); 2332 if (ret != 0) { 2333 /* 2334 * If we failed here, it means ca->kobj is not initialized yet, 2335 * kobject_put() won't be called and there is no chance to 2336 * call blkdev_put() to bdev in bch_cache_release(). So we 2337 * explicitly call blkdev_put() here. 2338 */ 2339 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2340 if (ret == -ENOMEM) 2341 err = "cache_alloc(): -ENOMEM"; 2342 else if (ret == -EPERM) 2343 err = "cache_alloc(): cache device is too small"; 2344 else 2345 err = "cache_alloc(): unknown error"; 2346 goto err; 2347 } 2348 2349 if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) { 2350 err = "error calling kobject_add"; 2351 ret = -ENOMEM; 2352 goto out; 2353 } 2354 2355 mutex_lock(&bch_register_lock); 2356 err = register_cache_set(ca); 2357 mutex_unlock(&bch_register_lock); 2358 2359 if (err) { 2360 ret = -ENODEV; 2361 goto out; 2362 } 2363 2364 pr_info("registered cache device %s\n", ca->cache_dev_name); 2365 2366 out: 2367 kobject_put(&ca->kobj); 2368 2369 err: 2370 if (err) 2371 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2372 2373 return ret; 2374 } 2375 2376 /* Global interfaces/init */ 2377 2378 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2379 const char *buffer, size_t size); 2380 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2381 struct kobj_attribute *attr, 2382 const char *buffer, size_t size); 2383 2384 kobj_attribute_write(register, register_bcache); 2385 kobj_attribute_write(register_quiet, register_bcache); 2386 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2387 2388 static bool bch_is_open_backing(dev_t dev) 2389 { 2390 struct cache_set *c, *tc; 2391 struct cached_dev *dc, *t; 2392 2393 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2394 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2395 if (dc->bdev->bd_dev == dev) 2396 return true; 2397 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2398 if (dc->bdev->bd_dev == dev) 2399 return true; 2400 return false; 2401 } 2402 2403 static bool bch_is_open_cache(dev_t dev) 2404 { 2405 struct cache_set *c, *tc; 2406 2407 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2408 struct cache *ca = c->cache; 2409 2410 if (ca->bdev->bd_dev == dev) 2411 return true; 2412 } 2413 2414 return false; 2415 } 2416 2417 static bool bch_is_open(dev_t dev) 2418 { 2419 return bch_is_open_cache(dev) || bch_is_open_backing(dev); 2420 } 2421 2422 struct async_reg_args { 2423 struct delayed_work reg_work; 2424 char *path; 2425 struct cache_sb *sb; 2426 struct cache_sb_disk *sb_disk; 2427 struct block_device *bdev; 2428 }; 2429 2430 static void register_bdev_worker(struct work_struct *work) 2431 { 2432 int fail = false; 2433 struct async_reg_args *args = 2434 container_of(work, struct async_reg_args, reg_work.work); 2435 struct cached_dev *dc; 2436 2437 dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2438 if (!dc) { 2439 fail = true; 2440 put_page(virt_to_page(args->sb_disk)); 2441 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2442 goto out; 2443 } 2444 2445 mutex_lock(&bch_register_lock); 2446 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0) 2447 fail = true; 2448 mutex_unlock(&bch_register_lock); 2449 2450 out: 2451 if (fail) 2452 pr_info("error %s: fail to register backing device\n", 2453 args->path); 2454 kfree(args->sb); 2455 kfree(args->path); 2456 kfree(args); 2457 module_put(THIS_MODULE); 2458 } 2459 2460 static void register_cache_worker(struct work_struct *work) 2461 { 2462 int fail = false; 2463 struct async_reg_args *args = 2464 container_of(work, struct async_reg_args, reg_work.work); 2465 struct cache *ca; 2466 2467 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2468 if (!ca) { 2469 fail = true; 2470 put_page(virt_to_page(args->sb_disk)); 2471 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2472 goto out; 2473 } 2474 2475 /* blkdev_put() will be called in bch_cache_release() */ 2476 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0) 2477 fail = true; 2478 2479 out: 2480 if (fail) 2481 pr_info("error %s: fail to register cache device\n", 2482 args->path); 2483 kfree(args->sb); 2484 kfree(args->path); 2485 kfree(args); 2486 module_put(THIS_MODULE); 2487 } 2488 2489 static void register_device_aync(struct async_reg_args *args) 2490 { 2491 if (SB_IS_BDEV(args->sb)) 2492 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2493 else 2494 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2495 2496 /* 10 jiffies is enough for a delay */ 2497 queue_delayed_work(system_wq, &args->reg_work, 10); 2498 } 2499 2500 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2501 const char *buffer, size_t size) 2502 { 2503 const char *err; 2504 char *path = NULL; 2505 struct cache_sb *sb; 2506 struct cache_sb_disk *sb_disk; 2507 struct block_device *bdev; 2508 ssize_t ret; 2509 bool async_registration = false; 2510 2511 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION 2512 async_registration = true; 2513 #endif 2514 2515 ret = -EBUSY; 2516 err = "failed to reference bcache module"; 2517 if (!try_module_get(THIS_MODULE)) 2518 goto out; 2519 2520 /* For latest state of bcache_is_reboot */ 2521 smp_mb(); 2522 err = "bcache is in reboot"; 2523 if (bcache_is_reboot) 2524 goto out_module_put; 2525 2526 ret = -ENOMEM; 2527 err = "cannot allocate memory"; 2528 path = kstrndup(buffer, size, GFP_KERNEL); 2529 if (!path) 2530 goto out_module_put; 2531 2532 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2533 if (!sb) 2534 goto out_free_path; 2535 2536 ret = -EINVAL; 2537 err = "failed to open device"; 2538 bdev = blkdev_get_by_path(strim(path), 2539 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2540 sb); 2541 if (IS_ERR(bdev)) { 2542 if (bdev == ERR_PTR(-EBUSY)) { 2543 dev_t dev; 2544 2545 mutex_lock(&bch_register_lock); 2546 if (lookup_bdev(strim(path), &dev) == 0 && 2547 bch_is_open(dev)) 2548 err = "device already registered"; 2549 else 2550 err = "device busy"; 2551 mutex_unlock(&bch_register_lock); 2552 if (attr == &ksysfs_register_quiet) 2553 goto done; 2554 } 2555 goto out_free_sb; 2556 } 2557 2558 err = "failed to set blocksize"; 2559 if (set_blocksize(bdev, 4096)) 2560 goto out_blkdev_put; 2561 2562 err = read_super(sb, bdev, &sb_disk); 2563 if (err) 2564 goto out_blkdev_put; 2565 2566 err = "failed to register device"; 2567 2568 if (async_registration) { 2569 /* register in asynchronous way */ 2570 struct async_reg_args *args = 2571 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2572 2573 if (!args) { 2574 ret = -ENOMEM; 2575 err = "cannot allocate memory"; 2576 goto out_put_sb_page; 2577 } 2578 2579 args->path = path; 2580 args->sb = sb; 2581 args->sb_disk = sb_disk; 2582 args->bdev = bdev; 2583 register_device_aync(args); 2584 /* No wait and returns to user space */ 2585 goto async_done; 2586 } 2587 2588 if (SB_IS_BDEV(sb)) { 2589 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2590 2591 if (!dc) 2592 goto out_put_sb_page; 2593 2594 mutex_lock(&bch_register_lock); 2595 ret = register_bdev(sb, sb_disk, bdev, dc); 2596 mutex_unlock(&bch_register_lock); 2597 /* blkdev_put() will be called in cached_dev_free() */ 2598 if (ret < 0) 2599 goto out_free_sb; 2600 } else { 2601 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2602 2603 if (!ca) 2604 goto out_put_sb_page; 2605 2606 /* blkdev_put() will be called in bch_cache_release() */ 2607 if (register_cache(sb, sb_disk, bdev, ca) != 0) 2608 goto out_free_sb; 2609 } 2610 2611 done: 2612 kfree(sb); 2613 kfree(path); 2614 module_put(THIS_MODULE); 2615 async_done: 2616 return size; 2617 2618 out_put_sb_page: 2619 put_page(virt_to_page(sb_disk)); 2620 out_blkdev_put: 2621 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2622 out_free_sb: 2623 kfree(sb); 2624 out_free_path: 2625 kfree(path); 2626 path = NULL; 2627 out_module_put: 2628 module_put(THIS_MODULE); 2629 out: 2630 pr_info("error %s: %s\n", path?path:"", err); 2631 return ret; 2632 } 2633 2634 2635 struct pdev { 2636 struct list_head list; 2637 struct cached_dev *dc; 2638 }; 2639 2640 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2641 struct kobj_attribute *attr, 2642 const char *buffer, 2643 size_t size) 2644 { 2645 LIST_HEAD(pending_devs); 2646 ssize_t ret = size; 2647 struct cached_dev *dc, *tdc; 2648 struct pdev *pdev, *tpdev; 2649 struct cache_set *c, *tc; 2650 2651 mutex_lock(&bch_register_lock); 2652 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2653 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2654 if (!pdev) 2655 break; 2656 pdev->dc = dc; 2657 list_add(&pdev->list, &pending_devs); 2658 } 2659 2660 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2661 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2662 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2663 char *set_uuid = c->set_uuid; 2664 2665 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2666 list_del(&pdev->list); 2667 kfree(pdev); 2668 break; 2669 } 2670 } 2671 } 2672 mutex_unlock(&bch_register_lock); 2673 2674 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2675 pr_info("delete pdev %p\n", pdev); 2676 list_del(&pdev->list); 2677 bcache_device_stop(&pdev->dc->disk); 2678 kfree(pdev); 2679 } 2680 2681 return ret; 2682 } 2683 2684 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2685 { 2686 if (bcache_is_reboot) 2687 return NOTIFY_DONE; 2688 2689 if (code == SYS_DOWN || 2690 code == SYS_HALT || 2691 code == SYS_POWER_OFF) { 2692 DEFINE_WAIT(wait); 2693 unsigned long start = jiffies; 2694 bool stopped = false; 2695 2696 struct cache_set *c, *tc; 2697 struct cached_dev *dc, *tdc; 2698 2699 mutex_lock(&bch_register_lock); 2700 2701 if (bcache_is_reboot) 2702 goto out; 2703 2704 /* New registration is rejected since now */ 2705 bcache_is_reboot = true; 2706 /* 2707 * Make registering caller (if there is) on other CPU 2708 * core know bcache_is_reboot set to true earlier 2709 */ 2710 smp_mb(); 2711 2712 if (list_empty(&bch_cache_sets) && 2713 list_empty(&uncached_devices)) 2714 goto out; 2715 2716 mutex_unlock(&bch_register_lock); 2717 2718 pr_info("Stopping all devices:\n"); 2719 2720 /* 2721 * The reason bch_register_lock is not held to call 2722 * bch_cache_set_stop() and bcache_device_stop() is to 2723 * avoid potential deadlock during reboot, because cache 2724 * set or bcache device stopping process will acqurie 2725 * bch_register_lock too. 2726 * 2727 * We are safe here because bcache_is_reboot sets to 2728 * true already, register_bcache() will reject new 2729 * registration now. bcache_is_reboot also makes sure 2730 * bcache_reboot() won't be re-entered on by other thread, 2731 * so there is no race in following list iteration by 2732 * list_for_each_entry_safe(). 2733 */ 2734 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2735 bch_cache_set_stop(c); 2736 2737 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2738 bcache_device_stop(&dc->disk); 2739 2740 2741 /* 2742 * Give an early chance for other kthreads and 2743 * kworkers to stop themselves 2744 */ 2745 schedule(); 2746 2747 /* What's a condition variable? */ 2748 while (1) { 2749 long timeout = start + 10 * HZ - jiffies; 2750 2751 mutex_lock(&bch_register_lock); 2752 stopped = list_empty(&bch_cache_sets) && 2753 list_empty(&uncached_devices); 2754 2755 if (timeout < 0 || stopped) 2756 break; 2757 2758 prepare_to_wait(&unregister_wait, &wait, 2759 TASK_UNINTERRUPTIBLE); 2760 2761 mutex_unlock(&bch_register_lock); 2762 schedule_timeout(timeout); 2763 } 2764 2765 finish_wait(&unregister_wait, &wait); 2766 2767 if (stopped) 2768 pr_info("All devices stopped\n"); 2769 else 2770 pr_notice("Timeout waiting for devices to be closed\n"); 2771 out: 2772 mutex_unlock(&bch_register_lock); 2773 } 2774 2775 return NOTIFY_DONE; 2776 } 2777 2778 static struct notifier_block reboot = { 2779 .notifier_call = bcache_reboot, 2780 .priority = INT_MAX, /* before any real devices */ 2781 }; 2782 2783 static void bcache_exit(void) 2784 { 2785 bch_debug_exit(); 2786 bch_request_exit(); 2787 if (bcache_kobj) 2788 kobject_put(bcache_kobj); 2789 if (bcache_wq) 2790 destroy_workqueue(bcache_wq); 2791 if (bch_journal_wq) 2792 destroy_workqueue(bch_journal_wq); 2793 2794 if (bcache_major) 2795 unregister_blkdev(bcache_major, "bcache"); 2796 unregister_reboot_notifier(&reboot); 2797 mutex_destroy(&bch_register_lock); 2798 } 2799 2800 /* Check and fixup module parameters */ 2801 static void check_module_parameters(void) 2802 { 2803 if (bch_cutoff_writeback_sync == 0) 2804 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2805 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2806 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2807 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2808 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2809 } 2810 2811 if (bch_cutoff_writeback == 0) 2812 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2813 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2814 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2815 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2816 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2817 } 2818 2819 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2820 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2821 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2822 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2823 } 2824 } 2825 2826 static int __init bcache_init(void) 2827 { 2828 static const struct attribute *files[] = { 2829 &ksysfs_register.attr, 2830 &ksysfs_register_quiet.attr, 2831 &ksysfs_pendings_cleanup.attr, 2832 NULL 2833 }; 2834 2835 check_module_parameters(); 2836 2837 mutex_init(&bch_register_lock); 2838 init_waitqueue_head(&unregister_wait); 2839 register_reboot_notifier(&reboot); 2840 2841 bcache_major = register_blkdev(0, "bcache"); 2842 if (bcache_major < 0) { 2843 unregister_reboot_notifier(&reboot); 2844 mutex_destroy(&bch_register_lock); 2845 return bcache_major; 2846 } 2847 2848 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2849 if (!bcache_wq) 2850 goto err; 2851 2852 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2853 if (!bch_journal_wq) 2854 goto err; 2855 2856 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2857 if (!bcache_kobj) 2858 goto err; 2859 2860 if (bch_request_init() || 2861 sysfs_create_files(bcache_kobj, files)) 2862 goto err; 2863 2864 bch_debug_init(); 2865 closure_debug_init(); 2866 2867 bcache_is_reboot = false; 2868 2869 return 0; 2870 err: 2871 bcache_exit(); 2872 return -ENOMEM; 2873 } 2874 2875 /* 2876 * Module hooks 2877 */ 2878 module_exit(bcache_exit); 2879 module_init(bcache_init); 2880 2881 module_param(bch_cutoff_writeback, uint, 0); 2882 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2883 2884 module_param(bch_cutoff_writeback_sync, uint, 0); 2885 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2886 2887 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2888 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2889 MODULE_LICENSE("GPL"); 2890